
A Web Component for Real-Time
Collaborative Text Editing

Master of Science Thesis
University of Turku
Department of Future Technologies
Software Engineering
2019
Pekka Maanpää

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UTUPub

https://core.ac.uk/display/199936438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF TURKU
Department of Future Technologies

PEKKA MAANPÄÄ: A Web Component for Real-Time Collaborative Text Editing

Master of Science Thesis, 76 p., 18 app. p.
Software Engineering
April 2019

Real-time collaborative software allows physically distinct people to co-operate by work-
ing on a shared application state, receiving updates from each other in real-time. The goal
of this thesis was to create a developer tool, which would allow web application develop-
ers to easily integrate a collaborative text editor into their applications. In order to remain
technology agnostic and to utilize the latest web standards, this product was implemented
as a web component, a reusable user interface component built with native web browser
features.

The main challenge in developing a real-time collaboration tool is the handling of
concurrent updates, which might conflict with one another. To tackle this issue, many
consistency maintenance algorithms have been presented in the academic literature. Most
of these techniques are variations of two main approaches: operational transformation
and commutative replicated data types. In this thesis, we reviewed some of these meth-
ods and chose the GOTO operational transformation algorithm to be implemented in our
component.

Besides selecting and implementing an appropriate consistency maintenance tech-
nique, the contributions of this thesis include the design of an easy-to-use application
programming interface (API). Our solution also fulfills some practical requirements
of group editors not covered by the consistency maintenance theory, such as session
management and cleaning of the message queue. The created web component succeeds in
encapsulating the complexity related to concurrency control and handling of joining peers
in the client-side implementation, which allows the application logic to remain simplistic.
This open-source product enables software developers to add a collaborative text editor
to their web applications by broadcasting the updates provided by an event-based API to
participating peers.

Keywords: collaborative software, web components, consistency maintenance, opera-
tional transformation

Contents

1 Introduction 1

2 Web Components 4

2.1 Background . 4

2.2 Standards . 5

2.2.1 Custom Elements . 5

2.2.2 Shadow DOM . 8

2.2.3 HTML Templates . 9

3 Consistency Maintenance 13

3.1 Consistency Criteria . 16

3.1.1 Causality Preservation . 16

3.1.2 Convergence . 17

3.1.3 Intention Preservation . 17

3.2 Operational Transformation . 18

3.2.1 Transformation Function . 19

3.2.2 State Vectors . 21

3.2.3 dOPT and adOPTed Algorithms 23

3.2.4 GOT Algorithm . 25

3.2.5 GOTO - GOT Optimized . 29

3.3 Commutative Replicated Data Types . 30

3.3.1 WOOT . 31

3.3.2 Logoot . 33

3.3.3 Treedoc . 34

3.4 Comparison of Methods . 34

4 Implementation 37

4.1 Requirements . 37

4.2 Selecting the Technologies . 38

4.2.1 Editor Core . 38

4.2.2 Consistency Maintenance Technique 39

4.3 API Design . 40

4.4 Internal Design . 43

4.4.1 Message Format . 45

4.4.2 Text Editor Integration . 46

4.4.3 Operational Transformation . 47

4.4.4 Session Handling . 49

4.4.5 Component Class . 50

4.4.6 Caret Rendering . 51

4.5 Test Automation . 52

5 Evaluation 55

5.1 Testing in a Centralized Architecture . 56

5.1.1 Server Push . 56

5.1.2 Test Application Implementation 56

5.1.3 Developer Experience . 58

5.2 Testing in a P2P Architecture . 59

5.2.1 WebRTC . 59

5.2.2 Test Application Implementation 60

5.2.3 Developer Experience . 62

5.3 Improvements Based on the Evaluation 62

6 Future Work 65

7 Conclusions 68

References 70

Appendices

A Centralized Test Application A-1

B P2P Test Application B-1

C Centralized Test Application With Revised Component API C-1

D Component Source Code D-1

List of Listings

2.1 Registering a custom element . 5

2.2 A custom element with property-attribute synchronization 7

2.3 Encapsulating element’s content and styles in a shadow DOM 10

2.4 Declaring the content of a web component in an HTML template 11

3.1 Basic transformations of insert and delete 21

3.2 Integrating a causally ready operation in the dOPT algorithm 24

3.3 Transpose function for reordering the log 30

3.4 GOTO control algorithm . 31

4.1 Automated convergence testing . 54

List of Figures

3.1 Transmitting operations in a best-case scenario 14

3.2 Diverging documents after concurrent inserts 15

3.3 Preserving causality with state vectors 23

3.4 A Hasse diagram of a WOOT document 32

4.1 Class diagram of the component . 44

5.1 Session control in the centralized test application 57

5.2 Operation skipping in P2P architecture 61

List of Tables

3.1 Comparison of space and time complexities of GOTO and WOOT 35

4.1 Component API . 42

4.2 Message types and their properties . 45

5.1 Improved component API . 64

Acronyms

API Application Programming Interface.

CRDT Commutative Replicated Data Type.

CSS Cascading Style Sheets.

DOM Document Object Model.

DX Developer Experience.

ES6 ECMAScript 6.

ET Exclusion Transformation.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

IT Inclusion Transformation.

OT Operational Transformation.

P2P Peer-to-Peer.

TCP Transmission Control Protocol.

UI User Interface.

URL Uniform Resource Locator.

UUID Universally Unique Identifier.

UX User Experience.

W3C World Wide Web Consortium.

WHATWG Web Hypertext Application Technology Working Group.

1 Introduction

The Internet has enabled real-time collaboration among physically distinct people. The

means of collaboration are not restricted to communication via voice or text messages,

as modern software tools allow users to edit shared data in real time. Such software is

also referred to as groupware. A common application domain for collaborative software

is word processing, one popular example being Google Docs. Its usage has been shown

to increase co-operation [1], enhance learning [2] and improve the perceived quality of

the created document [3].

The modern web has evolved from a simple file sharing system into a powerful plat-

form for building distributed applications. Users may often find web applications more

attractive than traditional software, due to the fact that they do not need to be installed.

Simply clicking a link or typing the URL into the browser will give the user an almost

instant access to the software. A well designed web application also works seamlessly on

any system, so the user can e.g. use it on a desktop computer at home and continue on

the go with her mobile device. From the developer’s point of view, web browsers pro-

vide a single interface for targeting multiple platforms, which saves the trouble of writing

separate versions of the same software for different operating systems.

The growing complexity of the web has given more business incentives for developers

to build tools for other developers. Frameworks provide fully featured workflows that

speed up the development, while reusable UI components solve more specific problems.

The latest web standards enable developing framework-agnostic reusable UI components,

CHAPTER 1. INTRODUCTION 2

called web components. The web component standards and the means for building web

components are examined in Chapter 2. By utilizing various developer tools, application

developers can spend more time on implementing their business logic and deliver working

software faster.

Collaborative text editing is an interesting subject for a developer tool. Such a tool

allows developers to enrich their applications with collaborative editing without imple-

menting their own solutions. We could envision this tool as a UI component. It is a

text editor, after all. The problem is that this component needs to exchange data with

other component instances, which reside at separated client applications. Networking is

not a concern of a generic UI component, but an application-level issue. How to handle

the routing of the messages depends on the selected technology stack and in most cases

involves also server-side functionality.

There exists several collaborative text editor products for web developers. All of them

need a server-side counter-part for the client-side UI component. CKEditor [4] is a rich

text editor for web, which introduced collaborative features in its version 5. Its server-

side program can be either utilized through the provider’s cloud service, or installed on the

developer’s own premises. Firepad [5] is an editor which enables its users to collaborate

on either rich text or code. It depends on Firebase databases to synchronize the data.

Quill [6] is another rich-text editor for web. There is a project which adds collaborative

features to this editor and requires ShareDB groupware to run in the backend [7]. We are

not aware of a web-based developer tool for collaborative text editing that would not force

their users to either rely on external services or to run a specific technology on their own

servers.

The main algorithmic challenge in the development of a collaborative editor is con-

sistency maintenance. When distributed users make changes to a shared application state,

it is possible that concurrent updates conflict with one another. The editor should ensure

that each user will have the same text in their editors after executing all of the local and

CHAPTER 1. INTRODUCTION 3

remote editing operations. Also, the effect of each edit should preserve the intention of

its original author at each client. Over the last few decades, academics have developed

various algorithms for consistency maintenance, which we will review in Chapter 3.

The goal of this thesis is to design and implement a client-side collaborative text ed-

itor component for the web platform, which will not depend on any specific technology

running in the backend and can be integrated into any web technology stack with minimal

effort. To fulfill this goal, we hope to succeed in implementing the consistency mainte-

nance logic purely in the client-side. Since the message routing is an application-level

concern, we can not encapsulate this communication logic in the component. Instead, the

component’s API should provide a simple interface for sending and receiving updates.

We want the component to work with native browser features, which is why it will be

implemented as a web component.

Following the background chapters on web components and consistency maintenance,

Chapter 4 describes the design and implementation of our collaborative web component.

In Chapter 5, we evaluate the created product by integrating it into two test applications.

One of them uses a traditional centralized architecture, while the other connects the clients

directly to each other in a P2P network. The component design is then improved based on

the pitfalls found in the developer experience. The next steps for this work are described

in Chapter 6, and Chapter 7 concludes the thesis.

2 Web Components

2.1 Background

Frontend web development typically consists of writing the structure of the user interface

in HTML markup, defining styles in CSS and programming functionality with JavaScript.

Web browsers interpret this information and render the page content accordingly. Orga-

nizations such as the World Wide Web Consortium (W3C) and the Web Hypertext Appli-

cation Technology Working Group (WHATWG) develop standards for the web technolo-

gies, which browser vendors follow to maintain consistency in the web. This ensures that

when a web developer adds e.g. an <input> element to her application, it will behave

pretty much the same way when opened in Google Chrome as in Mozilla Firefox.

A common pattern in UI development is to create reusable custom components as

building blocks for the application, and to use such components provided by other devel-

opers. HTML elements are UI components for the web, and by combining these elements

and adding functionality with JavaScript, web developers can build larger and more spe-

cific building blocks for their applications. However, before web components, developers

could not encapsulate the component interiors and easily reuse one component, without

copying its content and bloating the document with the implementation details of every

component instance. Several frameworks fixed this issue with their own component mod-

els, but a standardized way for building components that work across frameworks, or

without any framework, was missing.

CHAPTER 2. WEB COMPONENTS 5

2.2 Standards

A web component encapsulates the UI component with its structure and functionality into

a custom HTML element. Rather than referring to a single feature in the web platform,

the term web components is actually used to describe a development pattern which is en-

abled by three web standards. First, the custom elements standard (Section 2.2.1) allows

creating your own HTML elements. Next, shadow DOM (Section 2.2.2) enables encap-

sulating the component’s content from the rest of the document. Last, HTML templates

(Section 2.2.3) allow defining the HTML content of the element once, but reusing it for

all of the component instances. [8] These features reflect the state of web component

development at the time of writing, while the web platform keeps on rapidly evolving.

2.2.1 Custom Elements

The custom elements standard is the foundation for making web components. This fea-

ture set allows extending the JavaScript class HTMLElement with custom functionality

and defining the tag name for this new element with the customElements.define

function. When the tag name is registered to the specified class, the browsers know what

to render when they encounter this tag while parsing an HTML document. The cus-

tom tag name must contain a dash in order to avoid naming conflicts with the native

HTML elements. [9] A minimal JavaScript example is shown in Listing 2.1. After exe-

cuting this code, the element can be used like any other HTML element by inserting tags

<my-element></my-element> into the document.

1 class MyElement extends HTMLElement {

2 }

3 customElements.define('my-element', MyElement);

Listing 2.1: Registering a custom element

CHAPTER 2. WEB COMPONENTS 6

Custom elements have lifecycle callback functions which can optionally be imple-

mented for handling some events in their lifespan. Following from the element’s ES6

class definition, a function named as constructor will be called automatically when

the object is created. A function named as connectedCallback will be called each

time the element is attached to the DOM, and disconnectedCallback is called

each time it is detached. The attributeChangedCallback can be used for execut-

ing custom logic when the value of an attribute has changed. It provides the name of the

changed attribute, its old value and the new value as the arguments. The attribute’s name

must be listed in the element’s observedAttributes array in order to trigger this

function call. [9]

It is often a good practice to synchronize the HTML attributes with the properties of

the corresponding DOM node [10]. This can be achieved by overriding the property’s

setter and getter to set and retrieve the value of the attribute [11]. Listing 2.2 shows an

example of a custom element which updates its content when the attribute or the property

called name changes. The content is rendered by setting the innerHTML property of

the element to contain a heading with the desired message.1 Displaying a "Hello World!"

message with this element can be achieved either by setting the HTML attribute:

<hello-heading name="World"></hello-heading>

or by setting the property in JavaScript:

document.querySelector('hello-heading').name = 'World';

As we can see from the example, custom elements alone provide a way to create

reusable custom UI components for the web. The internal logic is hidden in the class

implementation and the user is provided with an API to interact with it. In our example,

the API consists of the single attribute name, which can be changed to configure the

1Note that there are other ways to populate content into an HTML element with JavaScript. We could

create the heading with document.createElement and append it into our custom element with the

appendChild function [12].

CHAPTER 2. WEB COMPONENTS 7

1 class HelloHeading extends HTMLElement {

2

3 static get observedAttributes() {

4 return ['name'];

5 }

6

7 get name() {

8 return this.getAttribute('name');

9 }

10

11 set name(value) {

12 if (value) {

13 this.setAttribute('name', value);

14 } else {

15 this.removeAttribute('name');

16 }

17 }

18

19 connectedCallback() {

20 this._updateContent();

21 }

22

23 attributeChangedCallback(attrName, oldValue, newValue) {

24 if (attrName === 'name') {

25 this._updateContent();

26 }

27 }

28

29 _updateContent() {

30 this.innerHTML = '<h1>Hello ' + (this.name || 'stranger') + '!</h1>';

31 }

32 }

33 customElements.define('hello-heading', HelloHeading);

Listing 2.2: A custom element with property-attribute synchronization

<hello-heading> element. However, a simple custom element lacks many aspects

of encapsulation, which can be fixed by utilizing the shadow DOM.

CHAPTER 2. WEB COMPONENTS 8

2.2.2 Shadow DOM

Typically, the identifiers and class names of DOM nodes are stored in the document’s

global shared namespace. This causes some issues if we want to provide a self-contained

component and e.g. the innerHTML property is used for rendering the content, like in the

previous example. [13] When developing a complex web component, it is common to use

the id attribute to recognize certain nodes inside the component in its implementation

code. An application developer who takes this component into her project should not

know about the internals of the component, and she can accidentally use the same id

somewhere else in her application, causing a conflict. Also, searching for elements with

e.g. document.querySelector could return an internal part of our component,

which should not be reachable when working in the document scope. The consumer of

the component should see only the custom element without its internals in the DOM,

similarly as the HTML5 <video> tag does not reveal what kind of complex structure it

consists of.

Styling introduces another problem for a web component implemented as a simple

custom element. It is a common pattern to include some internal styling in a web compo-

nent implementation so that it will behave like intended, especially in terms of layouting

[10]. For example, we could have a tab sheet component with CSS rules that place the

tabs always horizontally and squeeze them when their combined widths exceed the width

of the container. An application developer who uses this tab sheet most probably de-

fines some CSS rules of her own. If these rules match the internal elements, e.g. the tab

elements inside the tab sheet, they may break the component’s intended behavior.

Shadow DOM fixes these issues by providing an isolated document fragment, which

is hidden from the scope of the parent document [13]. Because of this, the same id at-

tributes can be used in the shadow DOM scope and at the document level, and querying

elements with document.querySelector does not return the shadow DOM con-

tents. Also, global styles do not have effect in the shadow DOM, and styles inside the

CHAPTER 2. WEB COMPONENTS 9

shadow DOM can not leak outside. As a special case, CSS custom properties can pene-

trate the shadow DOM, allowing the component developer to define some properties that

the component user can change from the outside. A draft for CSS shadow parts specifica-

tion has been published by W3C [14], which could make it easier to define styling APIs

for web components in the future.

