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Otsikko 
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Digitaalinen data on kaikkialla läsnä suurimmassa osaa tämän päivän yrityksiä. Organisaatioilla on 

saatavillaan enemmän dataa, monissa eri muodoissa, kuin koskaan aikaisemmin. Koneoppiminen ja 

ennustava analytiikka hyödyntävät näiden kyseisten datojen sisältämää tietoa ja ovat apuna 

liiketoimintaan liittyvässä päätöksenteossa. Tässä tutkimuksessa käsitellään ennustavaa analytiikkaa 

vertaamalla erilaisia luokitusmenetelmiä - pääasiallinen kiinnostuksen kohde on 

similaarisuusluokittimessa, joka käyttää GOWA (Generalized Ordered Weighted Average)  

operaattoria aggregaattina. 

   

Tutkimuksen tavoitteena on selvittää millainen luokitin on similaarisuuteen perustuva GOWA-

variantti ja kuinka hyvin se toimii verrattuna muihin valittuihin luokittimiin. Tässä tutkimuksessa 

pyritään myös selvittämään onko GOWA-variantti similaarisuusluokittimesta sopiva menetelmä 

käytettäväksi liiketoimintaan liittyvässä päätöksenteossa. Referenssiluokittimiksi valittiin neljä 

erilaista klassista luokitinta. Valinta pohjautui niiden yleisyyteen koneoppimiseen liittyvässä 

tutkimuksessa ja niiden saatavuuteen Matlabin ”Statistics and Machine Learning Toolbox” 

kirjastosta.   

 

Luokittimien vertailuun käytettiin kolmea erilaista data settiä UCI Machine Learning -tietovarastosta. 

Suorituskyvyn mittaamisessa käytetään pelkän luokittelutarkkuuden sijaan fitness funktiota. Fitness 

funktio yhdistää useita mittauskriteerejä yhdeksi arvoksi. Yhden käsitellyn data setin kanssa GOWA-

variantti suoriutui parhaiten. Yksi dataseteistä sisältää selvästi liiketoiminaan liittyviä tietoja, ollen 

myös muita settejä monimutkaisempi suuremmalla havaintojen ja attribuuttien määrällä. GOWA-

variantti toimi hyvin myös tällä data setillä. Täten voidaan väittää, että similaarisuusluokittimen 

GOWA-varianttia voidaan käyttää myös liiketoimintaan liittyvässä ongelmanratkaisussa. 

 
Asiasanat similaarisuusluokitin, suorituskyvin mittaaminen, luokittelu, koneoppiminen 
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1 INTRODUCTION 

1.1 Motivation for the study 

As we live in the modern word ruled by data, enterprises operate quite many of their 

functions in a digital space. Many business functions like marketing, sales, supply chains, 

transportation, finance, customer relationships, vendor data management etc., all have 

data assembled and accessible in a ways that never has been before. The challenge is to 

transform the collected data into a meaningful and usable format and make beneficial 

decisions based on that data. Business analytics is a field of study that relates to data 

collection and processing and analyzing the data.  

Business analytics is typically an iterative and systematic investigation of some part 

of organizations data. It aims to create insight about the descriptive and the prescriptive 

information of the data. Business analytics can also be connected to data that comes from 

the outside of an organization, but that is relevant to the organization. By using methods 

of business analytics, including statistical analysis and a number of algorithm-based 

analytics methods, companies can create models that will help them to make better 

business decisions or to automate and optimize business processes. (Rouse, 2017). Such 

decisions could be for instance setting a product price, selecting right target for a 

marketing campaign, making investment decisions, doing credit scoring or bond 

classification, predicting churn rate, optimizing supply chain etc. There are a wide variety 

of alternatives where business analytics can be used for creating a competitive edge.  

The focus for business analytics is to create additional value from the data by using 

various technologies to create applications which analyze the data. These applications 

aim to produce new insights by extracting useful patterns from the data. The goal for the 

data-analytic thinking is to understand the core business better and to help the business 

decision making process. Compared to pure data analytics or data science, in business 

analytics one needs to have a good understanding about the business context. A good 

domain knowledge is required to be able to assess the requirements which comes from 

organization’s operations and functions and to be able apply them in the analytic 

applications. (Provost & Fawcett, 2013). 

Even though business analytics resembles data science, there is still a clear distinction 

between these two. Data science means more custom coding and open-ended question, 

while practitioners of business analytics use business analytical tools that can perform 

advanced statistical algorithms automatically, thus requiring less special skills involved 

in data science. (Rouse, 2017). This thesis relates to business analytics and more precisely 

to predictive analytics. An analytical tool, MATLAB, is use to resolve classification 

problems in this thesis.  
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In a modern business environment, data and analytics are playing a greater role than 

ever before. It is not that easy anymore to create a competitive edge in traditional ways 

like differentiation. For instance product or technological differentiation is quite hard to 

achieve, geographical advantage is pretty much gone in global business etc. But one thing 

that is still left as a basis of competition is an ability to execute business with utmost 

effectiveness and to make best business decisions possible. Good decisions are typically 

based on systematically assembled data and analysis. (Davenport & Harris, 2007).  

Bonabeau (2003) notes that while intuition plays an import role in decision making, 

decisions which are based on analytics are more likely to be correct than those based on 

intuition. More and more companies are using some kind of analytics to enhance their 

business processes and analytical skills are without a doubt something that will be useful 

in the future. This was one of the motivational reasons why business analytics was chosen 

as a basis for this thesis. 

But data as such is nothing new; enterprises have been dealing with their business 

related data for a long time. Predictive analytics, which uses historical data, statistical 

algorithms and machine learning techniques to assess the probability of future events, is 

nothing new either. But with increased and cheaper computing power, better and easily 

accessible software and increased volumes of valuable data has made predictive analytics 

one of the technologies of this decade. As Eric Siegel (2013) says: “Predictive analytics 

unleashes the power of data”. Siegel presents in his book various real life examples of 

how we are surrounded with predictive analytics in a modern digital world. Predictive 

analytics drives millions of decisions in healthcare, insurance companies, financial 

institutions, sales, marketing etc.  

Enormous amount of data is constantly generated and gathered in numerous domains 

with different kinds of digital devices all over the world. Qiu et al. (2016) claim in their 

survey that digital information has grown nine times in volume in five years in year 2011 

and the amount of data will reach 35 trillion gigabytes by the year 2020. 

They are several companies, such as IBM, Netflix, Facebook, Google, Amazon, 

PayPal, BBC etc., which are excellent examples of companies who have beneficially 

utilized predictive analytics in their business. They have gathered a vast amount of data 

and then used it to build models to predict their customer behavior. Predictive analytics 

means that computers will truly learn from the data how they can calculate the future 

behavior of the individuals or events. It should be evident that perfect predictions are 

impossible, but it can give you better odds to make successful decisions and when doing 

that at scale, it will make a difference in the end. (Tao, 2018). 

There are many business related application areas that can take advantage from 

predictive analytics and machine learning applications. Forbes Technology council 

(2018) listed a few possible business applications for artificial intelligence and machine 

learning such as cyber-security defense, recruiting automations, health care diagnostics, 
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reducing energy cost, and usage, becoming more customer centric, market predictions, 

advanced billing rules including credit scoring to name a few. Companies can benefit 

from machine learning algorithms by using them to identify trends in massive amounts 

of data and to make quicker decisions, which can possibly give them a competitive edge. 

The aim of these analytical models is to produce reliable and repeatable results and to 

uncover patterns and trends in data that cannot be noted otherwise and doing that at scale.  

One part of machine learning that is commonly called “pattern recognition” is based 

on classification. Classification is an attempt, or the process of matching items of data 

(typically multiple criteria) to pre-determined classes. The classes are determined 

typically based on identified data, where the correct class of each piece of data is known. 

This “labeled data” is used to train classification algorithms so that they are later able to 

perform classification on some previously unseen data reliably and accurately. (Provost 

& Fawcett, 2013). You might want to know whether an email is a spam, or not, or to 

distinguish between legitimate and fraudulent transactions. There are quite many 

application areas for classifiers in business related problems and decision making. That 

is why classifiers among other machine learning algorithms were selected as a topic for 

this thesis. The focus of this research is to study how well different selected classification 

algorithms compare against each other and how well they work with business data. 

The starting point for this research was a research paper by Kurama et al. (2017) which 

introduces a GOWA (Generalized Ordered Weighted Average) variant of the similarity 

classifier. The paper shows that the GOWA-variant works quite well, but the paper does 

not compare the said classifier to other classifiers. This is what is attempted here. The 

other goal for this research is to investigate whether the similarity-based classifiers are 

effective in business analytics problem solving. Kurama et al. (2017) use only medical 

data in their research, but this study will use in addition to that medical data also more 

business related data, credit card client data, for benchmarking. 

1.2 Research focus 

This research will concentrate on studying and benchmarking the GOWA-variant of the 

similarity classifier. The main empirical contribution of the work will focus on testing the 

performance of the said classifier against a set of selected classifiers. The closer study of 

the many other possible classifiers (that do not belong to the selected classifiers against 

which the GOWA-variant of the similarity classifier is tested) is left outside the scope of 

this research.  

The usability of the GOWA-variant is studied with a credit card client data set found 

from the UCI Machine Learning Repository, which is a widely used repository of data 

sets used in Machine Learning related research. The benchmarking will also be done with 
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two of the same data sets that were used by Kurama et al. (2017) in their research paper. 

The main empirical results will be the result of using these data sets and thus the results 

obtained are specific to the tested sets – the results cannot be generalized and the nature 

of this investigation is exploratory. 

In accordance with the focus of this work, the GOWA-variant of the similarity 

classifier will be introduced and discussed in more detail than the other classifiers used 

in this thesis. The focus is quite strict, but necessary, as otherwise the work would branch 

out enormously. 

1.3 Research questions 

The main research question for this thesis is, “whether the GOWA-variant of the 

similarity classifier is a useful classifier to be used in the business context”. 

 

To study this question this thesis will answer the following sub-questions: 

 

1. What previous academic literature exists on similarity-based classifiers and what 

are the results found in the said previous research? 

2. How do similarity-based classifiers work and especially how does the GOWA-

variant of the similarity classifier work? 

3. How well does the studied similarity-based classifier(s) function in comparison 

with other selected classifiers? 

 

In addition to these three sub-problems, this research will construct simple measures 

to rank classifiers, as there are multiple criteria on which the performance of the compared 

classifiers can be measured. 

1.4 Structure of this thesis 

This first chapter introduces the business analytic field and gives motivation for this 

study. Research questions and scope for this study were also presented in the previous 

sub chapters.  

The next main chapter Methodology will explain the research philosophical 

groundings for this study. The research paradigm which mostly influences this research 

work is a design science paradigm and more specifically the focus in this study is in the 

evaluation part of the model creation. In addition to philosophical discussion, also the 

research strategy and selected research approaches are presented in that chapter.  
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In order to be able to do the benchmarking of classifiers, which is the subject of this 

study, some general understanding of classifiers and machine learning process needs to 

be gained first. This background knowledge is needed in order to be able to execute the 

benchmarking work and to analyze the results. The knowledge is first gained by 

introducing the main terminologies for this study and explaining how there relate to this 

study. This is done in chapter 3 Theoretical background. In this same chapter also the 

main subject of the study, similarity classifiers and more specifically the GOWA-variant 

of the similarity classifier is introduced. Literature review will aim to answer one of sub 

research question about the previous research work done about similarity classifiers in 

business context. The literature review will produce a general understanding about 

similarity classifiers in business analytics and hopefully point out some research gaps 

which this thesis aims to fill.  

The benchmarking of classifiers is done as a numerical testing study in chapter 4. The 

study is performed with MATLAB software. There are three different data sets that are 

used for classifier learning and testing process. Two of the data sets are same that Kurama 

et al. (2017) used in their paper to gain better comparability. The third data set is a credit 

default data set, which relates better to business context. It is also more complicated than 

the other two, and could probably gain more insight to comparison of the GOWA-variant 

of the similarity classifier against the reference classifiers. 

In MATLAB there is a set of classifier algorithm implementations available in the 

“Statistics and Machine Learning Toolbox” that accompanies the software. The original 

code for the GOWA-variant of the similarity classifier has been available for conducting 

this research from the original authors. There has been no need to create the code for the 

algorithms tested in this research from the scratch - this is typical for this kind of work. 

There is a lot of work connected to finding the optimal parameters to be used for each one 

of the algorithms. Also the data that is used needs to be pre-processed so that it can be 

used with the algorithms. Also the separation between training and test sets of data needs 

to be done. The used evaluation-criteria needs to be determined and the actual goodness 

measures need to be implemented. The tested algorithms need to be ranked, and the 

results visualized. The chapter where the benchmarking of the classifiers is done contains 

a description of how the actual work with MATLAB is performed and the results of the 

numerical tests are also presented. The classifiers that are used for benchmarking are also 

shortly presented there.  

The conclusion section will summarize the results of the case study, go through the 

answers to the set research questions, and suggest areas for possible future research. 
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2 METHODOLOGY 

2.1 Philosophical Position of the Research 

Research philosophy is a term that refers to a collection of beliefs and theorems about the 

way knowledge is developed and adopted by a professional community. This essential set 

of conceptions allows associates of a research community to share similar insights and to 

participate in common collective practices called a paradigm. A research paradigm serves 

as a guide for a research and normally contains assumptions about the human knowledge 

(epistemological assumptions) and how it is acquired, assumptions about realities and the 

physical word you meet in your research (ontological assumptions) and the scale and the 

ways your own values influence your research (axiological assumptions). (Saunders, 

Lewis, & Thornhill, 2009). 

Ontology is a theory that describes our view of the nature of reality; i.e., the 

assumptions about how the word is made up. One aspect to ontology is a division between 

objectivism and subjectivism, of which objectivism is normally related to quantitative 

research and subjectivism to qualitative research. Objectivism as an ontological view 

point proposes that the existence of the world is independent of people and their actions. 

(Eriksson & Kovalainen, 2015). In this thesis the ontology of the research is objective; 

the researcher has no influence on the data that is analyzed. Also the used machine 

learning algorithms that will be used in the analyzing process are not affected by the user, 

that is, in this case the researcher. The research is completely repeatable by another 

researcher, the outcome of the research does not include a subjective view of the 

researcher and the outcome will be quantitative measurable and therefore objectively 

evaluable.  

Epistemology is closely related to ontology and it explains how knowledge can be 

discovered and argued for. Epistemology defines the suitable ways of enquiring 

knowledge and defines what knowledge is. It also proposes the sources and limits for 

scientific knowledge and therefore offers the basis for scientific practices and processes. 

(Eriksson & Kovalainen, 2015). Epistemology mirrors the relationship between someone 

as an investigator and the object of the investigation. In this thesis knowledge is developed 

through making. Knowledge is constructed based on the context, i.e., it depends on the 

data set. The artifacts themselves are not actually created in this thesis, but the evaluations 

of the artifacts and benchmarking them against each other with different data sets will 

gain knowledge of their usefulness in a given context. The resource of this study is the 

data which is measurable and quantitative; it is considered real and not affected by 

anybody’s opinions or feelings. Although it could be argued that the generation of the 

data set could be biased, somebody has selected what features are selected and how the 
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data is represented. But in this thesis the used data is considered to be real data, and the 

outcome of the research, the performance figures of the classifiers, is a single outcome of 

the truth. Therefore the philosophy behind this research can be consider as a positivism 

research philosophy.  

Axiology is a theory of values, i.e., what values does the researcher have related to the 

subject of the study (Hevner et al., 2004). In this study, a pursuit of a fair comparison of 

the classifiers can be seen as one of the research values. Understanding the basis of the 

selected classifiers and their usefulness in business related problem solving can also be 

seen as a value for this research. 

The above mentioned philosophical groundings set the basis for the research 

perspective or paradigm for this thesis. In one way this study can be seen as a positivist 

research. The world (selected data sets) is observed in a neutral and objective way. The 

aim is to discover some general relationships in the data sets by using the classification 

algorithms. The tests performed and thus the observations made in this thesis are fully 

repeatable and are not affected by the personal view of the researcher. This thesis also 

relates closely to the design science research paradigm, presented by Takeda et al. (1990) 

and further developed by Vaishnavi & Kuechler (2004). This paradigm is a problem 

solving paradigm which concerns research of man-made constructs or artifacts, their 

generation and usage, implementation and evaluation. The Design Science Research 

Process Model is depicted in Figure 1. In that model the design science research effort is 

divided into five development steps: Awareness of Problem, Suggestion, Development, 

Evaluation and Conclusion. This thesis will roughly follow this process, with the main 

focus being in Evaluation and Conclusion steps. The awareness of the problem comes 

with the selected data sets. The practical part of the thesis will contain also the 

development part, but the artifacts that are used there are taken from prior work outside 

of this thesis. 

 

 

Figure 1 Design Science Research Process Model (Kuechler & Vaishnavi, 

2004). 
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 Hevner et al (2004) also defines design science as a problem solving paradigm. They 

state in their article that knowledge and apprehension of a problem domain and its 

solutions are achieved by building a designed artifact and applying it to a real problem 

domain. The aim of this study is not to build the artifacts, but to apply them into real data 

sets and to evaluate their performance, which is a part of the design science research 

cycle.  

So basically in this research an information technology innovation is taken into use 

(the GOWA-variant of the similarity classifier) and its usefulness is evaluated in a 

business problem solving environment and then it is benchmarked against other 

classifiers. Wang & Wang (2010) present quite nicely how design science research in 

information systems relates to information technology innovations. This relation is 

depicted in the Figure 2.  

 

Figure 2. Alignment of Design Research and IT Innovation (S. Wang & 

Wang, 2010). 

This thesis is positioned into the business problem solving box in the Figure 2, 

evaluating artifacts. The evaluation of artifact also relates to the Knowledge Contribution 

area, since the aim of this study is also to investigate the usefulness of the similarity 

classifiers and add knowledge of their suitability to solve business problems. 

2.2 Research Approach 

Research approach is quite commonly divided into qualitative and quantitative research. 

Quantitative research is defined as a research that focuses on numbers or any data that is 

in numerical form. By describing and interpreting research objects with numbers 

mathematically or statistically, the researcher analyses the data and aims to a result that 

is unbiased and can be generalized to a larger extent and repeated by another researcher. 

In this thesis the data which is analyzed is numerical and it will be analyzed with 

computational methods by using classification algorithms. The results from the 

benchmarking process are also numerical and are easily comparable to each other. The 



17 

performance figures of similarity classifier compared to other classifiers are numerical 

and the opinion of the researcher has no effect to the results. Therefore this research can 

be categorized as quantitative research. On the other hand the evaluation of the classifiers 

can also be seen to be partly qualitative research, since it is descriptive by nature and the 

selection of the used classifiers are done by the researcher, and this has obviously some 

effect for the evaluation process. So although this thesis is mainly quantitative, it has 

some features of qualitative research as well.   

In design science research, when an artifact is generated, one way to evaluate whether 

the artifact constitutes research, is to compare it with existing artifacts that are used for 

the same, or similar, purpose. Benchmarking is one way to discover the best performance 

from among the compared artifacts. The measurement of performance is done by using a 

specific indicator, in this case the classification accuracy, among others, which results a 

quantitative metric that can be used in comparison with other classifiers. In this thesis the 

GOWA-variant of the similarity classifier is benchmarked against to a set of generally 

used classical classifiers. The benchmarking process is performed in a controlled 

environment; the same data sets are used for each classifier.    

In addition to quantitative and qualitative, research approach can also be classified as 

inductive or deductive. Inductive reasoning means that theory is developed based on the 

data that has been collected and analyzed, i.e., it aims to formulate general concepts from 

specific observations. In deductive reasoning a hypothesis and a theory is first developed 

and then tested in the research, i.e., the aim is to predict what the observations should be 

based on a theory. Deductive reasoning goes to opposite direction as inductive reasoning; 

it goes from general, a theory, to details, that is, to the observations. According to 

Saunders et al. (2009) deductive research highlights following features: moving from 

theory to data, an assortment of quantitative data, a highly organized approach and 

researcher objectivity of the researched subject. Although this thesis is not purely a 

deductive research, the above mentioned points about deductive research approach can 

be related to this study thus making this study more deductive than inductive. This is 

depicted in Figure 3, where a general illustration of a classification model building 

process is expressed.  
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Figure 3 General illustration of building a classification model. (Tan, Stein-

bach, & Kumar, 2006). 

From the figure it can be seen that the learning phase of the machine learning process 

where the classification algorithm uses a training set of data for learning is an inductive 

process, whereas the testing part of the model is seen as deductive process. This thesis 

does both parts of the process, but the main interest is in the model application. Therefore 

it is justified to note that this research is a deductive research. 

2.3 Research Design Overview 

Research Design is a general plan or research strategy, which will explain how the 

research work will be executed and how the research questions will be answered. 

Objectives for the research should be derived from the research questions and the sources 

for the data that is used in the study should also be defined. The aim for a research design 

is to show that it has been thought out well why this research is done and how it answers 

to the research questions in an effective manner. It is also important to take into account 

the amount of time that is available for the study and the existing knowledge, since these 

will have an effect for the research work. (Saunders et al., 2009). Research design can 

also describe a framework that is the basis for the research work and what will be used as 

a guideline for answering the research questions. This section will concentrate on defining 

a framework that has been used as a background for this study. 

Mitroff et al. (1974) present a problem solving model, which can be used as a 

framework for solving business analytic problem, such as a credit default detection 

problem, which is analyzed in this thesis. In Mitroff’s model the problem solving process 

is divided into four steps as illustrated in Figure 4. 
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Figure 4 A systems view of problem solving (Mitroff et al., 1974). 

