
 ABSTRACT

 Turun kauppakorkeakoulu • Turku School of Economics

 Bachelor’s thesis

x Master’s thesis

 Licentiate’s thesis
 Doctor’s thesis

Subject Information Systems Science Date 30.4.2019

Author(s) Saila Collan
Student number 51112

Number of pages 83 + appendix

Title

BENCHMARKING CLASSIFIERS - HOW WELL DOES A GOWA-VARIANT OF
THE SIMILARITY CLASSIFIER DO IN COMPARISON WITH SELECTED
CLASSIFIERS?

Supervisor(s)
Ph.D. Jani Koskinen
Prof. Pasi Luukka

Digital data is ubiquitous in nearly all modern businesses. Organizations have more data available, in

various formats, than ever before. Machine learning algorithms and predictive analytics utilize the

knowledge contained in that data, in order to help the business related decision-making. This study

explores predictive analytics by comparing different classification methods – the main interest being

in the Generalize Ordered Weighted Average (GOWA)-variant of the similarity classifier.

The target for this research is to find out how what is the GOWA-variant of the similarity classifier

and how well it performs compared to other selected classifiers. This study also tries to investigate

whether the GOWA-variant of the similarity classifier is a sufficient method to be used in the business

related decision-making. Four different classical classifiers were selected as reference classifiers on

the basis of their common usage in machine learning research, and on their availability in the Statistics

and Machine Learning Toolbox in MATLAB.

Three different data sets from UCI Machine Learning repository were used for benchmarking the

classifiers. The benchmarking process uses fitness function instead of pure classification accuracy to

determine the performance of the classifiers. Fitness function combines several measurement criteria

into a one common value. With one data set, the GOWA-variant of the similarity classifier performed

the best. One of the data sets contains credit card client data. It was more complex than the other two

data sets and contains clearly business related data. The GOWA-variant performed also well with this

data set. Therefore it can be claimed that the GOWA-variant of the similarity classifier is a viable

option to be used also for solving business related problems.

Key words Similarity classifier, benchmarking, classification, machine learning

Further
information

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTUPub

https://core.ac.uk/display/199936355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TIIVISTELMÄ

 Turun kauppakorkeakoulu • Turku School of Economics

 Kandidaatintutkielma

x Pro gradu -tutkielma

 Lisensiaatintutkielma
 Väitöskirja

Oppiaine Tietojärjestelmätiede Päivämäärä 30.4.2019

Tekijä(t) Saila Collan
Matrikkelinumero 51112

Sivumäärä 83 + liitteet

Otsikko
Luokittimien suorituskyvyn mittaaminen – Miten hyvin similaarisuusluokittimen

GOWA-variantti pärjää vertailussa muihin valittuihin luokittimiin?

Ohjaaja(t)
Ph.D. Jani Koskinen

Prof. Pasi Luukka

Digitaalinen data on kaikkialla läsnä suurimmassa osaa tämän päivän yrityksiä. Organisaatioilla on

saatavillaan enemmän dataa, monissa eri muodoissa, kuin koskaan aikaisemmin. Koneoppiminen ja

ennustava analytiikka hyödyntävät näiden kyseisten datojen sisältämää tietoa ja ovat apuna

liiketoimintaan liittyvässä päätöksenteossa. Tässä tutkimuksessa käsitellään ennustavaa analytiikkaa

vertaamalla erilaisia luokitusmenetelmiä - pääasiallinen kiinnostuksen kohde on

similaarisuusluokittimessa, joka käyttää GOWA (Generalized Ordered Weighted Average)

operaattoria aggregaattina.

Tutkimuksen tavoitteena on selvittää millainen luokitin on similaarisuuteen perustuva GOWA-

variantti ja kuinka hyvin se toimii verrattuna muihin valittuihin luokittimiin. Tässä tutkimuksessa

pyritään myös selvittämään onko GOWA-variantti similaarisuusluokittimesta sopiva menetelmä

käytettäväksi liiketoimintaan liittyvässä päätöksenteossa. Referenssiluokittimiksi valittiin neljä

erilaista klassista luokitinta. Valinta pohjautui niiden yleisyyteen koneoppimiseen liittyvässä

tutkimuksessa ja niiden saatavuuteen Matlabin ”Statistics and Machine Learning Toolbox”

kirjastosta.

Luokittimien vertailuun käytettiin kolmea erilaista data settiä UCI Machine Learning -tietovarastosta.

Suorituskyvyn mittaamisessa käytetään pelkän luokittelutarkkuuden sijaan fitness funktiota. Fitness

funktio yhdistää useita mittauskriteerejä yhdeksi arvoksi. Yhden käsitellyn data setin kanssa GOWA-

variantti suoriutui parhaiten. Yksi dataseteistä sisältää selvästi liiketoiminaan liittyviä tietoja, ollen

myös muita settejä monimutkaisempi suuremmalla havaintojen ja attribuuttien määrällä. GOWA-

variantti toimi hyvin myös tällä data setillä. Täten voidaan väittää, että similaarisuusluokittimen

GOWA-varianttia voidaan käyttää myös liiketoimintaan liittyvässä ongelmanratkaisussa.

Asiasanat similaarisuusluokitin, suorituskyvin mittaaminen, luokittelu, koneoppiminen

Muita tietoja

BENCHMARKING CLASSIFIERS - HOW WELL

DOES A GOWA-VARIANT OF THE SIMILARITY

CLASSIFIER DO IN COMPARISON WITH

SELECTED CLASSIFIERS?

Master´s Thesis

in Information Systems Science

Author:

Saila Collan

Supervisors:

Ph.D. Jani Koskinen

Prof. Pasi Luukka

30.4.2019

Turku

The originality of this thesis has been checked in accordance with the University of

Turku quality assurance system using the Turnitin OriginalityCheck service.

Table of Contents

1 INTRODUCTION ... 9

1.1 Motivation for the study ... 9

1.2 Research focus ... 11

1.3 Research questions ... 12

1.4 Structure of this thesis .. 12

2 METHODOLOGY .. 14

2.1 Philosophical Position of the Research .. 14

2.2 Research Approach .. 16

2.3 Research Design Overview .. 18

3 THEORETICAL BACKGROUND .. 21

3.1 Terminology ... 21

3.2 Similarity-based classification ... 25

3.3 GOWA-variant of the similarity classifier ... 27

3.4 Literature review .. 30

4 BENCHMARKING CLASSIFIERS ... 38

4.1 Reference classifiers ... 38

4.2 Data sets ... 43

4.3 Evaluation of the selected classifiers ... 44

4.4 Test setup ... 49

4.5 Results .. 50

4.5.1 Comparing classifiers with Haberman’s survival data 50

4.5.2 Comparing classifiers with New-Thyroid data 59

4.5.3 Comparing classifiers with Default of credit card clients data 65

5 CONCLUSION ... 72

5.1 Answering the posed research questions .. 72

5.2 Criticism and future research directions .. 76

REFERENCES.. 79

APPENDIX ... 84

List of figures

Figure 1 Design Science Research Process Model (Kuechler & Vaishnavi, 2004). .. 15

Figure 2. Alignment of Design Research and IT Innovation (S. Wang & Wang,

2010). .. 16

Figure 3 General illustration of building a classification model. (Tan, Steinbach, &

Kumar, 2006). ... 18

Figure 4 A systems view of problem solving (Mitroff et al., 1974). 19

Figure 5 Supervised Machine Learning process. ... 23

Figure 6 Machine Learning process (Kotsiantis, 2007). .. 24

Figure 7. Similarity based classification example. (Cazzanti et al., 2009). 27

Figure 8. Classification methods .. 39

Figure 9. Example of decision tree (Le, 2018)... 40

Figure 10. Linear discriminant analysis. (Raschkam, 2014). 41

Figure 11 Example of Support Vector Machine (Meyer & Wien, 2001). 42

Figure 12. Example of k-nearest neighbor classification (Cengiz, 2017). 43

Figure 13. The ROC Curve. (Berthold et al., 2010) ... 45

Figure 14. 10-fold cross validation. ... 49

Figure 15. Test setup for classifier evaluation. .. 50

Figure 16. Haberman’s survival data. .. 51

Figure 17. Parameter optimization for knn classifier for Haberman’s data. 53

Figure 18. Confusion charts for cross-validated Haberman’s survival data. 55

Figure 19. Parameter optimization for Haberman’s survival data. 56

Figure 20. GOWA results with different lambda values. ... 56

Figure 21. Haberman’s survival data results. ... 57

Figure 22. Confusion charts for Haberman’s survival test data. 57

Figure 23. ROC curves for the reference classifiers for Haberman’s survival data. . 58

Figure 24. Haberman’s data results with different random seeds. 59

Figure 25. New-Thyroid data. .. 60

Figure 26. GOWA-variant performance with different lambda values. 63

Figure 27. Mean classification accuracies for GOWA-variant with New-thyroid data.63

Figure 28. Confusion charts for cross-validated new-thyroid data. 64

Figure 29. Confusion charts for New-thyroid test data. ... 64

Figure 30. New-thyroid results. ... 65

Figure 31. New-thyroid accuracies with different random seed. 65

Figure 32. K-nearest neighbor parameter optimization for the credit data. 67

Figure 33. Different lambda values for credit card client data. 68

Figure 34. Mean classification accuracies for credit data. ... 68

Figure 35. Confusion charts for cross-validated classifiers for credit data. 69

Figure 36. Confusion charts for credit card test data. .. 70

Figure 37. Credit card client data results. .. 70

Figure 38. Classifier training times for credit card data. ... 71

Figure 39. ROC curves for reference classifiers for credit card data. 71

List of tables

Table 1. Literature review papers. ... 33

Table 2. Confusion matrix (Sokolova & Lapalme, 2009). ... 47

Table 3. Example of a confusion matrix. Predicted classes shown both in number of

observation and percentage format. .. 47

9

1 INTRODUCTION

1.1 Motivation for the study

As we live in the modern word ruled by data, enterprises operate quite many of their

functions in a digital space. Many business functions like marketing, sales, supply chains,

transportation, finance, customer relationships, vendor data management etc., all have

data assembled and accessible in a ways that never has been before. The challenge is to

transform the collected data into a meaningful and usable format and make beneficial

decisions based on that data. Business analytics is a field of study that relates to data

collection and processing and analyzing the data.

Business analytics is typically an iterative and systematic investigation of some part

of organizations data. It aims to create insight about the descriptive and the prescriptive

information of the data. Business analytics can also be connected to data that comes from

the outside of an organization, but that is relevant to the organization. By using methods

of business analytics, including statistical analysis and a number of algorithm-based

analytics methods, companies can create models that will help them to make better

business decisions or to automate and optimize business processes. (Rouse, 2017). Such

decisions could be for instance setting a product price, selecting right target for a

marketing campaign, making investment decisions, doing credit scoring or bond

classification, predicting churn rate, optimizing supply chain etc. There are a wide variety

of alternatives where business analytics can be used for creating a competitive edge.

The focus for business analytics is to create additional value from the data by using

various technologies to create applications which analyze the data. These applications

aim to produce new insights by extracting useful patterns from the data. The goal for the

data-analytic thinking is to understand the core business better and to help the business

decision making process. Compared to pure data analytics or data science, in business

analytics one needs to have a good understanding about the business context. A good

domain knowledge is required to be able to assess the requirements which comes from

organization’s operations and functions and to be able apply them in the analytic

applications. (Provost & Fawcett, 2013).

Even though business analytics resembles data science, there is still a clear distinction

between these two. Data science means more custom coding and open-ended question,

while practitioners of business analytics use business analytical tools that can perform

advanced statistical algorithms automatically, thus requiring less special skills involved

in data science. (Rouse, 2017). This thesis relates to business analytics and more precisely

to predictive analytics. An analytical tool, MATLAB, is use to resolve classification

problems in this thesis.

10

In a modern business environment, data and analytics are playing a greater role than

ever before. It is not that easy anymore to create a competitive edge in traditional ways

like differentiation. For instance product or technological differentiation is quite hard to

achieve, geographical advantage is pretty much gone in global business etc. But one thing

that is still left as a basis of competition is an ability to execute business with utmost

effectiveness and to make best business decisions possible. Good decisions are typically

based on systematically assembled data and analysis. (Davenport & Harris, 2007).

Bonabeau (2003) notes that while intuition plays an import role in decision making,

decisions which are based on analytics are more likely to be correct than those based on

intuition. More and more companies are using some kind of analytics to enhance their

business processes and analytical skills are without a doubt something that will be useful

in the future. This was one of the motivational reasons why business analytics was chosen

as a basis for this thesis.

But data as such is nothing new; enterprises have been dealing with their business

related data for a long time. Predictive analytics, which uses historical data, statistical

algorithms and machine learning techniques to assess the probability of future events, is

nothing new either. But with increased and cheaper computing power, better and easily

accessible software and increased volumes of valuable data has made predictive analytics

one of the technologies of this decade. As Eric Siegel (2013) says: “Predictive analytics

unleashes the power of data”. Siegel presents in his book various real life examples of

how we are surrounded with predictive analytics in a modern digital world. Predictive

analytics drives millions of decisions in healthcare, insurance companies, financial

institutions, sales, marketing etc.

Enormous amount of data is constantly generated and gathered in numerous domains

with different kinds of digital devices all over the world. Qiu et al. (2016) claim in their

survey that digital information has grown nine times in volume in five years in year 2011

and the amount of data will reach 35 trillion gigabytes by the year 2020.

They are several companies, such as IBM, Netflix, Facebook, Google, Amazon,

PayPal, BBC etc., which are excellent examples of companies who have beneficially

utilized predictive analytics in their business. They have gathered a vast amount of data

and then used it to build models to predict their customer behavior. Predictive analytics

means that computers will truly learn from the data how they can calculate the future

behavior of the individuals or events. It should be evident that perfect predictions are

impossible, but it can give you better odds to make successful decisions and when doing

that at scale, it will make a difference in the end. (Tao, 2018).