A shadow DOM is connected to its parent element (called the host) by attaching

a shadow root to it with the attachShadow function [12]. Listing 2.3 presents some

modifications to our previous <hello-heading> example, applying simple styling to

the heading and wrapping the content into a shadow DOM. In the element’s constructor, a

shadow root is attached to it with the open mode, which allows us to modify the shadow

root’s contents in the implementation code. The closed mode would deny scripting

access to the shadow DOM, which is not very useful in practice [13]. Once the shadow

root is attached, it can be referenced by the element’s shadowRoot property [12]. To

populate the shadow DOM, we are adding a <style> tag with a CSS rule that centers the

content of the heading element in the shadow DOM. We are also adding the <h1> element

itself. The _updateContent function is changed to find the <h1> element inside the

shadow DOM and update the text inside it. It is still called when the name attribute

changes. Now the text-align CSS property can not be changed by the outside world,

nor can the <h1> element be found in the main document scope.

2.2.3 HTML Templates

Setting the content of a web component as a string may not be the ideal method for

declaring HTML markup, nor is constructing the element hierarchy imperatively with the

DOM API. It becomes more cumbersome as the complexity of the component grows.

That is why the <template> element is often used in web component development

to declare a reusable fragment of HTML, which can be applied to each instance of the

component [8].

CHAPTER 2. WEB COMPONENTS 10

1 class HelloHeading extends HTMLElement {

2

3 constructor() {

4 super();

5 this.attachShadow({mode: 'open'});

6 this.shadowRoot.innerHTML = ̀

7 <style>

8 h1 {

9 text-align: center;

10 }

11 </style>

12 <h1></h1>

13 ̀;

14 }

15

16 _updateContent() {

17 this.shadowRoot.querySelector('h1').textContent =

18 'Hello ' + (this.name || 'stranger') + '!';

19 }

20 ...

Listing 2.3: Encapsulating element’s content and styles in a shadow DOM. Only the

relevant parts are included. See Listing 2.2 for the rest of the implementation.

The <template> element is ignored by browsers when they render an HTML doc-

ument. Its only purpose is to store a piece of HTML that can be cloned and inserted with

JavaScript. The content of a template can be copied and retrieved either by calling the

template element’s cloneNode function or with document.importNode. [9] List-

ing 2.4 presents how we can declare the content of our <hello-heading> example in

a template and how to clone the template contents when creating a new instance of our

component.

Although HTML templates are part of the web component standards, they are not

necessary for building web components. They do not bring any extra features to the

component users, such as custom elements or shadow DOM encapsulation. It is mostly

CHAPTER 2. WEB COMPONENTS 11

1 <template id="hello-heading-template">

2 <style>

3 h1 {

4 text-align: center;

5 }

6 </style>

7 <h1></h1>

8 </template>

9

10 <script>

11 class HelloHeading extends HTMLElement {

12

13 constructor() {

14 super();

15 this.attachShadow({mode: 'open'});

16 const template = document.querySelector('#hello-heading-template');

17 this.shadowRoot.appendChild(template.content.cloneNode(true));

18 }

19 ...

20 </script>

Listing 2.4: Declaring the content of a web component in an HTML template. See List-

ings 2.2 and 2.3 for the rest of the component implementation.

a matter of preference how the developer wants to maintain the contents of the shadow

DOM. On one hand, declaring the markup in HTML allows code editors to recognize

the syntax and the developers can exploit features such as syntax highlighting and code

completion. On the other hand, in its current state, the web lacks proper methods for

importing HTML files to each other.

HTML templates used to be more convenient when HTML imports [15] were part of

the web component specifications. With this feature it made sense to build a web compo-

nent in a single HTML file which contained the element content in a <template> and

the required functionality in a <script> tag. However, the HTML imports specifica-

tion was never standardized, and it was later deprecated in Google Chrome [16]. Since

CHAPTER 2. WEB COMPONENTS 12

then, ES6 modules have been the more preferred method for importing web components

[17]. This feature allows importing a piece of code from another JavaScript file, so the

full component implementation should be written in JavaScript. Thus, the component can

not include native HTML markup in its source code, and the content must be handled

programmatically as in our earlier examples.

3 Consistency Maintenance

In a distributed collaborative editor, changes made by users are transmitted over a network

to other collaborating users, in order to keep the application states in sync. Instead of

sending the full updated application state, it is often preferable to send a message that

contains information of what was changed. As the size of the change is often smaller than

the size of the application state, less data needs to be sent over the network. In consistency

maintenance theory, these messages are often referred to as operations. Transmitting only

the necessary pieces of information is especially important in real-time editing, because

changes are made often and responsiveness is important.

In the case of plain text editors, the application state is the string value of the text, and

operations are additions and deletions to specified indices in the string. In order to keep

our system simple, we define only two primitive operations, as presented in Definition 1.

Any larger text editing operations, such as pasting text from the clipboard, or replacing

all occurrences of a word, can be composed of these two basic operations.

Definition 1. Character-wise text editing operations

insert[i, c] adds character c to index i

delete[i] deletes the character at index i

Following the publications on this subject, we refer to the distributed application in-

stances as sites. In order to provide a smooth user experience, operations generated at

the local site are executed immediately. It is not acceptable to have noticeable lag while

interacting with a text editor. After local execution, the operations are transmitted to the

CHAPTER 3. CONSISTENCY MAINTENANCE 14

other collaborating sites, where they are executed after a transmission delay.

Because of these requirements, we can not use a strict memory consistency model.

For example, in sequential consistency [18], only one process has access to the shared

memory at a time, ensuring that all processes have a consensus on the execution order of

the operations. As the immediate local execution allows the operations to be executed in

different orders at different sites, a distributed text editor should aim for eventual consis-

tency. This means that the separated client application states should converge after having

all the same information, even though the states might differ while users have received

different updates. The editor should still remain responsive for the users at all times.

In a best case scenario, a site has received and executed all the remote operations

before generating a new one. In other words, the execution order of operations is the same

at all sites. For example, consider two users editing text with an initial state ‘A’. The first

user adds ‘B’ to the end of the text, generating operation insert[1,B]. This operation

is executed immediately at the local site, changing the text to ‘AB’. The operation is

then transmitted to the second site, and once received after the transmission delay, it is

executed, changing the text to ‘AB’ also. Now, if the second user writes letter ‘C’ to the

start of the text, the same process happens in the opposite direction, and eventually both

sites will end up with text ‘CAB’. This is illustrated in Figure 3.1.

Site 1

time

Site 2

insert[1, B]

insert[0, C]

A A

AB

AB

CAB

CAB

Figure 3.1: Transmitting operations in a best-case scenario

CHAPTER 3. CONSISTENCY MAINTENANCE 15

Problems arise because the distributed nature of the system allows concurrent updates.

Consider how the previous example would change if both of the users would generate

the operations at the same time (or within the transmission delay). Site 1 generates and

executes operation insert[1,B], changing the text to ‘AB’, at the same time as site

2 generates and executes operation insert[0,C], changing the text to ‘CA’. After

receiving the remote operations from each other, the first site executes insert[0,C],

changing the text to ‘CAB’, but when site 2 executes insert[1,B], it ends up with

‘CBA’. This is illustrated in Figure 3.2. The states at the two sites diverged because

the operations were executed in different orders. For both operations, the text was in

a different state when executed at site 1 compared to when it was executed at site 2.

Consistency maintenance techniques are needed to resolve problems such as this.

Later in this chapter, we will review two methods for consistency maintenance: op-

erational transformation and commutative replicated data types. Based on the extensive

amount of academic work and real-life applications on this topic, these are the most suit-

able approaches for real-time text editing applications [19]. Operational transformation

has been the core technique for this purpose since it was first introduced in 1989 [20].

Site 1

time

Site 2

insert[1, B] insert[0, C]

A A

AB CA

CAB CBA

Figure 3.2: Diverging documents after concurrent inserts

CHAPTER 3. CONSISTENCY MAINTENANCE 16

Over the decades, multiple complex variations have evolved to fix the problems in the

first algorithms and to support more features such as undoing an operation [21]. Commu-

tative replicated data types were first introduced around 2006 [22], and were claimed to be

a superior alternative to tackle the correctness and complexity issues of operational trans-

formation. However, this technique has its own problems, which have prevented it from

being adopted in most real-life applications [19]. Traditional methods for managing state

in distributed applications, such as transactions and locking, are not considered in this

study, as they do not satisfy the requirements for this kind of applications, such as imme-

diate local response [20]. Before jumping into the consistency maintenance techniques,

we will take a look at the criteria for a consistent group editor.

3.1 Consistency Criteria

Before developing a consistency maintenance system for a collaborative editor, we need

to define a set of criteria that we need to fulfill so that the system can be called consistent.

In many studies, this set of criteria consists of causality preservation, convergence and

intention preservation. [23]

3.1.1 Causality Preservation

To preserve the causality of operations, they must be executed in their natural cause-effect

order. Because operations are transmitted independently, it is possible that they arrive at

a site out of order. If operation O1 is the cause for a later operation O2 to happen, it is

not meaningful to execute O2 before O1. For example, consider O2 deleting the character

inserted by O1.

In a distributed system, it may be hard to determine a total ordering of events happen-

ing concurrently at different sites. However, concurrent operations are also independent

of each other, so we do not have to worry about their execution order to preserve causality.

CHAPTER 3. CONSISTENCY MAINTENANCE 17

A partial ordering can be defined for operations in a distributed system. In this ordering,

operation O1 precedes another operation O2, if O1 was executed at the site that generated

O2 before the generation of O2. This is also called the happened-before relationship, and

it is denoted with →. If O1 → O2, it is possible that O1 causally affects O2. [24]

To preserve the causality of operations, the system must satisfy the precedence prop-

erty. It states that if O1 precedes O2, then O1 must be executed before O2 at all sites. This

ensures that no operation will be executed in a state where something that causally affects

the operation has not yet happened. [20]

3.1.2 Convergence

The precedence property ensures that dependent operations are executed in order, but be-

cause the ordering is only partial, independent operations can still be executed in different

orders at different sites. One operation can produce a different outcome when applied to

a different state, causing the sites to diverge from each other. This was already demon-

strated in a previous example and Figure 3.2.

To be considered consistent, the system must satisfy the convergence property. It

states that the sites must have identical states when they have executed the same set of

operations. [20] This is clearly an essential property for a groupware system. If the sites

would diverge little by little with each operation, after a while the users would not be

editing the same text anymore, and the state of the document would be ambiguous.

3.1.3 Intention Preservation

In addition to divergence, the fact that concurrent operations may be executed in different

orders causes another problem; intention violation. The effect of executing an opera-

tion should follow the initial intention of the user, regardless of the document state it is

executed in. [25]

CHAPTER 3. CONSISTENCY MAINTENANCE 18

Consider the earlier example, where one user performed insert[1,B], and the

second user performed insert[0,C], on the initial document state ’A’. In this case,

the intention of the first user is to add letter ’B’ after the letter ’A’, and the intention of

the second user is to add letter ’C’ before the letter ’A’. When site 2 executes the remote

operation insert[1,B] after its own operation, the effect of this operation is to add

letter ’B’ before the letter ’A’. This was not the intention of the first user.

It might seem that intention preservation comes hand in hand with the convergence

property, but this is not the case. The system can make the document states converge

without caring about the intentions of the users. For example, the system could decide

that each site should end up with the second user’s final state ’CBA’. The states would

converge, but each site would violate the first user’s intention of adding ’B’ after ’A’.

3.2 Operational Transformation

Operational transformation (OT) has been the state-of-the-art method for maintaining

consistency in groupware editors since it was introduced in 1989 [20]. Since then, re-

search groups have developed many improvements and variations of this techniques, us-

ing the same base idea [23]. Multiple real-life group editor products, such as Google Docs

[26], use algorithms based on OT. This technique is not restricted to text editing, but can

be also used in other applications, such as 3D modeling [27].

The basic idea of operational transformation is to transform concurrent operations in

a way that the effect of executing the operation is the same as at the site where it was

generated. For this purpose, we need a transformation function and a control algorithm.

The control algorithm is generic and can be used for multiple kinds of group editors. It

decides when to transform an operation with another one. The transformation function,

on the other hand, is application-specific.

CHAPTER 3. CONSISTENCY MAINTENANCE 19

The rest of this section is organized as follows. Next, we will take a look at the basic

transformation function for text editing, as defined in the original OT algorithm called

dOPT (distributed OPerational Transformation) [20]. Then, we describe how OT utilizes

a data structure called state vector. After this, we will review some of the OT algorithms.

We are intentionally omitting techniques that require server-side functionality, such as

Jupiter [28] and the Google Docs algorithm [26], as distributed consistency maintenance

is a requirement for our own groupware implementation.

3.2.1 Transformation Function

When a site receives an operation O1, which is concurrent with an already executed op-

eration O2, O1 is not executed as is. Instead, the site transforms O1 against O2 with a

transformation function T , to produce the transformed operation O′
1:

O′
1 = T (O1, O2)

To ensure convergence, the dOPT developers defined a transformation property (later

labeled as TP1). It states that executing O′
1 after O2 must produce the same document

state as executing O′
2 after O1. [20] It was later shown that an additional transformation

property TP2 is required to ensure convergence along any path taken in the operation

space [29]. Both properties are formally listed in Definition 2, where ◦ indicates the

composition of operations and ≡ indicates the equivalence of the resulting document

states. We return to this topic in Section 3.2.3.

Definition 2. Transformation properties

Transformation Property 1 (TP1):

O′
1 ◦ O2 ≡ O′

2 ◦ O1

Transformation Property 2 (TP2):

T (T (O3, O1), T (O2, O1)) ≡ T (T (O3, O2), T (O1, O2))

CHAPTER 3. CONSISTENCY MAINTENANCE 20

In our example in Figure 3.2, site 2 ended up with ’CBA’ instead of the expected state

’CAB’. The remote operation received from site 1 was insert[1,B]. To achieve con-

vergence, site 2 should insert ’B’ to index 2 instead. The transformation function should

make this change when transforming the remote operation against the locally executed

concurrent operation:

T (insert[1, B], insert[0, C]) = insert[2, B]

In general, when a concurrent insert operation has been executed with an index smaller

than in the current operation, the index should be incremented.

At site 1, there is no problem in executing the concurrent remote operation as is, be-

cause a previously inserted character at a greater index does not affect the insert operation.

In this case, the transformation function should return the original operation:

T (insert[0, C], insert[1, B]) = insert[0, C]

If both of the insertions would happen at the same index, we would need to break

the tie by deciding which operation is shifted. In the dOPT algorithm (and most of the

others as well), the sites have unique identifiers which are used for sorting the conflicting

indices.

We have now described how to transform an insert operation against another insert

operation. With the delete operation, there are four permutations for a pair of concurrent

operations to be handled by the transformation function. All of them have the basic idea

that the index needs to be shifted if the earlier concurrent operation happened at a smaller

index. Inserting and deleting at the same index are special cases. The insert tie needs to

be resolved like described earlier, and deleting a character at the same index results in no

operation (the same character cannot be removed twice). The full set of transformations

is listed in Listing 3.1.

CHAPTER 3. CONSISTENCY MAINTENANCE 21

1 Tii(insert[i1,c1], insert[i2,c2], id1, id2) {

2 if (i1 < i2 or (i1 == i2 and id1 < id2)) {

3 return insert[i1, c1]

4 } else {

5 return insert[i1 + 1, c1]

6 }

7 }

8 Tid(insert[i1,c1], delete[i2]) {

9 if (i1 <= i2) {

10 return insert[i1, c1]

11 } else {

12 return insert[i1 - 1, c1]

13 }

14 }

15 Tdi(delete[i1], insert[i2, c2]) {

16 if (i1 < i2) {

17 return delete[i1]

18 } else {

19 return delete[i1 + 1]

20 }

21 }

22 Tdd(delete[i1], delete[i2]) {

23 if (i1 < i2) {

24 return delete[i1]

25 } else if (i1 > i2) {

26 return delete[i1 - 1]

27 } else {

28 return identity operation

29 }

30 }

Listing 3.1: Basic transformations of insert and delete

3.2.2 State Vectors

In order to satisfy the precedence property, an operation can not be executed until all

of its dependent operations have been executed. Operational transformation algorithms

use state vectors (closely related to vector clocks [30]) for detecting the happened-before

CHAPTER 3. CONSISTENCY MAINTENANCE 22

relationship between the operations, and to decide whether an operation is ready to be

executed. [20], [31]

Following the definition in [31], a state vector SV is an array of logical clocks, one

for each of the participating sites. Each site maintains its own replica of the state vec-

tor. Initially all of the values are zero. When a site executes an operation generated at

site i, the executing site increments the logical clock of the site that generated the opera-

tion: SV [i] := SV [i] + 1. Before broadcasting a generated operation to other sites, it is

timestamped with the current value of the state vector.

The causal readiness of an operation received from a remote site is resolved as follows.