The first step is defining a business problem, for example distinguishing fraudulent 

transactions from the legitimate ones. Steps two and three are model building phases. This 

thesis concentrates on the arrow six in the model, the validation part of the selected 

models; which are in this study the different classification algorithms. 

Purpose of this study is to analyze how well the GOWA-variant of the similarity 

classifier performs against a set of classical classifiers. The analysis is done with existing 

data, which can be found from a general database for machine learning problems; The 

UCI Machine Learning Repository (Lichman, 2013). This database is widely used by 

machine learning researchers and practitioners. It is hosted and maintained by the 

University of California and it is freely accessible. The other purpose for this research is 

to study how well similarity-based classifiers suit for business analytic problems. 

Therefore the main dataset that is used for the classifier benchmarking is a business 

related data, a credit default detection dataset. Most of the earlier studies of similarity-

based classifiers are done with medical data. The benchmarking is done with MATLAB, 

which is a numerical computing environment. MATLAB was chosen as a tool to perform 

the modeling of classifiers and the benchmarking, since there are numerous algorithms 

already implemented in MATLAB with rich documentation. The research work can 

therefore focus on modeling itself, not on the programming. MATLAB is easier to take 

into use as a first machine learning related tool compared to a more programming oriented 

approach such as R or scikit-learn for the Python. Both of those other two methods are 

also widely used by machine learning practitioners, R mainly by people who have a 

statistical background and Python by people who have background in computer science. 

MATLAB is suitable for a person with business school background since it does not 
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require that much programming experience. There are also good visualization properties 

in MATLAB which can be used for presenting the results.  

For a theoretical background the similarity-based classifiers and mainly the GOWA-

variant of the similarity classifiers are introduced in this thesis. The literature review is 

done to study how widely similarity-based classifiers have been used in solving business 

problems and to find for what kind of problems they could be used in the future.  

The practical research part of this thesis is based on modeling and evaluation. The 

evaluation is done numerically, so results are not affected by the researcher, instead they 

are fully repeatable by another researcher. The results should show how well the GOWA-

variant of the similarity classifier works in relation to other selected classifiers. The other 

classifiers are selected based on both the literature; the intention is to use classical 

classifiers that have been frequently used in other application, and the availability of the 

models in MATLAB.  
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3 THEORETICAL BACKGROUND 

3.1 Terminology 

This section defines some of the key terminologies related to this thesis and explains why 

these are important for this study and also in modern business environment. 

 

Machine Learning 

According to Samuel (1969) machine learning is a field of study that gives computers the 

ability to learn without being explicitly programmed. Machine learning is a field of 

science related to exploration and generation of algorithms that can learn from data and 

make predictions on it. Machine learning is a part of artificial intelligence and is focused 

on computer programs that have an ability to learn from experience by analyzing data, 

making observations and interacting with the world and adapting accordingly. The 

learning process will happen automatically, without any human intervention. (Varone, 

Mayer, & Melegari, 2018). That is what separates machine learning from traditional 

purely static and explicit programming.  

Machine learning will use a collection of methods to extract a predictive model from 

accessible data. Thus the aim is to predict future events; which is a valuable asset in many 

business related problems and what the traditional static algorithms cannot do. Machine 

learning algorithms are constantly improving over time as more data is captured and 

merged to the system. The new data can be used to test the predictions that have been 

made based on the previous data and as a result the algorithm can adjust to the new 

information and become more accurate in time. Thus the machine learning algorithm 

should evolve over the time. (Provost & Fawcett, 2013). 

In general machine learning algorithms are able to look for patterns in data that are not 

possible to be detected by humans and doing that in scale. Good application areas for 

machine learning are computing tasks, where developing an explicit algorithm with 

decent performance is difficult, or even impossible. Such areas are for example credit 

scoring, credit default (which will be investigated further in this thesis), email filtering, 

effective web search, price forecasting, bond classification, speech recognition, 

understanding a human genome, detection of malicious transaction, online 

recommendation offers, computer vision, or self-driving cars. (Rouse, 2018), (Marr, 

2016). The list is quite widespread; in fact machine learning is so ubiquitous today that 

people probably use some machine learning algorithm several times in a day without even 

noticing it. Machine learning has become popular, because of the growing volumes and 

variety of features of available data, cheaper and more powerful computational resources, 

and more affordable and powerful data storing capabilities.  
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All the above mentioned facts mean that organizations are able to develop models 

effectively and use those models to analyze bigger amounts of more complex data than 

ever before, and deliver more accurate results faster and in a very large scale. With these 

models organizations are able to identify profitable business opportunities easier than 

before and gain a competitive edge and also avoid risks better. 

 

Supervised learning 

Machine learning algorithms can be divided into three groups, supervised, 

unsupervised, and reinforcement learning. Unsupervised learning interprets unlabeled 

data only based on input data. It tries to find some structure within the data and to figure 

out what kind of relationships there are in the data and what kind of clusters, or segments, 

can be created. Whereas with supervised learning the goal is to learn from the past to be 

able to predict the future, based on both the input and output data. The labeled examples 

from the past data are used for creating a machine learning algorithm which is then used 

for labeling the new data. The labels could be for instance simple yes/no in email filtering 

algorithm, meaning that email is either spam, or not spam. In other words, if a specific 

target can be provided for the data mining problem, it is a supervised problem. But there 

has to be enough data available with the target values provided along with the data before 

a supervised learning algorithm can be applied. (Provost & Fawcett, 2013). 

Reinforcement learning is the third option, and it falls somewhere in between supervised 

and unsupervised learning.  

Supervised learning problems are usually divided into regression and classification 

problems. In a regression problem, the output will be a continuous numerical value. A 

regression problem could an investigation on how much a customer will use a certain 

service. Whereas in a classification problem there is a discrete output, or categories to 

which input variables are mapped into, like whether a customer will respond to a 

marketing campaign, or not. (Provost & Fawcett, 2013). First, in a learning phase an 

algorithm receives a set of input instances together with corresponding correct output 

values (class labels) and it uses them to find patterns and relationship between input and 

output values. The algorithm then compares the actual values to the correct output values, 

and adjusts and modifies the model accordingly when it finds errors. Then when a new 

unlabeled data is fed to the system, the classifier (=machine learning algorithm created in 

the learning phase) can predict the output values by using the patterns that were detected 

in the learning phase. A supervised machine learning process is illustrated in Figure 5.  
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Figure 5 Supervised Machine Learning process. 

Supervised learning is suitable for application where historical can be used for 

predicting future events, for example detecting fraudulent credit card transactions. 

 

Classification 

Allaby (2013) defines classification as “Any scheme for structuring data that is used to 

group individuals”. The “individual” can refer to an entity of which there is data available 

such as a consumer or a customer or a non-living entity like business (Provost & Fawcett, 

2013). In machine learning these entities are often called as “instances”. Classification 

can also be defined as one example of a pattern recognition problem, where there is a 

need to map some output value to a given input value.  

Classification is a supervised data mining task, which aims to predict to which of a 

known set of categories, or classes, each instance in a population belongs to. Usually the 

classes are mutually exclusive. (Provost & Fawcett, 2013). This classification is done by 

building a model based on one or more numerical and/or categorical explanatory variables 

or feature or attribute. The terminology varies, but feature is probably the most used term 

related to classification problems in machine learning. 

The classification algorithm, called “a classifier”, is first trained with a training set of 

data, which includes the correct class labels for each observation. After the training the 

classifier can be used for making predictions to which category a new, previously 

unanalyzed data belongs to. A classification algorithm can give an answer to a question 

like: Is this credit card transaction fraudulent or not? Is the found tumor malignant or 

benign? Will this loan application default? What is the correct category for this article? 

What movie categories this online customer likes? So in other words, the aim is to map 

an input in a specific input space to a defined classifier output space.  

There are several classification algorithms and methods for predicting the class labels. 

But all classifiers have a common view that instances, which share a common region in a 

target feature-space should be similar. What differs between the various classification 

methods is how these regions are characterized and discovered.  
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Each instance can be represented with a feature vector; features can be for instance 

attributes that characterize different credit card applicants: age, gender, demographic, 

monthly income, marital status, education, amount of credit applied etc. Feature vectors 

define a feature space and the closer the objects are in that space, the more similar they 

are. The problem is how to measure how similar two objects, like customers or 

companies, are, and what does it actually mean that they are similar. But once the 

similarity can be defined and measured, this information can be used in decision making 

and appropriate actions can be done based on the classification definitions. For instance 

online ads can be targeted better or companies can use the information to target sales force 

to corporate customers that are similar to their known good beneficial customers. 

Kotsiantis (2007) presents a machine learning process applied to real world problem 

that is depicted in Figure 6. The figure shows that the process is an iterative process, 

which could require many rounds, before a good classifier suitable for the given problem 

is created. Before any classification can be performed there needs to be enough data with 

required explanatory variables available. In most cases some pre-processing is performed 

before data can be fed to the machine learning algorithm, a classifier in this case. 

Evaluation is a vital part of the learning process. Only a part of the available data with 

labels are used as training set, the other part is used for evaluation of the classifier. When 

the evaluation shows that the classification rate is at acceptable level, the classifier can be 

used for predicting class labels for a new unlabeled data.  

 

Figure 6 Machine Learning process (Kotsiantis, 2007). 
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The selection of an algorithm is not a trivial task, but it is a critical step in the whole 

process, since it greatly influences the outcome. There are a wide variety of different 

classification algorithms available, which are based on different techniques. For instance 

classification can be based on similarity or distance measures (e.g., k-nearest neighbor), 

probability assumptions (Bayesian networks), frequency of observations (decision trees), 

or definition of boundaries (neural networks) etc. Many classifiers use some distance 

indicator between observed instances to define the classes. Usually it requires many trials 

with different algorithms and with different parameters before the most suitable algorithm 

for a given problem is found. The quality of a classifier is generally evaluated by the 

classification accuracy, i.e., the correct classifications versus all predictions.  

3.2 Similarity-based classification 

According to Janusz (2008), researchers have been interested in the notion of similarity 

for many years. If we are able to separate similar objects from those which are dissimilar 

while deciding the class label for the object, we are able to produce an accurate classifi-

cation and we are able to detect unusual behavior or situations. While the human mind is 

capable of learning similarity relations from examples, it is not that straightforward task 

to be performed with computers and algorithms. That is why there is no single method 

for building similarity models, which would be suitable for all applications of complex 

problems in various areas.  

A lot of different methods have been used for creating models which would be able to 

define the relation between similar and dissimilar objects and to build a model with good 

predictive power. In many of the models the items are treated as points in a metric space 

of their features and the similarity between the objects is a decreasing function of the 

distance between them, i.e., two items are considered similar if they are close enough to 

each other in that feature space. It is natural to think that objects that are likely to be 

similar to each other have many similar attribute-values. (Janusz, 2008).  

The assumption about closeness between similar samples is a reason why standard 

metric-space classifiers are the most common classifiers. They use numerical features to 

define the training and test instances. The features are represented as d-dimensional 

vectors in a Euclidean space. Metric-space classifiers generally assume that the pair-wise 

similarity between samples, or instances, is represented by a metric distance function, 

such as the Euclidean, Manhattan, or Chebyshev distance, which measure the physical 

distance between objects. Distance measures are used by the classification algorithm to 

place the similar samples into the same class, while distant sample points are placed into 

different classes (Shirkhorshidi, Aghabozorgi, & Wah, 2015).  
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Two objects can be similar to each other even though they do not necessary bear 

common distance measure features, such as symmetry and subadditivity. This is 

especially observed in complex situations with multi-variant samples. The reason for this 

is that complex objects are similar in some ways (attribute-values) and dissimilar in 

others. The reliance between local and global similarities is nonlinear and thus harder to 

model. This dependency needs to be learned from the data. (Janusz, 2008).   

If data samples are multi-variant and contain both numeric and non-numeric data, it is 

not easy to represent the data in the Euclidean space. In these cases the distance functions 

are not able to completely represent the relationship and the similarities or dissimilarities 

between the instances. All data cannot be represented in a geometric feature space with 

continuously-valued numbers and therefore the classifiers that rely on metric similarity 

of distance-functions are not applicable either. It could also be in some applications that 

the principal features of the data are not accessible, instead only the pair-wise similarities 

could be observed. (Cazzanti, 2007). 

Similarity is a more general term than distance and may therefore be more suitable for 

cases with complex multivariate data, or for cases where all data is not numerical. A 

similarity measure is a numerical measure of how much two data instances resemble each 

other. Similarity measures are often defined between values 0 and 1, where value 0 means 

that there is no similarity and value 1 means that two instances are completely similar. So 

instead of using distances on the basis of the classification, similarity-based classifiers 

use an alternative learning method, which uses similarities between test and training 

samples for estimating class labels. (Cazzanti, Gupta, & Srivastava, 2009).  

It is the same thing with similarities as it is with distances; there are several ways to 

measure the similarity. Also with multivariate data there are various ways how the 

similarities of different features are aggregated to form the finishing similarity for a 

particular instance. The choices for a similarity measure and aggregation function have 

naturally an effect on the accuracy of the classifier. The aim for this study is not to 

compare different similarity measures or aggregation functions. The similarity classifier 

and the aggregation method that are used in this thesis are the same as Kurama et al. 

(2017) use in their research paper. The purpose of this thesis is to compare this particular 

similarity classifier to a set of other classifiers and to find out how well it performs 

compared to other classifiers.  

In order to be able to understand the GOWA-variant of the similarity classifier 

introduced in the next chapter one general example of non-metric similarity functions that 

can be used for pattern recognition and classification is introduced next. The example 

case is Tversky’s linear contrast model (Tversky, 1977). This model assumes that each 

sample can be represented as a set of features. This model is a binary model, each sample 

either has a selected feature or not. The similarity function is an increasing function of 

overlapping feature set and decreasing functions of feature set of differences (Chen et al., 
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2009). An example of Tversky’s model is presented in Figure 7. In this example each 

sample is presented with four facial features: eyes, nose, month, and hair. One sample for 

both of the classes is defined as the center point of that class. Class geometric center, the 

centroid, is typically defined as a sample which has the maximum similarity with all the 

other samples in that particular class. The similarity between two samples is calculated to 

be a number of facial features that these two samples have in common. A sample belongs 

to the class with the most similar centroid sample. (Cazzanti, 2007). 

 

 

Figure 7. Similarity based classification example. (Cazzanti et al., 2009). 

 

Tversky’s similarity model has been successful in explaining human similarity 

judgments in several similarity-assessment problems, but it has also been useful in other 

fields than psychology (Cazzanti, 2007).  

There are also many other similarity functions defined to measure similarity; for 

example a value difference metric is designed to measure the distance between samples 

that are defined with non-numeric features or Lin’s similarity measure that is based on 

information content of feature vectors to name a few (Cazzanti, 2007). The next chapter 

defines the similarity functions and classification method used in this thesis. 

3.3 GOWA-variant of the similarity classifier 

The main idea of the similarity classifier is to first create “ideal vectors”, which are rep-

resentatives of each of the target classes. These ideal vectors will then be used for calcu-

lating similarity between a new item and those representative vectors and to select correct 

class label for that new item. (Kurama, Luukka, & Collan, 2016a). Similarity-based clas-

sifiers contain an aggregation step, in which the similarities of single features of multi-
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dimensional data items are combined. The GOWA-variant of the similarity classifier is a 

similarity classifier that uses a generalized ordered weighted averaging (GOWA) operator 

in aggregation (Kurama et al., 2017). The overall goal for a classifier is to place new 

samples into a set of selected classes as accurately as possible. First, a set of representative 

vectors, or centroid samples, needs to be selected for each class. Each representative vec-

tor includes a set of measured features, which are usually first scaled to a unit interval [0, 

1] to ease the calculations. Then a new sample is compared against these representative 

vectors and it is labeled with the class label of the representative vector with which the 

new sample has the highest similarity value (to which the new sample is most similar to). 

Similarity is calculated in a way that the similarity of a sample with itself is equal to 1. 

This means that a similarity value against other samples should be less than or equal to 1.  

The selection of which aggregation operator is used in a similarity classifier is an 

essential decision, since it directly affects the classification accuracy of the final classifier 

(Kurama, Luukka, & Collan, 2016b). Aggregation operators are mathematical entities, 

the purpose of which is to reduce the set of numbers to a unique representative and 

meaningful number (Detyniecki, 2001). That is, aggregation operators are used for 

combining N numerical values into a single numerical data value. The most common 

aggregation operators are the arithmetic mean and the weighted mean. The weighted 

mean differs from the arithmetic mean by allowing a weighting of different data items 

according to their significance. (Torra & Narukawa, 2007). In a classification problem 

there are several predictors (or parameters) that are used for determining to which class 

this particular item belongs to. In similarity classifier the similarities of these decision 

criteria values (i.e., the parameters) are combined to form a unique similarity value which 

can then be used to determine the target class. An aggregation operator is needed for that 

operation. In the following definitions of a few aggregation operators are introduced. A 

simple and most common aggregation operator, the arithmetic mean is expressed 

mathematically as: 

������,��, … ,��� = 	 ∑ ��
�
���� 								(�) 

Weighted mean can be expressed mathematically as: 
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Where �	 equals to the weight, or the relevance, of the �	 information item. Weights 

should all be positive and their sum should be one. The weight is typically understood as 

a defined significance factor for each element.   
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Ordered weighted averaging operators were introduced by Yager (1988) and they can 

be expressed mathematically as: 

�
����	,��	, … ,��� = 		�		��(	)�

	�

,			�	 ∈ 	 �0,1�	���		�	

�

	�

= 1		(3)		 
where � is a permutation, which orders the elements in descending order: ��() 	≤	��(�) 	≤ ⋯ 	≤ 	 ��(�). This reordering step is an essential feature for this aggregation 

operator. In OWA aggregation the weights are not connected with a specific argument, 

but with the ordered positions of the arguments (Yager, 1996). Different OWA operators 

are distinguished by their weighting function (Fullér & Majlender, 2003). OWA operators 

provide a parametric family of mean type aggregation operators, such as the arithmetic 

average, the median, the minimum, and the maximum. In order to attain these specific 

operators, the weighting vector needs to be defined accordingly, for instance the 

minimum operator is selected by setting � = 1 and other weights to zero. (Detyniecki, 

2001).  

There are number of different approaches that have been developed for determining 

the related weights for the OWA operator. Zhou & Chen (2014) have collected a few 

alternatives methods for a weight generation in their paper. For instance a learning 

technique that is built on observed data, exponential smoothing process that produces 

exponential OWA operator and weights, maximum entropy model that conveys the OWA 

operator weight problem as a constrained nonlinear optimization model, and a quantifier 

guided aggregation that computes weights using linguistic quantifiers.  

The aggregation operator used in the similarity classifier used in this thesis, a 

generalized OWA operator, is an extension to the OWA operator, also introduced by 

Yager (2004). The GOWA operator adds an extra parameter to the OWA operator which 

controls the power to which each argument value is raised. GOWA operator is defined 

as: 

������,��, … ,��� = 	 �	�� 	���			�
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				(4) 
where �	 are the weights (values between zero to one and they add to one), ! is a 

parameter (!	 ∈ [−∞,∞]) and �� is the jth largest value of �	. The choice of a parameter 
value ! has an effect on classification accuracy and therefore it should be investigated 
which ! value gives the best accuracy. I.e., the GOWA operator behavior changes as the !-value changes (Kurama et al., 2017). Another thing that affects the classification 
accuracy is the choice of how the weights are defined. In the model used in this thesis 

weights are determined by using quantifier guided aggregation. 

Yager (1996) proposed the use of fuzzy linguistics quantifiers for obtaining the 

weights for the OWA operator. One class of the proposed quantifiers is Regular 

Increasing Monotone (RIM) quantifiers, which can be expressed using verbally concepts, 
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such as all, most, many, and there exist. Weights with RIM quantifiers can be determined 

as:  �	 = " #$�% − " #$ − 1� % , $ = 1,2, … ,�	���	"	$&	'ℎ(	)*��'$�$(+			(5)	 
  

Further details about quantifier generation can be found from literature (Yager, 1996) 

& (Fullér & Majlender, 2003) & (Liu & Han, 2008), but are left outside the scope of this 

thesis. Kurama et al. (2017) used four different linguistic quantifiers which will produce 

four different weight generation schemes. The same quantifiers are used for this thesis. 

The used quantifiers are basic RIM, polynomial, exponential and trigonometric 

quantifiers and their equations are presented next.  

 "�+� = 	 +�,,	 ≥ 0			(��&$-	./0	)*��'$�$(+)			(6) 
 "��+� = 1 − �1 − +��,, ≥ 0		�1234�$5$�3	)*��'$�$(+�		(7) 

 

"��+� = 	 #(� − 1( − 1
%		�(612�(�'$�3	)*��'$�$(+�		(8) 

 "��+� = �+-&$��+,�		('+$72�25('+$-	)*��'$�$(+)				(9) 
 

The equivalence ℯ between two items 6 and 6� can be defined as: 
 

ℯ�6, 6�� = 	 81 − 96� − 6��9:�					(10) 
 

If equivalence between two samples are denoted as	ℯ�6, 6�� = �(, (�, … , (��, where (	 is defined as in equation (10), we get the similarity measure with GOWA operator as: 
;�����(, (�, … , (�� = <	�	�	��

	�

=

� 				(11) 

where �	 is an n-dimensional weighting vector, ! is a parameter for the GOWA 
operator and �	 is the $�� largest value of �(, (�, … , (��. Each of the equations above are 
taken from Kurama et al. (2017) publication. More details about how the similarity 

measure is defined can be found in ibid.  