There are many business related application areas that can take advantage from

predictive analytics and machine learning applications. Forbes Technology council

(2018) listed a few possible business applications for artificial intelligence and machine

learning such as cyber-security defense, recruiting automations, health care diagnostics,

11

reducing energy cost, and usage, becoming more customer centric, market predictions,

advanced billing rules including credit scoring to name a few. Companies can benefit

from machine learning algorithms by using them to identify trends in massive amounts

of data and to make quicker decisions, which can possibly give them a competitive edge.

The aim of these analytical models is to produce reliable and repeatable results and to

uncover patterns and trends in data that cannot be noted otherwise and doing that at scale.

One part of machine learning that is commonly called “pattern recognition” is based

on classification. Classification is an attempt, or the process of matching items of data

(typically multiple criteria) to pre-determined classes. The classes are determined

typically based on identified data, where the correct class of each piece of data is known.

This “labeled data” is used to train classification algorithms so that they are later able to

perform classification on some previously unseen data reliably and accurately. (Provost

& Fawcett, 2013). You might want to know whether an email is a spam, or not, or to

distinguish between legitimate and fraudulent transactions. There are quite many

application areas for classifiers in business related problems and decision making. That

is why classifiers among other machine learning algorithms were selected as a topic for

this thesis. The focus of this research is to study how well different selected classification

algorithms compare against each other and how well they work with business data.

The starting point for this research was a research paper by Kurama et al. (2017) which

introduces a GOWA (Generalized Ordered Weighted Average) variant of the similarity

classifier. The paper shows that the GOWA-variant works quite well, but the paper does

not compare the said classifier to other classifiers. This is what is attempted here. The

other goal for this research is to investigate whether the similarity-based classifiers are

effective in business analytics problem solving. Kurama et al. (2017) use only medical

data in their research, but this study will use in addition to that medical data also more

business related data, credit card client data, for benchmarking.

1.2 Research focus

This research will concentrate on studying and benchmarking the GOWA-variant of the

similarity classifier. The main empirical contribution of the work will focus on testing the

performance of the said classifier against a set of selected classifiers. The closer study of

the many other possible classifiers (that do not belong to the selected classifiers against

which the GOWA-variant of the similarity classifier is tested) is left outside the scope of

this research.

The usability of the GOWA-variant is studied with a credit card client data set found

from the UCI Machine Learning Repository, which is a widely used repository of data

sets used in Machine Learning related research. The benchmarking will also be done with

12

two of the same data sets that were used by Kurama et al. (2017) in their research paper.

The main empirical results will be the result of using these data sets and thus the results

obtained are specific to the tested sets – the results cannot be generalized and the nature

of this investigation is exploratory.

In accordance with the focus of this work, the GOWA-variant of the similarity

classifier will be introduced and discussed in more detail than the other classifiers used

in this thesis. The focus is quite strict, but necessary, as otherwise the work would branch

out enormously.

1.3 Research questions

The main research question for this thesis is, “whether the GOWA-variant of the

similarity classifier is a useful classifier to be used in the business context”.

To study this question this thesis will answer the following sub-questions:

1. What previous academic literature exists on similarity-based classifiers and what

are the results found in the said previous research?

2. How do similarity-based classifiers work and especially how does the GOWA-

variant of the similarity classifier work?

3. How well does the studied similarity-based classifier(s) function in comparison

with other selected classifiers?

In addition to these three sub-problems, this research will construct simple measures

to rank classifiers, as there are multiple criteria on which the performance of the compared

classifiers can be measured.

1.4 Structure of this thesis

This first chapter introduces the business analytic field and gives motivation for this

study. Research questions and scope for this study were also presented in the previous

sub chapters.

The next main chapter Methodology will explain the research philosophical

groundings for this study. The research paradigm which mostly influences this research

work is a design science paradigm and more specifically the focus in this study is in the

evaluation part of the model creation. In addition to philosophical discussion, also the

research strategy and selected research approaches are presented in that chapter.

13

In order to be able to do the benchmarking of classifiers, which is the subject of this

study, some general understanding of classifiers and machine learning process needs to

be gained first. This background knowledge is needed in order to be able to execute the

benchmarking work and to analyze the results. The knowledge is first gained by

introducing the main terminologies for this study and explaining how there relate to this

study. This is done in chapter 3 Theoretical background. In this same chapter also the

main subject of the study, similarity classifiers and more specifically the GOWA-variant

of the similarity classifier is introduced. Literature review will aim to answer one of sub

research question about the previous research work done about similarity classifiers in

business context. The literature review will produce a general understanding about

similarity classifiers in business analytics and hopefully point out some research gaps

which this thesis aims to fill.

The benchmarking of classifiers is done as a numerical testing study in chapter 4. The

study is performed with MATLAB software. There are three different data sets that are

used for classifier learning and testing process. Two of the data sets are same that Kurama

et al. (2017) used in their paper to gain better comparability. The third data set is a credit

default data set, which relates better to business context. It is also more complicated than

the other two, and could probably gain more insight to comparison of the GOWA-variant

of the similarity classifier against the reference classifiers.

In MATLAB there is a set of classifier algorithm implementations available in the

“Statistics and Machine Learning Toolbox” that accompanies the software. The original

code for the GOWA-variant of the similarity classifier has been available for conducting

this research from the original authors. There has been no need to create the code for the

algorithms tested in this research from the scratch - this is typical for this kind of work.

There is a lot of work connected to finding the optimal parameters to be used for each one

of the algorithms. Also the data that is used needs to be pre-processed so that it can be

used with the algorithms. Also the separation between training and test sets of data needs

to be done. The used evaluation-criteria needs to be determined and the actual goodness

measures need to be implemented. The tested algorithms need to be ranked, and the

results visualized. The chapter where the benchmarking of the classifiers is done contains

a description of how the actual work with MATLAB is performed and the results of the

numerical tests are also presented. The classifiers that are used for benchmarking are also

shortly presented there.

The conclusion section will summarize the results of the case study, go through the

answers to the set research questions, and suggest areas for possible future research.

14

2 METHODOLOGY

2.1 Philosophical Position of the Research

Research philosophy is a term that refers to a collection of beliefs and theorems about the

way knowledge is developed and adopted by a professional community. This essential set

of conceptions allows associates of a research community to share similar insights and to

participate in common collective practices called a paradigm. A research paradigm serves

as a guide for a research and normally contains assumptions about the human knowledge

(epistemological assumptions) and how it is acquired, assumptions about realities and the

physical word you meet in your research (ontological assumptions) and the scale and the

ways your own values influence your research (axiological assumptions). (Saunders,

Lewis, & Thornhill, 2009).

Ontology is a theory that describes our view of the nature of reality; i.e., the

assumptions about how the word is made up. One aspect to ontology is a division between

objectivism and subjectivism, of which objectivism is normally related to quantitative

research and subjectivism to qualitative research. Objectivism as an ontological view

point proposes that the existence of the world is independent of people and their actions.

(Eriksson & Kovalainen, 2015). In this thesis the ontology of the research is objective;

the researcher has no influence on the data that is analyzed. Also the used machine

learning algorithms that will be used in the analyzing process are not affected by the user,

that is, in this case the researcher. The research is completely repeatable by another

researcher, the outcome of the research does not include a subjective view of the

researcher and the outcome will be quantitative measurable and therefore objectively

evaluable.

Epistemology is closely related to ontology and it explains how knowledge can be

discovered and argued for. Epistemology defines the suitable ways of enquiring

knowledge and defines what knowledge is. It also proposes the sources and limits for

scientific knowledge and therefore offers the basis for scientific practices and processes.

(Eriksson & Kovalainen, 2015). Epistemology mirrors the relationship between someone

as an investigator and the object of the investigation. In this thesis knowledge is developed

through making. Knowledge is constructed based on the context, i.e., it depends on the

data set. The artifacts themselves are not actually created in this thesis, but the evaluations

of the artifacts and benchmarking them against each other with different data sets will

gain knowledge of their usefulness in a given context. The resource of this study is the

data which is measurable and quantitative; it is considered real and not affected by

anybody’s opinions or feelings. Although it could be argued that the generation of the

data set could be biased, somebody has selected what features are selected and how the

15

data is represented. But in this thesis the used data is considered to be real data, and the

outcome of the research, the performance figures of the classifiers, is a single outcome of

the truth. Therefore the philosophy behind this research can be consider as a positivism

research philosophy.

Axiology is a theory of values, i.e., what values does the researcher have related to the

subject of the study (Hevner et al., 2004). In this study, a pursuit of a fair comparison of

the classifiers can be seen as one of the research values. Understanding the basis of the

selected classifiers and their usefulness in business related problem solving can also be

seen as a value for this research.

The above mentioned philosophical groundings set the basis for the research

perspective or paradigm for this thesis. In one way this study can be seen as a positivist

research. The world (selected data sets) is observed in a neutral and objective way. The

aim is to discover some general relationships in the data sets by using the classification

algorithms. The tests performed and thus the observations made in this thesis are fully

repeatable and are not affected by the personal view of the researcher. This thesis also

relates closely to the design science research paradigm, presented by Takeda et al. (1990)

and further developed by Vaishnavi & Kuechler (2004). This paradigm is a problem

solving paradigm which concerns research of man-made constructs or artifacts, their

generation and usage, implementation and evaluation. The Design Science Research

Process Model is depicted in Figure 1. In that model the design science research effort is

divided into five development steps: Awareness of Problem, Suggestion, Development,

Evaluation and Conclusion. This thesis will roughly follow this process, with the main

focus being in Evaluation and Conclusion steps. The awareness of the problem comes

with the selected data sets. The practical part of the thesis will contain also the

development part, but the artifacts that are used there are taken from prior work outside

of this thesis.

Figure 1 Design Science Research Process Model (Kuechler & Vaishnavi,

2004).

16

 Hevner et al (2004) also defines design science as a problem solving paradigm. They

state in their article that knowledge and apprehension of a problem domain and its

solutions are achieved by building a designed artifact and applying it to a real problem

domain. The aim of this study is not to build the artifacts, but to apply them into real data

sets and to evaluate their performance, which is a part of the design science research

cycle.

So basically in this research an information technology innovation is taken into use

(the GOWA-variant of the similarity classifier) and its usefulness is evaluated in a

business problem solving environment and then it is benchmarked against other

classifiers. Wang & Wang (2010) present quite nicely how design science research in

information systems relates to information technology innovations. This relation is

depicted in the Figure 2.

Figure 2. Alignment of Design Research and IT Innovation (S. Wang &

Wang, 2010).

This thesis is positioned into the business problem solving box in the Figure 2,

evaluating artifacts. The evaluation of artifact also relates to the Knowledge Contribution

area, since the aim of this study is also to investigate the usefulness of the similarity

classifiers and add knowledge of their suitability to solve business problems.

2.2 Research Approach

Research approach is quite commonly divided into qualitative and quantitative research.

Quantitative research is defined as a research that focuses on numbers or any data that is

in numerical form. By describing and interpreting research objects with numbers

mathematically or statistically, the researcher analyses the data and aims to a result that

is unbiased and can be generalized to a larger extent and repeated by another researcher.

In this thesis the data which is analyzed is numerical and it will be analyzed with

computational methods by using classification algorithms. The results from the

benchmarking process are also numerical and are easily comparable to each other. The

17

performance figures of similarity classifier compared to other classifiers are numerical

and the opinion of the researcher has no effect to the results. Therefore this research can

be categorized as quantitative research. On the other hand the evaluation of the classifiers

can also be seen to be partly qualitative research, since it is descriptive by nature and the

selection of the used classifiers are done by the researcher, and this has obviously some

effect for the evaluation process. So although this thesis is mainly quantitative, it has

some features of qualitative research as well.

In design science research, when an artifact is generated, one way to evaluate whether

the artifact constitutes research, is to compare it with existing artifacts that are used for

the same, or similar, purpose. Benchmarking is one way to discover the best performance

from among the compared artifacts. The measurement of performance is done by using a

specific indicator, in this case the classification accuracy, among others, which results a

quantitative metric that can be used in comparison with other classifiers. In this thesis the

GOWA-variant of the similarity classifier is benchmarked against to a set of generally

used classical classifiers. The benchmarking process is performed in a controlled

environment; the same data sets are used for each classifier.

In addition to quantitative and qualitative, research approach can also be classified as

inductive or deductive. Inductive reasoning means that theory is developed based on the

data that has been collected and analyzed, i.e., it aims to formulate general concepts from

specific observations. In deductive reasoning a hypothesis and a theory is first developed

and then tested in the research, i.e., the aim is to predict what the observations should be

based on a theory. Deductive reasoning goes to opposite direction as inductive reasoning;

it goes from general, a theory, to details, that is, to the observations. According to

Saunders et al. (2009) deductive research highlights following features: moving from

theory to data, an assortment of quantitative data, a highly organized approach and

researcher objectivity of the researched subject. Although this thesis is not purely a

deductive research, the above mentioned points about deductive research approach can

be related to this study thus making this study more deductive than inductive. This is

depicted in Figure 3, where a general illustration of a classification model building

process is expressed.

18

Figure 3 General illustration of building a classification model. (Tan, Stein-

bach, & Kumar, 2006).

From the figure it can be seen that the learning phase of the machine learning process

where the classification algorithm uses a training set of data for learning is an inductive

process, whereas the testing part of the model is seen as deductive process. This thesis

does both parts of the process, but the main interest is in the model application. Therefore

it is justified to note that this research is a deductive research.

2.3 Research Design Overview

Research Design is a general plan or research strategy, which will explain how the

research work will be executed and how the research questions will be answered.