Let SVo be the timestamp of the received operation, i the index of the remote site that

generated the operation, k the index of the receiving site and SVk the state vector of site

k. An operation received from a remote site is causally ready to be executed once it fulfills

two conditions:

1. SVo[i] = SVk[i] + 1

2. SVo[j] ≤ SVk[j], for all j ̸= i

The first condition makes sure that site k has executed all of the previous operations from

site i, and the second condition ensures that site k has executed all of the operations from

the other sites that may have causally affected the operation. If the operation depends on

another operation that site k has not yet executed, the timestamp vector contains a larger

value than the current state vector SVk. [31]

An example is illustrated in Figure 3.3. Site 1 generates an operation, updates its state

vector, and sends the operation with timestamp [1,0,0]. This is received by site 2,

which executes the operation and updates its state vector. Site 2 then generates a new

operation with timestamp [1,1,0]. This is received by site 3 whose state vector is still

[0,0,0]. By comparing its state vector to the incoming timestamp, site 3 recognizes

that the received operation depends on another operation generated at site 1, which site

CHAPTER 3. CONSISTENCY MAINTENANCE 23

Site 1 Site 2 Site 3

[1,0,0]

[0,0,0] [0,0,0]

[1,0,0]

[1,0,0]

[1,1,0]

[0,0,0]

[1,1,0]

time

Figure 3.3: Preserving causality with state vectors. Site 3 needs to postpone the execution

of the received operation.

3 has not yet executed. Thus, the operation is not causally ready and it is postponed.

Later, when site 3 has received and executed the first operation, it compares the queued

operation with the updated state vector. At that point it is causally ready, so site 3 executes

it and updates its state vector.

Besides determining if an operation is causally ready to be executed at a site, the OT

algorithms need state vectors to figure out the dependency relation between two oper-

ations. Following [32], we can determine if operation O1, generated at site i, causally

precedes another operation O2, generated at site j, as follows:

O1 → O2 iff SVO1 [i] ≤ SVO2 [i]

3.2.3 dOPT and adOPTed Algorithms

As many later algorithms, dOPT maintains a log of executed operations and a queue

of postponed operations at each site. After generating and executing a local operation,

it is appended to the log and broadcasted to the other sites. When receiving a remote

operation, the site compares the operation’s timestamp to its own state vector to decide if

CHAPTER 3. CONSISTENCY MAINTENANCE 24

the operation is causally ready. A ready operation can be executed and appended to the log

immediately. A non-ready operation is appended to the queue instead. Later, after other

operations have been executed, the queue is scanned to see if some postponed operations

are now causally ready. Those are then removed from the queue and executed. [20]

Before executing an operation O, dOPT scans the log for all of the concurrent opera-

tions of O that the site has already executed. This is done by comparing the timestamps

as described in Section 3.2.2. O is then transformed against the concurrent operations and

the transformed operation O′ is executed and appended to the log. [20] This is illustrated

in Listing 3.2.

1 ExecuteOperation(O, LOG) {

2 O' = O

3 for each C in LOG which is concurrent with O {

4 O' = T(O', C)

5 }

6 execute O'

7 append O' to LOG

8 }

Listing 3.2: Integrating a causally ready operation in the dOPT algorithm

This simple idea of transforming the operation against all of its concurrent ones has

been proven to be faulty. The documents fail to converge in some cases, where one

operation is concurrent with two or more dependent operations. [28], [29] The flaw has

been later referred to as the "dOPT puzzle", and multiple separate solutions to it have

been developed.

Ressel et al. [29] solved the dOPT puzzle in their adOPTed algorithm. They rec-

ognized that the transformation property TP1 defined with the dOPT approach is not

enough to ensure convergence, and they defined TP2 (presented earlier in Definition 2).

The adOPTed algorithm maintains an N-dimensional graph (where N is the number of

sites) called the interaction model. Vertices in the interaction model represent the docu-

CHAPTER 3. CONSISTENCY MAINTENANCE 25

ment states and the edges represent the operations, moving from one state to another. This

complex data structure keeps track of all the different paths of original and transformed

operations that can be taken to reach the different document states. We do not go into

more detail with this approach, as the added space complexity of the interaction model is

not necessary for solving the dOPT puzzle, as proven by the GOT algorithm [25].

3.2.4 GOT Algorithm

The GOT (General Operational Transformation) approach, by Sun et al. [25], was the

first one to include intention preservation in its correctness criteria. A total ordering of

operations and an undo/do/redo scheme are defined to satisfy the convergence property.

The operational transformation algorithm is needed just to preserve user intentions.

If the same sequence of operations are executed in the same order at different sites,

convergence is clearly achieved. The GOT approach defines a total order for operations

based on their timestamps and site identifiers, as described in Definition 3. [25]

Definition 3. Total ordering in GOT

O1 < O2 iff sum(SVO1) < sum(SVO2) or (sum(SVO1) = sum(SVO2) and i < j)

where the sum() function sums all elements in a given state vector, O1 was generated at

site i and O2 was generated at site j.

GOT allows sites to execute operations in any order, but still maintains the total or-

der by carrying out the following undo/do/redo process for executing a causally ready

operation O:

1. Undo locally executed operations that follow O according to Definition 3.

2. Execute operation O.

3. Redo all reversed operations.

CHAPTER 3. CONSISTENCY MAINTENANCE 26

Undoing and redoing are just internal operations that allow executing O in its correct

place in the history, and only the final result is displayed to the user. [25]

In GOT, the transformation functions defined in Section 3.2.1 are called inclusion

transformations (IT), as they transform an operation O1 against O2 so that the impact of

O2 is included in O′
1. This term is necessary to differentiate them from exclusion transfor-

mations (ET), which transform O1 against O2 so that the impact of O2 is excluded from

O′
1. It was recognized that an inclusion transformation works correctly only when both

of the operations are defined in the same context, i.e. the same document state. Omit-

ting this fact can be seen as the root of the dOPT puzzle. The exclusion transformation

removes the effect of the previous dependent operation, which allows changing the op-

eration’s context to a state where inclusion transformation can be applied. Formally, the

inclusion and exclusion transformations need to satisfy the pre- and postconditions which

are presented in Definition 4. [33]

Definition 4. Transformation pre- and postconditions

Inclusion transformation IT (O1, O2) : O′
1

1. Precondition for the parameters: O1 and O2 are context-equivalent, i.e. defined in

the same document state.

2. Postconditions for the result: O2 is context-preceding O′
1, i.e. O′

1 is defined in a

context which results from applying the effect of O2 on its definition context, and

the effect of O′
1 in this new context is the same as the effect of O1 in the original

context.

Exclusion transformation ET (O1, O2) : O′
1

1. Precondition for the parameters: O2 is context-preceding O1.

2. Postconditions for the result: O′
1 and O2 are context-equivalent, and the effect of

O′
1 in this new context is the same as the effect of O1 in the original context.

CHAPTER 3. CONSISTENCY MAINTENANCE 27

The GOT control algorithm executes transformations on a causally ready operation O

based on three possible scenarios:

1. Each operation in the log1 is causally preceding O.

2. All the concurrent operations of O are in the end of the log, after the operations that

causally precede O.

3. There is at least one operation causally preceding O in the log after a concurrent

operation of O.

In case 1, O can be executed without any transformations. In case 2, the effects of the

concurrent operations need to be included to O by using inclusion transformations. These

two cases work the same way as in the dOPT algorithm, but dOPT failed to handle the

third case. In the third scenario, ET functions are needed to make two operations context

equivalent, which is the precondition for applying the inclusion transformation. [25]

Consider a log consisting of operations O1 and O2 respectively. A new operation O3

arrives, which is dependent on O2, but concurrent with the earlier operation O1. To include

the effect of O1, we need to transform O3 to the same context where O1 was defined, i.e.

exclude the effects of O1 and O2 from O3. First, the effect of O1 needs to be excluded

from O2 by running O′
2 = ET (O2, O1), after which we can exclude both operations from

O3 with O′
3 = ET (O3, O′

2). Now we have O′
3 which is context equivalent with O1, so we

can include the effect of O1 into the new operation with O′′
3 = IT (O′

3, O1). The resulting

O′′
3 is context equivalent with O2 (initial document state plus the effect of O1), and we

can get the final execution form of the new operation with O′′′
3 = IT (O′′

3 , O2). We omit

the exhaustive description of the algorithm and how it integrates with the undo/do/redo

scheme, which can be found in [25].

1In the GOT paper [25], the log of executed operations is actually called history buffer (HB), but we are

sticking with the original term by Ellis and Gibbs [20] in this text to avoid obscurities.

CHAPTER 3. CONSISTENCY MAINTENANCE 28

The developers of the GOT algorithm used string-wise operations in their imple-

mentation (see Definition 5) to reduce the amount of required transformations and net-

work traffic. Their transformation functions still follow the same idea of shifting in-

dices based on earlier insertions and deletions, but handling overlapping operations re-

quire a lot more maintenance. For example, consider operations O1 = delete[2, 1] and

O2 = delete[0, 5]. Running the inclusion transformation is simple, as O2 nullifies the

effect of O1: O′
1 = IT (O1, O2) = identity operation. The problem is that we need

to be able to revert this process with the exclusion transformation, but we can not know

the original parameters of O1 based on O′
1 and O2. For situations like this, additional

data structures are needed for saving and retrieving the lost information [33]. It is impor-

tant to remember that the general purpose OT control algorithms can be used with any

type of operations and transformation functions, as long as they satisfy the transformation

properties and the pre- and postconditions.

Definition 5. String-wise editing operations

insert[i, s] adds string s starting at index i

delete[i, n] deletes n characters starting at index i

Sun et al. also provide a garbage collecting scheme for removing old operations from

the log [25]. This is an important feature, because the log grows quickly in an editing

session and has a negative effect on the algorithm performance. The basic assumption

behind the garbage collection is that when we are confident that the operation in the

beginning of the log will be causally preceding all forthcoming operations, it will not

be needed by any upcoming transformations nor the undo/do/redo scheme, and thus it

can be removed. For this purpose, each site must maintain a State Vector Table (SVT)

and a Minimum State Vector (MSV). After executing a remote operation, a site updates the

vector corresponding to the originating site in its SVT to match the operation’s timestamp.

This way, each site can keep track of the state vectors at other sites. A periodical state

message should be broadcasted by a site that hasn’t generated a new operation for a while,

CHAPTER 3. CONSISTENCY MAINTENANCE 29

in order to still inform other sites about its state from time to time. Each time the SVT is

updated, the values in the MSV are updated to reflect the minimum of the state vectors:

MSV [i] = min(SV T [0][i], ..., SV T [N − 1][i]) for all i ∈ 0, 1, ..., N − 1

The oldest operation in the log, generated at site i and timestamped with SVO, can be

removed from the log if SVO[i] ≤ MSV [i].

3.2.5 GOTO - GOT Optimized

The way in which the GOT control algorithm handles the dOPT puzzle requires a lot of

transformations, and integrating with the undo/do/redo scheme makes the implementation

quite complex. Sun and Ellis [23] later improved how the control algorithm handles the

case where dependent operations of a new operation have been executed after concur-

rent ones. This method was named as GOTO (GOT Optimized). It reduces the amount

of needed transformations, simplifies the basic design of the algorithm, and makes the

undo/do/redo scheme obsolete for achieving convergence.

The basic idea of GOTO is that before executing a causally ready operation O, the log

is reordered so that all the concurrent operations of O are in the end of the list. Inclusion

and exclusion transformations need to be applied in the process to keep the current con-

text valid. In other words, executing the operations in the modified log in order should

produce the current document state. After the reordering, inclusion transformations can

be applied directly against the concurrent operations, like in the dOPT algorithm and the

GOT algorithm’s case 2, as described in Section 3.2.4. [23]

To enable reordering the log in a context-preserving manner, a utility function called

Transpose was introduced in [23]. It takes two consecutive operations O1 and O2 in the

log and swaps their order as described in Listing 3.3. To bring the latter operation O2 into

the context before O1, the effect of O1 is excluded from it to produce O′
2. At this point O1

and O′
2 are defined in the same context, so we need to include the effect of the new O′

2 to

O1 so that it can be ordered after O′
2.

CHAPTER 3. CONSISTENCY MAINTENANCE 30

To demonstrate GOTO, let O be a causally ready remote operation to be executed,

OC the first operation in the log which is concurrent with O, and OP such an operation

causally preceding O which is placed after OC in the log. OP is shifted in front of all the

concurrent operations of O by applying the Transpose function repeatedly, moving OP

backwards in the log one step at a time, until it is positioned right before OC . This is

repeated for all the causally preceding operations of O which are located after OC in the

log. The GOTO control algorithm is presented in Listing 3.4, in a slightly modified form

compared to how it was originally described in [23].

1 Transpose(O1, O2) {

2 O2' = ET(O2, O1)

3 O1' = IT(O1, O2')

4 return (O2', O1')

5 }

Listing 3.3: Transpose function for reordering the log

3.3 Commutative Replicated Data Types

Commutative replicated data types (CRDT) are consistency maintenance techniques much

different from operational transformation. A CRDT is an internal data structure that main-

tains the document state and has only commutative operations. [34] Commutativity means

that executing the same set of operations produces the same result, regardless of the exe-

cution order. As a simple example, consider a replicated integer data type with an initial

value 0, and operations add and subtract. Concurrent operations add(5) and subtract(3)

converge to value 2 at each site, because add and subtract commute.

Commutativity makes the transformations and complex control algorithms of OT re-

dundant, as well as removes the need to maintain state vectors. One motivation behind the

first CRDTs was to enable massive collaboration in P2P networks, which is not possible

CHAPTER 3. CONSISTENCY MAINTENANCE 31

1 GOTO(O, LOG) {

2 C = the first operation in LOG which is concurrent with O

3 if (C is not found) {

4 return O

5 }

6 PRECEDING = list of operations in LOG after C which are causally preceding O

7

8 C_IND = index of C in LOG

9 for each P in PRECEDING {

10 P_IND = index of P in LOG

11 for (i = P_IND; i > C_IND; i--) {

12 (LOG[i-1], LOG[i]) = Transpose(LOG[i-1], LOG[i])

13 }

14 C_IND++

15 }

16 O' = O

17 for (i = C_IND; i < LOG.length; i++) {

18 O' = IT(O', LOG[i])

19 }

20 return O'

21 }

Listing 3.4: GOTO control algorithm

when the sizes of the state vectors grows with the amount of participants [22]. The chal-

lenge is to design the data type and commutative operations for a text document. Next,

we will review some of the well-known CRDTs, and how they ensure commutativity.

3.3.1 WOOT

As an internal data model, WOOT [22] maintains a set of objects called W-characters,

presented in Definition 6. As each W-character has a reference to the previous and next

W-characters, the WOOT data structure can be represented as a Hasse diagram. See

Figure 3.4 for an example.

CHAPTER 3. CONSISTENCY MAINTENANCE 32

1

3

2

A B

Figure 3.4: A Hasse diagram of a WOOT document

Definition 6. W-character

A W-character is a five-tuple < id, α, v, idp, idn >, where id is its universally unique

identifier (UUID), α is its alphabetical value in the document, v is its visibility flag, and

idp and idn are the identifiers of the previous and next W-characters.

Each site has a globally unique identifier (such as the network address) and a logical

clock, which is incremented with each generated operation. The character identifier is

made globally unique by combining the site identifier with the logical clock. Since each

character has a globally unique identifier, the insert and delete operations can refer directly

to these objects, instead of indices in the document:

Definition 7. WOOT operations

insert[a ≻ e ≻ b] inserts element e between a and b

delete[e] sets the visibility of e to false permanently, thus making it a tombstone

The operation pairs insert-delete and delete-delete are natively commutative, so they

can be executed in any order to produce the same outcome. To achieve convergence, only

insert-insert needs special handling for some cases. The ≻ relation defines only a partial

order, so characters inserted in the same spot are ordered by their identifiers. This still

leaves a problem which can be seen in Figure 3.4. Three operations were executed on

the initial document ’AB’: insert[A ≻ 1 ≻ B], insert[A ≻ 2 ≻ B] and insert[A ≻ 3 ≻ 1].