3.4 Literature review 

Fink (2005) defines literature review as “a systematic, explicit and reproducible method 

for identifying, evaluating and synthesizing the existing work produced by researchers, 
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scholars and practitioners”. The aim for a literature review is to provide a relevant 

background of what has already been done in the field of the study and therefore provide 

a context for the research work. In this chapter the pre-existing knowledge about 

similarity classifiers especially in the business context is gathered together and a literature 

review of the selected relevant articles is conducted.  

The literature review in this thesis is performed with a structured three-step process 

presented by Webster and Watson (2002). Webster and Watson claim that an effective 

literature review forms a sound basis for developing theories and progressing knowledge. 

In their article, they present an intangible and structured approach of doing literature 

reviews in Information Systems. The first step includes defining the key-words for the 

search for the relevant literature. The databases where the search is performed also need 

to be chosen. Webster and Watson (2002) state in their article, that the leading journals 

include most probably the major contributions for the field of study. But they also argue 

that since Information Systems is an interdisciplinary field, the search should not be 

performed only within the leading journals of IS alone. In this thesis the relevant related 

disciplines are computer science, operational research and mathematics, since similarity 

classifiers are especially aimed for fuzzy logic applications.  

“Similarity classifier” and “similarity-based classification” were selected as quite 

obvious search strings for the research. Webster & Watson (2002) suggest that a 

multidisciplinary database should be used for the search process. Web of Science, a search 

and indexing service, was selected for this research, since it seeks information from a 

number of databases related to different disciplines. This reference database was selected 

to get a wider view and to include other fields than IS to this research, since the field of 

study is closely related to other disciplines and a search from IS or business related 

database alone would not have resulted wide enough view on the topic or not enough 

articles for this review. In fact, the search on Business and Economics related database 

(ABI/INFORM Collection (ProQuest), EBSCO – Business Source Complete, EconLit 

(ProQuest) and Emerald) only resulted one article, which shows this literature review 

should be performed in a multidisciplinary context and also that there exist a research gap 

in similarity classifiers related to business.  

The search in Web of Science reference database resulted in 105 hits, of which 

approximately half were journal articles and half proceedings papers. Web of Science 

categorize these papers by research area. That categorization shows that this subject is 

rather technical, since most of the papers are classified into computer science and 

engineering research areas. Only 10% of the papers are categorized under a research area, 

which could be seen as really business-related research. But this categorization gives a 

too simplified picture about the research in this area. The research in many of the papers 

is concentrated in the model development, i.e., enhanced classification accuracy and the 
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concept of the similarity measurement, and not on the application area, where the 

developed model could be used.  

The resulting 105 papers were scanned and irrelevant ones were omitted, which 

resulted in 76 papers that are to some extent relevant to this research. It was observed that 

the research in this area is quite focused on a few countries, 56% of the papers originate 

from Finland, USA or China, Finland being the origin of most published papers (22% of 

the total 76) in this area. The abstracts and some key points of the 76 papers were 

investigated to find out what is the main focus and the application area in those papers. 

The main focus in at least half of the papers is in the concept of similarity and the 

development of the similarity based classification algorithms. That is, in most of the 

papers the main focus is not on the application area where the classifier is used, instead 

they are more focused on the classifier itself and in the improved classification accuracy. 

The academic interest is focused on modeling and developing more accurate similarity 

classifiers and finding grounds for using similarity, instead of some other measure, on the 

basis for the classification. Medical diagnostics, image (2D and 3D), voice and text 

recognition are widely used application areas for similarity classifiers. These could be 

naturally applied to business cases in relevant area, but the articles themselves do not 

directly demonstrate how decision-making in business can benefit from the similarity 

classifiers that are introduced in the papers.  

One quite obvious business-related application area for classifiers in general is credit 

scoring. Within the papers that were scanned in this review, there were three papers that 

analyze credit card data. One of the reasons why there is a scarce amount of research on 

similarity classifiers related to business analytics problems is probably the lack of 

appropriate data. Quite many of the 76 papers use data from the UCI machine learning 

data repository (Lichman, 2013), which is an open source data repository widely used 

among machine learning researcher and practitioners. That repository does not have too 

many business-related data sets available. This indicates that there is definitely a room 

for more research for similarity classifier usage in business problems.  

Based on the resulting papers, it seems that the most utilized application area for 

similarity-based classification is medical data and medical diagnostics since nearly half 

of the papers used medical data as a case study. There were just a couple of papers that 

can be directly related to solving business problems. Of course it also depends how the 

business problem space is defined. Better diagnostics will naturally give a competitive 

edge for a medical organization etc., but we consider business problems more generally 

belonging to the domain of business. According to the definition from Techopedia 

(Janssen, 2018) business analytics refers to all methods and techniques that are used by 

an organization to measure performance. In this thesis business analytics is seen as data-

driven decision-making process and it should be used by the organizations to identify 

weaknesses in existing processes and to enable future growth. Business analytics 
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generally applies statistical algorithms to historical data and based on that make 

predictions about future sales, product performance, services, customer segmentation, 

website usage etc.  

Based on the definition above there were only a couple of papers that could be directly 

related to business and business analytical problem solving space. Luukka et al. (2010a) 

applies similarity classifier in bankruptcy analysis, Skabar et al. (2013) uses similarity 

classifier while forecasting financial time series, credit scoring is investigated in two 

papers (Kurama, Luukka, & Collan, 2015), (Steffens, 2005) and in Imran’s et at. (2016) 

paper similarity classifier is used in malware detection which could be utilized in various 

business cases. Wang et al. (Z. Wang et al., 2016) investigate social media with emotion 

sensing, which could be applied to many businesses since the use of social media as an 

advertisement channel is growing rapidly all the time. Each of these six papers were 

analyzed in more detail and the main points of these five papers are gathered in Table 1.  

Table 1. Literature review papers.  

Title Nonlinear fuzzy robust PCA algorithms and similarity classifier in 

bankruptcy analysis 

Authors Luukka, Pasi 

Purpose Bankruptcy prediction in one of the most interesting task and 

research subject in financing (Luukka, 2010b). Bankruptcy 

prediction and credit scoring are also popular application areas for 

traditional classifiers. In this article bankruptcy analysis is carried out 

by first preprocessing the data with two different principal 

component analysis (PCA) algorithms and then applying the resulted 

data to similarity classifier to differentiate whether the credit card 

application should be accepted or not. The focus in this paper is more 

in principal component analysis than in the similarity classifier itself. 

Research  

methods 

The data that was used in this research was downloaded from the UCI 

machine learning data repository (Lichman, 2013) and the used 

algorithms were developed with MATLAB software.  

Conclusion and 

results 

The best classification accuracy achieved in this research was 

88.39% with one of the investigated principal component analysis 

algorithm and similarity classifier. As a comparison, the accuracy 

was lower if it was analyzed without PCA and with traditional PCA. 

Another notable issue was that the best results were achieved with 

quite low dimensions, good accuracy was achieved with the first 

three principal components. This means that complex datasets can be 

significantly simplified which reduces required computational time 

and resources. (Luukka, 2010b). 
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Title Fine-Grained Sentiment Analysis of Social Media with Emotion 

Sensing 

Authors Wang, Zhaoxia; Chong, Chee Seng; Lan, Landy; Yang, Yinping; Ho, 

Seng Beng; Tong, Joo Chuan 

Purpose Social media is nowadays used widely and it contains a huge amount 

of human generated text; opinions, feedbacks and critiques that 

reflect attitudes and sentiments towards different things. This paper 

describes an adaptive fuzzy similarity-based analytics engine, which 

classifies text messages into sentiment categories (positive, negative, 

neutral and mixed) and is also able to prevail emotion categories 

(such as satisfaction, happiness, excitement, anger, sadness and 

anxiety). I.e., the purpose is to offer means to understand the public 

sentiment. (Z. Wang et al., 2016).  

Research  

methods 

There is a social adaptive inference algorithm that simulates human 

expression and emotions in online social context. A fuzzy similarity 

rules are used for handling sentiment classification.  

Conclusion and 

results 

The research presents an analytics method for handling fine-grained 

sensing and emotions classification. There are a lot of opportunities 

where this can be applied. It could benefit healthcare, corporate and 

public and private sectors to understand their customers better and to 

improve their products and services.  

Title Direction-of-Change Financial Time Series Forecasting using a Sim-

ilarity-Based Classification Model 

Authors Skabar, Andrew 

Purpose Financial time series forecasting is a popular topic in finance. 

Traditionally future values of a time series are predicted based on the 

past values and the accuracy of the prediction is estimated by 

comparing the predicted values to the actual realized values. In many 

cases the ability to predict the direction of the change (up/down) is 

more important than the magnitude of error in the prediction, which 

makes this a suitable classification problem. In this paper a 

similarity-based classification model is introduced which is used for 

predicting upward/downward movements in stock market. (Skabar, 

2013).  

Research  

methods 

The model is applied to daily closing prices of the Dow Jones 

Industrial average over a 20-year out-of-sample period from 1 

January 1989 to 3 December 2009. The performance of the 

similarity-based classifier is compared to a logistic regression and 

multilayer perceptron (a linear binary classification algorithm).  
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Conclusion and 

results 

The overall prediction accuracy was only a little over 50%, which is 

not much better than pure chance. But it is not the whole truth, since 

the prediction accuracy varies a lot over the input space. But all in 

all, the researcher did not find any substantial difference in 

performance between similarity-based and MLP classification 

approaches with the used dataset. (Skabar, 2013). 

Title Partial and Vague Knowledge for Similarity Measures 

Authors Steffens, Timo 

Purpose The purpose of this paper is to introduce an enhancement to the 

similarity-based classification by using virtual attributes from 

imperfect domain theories. Virtual attributes are attributes that are 

not directly represented in the test data but they can be derived from 

the already existing attributes. (Steffens, 2005).  

Research  

methods 

The method is applied to two datasets, one of them is a Japanese 

credit card data from UCI Machine Learning database. The focus in 

this paper is in intermediate attributes, which are good candidates for 

virtual attributes and can be added to the similarity measure and by 

doing so possible enhancing the classification accuracy (Steffens, 

2005). 

Conclusion and 

results 

This article shows that even an imperfect domain knowledge can 

enhance the similarity-based classification. This means that domain 

knowledge does not need to be complete and fully accurate in order 

to be still useful.  

Title Malware classification using dynamic features and Hidden Markov 

Model 

Authors Imran, Mohammad; Afzal, Muhammad Tanvir; Qadir 

Purpose As digitalization affects most of the businesses today, organizations 

also need to pay more attention to the information security. The 

number of new malware threats has increased notably, triggering 

loses of billions of dollars globally. Therefore malware needs to be 

identified in order to provide corrective and defensive actions 

towards it. This paper uses a similarity-based classifier to identify 

new malware by classifying it to a set of previously defined malware 

classes, since most of the new malware resembles some of the 

previously recognized malwares. (Imran et al., 2016). 

Research  

methods 

This paper compares two classification methods (similarity-based 

and maximum likelihood), which both are based on Hidden Markov 

Model, for classification of malware.  
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Conclusion and 

results 

Similarity-based classification was found to perform better than 

maximum likelihood classification scheme. It was discovered that 

when making the decision about which malware family a new 

malware belongs, the pattern of the sample’s similarity with all 

malware families should be taken into account. The decision should 

not be made on the basis of the closest match of with a single 

malware family. Neither one of the used classifiers were able to 

detect benign samples effectively, but similarity-based classifier 

performed slightly better on this tasks also.  (Imran et al., 2016). 

Title Credit Analysis Using a Combination of Fuzzy Robust PCA and a 

Classification Algorithm 

Authors Kurama, Onesfole; Luukka, Pasi; Collan, Mikael 

Purpose Classification is an essential part of credit analysis and bankruptcy 

prediction. A Financial institution can have a significant competitive 

advantage if it can separate good borrowers from a group of possible 

borrowers more accurately than its competitors. The problem is an 

actual business problem, failed credit decision-making in financial 

institutions may cause severe financial difficulties, while at the same 

time it hinders good business if money is not lend to good borrowers. 

This paper investigates combinations of three fuzzy robust principal 

component analysis algorithms and two different classifiers 

(similarity classifier and k-nearest neighbor classifier) to find out 

which combination gives the most accurate classification result. 

(Kurama et al., 2015). 

Research  

methods 

The data set used in this paper is the “Australian credit screening 

dataset” which can be downloaded from the UCL machine learning 

data repository (Lichman, 2013). Research method is a design 

science based research, the used algorithms are implemented and 

analyzed with the MATLAB software.  

Conclusion and 

results 

With parameter values set correctly, slightly above 80% 

classification accuracy can be obtained. There should be more tests 

done with other methods to be able to conclude whether these results 

are good or poor. This paper however shows clearly that choosing 

the parameter values has great impact on classification accuracy and 

this should be emphasized when implementing and using these 

systems. (Kurama et al., 2015). 

 

The table above gathers the results for the first research question, which was: What 

previous academy research literature exists on similarity based classifiers and what are 
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the results of the said previous research? It can be concluded that there is not much 

research on similarity classifiers in business related context. Bankruptcy and credit 

scoring seem to be most applicable area for the similarity based classification. Also 

malware detections, social media and financial time series were used as application areas. 

Most of the research uses data from repositories available on the internet. It could also be 

that companies will not publish the work they have done, since it might affect their 

competitive edge if they do, and therefore a lot of the made research on the topic is not 

visible. But in general it is clear that there is a room for more research in this area.  
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4 BENCHMARKING CLASSIFIERS 

4.1 Reference classifiers 

There is a large variety of classifier algorithms available and many of those have some 

parameters, which makes the choices of how to classify a set of data items even more 

plentiful. Different classification algorithms have different approaches for learning. There 

is no one method that would be the best for all applications or one algorithm that would 

be best suited for all classification problems, even the best data scientist cannot tell which 

algorithm works best for a given problem until they make tests. Finding the right 

algorithm for a given problem is usually done in a heuristic way, by trial and error. 

(Mathworks, 2018).  

Benchmarking classifiers is a heuristic way of investigating which classifier algorithm 

would be best suited for a given classification problem. Here the target is to find out 

whether the GOWA-variant of the similarity classifier is better suited for a business 

analytics context than algorithms from a set of classical classifiers. In the following the 

reference classifiers that are used for this benchmarking are presented shortly. The 

purpose is not to go into too much detail for each classifier, there is lot of information 

available for each classifier in relevant machine learning literature for anyone that is 

interested. The reference classifiers that are used in this thesis have been selected based 

on their common use among machine learning applications and literature, and their 

availability in Statistics and Machine Learning Toolbox in MATLAB, which is the 

software used in this thesis.  

The different classification algorithms can be grouped in several ways. One way is to 

group the algorithms based on the method for which the class separation is based on. 

Figure 8 shows some of the commonly used classification algorithms grouped in this way.  
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Figure 8. Classification methods 

The four reference classifiers used in this thesis were selected so that the benchmarking 

is done with classifiers which are based on a different classification methodology. The 

selected four classifiers are introduced shortly below. 

 

Decision tree 

 

Decision tree is probably the easiest method to understand and interpret, even without 

any technical background. As the name implies, decision tree resemble a tree, or a branch, 

structure. An example of a decision tree is depicted in Figure 9. The root node is the 

starting point and in each decision node there are two choices, which divide the dataset 

according to given options. The decision nodes represent input variables, i.e., the 

predictors that are used for making the splits. The leaf nodes are the target classes, i.e., 

they represent the output variables. The decision tree structure is first learned from the 

training data set and after that each new record can be classified using the tree and its 

decision nodes. The prediction is made by walking through the decision nodes, starting 

from the root node, and ending up to one of the leaf nodes. (Le, 2018). 

Classification 

Frequency 

table 

Covariance 

matrix 

Similarity  

functions 

Others 

Naive Bayesian 

Decision trees 

Discriminant Analysis 
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k-nearest neighbor 

Artificial neural networks 
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Figure 9. Example of decision tree (Le, 2018). 

Decision tree tolerates errors and handle missing data well in a training data set and 

therefore do not require that much preparation of the data. Decision tree is very intuitive 

and the results are easily explainable. It can handle both numerical and categorical 

variables and does not have any requirement about linearity in the data. It is useful in 

exploring the data. Decision tree works well with discrete variables, while continues 

variables will result in instability. While the interpretation of the model is easy, it could 

be lacking on classification accuracy. Also there is a great risk of over-fitting and thus 

erroneous classification results, if the tree is grown “too deep”. Decision tree could be 

used for instance by banks to classify loan applicants by determining, whether their will 

default on payments or by healthcare institutes to identify at-risk patients or disease 

trends. (DeZyre, 2018). 

 

Discriminant Analysis 

 

As a classifier which uses covariance matrixes as a basis for classification, a discriminant 

analysis classifier was chosen, since linear regression classifiers are limited to only binary 

classification problems, and the new-thyroid data used in this thesis, has three target 

classes. Discriminant analysis classifier uses linear or quadratic combinations of 

predictors. The target is to find such combinations that class variance between different 

classes is maximized relative to the variance within the class. This means that a mean 

value is calculated for each class and the variance across all classes and mean values of 

each class will be used as class boundaries. Predictions are then made by calculating a 

discriminative value for each class and the correct class label is selected based on the 

largest discriminative value. 
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Linear discriminant analysis can also be used to decrease attribute space, the target is 

then to project attributes to axes so that the projections will maximize the separation 

between classes, see Figure 10. 

 

 

Figure 10. Linear discriminant analysis. (Raschkam, 2014). 

The discriminant analysis assumes that all predictors have a Gaussian distribution. So 

if there are clear outliers, those should be removed before the classifier training is 

performed. (Le, 2018). 

 

Support Vector Machine 

 

Support Vector Machine (SVM) was first introduced by Cortes and Vapnik (1995) to be 

used for binary classification. The target is to find an optimal separating hyper-plane 

between two target classes, which will split the input variable space and maximize the 

separation margin between the classes’ closest points. The points that lie on the 

boundaries of the separation margin are called support vectors. There might be some 

points of the vectors that lie on the “wrong” side of the separation margin, their influence 

can be reduced by giving them a lower weight. If a linear separator cannot be found, data 

points are projected into higher-dimensional space, where they become linearly separable. 

A programme able to execute all the required task that will generated the separation 

margin and thus make the classification is called a Support Vector Machine. (Meyer & 

Wien, 2001). Example of the support vector machine binary classification is depicted in 

Figure 11. 
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Figure 11 Example of Support Vector Machine (Meyer & Wien, 2001). 

Support Vector Machine typically has good classification accuracy. The advantage of 

using SVM is that it does not make any strong assumptions about the data and it does not 

tend to over-fit the data. Support Vector Machine is commonly used for a stock market 

forecasting to make relative comparisons between different stocks. (DeZyre, 2018). 

 

K-nearest neighbor 

 

If it looks like a duck, walks like a duck and quacks like a duck, then it’s a duck. This 

common phrase can be used to describe k-nearest neighbor (KNN) classifier to some 

extent. If a data item resembles its neighboring items, it is probably of the same type as 

the neighbors. The K-nearest neighbor method is based on identifying k items in the 

training dataset that are most similar to the data item to be classified. The target class is 

determined based on the neighboring data items, the new item is assigned to the class 

which is most predominant among the nearest neighbors. To assess which are the closest 

neighbors to the new item to be classified, we need to investigate the parameter space, 

i.e., the predictors and select the neighbors which predictors are closest to the predictors 

of that new item. There are different ways to determine the distance or the similarity 

between the data items or records, but Euclidean distance is the most commonly used 

method for that. Euclidean distance between two records * = �*,*�, … ,*�� and > =�>,>�, … ,>�� is calculated as: 
 ? = 	@�* − >�� + �*� − >��� +⋯+ �*� − >���			(13) 
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K-nearest neighbor classification algorithm is simple to implement, it has a good 

tolerance against noisy data and it is effective for large training datasets. But the 

computation cost could be high, because the distances between each record need to be 

calculated to all training samples (Garg, 2018).  

Example of the k-nearest neighbor classification is depicted in Figure 12.  

 

 

Figure 12. Example of k-nearest neighbor classification (Cengiz, 2017). 

In Figure 12 there are three classes available and the goal is to find out a correct class 

label for the new record	6�. Euclidean distance is used for determining the nearest 
neighbors and the value of k=5, i.e., five closest neighbors are considered and by majority 

voting, class � is selected since four closest neighbors belong to that class. 

4.2 Data sets 

The benchmarking of classifiers is done with three different datasets, all of which can be 

obtained from the UCI Machine Learning database (Lichman, 2013). As a starting point 

for this thesis was the research work done by Kurama et al. (2017) with four different 

data sets, two of those data sets are also used in this thesis to get comparable data. In 

addition one new dataset, a credit default data set from the said database is used for 

comparing the GOWA-variant of the similarity classifier against the reference classifiers 

and to evaluate how well the GOWA-variant is suited for business-related problem 

solving. All used datasets are briefly introduced next.  

 

Haberman’s survivor data set 

This dataset contains patient data from a study on survival of patients who has gone 

through a breast cancer surgery (Lichman, 2013). There are 306 instances in this data set 

with three numerical attributes. Attributes are the “age of patient” at the time of operation, 
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the “year the operation” was done (year -1900 in the dataset), and the number of “positive 

axillary nodes” detected. The class-attribute is the survival-status of the patient that 

indicates whether the patient has survived five years or longer after the surgery or died 

within five years.  

 

New-Thyroid data set 

This data set is one of the thyroid data sets found in the UCI Machine Learning data 

repository (2013). This data set contains 215 instances, which all have 5 attributes. The 

purpose of this data set is to investigate the thyroid symptoms of the patients. There are 

three target class attributes, normal (no thyroid symptoms), hypo (low functioning 

thyroid), and hyper (high functioning thyroid). 