Objectives for the research should be derived from the research questions and the sources

for the data that is used in the study should also be defined. The aim for a research design

is to show that it has been thought out well why this research is done and how it answers

to the research questions in an effective manner. It is also important to take into account

the amount of time that is available for the study and the existing knowledge, since these

will have an effect for the research work. (Saunders et al., 2009). Research design can

also describe a framework that is the basis for the research work and what will be used as

a guideline for answering the research questions. This section will concentrate on defining

a framework that has been used as a background for this study.

Mitroff et al. (1974) present a problem solving model, which can be used as a

framework for solving business analytic problem, such as a credit default detection

problem, which is analyzed in this thesis. In Mitroff’s model the problem solving process

is divided into four steps as illustrated in Figure 4.

19

Figure 4 A systems view of problem solving (Mitroff et al., 1974).

The first step is defining a business problem, for example distinguishing fraudulent

transactions from the legitimate ones. Steps two and three are model building phases. This

thesis concentrates on the arrow six in the model, the validation part of the selected

models; which are in this study the different classification algorithms.

Purpose of this study is to analyze how well the GOWA-variant of the similarity

classifier performs against a set of classical classifiers. The analysis is done with existing

data, which can be found from a general database for machine learning problems; The

UCI Machine Learning Repository (Lichman, 2013). This database is widely used by

machine learning researchers and practitioners. It is hosted and maintained by the

University of California and it is freely accessible. The other purpose for this research is

to study how well similarity-based classifiers suit for business analytic problems.

Therefore the main dataset that is used for the classifier benchmarking is a business

related data, a credit default detection dataset. Most of the earlier studies of similarity-

based classifiers are done with medical data. The benchmarking is done with MATLAB,

which is a numerical computing environment. MATLAB was chosen as a tool to perform

the modeling of classifiers and the benchmarking, since there are numerous algorithms

already implemented in MATLAB with rich documentation. The research work can

therefore focus on modeling itself, not on the programming. MATLAB is easier to take

into use as a first machine learning related tool compared to a more programming oriented

approach such as R or scikit-learn for the Python. Both of those other two methods are

also widely used by machine learning practitioners, R mainly by people who have a

statistical background and Python by people who have background in computer science.

MATLAB is suitable for a person with business school background since it does not

20

require that much programming experience. There are also good visualization properties

in MATLAB which can be used for presenting the results.

For a theoretical background the similarity-based classifiers and mainly the GOWA-

variant of the similarity classifiers are introduced in this thesis. The literature review is

done to study how widely similarity-based classifiers have been used in solving business

problems and to find for what kind of problems they could be used in the future.

The practical research part of this thesis is based on modeling and evaluation. The

evaluation is done numerically, so results are not affected by the researcher, instead they

are fully repeatable by another researcher. The results should show how well the GOWA-

variant of the similarity classifier works in relation to other selected classifiers. The other

classifiers are selected based on both the literature; the intention is to use classical

classifiers that have been frequently used in other application, and the availability of the

models in MATLAB.

21

3 THEORETICAL BACKGROUND

3.1 Terminology

This section defines some of the key terminologies related to this thesis and explains why

these are important for this study and also in modern business environment.

Machine Learning

According to Samuel (1969) machine learning is a field of study that gives computers the

ability to learn without being explicitly programmed. Machine learning is a field of

science related to exploration and generation of algorithms that can learn from data and

make predictions on it. Machine learning is a part of artificial intelligence and is focused

on computer programs that have an ability to learn from experience by analyzing data,

making observations and interacting with the world and adapting accordingly. The

learning process will happen automatically, without any human intervention. (Varone,

Mayer, & Melegari, 2018). That is what separates machine learning from traditional

purely static and explicit programming.

Machine learning will use a collection of methods to extract a predictive model from

accessible data. Thus the aim is to predict future events; which is a valuable asset in many

business related problems and what the traditional static algorithms cannot do. Machine

learning algorithms are constantly improving over time as more data is captured and

merged to the system. The new data can be used to test the predictions that have been

made based on the previous data and as a result the algorithm can adjust to the new

information and become more accurate in time. Thus the machine learning algorithm

should evolve over the time. (Provost & Fawcett, 2013).

In general machine learning algorithms are able to look for patterns in data that are not

possible to be detected by humans and doing that in scale. Good application areas for

machine learning are computing tasks, where developing an explicit algorithm with

decent performance is difficult, or even impossible. Such areas are for example credit

scoring, credit default (which will be investigated further in this thesis), email filtering,

effective web search, price forecasting, bond classification, speech recognition,

understanding a human genome, detection of malicious transaction, online

recommendation offers, computer vision, or self-driving cars. (Rouse, 2018), (Marr,

2016). The list is quite widespread; in fact machine learning is so ubiquitous today that

people probably use some machine learning algorithm several times in a day without even

noticing it. Machine learning has become popular, because of the growing volumes and

variety of features of available data, cheaper and more powerful computational resources,

and more affordable and powerful data storing capabilities.

22

All the above mentioned facts mean that organizations are able to develop models

effectively and use those models to analyze bigger amounts of more complex data than

ever before, and deliver more accurate results faster and in a very large scale. With these

models organizations are able to identify profitable business opportunities easier than

before and gain a competitive edge and also avoid risks better.

Supervised learning

Machine learning algorithms can be divided into three groups, supervised,

unsupervised, and reinforcement learning. Unsupervised learning interprets unlabeled

data only based on input data. It tries to find some structure within the data and to figure

out what kind of relationships there are in the data and what kind of clusters, or segments,

can be created. Whereas with supervised learning the goal is to learn from the past to be

able to predict the future, based on both the input and output data. The labeled examples

from the past data are used for creating a machine learning algorithm which is then used

for labeling the new data. The labels could be for instance simple yes/no in email filtering

algorithm, meaning that email is either spam, or not spam. In other words, if a specific

target can be provided for the data mining problem, it is a supervised problem. But there

has to be enough data available with the target values provided along with the data before

a supervised learning algorithm can be applied. (Provost & Fawcett, 2013).

Reinforcement learning is the third option, and it falls somewhere in between supervised

and unsupervised learning.

Supervised learning problems are usually divided into regression and classification

problems. In a regression problem, the output will be a continuous numerical value. A

regression problem could an investigation on how much a customer will use a certain

service. Whereas in a classification problem there is a discrete output, or categories to

which input variables are mapped into, like whether a customer will respond to a

marketing campaign, or not. (Provost & Fawcett, 2013). First, in a learning phase an

algorithm receives a set of input instances together with corresponding correct output

values (class labels) and it uses them to find patterns and relationship between input and

output values. The algorithm then compares the actual values to the correct output values,

and adjusts and modifies the model accordingly when it finds errors. Then when a new

unlabeled data is fed to the system, the classifier (=machine learning algorithm created in

the learning phase) can predict the output values by using the patterns that were detected

in the learning phase. A supervised machine learning process is illustrated in Figure 5.

23

Figure 5 Supervised Machine Learning process.

Supervised learning is suitable for application where historical can be used for

predicting future events, for example detecting fraudulent credit card transactions.

Classification

Allaby (2013) defines classification as “Any scheme for structuring data that is used to

group individuals”. The “individual” can refer to an entity of which there is data available

such as a consumer or a customer or a non-living entity like business (Provost & Fawcett,

2013). In machine learning these entities are often called as “instances”. Classification

can also be defined as one example of a pattern recognition problem, where there is a

need to map some output value to a given input value.

Classification is a supervised data mining task, which aims to predict to which of a

known set of categories, or classes, each instance in a population belongs to. Usually the

classes are mutually exclusive. (Provost & Fawcett, 2013). This classification is done by

building a model based on one or more numerical and/or categorical explanatory variables

or feature or attribute. The terminology varies, but feature is probably the most used term

related to classification problems in machine learning.

The classification algorithm, called “a classifier”, is first trained with a training set of

data, which includes the correct class labels for each observation. After the training the

classifier can be used for making predictions to which category a new, previously

unanalyzed data belongs to. A classification algorithm can give an answer to a question

like: Is this credit card transaction fraudulent or not? Is the found tumor malignant or

benign? Will this loan application default? What is the correct category for this article?

What movie categories this online customer likes? So in other words, the aim is to map

an input in a specific input space to a defined classifier output space.

There are several classification algorithms and methods for predicting the class labels.

But all classifiers have a common view that instances, which share a common region in a

target feature-space should be similar. What differs between the various classification

methods is how these regions are characterized and discovered.

Labels

Training data

New

unlabeled data

Machine learning

algorithm

 classifier

Training phase

Prediction phase

class

labels

24

Each instance can be represented with a feature vector; features can be for instance

attributes that characterize different credit card applicants: age, gender, demographic,

monthly income, marital status, education, amount of credit applied etc. Feature vectors

define a feature space and the closer the objects are in that space, the more similar they

are. The problem is how to measure how similar two objects, like customers or

companies, are, and what does it actually mean that they are similar. But once the

similarity can be defined and measured, this information can be used in decision making

and appropriate actions can be done based on the classification definitions. For instance

online ads can be targeted better or companies can use the information to target sales force

to corporate customers that are similar to their known good beneficial customers.

Kotsiantis (2007) presents a machine learning process applied to real world problem

that is depicted in Figure 6. The figure shows that the process is an iterative process,

which could require many rounds, before a good classifier suitable for the given problem

is created. Before any classification can be performed there needs to be enough data with

required explanatory variables available. In most cases some pre-processing is performed

before data can be fed to the machine learning algorithm, a classifier in this case.

Evaluation is a vital part of the learning process. Only a part of the available data with

labels are used as training set, the other part is used for evaluation of the classifier. When

the evaluation shows that the classification rate is at acceptable level, the classifier can be

used for predicting class labels for a new unlabeled data.

Figure 6 Machine Learning process (Kotsiantis, 2007).

25

The selection of an algorithm is not a trivial task, but it is a critical step in the whole

process, since it greatly influences the outcome. There are a wide variety of different

classification algorithms available, which are based on different techniques. For instance

classification can be based on similarity or distance measures (e.g., k-nearest neighbor),

probability assumptions (Bayesian networks), frequency of observations (decision trees),

or definition of boundaries (neural networks) etc. Many classifiers use some distance

indicator between observed instances to define the classes. Usually it requires many trials

with different algorithms and with different parameters before the most suitable algorithm

for a given problem is found. The quality of a classifier is generally evaluated by the

classification accuracy, i.e., the correct classifications versus all predictions.

3.2 Similarity-based classification

According to Janusz (2008), researchers have been interested in the notion of similarity

for many years. If we are able to separate similar objects from those which are dissimilar

while deciding the class label for the object, we are able to produce an accurate classifi-

cation and we are able to detect unusual behavior or situations. While the human mind is

capable of learning similarity relations from examples, it is not that straightforward task

to be performed with computers and algorithms. That is why there is no single method

for building similarity models, which would be suitable for all applications of complex

problems in various areas.

A lot of different methods have been used for creating models which would be able to

define the relation between similar and dissimilar objects and to build a model with good

predictive power. In many of the models the items are treated as points in a metric space

of their features and the similarity between the objects is a decreasing function of the

distance between them, i.e., two items are considered similar if they are close enough to

each other in that feature space. It is natural to think that objects that are likely to be

similar to each other have many similar attribute-values. (Janusz, 2008).

The assumption about closeness between similar samples is a reason why standard

metric-space classifiers are the most common classifiers. They use numerical features to

define the training and test instances. The features are represented as d-dimensional

vectors in a Euclidean space. Metric-space classifiers generally assume that the pair-wise

similarity between samples, or instances, is represented by a metric distance function,

such as the Euclidean, Manhattan, or Chebyshev distance, which measure the physical

distance between objects. Distance measures are used by the classification algorithm to

place the similar samples into the same class, while distant sample points are placed into

different classes (Shirkhorshidi, Aghabozorgi, & Wah, 2015).

26

Two objects can be similar to each other even though they do not necessary bear

common distance measure features, such as symmetry and subadditivity. This is

especially observed in complex situations with multi-variant samples. The reason for this

is that complex objects are similar in some ways (attribute-values) and dissimilar in

others. The reliance between local and global similarities is nonlinear and thus harder to

model. This dependency needs to be learned from the data. (Janusz, 2008).

If data samples are multi-variant and contain both numeric and non-numeric data, it is

not easy to represent the data in the Euclidean space. In these cases the distance functions

are not able to completely represent the relationship and the similarities or dissimilarities

between the instances. All data cannot be represented in a geometric feature space with

continuously-valued numbers and therefore the classifiers that rely on metric similarity

of distance-functions are not applicable either. It could also be in some applications that

the principal features of the data are not accessible, instead only the pair-wise similarities

could be observed. (Cazzanti, 2007).

Similarity is a more general term than distance and may therefore be more suitable for

cases with complex multivariate data, or for cases where all data is not numerical. A

similarity measure is a numerical measure of how much two data instances resemble each

other. Similarity measures are often defined between values 0 and 1, where value 0 means

that there is no similarity and value 1 means that two instances are completely similar. So

instead of using distances on the basis of the classification, similarity-based classifiers

use an alternative learning method, which uses similarities between test and training

samples for estimating class labels. (Cazzanti, Gupta, & Srivastava, 2009).

It is the same thing with similarities as it is with distances; there are several ways to

measure the similarity. Also with multivariate data there are various ways how the

similarities of different features are aggregated to form the finishing similarity for a

particular instance. The choices for a similarity measure and aggregation function have

naturally an effect on the accuracy of the classifier. The aim for this study is not to

compare different similarity measures or aggregation functions. The similarity classifier

and the aggregation method that are used in this thesis are the same as Kurama et al.

(2017) use in their research paper. The purpose of this thesis is to compare this particular

similarity classifier to a set of other classifiers and to find out how well it performs

compared to other classifiers.