The order of the character identifiers is id(1) < id(2) < id(3). In this situation, if a site

receives the second operation as the last one, it has two valid options for ordering: insert

’2’ after ’1’ or before ’3’. Because ’3’ depends on ’1’, it’s known that the first operation

CHAPTER 3. CONSISTENCY MAINTENANCE 33

happened before the third one. WOOT uses this information to do the ordering based on

the earlier character ’1’. Thus, the document state is resolved to ’A312B’. [22]

Satisfying the rest of the consistency criteria is quite effortless with the ability to

uniquely identify each character. An insert operation is causally ready when both the

previous and next characters (or their tombstones) are present, and a delete operation is

causally ready when the element to delete (or its tombstone) is present. State vectors

are not needed for verifying causality. The user intentions are preserved by inserting

the character between the same characters as at the original site, and deleting the same

character instance as at the original site. [22]

3.3.2 Logoot

Logoot [35] is another CRDT which attaches a universally unique identifier to each mem-

ber of a linear data structure. In the original paper, these members are lines of text in a

document, but we can as well increase the granularity by identifying each character. The

data structure of the identifiers is presented in Definition 8. The operations are similar to

WOOT; a character is inserted between two existing characters and a character is removed

by its identifier. Thus, causality preservation and intention preservation are also ensured

in a similar fashion.

Definition 8. Logoot UUID

Logoot identifiers are lists of pairs < pos, site >, where pos is an integer and site is a

site identifier.

Logoot achieves commutativity by defining a total ordering of these sequences of

pairs. In order to satisfy intention preservation, i.e. insert the typed text into the intended

spot, Logoot must always be able to generate a new unique identifier between the previous

and the next character. This is why the data structure is a list, which can be extended

indefinitely. At first, the identifiers consist of only one pair. When a new character is

inserted between existing characters identified by < pos1, site1 > and < pos2, site2 >,

CHAPTER 3. CONSISTENCY MAINTENANCE 34

the new identifier is created by generating a random integer between pos1 and pos2. If

such a number can not be generated, the UUID is created by extending the UUID of the

previous character with a new pair. [35]

3.3.3 Treedoc

Treedoc [36] uses a binary tree as its data structure, which enables unique identifying and

extensibility. Each node in the tree contains a character, which can be identified by the

path from the root of the tree to that node. The document is constructed from the data

structure by traversing the tree in infix order. This ensures that the tree can be always

extended by a new leaf node, so that the new character ends up in the correct spot in the

text. In case of concurrent inserts at the same position, multiple mini-nodes are inserted

into the same node. These can be ordered e.g. by the site identifiers.

One issue with Treedoc is that the tree becomes easily unbalanced, which grows the

sizes of the identifiers. For example, when a user types a sentence to the end of the

document, each character grows the tree to the right-hand side of the previous one. A

couple of methods for balancing the tree were proposed in [36]. The first idea is that

instead of appending the new leaf node directly to the previous one, a larger sub-tree

can be generated, and the new character appended to the left-most node in the sub-tree.

The other proposed method is a procedure which flattens the tree while keeping the order

relations. The downside of this procedure is that it requires a commitment from each site

in order to commute with the insert and delete operations.

3.4 Comparison of Methods

Since its inception, the use case for OT has been real-time collaboration among a relatively

small set of peers (1 ≤ N ≤ 5) known to each other [20]. CRDT, on the other hand,

was originally designed to enable conflict-free collaboration for a massive user group in

CHAPTER 3. CONSISTENCY MAINTENANCE 35

non-real-time systems, such as wikis [22], [35]. Still, it is often considered as a simpler

alternative to OT for real-time editing. In this section, we compare OT and CRDT from

the point of view of real-time text editing by a reasonable number of collaborators.

In their recent study [19], Sun et. al. note that despite CRDTs having been avail-

able for over a decade, they are rarely utilized in actual cooperative text editor products.

Meanwhile, OT remains as the more common technology. One recognized practical prob-

lem with CRDTs is that these data types are not natively supported by text editors. The

internal data structures of text editors are optimized for text editing and index-based op-

erations. To integrate a CRDT into a text editor, one must maintain an extra data structure

of the CRDT in addition to the one maintained by the editor. Changes in the CRDT must

be converted to index-based operation on the text, which nullifies some of the claimed

performance benefits of CRDTs.

Table 3.1 presents the real space and time complexities between the operational trans-

formation technique GOTO, and the commutative replicated data type WOOT, while tak-

ing into account the conversions from CRDTs to index-based operations [19]. In the

table, N is the number of collaborating peers, C is the number of concurrent operations

involved in transforming a remote operation and S is the size of the document (includ-

ing WOOT’s tombstones). Although the compared methods are not the most optimized

variations of OT and CRDT, these results show the general principles of OT and CRDT

complexities. The efficiency of OT is determined by the number of concurrent operations

and the number of peers, while CRDTs are bounded by the size of the content.

GOTO WOOT

Space complexity O(C ∗ N) O(S)

Time complexity of integrating a local operation O(1) O(S3)

Time complexity of integrating a remote operation O(C2) O(S3)

Table 3.1: Comparison of space and time complexities of GOTO and WOOT

CHAPTER 3. CONSISTENCY MAINTENANCE 36

The CRDT developers consider tracking the states of collaborators with state vectors

to introduce too much overhead for their purposes, in terms of both space and time [22],

[35]. On the other hand, CRDTs attach identifiers and possibly other metadata to each

entry in the editable data, which is why the space overhead grows with the document size.

When a reasonable number of users collaborate on a document on character-level gran-

ularity, the increased memory requirements of character identifiers clearly exceed those

of the state vectors. The time complexity of state vector changes is not a problem either,

when a typical amount of users collaborate together. In practice, the input parameters

for OT complexity functions are relatively small in real-time group editors (N ≤ 5 and

C ≤ 10) [19]. The number of characters in the text S, on the other hand, can grow orders

of magnitude larger.

It seems that OT is the better approach for implementing a real-time text editor for

a small set of peers. The main benefit of CRDTs is that they do not need complex con-

currency control between collaborators, but this is not a major issue if we expect only a

few users to collaborate at a time. The theoretical performance benefits of CRDTs fail

in practice due to converting the identifier-based operations to index-based text editing

operations. The added memory overhead is also considerable when working with data

of high granularity. Maintaining identifiers and additional metadata with each character

multiplies the memory consumption of the document.

4 Implementation

4.1 Requirements

In the scope of this thesis, the collaborative web component will work only with plain text.

Supporting rich text formatting, i.e. bolding text, changing the font, adding headings and

lists etc., would add a lot more use cases for the component. However, it also introduces

additional complexity to consistency maintenance, which is why we leave the rich text

support for future work. The component should have an API for plugging it into a web

application as easily as possible. After connecting the clients, the component should

transmit changes in the text to other users, and receive the changes made by other users.

These changes should be integrated to the local document, while maintaining consistency

according to the criteria described in Section 3.1. The caret positions of collaborating

users should be also displayed in the editor.

Consistency maintenance should be handled in a distributed fashion in client side, i.e.

inside the web component’s JavaScript code running in the browsers of the collaborating

users. The similar existing UI component products, reviewed in Chapter 1, use a cen-

tralized architecture. This forces the application developer to either setup the required

technology stack on their servers, or to rely on the provider’s service in the cloud. Even

though using a provided service can be convenient in many cases, setting that kind of

limitations for server-side functionality is not a good feature for a web component. It

should be up to the application developer to choose how to handle the routing of mes-

CHAPTER 4. IMPLEMENTATION 38

sages between clients, e.g. via their own server or with a P2P browser communication

solution, such as WebRTC [37]. In Chapter 3, we learned that there are many methods for

maintaining consistency even without a central server.

4.2 Selecting the Technologies

4.2.1 Editor Core

Building a new text editor from scratch would not be worthwhile, as multiple solutions al-

ready exist. To focus on the main purpose of this thesis, we want to build the collaboration

functionality and API on top of an existing web-based text editor.

Native Web Approaches

For editing plain text, the native HTML <textarea> element would seem to be the

most appropriate core for the component. The problem is that it is not possible to render

other DOM elements inside a <textarea>. We need this kind of functionality in order

to display the carets of collaborating users.

Another way of building a text editor with native features of the web browsers is the

contenteditable attribute [9]. Setting this attribute to an element allows users to

edit text and HTML inside it with keyboard shortcuts for e.g. bolding and other rich text

features. Rendering carets inside this kind of an element would be possible, but maintain-

ing their position programmatically might be cumbersome, as users can delete the caret

elements as well as any other HTML contents. The HTML editing has been reported to

work very inconsistently in different browsers [38], and we don’t want to support rich text

anyway at this point. In the latest W3C specification draft [39], a plaintext-only

state for contenteditable is proposed, but it has not been standardized.

Both the <textarea> and elements with the contenteditable attribute fire

input events when the user is editing the content. From these events it is possible

CHAPTER 4. IMPLEMENTATION 39

to parse the information of what was added or removed and where. Another event,

beforeinput, is introduced in a W3C draft [40]. Its purpose is to allow overriding

the default browser behavior by cancelling the upcoming input event and executing

custom logic instead.

Custom Editors

Because the editor features of the web are not in a stable state, the web-based editors

often contain their own JavaScript implementations for handling user input and rendering

the document in the DOM. Executing the same custom code in all browsers avoids the

differences in their default implementations.

There exist several reusable text editor components for web application developers,

such as CKEditor [4], TinyMCE [41] and Quill [6]. These are all designed for rich text

editing, with easily configurable toolbars. A couple of notable editors focused on code

editing in the browser are Ace [42] and CodeMirror [43]. Out of these options, Quill was

chosen as the editor core for several reasons:

• Permissive BSD 3-Clause license

• Easy to configure into plain text mode

• Provides insert and delete events in a convenient form for our purpose

• Already has a module for rendering multiple carets [44].

4.2.2 Consistency Maintenance Technique

In Section 3.4, we already concluded that operational transformation is the most appro-

priate solution for our use case. In Section 3.2, we reviewed some of the OT algorithms,

but did not perform an exhaustive search of these techniques. We want the algorithm to

have good performance and preferably be relatively easy to implement. In the future, we

CHAPTER 4. IMPLEMENTATION 40

might want to implement an undo feature for our editor. Undoing the latest executed op-

eration would be straightforward, but in a collaborative editor we expect to undo the last

operation generated by the local site. Undoing the latest local operation, when remote op-

erations have been executed after it, requires some more complex control logic, in order

to not change the effect of the later operations [21].

Out of the reviewed algorithms, GOTO satisfies our requirements best and was se-

lected for the implementation. The dOPT algorithm would not suffice due to its correct-

ness issues, and GOT is just a lower-performance and more complex version of GOTO.

Compared to adOPTed, GOTO maintains consistency by using a more effective linear data

structure for logging the operations, instead of an N-dimensional graph. Even though the

GOTO approach requires additional exclusion transformation functions, those should be

relatively simple to implement for text editing operations. An algorithm called ANYUNDO

[21] has been invented to enable group-undo feature with the GOTO algorithm. We can

integrate it to our editor in the future.

4.3 API Design

The API of our web component is the public interface which allows application devel-

opers to use its features. In practice, the API consists of the custom element tag name,

the component’s public functions, attributes and properties, and the events it fires. The

attributes can be set declaratively in HTML, while properties can be modified only with

JavaScript, although these are usually synchronized (see Section 2.2.1). The component

may fire event objects with metadata related to that event. The user can add handlers for

these events with the native addEventListener function. To clearly and compactly

communicate the core purpose of the component, being a collaborative text editor, and to

satisfy the requirement of custom elements having a dash in the tag name, we are going

to call the component <co-editor>. Accordingly, the corresponding JavaScript class

CHAPTER 4. IMPLEMENTATION 41

will be named as CoEditor.

In order to effectively integrate <co-editor> into a web application, we need to

provide the application developers with the following set of features:

1. Managing a collaborative editing session

2. Transmitting updates between collaborators

3. Setting and reading the text in the editor

4. Defining a username which is displayed in the carets of collaborating editors.

For session management, we need to have one editor which provides identifiers for

joining editors. Uniquely identifying each client is a requirement of the consistency main-

tenance, and there needs to be a single source of truth which generates these identifiers

to ensure consistency. We call this session managing editor the master editor. For setting

this quality for a component instance, the component has a boolean attribute/property

master. To generate a new identifier for a joining editor and to provide it with the

initial state of the document, the component has generateJoinMessage function.

This function returns a message containing all the required information, and it should be

forwarded to the joining client with the message routing API, which is described next.

When the state of the document changes, e.g. by user typing in some characters, the

component should notify its user about the change and provide information required to

integrate this change to other editors. The DOM event system is the most suitable solution

for this purpose [45]. Every time when there is an update which should be communicated

to the other editors, the component fires a CustomEvent, with its type being "update".

Custom data can be passed into a CustomEvent in its detail property. The message

data is set as the detail property in a string format, so it is easy to transmit without

further serialization. After transmitting this message over the network, the collaborat-

ing editor needs to integrate it. For this purpose, the component has a function called

receive, which should be called with the message as the parameter.

CHAPTER 4. IMPLEMENTATION 42

With this set of API, the <co-editor> component can be integrated to a web ap-

plication by following these steps:

1. Set the first editor in the session as the master.

2. When a new editor wants to join the session, call generateJoinMessage on

the master editor, transmit the result over the network to the joining client and pass

it to the editor’s receive function.

3. Listen for the update events in each component, transmit the detail messages to each

of the collaborating clients and pass them to their receive functions.

For setting and reading the text in the editor, as well as setting and reading the user-

name, string properties are the most appropriate solution. Thus, we add two proper-

ties, value and username, to the component. Both of these properties, as well as the

boolean master property, will be synchronized to reflect the corresponding attribute, as

described in Section 2.2.1. The full set of the public API is listed in Table 4.1.

CoEditor

value: string

username: string

master: boolean

generateJoinMessage(): string

receive(string): void

Fires event: { type: "update", detail: string }

Table 4.1: Component API

CHAPTER 4. IMPLEMENTATION 43

4.4 Internal Design

This section describes how the component was implemented. The project is open-sourced

and the source code can be found in GitHub1. As the plan is to build a web component,

our product is essentially a JavaScript class which extends HTMLElement. We want to

embrace the separation of concerns design principle as much as possible in the implemen-

tation, in order to keep the code maintainable. For this reason, the component is built as

a hierarchy of classes, each being responsible of a separate part of the functionality, and

pieces of the code that do not need to be coupled with the component are implemented as

external modules. Each piece of the implementation is written in their own JavaScript files

as ES6 modules, defining dependencies between each other with the import statement.

Figure 4.1 presents the components of our solution. As JavaScript classes do not

have access modifiers, we use a convention of prefixing protected properties and func-

tions with an underscore. These should be used only by other classes in the hierar-

chy, and they are not part of the component’s public API. The class hierarchy starts

from EditorBase, which handles the text editor integration. This is extended by

OTHandler, which takes care of the operational transformation by utilizing external

functions for executing the GOTO control algorithm with character-wise text editing op-

erations. SessionHandler adds functionality needed to maintain the editing session

between collaborating peers, and CoEditor is the final component class bringing it

all together. It provides the public API for message routing, handles local text editing

changes and forwards incoming messages accordingly. The rest of this chapter describes

these solutions in more detail, starting by introducing the design of messages that the

component sends and receives.

1https://github.com/pekam/co-editor

CHAPTER 4. IMPLEMENTATION 44

HTMLElement

EditorBase

value: string

_doExecute(object): void

_disable(): void

_enable(): void

_onUserInput(object): void

_onUserSelectionChange(object): void

Extend

OTHandler

_log: array

_queue: array

_stateVector: object

_onUserInput(object): void

_remoteOperationReceived(object): void

_checkQueue(): void

Extend

goto­control­algorithm.js

transform(object, array, function, function): object

transformations.js

inclusionTransformation(object, object): object

exclusionTransformation(object, object): object

Use

Use

SessionHandler

master: boolean

generateJoinMessage(): string

_joinSession(object): void

_isActive(): boolean

CoEditor

username: string

receive(string): void

_onUserInput(object): void

_onUserSelectionChange(object): void

Extend

Extend

Dispatch
CustomEvent

type: "update"

detail: string

Figure 4.1: Class diagram of the component

CHAPTER 4. IMPLEMENTATION 45

4.4.1 Message Format

Definitions 1 and 5 might give the impression that we can transmit the text editing oper-

ations as simple strings that follow the defined formats. However, we need to attach ad-

ditional information to these messages, such as data related to the sender component and

its state. We also need to handle some other actions in addition to the plain text changes.

For these reasons, each message is a JavaScript object, into which we can insert arbitrary

amount of data as properties. These properties are also a lot more straightforward to set

and read compared to parsing the information from a string. During the transmission, the

message objects are serialized into string form though, as described in Section 4.3.