 

Default of Credit card clients 

This data set contains customer data of a Taiwanese bank. The aim is to predict whether 

the customer is creditworthy or not. There are 23 explanatory variables in this data set. 

As an assumption, or a hypothesis, we can state that the similarity classifier is likely to 

give us better results for the classification that the traditional classifiers. The attributes of 

this data set are: amount of credit given, gender (1=male, 2=female), education 

(1=graduate school, 2=university, 3=high school, 4=others), marital status (1=married, 

2=single, 3=others), age (year), history of last payments (6 attributes, -1=pay duly, 1-9 

payments delay in months), amount of bill statements (6 attributes, status of 6 past 

months),  amount of previous payments (6 attributes, status of 6 past months).  

4.3 Evaluation of the selected classifiers 

As we want to compare different classifiers, we need some criteria on how to evaluate the 

quality of each classifier. Two of the classification problems that are investigated in this 

thesis are binary problems, i.e., there are only two classes which the classifier is supposed 

to separate from one another. And there are also only two kind of mistakes the classifier 

could make; it could classify a positive item incorrectly as a negative item (called false 

negative = FN), or it could classify a negative item incorrectly as a positive item (called 

false positive = FP). The items for which the class is predicted correctly are called true 

positives (TP) and true negatives (TN). It is obvious that the classifier should aim to 

minimize both false negatives and false positives. But usually when one decreases one, 

one increases the other. And this is also the case with false positives and negatives. If the 

classifier would simply classify all items as positives there would not be any false 

negatives, but instead all negative items would be predicted incorrectly. Or if the classifier 

would predict all items as negatives, one would not get any false positives, but all positive 
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items would be incorrectly predicted as negative thus producing a lot of false negatives. 

Therefore the classifier must find a compromise between these two extremes, while trying 

to minimize both false negatives and false positives. (Berthold et al., 2010). 

One way to visualize the trade-offs between benefit of the classifier (true positives) 

and cost (false positives) is to use a Receiving Operating Characteristics or ROC curve. 

ROC curve is one of most commonly used method to visualize the performance of a 

binary classifier. ROC curve was first used during World War II radar images to 

distinguish between enemy ships, friendly ships, or just noise. It was aimed at measuring 

the operating characteristics of the radar receiver which explains the name of this tool. 

Later it has been adapted by medical diagnostics and for the first time in machine learning 

applications by Spackman (1989) when he used ROC curve to compare and evaluate 

algorithms. (Gonçalves et al., 2014). 

ROC is a plot of benefits, i.e., the sensitivity (true positive rate) against cost or noise 

(false positive rate, also noted as 1-specifity, i.e., predicting a true negative item as 

positive item). Some classifiers provide a probability of whether the predicted item 

belongs to the class of not. Usually class label is selected based on the highest probability. 

With binary problems, an item will be labeled as true if the probability of the true class is 

greater than 0.5. If we would select higher probability, say 0.8, we would result fewer 

false positives, but also more false negatives. ROC curve is used for illustrating different 

threshold values for the class separation probability. An example of a ROC curve is 

depicted in Figure 13. The diagonal line equals random guessing, if you pick a random 

positive sample, there is a fifty present chance the model predicts it as a positive sample 

and same for the negative samples. The area under the “curve” = the diagonal line, 

“AUC”, is 0.5, which equals to a fifty percent chance to predict the class correctly. An 

ideal classifier would have AUC = 1 (point (0, 1) in the Figure 13), which would mean 

that all new samples are predicted correctly. (Berthold et al., 2010). 

 

 

Figure 13. The ROC Curve. (Berthold et al., 2010) 
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ROC curve used a few numerical criteria to measure the performance of a classifiers. 

Hossin and Sulaiman (2015) present in their paper a set of quantitative indicators that can 

be used for evaluating classifier performance. The most obvious one is probably the 

overall classification accuracy; i.e., how well the classifier can predict a correct class. 

Accuracy can be calculated as follows: �AA = 	 BC + BDBC + BD + EC + ED 
In other words, the overall accuracy measures the ratio of correct predictions over the 

total number of items measured. Hossin & Sulaiman (2015) also present many other 

quantitative indicators, such as the Error rate, Sensitivity, Specificity, Precision, Recall, 

F-Measure, or using different average values. The error rate (err) measures the ratio of 

incorrect predictions over the total number of instances evaluated.  (++ = 	 EC + EDBC + EC + BD + ED 
Sensitivity (sn) measures the fraction of correctly classified positive patterns.  &� = 	 BCBC + ED 
Specificity (sp) is similar to sensitivity, but instead of positive patterns, it measures the 

fraction of correctly classified negative patterns.  &1 = 	 BDBD + EC 
Precision (p) is a measurement criterion that determines the ratio of the correct positive 

predictions over the total number of positive predictions, i.e., how many of the predicted 

true elements are actually true. 1 = 	 BCBC + EC 
Recall (r) measures the fraction of actual true elements of the correctly predicted 

instances.  + = 	 BCBC + BD 
F-Measure is a harmonic mean between recall and precision values. E0 = 	2 ∗ 1 ∗ +1 + +  

It depends on the features of the data how well each of these quantitative evaluation 

methods work. None of them is an absolute best measurement criterion, there are some 

cases where a particular evaluation criterion may result in too positive outcome and thus 

some other criteria should be used instead. For instance accuracy is not a good evaluation 

criteria if the dataset is heavily imbalanced, such as when classifier tries to detect 

fraudulent transactions from legitimate ones. Presumably most transactions are 

legitimate, so the classifier can classify all transactions as legitimate and achieve 99% 

accuracy and still be a totally useless classifier. I.e., accuracy is a good evaluation criteria 
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if the target classes are somewhat in balance is the evaluated dataset. Precision does not 

give much useful information, if there are only few positive elements in the evaluated 

dataset, but it fits well in cases where each try has a significant cost, but missing a chance 

does not matter much – an example of such a case could be a recruitment process. Recall 

could give too good evaluation results if the dataset is biased towards positive items. It is 

easy to predict true values if most the predicted values are true. But this criteria is valuable 

if missing a positive item will cost a lot, like for instance a cancer prediction or some 

other medical diagnostic case. (Thoma, 2018). 

Confusion matrix is another popular graphical indicator tool in addition to the ROC 

curve, which suites for binary classification problems well and it is also used in this thesis. 

Confusion matrix, which can also be called an error matrix, is a specific table format 

which summarizes the performance of a classifier. Actual classes are represented in rows 

of the matrix and predicted classes in columns, or vice versa. From the table is it easy to 

see whether the classifier can distinguish the classes from another or does the classifier 

confuse classes. (Sokolova & Lapalme, 2009). 

The error rate is also easily visible from the table, since both correctly predicted class 

items and falsely predicted class items are presented in the table, see Table 2. 

 

 

Actual data 

class 

Classified as positive Classified as negative 

positive 

 

TP (true positive) FN (false negative) 

negative 

 

FP (false positive) TN (true negative) 

Table 2. Confusion matrix (Sokolova & Lapalme, 2009). 

Table 3 shows an example of a confusion matrix. Say that we have one thousand 

emails, of which 500 and real emails and 500 are spam. The confusion matrix shows how 

well the classifier can separate spam email from real emails.  

 

Actual 

class 

predicted 

as real 

email 

predicted 

as spam 

 predicted 

as real 

email 

predicted 

as spam 

real email 470 30  94% 6% 

spam 80 420  16% 84% 

   Table 3. Example of a confusion matrix. Predicted classes shown both in 

number of observation and percentage format. 
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Other metrics to represent the classifier performance can also be calculated from the 

figures presented in the confusion chart. For instance accuracy for the spam classifier 

would be: �-- = 	 BC + BDBC + BD + EC + ED = 	 470 + 420

470 + 420 + 30 + 80
= 89% 

 

For this thesis a fitness function is created for each case, which would combine 

selected measurement criteria. A suitable weight is set for each criteria and an overall 

performance criterion is produced as a result of this fitness function. The fitness functions 

will be presented in more detail with the case results in chapter 4.5. 

For the most classification problems, one does not know beforehand which classifier 

algorithm is the best for the current problem. One needs to iterate between training and 

testing different classifiers and fine tune the parameters before one can select the best 

model for the current problem. After one has selected the best model, one still wants to 

test it with some data that was not used for training the model to get more reliable results. 

In this thesis different classifiers are compared against each other, but all of them are also 

tested at the end to get the final results, i.e., no actual model selection is performed. 

Before data is used for training a classifiers, it is usually partitioned into two sets, 

classification model selection data set and test set. Partitioning is performed randomly, 

but the same partition should be used for training and cross-validating each classifiers to 

get more comparable results. A part of the data is left out for testing and the other part of 

the data is used for training the classifiers and selecting most suitable parameters. The 

part that is left out as a test set mimics the real-world new data. That is, if the classifier 

would be used in real-world with new data that has not been seen before. The model 

selection part of the original data is further partitioned into k-folds to be able to perform 

cross-validation for the model. Cross-validation means that training and validation is 

performed several times (k times) and resulting classification error is calculated as a mean 

value of the individual iterations. For a larger data set one could use more folds, but 10-

folds are quite common choice. The 10-fold cross validation scheme in general is depicted 

in Figure 14. 
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Figure 14. 10-fold cross validation. 

The same 10-fold partitioning should be used for all the classifiers to get better 

comparable results, and this is how the cross-validation is performed in this thesis. 

4.4 Test setup 

The test setup for the evaluation of classifiers is illustrated in Figure 15. The data from 

each of the three data sets are fed into separate classifier algorithms. As a result each 

classifier produces a set of evaluation metrics (results). The values from those metrics are 

used in calculating the value of the selected fitness functions for each case. The resulting 

values from these fitness functions are used for generating the final ranking of the 

classifiers. 

fold1 fold2 fold10 

� 

10-fold cross validation 

validation set 
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50 

 

Figure 15. Test setup for classifier evaluation. 

Similarity classifier with the OWA operator toolbox in MATLAB is freely available 

and contains most of functions that are needed for the similarity classifier used in this 

thesis. There are a few modifications made for the functions in that toolbox to make the 

GOWA-variant of the similarity classifier. The modified scripts were provided for this 

thesis from the original authors. 

4.5 Results 

4.5.1 Comparing classifiers with Haberman’s survival data 

First reference data is Haberman’s survival data. This data set contains information of 

patients who have undergone breast cancer surgery. Predictor variables are the age of the 

patient, the year the surgery was made and the number of positive lymph nodes detected. 

According to Breastcancer.org web site (2018), doctor usually removes one or more of 

the underarm lymph nodes before or during the surgery, and then a pathologist examines 

how many of those nodes contain cancer cells, i.e., how many of the nodes are detected 

as positive nodes. First, the data set is explored in general and visualized in Figure 16. 

The visualization in Figure 16 shows that none of the predictors is alone able to separate 

the survival status by themselves. The survival status is spread quite evenly when plotted 

against each predictor separately in the left side of the figure.  
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Haberman’s data New-Thyroid data Credit data 
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Figure 16. Haberman’s survival data. 

On the right side of the Figure 16 each combinations of two predictors are depicted 

and grouped by survival status. Red dots equal patients who have survived 5 years or 

longer after the surgery and blue dots equals the patients who have died within 5 years 

after the surgery. All the three subplots indicates that two target classed (survived and not 

survived) are not easily separated from each other. This will lead to the assumption that 

it is not easy to construct a classifier which would predict the target classes with good 

accuracy. The Haberman’s survival data contains 306 observations, so it is a fairly small 

data set. This typically also has an effect on classification accuracy. As noted already, 

there are two target classes; 1 = survived patients and 2 = not survived patients. Out of 

306 instances, 225 are labeled “survived” and 81 as “died” within five years after the 

surgery. These numbers are calculated as follows:  

 
observation_count = height(haberman) 
%find out the separate target classes 
testClasses = haberman.class_label; 
[classes,~,idx] = unique(testClasses); 
classes 
%calculate how any instances there are in each class 
nCount = accumarray(idx(:),1) 

 

There are no missing items and no clear outliers so the there is no need to process the 

data before it can be used for input data to the selected classifiers. If a classifier would 
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put label ‘1’ to all samples, it would gain 225/306=73.5% accuracy. So to be useful, a 

classifier should have better than a 73.5% accuracy, and if accuracy is close to that, it 

should also be checked that is does not label most of the samples as negative. 

Before the Haberman’s survival data is used for training any of the classifiers, it is 

partitioned into two sets, classification model selection data set and test set. Partitioning 

is performed randomly, but the same partition is used for each of the classifiers.  
 
rng(1); 
c1 = cvpartition(thyroid.class_label,'HoldOut', 0.3); 
testData = thyroid(c1.test, :); 
test_predictors = testData(:, predictorNames); 
ClassData = thyroid(c1.training, :); 
predictors = ClassData(:, predictorNames); 
 

30% of the data is left out for testing (testData in a script above) and 70% of the data 

is used for training the classifiers and selecting most suitable parameters (ClassData in a 

script above). The 30% test set mimics the real-world data. That is if the classifier would 

be used in real world with new data that has not been seen before. 70% of the original 

data is further partitioned into 10-folds to be able to perform cross validation for the 

model. The same 10-fold partitioning is used for all the classifiers to get better comparable 

results.  
 
rng(1); 
cv = cvpartition(ClassData.class_label,'KFold',10); 

There is a Classification Learner App in MATLAB, which can be used to easily 

compare a set of classifiers. There are a set of different classifiers already available in that 

Learner App and there are also some parameters that can be changed before the selected 

classifier is trained. Results, such as the classification accuracy, are visible in that same 

application. The Classification Learner App was used as a starting point and as a simple 

way to get to know the data and to get some rough figures about what the classification 

accuracy should be. Classifier algorithms that are available in the Statistics and Machine 

Learning Toolbox for MATLAB, was used to train and optimize the models and to 

perform some of the quality measurements. The algorithms that were used are as follows: 

• Decision Tree - fitctree  

• Linear Discriminant Analysis - fitcdiscr 

• Support Vector Machines - fitcsvm 

• K-nearest neighbors - fitcknn 

Each of these classifier algorithms has various parameters that can be tuned to have 

better classification results. In this thesis a fitness function is used, instead of only using 

classification accuracy, to evaluate the quality of the classifiers. Fitness function 

combines a few quality criteria into a one figure. For the Haberman’s survival data, the 

following fitness function was used: ��	���  = 0.25 ∗ &� + 0.25 ∗ &1 + 0.5 ∗ �AA 
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There are three different measurement criteria in that fitness function, classification 

accuracy has the biggest weight 0.5 and sensitivity and specificity both have weights 0.25. 

Of course one might argue that it is more important to find the positive instances (in this 

case the patients who did not survive) than the negative ones. But since we do not have 

enough domain knowledge to make that selection, in this thesis the two are weighted 

equally. The fitness function will be used in each classifier to find out optimal parameters 

and also to make the final ranking for the classifiers in this classification problem.  

 For each of the four classifiers, a slightly different ways are used to find out the 

optimal parameters. But the main idea remains to same; classifiers are trained and cross-

validated several times and each time a fitness function value is calculated. After the runs, 

the maximum value of the fitness function is determined and the parameters that gave that 

particular value were selected to train the model again and to produce the final cross-

validation results. The MATLAB codes that were used to optimize and cross-validate the 

classifiers can be found from the appendix. The relevant codes are identified as 

knn_classifier.m, tree_classifier.m, svm_classifier.m, discriminant_classifier.m and 

gowa_classifier.m.   

To find out the optimal parameter values for KNN classifier, the fit function was first 

run with OptimizeHyperparameters set on, see below: 

 
rng(1); 
Mdl = fitcknn(predictors, ClassData.status, 'OptimizeHyperparameters',     
      'auto', 'HyperparameterOptimizationOptions',  
     struct('AcquisitionFunctionName', 'expected-improvement-plus')); 

 

See Figure 17 for the results of the Hyperparameter optimization run.  

 

 

Figure 17. Parameter optimization for knn classifier for Haberman’s data. 

In addition to the parameter values resulting from hyperparameter optimization, K-

nearest neighbor classifier was also trained and cross-validated with 'cosine', 'euclidean', 
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'jaccard', 'chebychev’ and 'seuclidean' distances and with 10 to 30 neighbors. The 

parameters which resulted in the best fitness function value was selected to be used for 

the final model. See the knn_classifier.m script from the appendix for details.   

For the decision tree classifier parameter-optimization, the Classification Learner App 

was first used to select the split-criteria for the tree. The application suggested that Gini’s 

diversity index would be the best split-criteria and thus that criterion was selected. The 

tree_classifier function alters two other parameters, maximum number of splits with 

values ranging from 2 to 14 and minimum leaf size with values ranging from 12 to 30. 

See tree_classifier.m script from the appendix for details. 

For the Support Vector Machine classifier two options for the parameter optimization 

were selected. Both of these optimization methods can be found from the MATLAB 

Statistics and Machine Learning Toolbox help pages for SVM classifier training and fine 

tuning parameters. First, a hyperparameter optimization run was performed in a similar 

way it is done for the KNN classifier optimization. See below: 

 
opts = struct('Optimizer', 'bayesopt', 'ShowPlots', true, …  
       'CVPartition', cv, 'AcquisitionFunctionName', … 
       'expected-improvement-plus'); 
rng(1); 
svmmod = fitcsvm(predictors, ClassData.status, 'KernelFunction',…    
        'rbf',    'OptimizeHyperparameters', 'auto',… 
        'HyperparameterOptimizationOptions', opts); 
 

BoxConstraint and KernelScale values that resulted were then used for training and 

cross-validation of the model. The second option for parameter optimization was first to 

run the model with KernelScale set to ’auto’ mode.  

 
svmmod2 = fitcsvm(predictors, ClassData.status, ... 
                 'KernelFunction', 'gaussian', ...  
                 'PolynomialOrder', [], 'KernelScale', 'auto', ...  
                 'BoxConstraint', 1, ...   
                 'Standardize', true, 'ClassNames', [1; 2]); 

 

This resulted in a KernelScale value which was used as a basis for the further runs. In 

those runs the KernelScale value BoxConstaint values were adjusted by increasing them 

by a factor 10 in each round for 11 times. The scale factors were selected as advised in 

MATLAB help pages. See svm_classifiers.m script from the appendix for details. 

 For the discriminant analysis classifier all available discriminant types were tested 

(linear', 'pseudolinear', 'diaglinear', 'quadratic', 'pseudoquadratic', 'diagquadratic’). 

FillCoeffs parameter was tested with both “on” and “off” and also for the gamma value 

both, 0 and 1 values were tested. See discriminant_classifier.m MATLAB script from the 

appendix for details on classifier training and optimization. 

Confusion matrixes for all cross-validated classifiers for Haberman’s survival data are 

depicted in Figure 18.  
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Figure 18. Confusion charts for cross-validated Haberman’s survival data. 

From the confusion matrixes it can be easily seen, that the models could predict the 

patients who survived five years or longer after the surgery quite well, but did a lousy job 

with the patients that did not survive.  

The GOWA-variant of the similarity classifier was trained with same data as the 

reference classifiers, but since there are no build-in feature for the k-folds and cross-

validation, the 10 folds were calculated separately and then the mean for the classification 

accuracy and fitness function was calculated for these 10 folds.  

 
for k = 1:cv.NumTestSets 
    trIdx = cv.training(k); 
    teIdx = cv.test(k); 
    datalearn = table2array(ClassData(trIdx, :)); 
    datatest  = table2array(ClassData(teIdx, :));  
   [datatest, tc_sizes, cstart_idx]  = init_data(datatest,v,c);  
   [datalearn, lc_sizes, cstart_idx] = init_data(datalearn,v,c); 
    ideal_vec = idealvectors(datalearn, y); 
   [fitness(k), class, Simil] = calcfitness(datatest, ideal_vec, y);  
   [acctmp, sn, sp] = evaluate_classifier(class, datatest(:,end), … 
                      classes, 0, ''); 
    fit(k) = calc_fit(fitness(k), sn, sp, fitness_weights); 
end 
meanfit(j,i) = mean(fit); 

 

Init_data function above will sort the samples so that they are ordered by classes. Ideal 

vectors are calculated for each training data set. Similarities are then calculated between 

the test data units and the generated ideal vectors. The calcfit function returns the 

predicted class labels and the classification accuracy together with the similarity values. 

Evaluate_classifier function will calculate sensitivity and specificity figures for the 

predicted results and the fitness function value is calculated based on those figures the 
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same way as it is done with the reference classifiers. The 10-fold cross-validation results 

for the GOWA-variant of the similarity classifier can be seen from the confusion matrix 

from Figure 18. 

The above mentioned procedure for the GOWA-variant of the similarity classifier was 

repeated several times with different parameters. Parameter α relates to the quantifiers, 

see equations 6-9 in chapter 3.3 for details, whereas parameter p relates to equivalence 

(equation 10 in chapter 3.3) and parameter λ to the similarity measure (equation 11 in 

chapter 3.3). Parameter α varies between [0.25:0.25:5] and p between [0.1:0.25:4]. Mean 

classification accuracies with these parameter value ranges are plotted in Figure 19. From 

the figure it can be seen, that the maximum classification accuracy is gained in the middle 

of the grid, so it can be claimed that selected parameter ranges are correct and actual 

maximum value for the accuracy is achieved within those ranges.  

 

 

Figure 19. Parameter optimization for Haberman’s survival data. 

Different values were also investigated for λ. Different lambda values from the range 

[0.1:0.1:5] were tested. Classification accuracies, sn and sp values are plotted in Figure 

20. 

 

Figure 20. GOWA results with different lambda values. 
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  From the picture above, it can be seen that best performance was gained with many 

different λ values, of which the value 2.0 was selected. It was observed that the choice of 

a quantifier did not have much effect on classifier results, so the basic RIM quantifier 

which gave best results was used for all the runs with different parameters.  