In order to be able to understand the GOWA-variant of the similarity classifier

introduced in the next chapter one general example of non-metric similarity functions that

can be used for pattern recognition and classification is introduced next. The example

case is Tversky’s linear contrast model (Tversky, 1977). This model assumes that each

sample can be represented as a set of features. This model is a binary model, each sample

either has a selected feature or not. The similarity function is an increasing function of

overlapping feature set and decreasing functions of feature set of differences (Chen et al.,

27

2009). An example of Tversky’s model is presented in Figure 7. In this example each

sample is presented with four facial features: eyes, nose, month, and hair. One sample for

both of the classes is defined as the center point of that class. Class geometric center, the

centroid, is typically defined as a sample which has the maximum similarity with all the

other samples in that particular class. The similarity between two samples is calculated to

be a number of facial features that these two samples have in common. A sample belongs

to the class with the most similar centroid sample. (Cazzanti, 2007).

Figure 7. Similarity based classification example. (Cazzanti et al., 2009).

Tversky’s similarity model has been successful in explaining human similarity

judgments in several similarity-assessment problems, but it has also been useful in other

fields than psychology (Cazzanti, 2007).

There are also many other similarity functions defined to measure similarity; for

example a value difference metric is designed to measure the distance between samples

that are defined with non-numeric features or Lin’s similarity measure that is based on

information content of feature vectors to name a few (Cazzanti, 2007). The next chapter

defines the similarity functions and classification method used in this thesis.

3.3 GOWA-variant of the similarity classifier

The main idea of the similarity classifier is to first create “ideal vectors”, which are rep-

resentatives of each of the target classes. These ideal vectors will then be used for calcu-

lating similarity between a new item and those representative vectors and to select correct

class label for that new item. (Kurama, Luukka, & Collan, 2016a). Similarity-based clas-

sifiers contain an aggregation step, in which the similarities of single features of multi-

28

dimensional data items are combined. The GOWA-variant of the similarity classifier is a

similarity classifier that uses a generalized ordered weighted averaging (GOWA) operator

in aggregation (Kurama et al., 2017). The overall goal for a classifier is to place new

samples into a set of selected classes as accurately as possible. First, a set of representative

vectors, or centroid samples, needs to be selected for each class. Each representative vec-

tor includes a set of measured features, which are usually first scaled to a unit interval [0,

1] to ease the calculations. Then a new sample is compared against these representative

vectors and it is labeled with the class label of the representative vector with which the

new sample has the highest similarity value (to which the new sample is most similar to).

Similarity is calculated in a way that the similarity of a sample with itself is equal to 1.

This means that a similarity value against other samples should be less than or equal to 1.

The selection of which aggregation operator is used in a similarity classifier is an

essential decision, since it directly affects the classification accuracy of the final classifier

(Kurama, Luukka, & Collan, 2016b). Aggregation operators are mathematical entities,

the purpose of which is to reduce the set of numbers to a unique representative and

meaningful number (Detyniecki, 2001). That is, aggregation operators are used for

combining N numerical values into a single numerical data value. The most common

aggregation operators are the arithmetic mean and the weighted mean. The weighted

mean differs from the arithmetic mean by allowing a weighting of different data items

according to their significance. (Torra & Narukawa, 2007). In a classification problem

there are several predictors (or parameters) that are used for determining to which class

this particular item belongs to. In similarity classifier the similarities of these decision

criteria values (i.e., the parameters) are combined to form a unique similarity value which

can then be used to determine the target class. An aggregation operator is needed for that

operation. In the following definitions of a few aggregation operators are introduced. A

simple and most common aggregation operator, the arithmetic mean is expressed

mathematically as:

������,��, … ,��� = 	 ∑ ��
�
���� 								(�)

Weighted mean can be expressed mathematically as:

������,��, . . . ,��� = 		
�	��		�

���

,���	
� ∈ 	 ��,��	���		
�

�

���

= �				(�)
Where �	 equals to the weight, or the relevance, of the �	 information item. Weights

should all be positive and their sum should be one. The weight is typically understood as

a defined significance factor for each element.

29

Ordered weighted averaging operators were introduced by Yager (1988) and they can

be expressed mathematically as:

�
����	,��	, … ,��� = 		�		��()�

	�

,			�	 ∈ 	 �0,1�	���		�	

�

	�

= 1		(3)		
where � is a permutation, which orders the elements in descending order: ��() 	≤	��(�) 	≤ ⋯ 	≤ 	 ��(�). This reordering step is an essential feature for this aggregation

operator. In OWA aggregation the weights are not connected with a specific argument,

but with the ordered positions of the arguments (Yager, 1996). Different OWA operators

are distinguished by their weighting function (Fullér & Majlender, 2003). OWA operators

provide a parametric family of mean type aggregation operators, such as the arithmetic

average, the median, the minimum, and the maximum. In order to attain these specific

operators, the weighting vector needs to be defined accordingly, for instance the

minimum operator is selected by setting � = 1 and other weights to zero. (Detyniecki,

2001).

There are number of different approaches that have been developed for determining

the related weights for the OWA operator. Zhou & Chen (2014) have collected a few

alternatives methods for a weight generation in their paper. For instance a learning

technique that is built on observed data, exponential smoothing process that produces

exponential OWA operator and weights, maximum entropy model that conveys the OWA

operator weight problem as a constrained nonlinear optimization model, and a quantifier

guided aggregation that computes weights using linguistic quantifiers.

The aggregation operator used in the similarity classifier used in this thesis, a

generalized OWA operator, is an extension to the OWA operator, also introduced by

Yager (2004). The GOWA operator adds an extra parameter to the OWA operator which

controls the power to which each argument value is raised. GOWA operator is defined

as:

������,��, … ,��� = 	 �	�� 	���			�

��

/�

				(4)
where �	 are the weights (values between zero to one and they add to one), ! is a

parameter (!	 ∈ [−∞,∞]) and �� is the jth largest value of �	. The choice of a parameter
value ! has an effect on classification accuracy and therefore it should be investigated
which ! value gives the best accuracy. I.e., the GOWA operator behavior changes as the !-value changes (Kurama et al., 2017). Another thing that affects the classification
accuracy is the choice of how the weights are defined. In the model used in this thesis

weights are determined by using quantifier guided aggregation.

Yager (1996) proposed the use of fuzzy linguistics quantifiers for obtaining the

weights for the OWA operator. One class of the proposed quantifiers is Regular

Increasing Monotone (RIM) quantifiers, which can be expressed using verbally concepts,

30

such as all, most, many, and there exist. Weights with RIM quantifiers can be determined

as: �	 = " #$�% − " #$ − 1� % , $ = 1,2, … ,�	���	"	$&	'ℎ()*��'$�$(+			(5)	

Further details about quantifier generation can be found from literature (Yager, 1996)

& (Fullér & Majlender, 2003) & (Liu & Han, 2008), but are left outside the scope of this

thesis. Kurama et al. (2017) used four different linguistic quantifiers which will produce

four different weight generation schemes. The same quantifiers are used for this thesis.

The used quantifiers are basic RIM, polynomial, exponential and trigonometric

quantifiers and their equations are presented next.

 "�+� = 	 +�,,	 ≥ 0			(��&$-	./0)*��'$�$(+)			(6)
 "��+� = 1 − �1 − +��,, ≥ 0		�1234�5�3)*��'$�$(+�		(7)

"��+� = 	 #(� − 1(− 1
%		�(612�(�'$�3)*��'$�$(+�		(8)

 "��+� = �+-&$��+,�		('+$72�25('+$-)*��'$�$(+)				(9)

The equivalence ℯ between two items 6 and 6� can be defined as:

ℯ�6, 6�� = 	 81 − 96� − 6��9:�					(10)

If equivalence between two samples are denoted as	ℯ�6, 6�� = �(, (�, … , (��, where (is defined as in equation (10), we get the similarity measure with GOWA operator as:
;�����(, (�, … , (�� = <	�	�	��

	�

=

� 				(11)

where �	 is an n-dimensional weighting vector, ! is a parameter for the GOWA
operator and �	 is the $�� largest value of �(, (�, … , (��. Each of the equations above are
taken from Kurama et al. (2017) publication. More details about how the similarity

measure is defined can be found in ibid.

3.4 Literature review

Fink (2005) defines literature review as “a systematic, explicit and reproducible method

for identifying, evaluating and synthesizing the existing work produced by researchers,

31

scholars and practitioners”. The aim for a literature review is to provide a relevant

background of what has already been done in the field of the study and therefore provide

a context for the research work. In this chapter the pre-existing knowledge about

similarity classifiers especially in the business context is gathered together and a literature

review of the selected relevant articles is conducted.

The literature review in this thesis is performed with a structured three-step process

presented by Webster and Watson (2002). Webster and Watson claim that an effective

literature review forms a sound basis for developing theories and progressing knowledge.

In their article, they present an intangible and structured approach of doing literature

reviews in Information Systems. The first step includes defining the key-words for the

search for the relevant literature. The databases where the search is performed also need

to be chosen. Webster and Watson (2002) state in their article, that the leading journals

include most probably the major contributions for the field of study. But they also argue

that since Information Systems is an interdisciplinary field, the search should not be

performed only within the leading journals of IS alone. In this thesis the relevant related

disciplines are computer science, operational research and mathematics, since similarity

classifiers are especially aimed for fuzzy logic applications.

“Similarity classifier” and “similarity-based classification” were selected as quite

obvious search strings for the research. Webster & Watson (2002) suggest that a

multidisciplinary database should be used for the search process. Web of Science, a search

and indexing service, was selected for this research, since it seeks information from a

number of databases related to different disciplines. This reference database was selected

to get a wider view and to include other fields than IS to this research, since the field of

study is closely related to other disciplines and a search from IS or business related

database alone would not have resulted wide enough view on the topic or not enough

articles for this review. In fact, the search on Business and Economics related database

(ABI/INFORM Collection (ProQuest), EBSCO – Business Source Complete, EconLit

(ProQuest) and Emerald) only resulted one article, which shows this literature review

should be performed in a multidisciplinary context and also that there exist a research gap

in similarity classifiers related to business.

The search in Web of Science reference database resulted in 105 hits, of which

approximately half were journal articles and half proceedings papers. Web of Science

categorize these papers by research area. That categorization shows that this subject is

rather technical, since most of the papers are classified into computer science and

engineering research areas. Only 10% of the papers are categorized under a research area,

which could be seen as really business-related research. But this categorization gives a

too simplified picture about the research in this area. The research in many of the papers

is concentrated in the model development, i.e., enhanced classification accuracy and the

32

concept of the similarity measurement, and not on the application area, where the

developed model could be used.

The resulting 105 papers were scanned and irrelevant ones were omitted, which

resulted in 76 papers that are to some extent relevant to this research. It was observed that

the research in this area is quite focused on a few countries, 56% of the papers originate

from Finland, USA or China, Finland being the origin of most published papers (22% of

the total 76) in this area. The abstracts and some key points of the 76 papers were

investigated to find out what is the main focus and the application area in those papers.

The main focus in at least half of the papers is in the concept of similarity and the

development of the similarity based classification algorithms. That is, in most of the

papers the main focus is not on the application area where the classifier is used, instead

they are more focused on the classifier itself and in the improved classification accuracy.

The academic interest is focused on modeling and developing more accurate similarity

classifiers and finding grounds for using similarity, instead of some other measure, on the

basis for the classification. Medical diagnostics, image (2D and 3D), voice and text

recognition are widely used application areas for similarity classifiers. These could be

naturally applied to business cases in relevant area, but the articles themselves do not

directly demonstrate how decision-making in business can benefit from the similarity

classifiers that are introduced in the papers.

One quite obvious business-related application area for classifiers in general is credit

scoring. Within the papers that were scanned in this review, there were three papers that

analyze credit card data. One of the reasons why there is a scarce amount of research on

similarity classifiers related to business analytics problems is probably the lack of

appropriate data. Quite many of the 76 papers use data from the UCI machine learning

data repository (Lichman, 2013), which is an open source data repository widely used

among machine learning researcher and practitioners. That repository does not have too

many business-related data sets available. This indicates that there is definitely a room

for more research for similarity classifier usage in business problems.

Based on the resulting papers, it seems that the most utilized application area for

similarity-based classification is medical data and medical diagnostics since nearly half

of the papers used medical data as a case study. There were just a couple of papers that

can be directly related to solving business problems. Of course it also depends how the

business problem space is defined. Better diagnostics will naturally give a competitive

edge for a medical organization etc., but we consider business problems more generally

belonging to the domain of business. According to the definition from Techopedia

(Janssen, 2018) business analytics refers to all methods and techniques that are used by

an organization to measure performance. In this thesis business analytics is seen as data-

driven decision-making process and it should be used by the organizations to identify

weaknesses in existing processes and to enable future growth. Business analytics

33

generally applies statistical algorithms to historical data and based on that make

predictions about future sales, product performance, services, customer segmentation,

website usage etc.

Based on the definition above there were only a couple of papers that could be directly

related to business and business analytical problem solving space. Luukka et al. (2010a)

applies similarity classifier in bankruptcy analysis, Skabar et al. (2013) uses similarity

classifier while forecasting financial time series, credit scoring is investigated in two

papers (Kurama, Luukka, & Collan, 2015), (Steffens, 2005) and in Imran’s et at. (2016)

paper similarity classifier is used in malware detection which could be utilized in various

business cases. Wang et al. (Z. Wang et al., 2016) investigate social media with emotion

sensing, which could be applied to many businesses since the use of social media as an

advertisement channel is growing rapidly all the time. Each of these six papers were

analyzed in more detail and the main points of these five papers are gathered in Table 1.

Table 1. Literature review papers.