The system needs four types of messages. Two of these are the text editing operations

insert and delete. The other types are join, which gives the necessary information for a

new peer to join the editing session, and caret, which informs changes in a user’s caret

position or text selection. To identify different kinds of operations, all of the message

objects have a string property called type. Table 4.2 presents the properties included in

each message type. The first two property rows include the actual operation data, while

the last rows contain information about the site which generated the message. We included

length to the delete message in case we want to support string-wise operations later. The

presented message structure is clarified more throughout this chapter.

type: "insert" type: "delete" type: "caret" type: "join"

index: number index: number index: number id: number

text: string length: number length: number text: string

userId: number userId: number userId: number stateVector: object

username: string username: string username: string

stateVector: object stateVector: object

Table 4.2: Message types and their properties

CHAPTER 4. IMPLEMENTATION 46

4.4.2 Text Editor Integration

The responsibility of EditorBase is to abstract away the text editor implementation,

providing an interface for the subclasses to integrate the operations. It populates the

shadow DOM, in our case with a Quill editor instance. The content of the shadow DOM

is quite simple. We only need one <div> element. A reference to this element is given to

Quill, which transforms it into a text editor without us having to construct any more DOM

by ourselves. Besides the <div> element, we define a couple of CSS rules to make the

custom element look and behave as wanted, and inject some core styles of Quill into the

shadow DOM. As the shadow DOM content is so simple, we are setting it simply as a

string to the innerHTML property, instead of utilizing a <template> element.

EditorBase is responsible for listening for user input in the text editor, and no-

tifying about it by calling the _onUserInput and _onUserSelectionChange

functions, which are expected to be implemented by the subclasses. EditorBase also

handles converting the editor actions into a format which is used by the operational trans-

formation algorithm. For example, when a user types the character ‘a’ into the beginning

of the document, EditorBase should call _onUserInput with an object:

{ type: "insert", index: 0, text: "a" }.

The rest of the properties will be populated into the message object by the subclasses.

EditorBase also provides a set of protected functions to be called by the other lay-

ers of the implementation. The most important one is _doExecute, which executes the

given insert, delete or caret operation in the internal editor. The function name implies

that the operation is executed in its current form without any further transformations. The

rest of the protected APIs allow enabling and disabling the editor for user input, which

are used by the session management. The public value property allows the subclasses,

as well as the component user, to set or retrieve the current text of the editor. The property

getter and setter functions have been overridden to propagate to Quill’s getText and

setText functions. The _setValueSilently function is needed when a compo-

CHAPTER 4. IMPLEMENTATION 47

nent joins an editing session, as we do not want the initial value setting to generate insert

operations.

An important benefit of this design comes from the fact that every Quill-specific piece

of our code is encapsulated in this one base class. If we later want to change the imple-

mentation to use a completely different editor in the core, we only need to touch this one

file, as long as we keep its interface unchanged and make sure that a usable text editor is

rendered for the end-user.

4.4.3 Operational Transformation

OTHandler extends EditorBase by adding the operational transformation imple-

mentation to the web component. It contains the necessary data structures; log, state

vector and operation queue, as well as the API and functionality to handle incoming re-

mote operations. OTHandler also reacts to the user input by updating and attaching the

state vector and pushing the operation to the queue. This differs from the OT literature,

where the user input is usually captured before executing, and the local operation is then

handled through the same logic as the remote ones. However, since the local operation

would be executed immediately anyway, it does not make a difference if we first execute

the operation and then integrate it with the OT algorithm.

The data structures of the GOTO algorithm are described as dynamic arrays in the lit-

erature, and thus we have implemented the log and the queue as JavaScript arrays which

store the executed and queued operation messages. The state vector, however, was im-

plemented as an object, with each property name (or key) corresponding to the id of the

site whose logical clock is tracked in the value2. The reason behind this is to maintain

the state vector more easily when a collaborating user disconnects. In the original GOTO

approach, logical clocks are identified in the state vector by their indices in the array. If

we want to remove a value from an array after a client disconnects, for example at index

2Basic JavaScript objects are often used as map/dictionary data structures (sets of key-value pairs).

CHAPTER 4. IMPLEMENTATION 48

1, all the other clients must know that the site whose logical clock used to be at vector

index 2, is now at index 1, and so on. This might cause problems when the peers receive

the notification about the client disconnection at different times and in different states.

From an object we can remove any property without affecting how the other values are

referenced. Thus, this data structure was chosen, although garbage collecting the state

vector values was left out of the scope of this thesis work.

The core API for the subclasses to interact with OTHandler is a function called

_remoteOperationReceived, which should be called whenever a new remote in-

sert or delete operation has arrived. OTHandler implements the causality check with

state vectors as described in Section 3.2.2, and based on this check either integrates the

operation or adds it to the queue. Integrating a remote operation consists of running

the transformations with the GOTO algorithm, asking the EditorBase to execute the

transformed operation with _doExecute, pushing the executed operation to the log and

updating the state vector. Each time when a new remote operation has been integrated,

OTHandler._checkQueue function is used to find a causally ready operation from

the queue. If such an operation is found, it gets integrated and _checkQueue is called

again.

The GOTO control algorithm and the transformation functions can perfectly exist

without requiring anything from our web component implementation or from each other.

Thus, our solution contains two ES6 modules without any dependencies. The first in-

dependent JavaScript module is goto-control-algorithm.js, which exports a

single function called transform. This function takes care of all the transformations

following the GOTO algorithm, based on its four parameters; a causally ready remote op-

eration to be executed, the log of executed operations and the application-dependent inclu-

sion and exclusion transformation functions. According to the operational transformation

theory, the algorithm should work with any kind of application (not just text editors), as

long as the provided transformation functions satisfy the transformation properties (see

CHAPTER 4. IMPLEMENTATION 49

Definition 2) and the post-conditions defined by the GOT approach (see Definition 4).

One requirement of the transform function is that the operations are objects which

contain their state vector timestamps in a property named as stateVector.

The second module which is independent of the web component contains the character-

wise transformation functions. It is called transformations.js, and it exports two

functions: inclusionTransformation and exclusionTransformation. Both

of the functions take two operations as parameters and return the transformed version of

the first operation. Although this implementation does not explicitly depend on any other

module, it expects a certain format from the operations. In addition to the data proper-

ties of insert and delete, such as index and length, it requires properties userId and

stateVector. With a strongly typed language, we would package these operation in-

terface definitions with the transformations module, or put them into a separate package

which the transformations module would depend on.

4.4.4 Session Handling

The SessionHandler class contains the master property/attribute and reacts to its

changes via the attributeChangedCallback (see Section 2.2.1). In the construc-

tor, SessionHandler disables the editor from user interaction by utilizing the pro-

tected functions of EditorBase. The editor is enabled when either the master at-

tribute is activated, or a join message is received.

SessionHandler implements the public generateJoinMessage function. To

generate a unique identifier for a joining client, SessionHandlermaintains an internal

counter which is incremented each time when generating a join message. The message

is populated with the generated id and the master editor’s state, including the state vector

and the current text content of the editor.

An incoming join message is handled by SessionHandler._joinSession func-

tion. It sets the editor’s own identifier from the message and initializes the component’s

CHAPTER 4. IMPLEMENTATION 50

state with the provided state vector and text. As long as the joining editor receives all

the messages that have timestamps exceeding the values of the state vector, the editor

succeeds in joining the session and integrating into the message stream.

In the end of _joinSession, the OTHandler._checkQueue function is called.

This ensures that if the component has received messages that the master editor had not

yet integrated while generating the join message, those get integrated immediately. It is

also possible that the editor has received and queued messages which are already effective

in the initial text provided by the master editor. The _checkQueue function clears these

by comparing the logical clocks of the site where the operation was generated. A queued

operation generated at site k, with timestamp SVO, is already effective in the text and

should be removed if SVO[k] ≤ SV [k], where SV is the state vector of the joining site.

Because the queue is handled like this when the join message is received, the component

user can start routing messages to the joining editor as soon as possible, instead of waiting

for it to join the session.

4.4.5 Component Class

CoEditor is the final class in the hierarchy. It contains the most crucial user-facing

API of the component; the update event and the receive function. CoEditor im-

plements the _onUserInput and _onUserSelectionChange functions called by

EditorBase. It attaches the userId and username properties to an outgoing mes-

sage, converts this object into a string, and fires an update event with this string attached

to it.

The receive function converts an incoming message from string back to an ob-

ject and propagates it to the appropriate handler based on its type. The join message

is given to SessionHandler._joinSession, text editing operations are handled

by OTHandler._remoteOperationReceived and caret movements are executed

immediately via EditorBase._doExecute.

CHAPTER 4. IMPLEMENTATION 51

Before propagating the message, CoEditor checks if it was originating from the

component itself based on the userId, and ignores it if that is the case. Application

developers should not implement the routing so that the messages are transmitted back

to the original editor, but simply broadcasting each message to each client might be done

either accidentally3, or intentionally to simplify the application code. With this check

in place, propagating messages back to the sender does not cause issues such as render-

ing the user’s own caret twice or bloating the operation queue with never causally ready

operations.

4.4.6 Caret Rendering

The previous sections already describe some aspects of how the carets of remote users

are rendered, but this logic is not fully covered. We are utilizing a third-party module

called quill-cursors [44] for this purpose. Its API allows rendering a caret in the given

index (or range in case of selection) with the given name and color. When inserting or

deleting text before the caret, the module updates its position automatically. In the current

implementation, we generate a random color for each new user who joins the session.

An important thing to note is that the caret message is not fired when the user types

or deletes text. In the case of delete, we know that the caret should be rendered in the

deletion index. When inserting text, the caret should be rendered after the last inserted

character. With this information, EditorBase takes care of moving the caret also after

integrating text editing operations.

The caret message is needed only when the user moves the caret or selects text, with-

out inserting or deleting anything. As described in the earlier sections, caret messages

are internally handled through the _onUserSelectionChange function, instead of

the _onUserInput like insert and delete. By taking this different path of control, caret

3This actually happened once while experimenting with the component, which is why this check was

added.

CHAPTER 4. IMPLEMENTATION 52

messages bypass all the operational transformation logic. This causes a known bug in

the component; one user editing the text and another moving the caret concurrently may

cause the caret to be rendered in a wrong position. We could have implemented more

transformation functions to include the caret messages in the GOTO algorithm, but de-

cided to leave this for future work. After all, rendering a remote caret in a wrong index is

just a visual bug which gets corrected via the next update.

4.5 Test Automation

An important part of software development is automated testing, which allows us to ver-

ify that the product works as expected after each change that we make in the code. In the

JavaScript ecosystem, there exists a lot of testing tools and frameworks for frontend prod-

ucts. Following the Open Web Component Recommendations [46], we used the Mocha

framework [47] for describing our tests and Chai [48] as an assertion library.

The most complex and error-prone part of the <co-editor> component is the con-

sistency maintenance. To test this functionality with two <co-editor> instances on

the same page, we need to simulate concurrent operations and incorrect receiving order,

which may happen in a distributed environment. One option to simulate concurrency is to

use the setTimeout JavaScript function to postpone the receiving of remote operations

for a specified amount of milliseconds. However, this is not an efficient nor technically

reliable way of testing, because it adds the delay to each test case and expects the com-

putation to take less than the delay to produce expected results. Another solution, which

also allows us to reorder the reception of updates, is to save the received operations and

provide them manually to the other editors when appropriate.

Listing 4.1 shows an example of a test case which verifies that concurrent inserts

at the same position produces convergent document states which contain the effect of

each operation. The test components are rendered by providing the HTML content to the

CHAPTER 4. IMPLEMENTATION 53

fixture helper function. The editors are configured to save the operations into arrays,

instead of passing them to the other editor immediately. This allows us to insert text

into both editors without either receiving the updates from the other. The helper function

insertText simulates a user writing text into the specified index. After the insertions,

we flush the changes by providing the cached updates to the receive functions. Finally,

the Chai API is used to verify that the editors contain expected values. Most of this code

can be reused for many test cases, and is actually written in a function which is executed

before each case in a set of tests.

At the time of writing, the project’s test suite consists of 27 test cases, divided into

several categories and subcategories. The first tests verify the components functionality

before and after setting the master attribute or receiving the join message. For example,

the editor should be disabled until either of these actions happen. After receiving the join

message, the editor should set the text content copied from the master, and execute or

clear causally ready queued operations.

The rest of the test cases focus on consistency maintenance. Starting from simple

cases, the first subcategory of tests verifies convergence after synchronous inserts, deletes

and setting of the value property. The remainder of the test cases focus on concurrent

operations, starting with convergence on different pairs of operations. Causality preserva-

tion tests make sure that operations are not executed while they depend on non-executed

operations, and that operations received in a wrong order will eventually be executed. Fi-

nally, we ensure that the editor maintains user intentions along convergence, by testing

not only that the text values are equal, but that they are exactly what we would expect

after the executed operations. We have test cases for different combinations of concurrent

operation types, as well as different position relations (having smaller, larger or equal

index compared to the other operation) for each of those combinations.

The tests described up to this point are executed simply on two clients. In the last

few tests, we ensure that a third client can join the session and the changes by each client

CHAPTER 4. IMPLEMENTATION 54

1 it('should converge on concurrent inserts', async () => {

2 const testDom = await fixture(̀

3 <div>

4 <co-editor id="master" master></co-editor>

5 <co-editor id="client"></co-editor>

6 </div>

7 ̀);

8 const master = testDom.querySelector('#master');

9 const client = testDom.querySelector('#client');

10

11 client.receive(master.generateJoinMessage());

12

13 const masterOps = [];

14 const clientOps = [];

15

16 master.addEventListener('update', e => masterOps.push(e.detail));

17 client.addEventListener('update', e => clientOps.push(e.detail));

18

19 insertText(master, 0, 'foo');

20 insertText(client, 0, 'bar');

21

22 masterOps.forEach(op => client.receive(op));

23 clientOps.forEach(op => master.receive(op));

24

25 expect(master.value).to.equal('barfoo\n');

26 expect(client.value).to.equal('barfoo\n');

27 });

Listing 4.1: Automated convergence testing

get executed by the other editors. We should improve the test coverage by verifying that

consistency is maintained in complex scenarios, where multiple editors send concurrently

operations to each other in different orders. Also, the remote caret rendering is currently

not tested at all, which is not acceptable for such a core feature.

5 Evaluation

In order to test how the <co-editor> component works in real world, we implemented

a couple of sample applications integrating with different technologies and architectures.

Besides verifying that the component is usable when integrated in a real application, we

wanted to evaluate its developer experience (DX). Developer experience measures the

ease-of-use and understandability of an API, similarly to how user experience (UX) test-

ing evaluates the usability of an application from the end-user’s point of view.

From the end-user’s point of view, the test application used for the evaluation works

as follows. There is at most a single active editing session, and any user can join it. If the

session is not currently active, the first user connecting to the application will initiate the

session with an empty document, and this user will be referred to as the document owner.

Any browser connecting after that will join this editing session, allowing to collaborate

with the document owner and possibly other clients. Each client, except the document

owner, can disconnect and rejoin as they wish without affecting the session. If the docu-

ment owner disconnects, all the other clients will be notified that the session has ended,

and the connection will be closed, still allowing the client to view and edit the text locally.

At this point, the client can refresh the page to become the new document owner, as there

is no active session in place.

This kind of a demo application is rationalized by an assumption, that in real use

cases the document is most likely owned by one user. The document might be saved on

the document owner’s account in the cloud, or the document owner might be filling some

CHAPTER 5. EVALUATION 56

kind of a form or a forum message on her account. Other users may join to help the

document owner to write the text, but they are not responsible of the document and can

not press the save or send button. In a proper use case, the collaborators would need to be

authorized to join the editing session, but this does not directly affect the web component

integration, which is why we can keep the application simple by letting anyone join.

5.1 Testing in a Centralized Architecture

5.1.1 Server Push

Routing the messages of our client-side component through a web server is as easy or hard

as it is to handle any kind of bidirectional real-time communication between a server and a

browser. Integrating the component into a centralized architecture means that the clients

will send the update messages to the server, which forwards them to the other clients.

Thus, the web server needs to be able to send data to the clients on its own initiative.

The web and the HTTP protocol were originally designed to work in such a way

that the browsers request data from the server. The server can not send data on its own,

without the client first initiating the transaction. As the web has evolved from static file

serving into a much more feature-rich application platform, solutions for server-initiated

messages, known as server push, have emerged. One popular strategy has been long-

polling, which means that after each response, the client will open a new request, to

which the server can respond when it wishes [49]. Finally, a technology called WebSockets

emerged, which provides a full-duplex TCP channel between the server and the browser,

eliminating the overhead of HTTP’s verbose message structure [50].