After the all five classifiers were trained and parameters optimized with the model 

selection part of data (70% of the original data), they were all tested with the test data set 

(30% of the original data), i.e., with the data that the models have not seen before. The 

results for test data are gathered in table format in Figure 21. All the measurement criteria 

values that were used for the final fitness function generation are also visible in that table. 

Also the cross-validation accuracy figures are depicted there for reference.  

 

 

Figure 21. Haberman’s survival data results. 

If we look at fitness function results, it can be seen that the GOWA-variant of the 

similarity classifier had the best performance. GOWA-variant also has the best 

classification accuracy for the test data. The best cross-validation classification accuracy 

figures are received with k-nearest neighbor classifier. Confusion charts for the cross-

validated models were already illustrated in Figure 18, but they are depicted again for the 

test data set in Figure 22. 

 

Figure 22. Confusion charts for Haberman’s survival test data. 
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Confusion charts for cross-validation data and test data should be similar as the data 

partitioning was random and both sets (70% and 30%) should describe the data the same 

way. But as the data set was quite small, there are clear differences. The true accuracy 

figures are probably something between these two figures. If there would have been more 

instances, the confusion charts for model selection data set and for the test set would have 

probably been closer to each other. 

ROC curves are not used for the classifier ranking for this thesis, but they are depicted 

for reference for the test data for all the four reference classifiers in Figure 23.  

 

 

Figure 23. ROC curves for the reference classifiers for Haberman’s sur-

vival data. 

According to the ROC curve, there is no clear winner for this dataset, but svm is clearly 

the worst performing classifier for this test data. The ROC curve is not depicted for the 

GOWA-variant of the similarity classifier, since calculating it falls outside the scope for 

this thesis. 

It was observed with the second data set (New-thyroid data), that the results varied 

when the original data split for the model selection data and test data was made with 

different random seeds. Since Haberman’s survival data set and New-thyroid data set are 

both rather small, the similar variations are probable also for the Haberman’s survival 

data set. That is why the whole procedure described above was repeated six times with 

different random seeds and mean values are calculated for those repeated runs to get more 

robust results. The results presented earlier in this chapter are reported from the last run.  
 
for r=1:6 
   rng(r*16); 
   c1 = cvpartition(haberman.class_label,'HoldOut', 0.3); 

      � 

 

The results from six consecutive runs and mean values for the fitness function and for 

the classification accuracy are depicted in table format in Figure 24. 
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Figure 24. Haberman’s data results with different random seeds. 

From the table above it can be seen that the GOWA-variant of the similarity classifier 

performed the best. It does not have the best classification accuracy, but it has the best 

fitness function value, which was the main performance measurement criteria in this 

thesis. It seems to be, that with small data set it is hard to make a robust classifier. This 

supports the claimed stated earlier in this thesis, that there need to be enough data 

available to make a good predictive model.  

4.5.2 Comparing classifiers with New-Thyroid data 

The second data set contains information about thyroid disease. This data set differs from 

the Haberman’s survival data, since it has three target classes instead of two. So this is 

not a binary classification problem as such, but it can be divided into several sub problems 

that are binary. This will be done for the Support Vector Machine classifier, since SVM 

can only be used with binary problems. The class attribute values are 0 (=euthyroidism), 

1 (=hyperthyroidism), and 2 (=hypothyroidism). Euthyroidism refers to a patient who has 

a normally operating thyroid. Hypothyroidism means that the thyroid gland does not 

make as much thyroid hormone as the body needs, i.e., the thyroid is underactive. 

Hyperthyroidism means that there is too much thyroid hormone, i.e., the thyroid is 

overactive. The predictive variables are different hormone levels measured from patients’ 

blood samples. In Figure 25 there are several scatter plots, which give a general view 

about how variables can separate the class labels.  
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Figure 25. New-Thyroid data. 

From the scatter plots it can be seen that already two variables separate the three classes 

quite well. For instance, in subplots where there are variables one and two or variables 

two and three, each three classes are clearly seen as separate groups. So the assumption 

is that also the classifiers should be able to categorize the data quite well with good 

accuracy.   

There are 215 observations is this data set, so it is a rather small data set. 150 instances 

are labeled as patients who have normally operating thyroid, 35 observations are labeled 

as hyper, and 30 as hypo-operating thyroid. These numbers were calculated as follows: 
 
observation_count = height(thyroid) 
%find out the separate target classes 
testClasses = thyroid.class_label; 
[classes,~,idx] = unique(testClasses); 
classes 
%calculate how any instances there are in each class 
nCount = accumarray(idx(:),1) 

 

If the classifier would put a normal operating label (’0’) to all samples, it would 

achieve 150/210=71.4% classification accuracy, so the classification accuracy needs to 

be significantly better than that. We won’t use the same fitness function as we used for 

Haberman’s survival data, since we have three target classes now and there is no single 

positive and negative classes (sn and sp figures are normally calculated as a fractions of 
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correctly classified positive and negative instances). For the New-thyroid data we use the 

following fitness function to assess the classifier performance: 

 ��	���  = 0.55 ∗ �AA + 0.15 ∗ &�1 + 0.15 ∗ &�2 + 0.15 ∗ &�3 
 

where ACC is accuracy, sn1 is sensitivity for class ‘0’ (normal), sn2 is sensitivity for 

class ‘1’ (hyper) and sn3 is sensitivity for class ‘2’ (hypo). Sensitivity for each class is 

calculated as a fraction of correctly classified class items, see below: &�1 = 	 BC(0)BC�0�+ ED�10�+ ED(20) 
where TP(0) equals correctly classified class ‘0’ items, FN(10) means items for which 

the true class is ‘0’, but they are classified as ‘1’ and FN(20) means items for which the 

true class is ‘0’, but they are classified as ‘2’. In the fitness function, accuracy has the 

biggest weight, and the sensitivities for each class have been given an equal weight. It 

could be argued that it is more important to find out who are the patients whose thyroid 

is not operating normally, but as for this thesis we do not have decent domain knowledge 

for this issue, equal weights are selected. 

The data set was partitioned in the same way as the Haberman’s survival data. The test 

data set was separated first (30% of data). The rest (70%) was used for training, 

optimization, and cross-validation. Again the same partition was used for all the 

classifiers. For the cross-validation only 4-folds were used, since the data set was fairly 

small, and with more folds, the test data sets would have been quite small, which could 

cause variations in results. As the data set is small, it was observed that there were also 

variations in results, if the random seed was changed when the original data split (30/70) 

to model selection and test data was generated. Therefore the training and testing of the 

model was run six times with different random seeds for the initial data split for all the 

classifiers to get more robust results. Results of the runs with different random seeds are 

gathered at the end of this chapter. 
 
for r=1:6 
rng(r*45); 
c1 = cvpartition(thyroid.class_label,'HoldOut', 0.3); 
testData = thyroid(c1.test, :); 
test_predictors = testData(:, predictorNames); 
ClassData = thyroid(c1.training, :); 
predictors = ClassData(:, predictorNames); 

 

. . . % all the classifier training and testing etc. 

 
end 

 

K-nearest neighbor hyperparameter optimization was run with each six random seeds, 

and it gave results for optimum distance measure and the number of neighbors. In each 
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round knn was also trained with selected distance measures: {'cosine', 'euclidean', 

'jaccard', 'chebychev', 'seuclidean'} and with 2…25 neighbors. The parameters which 

gave the best fitness function value were selected for each round and the final model was 

generated with those values. The results that are presented here (confusion matrixes etc.) 

are all done with the last of the six rounds. In that round the optimal parameter values 

were ‘correlation’ for distance and 6 neighbors. 

Decision tree classifier and discriminant analysis classifier were trained and optimized 

the same way they were with the Haberman’s survival data. But for the SVM classifier a 

different algorithm was needed, since the (MATLAB) fit function that was used for 

Haberman’s survival data can only be used for binary problems. SVM was trained with 

fitcecoc function, which uses a templateSVM function as a basis. Three target class 

problem is divided into three binary problems and the results are then combined. The two 

functions (templateSVM and fitcecoc), that are available in the Statistics and Machine 

Learning Toolbox in MATLAB, will do that automatically. See the example script below: 

 
template = templateSVM('KernelFunction', 'gaussian', ... 
                       'PolynomialOrder', [], ... 
                       'KernelScale', 'auto' , ... 
                       'BoxConstraint', 1, ... 
                       'Standardize', true); 
classificationSVM2 = fitcecoc(predictors, ClassData.class_label, ... 
                    'Learners', template);    

The code above was run with three different choices for the KernelFunctions 

(‘gaussian’, ‘linear’, polynomial’). KernelScale was set to ‘auto’ should find optimal 

values for KernelScale. Hyperparameter optimization was also used to find out the 

optimal Learning parameter, KernelScale value and BoxConstraint value for each run. 

Fitness function was used for selecting the best parameter options, which were then used 

to build the final model. See the multisvm_classifier.m script from the appendix for 

details. 

For the GOWA-variant of the similarity classifier, we used the same approach that was 

used for the Haberman’s survival data. Parameter p was tested with range [1.0:0.25:8] 

and α parameter with range [0.5:0.25:8]. Also the effect of different lambda values from 

within the range [0.1:0.1:5] were simulated. The performance figures for different lambda 

values are depicted in Figure 26. From the figure it can be seen that values close to 2.0 

gave the best performance figures, thus the value 2.0 was selected and the reported results 

were simulated with that value. Also with this data set, only basic RIM quantifier was 

used for weight generation. 
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Figure 26. GOWA-variant performance with different lambda values. 

The mean classification accuracies with New-thyroid data for the GOWA-variant of 

the similarity classifier are depicted in Figure 27. The maximum accuracies are gained in 

the middle of the grid, thus the used range for parameters p and α can be said to be correct. 

 

 

Figure 27. Mean classification accuracies for GOWA-variant with New-thy-

roid data. 

As already mentioned before, all the five used classifiers were optimized, trained and 

tested six times, since it was noted that the random seed used for initial data separation 

for model selection and test data has an effect for classifier performance. The cross-

validation results for all the classifiers are reported with the last round, were random seed 
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number was 270. (Normative selection was used for random seeds, value r*45 was used, 

where r is an integer from between 1…6.). Confusion charts for cross-validated models 

are illustrated in Figure 28. 

 

Figure 28. Confusion charts for cross-validated new-thyroid data. 

As expected, all the classifiers performed quite well. The decision tree classifier has 

most false predictions, but in general all classifiers predicted most of the instances 

correctly. Confusion charts for the 30% test data for all the models are depicted in Figure 

29. 

 

Figure 29. Confusion charts for New-thyroid test data. 
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There are no large variations in the confusion charts between different classifiers, but 

SVM, discriminant analysis and the GOWA-variant seem to perform a little bit better 

than others for this particular test data. All the performance measurement figures that 

were used to compare the classifiers are gathered in a table format in Figure 30. The 

discriminant analysis classifier has the best fitness function value.  

 

 

Figure 30. New-thyroid results. 

But as said, there were variations between different runs with the different random 

data partitions. This is probably due to the small sample size. In Figure 31 there is a table, 

where fitness function values are visible for six different random data partitions (for 30/70 

division). Also the mean values for these six different rounds are visible in the table. 

 

 

Figure 31. New-thyroid accuracies with different random seed. 

Since there are significant variations with majority of the classifiers between the six 

runs with different random seeds, it cannot be stated that some classifiers perform better 

than others. It can, however, be claimed that with a small data set it is hard to build a 

robust classification model.  

4.5.3 Comparing classifiers with Default of credit card clients data 

This data set differs significantly from the earlier two data sets due to a much larger 

number of observation and attributes. This makes the credit card default classification 

problem a bit more complex problem than the other two classification problems were. 

The third data set includes credit card client data with several predictors. Although, the 

data set is considerable larger than the first two data sets, a similar approach to the 

classification problem was used as what was used with the other two data sets. Only slight 

modification was done to the parameter optimization to ease the computational effort. 
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The credit card data set contains 30000 observations, and 23 parameters to be used as 

predictors. The target class labels are ‘0’ and ‘1’, where ‘0’ refers to clients who have 

paid their monthly repayment of their credit card in time, and ‘1’ refers to clients whose 

payments have defaulted. The target is to find out which clients will have defaults in their 

credit card payments, i.e., to which client credit should be given, and to which client it 

should not be given. First, data set was divided in two, as with earlier case, 40% was left 

out for testing and 60% was used for the model training and optimization. The following 

code was used for verifying that both training/optimization data and test data contain 

equal portion of both classes. 

 
ClassData_count = height(ClassData) 
cs = ClassData.class_label; 
[classes,~,idx] = unique(cs); 
nCount = accumarray(idx(:),1) 
model_data_class0 = nCount(1)/ClassData_count 
model_data_class1 = nCount(2)/ClassData_count 

  
testData_count = height(testData) 
cs = testData.class_label; 
[classes,~,idx] = unique(cs); 
nCount = accumarray(idx(:),1) 
testdata_class0 = nCount(1)/testData_count 
testdata_class1 = nCount(2)/testData_count 

 

77.9% of the clients have taken care of their monthly payments duly and 22.1% of the 

clients had problems with their payments in both data sets (the model selection data set 

(60% of the original data) and the test data set (40% or the original data)). 

The fitness function used for finding the optimum parameter and to finally rank the 

classifiers is similar to the fitness function that was used with Haberman’s survival data 

set. The fitness function for credit card data set is as follows:  

 ��	���  = 0.35 ∗ &� + 0.15 ∗ &1 + 0.5 ∗ �AA 
 

A slightly heavier weight is given for the sensitivity than for the specificity, since the 

assumption is, that it is more important to find out the clients whose payment will default 

than miss a few clients who would have been reliable. But similar to the other two data 

sets, again more domain knowledge would be required to be able to set the weights to 

better respond to the real-word requirements. 

The hyperparameter optimization was used for finding the optimal distance 

measurement criterion and the optimal number of neighbors for the k-nearest neighbor 

classifier. The results of the hyperparameter optimization can be seen in Figure 32. 
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Figure 32. K-nearest neighbor parameter optimization for the credit data. 

It was observed with all three data sets, that the hyperparameter optimization does not 

necessarily provide parameters, which would result the best classification accuracy and 

the best fitness function value. That is why the k-nearest neighbor classifier was also 

trained with a set of selected distance measurement criteria and with a selected range of 

neighbors in addition to the parameters provided by the hyperparameter optimization. The 

parameters, which resulted the best fitness function value, were selected for the final 

classification model. The hyperparameter optimization resulted ‘seuclidean’ for the best 

distance measurement criterion and 57 as the optimal number of neighbors. In addition to 

the hyperparameter optimization parameters, the knn-classifier was also trained with 

following distances {'cosine', 'euclidean', 'jaccard', 'chebychev', 'seuclidean'} and with 

[10:40] number of neighbors. The best fitness function value was achieved with ‘cosine’ 

distance and with 17 neighbors.  

Support Vector Machine classifier requires heavy computations and thus, it does not 

suite well for complex classification problems. That is why the hyperparameter 

optimization was not run for the credit card data set. It was also observed with the other 

two data sets, that the hyperparameter optimization does not always provide the best 

possible parameters. So omitting the hyperparameter optimization, is unlikely to affect 

the final classification accuracy of the SVM classifier. Decision tree and discriminant 

analysis classifiers were trained the similar way as they were trained with the previous 

two data sets. 

The GOWA-variant of the similarity classifier was first trained with different lambda 

values from within the range [0.1:0.3:5]. The best classification accuracy and also the 

best fitness function value was gained with lambda value 3.4., which can be observed 

from Figure 33. 
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Figure 33. Different lambda values for credit card client data. 

After the lambda value was selected, the GOWA-variant of the similarity classifier 

was trained with parameter values p and λ with both from within a range [0.25:0.25:5]. 

The mean classification accuracies are depicted in Figure 34. Similarly with the previous 

two data set, the maximum classification accuracy is in the middle of the grid, thus 

making the used parameter ranges feasible for the simulations. 

  

 

Figure 34. Mean classification accuracies for credit data. 

The actual training and cross-validation was done the same way as it was done with 

the other two data sets. See the MATLAB codes from the appendix for details. The 

confusion charts for the cross-validation for all the five classifiers are depicted in Figure 

35. 
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Figure 35. Confusion charts for cross-validated classifiers for credit data. 

It can be seen from the confusion charts that most of classifiers were able to predict 

the target class ‘0’ (clients who have made their payments duly) quite well. But predicting 

the clients whose payments would default, seem to be a hard task for the classifiers. Only 

one classifier, the discriminant analysis classifier, could predict more than half of the 

positive class (‘1’) members correctly. K-nearest neighbor, decision tree and SVM 

classifiers were only able to predict one third of the positive instances correctly. 

Confusion charts for the test data in Figure 36 give pretty much the same numbers as the 

confusion charts for the cross-validation data. Note that the confusion charts for the 

GOWA-variant of the similarity classifier has different labels for classes than the other 

classifiers. This is due to the fact that the GOWA-variant, which is used in this thesis, 

orders the classes and labels the classes in order starting from 1. Thus the class label ‘1’ 

equals to the class label ‘0’ and the class label ‘2’ equals to the class label ‘1’ in the 

GOWA-variant of the similarity classifier related confusion charts. 
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Figure 36. Confusion charts for credit card test data. 

According to the confusion charts presented in Figure 35 and in Figure 36, it can be 

claimed that when the data set is large enough, cross-validation results and results gained 

with previously unseen test data are close to each other. More domain knowledge would 

be needed to be able to judge whether the generated classification models would be useful 

in a real business environment. Since although nearly half of the clients with problems in 

their payments were classifier incorrectly, it could still benefit the business if half of the 

possible defaulted cases would be pointed out beforehand and credit is then not granted 

to those clients. 

The results of all of the five classifier are gathered in table format in Figure 37. From 

the table it can be seen, that there are no big differences between the classifiers. K-nearest 

neighbor, decision tree and SVM all provide quite similar results. It should be noted, that 

while discriminant analysis gives the best fitness function value and the best sensitivity 

value (detects best the defaulted clients) it makes most errors with clients who will pay 

their credit duly. So it should be evaluated which one is more critical to the company, to 

lose some good clients who would have made their payments duly or to be able to detect 

those clients who will end up with problems with their payments. 

 

Figure 37. Credit card client data results. 
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As this data set was significantly larger than the other two data sets, also the executing 

times play some role in selecting a suitable method for solving the classification problem. 

Training times with the computing power available for this thesis for all of the five 

classifiers are gathered in table format in Figure 38. The training time for the GOWA-

variant of the similarity classifier is a training time with only one lambda value.  

 

Figure 38. Classifier training times for credit card data. 

Training times in Figure 38 show that the classifier, which require more complex 

computation are much slower to train than other classifiers. Especially SVM gets slow 

when the observation count and the number of predictors increase. The training time for 

the GOWA-variant of the similarity classifier is directly proportional to the number of 

different parameter values used (p, α and λ). But if the parameter ranges are not too large, 

the training time for the GOWA-variant of the similarity classifier is feasible also for the 

larger data set. 

 

Figure 39. ROC curves for reference classifiers for credit card data. 

The ROC curves for the four reference classifiers are depicted in Figure 39 for 

reference. 
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5 CONCLUSION 

5.1 Answering the posed research questions 

This thesis studies the GOWA-variant of the similarity classifier and investigates whether 

it is a useful method to be used in classification problems within the business context. 

This main research question was divided into three sub-question, which are used for 

supporting the answering to the main research question. The theoretical part of the thesis 

introduced the main research subject and defines the related terminology and methods 

that are needed to be able to understand the foundations of classification problems and 

more precisely the GOWA-variant of the similarity classifier. The practical part of the 

thesis contains benchmarking of a set of selected classical classifiers against the GOWA-

variant of the similarity classifiers. Three different data sets are used for this 

benchmarking process. The benchmarking process is executed with mathematical tool 

called MATLAB. 

 

The first sub-question posed is:  

1. What previous academy research literature exists on similarity based classifi-

ers and what are the results of the said previous research? 

 

To answer this question, a literature review was performed and the results of that 

review are presented in chapter 3.4. The literature review shows that not a lot of research 

exists on similarity classifiers in the business context. Most of the research on similarity 

classifiers concentrates in the concept itself, further development of the method, and its 

capabilities and not so much on the possible application areas. It was observed the medical 

diagnostic data seems to be the most used type of data and thus medicine the most 

prolifically used application area for similarity classifiers. There were only a few research 

papers that concentrate directly on solving business related problem. Those papers were 

shortly introduced in Table 1. Credit scoring seems to be the most popular business related 

area for similarity classifiers. Some of the papers that were reviewed in chapter 3.4 relate 

to credit scoring data. One set of credit card client data is also used for this thesis in the 

classifier benchmarking process. 

All in all, the previous research is “interested in” the quality of similarity classifiers, 

i.e., on how well they can perform and on which variants are the best. Most of the previous 

research can be categorized under mathematical or computer science research, but there 

is a research gap in the application of similarity classifiers to business related problems. 

There is a room for more research on how well similarity-based classifiers are suited for 
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solving business related problems and how they can be used to help business related 

decision making.  

 

The second sub-question for this research is: 

2. How do similarity-based classifiers work and especially how does the 

GOWA-variant of the similarity classifier work? 

 

This sub-question is answered partly in the theoretical part of this thesis. Chapter 3.2 

on similarity-based classification discusses the similarity-based classification in general 

and the chapter 3.3 on the GOWA-variant of the similarity classifier explains in more 

detail what the GOWA-variant of the similarity classifier is and how it is built. Classifiers 

in general aim to categorize new items to a set of pre-determined target classes. 