Title Nonlinear fuzzy robust PCA algorithms and similarity classifier in

bankruptcy analysis

Authors Luukka, Pasi

Purpose Bankruptcy prediction in one of the most interesting task and

research subject in financing (Luukka, 2010b). Bankruptcy

prediction and credit scoring are also popular application areas for

traditional classifiers. In this article bankruptcy analysis is carried out

by first preprocessing the data with two different principal

component analysis (PCA) algorithms and then applying the resulted

data to similarity classifier to differentiate whether the credit card

application should be accepted or not. The focus in this paper is more

in principal component analysis than in the similarity classifier itself.

Research

methods

The data that was used in this research was downloaded from the UCI

machine learning data repository (Lichman, 2013) and the used

algorithms were developed with MATLAB software.

Conclusion and

results

The best classification accuracy achieved in this research was

88.39% with one of the investigated principal component analysis

algorithm and similarity classifier. As a comparison, the accuracy

was lower if it was analyzed without PCA and with traditional PCA.

Another notable issue was that the best results were achieved with

quite low dimensions, good accuracy was achieved with the first

three principal components. This means that complex datasets can be

significantly simplified which reduces required computational time

and resources. (Luukka, 2010b).

34

Title Fine-Grained Sentiment Analysis of Social Media with Emotion

Sensing

Authors Wang, Zhaoxia; Chong, Chee Seng; Lan, Landy; Yang, Yinping; Ho,

Seng Beng; Tong, Joo Chuan

Purpose Social media is nowadays used widely and it contains a huge amount

of human generated text; opinions, feedbacks and critiques that

reflect attitudes and sentiments towards different things. This paper

describes an adaptive fuzzy similarity-based analytics engine, which

classifies text messages into sentiment categories (positive, negative,

neutral and mixed) and is also able to prevail emotion categories

(such as satisfaction, happiness, excitement, anger, sadness and

anxiety). I.e., the purpose is to offer means to understand the public

sentiment. (Z. Wang et al., 2016).

Research

methods

There is a social adaptive inference algorithm that simulates human

expression and emotions in online social context. A fuzzy similarity

rules are used for handling sentiment classification.

Conclusion and

results

The research presents an analytics method for handling fine-grained

sensing and emotions classification. There are a lot of opportunities

where this can be applied. It could benefit healthcare, corporate and

public and private sectors to understand their customers better and to

improve their products and services.

Title Direction-of-Change Financial Time Series Forecasting using a Sim-

ilarity-Based Classification Model

Authors Skabar, Andrew

Purpose Financial time series forecasting is a popular topic in finance.

Traditionally future values of a time series are predicted based on the

past values and the accuracy of the prediction is estimated by

comparing the predicted values to the actual realized values. In many

cases the ability to predict the direction of the change (up/down) is

more important than the magnitude of error in the prediction, which

makes this a suitable classification problem. In this paper a

similarity-based classification model is introduced which is used for

predicting upward/downward movements in stock market. (Skabar,

2013).

Research

methods

The model is applied to daily closing prices of the Dow Jones

Industrial average over a 20-year out-of-sample period from 1

January 1989 to 3 December 2009. The performance of the

similarity-based classifier is compared to a logistic regression and

multilayer perceptron (a linear binary classification algorithm).

35

Conclusion and

results

The overall prediction accuracy was only a little over 50%, which is

not much better than pure chance. But it is not the whole truth, since

the prediction accuracy varies a lot over the input space. But all in

all, the researcher did not find any substantial difference in

performance between similarity-based and MLP classification

approaches with the used dataset. (Skabar, 2013).

Title Partial and Vague Knowledge for Similarity Measures

Authors Steffens, Timo

Purpose The purpose of this paper is to introduce an enhancement to the

similarity-based classification by using virtual attributes from

imperfect domain theories. Virtual attributes are attributes that are

not directly represented in the test data but they can be derived from

the already existing attributes. (Steffens, 2005).

Research

methods

The method is applied to two datasets, one of them is a Japanese

credit card data from UCI Machine Learning database. The focus in

this paper is in intermediate attributes, which are good candidates for

virtual attributes and can be added to the similarity measure and by

doing so possible enhancing the classification accuracy (Steffens,

2005).

Conclusion and

results

This article shows that even an imperfect domain knowledge can

enhance the similarity-based classification. This means that domain

knowledge does not need to be complete and fully accurate in order

to be still useful.

Title Malware classification using dynamic features and Hidden Markov

Model

Authors Imran, Mohammad; Afzal, Muhammad Tanvir; Qadir

Purpose As digitalization affects most of the businesses today, organizations

also need to pay more attention to the information security. The

number of new malware threats has increased notably, triggering

loses of billions of dollars globally. Therefore malware needs to be

identified in order to provide corrective and defensive actions

towards it. This paper uses a similarity-based classifier to identify

new malware by classifying it to a set of previously defined malware

classes, since most of the new malware resembles some of the

previously recognized malwares. (Imran et al., 2016).

Research

methods

This paper compares two classification methods (similarity-based

and maximum likelihood), which both are based on Hidden Markov

Model, for classification of malware.

36

Conclusion and

results

Similarity-based classification was found to perform better than

maximum likelihood classification scheme. It was discovered that

when making the decision about which malware family a new

malware belongs, the pattern of the sample’s similarity with all

malware families should be taken into account. The decision should

not be made on the basis of the closest match of with a single

malware family. Neither one of the used classifiers were able to

detect benign samples effectively, but similarity-based classifier

performed slightly better on this tasks also. (Imran et al., 2016).

Title Credit Analysis Using a Combination of Fuzzy Robust PCA and a

Classification Algorithm

Authors Kurama, Onesfole; Luukka, Pasi; Collan, Mikael

Purpose Classification is an essential part of credit analysis and bankruptcy

prediction. A Financial institution can have a significant competitive

advantage if it can separate good borrowers from a group of possible

borrowers more accurately than its competitors. The problem is an

actual business problem, failed credit decision-making in financial

institutions may cause severe financial difficulties, while at the same

time it hinders good business if money is not lend to good borrowers.

This paper investigates combinations of three fuzzy robust principal

component analysis algorithms and two different classifiers

(similarity classifier and k-nearest neighbor classifier) to find out

which combination gives the most accurate classification result.

(Kurama et al., 2015).

Research

methods

The data set used in this paper is the “Australian credit screening

dataset” which can be downloaded from the UCL machine learning

data repository (Lichman, 2013). Research method is a design

science based research, the used algorithms are implemented and

analyzed with the MATLAB software.

Conclusion and

results

With parameter values set correctly, slightly above 80%

classification accuracy can be obtained. There should be more tests

done with other methods to be able to conclude whether these results

are good or poor. This paper however shows clearly that choosing

the parameter values has great impact on classification accuracy and

this should be emphasized when implementing and using these

systems. (Kurama et al., 2015).

The table above gathers the results for the first research question, which was: What

previous academy research literature exists on similarity based classifiers and what are

37

the results of the said previous research? It can be concluded that there is not much

research on similarity classifiers in business related context. Bankruptcy and credit

scoring seem to be most applicable area for the similarity based classification. Also

malware detections, social media and financial time series were used as application areas.

Most of the research uses data from repositories available on the internet. It could also be

that companies will not publish the work they have done, since it might affect their

competitive edge if they do, and therefore a lot of the made research on the topic is not

visible. But in general it is clear that there is a room for more research in this area.

38

4 BENCHMARKING CLASSIFIERS

4.1 Reference classifiers

There is a large variety of classifier algorithms available and many of those have some

parameters, which makes the choices of how to classify a set of data items even more

plentiful. Different classification algorithms have different approaches for learning. There

is no one method that would be the best for all applications or one algorithm that would

be best suited for all classification problems, even the best data scientist cannot tell which

algorithm works best for a given problem until they make tests. Finding the right

algorithm for a given problem is usually done in a heuristic way, by trial and error.

(Mathworks, 2018).

Benchmarking classifiers is a heuristic way of investigating which classifier algorithm

would be best suited for a given classification problem. Here the target is to find out

whether the GOWA-variant of the similarity classifier is better suited for a business

analytics context than algorithms from a set of classical classifiers. In the following the

reference classifiers that are used for this benchmarking are presented shortly. The

purpose is not to go into too much detail for each classifier, there is lot of information

available for each classifier in relevant machine learning literature for anyone that is

interested. The reference classifiers that are used in this thesis have been selected based

on their common use among machine learning applications and literature, and their

availability in Statistics and Machine Learning Toolbox in MATLAB, which is the

software used in this thesis.

The different classification algorithms can be grouped in several ways. One way is to

group the algorithms based on the method for which the class separation is based on.

Figure 8 shows some of the commonly used classification algorithms grouped in this way.

39

Figure 8. Classification methods

The four reference classifiers used in this thesis were selected so that the benchmarking

is done with classifiers which are based on a different classification methodology. The

selected four classifiers are introduced shortly below.

Decision tree

Decision tree is probably the easiest method to understand and interpret, even without

any technical background. As the name implies, decision tree resemble a tree, or a branch,

structure. An example of a decision tree is depicted in Figure 9. The root node is the

starting point and in each decision node there are two choices, which divide the dataset

according to given options. The decision nodes represent input variables, i.e., the

predictors that are used for making the splits. The leaf nodes are the target classes, i.e.,

they represent the output variables. The decision tree structure is first learned from the

training data set and after that each new record can be classified using the tree and its

decision nodes. The prediction is made by walking through the decision nodes, starting

from the root node, and ending up to one of the leaf nodes. (Le, 2018).

Classification

Frequency

table

Covariance

matrix

Similarity

functions

Others

Naive Bayesian

Decision trees

Discriminant Analysis

Logistic regression

k-nearest neighbor

Artificial neural networks

Support Vector Machines

40

Figure 9. Example of decision tree (Le, 2018).

Decision tree tolerates errors and handle missing data well in a training data set and

therefore do not require that much preparation of the data. Decision tree is very intuitive

and the results are easily explainable. It can handle both numerical and categorical

variables and does not have any requirement about linearity in the data. It is useful in

exploring the data. Decision tree works well with discrete variables, while continues

variables will result in instability. While the interpretation of the model is easy, it could

be lacking on classification accuracy. Also there is a great risk of over-fitting and thus

erroneous classification results, if the tree is grown “too deep”. Decision tree could be

used for instance by banks to classify loan applicants by determining, whether their will

default on payments or by healthcare institutes to identify at-risk patients or disease

trends. (DeZyre, 2018).

Discriminant Analysis

As a classifier which uses covariance matrixes as a basis for classification, a discriminant

analysis classifier was chosen, since linear regression classifiers are limited to only binary

classification problems, and the new-thyroid data used in this thesis, has three target

classes. Discriminant analysis classifier uses linear or quadratic combinations of

predictors. The target is to find such combinations that class variance between different

classes is maximized relative to the variance within the class. This means that a mean

value is calculated for each class and the variance across all classes and mean values of

each class will be used as class boundaries. Predictions are then made by calculating a

discriminative value for each class and the correct class label is selected based on the

largest discriminative value.

41

Linear discriminant analysis can also be used to decrease attribute space, the target is

then to project attributes to axes so that the projections will maximize the separation

between classes, see Figure 10.

Figure 10. Linear discriminant analysis. (Raschkam, 2014).

The discriminant analysis assumes that all predictors have a Gaussian distribution. So

if there are clear outliers, those should be removed before the classifier training is

performed. (Le, 2018).

Support Vector Machine

Support Vector Machine (SVM) was first introduced by Cortes and Vapnik (1995) to be

used for binary classification. The target is to find an optimal separating hyper-plane

between two target classes, which will split the input variable space and maximize the

separation margin between the classes’ closest points. The points that lie on the

boundaries of the separation margin are called support vectors. There might be some

points of the vectors that lie on the “wrong” side of the separation margin, their influence

can be reduced by giving them a lower weight. If a linear separator cannot be found, data

points are projected into higher-dimensional space, where they become linearly separable.

A programme able to execute all the required task that will generated the separation

margin and thus make the classification is called a Support Vector Machine. (Meyer &

Wien, 2001). Example of the support vector machine binary classification is depicted in

Figure 11.

42

Figure 11 Example of Support Vector Machine (Meyer & Wien, 2001).

Support Vector Machine typically has good classification accuracy. The advantage of

using SVM is that it does not make any strong assumptions about the data and it does not

tend to over-fit the data. Support Vector Machine is commonly used for a stock market

forecasting to make relative comparisons between different stocks. (DeZyre, 2018).

K-nearest neighbor

If it looks like a duck, walks like a duck and quacks like a duck, then it’s a duck. This

common phrase can be used to describe k-nearest neighbor (KNN) classifier to some

extent. If a data item resembles its neighboring items, it is probably of the same type as

the neighbors. The K-nearest neighbor method is based on identifying k items in the

training dataset that are most similar to the data item to be classified. The target class is

determined based on the neighboring data items, the new item is assigned to the class

which is most predominant among the nearest neighbors. To assess which are the closest

neighbors to the new item to be classified, we need to investigate the parameter space,

i.e., the predictors and select the neighbors which predictors are closest to the predictors

of that new item. There are different ways to determine the distance or the similarity

between the data items or records, but Euclidean distance is the most commonly used

method for that. Euclidean distance between two records * = �*,*�, … ,*�� and > =�>,>�, … ,>�� is calculated as:
 ? = 	@�* − >�� + �*� − >��� +⋯+ �*� − >���			(13)

43

K-nearest neighbor classification algorithm is simple to implement, it has a good

tolerance against noisy data and it is effective for large training datasets. But the

computation cost could be high, because the distances between each record need to be

calculated to all training samples (Garg, 2018).

Example of the k-nearest neighbor classification is depicted in Figure 12.

Figure 12. Example of k-nearest neighbor classification (Cengiz, 2017).