5.1.2 Test Application Implementation

To test the component in a centralized architecture, we built a simple web application

on Node.js [51], which is a server-side JavaScript runtime environment. We installed two

CHAPTER 5. EVALUATION 57

frameworks, Express.js [52] and Socket.IO [53], to easily start our project and let us focus

on the application logic. Express.js is a minimal web application framework, which we

are using to serve the client-side HTML and JavaScript content to the browsers. Socket.IO

is a library which enables real-time bidirectional data communication between the server

and the browsers with an API based on events and the concept of sockets. Under the hood

the framework uses WebSockets when possible.

The relevant parts of the demo application code are listed in Appendix A, starting

with the server-side implementation. The server-side Socket.IO library fires a global

connection event when a new client makes a request for the app, and disconnect

event when a client closes the app or the socket connection is terminated by other means.

We also define some event types of our own: update for sending and receiving opera-

tions, and set-master, request-join-message and master-disconnected

for session handling. The connection event provides a reference to the new socket

connection, which is utilized in the session logic and to register listeners for other events.

Figure 5.1 illustrates the event flows of connecting clients and a disconnecting document

owner, which will be further described next.

Site 1 Server Site 2

time

connection
set­master

connection
request­join­message

callback
update

disconnect
master­disconnected

disconnect

Figure 5.1: Session control in the centralized test application

CHAPTER 5. EVALUATION 58

A reference to the document owner’s socket connection is saved in the master vari-

able. When there is no active session, i.e. master is not defined, the connecting client

is notified with a set-master event. Otherwise, we need to make a roundtrip to the

current master editor to get a join message for the new client. This is implemented by

firing a request-join-message event to the master socket and defining a callback

which should be called by the client-side master editor with the join message as a pa-

rameter. At the server-side, the callback forwards the message to the joining client via

an update event. When the document owner disconnects, the other clients are notified

with a master-disconnected message. Routing the update events is straightfor-

ward with Socket.IO’s broadcast API, which sends the event to every other socket except

the one which fires it.

The relevant parts of the client-side HTML and JavaScript are also presented in Ap-

pendix A. Again, routing the updates with the Socket.IO API is straightforward; events

from the web component are emitted into the socket, and incoming updates from the

socket are passed to the component’s receive function. The set-master event

is handled by setting the master property/attribute and registering the listener for the

request-join-message event. The callback of this event is called with a newly

generated join message. The master-disconnected event is handled by closing

the connection and showing a popup notification for the user. The page contains also an

<input> element for changing the username which is displayed in the carets of collab-

orating editors.

5.1.3 Developer Experience

The <co-editor> component is designed to work in a P2P architecture, each client

sending messages to each other. For this reason, it may feel cumbersome to handle all the

communication through a central server, which is actually not required at all by the com-

ponent’s logic. However, with an easy-to-use bidirectional communication framework,

CHAPTER 5. EVALUATION 59

such as Socket.IO, broadcasting the updates to participating peers is quite effortless, as

proven by our demo application.

The biggest pain point of integrating the component in a centralized architecture is

the session management. Even though the component implements pretty much all of the

actual session handling, it requires quite a lot of control logic to get one join message

from the master editor and pass it back to the joining client through the server.

Another confusing thing that emerged while developing the test application is the

master property/attribute. As described in the beginning of this chapter, one document

should be owned by a user, and changing the ownership from one user to another is not

really meaningful, at least in the use case which we have considered. With this in mind, it

makes no sense that the ownership of the text is determined by a boolean value which can

be turned on and off whenever the developer wishes. It also became evident that "master"

is not necessarily the most obvious name for this feature.

5.2 Testing in a P2P Architecture

5.2.1 WebRTC

When a web application is used to interact with other users, the data is usually transmitted

through the web server. Traditionally web browsers communicate only with the server,

and not directly with each other. The problem is that routing the data through an extra

node in the network adds more delay to each message. In many real-time communication

applications, such as voice and video conferencing software, having as low latency as

possible is really important for the user experience.

WebRTC (Web Real-Time Communications) [37] is a project which enables direct

peer-to-peer communication between web browsers. Its main use case is the real-time

transmission of latency-sensitive video and audio streams, usually captured from the com-

puter’s camera and microphone. WebRTC also supports transmission of arbitrary data.

CHAPTER 5. EVALUATION 60

To establish a P2P connection between two clients, WebRTC requires a server which

coordinates the connections with control messages. This process is called signaling. Af-

ter the server has been utilized for opening up the connection, the real application data

can flow directly from browser to browser. The signaling server can also notice when a

connection to a peer has closed, and let the other clients know about it. [54]

5.2.2 Test Application Implementation

To test <co-editor> in a P2P architecture, we implemented the test application de-

scribed in the beginning of this chapter by utilizing a framework called EasyRTC [55]. It

provides a more easy-to-use abstraction over the core WebRTC technology, which helped

us to build the test application faster. For the purposes of evaluating the component, the

used API does not matter, as long as we have an interface to send and receive messages be-

tween browsers. While describing the implementation, we will ignore everything which

is not directly related to integrating the <co-editor> component with the P2P data

streams, such as setting up the signaling server. Also, setting the username is omitted as

it does not differ from the previous example (see Appendix A).

Appendix B presents the relevant parts of the demo application’s client-side imple-

mentation. After the WebRTC connection has been established, we have an interface

to communicate directly with the other browsers within the client-side code. With the

EasyRTC API, broadcasting and receiving updates is straightforward, as can be seen in

code lines 2-3 and the related helper functions. After connecting to the signaling server,

the client determines who is the document owner based on who has joined the EasyRTC

session first. If the client is the first one itself, the editor’s master property is set. The

setRoomOccupantListener function is used to establish a new data channel each

time a new peer is joining the session. After the data channel has been opened between

the document owner and a new peer, the document owner sends a join message to the

joining editor. The signaling server notifies the clients when a peer has disconnected, and

CHAPTER 5. EVALUATION 61

the disconnection of the document owner is handled by notifying the user and closing the

WebRTC connections.

This kind of a mesh topology, where each node sends messages directly to each other,

causes one extra challenge. It is possible that a new peer skips receiving some operations

while it is joining. This is illustrated in Figure 5.2. Site x sends an operation to master,

which is the only peer it is connected to, at that moment. Before this operation reaches

its destination, a new site joins the session and data channels are opened with the existing

clients. The master editor sends the join message to the new peer, but the operation from

site x is still on its way. The joining site will get an initial state which does not include

the operation’s effect, and site x will never send this operation to the joining site.

Site x Joining site Master site

time

join

op

 data channel opened data channel opened

Figure 5.2: Operation skipping in P2P architecture

To tackle this issue, our implementation includes a queuing mechanism, which can

be seen in Appendix B. If the signaling server has informed the client that a new peer

has joined, but the data channel is not opened yet, outgoing operations for that peer are

cached in an operation queue. The queued operations are sent as soon as the data channel

becomes available. This solution is not bullet-proof either. It is theoretically still possible

that the master opens a data channel with the new site and sends the join message before

the other site has even received the notification from the signaling server that the new site

exists. An exhaustive solution for this puzzle is left out of the scope of this test application.

CHAPTER 5. EVALUATION 62

5.2.3 Developer Experience

Compared to routing the messages through a server, it is convenient to have direct refer-

ences to the data streams of each participating user in the client-side code. In particular,

this improves the experience of transmitting the join message, which does not follow the

normal broadcasting conventions of other messages. Transmitting this one type of mes-

sage from the document owner only to the joining client is simple when the document

owner has direct access to the receiver.

However, the added trouble of handling the concurrency issue, which was described

in the previous section, outweighs the simplicity of routing the join messages. If the user

of <co-editor> is required to take care of complex issues such as this one, we have

not succeeded in creating a component API which is easy to plug into any kind of network

topology.

5.3 Improvements Based on the Evaluation

We assume that most developers using the component would be routing the messages

through a server for a few reasons. First of all, web application are already built on top

of a central server, so this does not need additional architectural setup. Secondly, inte-

grating WebRTC into the application can be really laborious process. Lastly, the latency

requirements for collaborative text editing are not as hard as for e.g. video or speech

communication. Thus, it is acceptable for the communication to take a little bit longer.

Based on this assumption of preference in centralized operation routing, we will focus

improving the developer experience of this use case.

In a centralized architecture, handling the situation when a new client joins the editing

session requires some extra effort from the developer. A new join message needs to be

requested from the master editor, and once this message is received by the server, it needs

to be propagated to the joining client. The trouble comes from the fact that this message

CHAPTER 5. EVALUATION 63

needs to be specifically requested from the master, and it needs to be transmitted only to

the one client who requested it.

We can make this process simpler by broadcasting the join message to each of the

participants, just like the other operations. This way we only need to notify the master

editor that a new join message should be fired into the operation stream. All the clients,

except the new one which has not yet joined, will simply ignore this message. The added

transmission cost of sending the join message also to those clients who do not need it is

insignificant, considering the amount of data flow when users are writing the text.

The problem with this approach is that if two clients join at the same time, the master

will generate two join messages, but the clients will not know which message belongs to

which client. In our example application, the clients would receive the same message first

and ignore the latter one as they already joined the session at that point. Thus, two clients

would end up having the same id.

To avoid this problem, we need to be able to identify two clients before the master

editor has provided them with identifiers. For this purpose, a joining client will generate

a random temporary identifier for itself. We also introduce a new message type, request-

join, which contains the temporary random identifier. When a new client joins the session,

it broadcasts this message to the other peers. When the master editor receives the request-

join message, it automatically generates a new join message and broadcasts it to everyone.

The temporary identifier is also attached to the join message to know which client it is

targeted at. The join message is then ignored by any site which has already joined, or

whose temporary identifier does not match the one in the message.

It is still possible for two clients joining at the same time to generate the same random

temporary identifier, but by making the identifier long enough, we can make it practically

impossible. One could argue that if we consider these random identifiers safe enough,

why do not we just generate a random identifier for every client, obviating the need of

asking the identifier from the master editor. This would, however, greatly increase the

CHAPTER 5. EVALUATION 64

risk of generating colliding identifiers. Also, we want to avoid long identifiers, as they

would significantly increase the message sizes via the clientId and stateVector

properties.

The public generateJoinMessage function is no more needed, but we need to

add some API for a client to send the request-join message. For this purpose, we introduce

a function called joinSession. This function does not take any arguments. It should

be simply called after connecting the message streams, if the client is joining an existing

session where a master editor exists. A single call of this function takes care of getting

the required information from the master editor as described above.

Another API improvement was made based on the idea that the master-state of an

editor should not be a boolean property, as described in Section 5.1.3. Similarly to how

we can now declare a joining client to not own the document with joinSession, we

should declare the master editor to be the master once and for all. To align the new

APIs, the master property was replaced with an initSession function. The revised

API after these changes is listed in Table 5.1. The code in Appendix C presents how

updating the component’s API simplified the centralized test application. The source code

of <co-editor> component itself, after the API revision, can be seen in Appendix D.

CoEditor

value: string

username: string

initSession(): void

joinSession(): void

receive(string): void

Fires event: { type: "update", detail: string }

Table 5.1: Improved component API

6 Future Work

We have published some pre-releases of the component to the npm repository1 [56] under

the BSD 3-Clause license. This allows web developers who use the npm package manager

to easily install <co-editor> and integrate it into their projects. At the time of writing,

version 1.0.0-alpha4 is the latest release, while 1.0.0-alpha2 contains the original API

without the improvements introduced in Section 5.3. These alpha releases are meant only

for testing and to get early feedback for our product. The component still needs some

more work before we can publish a stable release.

The most crucial missing feature is garbage-collecting the operation log, which can

be implemented as described in Section 3.2.4. In the component’s current state, the log

grows indefinitely with each operation. This will eventually use up the client machine’s

memory and slow down the GOTO algorithm exploring the log. Adding the garbage-

collecting behavior should not affect the API in any way, so it was not needed to evaluate

the component’s usability. This is why this feature did not have a higher priority.

We should also handle disconnecting users by removing their carets and correspond-

ing clocks from the state vectors. Many real-time communication frameworks, such

as Socket.IO and WebRTC, used in Chapter 5, provide API for handling disconnecting

clients. We could provide a function to notify other peers about the leaving user, but then

the application developer would have to know the internal identifier of the dropping client.

The components could also recognize disconnecting peers automatically by sending regu-

1https://www.npmjs.com/package/co-editor

CHAPTER 6. FUTURE WORK 66

lar heartbeat messages to each other. Once the component has not received any messages

from a client for a set amount of time, this client can be considered as disconnected.

After these improvements, the component is feature complete, and we can enter the

beta-phase of version 1.0.0. In later versions, we are planning to add support for rich text

formatting and undoing operations. For rich text, we need to investigate if we can convert

the formatting operations into inserts and deletes. This should be possible if the rich

text formatting is implemented in the editor’s state by adding metadata (such as HTML

tags) in the middle of the text. Otherwise, we need to introduce additional operations

and implement more transformation functions. Undoing the latest executed operation is

straightforward, but in a collaborative editor the latest operation might be created by a

collaborating user. The desired undo effect is that the change made by the latest locally

generated operation is reverted, but all of the later remote operations are still effective

[21]. Transformation functions need to be applied to achieve this.

We also recognize some internal performance and code maintenance improvements

which could enhance the quality of our product. Currently, the consistency maintenance

works with character-wise operations, as their transformation functions were easier to

implement and allowed us to deliver the product and test the API faster. Implementing

transformations for string-wise operations should greatly improve the component’s per-

formance in cases where a long piece of text is either pasted or removed by a single

action.

We could also investigate more operational transformation techniques, as we were

not able to cover all of them in the scope of one thesis, and GOTO proved to satisfy

our requirements. For example, in [57] Sun and Sun claim that their COT (Context-

Based Operational Transformation) algorithm allows undoing any operation in the history

without requiring exclusion transformations, while having a superior time complexity for

remote operation handling compared to GOTO. Dropping the exclusion transformations

would simplify our code base and also significantly help us in integrating the string-wise

CHAPTER 6. FUTURE WORK 67

operations. Further research is needed to determine whether changing to COT or some

other consistency maintenance technique would be worthwhile.

In reflection, we could have written our code base in TypeScript [58] to make it more

robust and avoid many coding errors. For example, the messages already have types (im-

plemented as string properties), and each message must include all the properties defined

in Table 4.2. TypeScript interfaces would help us to avoid mistakes by ensuring that the

messages always conform to their type definitions. Luckily, TypeScript is a superset of

JavaScript, meaning that including the TypeScript compiler to our build pipeline would

not break any of our existing code. This means that instead of making a huge refactoring

at once, we can include the type system to our code one piece at a time, e.g. starting with

the message definitions.

7 Conclusions

In this thesis we have designed and implemented a web component called <co-editor>,

which enables web developers to integrate a real-time collaborative text editor into their

applications with minimal effort. By utilizing the latest web standards, we managed

to build an encapsulated UI component while avoiding to depend on any specific web

frameworks. Implementing the consistency maintenance logic entirely in the client-side

allowed us to minimize the requirements of the server-side implementation. In fact,

<co-editor> can be used even without a server in a P2P network (with some caveats),

as demonstrated in Section 5.2. As the consistency maintenance algorithm was com-

pletely based on literature, our main contributions in this paper are the user friendly com-

ponent API and the client-side session management logic.

One of our main issues was that networking is an application-level concern, and can

not be implemented in a client-side UI component. This is also one reason why many

existing developer tools include a server-side counterpart (another reason being central-

ized consistency maintenance algorithms). Because of the wide variety of technologies

used in web application backends and the varying preferences of developers, we wanted

to avoid forcing the <co-editor> users to run a specific server-side integration of our

component. Instead, we aimed make its usage so simple, that it can be integrated into

any technology stack with a nominal amount of programming. Our component provides

a simple interface for connecting the clients via the update event and the receive

function. The application developer just needs to broadcast the messages included in the

CHAPTER 7. CONCLUSIONS 69

fired events to other clients. We consider this being the minimal possible effort required

to connect the message streams, considering the limitations of a pure client-side imple-

mentation. As a bonus, our queue cleaning mechanism recognizes and removes outdated

operations from the operation queue. This further improves the developer experience by

forgiving some common memory leaking mistakes, such as sending the same operation

twice, or redirecting operations back to the sender.

In Chapter 3, we reviewed several methods for consistency maintenance, and found

out that the GOTO algorithm is a suitable solution for our purposes. Although operational

transformation can be quite complex, implementing GOTO was relatively straightforward

based on the research papers. However, these papers assume a constant number of par-

ticipants. Our <co-editor> component introduces an intelligent session maintenance

mechanism, which enables a new client to join after connecting the message streams by

simply calling the joinSession function. Without any specific message routing, the

joining editor communicates with the document owner’s editor to get started with an initial

editor state. We invented this mechanism after evaluating that the original API required

the application developer to implement too much control logic.