Similarity-based classifiers use a similarity measure to determine the correct class. There 

are different ways to determine the similarity measure and to aggregate similarities of 

individual attributes to a one common similarity value. The classifier used in this thesis 

uses generalized ordered weighted average operator in aggregation. When the GOWA-

variant of the similarity classifier is trained ideal vectors that represent the target classes 

are generated first. The ideal vectors are representative vectors of centroid samples for 

each class. They include a set of measured features, also called predictors. A similarity 

value is calculated between a new sample and these ideal vectors (of all classes) and the 

sample is set to belong in the class from which the ideal vector it is most similar to the 

sample.  

A MATLAB model of the GOWA-variant of the similarity based classifier is 

generated and tested with various data sets in chapter 4.5. The script that is used for 

executing the classification tasks in this thesis can be found from the appendix, see the 

codes under gowa_classifier.m. In that script both training and test data is first initialized 

so that all features are scaled between 0…1 and observations are ordered according to 

class (classes are labeled in a descending order, starting form 1). After that the ideal 

vectors are generated for training data for each fold. Then similarities are calculated 

between the ideal vectors and test data. The class label for each instance in test data is 

selected based on to the class with which the instance has the largest similarity value. 

After that the needed performance measure values, such as classification accuracy, are 

calculated.  

The GOWA-variant of the similarity classifier was used to classify observations in 

three different data sets. Two of them were the same sets that were used in the research 

paper by Kurama et al. (2017). These two data sets (Haberman’s survival data and New-

thyroid data) were selected so that the results from this research can be compared to the 

research performed by Kurama et al. With Haberman’s survival data Kurama et al. 

reached 76.3% classification accuracy with Basic RIM quantifier (the quantifier that is 
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used in this thesis). In this thesis the classification accuracy varied with different random 

data partition for training/cross-validation and test data, so it is hard to make a clear 

comparison. The whole training and testing procedure was repeated six times, for the last 

run 78.02% classification accuracy was achieved. The mean classification accuracy over 

the six consecutive runs was 73.8%. The figures are roughly in the same scale as what 

Kurama et. al received in their work. For the New-thyroid data set, the reference 

classification accuracy is 97.44% (taken from Kurama’s et al. paper). The New-thyroid 

data set is quite small and it was observed in this thesis that classification accuracy varies 

a little when the random partition for initial model selection (the data used for cross-

validation) and test data is done. Results in chapter 4.5.2 are reported with one random 

data split and also as a mean value of six different random splits. For one random split, 

the resulted accuracies are 94.7% for test data and 98.44% for the cross-validation. The 

mean value of the six subsequent runs is 95.5%. There are slight variations in the accuracy 

figures between different runs. But they are still quite close to the results provided by 

Kurama et al. The results between these two studies are not directly comparable as the 

data used for the classifier training and testing are not exactly the same. Even though the 

original data is the same data, it is split differently into training and test data sets, which 

will have an effect on the results – this is especially relevant since these two data sets are 

fairly small. 

   

The third sub-question is: 

3. How well does the studied similarity-based classifier(s) function in compari-

son with other selected classifiers? 

 

To answer this question, a benchmarking process was performed were the GOWA-

variant of the similarity classifier was compared against four classical classifiers. The 

different classifiers selected for the benchmarking are the K-nearest neighbor, 

discriminant analysis, decision tree and Support Vector Machine classifiers. All five 

classifiers were trained and tested with three different data sets. The exactly the same data 

was used for training and testing in each case to ensure comparability. The MATLAB 

scripts that were used for the benchmarking can be found in the appendix. The results for 

the comparison process are presented in detail in chapter 4.5. The classification accuracy 

is the most common way to assess classification performance, but the fitness function 

used in this thesis adds also to other measurement criteria to the performance evaluation, 

specifically the sensitivity and specificity, i.e., the classifiers capability to correctly 

classify positive and negative instances. The use of a fitness function in measuring 

performance of classifiers can be considered a small novel scientific contribution. Each 

measurement criteria was given a weight and the fitness function is built in the way that 
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output values are always from within the range 0…1 and for a perfect classifiers the result 

is 1.  

With the Haberman’s survival data, the GOWA-variant of the similarity classifier 

performed best. The GOWA-variant gave the value 0.685 for the fitness function (mean 

value of six runs), the second best decision tree classifier gained 0.673 fitness function 

value and results from the other tested classifiers were in the range 0.629…0.671. If we 

compare the mean classification accuracies, the discriminant analysis classifier has the 

best classification accuracy. See Figure 21 for details on the result. 

New-thyroid data was the second benchmarking data set. It differs from the first one, 

as this is not a binary classification problem, instead there are three target classes. 

Therefore also the used fitness function is a bit different, than what is was for the 

Haberman’s survival data. For New-thyroid data set, sensitivities for each target class are 

calculated and weighted equally in addition to classification accuracy to determine the 

fitness function value and thus the classifier performance. With this data set the results 

varied with different random data splits into cross-validation data and test data. Therefore 

it is harder to make a comparison between classifiers, different classifiers performed best 

in different runs. Only the decision tree classifier was clearly the worst performing 

classifier with this data in all runs. The results for a one run are gathered in Figure 30. To 

gain more reliable results, the classifiers were trained, cross-validated and tested six times 

with different random data split and the mean fitness function values of these six 

consecutive runs were calculated. If we look at those mean values, the GOWA-variant of 

the similarity classifier was third in performance - both in the mean fitness function value 

and in the mean classification accuracy. Discriminant analysis classifier performed best 

with this data set. But ranking the selected classifiers is not clear in this case, since the 

results varies quite a bit between different data splits. For instance the GOWA-variant of 

the similarity classifier outputs fitness function value 0.951 in the sixth run and 0.855 in 

the fourth run. The difference is quite significant. The performance of other classifiers 

also varies, but not that significantly. It can be claimed that it is hard to build a robust 

classifier with a rather small data set, but it might be even more so with the similarity 

classifier. At least this was the case with the New-thyroid data set.    

The third data set is significantly larger than the other two sets and it is directly related 

to the business-related decision making. The third data set contains information of credit 

card clients and the target is to find out whether the clients are trustworthy or not, i.e., 

whether they will make their payments duly or will they be in default. As this data set 

was much more complex than the other two sets, also the running time plays some role 

when comparing different classifiers. But the main comparison was done with the fitness 

function as it was also done with the other two data sets. This time discriminant analysis 

classifier resulted the best fitness function value 0.703, but the GOWA-variant of the 

similarity classifier was only a slightly worse than that, giving a fitness function value 
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0.694. The rest of the classifiers had fitness function values from within the range 

0.664…0.678. The notable difference with this data set was in the sensitivity values. The 

discriminant analysis classifier is clearly the best at recognizing true positive items, the 

GOWA-variant of the similarity classifier comes in second, but they are both worse than 

the other classifiers at recognizing true negative items. So it depends on what feature is 

valued the most, which classifier is most beneficial. For this thesis the fitness function 

was used to determine the ranking of classifiers. In the fitness function the sensitivity has 

a little more weight than the specificity. With this measurement criteria, discriminant 

analysis performs the best (fitness function value = 0.703) and the GOWA-variant of the 

similarity classifier is nearly as good as the discriminant analysis classifier (fitness 

function value = 0.694). The training times for each of the classifiers were also observed 

with this data set. If the lambda parameter value is determined beforehand for the GOWA-

variant of the similarity classifier, then the training time is comparable with the other 

classifiers, but if we test a lot of different options for all parameters, then the training time 

gets fairly long. But it is the same with other classifiers as well, the more options you 

tests, the longer it takes. But as said, with one parameter set beforehand, training a 

similarity classifier is quite smooth even with bigger data. 

 

The benchmarking process did not give a clear winner, as could be expected. Solving 

a classification problem solving is always a heuristic process, where you need to try many 

different methods and then choose the one that gives best results and is most suitable for 

the use case. There is no one method that would be suited best for all the classification 

problems. But as the GOWA-variant of the similarity classifier was compared against a 

set of classical classifiers, it was shown that its performance is in line with the other 

classifiers. It outperformed the other classifiers with one data, and did fairly well also 

with the other two data. After given and answer to all of the sub-questions, we can also 

answer to the main research question, which was whether the GOWA-variant of the 

similarity classifier is a useful classifier to be used in the business context. According to 

the findings in this research, and specifically to answer the main research question posed, 

the GOWA-variant of the similarity classifier seems to be a viable option when classifiers 

are selected to be used in the business context. 

5.2 Criticism and future research directions 

Both of the small data sets used in this study indicated that the original split into a training 

data and test data could affect significantly to the final classification accuracy. This study 

used a method where a predetermined amount of data (30% or 40% in this study) was left 

out as test data and the rest of the data was used for model training and cross-validation. 
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Another option could have been to divide the whole data set into training and test data, 

and repeat that random split several times. The final classification accuracy would then 

be calculated as a mean value of those repeated runs. For a smaller data sets, the repeated 

splits and mean value calculation could generate more robust results, but separating a part 

of data from a beginning for testing helps to avoid overfitting. For the smaller data sets, 

this thesis combined these two approaches. A part of the data was left out for testing at 

the beginning to avoid overfitting, but the whole procedure was repeated several times 

and mean values were calculated for the these consecutive runs. Since there are different 

options on how data is divided into training and test data, the comparison of different 

methods should always be done with exactly the same data. If random data split is used, 

the random seed should be predetermined to ensure repeatable results. This study 

confirms the two aforesaid requirements.  

As said several times already earlier in this study, choosing a classifier is always a 

heuristic process, and there is no one method that is best suited for all classification 

problems. Thus, the results gained in this study cannot not be generalized to a wider 

content, i.e., it cannot be guaranteed that classifiers, which performed best with the data 

sets used in this thesis, will also perform best with some other data sets. 

This research is quite narrow with only three data sets and only one of them being a 

business related data, it still did not show any reason why similarity based classification 

should not be used in business related decision making. It was observed that for small 

data sets the results varied a lot depending on the used test data. So in the future more 

benchmarking should be performed with larger data sets to gain more insights of the 

performance of the GOWA-variant of the similarity classifier. The data sets that were 

used in this research contained only numerical data and there were no missing items. 

Further research should be performed to find out if the GOWA-variant of the similarity 

classifier is suitable for data sets were there are also categorical attributes. Further 

research could also study how well similarity classifier deal with missing items in 

predictors. This study only used data from the UCI Machine Learning Repository, which 

is a common source for data in machine learning research. In the future it would be 

interesting to compare different classifiers with some real world business data, were input 

data is probably not that uniform and more pre-processing of the data is needed before 

training the classifiers can be performed.  
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APPENDIX 

knn_classifier.m: 
%% Train K-nearest neighbor classifier 
rng(1); 
Mdl = fitcknn(predictors, ClassData.class_label, 'OptimizeHyperparame-
ters', ...   
      'auto', 'HyperparameterOptimizationOptions', ... 
      struct('AcquisitionFunctionName', 'expected-improvement-plus')); 
opdist = Mdl.ModelParameters.Distance; 
opneigbors = Mdl.ModelParameters.NumNeighbors; 

  
fitCum = zeros(length(distances),length(numNeighbors)); 
for j=1:length(distances) 
   for i=1:length(numNeighbors) 
       knnmdl = fitcknn(predictors, ClassData.class_label, ...  
            'Distance', string(distances(j)), ...  
            'NumNeighbors', numNeighbors(i), ... 
            'DistanceWeight', 'Equal', 'Standardize', true); 
       cvknnmdl = crossval(knnmdl, 'CVPartition', cv_data); 
       [predictions, score] = kfoldPredict(cvknnmdl); 
       [Accuracy, sn, sp] = evaluate_classifier(predictions,   
                 ClassData.class_label, classes, 0, ''); 
       if (length(classes)==2) 
          fitness = calc_fit(Accuracy, sn, sp, fitness_weights);  
       else 
          fitness = calc_fit_multiclass(Accuracy, sn(1),sn(2),sn(3),…   
                    fitness_weights);  
       end                                   
       fitCum(j,i) = fitness; 
   end 
end 

  
% train model with results of hyperparameter optimization 
knnmdl = fitcknn(predictors, ClassData.class_label, 'Distance',…  
         opdist, ... 
                 'NumNeighbors', opneigbors, ... 
                 'DistanceWeight', 'Equal', 'Standardize', true); 
cvknnmdl = crossval(knnmdl, 'CVPartition', cv_data); 
[predictions, score] = kfoldPredict(cvknnmdl); 
[Accuracy, sn, sp] = evaluate_classifier(predictions,…  
                     ClassData.class_label, classes, 0, ''); 
if (length(classes)==2) 
   optfitness = calc_fit(Accuracy, sn, sp, fitness_weights);  
else 
   optfitness = calc_fit_multiclass(Accuracy, sn(1),sn(2),sn(3), … 
                fitness_weights);  
end 
%% find maximum fitness function value 
maxfit = max(max(fitCum)); 
[j1,i1]=find(maxfit==fitCum); 

  
% train the model with optimal parameters 
if (maxfit>optfitness) 
   knnmdl = fitcknn(predictors, ClassData.class_label, ...  
            'Distance', string(distances(j1(1))), ... 
            'NumNeighbors', numNeighbors(i1(1)), ... 
            'DistanceWeight', 'Equal', 'Standardize', true); 
   cvknnmdl = crossval(knnmdl, 'CVPartition', cv_data); 
   optimal_knn_distance = string(distances(j1(1))) 
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   optimal_num_neighbors = numNeighbors(i1(1)) 
end 

  
cvAccuracy = (1 - kfoldLoss(cvknnmdl, 'LossFun', 'ClassifError')); 

  

tree_classifier.m: 
function [treemdl, cvtreemdl, treecvAccuracy] = … 
          tree_classifier(ClassData, cv_data, predictors, … 
                          classes, fitness_weights) 

 
%% Train Decision tree classifier 
i_val = []; 
k_val = []; 
Fit_Cum = []; 
for i=1:10 
  for k=1:10   
    treemdl = fitctree(predictors, ClassData.class_label,…  
             'SplitCriterion', 'gdi', ... 
             'MaxNumSplits', i*2+2, 'MinLeafSize', 10+k*2, … 
             'Surrogate', 'off');     
    cvtreemdl = crossval(treemdl, 'CVPartition', cv_data); 
    [predictions, score] = kfoldPredict(cvtreemdl); 
    [Accuracy, sn, sp] = evaluate_classifier(predictions,… 
                         ClassData.class_label, classes, 0, ''); 
    if (length(classes)==2) 
        fitness = calc_fit(Accuracy, sn, sp, fitness_weights); 
    else 
        fitness = calc_fit_multiclass(Accuracy, sn(1),sn(2),sn(3),… 
                  fitness_weights);  
    end 
    Fit_Cum = [Fit_Cum fitness]; 
    i_val = [i_val i]; 
    k_val = [k_val k]; 
  end 
end     
[M, I] = max(Fit_Cum); 

  
treemdl = fitctree(predictors, ClassData.class_label,… 
                   'SplitCriterion', 'gdi', ... 
                   'MaxNumSplits', i_val(I)*2+2, 'MinLeafSize',… 
                   10+k_val(I)*2, 'Surrogate', 'off'); 
cvtreemdl = crossval(treemdl, 'CVPartition', cv_data); 
treecvAccuracy = (1 - kfoldLoss(cvtreemdl, 'LossFun',…  
                  'ClassifError')); 

 

svm_classifier.m: 
function [svmmdl,cvsvmmdl,svmcvAccuracy] = svm_classifier(ClassData, … 
          cv_data, predictors, classes, fitness_weights, doHyperOpt) 

  
%% Train SVM classifier 
if (doHyperOpt==1) 
   rng(1); 
   opts =  struct('Optimizer','bayesopt','ShowPlots',true,… 
          'CVPartition',cv_data,... 
          'AcquisitionFunctionName','expected-improvement-plus'); 
   rng(1); 
   svmmod = fitcsvm(predictors,ClassData.class_label,… 
           'KernelFunction','rbf',... 
           'OptimizeHyperparameters','all',… 
           'HyperparameterOptimizationOptions',opts); 
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   scale_f = [1e-5 1e-4 1e-3 1e-2 1e-1 1 10 100 1000 10000 100000]; 
else 
   scale_f = [1e-4 1e-2 1 10 100]; 
end 

  
%Retrain the SVM classifier, but adjust the 'KernelScale' and 'BoxCon-
straint' name-value pair arguments. 
svmmod2 = fitcsvm(predictors, ClassData.class_label, ... 
                 'KernelFunction', 'gaussian', ...  
                 'PolynomialOrder', [], 'KernelScale', 'auto', ... 
                 'BoxConstraint', 1, ...   
                 'Standardize', true); 
scale = svmmod2.KernelParameters.Scale; 

  
Fit_Cum = []; 
for i=1:(length(scale_f)) 
    svmmdl = fitcsvm(predictors, ClassData.class_label, ... 
                    'KernelFunction', 'gaussian', ...  
                    'PolynomialOrder', [], 'KernelScale',…     
                     scale*scale_f(i), ... 
                    'BoxConstraint', scale_f(i), ...   
                    'Standardize', true);           
    cvsvmmdl = crossval(svmmdl, 'CVPartition', cv_data);   
    [predictions, score] = kfoldPredict(cvsvmmdl); 
    [Accuracy, sn, sp] = evaluate_classifier(predictions,… 
                       ClassData.class_label, classes, 0, ''); 
    fitness = calc_fit(Accuracy, sn, sp, fitness_weights);  
    Fit_Cum = [Fit_Cum fitness]; 
end 

  
if (doHyperOpt==1) 
    if (isnan(svmmod.HyperparameterOptimizationResults.XAtMinObjec-
tive.KernelScale)) 
       scale = 1; 
    else 
       scale = svmmod.HyperparameterOptimizationResults.XAtMinObjec-
tive.KernelScale; 
    end 
    svmmdl = fitcsvm(predictors, ClassData.class_label, ... 
                    'KernelFunction', string(svmmod.HyperparameterOp-
timizationResults.XAtMinObjective.KernelFunction), ... 
                    'BoxConstraint',…  
svmmod.HyperparameterOptimizationResults.XAtMinObjective.BoxCon-
straint,... 
                    'KernelScale', scale,...   
                    'Standardize', true);         
    cvsvmmdl = crossval(svmmdl, 'CVPartition', cv_data);   
    [predictions, score] = kfoldPredict(cvsvmmdl); 
    [Accuracy, sn, sp] = evaluate_classifier(predictions,… 
                     ClassData.class_label, classes, 0, ''); 
    fitness = calc_fit(Accuracy, sn, sp, fitness_weights);  
    Fit_Cum = [Fit_Cum fitness];   
end 

  
[M, I] = max(Fit_Cum); 

  
if (I==length(scale_f)+1) 
   kScale    = svmmod.HyperparameterOptimizationResults.XAtMinObjec-
tive.KernelScale 
   BoxC      = svmmod.HyperparameterOptimizationResults.XAtMinObjec-
tive.BoxConstraint 
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   KFunction =  string(svmmod.HyperparameterOptimizationRe-
sults.XAtMinObjective.KernelFunction) 
else 
   kScale = scale*scale_f(I) 
   BoxC   = scale_f(I) 
   KFunction =  'gaussian' 
end 

  
svmmdl = fitcsvm(predictors, ClassData.class_label, ... 
                 'KernelFunction', KFunction, ...  
                 'PolynomialOrder', [], 'KernelScale', kScale, ... 
                 'BoxConstraint', BoxC, ...  
                 'Standardize', true); 
cvsvmmdl = crossval(svmmdl, 'CVPartition', cv_data); 

  
svmcvAccuracy = (1 - kfoldLoss(cvsvmmdl, 'LossFun', 'ClassifError')); 

 

discriminant_classifier.m: 
function [dismdl, cvdismdl, cvdisAccuracy] = discriminant_classi-
fier(ClassData, cv_data, predictors, classes, fitness_weights, discri-
minant_types) 

  
%% Train Discriminant Analysis classifier 
gammap = [0, 1]; 
fillp = {'off', 'on'}; 
i_val = []; 
k_val = []; 
n_val = []; 
Fit_Cum = []; 
for i=1:length(discriminant_types) 
    for k=1:2 
       for n=1:2 
         dismdl = fitcdiscr(predictors, ClassData.class_label, ... 
                   'DiscrimType', string(discriminant_types(i)), ... 
                   'FillCoeffs', string(fillp(n)), ... 
                   'Gamma', gamma(k)); 
         i_val = [i_val i]; 
         k_val = [k_val k]; 
         n_val = [n_val n]; 
         cvdismdl = crossval(dismdl, 'CVPartition', cv_data); 
         [predictions, score] = kfoldPredict(cvdismdl); 
         [Accuracy, sn, sp] = evaluate_classifier(predictions,… 
                   ClassData.class_label, classes, 0, ''); 
         if (length(classes)==2) 
            fitness = calc_fit(Accuracy, sn, sp, fitness_weights);  
         else 
            fitness = calc_fit(Accuracy, sn(1), sp, fitness_weights);   
         end 
         Fit_Cum = [Fit_Cum fitness]; 
       end 
    end 
end 

  
[M, I] = max(Fit_Cum); 

  
dismdl = fitcdiscr(predictors, ClassData.class_label, ... 
                   'DiscrimType', … 
                   string(discriminant_types(i_val(I))), ... 
                   'FillCoeffs', string(fillp(n_val(I))), ... 
                   'Gamma', gamma(k_val(I))); 
cvdismdl = crossval(dismdl, 'CVPartition', cv_data); 
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cvdisAccuracy = (1 - kfoldLoss(cvdismdl, 'LossFun', 'ClassifError')); 