In Figure 12 there are three classes available and the goal is to find out a correct class

label for the new record	6�. Euclidean distance is used for determining the nearest
neighbors and the value of k=5, i.e., five closest neighbors are considered and by majority

voting, class � is selected since four closest neighbors belong to that class.

4.2 Data sets

The benchmarking of classifiers is done with three different datasets, all of which can be

obtained from the UCI Machine Learning database (Lichman, 2013). As a starting point

for this thesis was the research work done by Kurama et al. (2017) with four different

data sets, two of those data sets are also used in this thesis to get comparable data. In

addition one new dataset, a credit default data set from the said database is used for

comparing the GOWA-variant of the similarity classifier against the reference classifiers

and to evaluate how well the GOWA-variant is suited for business-related problem

solving. All used datasets are briefly introduced next.

Haberman’s survivor data set

This dataset contains patient data from a study on survival of patients who has gone

through a breast cancer surgery (Lichman, 2013). There are 306 instances in this data set

with three numerical attributes. Attributes are the “age of patient” at the time of operation,

44

the “year the operation” was done (year -1900 in the dataset), and the number of “positive

axillary nodes” detected. The class-attribute is the survival-status of the patient that

indicates whether the patient has survived five years or longer after the surgery or died

within five years.

New-Thyroid data set

This data set is one of the thyroid data sets found in the UCI Machine Learning data

repository (2013). This data set contains 215 instances, which all have 5 attributes. The

purpose of this data set is to investigate the thyroid symptoms of the patients. There are

three target class attributes, normal (no thyroid symptoms), hypo (low functioning

thyroid), and hyper (high functioning thyroid).

Default of Credit card clients

This data set contains customer data of a Taiwanese bank. The aim is to predict whether

the customer is creditworthy or not. There are 23 explanatory variables in this data set.

As an assumption, or a hypothesis, we can state that the similarity classifier is likely to

give us better results for the classification that the traditional classifiers. The attributes of

this data set are: amount of credit given, gender (1=male, 2=female), education

(1=graduate school, 2=university, 3=high school, 4=others), marital status (1=married,

2=single, 3=others), age (year), history of last payments (6 attributes, -1=pay duly, 1-9

payments delay in months), amount of bill statements (6 attributes, status of 6 past

months), amount of previous payments (6 attributes, status of 6 past months).

4.3 Evaluation of the selected classifiers

As we want to compare different classifiers, we need some criteria on how to evaluate the

quality of each classifier. Two of the classification problems that are investigated in this

thesis are binary problems, i.e., there are only two classes which the classifier is supposed

to separate from one another. And there are also only two kind of mistakes the classifier

could make; it could classify a positive item incorrectly as a negative item (called false

negative = FN), or it could classify a negative item incorrectly as a positive item (called

false positive = FP). The items for which the class is predicted correctly are called true

positives (TP) and true negatives (TN). It is obvious that the classifier should aim to

minimize both false negatives and false positives. But usually when one decreases one,

one increases the other. And this is also the case with false positives and negatives. If the

classifier would simply classify all items as positives there would not be any false

negatives, but instead all negative items would be predicted incorrectly. Or if the classifier

would predict all items as negatives, one would not get any false positives, but all positive

45

items would be incorrectly predicted as negative thus producing a lot of false negatives.

Therefore the classifier must find a compromise between these two extremes, while trying

to minimize both false negatives and false positives. (Berthold et al., 2010).

One way to visualize the trade-offs between benefit of the classifier (true positives)

and cost (false positives) is to use a Receiving Operating Characteristics or ROC curve.

ROC curve is one of most commonly used method to visualize the performance of a

binary classifier. ROC curve was first used during World War II radar images to

distinguish between enemy ships, friendly ships, or just noise. It was aimed at measuring

the operating characteristics of the radar receiver which explains the name of this tool.

Later it has been adapted by medical diagnostics and for the first time in machine learning

applications by Spackman (1989) when he used ROC curve to compare and evaluate

algorithms. (Gonçalves et al., 2014).

ROC is a plot of benefits, i.e., the sensitivity (true positive rate) against cost or noise

(false positive rate, also noted as 1-specifity, i.e., predicting a true negative item as

positive item). Some classifiers provide a probability of whether the predicted item

belongs to the class of not. Usually class label is selected based on the highest probability.

With binary problems, an item will be labeled as true if the probability of the true class is

greater than 0.5. If we would select higher probability, say 0.8, we would result fewer

false positives, but also more false negatives. ROC curve is used for illustrating different

threshold values for the class separation probability. An example of a ROC curve is

depicted in Figure 13. The diagonal line equals random guessing, if you pick a random

positive sample, there is a fifty present chance the model predicts it as a positive sample

and same for the negative samples. The area under the “curve” = the diagonal line,

“AUC”, is 0.5, which equals to a fifty percent chance to predict the class correctly. An

ideal classifier would have AUC = 1 (point (0, 1) in the Figure 13), which would mean

that all new samples are predicted correctly. (Berthold et al., 2010).

Figure 13. The ROC Curve. (Berthold et al., 2010)

46

ROC curve used a few numerical criteria to measure the performance of a classifiers.

Hossin and Sulaiman (2015) present in their paper a set of quantitative indicators that can

be used for evaluating classifier performance. The most obvious one is probably the

overall classification accuracy; i.e., how well the classifier can predict a correct class.

Accuracy can be calculated as follows: �AA = 	 BC + BDBC + BD + EC + ED
In other words, the overall accuracy measures the ratio of correct predictions over the

total number of items measured. Hossin & Sulaiman (2015) also present many other

quantitative indicators, such as the Error rate, Sensitivity, Specificity, Precision, Recall,

F-Measure, or using different average values. The error rate (err) measures the ratio of

incorrect predictions over the total number of instances evaluated. (++ = 	 EC + EDBC + EC + BD + ED
Sensitivity (sn) measures the fraction of correctly classified positive patterns. &� = 	 BCBC + ED
Specificity (sp) is similar to sensitivity, but instead of positive patterns, it measures the

fraction of correctly classified negative patterns. &1 = 	 BDBD + EC
Precision (p) is a measurement criterion that determines the ratio of the correct positive

predictions over the total number of positive predictions, i.e., how many of the predicted

true elements are actually true. 1 = 	 BCBC + EC
Recall (r) measures the fraction of actual true elements of the correctly predicted

instances. + = 	 BCBC + BD
F-Measure is a harmonic mean between recall and precision values. E0 = 	2 ∗ 1 ∗ +1 + +

It depends on the features of the data how well each of these quantitative evaluation

methods work. None of them is an absolute best measurement criterion, there are some

cases where a particular evaluation criterion may result in too positive outcome and thus

some other criteria should be used instead. For instance accuracy is not a good evaluation

criteria if the dataset is heavily imbalanced, such as when classifier tries to detect

fraudulent transactions from legitimate ones. Presumably most transactions are

legitimate, so the classifier can classify all transactions as legitimate and achieve 99%

accuracy and still be a totally useless classifier. I.e., accuracy is a good evaluation criteria

47

if the target classes are somewhat in balance is the evaluated dataset. Precision does not

give much useful information, if there are only few positive elements in the evaluated

dataset, but it fits well in cases where each try has a significant cost, but missing a chance

does not matter much – an example of such a case could be a recruitment process. Recall

could give too good evaluation results if the dataset is biased towards positive items. It is

easy to predict true values if most the predicted values are true. But this criteria is valuable

if missing a positive item will cost a lot, like for instance a cancer prediction or some

other medical diagnostic case. (Thoma, 2018).

Confusion matrix is another popular graphical indicator tool in addition to the ROC

curve, which suites for binary classification problems well and it is also used in this thesis.

Confusion matrix, which can also be called an error matrix, is a specific table format

which summarizes the performance of a classifier. Actual classes are represented in rows

of the matrix and predicted classes in columns, or vice versa. From the table is it easy to

see whether the classifier can distinguish the classes from another or does the classifier

confuse classes. (Sokolova & Lapalme, 2009).

The error rate is also easily visible from the table, since both correctly predicted class

items and falsely predicted class items are presented in the table, see Table 2.

Actual data

class

Classified as positive Classified as negative

positive

TP (true positive) FN (false negative)

negative

FP (false positive) TN (true negative)

Table 2. Confusion matrix (Sokolova & Lapalme, 2009).

Table 3 shows an example of a confusion matrix. Say that we have one thousand

emails, of which 500 and real emails and 500 are spam. The confusion matrix shows how

well the classifier can separate spam email from real emails.

Actual

class

predicted

as real

email

predicted

as spam

 predicted

as real

email

predicted

as spam

real email 470 30 94% 6%

spam 80 420 16% 84%

 Table 3. Example of a confusion matrix. Predicted classes shown both in

number of observation and percentage format.

48

Other metrics to represent the classifier performance can also be calculated from the

figures presented in the confusion chart. For instance accuracy for the spam classifier

would be: �-- = 	 BC + BDBC + BD + EC + ED = 	 470 + 420

470 + 420 + 30 + 80
= 89%

For this thesis a fitness function is created for each case, which would combine

selected measurement criteria. A suitable weight is set for each criteria and an overall

performance criterion is produced as a result of this fitness function. The fitness functions

will be presented in more detail with the case results in chapter 4.5.

For the most classification problems, one does not know beforehand which classifier

algorithm is the best for the current problem. One needs to iterate between training and

testing different classifiers and fine tune the parameters before one can select the best

model for the current problem. After one has selected the best model, one still wants to

test it with some data that was not used for training the model to get more reliable results.

In this thesis different classifiers are compared against each other, but all of them are also

tested at the end to get the final results, i.e., no actual model selection is performed.

Before data is used for training a classifiers, it is usually partitioned into two sets,

classification model selection data set and test set. Partitioning is performed randomly,

but the same partition should be used for training and cross-validating each classifiers to

get more comparable results. A part of the data is left out for testing and the other part of

the data is used for training the classifiers and selecting most suitable parameters. The

part that is left out as a test set mimics the real-world new data. That is, if the classifier

would be used in real-world with new data that has not been seen before. The model

selection part of the original data is further partitioned into k-folds to be able to perform

cross-validation for the model. Cross-validation means that training and validation is

performed several times (k times) and resulting classification error is calculated as a mean

value of the individual iterations. For a larger data set one could use more folds, but 10-

folds are quite common choice. The 10-fold cross validation scheme in general is depicted

in Figure 14.

49

Figure 14. 10-fold cross validation.

The same 10-fold partitioning should be used for all the classifiers to get better

comparable results, and this is how the cross-validation is performed in this thesis.

4.4 Test setup

The test setup for the evaluation of classifiers is illustrated in Figure 15. The data from

each of the three data sets are fed into separate classifier algorithms. As a result each

classifier produces a set of evaluation metrics (results). The values from those metrics are

used in calculating the value of the selected fitness functions for each case. The resulting

values from these fitness functions are used for generating the final ranking of the

classifiers.

fold1 fold2 fold10

�

10-fold cross validation

validation set

training set

50

Figure 15. Test setup for classifier evaluation.

Similarity classifier with the OWA operator toolbox in MATLAB is freely available

and contains most of functions that are needed for the similarity classifier used in this

thesis. There are a few modifications made for the functions in that toolbox to make the

GOWA-variant of the similarity classifier. The modified scripts were provided for this

thesis from the original authors.

4.5 Results

4.5.1 Comparing classifiers with Haberman’s survival data

First reference data is Haberman’s survival data. This data set contains information of

patients who have undergone breast cancer surgery. Predictor variables are the age of the

patient, the year the surgery was made and the number of positive lymph nodes detected.

According to Breastcancer.org web site (2018), doctor usually removes one or more of

the underarm lymph nodes before or during the surgery, and then a pathologist examines

how many of those nodes contain cancer cells, i.e., how many of the nodes are detected

as positive nodes. First, the data set is explored in general and visualized in Figure 16.

The visualization in Figure 16 shows that none of the predictors is alone able to separate

the survival status by themselves. The survival status is spread quite evenly when plotted

against each predictor separately in the left side of the figure.

Classifiers

Haberman’s data New-Thyroid data Credit data

Decision

tree

Logistic

regression

SVM K-

nearest

GOWA-

variant

Perfrmance metrics of the classifiers

Generation of fitness functions and

ranking of classifiers

51

Figure 16. Haberman’s survival data.

On the right side of the Figure 16 each combinations of two predictors are depicted

and grouped by survival status. Red dots equal patients who have survived 5 years or

longer after the surgery and blue dots equals the patients who have died within 5 years

after the surgery. All the three subplots indicates that two target classed (survived and not

survived) are not easily separated from each other. This will lead to the assumption that

it is not easy to construct a classifier which would predict the target classes with good

accuracy. The Haberman’s survival data contains 306 observations, so it is a fairly small

data set. This typically also has an effect on classification accuracy. As noted already,

there are two target classes; 1 = survived patients and 2 = not survived patients. Out of

306 instances, 225 are labeled “survived” and 81 as “died” within five years after the

surgery. These numbers are calculated as follows:

observation_count = height(haberman)
%find out the separate target classes
testClasses = haberman.class_label;
[classes,~,idx] = unique(testClasses);
classes
%calculate how any instances there are in each class
nCount = accumarray(idx(:),1)

There are no missing items and no clear outliers so the there is no need to process the

data before it can be used for input data to the selected classifiers. If a classifier would

52

put label ‘1’ to all samples, it would gain 225/306=73.5% accuracy. So to be useful, a

classifier should have better than a 73.5% accuracy, and if accuracy is close to that, it

should also be checked that is does not label most of the samples as negative.