Although our product is still in its alpha stage, we have met our goals for this thesis.

We have proven that <co-editor> can handle both the consistency maintenance and

session handling in client-side, while providing a simple message passing interface for

application developers. The component API is easy to use, and building a collaborative

text editing application with <co-editor> requires only a few lines of code when

using a sophisticated communication framework. The core value of our research is that

our component integrates easily into any web technology stack, compared to competing

products which rely on specific server-side technologies. From the academic point of

view, we have created a session management system and a queue cleaning function based

on state vectors, which fulfill some groupware requirements not covered by the GOTO

algorithm itself.

References

[1] O. Suwantarathip and S. Wichadee, “The effects of collaborative writing activity

using google docs on students’ writing abilities”, Turkish Online Journal of

Educational Technology-TOJET, vol. 13, no. 2, pp. 148–156, 2014.

[2] W. Zhou, E. Simpson, and D. P. Domizi, “Google docs in an out-of-class

collaborative writing activity”, International Journal of Teaching and Learning in

Higher Education, vol. 24, no. 3, pp. 359–375, 2012.

[3] I. Blau and A. Caspi,

“What type of collaboration helps? psychological ownership, perceived learning

and outcome quality of collaboration using google docs”,

in Proceedings of the Chais conference on instructional technologies research,

vol. 12, 2009, pp. 48–55.

[4] CKEditor, https://ckeditor.com/, [Online; accessed 23-March-2019].

[5] Firepad, https://firepad.io/, [Online; accessed 23-March-2019].

[6] Quill, https://quilljs.com/, [Online; accessed 23-March-2019].

[7] Quill-ShareDB-Cursors,

https://github.com/pedrosanta/quill-sharedb-cursors,

[Online; accessed 23-March-2019].

[8] MDN, Web Components, https://developer.mozilla.org/en-

US/docs/Web/Web_Components, [Online; accessed 24-January-2019].

https://ckeditor.com/
https://firepad.io/
https://quilljs.com/
https://github.com/pedrosanta/quill-sharedb-cursors
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://developer.mozilla.org/en-US/docs/Web/Web_Components

CHAPTER 7. CONCLUSIONS 71

[9] Web Hypertext Application Technology Working Group, HTML Living Standard,

https://html.spec.whatwg.org/, [Online; accessed 28-January-2019].

[10] Google Developers, Custom Element Best Practices,

https://developers.google.com/web/fundamentals/web-

components/best-practices, [Online; accessed 30-January-2019].

[11] E. Bidelman, Custom Elements v1: Reusable Web Components,

https://developers.google.com/web/fundamentals/web-

components/customelements, [Online; accessed 30-January-2019].

[12] Web Hypertext Application Technology Working Group, DOM Living Standard,

https://dom.spec.whatwg.org/, [Online; accessed 29-January-2019].

[13] E. Bidelman, Shadow DOM v1: Self-Contained Web Components,

https://developers.google.com/web/fundamentals/web-

components/shadowdom, [Online; accessed 28-January-2019].

[14] World Wide Web Consortium, CSS Shadow Parts,

https://www.w3.org/TR/css-shadow-parts/,

[Online; accessed 25-March-2019], Nov. 2018.

[15] ——, HTML Imports, https://www.w3.org/TR/html-imports/,

[Online; accessed 28-March-2019], Feb. 2016.

[16] Polymer Team, Web Components v0 Deprecations,

https://www.polymer-project.org/blog/2018-10-02-

webcomponents-v0-deprecations, [Online; accessed 1-February-2019].

[17] J. Fagnani, Polymer 3.0 preview: npm and ES6 Modules, https:

//www.polymer-project.org/blog/2017-08-22-npm-modules,

[Online; accessed 1-February-2019].

[18] D. Mosberger, “Memory consistency models”,

Oper. Syst. Rev., vol. 27, no. 1, pp. 18–26, Jan. 1993.

https://html.spec.whatwg.org/
https://developers.google.com/web/fundamentals/web-components/best-practices
https://developers.google.com/web/fundamentals/web-components/best-practices
https://developers.google.com/web/fundamentals/web-components/customelements
https://developers.google.com/web/fundamentals/web-components/customelements
https://dom.spec.whatwg.org/
https://developers.google.com/web/fundamentals/web-components/shadowdom
https://developers.google.com/web/fundamentals/web-components/shadowdom
https://www.w3.org/TR/css-shadow-parts/
https://www.w3.org/TR/html-imports/
https://www.polymer-project.org/blog/2018-10-02-webcomponents-v0-deprecations
https://www.polymer-project.org/blog/2018-10-02-webcomponents-v0-deprecations
https://www.polymer-project.org/blog/2017-08-22-npm-modules
https://www.polymer-project.org/blog/2017-08-22-npm-modules

CHAPTER 7. CONCLUSIONS 72

[19] C. Sun, D. Sun, Agustina, and W. Cai, “Real differences between OT and CRDT

for Co-Editors”, Oct. 2018. arXiv: 1810.02137 [cs.DC].

[20] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems”,

Acm Sigmod Record, 1989.

[21] C. Sun, “Undo as concurrent inverse in group editors”,

ACM Trans. Comput. -Hum. Interact., vol. 9, no. 4, pp. 309–361, Dec. 2002.

[22] G. Oster, P. Urso, P. Molli, and A. Imine,

“Data consistency for P2P collaborative editing”, in Proceedings of the 2006 20th

Anniversary Conference on Computer Supported Cooperative Work,

ser. CSCW ’06, Banff, Alberta, Canada: ACM, 2006, pp. 259–268.

[23] C. Sun and C. Ellis, “Operational transformation in real-time group editors:

Issues, algorithms, and achievements”, in Proceedings of the 1998 ACM

Conference on Computer Supported Cooperative Work, ser. CSCW ’98,

Seattle, Washington, USA: ACM, 1998, pp. 59–68.

[24] L. Lamport, “Time, clocks, and the ordering of events in a distributed system”,

Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[25] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving convergence,

causality preservation, and intention preservation in real-time cooperative editing

systems”,

ACM Trans. Comput. -Hum. Interact., vol. 5, no. 1, pp. 63–108, Mar. 1998.

[26] J. Day-Richter,

What’s different about the new Google Docs: Making collaboration fast,

https://drive.googleblog.com/2010/09/whats-different-

about-new-google-docs.html, [Online; accessed 3-January-2019], 2010.

https://arxiv.org/abs/1810.02137
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html

CHAPTER 7. CONCLUSIONS 73

[27] Agustina, F. Liu, S. Xia, H. Shen, and C. Sun, “CoMaya: Incorporating advanced

collaboration capabilities into 3D digital media design tools”, in Proceedings of

the 2008 ACM Conference on Computer Supported Cooperative Work,

ser. CSCW ’08, San Diego, CA, USA: ACM, 2008, pp. 5–8.

[28] D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping,

“High-latency, low-bandwidth windowing in the jupiter collaboration system”,

in Proceedings of the 8th Annual ACM Symposium on User Interface and

Software Technology, ser. UIST ’95, Pittsburgh, Pennsylvania, USA: ACM, 1995,

pp. 111–120.

[29] M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhäuser,

“An integrating, transformation-oriented approach to concurrency control and

undo in group editors”, in Proceedings of the 1996 ACM conference on Computer

supported cooperative work - CSCW ’96, 1996.

[30] C. J. Fidge, “Timestamps in message-passing systems that preserve the partial

ordering”, Proceedings of the 11th Australian Computer Science Conference,

vol. 10, pp. 56–66, 1988.

[31] C. Sun, Y. Yang, Y. Zhang, and D. Chen, “A consistency model and supporting

schemes for real-time cooperative editing systems”,

Australian Computer Science Communications, vol. 18, pp. 582–591, 1996.

[32] M. Raynal and M. Singhal, “Logical time: Capturing causality in distributed

systems”, Computer, vol. 29, no. 2, pp. 49–56, Feb. 1996.

[33] C. Sun, D. Chen, and X. Jia, “Reversible inclusion and exclusion transformation

for string-wise operations in cooperative editing systems”,

in Proceedings of the 21st Australasian Computer Science Conference, 1998,

pp. 441–452.

CHAPTER 7. CONCLUSIONS 74

[34] M. Shapiro and N. Preguiça, “Designing a commutative replicated data type”,

Oct. 2007. arXiv: 0710.1784 [cs.DC].

[35] S. Weiss, P. Urso, and P. Molli, “Logoot: A scalable optimistic replication

algorithm for collaborative editing on P2P networks”,

in 2009 29th IEEE International Conference on Distributed Computing Systems,

Jun. 2009, pp. 404–412.

[36] N. Preguica, J. M. Marques, M. Shapiro, and M. Letia,

“A commutative replicated data type for cooperative editing”,

in 2009 29th IEEE International Conference on Distributed Computing Systems,

Jun. 2009, pp. 395–403.

[37] WebRTC, https://webrtc.org/, [Online; accessed 27-February-2019].

[38] N. Santos, Why ContentEditable is Terrible,

https://medium.engineering/why-contenteditable-is-

terrible-122d8a40e480, [Online; accessed 30-March-2019], May 2014.

[39] World Wide Web Consortium, ContentEditable,

http://w3c.github.io/editing/contentEditable.html,

[Online; accessed 30-March-2019], Mar. 2019.

[40] ——, Input Events Level 1,

https://www.w3.org/TR/input-events-1/,

[Online; accessed 30-March-2019], Nov. 2018.

[41] TinyMCE, https://www.tiny.cloud/, [Online; accessed 30-March-2019].

[42] Ace, https://ace.c9.io/, [Online; accessed 30-March-2019].

[43] CodeMirror, https://codemirror.net/,

[Online; accessed 30-March-2019].

[44] Quill-Cursors, https://github.com/reedsy/quill-cursors,

[Online; accessed 30-March-2019].

https://arxiv.org/abs/0710.1784
https://webrtc.org/
https://medium.engineering/why-contenteditable-is-terrible-122d8a40e480
https://medium.engineering/why-contenteditable-is-terrible-122d8a40e480
http://w3c.github.io/editing/contentEditable.html
https://www.w3.org/TR/input-events-1/
https://www.tiny.cloud/
https://ace.c9.io/
https://codemirror.net/
https://github.com/reedsy/quill-cursors

CHAPTER 7. CONCLUSIONS 75

[45] MDN, Creating and triggering events,

https://developer.mozilla.org/en-US/docs/Web/Guide/

Events/Creating_and_triggering_events,

[Online; accessed 28-February-2019].

[46] Open Web Component Recommendations, https://open-wc.org/,

[Online; accessed 30-March-2019].

[47] Mocha, https://mochajs.org/, [Online; accessed 30-March-2019].

[48] Chai Assertion Library, https://www.chaijs.com/,

[Online; accessed 30-March-2019].

[49] J. Hanson, What is HTTP Long Polling, https:

//www.pubnub.com/blog/2014-12-01-http-long-polling/,

[Online; accessed 21-February-2019], Dec. 2014.

[50] M. West, An Introduction to WebSockets, https:

//blog.teamtreehouse.com/an-introduction-to-websockets,

[Online; accessed 21-February-2019].

[51] Node.js, https://nodejs.org/, [Online; accessed 31-March-2019].

[52] Express.js, https://expressjs.com/,

[Online; accessed 27-February-2019].

[53] Socket.IO, https://socket.io/, [Online; accessed 27-February-2019].

[54] WebRTC - Signaling, https:

//www.tutorialspoint.com/webrtc/webrtc_signaling.htm,

[Online; accessed 27-February-2019].

[55] EasyRTC, https://easyrtc.com/, [Online; accessed 27-February-2019].

[56] npm, https://www.npmjs.com/, [Online; accessed 17-March-2019].

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events
https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events
https://open-wc.org/
https://mochajs.org/
https://www.chaijs.com/
https://www.pubnub.com/blog/2014-12-01-http-long-polling/
https://www.pubnub.com/blog/2014-12-01-http-long-polling/
https://blog.teamtreehouse.com/an-introduction-to-websockets
https://blog.teamtreehouse.com/an-introduction-to-websockets
https://nodejs.org/
https://expressjs.com/
https://socket.io/
https://www.tutorialspoint.com/webrtc/webrtc_signaling.htm
https://www.tutorialspoint.com/webrtc/webrtc_signaling.htm
https://easyrtc.com/
https://www.npmjs.com/

CHAPTER 7. CONCLUSIONS 76

[57] D. Sun and C. Sun, “Context-Based operational transformation in distributed

collaborative editing systems”,

IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 10, pp. 1454–1470, Oct. 2009.

[58] TypeScript, https://www.typescriptlang.org/,

[Online; accessed 17-March-2019].

https://www.typescriptlang.org/

Appendix A Centralized Test

Application

This appendix presents the relevant parts of the application source code used to test

<co-editor> in a centralized architecture, as described in Section 5.1.2.

Server-side implementation:

1 let master;

2

3 io.on('connection', socket => {

4 joinSession(socket);

5 socket.on('disconnect', () => clientDisconnected(socket));

6 socket.on('update', message => updateReceived(socket, message));

7 });

8

9 function joinSession(socket) {

10 if (!master) {

11 socket.emit('set-master');

12 master = socket;

13 } else {

14 master.emit('request-join-message', null, response => {

15 socket.emit('update', response);

16 });

17 }

18 }

19

20 function clientDisconnected(socket) {

21 if (socket === master) {

22 socket.broadcast.emit('master-disconnected');

APPENDIX A. CENTRALIZED TEST APPLICATION A-2

23 master = undefined;

24 }

25 }

26

27 function updateReceived(socket, message) {

28 socket.broadcast.emit('update', message);

29 }

Client-side implementation:

1 <h1>CoEditor With Socket.IO Demo</h1>

2 <input placeholder="username">

3 <co-editor></co-editor>

4

5 <script>

6 const socket = io();

7 const editor = document.querySelector('co-editor');

8

9 editor.addEventListener('update', event => socket.emit('update', event.detail));

10 socket.on('update', message => editor.receive(message));

11

12 socket.on('set-master', () => {

13 editor.master = true;

14 socket.on('request-join-message', (data, callback) => {

15 callback(editor.generateJoinMessage());

16 });

17 });

18

19 socket.on('master-disconnected', () => {

20 socket.disconnect();

21 alert('The document owner disconnected. Connection disabled.');

22 });

23

24 document.querySelector('input').addEventListener('input', e => {

25 editor.username = e.srcElement.value;

26 });

27 </script>

Appendix B P2P Test Application

This appendix presents the relevant parts of the application source code used to test

<co-editor> in a P2P architecture, as described in Section 5.2.2.

1 const editor = document.querySelector('co-editor');

2 editor.addEventListener('update', e => broadcast(e.detail));

3 easyrtc.setPeerListener((peer, type, message) => editor.receive(message));

4

5 let master;

6 easyrtc.connect('co-editor-demo', myId => {

7 master = getAllPeers()[0];

8 editor.master = (master === myId);

9 });

10

11 let joining = true;

12 easyrtc.setRoomOccupantListener((roomName, occupantList) => {

13 if (joining) {

14 joining = false;

15 return;

16 }

17 const peers = Object.keys(occupantList);

18 peers.filter(peer => !isConnected(peer)).forEach(peer => easyrtc.call(peer));

19 });

20

21 easyrtc.setDataChannelOpenListener(peer => {

22 if (editor.master) {

23 send(peer, editor.generateJoinMessage());

24 }

25 flushQueue(peer);

26 });

27

28 easyrtc.setDataChannelCloseListener(peer => {

APPENDIX B. P2P TEST APPLICATION B-2

29 if (peer === master) {

30 easyrtc.disconnect();

31 alert('The document owner disconnected. Connection disabled.');

32 }

33 });

34

35 function broadcast(message) {

36 getAllPeers().forEach(peer => {

37 if (isConnected(peer)) {

38 send(peer, message);

39 } else {

40 addToQueue(peer, message);

41 }

42 });

43 }

44

45 function send(peer, message) {

46 easyrtc.sendDataP2P(peer, 'message', message);

47 }

48

49 const queues = {};

50 function addToQueue(peer, message) {

51 queues[peer] = queues[peer] || [];

52 queues[peer].push(message);

53 }

54

55 function flushQueue(peer) {

56 if (!queues[peer]) {

57 return;

58 }

59 queues[peer].forEach(message => send(peer, message));

60 delete queues[peer];

61 }

62

63 function getAllPeers() {

64 return easyrtc.getRoomOccupantsAsArray('default');

65 }

66

67 function isConnected(peer) {

68 return easyrtc.doesDataChannelWork(peer);

69 }

Appendix C Centralized Test

Application With Revised Component

API

This appendix presents the relevant parts of the application source code used to test

<co-editor> in a centralized architecture, after the component API was improved

as described in Section 5.3.