 

gowa_classifier.m: 
function [Accuracy, class, sn, sp, truelabels, cvfitness, cvclass,… 
truecvlabels, fitness_f] = gowa_classifier(ClassData, cv, testData,… 
classes, fitness_weights, v, c, p, m, lambda, pl) 

  
measure = 1; % Which quantifier in OWA operators you want to use.  

  
fitness = zeros(1,cv.NumTestSets); 
fit = zeros(1,cv.NumTestSets); 
meanfit = zeros(length(p),length(m)); 
Vars = zeros(length(p),length(m));  
Maxsf = zeros(length(p),length(m)); 
Minsf = zeros(length(p),length(m)); 

  
for j = 1:length(m)  
    for i = 1:length(p)   
        y = [p(i), m(j), measure, lambda];   
        for k = 1:cv.NumTestSets 
            trIdx = cv.training(k); 
            teIdx = cv.test(k); 
            datalearn = table2array(ClassData(trIdx, :)); 
            datatest  = table2array(ClassData(teIdx, :));  
            [datatest, tc_sizes, cstart_idx] = … 
                                 init_data(datatest,v,c);  
            [datalearn, lc_sizes, cstart_idx] = … 
                                 init_data(datalearn,v,c); 
            ideal_vec = idealvectors(datalearn, y); 
            [fitness(k), class, Simil] = calcfit(datatest, … 
                                          ideal_vec, y);  
            [acctmp, sn, sp] = evaluate_classifier(class,…  
                               datatest(:,end), classes, 0, ''); 
            if (length(classes)==2) 
                fit(k) = calc_fit(fitness(k),sn,sp,fitness_weights); 
            else 
                fit(k) = calc_fit_multiclass(fitness(k),sn(1),sn(3),… 
                         sn(3), fitness_weights); 
            end 
        end 
        meanfit(i,j) = mean(fit); 
        Vars(i,j)  = var(fit); 
        Maxsf(i,j) = max(fit); 
        Minsf(i,j) = min(fit); 
    end 
    fitness=[]; 
    fit = []; 
end  
maxfit = max(max(meanfit)); 
[p1,m1]=find(maxfit==meanfit); 
% if maximum value is there more than once, take the first one and 
find out the actual parameter  
% p and m values for that index  
p_o = p(p1(1)); 
m_o = m(m1(1)); 

  
data_h = table2array(ClassData); 
data_h = init_data(data_h, v, c); 
testArraytmp = table2array(testData); 
testArray = init_data(testArraytmp, v, c); 
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truelabels = testArray(:,end); 
truecvlabels = data_h(:,end); 

  
% find optimum parameter for max fitness function and calculate test-
data values with those parameters 
y = [p_o, m_o, measure, lambda]; 
% calculate ideal vector with the best parameters for the whole train-
ing data 
final_ideal_vec = idealvectors(data_h, y); 
% calculate cross-validation fitness 
[cvfitness, cvclass, cvSimil] = calcfit(data_h, final_ideal_vec, y); 
% calculate fitness for the test data (that data has not been used for 
training)  
[fitness, class, Simil] = calcfit(testArray, final_ideal_vec, y); 
% calculate sensitivity & specificity for the final classifier with 
test data 
[acc, sn, sp] = evaluate_classifier(class, testArray(:,end), … 
                classes, 0, ''); 
% calculate fitness function value for test data 
if (length(classes)==2) 
   fitness_f = calc_fit(fitness, sn, sp, fitness_weights); 
else 
   fitness_f = calc_fit_multiclass(fitness, sn(1), sn(2), sn(3), fit-
ness_weights); 
end 

  
Accuracy = fitness; 

  
if (pl==1) 
    [X,Y] = meshgrid(m,p); 
    figure 
    surfc(X,Y,meanfit) 
    title('Mean classification accuracies','FontSize',15) 
    xlabel('\alpha-values') 
    ylabel('p-values') 
    zlabel('Classification accuracy') 
    end 
    clear Y 
end 
 

multisvm_classifier.m: 
function [svmmdl,cvsvmmdl,svmcvAccuracy] = … 
         multisvm_classifier(ClassData, cv_data, predictors, … 
                            classes, fitness_weights) 

  
%% Train SVM classifier 
opts = struct('Optimizer','bayesopt', 'ShowPlots',true, … 
       'CVPartition',cv_data,... 
       'AcquisitionFunctionName','expected-improvement-plus'); 
rng(1); 
svmmod = fitcecoc(predictors,ClassData.class_label,… 
         'OptimizeHyperparameters', 'auto',… 
         'HyperparameterOptimizationOptions', opts); 

        
%Retrain the SVM classifier, but adjust the 'KernelScale' and 'BoxCon-
straint' name-value pair arguments. 
template = templateSVM('KernelFunction', 'gaussian', ... 
                       'PolynomialOrder', [], ... 
                       'KernelScale', 'auto' , ... 
                       'BoxConstraint', 1, ... 
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                       'Standardize', true); 
classificationSVM2 = fitcecoc(predictors, ClassData.class_label, ... 
                    'Learners', template);      

                 
% hyperpamater optimization is quite slow for this classifier. That is 
% why it is not run each time, the values should be the same since % 
rng(1) was called before the above optimal values were generated 
opt_coding =… 
 svmmod.HyperparameterOptimizationResults.XAtMinObjective.Coding;  
opt_scale = … 
svmmod.HyperparameterOptimizationResults.XAtMinObjective.KernelScale;  
opt_box = … 
svmmod.HyperparameterOptimizationResults.XAtMinObjective.BoxCon-
straint; 

  
k_func = {'gaussian', 'linear', 'polynomial'}; 
Fit_Cum = []; 
for i=1:4 
   if (i==4) 
       tmpl = templateSVM('KernelFunction', 'gaussian', ... 
                       'PolynomialOrder', [], ... 
                       'KernelScale', opt_scale, ... 
                       'BoxConstraint', opt_box, ... 
                       'Standardize', true); 
       svmmdl = fitcecoc(predictors, ClassData.class_label, ... 
                    'Learners', tmpl, ... 
                    'Coding', string(opt_coding));              
   else 
       tmpl = templateSVM('KernelFunction', string(k_func(i)), ... 
                      'PolynomialOrder', [], ... 
                      'KernelScale', 'auto', ... 
                      'BoxConstraint', 1, ... 
                      'Standardize', true); 
       svmmdl = fitcecoc(predictors, ClassData.class_label, ... 
                     'Learners', tmpl); 
   end          
   cvsvmmdl = crossval(svmmdl, 'CVPartition', cv_data);  
   [predictions, score] = kfoldPredict(cvsvmmdl); 
   [Accuracy, sn, sp] = evaluate_classifier(predictions,    
                    ClassData.class_label, classes, 0, ''); 
   fitness = calc_fit_multiclass(Accuracy, sn(1), sn(2), sn(3),… 
                                fitness_weights); 
   Fit_Cum = [Fit_Cum fitness]; 
end 

  
[M, I] = max(Fit_Cum); 

  
if (I==4) 
   kernel_func = 'gaussian'; 
else 
   kernel_func = k_func(I); 
end 

  
tmpl = templateSVM('KernelFunction', string(kernel_func), ... 
                   'PolynomialOrder', [], ... 
                   'KernelScale', 'auto', ... 
                   'BoxConstraint', 1, ... 
                   'Standardize', true); 
svmmdl = fitcecoc(predictors, ClassData.class_label, ... 
                   'Learners', tmpl); 
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cvsvmmdl = crossval(svmmdl, 'CVPartition', cv_data); 

  
svmcvAccuracy = (1 - kfoldLoss(cvsvmmdl, 'LossFun', 'ClassifError')); 

 

calc_fit.m: 
function fitness = calc_fit(Accuracy, sn, sp, weights) 

  
fitness = weights(1)*Accuracy + weights(2)*sn + weights(3)*sp; 

calc_fit_multiclass.m: 
unction fitness = calc_fit_multiclass(Accuracy, sn1, sn2, sn3,… 
                                      weights) 

  
fitness = weights(1)*Accuracy + weights(2)*sn1 + weights(3)*sn2… 
          + weights(4)*sn3; 

 

evaluate_classifier.m: 
function [Accuracy, sn, sp] = evaluate_classifier(predictions,… 
             truelabels, classes, plot_ch, charttitle) 

  
[cm,cl] = confusionmat(truelabels, predictions); 

  
if (plot_ch==1) 
   figure 
   confusionchart(truelabels,predictions, 'ColumnSummary',… 
                  'column-normalized', ... 
                 'RowSummary','row-normalized');   
   title(charttitle);    
end 

  
if (length(classes) == 2) 
   FP = cm(cl==classes(1), cl==classes(2));  
   FN = cm(cl==classes(2), cl==classes(1));  
   TP = cm(cl==classes(2), cl==classes(2)); 
   TN = cm(cl==classes(1), cl==classes(1)); 
   sn = TP / (TP+FN); 
   sp = TN / (TN+FP); 
   Accuracy = (TP+TN)/(TP+TN+FP+FN); 
else 
   T1  = cm(cl==classes(1), cl==classes(1)); 
   T2  = cm(cl==classes(2), cl==classes(2)); 
   T3  = cm(cl==classes(3), cl==classes(3)); 
   F12 = cm(cl==classes(2), cl==classes(1)); 
   F13 = cm(cl==classes(3), cl==classes(1)); 
   F21 = cm(cl==classes(1), cl==classes(2)); 
   F23 = cm(cl==classes(3), cl==classes(2)); 
   F31 = cm(cl==classes(1), cl==classes(3)); 
   F32 = cm(cl==classes(2), cl==classes(3)); 
   sn = zeros(1,length(classes)); 
   sn(1) = T1/(T1+F21+F31); 
   sn(2) = T2/(T2+F12+F32); 
   sn(3) = T3/(T3+F13+F23); 
   sp = 0; 
   Accuracy = (T1+T2+T3)/(T1+T2+T3+F12+F13+F21+F23+F31+F32); 
end 

 
Haberman_import.m: 
%% Import data from text file. 
filename = ‘haberman.data'; 
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delimiter = ','; 
%% Format for each line of text: 
formatSpec = '%f%f%f%f%[^\n\r]'; 
%% Open the text file. 
fileID = fopen(filename,'r'); 
%% Read columns of data according to the format. 
dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, … 
'TextType', 'string',  'ReturnOnError', false); 
%% Close the text file. 
fclose(fileID); 
%% Create output variable 
haberman = table(dataArray{1:end-1}, 'VariableNames', … 
{'age','year','nodes','class_label'}); 
%% Clear temporary variables 
clearvars filename delimiter formatSpec fileID dataArray ans; 
predictorNames = {'age', 'year', 'nodes'}; 
close all 
knncvAcc = []; 
treecvAcc = []; 
svmcvAcc = []; 
discvAcc = []; 
gowacvAcc = []; 
gowaAccu = []; 
knnAcc = []; 
treeAcc = []; 
svmAcc = []; 
disAcc = []; 
knn_fitness = []; 
tree_fitness = []; 
svm_fitness = []; 
dis_fitness = []; 
gowa_fitness = []; 
for r=1:6 
%% Create training and validation data partition.  
% 30% of data is left out for validation the generated classified 
% 70% of data is used for training the classifier and for cross-vali-
dation 
% rgn() is called first for reproducible results in different runs 
rng(r*16); 
c1 = cvpartition(haberman.class_label,'HoldOut', 0.3); 
testData = haberman(c1.test, :); 
test_predictors = testData(:, predictorNames); 
ClassData = haberman(c1.training, :); 
predictors = ClassData(:, predictorNames); 
%% Create partition to be used for crossvalidation for each classifier 
rng(1); 
cv = cvpartition(ClassData.class_label,'KFold',10); 
%% set fitness function weights 
fitness_weights = [0.5 0.25 0.25]; 
classes = [1 2]; 

  
%% Optimize and train K-nearest neighbor classifier 
distances = {'cosine', 'euclidean', 'jaccard', 'chebychev', 'seuclide-
an'}; 
numNeighbors = [10:30]; 
[knnmdl, cvknnmdl, knncvAccuracy] = knn_classifier(ClassData, cv, pre-
dictors, classes, fitness_weights, ... 
                                    distances, numNeighbors); 
[knnPredictions, knnscore] = kfoldPredict(cvknnmdl); 
knncvAcc(r) = knncvAccuracy; 
%% Optimize and train Decision tree classifier 
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[treemdl, cvtreemdl, treecvAccuracy] = tree_classifier(ClassData, cv, 
predictors, classes, fitness_weights); 
[treePredictions, treescore] = kfoldPredict(cvtreemdl); 
treecvAcc(r) = treecvAccuracy; 
%% Optimize and train SVM classifier 
doHyperOpt = 1; 
[svmmdl, cvsvmmdl, svmcvAccuracy] = svm_classifier(ClassData, cv, pre-
dictors, classes, ... 
                                    fitness_weights, doHyperOpt); 
[svmPredictions, svmscore] = kfoldPredict(cvsvmmdl); 
svmcvAcc(r) = svmcvAccuracy; 
%% Optimize and train Discriminant Analysis classifier 
discriminant_types = {'linear', 'pseudolinear', 'diaglinear', 'quad-
ratic', 'pseudoquadratic', 'diagquadratic'}; 
[dismdl, cvdismdl, discvAccuracy] = discriminant_classifier(ClassData, 
… cv, predictors, classes, fitness_weights, discriminant_types); 
[disPredictions, disscore] = kfoldPredict(cvdismdl); 
discvAcc(r) = discvAccuracy; 
%% GOWA 
lambda = 2.0; 
%lambda= [0.1:0.1:5]; 
v=[1:3];c=4;  
p = [0.1:0.25:4]; % p parameter range 
m = [0.25:0.25:5]; % alpha parameter range  
if (r==6) 
   pl=1; 
else 
   pl=0; 
end 
%for i=1:length(lambda) 
%[gowaAcc(i), gowaPredictions, gowasn(i), gowasp(i), gowatruelabels, 
gowacvfitness, cvpredictions, truecvlabels, ... 
% gowafitness_f] = gowa_classifier(ClassData, cv, testData, classes,… 
%          fitness_weights, v, c, p, m, lambda(i), pl); 
%end  
[gowaAcc, gowaPredictions, gowasn, gowasp, gowatruelabels, … 
gowacvfitness, cvpredictions, truecvlabels, gowafitness_f] = … 
gowa_classifier(ClassData, cv, testData, classes, fitness_weights, v, 
… c, p, m, lambda, pl); 
gowa_fitness(r) = gowafitness_f;    
gowacvAcc(r) = gowacvfitness; 
gowaAccu(r) = gowaAcc;       
%figure 
%subplot(1,3,1) 
%plot(lambda,gowaAcc) 
%title('Gowa accuracies'); 
%ylabel('accuracy'); 
%xlabel('lambda'); 
%subplot(1,3,2) 
%plot(lambda,gowasn) 
%title('Gowa sensitivity'); 
%ylabel('sn'); 
%xlabel('lambda'); 
%subplot(1,3,3) 
%plot(lambda,gowasp) 
%title('Gowa specificity'); 
%ylabel('sp'); 
%xlabel('lambda'); 

  
%% plot confusion matrixes for each classifier for cross validated 
models 
if (r==6) 
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plot_cv_confusion(knnPredictions, treePredictions, svmPredictions, 
disPredictions, cvpredictions, ClassData, truecvlabels); 
end 
%% Evaluate each classifier with test data (30% of data separated in 
the beginning and not used for training) 
plot_ch = 0; 
%knn 
[knntestPredictions, knntestscore] = predict(knnmdl, test_predictors); 
[knnAccuracy, knnsn, knnsp] = evaluate_classifier(knntestPredictions,…                                                   
testData.class_label, classes, plot_ch, … 
'Confusion chart for KNN classifier'); 
knnAcc(r) = knnAccuracy; 
% tree 
[treetestPredictions, treetestscore] = predict(treemdl, … 
test_predictors); 
[treeAccuracy, treesn, treesp] = evaluate_classifier( … 
treetestPredictions, testData.class_label, classes, plot_ch, … 
'Confusion chart for Tree classifier');  
treeAcc(r) = treeAccuracy; 
% svm 
[svmtestPredictions, svmtestscore] = predict(svmmdl, test_predictors); 
[svmAccuracy, svmsn, svmsp] = evaluate_classifier(svmtestPredictions,… 
testData.class_label, classes, plot_ch, … 
'Confusion chart for SVM classifier');  
svmAcc(r) = svmAccuracy; 
% dis 
[distestPredictions, distestscore] = predict(dismdl, test_predictors); 
[disAccuracy, dissn, dissp] = evaluate_classifier(distestPredictions,… 
 testData.class_label, classes, plot_ch, … 
 'Confusion chart for Discriminant Analysis classifier'); 
disAcc(r) = disAccuracy; 
if (r==6)  
plot_confusion(knntestPredictions, treetestPredictions, … 
svmtestPredictions, distestPredictions, gowaPredictions, ... 
testData.class_label, gowatruelabels); 
end 

  
%% calculate fitness functions for each classifier 
knnfit  = calc_fit(knnAccuracy, knnsn, knnsp, fitness_weights); 
treefit = calc_fit(treeAccuracy, treesn, treesp, fitness_weights); 
svmfit  = calc_fit(svmAccuracy, svmsn, svmsp, fitness_weights); 
disfit  = calc_fit(disAccuracy, dissn, dissp, fitness_weights); 

  
knn_fitness  = [knn_fitness knnfit];   
tree_fitness = [tree_fitness treefit];   
svm_fitness  = [svm_fitness svmfit];   
dis_fitness  = [dis_fitness disfit];   

  
if (r==6) 
      knnfitness  = knnfit; 
      treefitness = treefit; 
      svmfitness  = svmfit; 
      disfitness  = disfit; 
%% create a table of the results 
sp = [knnsp; treesp; svmsp; dissp; gowasp]; 
sn = [knnsn; treesn; svmsn; dissn; gowasn]; 
var_names = {'sp', 'sn', 'accuracy', 'cross_val_acc', 'fitness'}; 
row_names = {'knn','tree','svm', 'discriminant', 'gowa'}; 
cvaccu = [knncvAccuracy; treecvAccuracy; svmcvAccuracy; discvAccuracy; 
gowacvfitness]; 
accu = [knnAccuracy; treeAccuracy; svmAccuracy; disAccuracy; gowaAcc]; 
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fitness = [knnfitness; treefitness; svmfitness; disfitness; gowafit-
ness_f]; %gowafitness]; 
T = table(sp, sn, accu, cvaccu, fitness, 'VariableNames', var_names, 
... 
    'RowNames', row_names) 

  
%% plot ROC curves for all referenve classifiers 
[knnX, knnY, knnT,  knnAUC]  = perfcurve(testData.class_label,knntest-
score(:,knnmdl.ClassNames==2), 2); 
[treeX,treeY,treeT, treeAUC] = perfcurve(testData.class_label,treet-
estscore(:,treemdl.ClassNames==2), 2); 
[svmX, svmY, svmT,  svmAUC]  = perfcurve(testData.class_label,svmtest-
score(:,svmmdl.ClassNames==2), 2); 
[disX, disY, disT,  disAUC]  = perfcurve(testData.class_la-
bel,distestscore(:,dismdl.ClassNames==2), 2); 

  
figure 
hold on 
plot(knnX,knnY) 
plot(treeX,treeY) 
plot(svmX,svmY) 
plot(disX,disY) 
hold off 
legend('knn', 'tree', 'svm', 'discr','Location','SE'); 
xlabel('False positive rate'); ylabel('True positive rate'); 
title('ROC for reference classifiers'); 
end 
end 

  
%% calculate mean values for the 6 runs with different random data 
partition 
knnmeanAccuracy  = mean(knnAcc); 
treemeanAccuracy = mean(treeAcc); 
svmmeanAccuracy  = mean(svmAcc); 
dismeanAccuracy  = mean(disAcc); 
gowameanAccuracy = mean(gowaAccu); 
knncvmeanAccuracy  = mean(knncvAcc); 
treecvmeanAccuracy = mean(treecvAcc); 
svmcvmeanAccuracy  = mean(svmcvAcc); 
discvmeanAccuracy  = mean(discvAcc); 
gowacvmeanAccuracy = mean(gowacvAcc); 

       
%% Create a table for results of 10 differente runs 
knnf  = [round(knn_fitness(1),3); round(knn_fitness(2),3);  … 
         round(knn_fitness(3),3); round(knn_fitness(4),3); …  
         round(knn_fitness(5),3); round(knn_fitness(6),3); ... 
         round(mean(knn_fitness),3); round(knnmeanAccuracy,4)]; 
treef = [round(tree_fitness(1),3); round(tree_fitness(2),3); … 
         round(tree_fitness(3),3); round(tree_fitness(4),3); … 
         round(tree_fitness(5),3); round(tree_fitness(6),3); ... 
        round(mean(tree_fitness),3); round(treemeanAccuracy,4)]; 
svmf  = [round(svm_fitness(1),3); round(svm_fitness(2),3); … 
        round(svm_fitness(3),3); round(svm_fitness(4),3); … 
        round(svm_fitness(5),3); round(svm_fitness(6),3); ... 
        round(mean(svm_fitness),3); round(svmmeanAccuracy,4)]; 
disf  = [round(dis_fitness(1),3); round(dis_fitness(2),3);  … 
         round(dis_fitness(3),3); round(dis_fitness(4),3); … 
        round(dis_fitness(5),3); round(dis_fitness(6),3); ... 
        round(mean(dis_fitness),3); round(dismeanAccuracy,4)]; 
gowaf = [round(gowa_fitness(1),3); round(gowa_fitness(2),3); …  
         round(gowa_fitness(3),3); round(gowa_fitness(4),3); … 
         round(gowa_fitness(5),3); round(gowa_fitness(6),3); ... 
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        round(mean(gowa_fitness),3); round(gowameanAccuracy,4)]; 
row_names = {'fit1','fit2','fit3','fit4','fit5','fit6',… 
             'mean_fit', 'mean_accuracy'}; 
var_names = {'knn', 'tree', 'svm', 'discriminant', 'gowa'}; 
T = table(knnf, treef, svmf, disf, gowaf,  ... 
          'VariableNames', var_names, 'RowNames', row_names) 