Before the Haberman’s survival data is used for training any of the classifiers, it is

partitioned into two sets, classification model selection data set and test set. Partitioning

is performed randomly, but the same partition is used for each of the classifiers.

rng(1);
c1 = cvpartition(thyroid.class_label,'HoldOut', 0.3);
testData = thyroid(c1.test, :);
test_predictors = testData(:, predictorNames);
ClassData = thyroid(c1.training, :);
predictors = ClassData(:, predictorNames);

30% of the data is left out for testing (testData in a script above) and 70% of the data

is used for training the classifiers and selecting most suitable parameters (ClassData in a

script above). The 30% test set mimics the real-world data. That is if the classifier would

be used in real world with new data that has not been seen before. 70% of the original

data is further partitioned into 10-folds to be able to perform cross validation for the

model. The same 10-fold partitioning is used for all the classifiers to get better comparable

results.

rng(1);
cv = cvpartition(ClassData.class_label,'KFold',10);

There is a Classification Learner App in MATLAB, which can be used to easily

compare a set of classifiers. There are a set of different classifiers already available in that

Learner App and there are also some parameters that can be changed before the selected

classifier is trained. Results, such as the classification accuracy, are visible in that same

application. The Classification Learner App was used as a starting point and as a simple

way to get to know the data and to get some rough figures about what the classification

accuracy should be. Classifier algorithms that are available in the Statistics and Machine

Learning Toolbox for MATLAB, was used to train and optimize the models and to

perform some of the quality measurements. The algorithms that were used are as follows:

• Decision Tree - fitctree

• Linear Discriminant Analysis - fitcdiscr

• Support Vector Machines - fitcsvm

• K-nearest neighbors - fitcknn

Each of these classifier algorithms has various parameters that can be tuned to have

better classification results. In this thesis a fitness function is used, instead of only using

classification accuracy, to evaluate the quality of the classifiers. Fitness function

combines a few quality criteria into a one figure. For the Haberman’s survival data, the

following fitness function was used: ��	��� = 0.25 ∗ &� + 0.25 ∗ &1 + 0.5 ∗ �AA

53

There are three different measurement criteria in that fitness function, classification

accuracy has the biggest weight 0.5 and sensitivity and specificity both have weights 0.25.

Of course one might argue that it is more important to find the positive instances (in this

case the patients who did not survive) than the negative ones. But since we do not have

enough domain knowledge to make that selection, in this thesis the two are weighted

equally. The fitness function will be used in each classifier to find out optimal parameters

and also to make the final ranking for the classifiers in this classification problem.

 For each of the four classifiers, a slightly different ways are used to find out the

optimal parameters. But the main idea remains to same; classifiers are trained and cross-

validated several times and each time a fitness function value is calculated. After the runs,

the maximum value of the fitness function is determined and the parameters that gave that

particular value were selected to train the model again and to produce the final cross-

validation results. The MATLAB codes that were used to optimize and cross-validate the

classifiers can be found from the appendix. The relevant codes are identified as

knn_classifier.m, tree_classifier.m, svm_classifier.m, discriminant_classifier.m and

gowa_classifier.m.

To find out the optimal parameter values for KNN classifier, the fit function was first

run with OptimizeHyperparameters set on, see below:

rng(1);
Mdl = fitcknn(predictors, ClassData.status, 'OptimizeHyperparameters',
 'auto', 'HyperparameterOptimizationOptions',
 struct('AcquisitionFunctionName', 'expected-improvement-plus'));

See Figure 17 for the results of the Hyperparameter optimization run.

Figure 17. Parameter optimization for knn classifier for Haberman’s data.

In addition to the parameter values resulting from hyperparameter optimization, K-

nearest neighbor classifier was also trained and cross-validated with 'cosine', 'euclidean',

54

'jaccard', 'chebychev’ and 'seuclidean' distances and with 10 to 30 neighbors. The

parameters which resulted in the best fitness function value was selected to be used for

the final model. See the knn_classifier.m script from the appendix for details.

For the decision tree classifier parameter-optimization, the Classification Learner App

was first used to select the split-criteria for the tree. The application suggested that Gini’s

diversity index would be the best split-criteria and thus that criterion was selected. The

tree_classifier function alters two other parameters, maximum number of splits with

values ranging from 2 to 14 and minimum leaf size with values ranging from 12 to 30.

See tree_classifier.m script from the appendix for details.

For the Support Vector Machine classifier two options for the parameter optimization

were selected. Both of these optimization methods can be found from the MATLAB

Statistics and Machine Learning Toolbox help pages for SVM classifier training and fine

tuning parameters. First, a hyperparameter optimization run was performed in a similar

way it is done for the KNN classifier optimization. See below:

opts = struct('Optimizer', 'bayesopt', 'ShowPlots', true, …
 'CVPartition', cv, 'AcquisitionFunctionName', …
 'expected-improvement-plus');
rng(1);
svmmod = fitcsvm(predictors, ClassData.status, 'KernelFunction',…
 'rbf', 'OptimizeHyperparameters', 'auto',…
 'HyperparameterOptimizationOptions', opts);

BoxConstraint and KernelScale values that resulted were then used for training and

cross-validation of the model. The second option for parameter optimization was first to

run the model with KernelScale set to ’auto’ mode.

svmmod2 = fitcsvm(predictors, ClassData.status, ...
 'KernelFunction', 'gaussian', ...
 'PolynomialOrder', [], 'KernelScale', 'auto', ...
 'BoxConstraint', 1, ...
 'Standardize', true, 'ClassNames', [1; 2]);

This resulted in a KernelScale value which was used as a basis for the further runs. In

those runs the KernelScale value BoxConstaint values were adjusted by increasing them

by a factor 10 in each round for 11 times. The scale factors were selected as advised in

MATLAB help pages. See svm_classifiers.m script from the appendix for details.

 For the discriminant analysis classifier all available discriminant types were tested

(linear', 'pseudolinear', 'diaglinear', 'quadratic', 'pseudoquadratic', 'diagquadratic’).

FillCoeffs parameter was tested with both “on” and “off” and also for the gamma value

both, 0 and 1 values were tested. See discriminant_classifier.m MATLAB script from the

appendix for details on classifier training and optimization.

Confusion matrixes for all cross-validated classifiers for Haberman’s survival data are

depicted in Figure 18.

55

Figure 18. Confusion charts for cross-validated Haberman’s survival data.

From the confusion matrixes it can be easily seen, that the models could predict the

patients who survived five years or longer after the surgery quite well, but did a lousy job

with the patients that did not survive.

The GOWA-variant of the similarity classifier was trained with same data as the

reference classifiers, but since there are no build-in feature for the k-folds and cross-

validation, the 10 folds were calculated separately and then the mean for the classification

accuracy and fitness function was calculated for these 10 folds.

for k = 1:cv.NumTestSets
 trIdx = cv.training(k);
 teIdx = cv.test(k);
 datalearn = table2array(ClassData(trIdx, :));
 datatest = table2array(ClassData(teIdx, :));
 [datatest, tc_sizes, cstart_idx] = init_data(datatest,v,c);
 [datalearn, lc_sizes, cstart_idx] = init_data(datalearn,v,c);
 ideal_vec = idealvectors(datalearn, y);
 [fitness(k), class, Simil] = calcfitness(datatest, ideal_vec, y);
 [acctmp, sn, sp] = evaluate_classifier(class, datatest(:,end), …
 classes, 0, '');
 fit(k) = calc_fit(fitness(k), sn, sp, fitness_weights);
end
meanfit(j,i) = mean(fit);

Init_data function above will sort the samples so that they are ordered by classes. Ideal

vectors are calculated for each training data set. Similarities are then calculated between

the test data units and the generated ideal vectors. The calcfit function returns the

predicted class labels and the classification accuracy together with the similarity values.

Evaluate_classifier function will calculate sensitivity and specificity figures for the

predicted results and the fitness function value is calculated based on those figures the

56

same way as it is done with the reference classifiers. The 10-fold cross-validation results

for the GOWA-variant of the similarity classifier can be seen from the confusion matrix

from Figure 18.

The above mentioned procedure for the GOWA-variant of the similarity classifier was

repeated several times with different parameters. Parameter α relates to the quantifiers,

see equations 6-9 in chapter 3.3 for details, whereas parameter p relates to equivalence

(equation 10 in chapter 3.3) and parameter λ to the similarity measure (equation 11 in

chapter 3.3). Parameter α varies between [0.25:0.25:5] and p between [0.1:0.25:4]. Mean

classification accuracies with these parameter value ranges are plotted in Figure 19. From

the figure it can be seen, that the maximum classification accuracy is gained in the middle

of the grid, so it can be claimed that selected parameter ranges are correct and actual

maximum value for the accuracy is achieved within those ranges.

Figure 19. Parameter optimization for Haberman’s survival data.

Different values were also investigated for λ. Different lambda values from the range

[0.1:0.1:5] were tested. Classification accuracies, sn and sp values are plotted in Figure

20.

Figure 20. GOWA results with different lambda values.

57

 From the picture above, it can be seen that best performance was gained with many

different λ values, of which the value 2.0 was selected. It was observed that the choice of

a quantifier did not have much effect on classifier results, so the basic RIM quantifier

which gave best results was used for all the runs with different parameters.

After the all five classifiers were trained and parameters optimized with the model

selection part of data (70% of the original data), they were all tested with the test data set

(30% of the original data), i.e., with the data that the models have not seen before. The

results for test data are gathered in table format in Figure 21. All the measurement criteria

values that were used for the final fitness function generation are also visible in that table.

Also the cross-validation accuracy figures are depicted there for reference.

Figure 21. Haberman’s survival data results.

If we look at fitness function results, it can be seen that the GOWA-variant of the

similarity classifier had the best performance. GOWA-variant also has the best

classification accuracy for the test data. The best cross-validation classification accuracy

figures are received with k-nearest neighbor classifier. Confusion charts for the cross-

validated models were already illustrated in Figure 18, but they are depicted again for the

test data set in Figure 22.

Figure 22. Confusion charts for Haberman’s survival test data.

58

Confusion charts for cross-validation data and test data should be similar as the data

partitioning was random and both sets (70% and 30%) should describe the data the same

way. But as the data set was quite small, there are clear differences. The true accuracy

figures are probably something between these two figures. If there would have been more

instances, the confusion charts for model selection data set and for the test set would have

probably been closer to each other.

ROC curves are not used for the classifier ranking for this thesis, but they are depicted

for reference for the test data for all the four reference classifiers in Figure 23.

Figure 23. ROC curves for the reference classifiers for Haberman’s sur-

vival data.

According to the ROC curve, there is no clear winner for this dataset, but svm is clearly

the worst performing classifier for this test data. The ROC curve is not depicted for the

GOWA-variant of the similarity classifier, since calculating it falls outside the scope for

this thesis.

It was observed with the second data set (New-thyroid data), that the results varied

when the original data split for the model selection data and test data was made with

different random seeds. Since Haberman’s survival data set and New-thyroid data set are

both rather small, the similar variations are probable also for the Haberman’s survival

data set. That is why the whole procedure described above was repeated six times with

different random seeds and mean values are calculated for those repeated runs to get more

robust results. The results presented earlier in this chapter are reported from the last run.

for r=1:6
 rng(r*16);
 c1 = cvpartition(haberman.class_label,'HoldOut', 0.3);

 �

The results from six consecutive runs and mean values for the fitness function and for

the classification accuracy are depicted in table format in Figure 24.

59

Figure 24. Haberman’s data results with different random seeds.

From the table above it can be seen that the GOWA-variant of the similarity classifier

performed the best. It does not have the best classification accuracy, but it has the best

fitness function value, which was the main performance measurement criteria in this

thesis. It seems to be, that with small data set it is hard to make a robust classifier. This

supports the claimed stated earlier in this thesis, that there need to be enough data

available to make a good predictive model.

4.5.2 Comparing classifiers with New-Thyroid data

The second data set contains information about thyroid disease. This data set differs from

the Haberman’s survival data, since it has three target classes instead of two. So this is

not a binary classification problem as such, but it can be divided into several sub problems

that are binary. This will be done for the Support Vector Machine classifier, since SVM

can only be used with binary problems. The class attribute values are 0 (=euthyroidism),

1 (=hyperthyroidism), and 2 (=hypothyroidism). Euthyroidism refers to a patient who has

a normally operating thyroid. Hypothyroidism means that the thyroid gland does not

make as much thyroid hormone as the body needs, i.e., the thyroid is underactive.

Hyperthyroidism means that there is too much thyroid hormone, i.e., the thyroid is

overactive. The predictive variables are different hormone levels measured from patients’

blood samples. In Figure 25 there are several scatter plots, which give a general view

about how variables can separate the class labels.

60

Figure 25. New-Thyroid data.

From the scatter plots it can be seen that already two variables separate the three classes

quite well. For instance, in subplots where there are variables one and two or variables

two and three, each three classes are clearly seen as separate groups. So the assumption

is that also the classifiers should be able to categorize the data quite well with good

accuracy.

There are 215 observations is this data set, so it is a rather small data set. 150 instances

are labeled as patients who have normally operating thyroid, 35 observations are labeled

as hyper, and 30 as hypo-operating thyroid. These numbers were calculated as follows:

observation_count = height(thyroid)
%find out the separate target classes
testClasses = thyroid.class_label;
[classes,~,idx] = unique(testClasses);
classes
%calculate how any instances there are in each class
nCount = accumarray(idx(:),1)

If the classifier would put a normal operating label (’0’) to all samples, it would

achieve 150/210=71.4% classification accuracy, so the classification accuracy needs to

be significantly better than that. We won’t use the same fitness function as we used for

Haberman’s survival data, since we have three target classes now and there is no single

positive and negative classes (sn and sp figures are normally calculated as a fractions of

61

correctly classified positive and negative instances). For the New-thyroid data we use the

following fitness function to assess the classifier performance:

 ��	��� = 0.55 ∗ �AA + 0.15 ∗ &�1 + 0.15 ∗ &�2 + 0.15 ∗ &�3

where ACC is accuracy, sn1 is sensitivity for class ‘0’ (normal), sn2 is sensitivity for

class ‘1’ (hyper) and sn3 is sensitivity for class ‘2’ (hypo). Sensitivity for each class is

calculated as a fraction of correctly classified class items, see below: &�1 = 	 BC(0)BC�0�+ ED�10�+ ED(20)
where TP(0) equals correctly classified class ‘0’ items, FN(10) means items for which

the true class is ‘0’, but they are classified as ‘1’ and FN(20) means items for which the

true class is ‘0’, but they are classified as ‘2’. In the fitness function, accuracy has the

biggest weight, and the sensitivities for each class have been given an equal weight. It

could be argued that it is more important to find out who are the patients whose thyroid

is not operating normally, but as for this thesis we do not have decent domain knowledge

for this issue, equal weights are selected.