Server-side implementation:

1 let master;

2

3 io.on('connection', socket => {

4 joinSession(socket);

5 socket.on('disconnect', () => clientDisconnected(socket));

6 socket.on('update', message => updateReceived(socket, message));

7 });

8

9 function joinSession(socket) {

10 if (!master) {

11 socket.emit('init-session');

12 master = socket;

13 } else {

14 socket.emit('join-session');

15 }

16 }

17

APPENDIX C. CENTRALIZED TEST APPLICATION WITH REVISED
COMPONENT API C-2

18 function clientDisconnected(socket) {

19 if (socket === master) {

20 socket.broadcast.emit('master-disconnected');

21 master = undefined;

22 }

23 }

24

25 function updateReceived(socket, message) {

26 socket.broadcast.emit('update', message);

27 }

Client-side implementation:

1 <h1>CoEditor With Socket.IO Demo</h1>

2 <input placeholder="username">

3 <co-editor></co-editor>

4

5 <script>

6 const socket = io();

7 const editor = document.querySelector('co-editor');

8

9 editor.addEventListener('update', event => socket.emit('update', event.detail));

10 socket.on('update', message => editor.receive(message));

11

12 socket.on('init-session', () => editor.initSession());

13 socket.on('join-session', () => editor.joinSession());

14

15 socket.on('master-disconnected', () => {

16 socket.disconnect();

17 alert('The document owner disconnected. Connection disabled.');

18 });

19

20 document.querySelector('input').addEventListener('input', e => {

21 editor.username = e.srcElement.value;

22 });

23 </script>

Appendix D Component Source Code

This appendix presents the source code of <co-editor> version 1.0.0-alpha4, includ-

ing the API changes described in Section 5.3. Only the relevant parts are included. The

full source code is available at:

https://github.com/pekam/co-editor/tree/1.0.0-alpha4

co-editor.js

1 import SessionHandler from './session-handler.js';

2

3 class CoEditor extends SessionHandler {

4

5 get username() {

6 return this.getAttribute('username');

7 }

8

9 set username(value) {

10 if (value) {

11 this.setAttribute('username', value);

12 } else {

13 this.removeAttribute('username');

14 }

15 }

16

17 _onUserInput(message) {

18 super._onUserInput(message);

19 this._send(message);

20 }

21

22 _onUserSelectionChange(message) {

APPENDIX D. COMPONENT SOURCE CODE D-2

23 this._isActive() && this._send(message);

24 }

25

26 _send(message) {

27 message.userId = this._id;

28 message.username = this.username;

29 this.dispatchEvent(new CustomEvent(

30 'update', { detail: JSON.stringify(message) }));

31 }

32

33 receive(message) {

34 message = JSON.parse(message);

35

36 if (this._isActive() && message.userId === this._id) {

37 return;

38 }

39 switch (message.type) {

40

41 case 'request-join':

42 this._joinRequested(message);

43 break;

44 case 'join':

45 this._joinMessageReceived(message);

46 break;

47

48 case 'insert':

49 case 'delete':

50 this._remoteOperationReceived(message);

51 break;

52

53 case 'caret':

54 this._isActive() && this._doExecute(message);

55 break;

56

57 default:

58 throw new Error(̀Unhandled message type ${message.type}̀);

59 }

60 }

61 }

62 customElements.define('co-editor', CoEditor);

APPENDIX D. COMPONENT SOURCE CODE D-3

editor-base.js

1 import '../vendor/quill.core.js';

2 import '../node_modules/quill-cursors/dist/quill-cursors.min.js';

3 import quillStyles from '../vendor/quill-styles.js';

4 import { generateRandomColor } from './helpers.js';

5

6 export default class EditorBase extends HTMLElement {

7

8 constructor() {

9 super();

10

11 this.attachShadow({ mode: 'open' });

12 this.shadowRoot.innerHTML = ̀

13 <style>

14 :host {

15 display: block;

16 border: 1px solid lightgrey;

17 }

18 </style>

19 <style>${quillStyles}</style>

20 <div id="editor-container"></div>

21 ̀;

22 const container = this.shadowRoot.querySelector('#editor-container');

23

24 Quill.register('modules/cursors', QuillCursors);

25 this._quill = new Quill(container, {

26 modules: {

27 cursors: true,

28 history: { maxStack: 0 } // Disables Quill's undo/redo

29 },

30 formats: []

31 });

32 this.__quillCursors = this._quill.getModule('cursors');

33 this.__caretData = {};

34

35 this._quill.on('selection-change', function (range, oldRange, source) {

36 range && this._onUserSelectionChange({

37 type: 'caret',

38 index: range.index,

39 length: range.length

40 });

APPENDIX D. COMPONENT SOURCE CODE D-4

41 }.bind(this));

42

43 this._quill.on('text-change', function (delta, oldDelta, source) {

44 if (source !== 'user') {

45 return;

46 }

47

48 // Transforms the changes to a simpler format in a single object:

49 // { retain: number, insert: string, delete: number }

50 const ops = delta.ops.reduce((acc, op) => Object.assign(acc, op), {});

51

52 // Generate character-wise operation messages

53 const index = ops.retain || 0;

54 ops.delete && [...Array(ops.delete)].forEach(_ => this._onUserInput({

55 type: 'delete',

56 index,

57 length: 1

58 }));

59 ops.insert && [...ops.insert].forEach((c, i) => this._onUserInput({

60 type: 'insert',

61 index: index + i,

62 text: c

63 }));

64 }.bind(this));

65 }

66

67 get value() {

68 return this._quill.getText();

69 }

70

71 set value(value) {

72 if (this._quill.isEnabled()) {

73 this._quill.deleteText(0, this._quill.getLength(), 'user');

74 this._quill.insertText(0, value, 'user');

75 }

76 }

77

78 // This doesn't generate any operations

79 _setValueSilently(value) {

80 this._quill.setText(value);

81 }

APPENDIX D. COMPONENT SOURCE CODE D-5

82

83 _disable() {

84 this._quill.disable();

85 }

86

87 _enable() {

88 this._quill.enable();

89 }

90

91 _doExecute(op) {

92 switch (op.type) {

93

94 case 'insert':

95 this._quill.insertText(op.index, op.text);

96 this.__updateCaret(op.userId, op.username, op.index + op.text.length, 0);

97 break;

98

99 case 'delete':

100 if (op.disabledBy && op.disabledBy.length) {

101 return;

102 }

103

104 this._quill.deleteText(op.index, op.length);

105 this.__updateCaret(op.userId, op.username, op.index, 0);

106 break;

107

108 case 'caret':

109 this.__updateCaret(op.userId, op.username, op.index, op.length);

110 break;

111 }

112 }

113

114 __updateCaret(id, username, index, length) {

115 const range = { index, length };

116 if (!this.__caretData[id]) {

117 this.__addCaret(id, username, range);

118 } else if (username !== this.__caretData[id].username) {

119 // Needs to be removed and re-added to update the name

120 this.__quillCursors.removeCursor(id);

121 this.__addCaret(id, username, range);

122 } else {

APPENDIX D. COMPONENT SOURCE CODE D-6

123 this.__quillCursors.moveCursor(id, range);

124 }

125 }

126

127 __addCaret(id, username, range) {

128 const color = (this.__caretData[id] && this.__caretData[id].color)

129 || generateRandomColor();

130 this.__quillCursors.setCursor(id, range, username, color);

131 this.__caretData[id] = { username, color };

132 }

133 }

goto-control-algorithm.js

1 /**

2 * Transforms the given operation to its execution form by using the

3 * GOTO (General Operational Transformation Optimized) algorithm.

4 * As a side effect modifies the log.

5 *

6 * @param {Object} op a causally ready operation, with a state vector timestamp

7 * stored in its property 'stateVector'

8 * @param {Array} log the log of executed operations (AKA history buffer)

9 * @param {Function} it the inclusion transformation function

10 * @param {Function} et the exclusion transformation function

11 *

12 * @return the execution form of op

13 */

14 export default function transform(op, log, it, et) {

15

16 let firstIndependentIndex = log.findIndex(oldOp => !isDependentOn(oldOp, op));

17

18 if (firstIndependentIndex === -1) {

19 return op;

20 }

21

22 const dependentOps = log.slice(firstIndependentIndex)

23 .filter(oldOp => isDependentOn(oldOp, op));

24

25 dependentOps.forEach(depOp => {

26 const ind = log.indexOf(depOp);

27 for (let i = ind; i > firstIndependentIndex; i--) {

28 const transposed = transpose(log[i - 1], log[i], it, et);

APPENDIX D. COMPONENT SOURCE CODE D-7

29 log[i - 1] = transposed[0];

30 log[i] = transposed[1];

31 }

32 firstIndependentIndex++;

33 });

34

35 return log.slice(firstIndependentIndex).reduce(it, op);

36 }

37

38 function isDependentOn(op1, op2) {

39 return op1.stateVector[op1.userId] <= op2.stateVector[op1.userId];

40 }

41

42 function transpose(op1, op2, it, et) {

43 const transformed2 = et(op2, op1);

44 const transformed1 = it(op1, transformed2);

45 return [transformed2, transformed1];

46 }

ot-handler.js

1 import EditorBase from './editor-base.js';

2 import transform from './goto-control-algorithm.js';

3 import { inclusionTransformation, exclusionTransformation } from './transformations.js';

4

5 export default class OTHandler extends EditorBase {

6

7 constructor() {

8 super();

9 this._log = [];

10 this._stateVector = {};

11 this._queue = [];

12 }

13

14 _onUserInput(op) {

15 this._stateVector[this._id]++;

16 op.stateVector = Object.assign({}, this._stateVector);

17 this._log.push(op);

18 }

19

20 _remoteOperationReceived(op) {

21 if (this._isActive() && this.__isCausallyReady(op)) {

APPENDIX D. COMPONENT SOURCE CODE D-8

22 this._integrateRemoteOperation(op);

23 } else {

24 this._queue.push(op);

25 }

26 }

27

28 _integrateRemoteOperation(op) {

29 const transformed = transform(op, this._log,

30 inclusionTransformation, exclusionTransformation);

31 this._doExecute(transformed);

32 this._log.push(transformed);

33

34 this._stateVector[op.userId] = this._stateVector[op.userId] || 0;

35 this._stateVector[op.userId]++;

36

37 this._checkQueue();

38 }

39

40 _checkQueue() {

41 // Remove operations which are already effective in the text

42 this._queue = this._queue.filter(op =>

43 op.stateVector[op.userId] > this._stateVector[op.userId]);

44

45 const causallyReadyOpIndex = this._queue

46 .findIndex(op => this.__isCausallyReady(op));

47 if (causallyReadyOpIndex > -1) {

48 const causallyReadyOp = this._queue.splice(causallyReadyOpIndex, 1)[0];

49 this._integrateRemoteOperation(causallyReadyOp);

50 }

51 }

52

53 __isCausallyReady(op) {

54 const clockAhead = Object.keys(op.stateVector)

55 .filter(id => id !== op.userId.toString())

56 .find(id => op.stateVector[id] > (this._stateVector[id] || 0));

57

58 return !clockAhead &&

59 (op.stateVector[op.userId] === (this._stateVector[op.userId] || 0) + 1);

60 }

61 }

APPENDIX D. COMPONENT SOURCE CODE D-9

session-handler.js

1 import OTHandler from './ot-handler.js';

2 import { generateUUID } from './helpers.js';

3

4 export default class SessionHandler extends OTHandler {

5

6 constructor() {

7 super();

8 this._disable();

9 }

10

11 initSession() {

12 this._master = true;

13 this._nextId = 0;

14 this._id = this.__generateId();

15 this._stateVector[this._id] = 0;

16 this._enable();

17 }

18

19 joinSession() {

20 this.__tmpId = generateUUID();

21 this._send({

22 type: 'request-join',

23 tmpId: this.__tmpId

24 });

25 }

26

27 _joinRequested(op) {

28 if (!this._master) {

29 return;

30 }

31 const id = this.__generateId();

32 this._stateVector[id] = 0;

33

34 const joinMessage = {

35 type: 'join',

36 tmpId: op.tmpId,

37 id: id,

38 stateVector: Object.assign({}, this._stateVector),

39 text: this.value

40 // TODO: include caret positions

APPENDIX D. COMPONENT SOURCE CODE D-10

41 };

42 this._send(joinMessage);

43 }

44

45 _joinMessageReceived(message) {

46 if (this._isActive() || message.tmpId !== this.__tmpId) {

47 return;

48 }

49 this._enable();

50

51 this._id = message.id;

52 this._stateVector = message.stateVector;

53 this._setValueSilently(message.text);

54

55 this._joined = true;

56 this._checkQueue();

57 }

58

59 _isActive() {

60 return this._master || this._joined;

61 }

62

63 __generateId() {

64 return this._nextId++;

65 }

66 }

transformations.js

1 export function inclusionTransformation(op1, op2) {

2 const copy = Object.assign({}, op1);

3 IT[̀${op1.type}_${op2.type}̀](copy, op2);

4 return copy;

5 }

6

7 export function exclusionTransformation(op1, op2) {

8 const copy = Object.assign({}, op1);

9 ET[̀${op1.type}_${op2.type}̀](copy, op2);

10 return copy;

11 }

12

13 // Inclusion transformations

APPENDIX D. COMPONENT SOURCE CODE D-11

14 const IT = {

15 insert_insert(op1, op2) {

16 if (op1.index < op2.index) {

17 } else if (op1.index === op2.index && op1.userId > op2.userId) {

18 } else {

19 op1.index++;

20 }

21 },

22

23 insert_delete(op1, op2) {

24 if (op1.index > op2.index) {

25 op1.index--;

26 }

27 },

28

29 delete_insert(op1, op2) {

30 if (op1.index >= op2.index) {

31 op1.index++;

32 }

33 },

34

35 delete_delete(op1, op2) {

36 if (op1.index > op2.index) {

37 op1.index--;

38 } else if (!(op2.disabledBy && op2.disabledBy.length) && op1.index === op2.index) {

39 op1.disabledBy = (op1.disabledBy || []).concat(op2);

40 }

41 }

42 }

43

44 // Exclusion transformations

45 const ET = {

46 insert_insert(op1, op2) {

47 if (op1.index > op2.index) {

48 op1.index--;

49 }

50 },

51

52 insert_delete(op1, op2) {

53 if (op1.index > op2.index) {

54 op1.index++;

APPENDIX D. COMPONENT SOURCE CODE D-12

55 }

56 },

57

58 delete_insert(op1, op2) {

59 if (op1.index >= op2.index) {

60 op1.index--;

61 }

62 },

63

64 delete_delete(op1, op2) {

65 if (op1.index > op2.index) {

66 op1.index++;

67 }

68 if (op1.disabledBy)

69 op1.disabledBy = op1.disabledBy.filter(op => !opEquals(op, op2));

70 },

71 }

72

73 function opEquals(op1, op2) {

74 return op1.userId === op2.userId &&

75 op1.stateVector[op1.userId] === op2.stateVector[op2.userId];

76 }

	Introduction
	Web Components
	Background
	Standards
	Custom Elements
	Shadow DOM
	HTML Templates

	Consistency Maintenance
	Consistency Criteria
	Causality Preservation
	Convergence
	Intention Preservation

	Operational Transformation
	Transformation Function
	State Vectors
	dOPT and adOPTed Algorithms
	GOT Algorithm
	GOTO - GOT Optimized

	Commutative Replicated Data Types
	WOOT
	Logoot
	Treedoc

	Comparison of Methods

	Implementation
	Requirements
	Selecting the Technologies
	Editor Core
	Consistency Maintenance Technique

	API Design
	Internal Design
	Message Format
	Text Editor Integration
	Operational Transformation
	Session Handling
	Component Class
	Caret Rendering

	Test Automation

	Evaluation
	Testing in a Centralized Architecture
	Server Push
	Test Application Implementation
	Developer Experience

	Testing in a P2P Architecture
	WebRTC
	Test Application Implementation
	Developer Experience

	Improvements Based on the Evaluation

	Future Work
	Conclusions
	References
	Centralized Test Application
	P2P Test Application
	Centralized Test Application With Revised Component API
	Component Source Code