  

thyroid_import.m: 
%% Import data from text file. 
filename = 'C:\Users\Salla\Documents\Gradu_matlab\new-thyroid.data'; 
delimiter = ','; 
% Format for each line of text: 
formatSpec = '%f%f%f%f%f%f%[^\n\r]'; 
% Open the text file. 
fileID = fopen(filename,'r'); 
% Read columns of data according to the format. 
dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 
'TextType', 'string',  'ReturnOnError', false); 
% Close the text file. 
fclose(fileID); 
% create thyroid data table 
thyroid = table(dataArray{1:end-1}, 'VariableNames', {'class_la-
bel','T3','thyroxin','trii', 'TSH', 'TSH_diff'}); 
% Clear temporary variables 
clearvars filename delimiter formatSpec fileID dataArray ans; 
predictorNames = {'T3','thyroxin','trii', 'TSH', 'TSH_diff'}; 
close all 
%% Initialize variables 
knncvAcc = []; 
treecvAcc = []; 
svmcvAcc = []; 
discvAcc = []; 
gowacvAcc = []; 
gowaAccu = []; 
knnAcc = []; 
treeAcc = []; 
svmAcc = []; 
disAcc = []; 
knn_distances = []; 

  
%% all classifiers are trained 6 times, with different random data 
partition 
for r=1:6 
   %% Create training and validation data partition.  
   % 30% of data is left out for validation the generated classified 
   % 70% of data is used for training the classifier and for  

   %crossvalidation. rgn(1) is called first for reproducible results  
   % between different runs 
   rng(r*45); 
   c1 = cvpartition(thyroid.class_label,'HoldOut', 0.3); 
   testData = thyroid(c1.test, :); 
   test_predictors = testData(:, predictorNames); 
   ClassData = thyroid(c1.training, :); 
   predictors = ClassData(:, predictorNames); 

  
   %% Create partition to be used for cross-validation  
   %% for each classifier 
   rng(1); 
   cv = cvpartition(ClassData.class_label,'KFold',4); 

  
   %% set fitness function weights and define used classes 
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   fitness_weights = [0.55 0.15 0.15 0.15]; 
   classes = [1 2 3]; 

  
   %% Optimize and train K-nearest neighbor classifier 
   distances = {'cosine', 'euclidean', 'jaccard', 'chebychev',… 
               'seuclidean'}; 
   numNeighbors = [2:25]; 
   [knnmdl, cvknnmdl, knncvAccuracy] = knn_classifier(ClassData, cv,… 
       predictors, classes, fitness_weights, distances, numNeighbors); 
   [knnPredictions, knnscore] = kfoldPredict(cvknnmdl);                             
   knncvAcc(r) = knncvAccuracy; 

  
   %% Optimize and train Decision tree classifier 
   [treemdl, cvtreemdl, treecvAccuracy] = tree_classifier(ClassData,… 
     cv, predictors, classes, fitness_weights); 
   [treePredictions, treescore] = kfoldPredict(cvtreemdl); 
   treecvAcc(r) = treecvAccuracy; 

  
   %% Optimize and train SVM classifier 
   [svmmdl, cvsvmmdl, svmcvAccuracy] = multisvm_classifier(ClassData,… 
     cv, predictors, classes, fitness_weights); 
   [svmPredictions, svmscore] = kfoldPredict(cvsvmmdl); 
   svmcvAcc(r) = svmcvAccuracy; 

  
   %% Optimize and train Discriminant Analysis classifier 
   discriminant_types = {'pseudolinear', 'diaglinear',… 
                         'pseudoquadratic', 'diagquadratic'}; 
   [dismdl, cvdismdl, discvAccuracy] = … 
     discriminant_classifier(ClassData, cv, predictors, ... 
                      classes, fitness_weights, discriminant_types); 
   [disPredictions, disscore] = kfoldPredict(cvdismdl); 
   discvAcc(r) = discvAccuracy; 

  
   %% Gowa 
   c=1;     %class label column number 
   v=[2:6]; % column numbers for predictors 
   % plot mean accuracies only for the last round 
   if (r==6) 
       pl=1; 
   else 
       pl=0; 
   end 
   % optimum lambda value is searched separately to shorten  
   % the simulation time. The codes for testing different lambda  
   % values are commented out here, best lambda value is determined  
   % based on the plots 
   %lambda= [0.1:0.1:5]; 
   lambda = 2.0; 
   p = [1.0:0.25:8]; 
   alpha = [0.5:0.25:8]; 
   [gowaAcc, gowaPredictions, gowasn, gowasp, gowatruelabels, … 
    gowacvfitness, cvpredictions, truecvlabels, gowafitness_f] =…  
    gowa_classifier(ClassData, cv, testData, classes,fitness_weights,… 
                    v, c, p, alpha, lambda, pl); 
   %for i=1:length(lambda) 
   %   [gowaAcc(i), gowaPredictions, gowasn, gowasp, gowatruelabels,…     
   %   gowacvfitness, cvpredictions, truecvlabels, ... 
   %                gowafitness_f] = gowa_classifier(ClassData, cv,… 
   % testData, classes, ... 
   %                fitness_weights, v, c, p, alpha, lambda(i), 0); 
   %   sn1(i) = gowasn(1); 
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   %   sn2(i) = gowasn(2); 
   %   sn3(i) = gowasn(3);  
   %end 
   gowacvAcc(r) = gowacvfitness; 
   gowaAccu(r) = gowaAcc; 

  
   %% plot confusion matrixes for each classifier for cross validated   
   %% models, plot only results of one of the six runs 
   if (r==6) 
      plot_cv_confusion(knnPredictions, treePredictions, … 
       svmPredictions, disPredictions, cvpredictions, ClassData,… 
       truecvlabels); 
   end 

  
   %% Evaluate each classifier with test data (30% of data separated  
   %% in the beginning and not used for training) 
   plot_ch = 0; 

  
   %knn 
   [knntestPredictions, knntestscore] = predict(knnmdl, … 
       test_predictors); 
   [knnAccuracy, knnsn, knnsp] = evaluate_classifier(… 
       knntestPredictions, testData.class_label, classes, plot_ch,… 
       'Confusion chart for KNN classifier'); 
   knnAcc(r) = knnAccuracy; 

  
   % tree 
   [treetestPredictions, treetestscore] = predict(treemdl,… 
    test_predictors); 
   [treeAccuracy, treesn, treesp] = evaluate_classifier(… 
    treetestPredictions, testData.class_label, classes,… 
    plot_ch, 'Confusion chart for Tree classifier'); 
   treeAcc(r) = treeAccuracy; 

  
   % svm 
   [svmtestPredictions, svmtestscore] = predict(svmmdl,… 
    test_predictors); 
   [svmAccuracy, svmsn, svmsp] = evaluate_classifier(… 
    svmtestPredictions, testData.class_label, classes, plot_ch,… 
    'Confusion chart for SVM classifier'); 
   svmAcc(r) = svmAccuracy; 

  
   % dis 
   [distestPredictions, distestscore] = predict(dismdl,… 
    test_predictors); 
   [disAccuracy, dissn, dissp] = evaluate_classifier(… 
    distestPredictions, testData.class_label, classes, plot_ch, … 
    'Confusion chart for Discriminant Analysis classifier'); 
   disAcc(r) = disAccuracy; 

  
   if (r==6) 
      plot_confusion(knntestPredictions, treetestPredictions,… 
                     svmtestPredictions, distestPredictions, ... 
                     gowaPredictions, testData.class_label,… 
                     gowatruelabels); 
   end 

  
   %% calculate fitness functions for each classifier 
   if (r==6) 
      knnfitness  = calc_fit_multiclass(knnAccuracy, knnsn(1),… 
                    knnsn(2), knnsn(3), fitness_weights);  
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      treefitness = calc_fit_multiclass(treeAccuracy, treesn(1),… 
                    treesn(2), treesn(3), fitness_weights); 
      svmfitness  = calc_fit_multiclass(svmAccuracy, svmsn(1),… 
                    svmsn(2), svmsn(3), fitness_weights); 
      disfitness  = calc_fit_multiclass(disAccuracy, dissn(1),… 
                    dissn(2), dissn(3), fitness_weights); 
      % create vectors for the result table 
      sp = [knnsp; treesp; svmsp; dissp; gowasp]; 
      sn1 = [knnsn(1); treesn(1); svmsn(1); dissn(1); gowasn(1)]; 
      sn2 = [knnsn(2); treesn(2); svmsn(2); dissn(2); gowasn(2)]; 
      sn3 = [knnsn(3); treesn(3); svmsn(3); dissn(3); gowasn(3)]; 

       
   end 
end % for r=1:6 

  
%% calculate mean values for the 6 runs with different random data 
partition 
knnmeanAccuracy  = mean(knnAcc); 
treemeanAccuracy = mean(treeAcc); 
svmmeanAccuracy  = mean(svmAcc); 
dismeanAccuracy  = mean(disAcc); 
gowameanAccuracy = mean(gowaAccu); 
knncvmeanAccuracy  = mean(knncvAcc); 
treecvmeanAccuracy = mean(treecvAcc); 
svmcvmeanAccuracy  = mean(svmcvAcc); 
discvmeanAccuracy  = mean(discvAcc); 
gowacvmeanAccuracy = mean(gowacvAcc); 

    
%% Create a table of the results 
var_names = {'sn1', 'sn2', 'sn3', 'accuracy', 'cross_val_accuracy',… 
             'fitness'}; 
row_names = {'knn','tree','svm', 'discriminant', 'gowa'}; 
accu    = [knnAccuracy; treeAccuracy; svmAccuracy; disAccuracy;… 
           gowaAcc]; 
cv_accu = [knncvAccuracy; treecvAccuracy; svmcvAccuracy; … 
           discvAccuracy; gowacvfitness]; 
fitness = [knnfitness; treefitness; svmfitness; disfitness; … 
           gowafitness_f]; 
T = table(sn1, sn2, sn3, accu, cv_accu, fitness, 'VariableNames',… 
          var_names, 'RowNames', row_names) 

       
%% Create a table for results of 6 differente runs 
acc1 = [knnAcc(1); treeAcc(1); svmAcc(1); disAcc(1); gowaAccu(1)];  
acc2 = [knnAcc(2); treeAcc(2); svmAcc(2); disAcc(2); gowaAccu(2)];  
acc3 = [knnAcc(3); treeAcc(3); svmAcc(3); disAcc(3); gowaAccu(3)];  
acc4 = [knnAcc(4); treeAcc(4); svmAcc(4); disAcc(4); gowaAccu(4)];  
acc5 = [knnAcc(5); treeAcc(5); svmAcc(5); disAcc(5); gowaAccu(5)];  
acc6 = [knnAcc(6); treeAcc(6); svmAcc(6); disAcc(6); gowaAccu(6)];  
meanaccus = [knnmeanAccuracy; treemeanAccuracy; svmmeanAccuracy; … 
             dismeanAccuracy; gowameanAccuracy]; 
var_names = {'accuracy1', 'accuracy2', 'accuracy3', 'accuracy4', … 
             'accuracy5', 'accuracy6', 'mean_accuracy'}; 
row_names = {'knn','tree','svm', 'discriminant', 'gowa'}; 
T = table(acc1, acc2, acc3, acc4, acc5, acc6, meanaccus, ... 
          'VariableNames', var_names, 'RowNames', row_names) 
  
 

 

 credit_import.m: 
 %% Import data from spreadsheet 
%% Setup the Import Options 
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opts = spreadsheetImportOptions("NumVariables", 24); 
% Specify sheet and range 
opts.Sheet = "Data"; 
opts.DataRange = "B3:Y30002"; 
% Specify column names and types 
opts.VariableNames = ["givencredit","gender","education",… 
"maritalstatus","age","past1","past2","past3","past4","past5","past6", 
"billsep","billaug","billjul","billjun","billmay","billapr","prev1", 
"prev2","prev3","prev4", "prev5", "prev6","class_label"]; 
opts.VariableTypes = ["double", "double", "double", "double", "dou-
ble", "double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double"]; 

  
% Import the data 
clients = readtable("defaultOfCreditCardClients.xls", opts,… 
                    "UseExcel", false); 

  
observation_count = height(clients) 
%find out the separate target classes 
testClasses = clients.class_label; 
[classes,~,idx] = unique(testClasses); 
classes 
%calculate how any instances there are in each class 
nCount = accumarray(idx(:),1) 

  
%% Clear temporary variables 
clear opts 
predictorNames = {'givencredit','gender','education','marital-
sta-
tus','age','past1','past2','past3','past4','past5','past6','billsep','
billaug','billjul','billjun','billmay','billapr','prev1','prev2', 
'prev3', 'prev4', 'prev5','prev6'};   
%% Create training and validation data partition.  
% 30% of data is left out for validation the generated classified 
% 70% of data is used for training the classifier and for crossvalida-
tion 
% rgn(1) is called first for reproducible results in different runs 
rng(1); 
c1 = cvpartition(clients.class_label,'HoldOut', 0.4); 
testData = clients(c1.test, :); 
test_predictors = testData(:, predictorNames); 
ClassData = clients(c1.training, :); 
predictors = ClassData(:, predictorNames); 

  
ClassData_count = height(ClassData) 
cs = ClassData.class_label; 
[classes,~,idx] = unique(cs); 
nCount = accumarray(idx(:),1) 
model_data_class0 = nCount(1)/ClassData_count 
model_data_class1 = nCount(2)/ClassData_count 

  
testData_count = height(testData) 
cs = testData.class_label; 
[classes,~,idx] = unique(cs); 
nCount = accumarray(idx(:),1) 
testdata_class0 = nCount(1)/testData_count 
testdata_class1 = nCount(2)/testData_count 

  
%% Create partition to be used for crossvalidation for each classifier 
rng(1); 
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cv = cvpartition(ClassData.class_label,'KFold',10); 

  
%% set fitness function weights 
fitness_weights = [0.5 0.35 0.15]; 
classes = [0 1]; 

  
%% Optimize and train K-nearest neighbor classifier 
tic 
distances = {'cosine', 'euclidean', 'jaccard', 'chebychev', 'seuclide-
an'}; 
numNeighbors = [10:40]; 
[knnmdl, cvknnmdl, knncvAccuracy] = knn_classifier(ClassData, cv,… 
       predictors, classes, fitness_weights, distances, numNeighbors); 
[knnPredictions, knnscore] = kfoldPredict(cvknnmdl); 
timeknn = toc; 

  
%% Optimize and train Decision tree classifier 
tic 
[treemdl, cvtreemdl, treecvAccuracy] = tree_classifier(ClassData, cv,… 
                      predictors, classes, fitness_weights); 
[treePredictions, treescore] = kfoldPredict(cvtreemdl); 
timetree = toc; 
%% Optimize and train SVM classifier 
tic 
doHyperOpt = 0; 
[svmmdl, cvsvmmdl, svmcvAccuracy] = svm_classifier(ClassData, cv, … 
             predictors, classes, fitness_weights, doHyperOpt); 
[svmPredictions, svmscore] = kfoldPredict(cvsvmmdl); 
timesvm = toc; 
%% Optimize and train Discriminant Analysis classifier 
tic 
discriminant_types = {'linear', 'pseudolinear', 'diaglinear', 'quad-
ratic', 'pseudoquadratic', 'diagquadratic'}; 
[dismdl, cvdismdl,discvAccuracy] = discriminant_classifier(ClassData,… 
 cv, predictors, classes, fitness_weights, discriminant_types); 
[disPredictions, disscore] = kfoldPredict(cvdismdl); 
timedis = toc; 
%% Gowa 
%lambda = 2.0; 
c=24; 
v=[1:23]; 
lambda= 3.4; % 
%lambda = [0.1:0.3:5]; 
p = [0.25:0.25:5]; % p parameter range 
alpha = [0.25:0.25:5]; 
tic 
[gowaAcc, gowaPredictions, gowasn, gowasp, gowatruelabels,… 
         gowacvfitness, cvpredictions, truecvlabels, gowafitness_f] =… 
         gowa_classifier(ClassData, cv, testData, [1:2], ... 
         fitness_weights, v, c, p, alpha, lambda, 1);  
%for i=1:length(lambda) 
%[gowaAcc(i), gowaPredictions, gowasn(i), gowasp(i), gowatruelabels, 
gowacvfitness, cvpredictions, truecvlabels, ... 
%          gowafitness_f] = gowa_classifier_credit(ClassData, cv, 
testData, [1:2], ... %_credit(ClassData, cv, testData, classes, ... 
%          fitness_weights, v, c, p, alpha, lambda(i), 1); 
%end 
timegowa = toc; 

  
%% plot confusion matrixes for each classifier for cross validated 
models 
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plot_cv_confusion(knnPredictions, treePredictions, svmPredictions,… 
disPredictions, cvpredictions, ClassData, truecvlabels); 

  
%% Evaluate each classifier with test data (40% of data separated in 
the beginning and not used for training) 
plot_ch = 0; 
%knn 
[knntestPredictions, knntestscore] = predict(knnmdl, test_predictors); 
[knnAccuracy,knnsn,knnsp] = evaluate_classifier(knntestPredictions,… 
   testData.class_label, classes, plot_ch,… 
   'Confusion chart for KNN classifier'); 

  
% tree 
[treetestPredictions, treetestscore] = predict(treemdl, …  
                                       test_predictors); 
[treeAccuracy, treesn, treesp] = evaluate_classifier(… 
                  treetestPredictions, testData.class_label, classes,… 
                 plot_ch, 'Confusion chart for Tree classifier'); 

  
% svm 
[svmtestPredictions, svmtestscore] = predict(svmmdl, test_predictors); 
[svmAccuracy, svmsn, svmsp] = evaluate_classifier(svmtestPredictions,…   
            testData.class_label, classes, plot_ch, … 
             'Confusion chart for SVM classifier'); 

  
% dis 
[distestPredictions, distestscore] = predict(dismdl, test_predictors); 
[disAccuracy, dissn, dissp] = evaluate_classifier(distestPredictions,… 
           testData.class_label, classes, plot_ch,… 
         'Confusion chart for Discriminant Analysis classifier'); 

  
plot_confusion(knntestPredictions, treetestPredictions, … 
      svmtestPredictions, distestPredictions, gowaPredictions, ... 
               testData.class_label, gowatruelabels); 

  
%% calculate fitness functions for each classifier 
knnfitness  = calc_fit(knnAccuracy,  knnsn,  knnsp,  fitness_weights); 
treefitness = calc_fit(treeAccuracy, treesn, treesp, fitness_weights); 
svmfitness  = calc_fit(svmAccuracy,  svmsn,  svmsp,  fitness_weights); 
disfitness  = calc_fit(disAccuracy,  dissn,  dissp,  fitness_weights); 
gowafitness = calc_fit(gowaAcc, gowasn, gowasp, fitness_weights); 

  
%% create a table of the results 
sn = [knnsn; treesn; svmsn; dissn; gowasn]; 
sp = [knnsp; treesp; svmsp; dissp; gowasp]; 
var_names = {'sp', 'sn', 'accuracy', 'cross_val_accuracy', 'fitness'}; 
row_names = {'knn','tree','svm', 'discriminant', 'gowa'}; 
accu = [knnAccuracy; treeAccuracy; svmAccuracy; disAccuracy; gowaAcc]; 
cv_accu = [knncvAccuracy; treecvAccuracy; svmcvAccuracy; discvAccu-
racy; gowacvfitness]; 
fitness = [knnfitness; treefitness; svmfitness; disfitness; … 
           gowafitness]; 
T = table(sp, sn, accu, cv_accu, fitness, 'VariableNames', var_names,… 
          'RowNames', row_names) 

  
%% training times 
traintimes = [round(timeknn/60,1); round(timetree/60,1); 
round(timesvm/60,1); round(timedis/60,1); round(timegowa/60,1)]; 
t = table(traintimes, 'VariableNames', "training_time_in_minutes", … 
          'RowNames', row_names) 
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%% plot ROC curves for all classifiers 
[knnX, knnY, knnT,  knnAUC] = perfcurve(testData.class_label, … 
                            knntestscore(:,knnmdl.ClassNames==1), 1); 
[treeX,treeY,treeT, treeAUC] = perfcurve(testData.class_label,… 
                          treetestscore(:,treemdl.ClassNames==1), 1); 
[svmX, svmY, svmT,  svmAUC]  = perfcurve(testData.class_label,… 
                            svmtestscore(:,svmmdl.ClassNames==1), 1); 
[disX, disY, disT,  disAUC]  = perfcurve(testData.class_label,… 
                            distestscore(:,dismdl.ClassNames==1), 1); 

  
figure 
hold on 
plot(knnX,knnY) 
plot(treeX,treeY) 
plot(svmX,svmY) 
plot(disX,disY) 
hold off 
legend('knn', 'tree', 'svm', 'discr', 'Location','SE'); 
xlabel('False positive rate'); ylabel('True positive rate'); 
title('ROC for reference classifiers for credit default data'); 

 

Codes for functions init_data, ideal_vectors and calcfit, which are used in gowa_clas-

sifier, are available on request from the original author Pasi Luukka (pasi.luukka@lut.fi). 
  

  

  

  

 