The data set was partitioned in the same way as the Haberman’s survival data. The test

data set was separated first (30% of data). The rest (70%) was used for training,

optimization, and cross-validation. Again the same partition was used for all the

classifiers. For the cross-validation only 4-folds were used, since the data set was fairly

small, and with more folds, the test data sets would have been quite small, which could

cause variations in results. As the data set is small, it was observed that there were also

variations in results, if the random seed was changed when the original data split (30/70)

to model selection and test data was generated. Therefore the training and testing of the

model was run six times with different random seeds for the initial data split for all the

classifiers to get more robust results. Results of the runs with different random seeds are

gathered at the end of this chapter.

for r=1:6
rng(r*45);
c1 = cvpartition(thyroid.class_label,'HoldOut', 0.3);
testData = thyroid(c1.test, :);
test_predictors = testData(:, predictorNames);
ClassData = thyroid(c1.training, :);
predictors = ClassData(:, predictorNames);

. . . % all the classifier training and testing etc.

end

K-nearest neighbor hyperparameter optimization was run with each six random seeds,

and it gave results for optimum distance measure and the number of neighbors. In each

62

round knn was also trained with selected distance measures: {'cosine', 'euclidean',

'jaccard', 'chebychev', 'seuclidean'} and with 2…25 neighbors. The parameters which

gave the best fitness function value were selected for each round and the final model was

generated with those values. The results that are presented here (confusion matrixes etc.)

are all done with the last of the six rounds. In that round the optimal parameter values

were ‘correlation’ for distance and 6 neighbors.

Decision tree classifier and discriminant analysis classifier were trained and optimized

the same way they were with the Haberman’s survival data. But for the SVM classifier a

different algorithm was needed, since the (MATLAB) fit function that was used for

Haberman’s survival data can only be used for binary problems. SVM was trained with

fitcecoc function, which uses a templateSVM function as a basis. Three target class

problem is divided into three binary problems and the results are then combined. The two

functions (templateSVM and fitcecoc), that are available in the Statistics and Machine

Learning Toolbox in MATLAB, will do that automatically. See the example script below:

template = templateSVM('KernelFunction', 'gaussian', ...
 'PolynomialOrder', [], ...
 'KernelScale', 'auto' , ...
 'BoxConstraint', 1, ...
 'Standardize', true);
classificationSVM2 = fitcecoc(predictors, ClassData.class_label, ...
 'Learners', template);

The code above was run with three different choices for the KernelFunctions

(‘gaussian’, ‘linear’, polynomial’). KernelScale was set to ‘auto’ should find optimal

values for KernelScale. Hyperparameter optimization was also used to find out the

optimal Learning parameter, KernelScale value and BoxConstraint value for each run.

Fitness function was used for selecting the best parameter options, which were then used

to build the final model. See the multisvm_classifier.m script from the appendix for

details.

For the GOWA-variant of the similarity classifier, we used the same approach that was

used for the Haberman’s survival data. Parameter p was tested with range [1.0:0.25:8]

and α parameter with range [0.5:0.25:8]. Also the effect of different lambda values from

within the range [0.1:0.1:5] were simulated. The performance figures for different lambda

values are depicted in Figure 26. From the figure it can be seen that values close to 2.0

gave the best performance figures, thus the value 2.0 was selected and the reported results

were simulated with that value. Also with this data set, only basic RIM quantifier was

used for weight generation.

63

Figure 26. GOWA-variant performance with different lambda values.

The mean classification accuracies with New-thyroid data for the GOWA-variant of

the similarity classifier are depicted in Figure 27. The maximum accuracies are gained in

the middle of the grid, thus the used range for parameters p and α can be said to be correct.

Figure 27. Mean classification accuracies for GOWA-variant with New-thy-

roid data.

As already mentioned before, all the five used classifiers were optimized, trained and

tested six times, since it was noted that the random seed used for initial data separation

for model selection and test data has an effect for classifier performance. The cross-

validation results for all the classifiers are reported with the last round, were random seed

64

number was 270. (Normative selection was used for random seeds, value r*45 was used,

where r is an integer from between 1…6.). Confusion charts for cross-validated models

are illustrated in Figure 28.

Figure 28. Confusion charts for cross-validated new-thyroid data.

As expected, all the classifiers performed quite well. The decision tree classifier has

most false predictions, but in general all classifiers predicted most of the instances

correctly. Confusion charts for the 30% test data for all the models are depicted in Figure

29.

Figure 29. Confusion charts for New-thyroid test data.

65

There are no large variations in the confusion charts between different classifiers, but

SVM, discriminant analysis and the GOWA-variant seem to perform a little bit better

than others for this particular test data. All the performance measurement figures that

were used to compare the classifiers are gathered in a table format in Figure 30. The

discriminant analysis classifier has the best fitness function value.

Figure 30. New-thyroid results.

But as said, there were variations between different runs with the different random

data partitions. This is probably due to the small sample size. In Figure 31 there is a table,

where fitness function values are visible for six different random data partitions (for 30/70

division). Also the mean values for these six different rounds are visible in the table.

Figure 31. New-thyroid accuracies with different random seed.

Since there are significant variations with majority of the classifiers between the six

runs with different random seeds, it cannot be stated that some classifiers perform better

than others. It can, however, be claimed that with a small data set it is hard to build a

robust classification model.

4.5.3 Comparing classifiers with Default of credit card clients data

This data set differs significantly from the earlier two data sets due to a much larger

number of observation and attributes. This makes the credit card default classification

problem a bit more complex problem than the other two classification problems were.

The third data set includes credit card client data with several predictors. Although, the

data set is considerable larger than the first two data sets, a similar approach to the

classification problem was used as what was used with the other two data sets. Only slight

modification was done to the parameter optimization to ease the computational effort.

66

The credit card data set contains 30000 observations, and 23 parameters to be used as

predictors. The target class labels are ‘0’ and ‘1’, where ‘0’ refers to clients who have

paid their monthly repayment of their credit card in time, and ‘1’ refers to clients whose

payments have defaulted. The target is to find out which clients will have defaults in their

credit card payments, i.e., to which client credit should be given, and to which client it

should not be given. First, data set was divided in two, as with earlier case, 40% was left

out for testing and 60% was used for the model training and optimization. The following

code was used for verifying that both training/optimization data and test data contain

equal portion of both classes.

ClassData_count = height(ClassData)
cs = ClassData.class_label;
[classes,~,idx] = unique(cs);
nCount = accumarray(idx(:),1)
model_data_class0 = nCount(1)/ClassData_count
model_data_class1 = nCount(2)/ClassData_count

testData_count = height(testData)
cs = testData.class_label;
[classes,~,idx] = unique(cs);
nCount = accumarray(idx(:),1)
testdata_class0 = nCount(1)/testData_count
testdata_class1 = nCount(2)/testData_count

77.9% of the clients have taken care of their monthly payments duly and 22.1% of the

clients had problems with their payments in both data sets (the model selection data set

(60% of the original data) and the test data set (40% or the original data)).

The fitness function used for finding the optimum parameter and to finally rank the

classifiers is similar to the fitness function that was used with Haberman’s survival data

set. The fitness function for credit card data set is as follows:

 ��	��� = 0.35 ∗ &� + 0.15 ∗ &1 + 0.5 ∗ �AA

A slightly heavier weight is given for the sensitivity than for the specificity, since the

assumption is, that it is more important to find out the clients whose payment will default

than miss a few clients who would have been reliable. But similar to the other two data

sets, again more domain knowledge would be required to be able to set the weights to

better respond to the real-word requirements.

The hyperparameter optimization was used for finding the optimal distance

measurement criterion and the optimal number of neighbors for the k-nearest neighbor

classifier. The results of the hyperparameter optimization can be seen in Figure 32.

67

Figure 32. K-nearest neighbor parameter optimization for the credit data.

It was observed with all three data sets, that the hyperparameter optimization does not

necessarily provide parameters, which would result the best classification accuracy and

the best fitness function value. That is why the k-nearest neighbor classifier was also

trained with a set of selected distance measurement criteria and with a selected range of

neighbors in addition to the parameters provided by the hyperparameter optimization. The

parameters, which resulted the best fitness function value, were selected for the final

classification model. The hyperparameter optimization resulted ‘seuclidean’ for the best

distance measurement criterion and 57 as the optimal number of neighbors. In addition to

the hyperparameter optimization parameters, the knn-classifier was also trained with

following distances {'cosine', 'euclidean', 'jaccard', 'chebychev', 'seuclidean'} and with

[10:40] number of neighbors. The best fitness function value was achieved with ‘cosine’

distance and with 17 neighbors.

Support Vector Machine classifier requires heavy computations and thus, it does not

suite well for complex classification problems. That is why the hyperparameter

optimization was not run for the credit card data set. It was also observed with the other

two data sets, that the hyperparameter optimization does not always provide the best

possible parameters. So omitting the hyperparameter optimization, is unlikely to affect

the final classification accuracy of the SVM classifier. Decision tree and discriminant

analysis classifiers were trained the similar way as they were trained with the previous

two data sets.

The GOWA-variant of the similarity classifier was first trained with different lambda

values from within the range [0.1:0.3:5]. The best classification accuracy and also the

best fitness function value was gained with lambda value 3.4., which can be observed

from Figure 33.

68

Figure 33. Different lambda values for credit card client data.

After the lambda value was selected, the GOWA-variant of the similarity classifier

was trained with parameter values p and λ with both from within a range [0.25:0.25:5].

The mean classification accuracies are depicted in Figure 34. Similarly with the previous

two data set, the maximum classification accuracy is in the middle of the grid, thus

making the used parameter ranges feasible for the simulations.

Figure 34. Mean classification accuracies for credit data.

The actual training and cross-validation was done the same way as it was done with

the other two data sets. See the MATLAB codes from the appendix for details. The

confusion charts for the cross-validation for all the five classifiers are depicted in Figure

35.

69

Figure 35. Confusion charts for cross-validated classifiers for credit data.

It can be seen from the confusion charts that most of classifiers were able to predict

the target class ‘0’ (clients who have made their payments duly) quite well. But predicting

the clients whose payments would default, seem to be a hard task for the classifiers. Only

one classifier, the discriminant analysis classifier, could predict more than half of the

positive class (‘1’) members correctly. K-nearest neighbor, decision tree and SVM

classifiers were only able to predict one third of the positive instances correctly.

Confusion charts for the test data in Figure 36 give pretty much the same numbers as the

confusion charts for the cross-validation data. Note that the confusion charts for the

GOWA-variant of the similarity classifier has different labels for classes than the other

classifiers. This is due to the fact that the GOWA-variant, which is used in this thesis,

orders the classes and labels the classes in order starting from 1. Thus the class label ‘1’

equals to the class label ‘0’ and the class label ‘2’ equals to the class label ‘1’ in the

GOWA-variant of the similarity classifier related confusion charts.

70

Figure 36. Confusion charts for credit card test data.

According to the confusion charts presented in Figure 35 and in Figure 36, it can be

claimed that when the data set is large enough, cross-validation results and results gained

with previously unseen test data are close to each other. More domain knowledge would

be needed to be able to judge whether the generated classification models would be useful

in a real business environment. Since although nearly half of the clients with problems in

their payments were classifier incorrectly, it could still benefit the business if half of the

possible defaulted cases would be pointed out beforehand and credit is then not granted

to those clients.

The results of all of the five classifier are gathered in table format in Figure 37. From

the table it can be seen, that there are no big differences between the classifiers. K-nearest

neighbor, decision tree and SVM all provide quite similar results. It should be noted, that

while discriminant analysis gives the best fitness function value and the best sensitivity

value (detects best the defaulted clients) it makes most errors with clients who will pay

their credit duly. So it should be evaluated which one is more critical to the company, to

lose some good clients who would have made their payments duly or to be able to detect

those clients who will end up with problems with their payments.

Figure 37. Credit card client data results.

71

As this data set was significantly larger than the other two data sets, also the executing

times play some role in selecting a suitable method for solving the classification problem.

Training times with the computing power available for this thesis for all of the five

classifiers are gathered in table format in Figure 38. The training time for the GOWA-

variant of the similarity classifier is a training time with only one lambda value.

Figure 38. Classifier training times for credit card data.

Training times in Figure 38 show that the classifier, which require more complex

computation are much slower to train than other classifiers. Especially SVM gets slow

when the observation count and the number of predictors increase. The training time for

the GOWA-variant of the similarity classifier is directly proportional to the number of

different parameter values used (p, α and λ). But if the parameter ranges are not too large,

the training time for the GOWA-variant of the similarity classifier is feasible also for the

larger data set.

Figure 39. ROC curves for reference classifiers for credit card data.

The ROC curves for the four reference classifiers are depicted in Figure 39 for

reference.

72

5 CONCLUSION

5.1 Answering the posed research questions

This thesis studies the GOWA-variant of the similarity classifier and investigates whether

it is a useful method to be used in classification problems within the business context.

This main research question was divided into three sub-question, which are used for

supporting the answering to the main research question. The theoretical part of the thesis

introduced the main research subject and defines the related terminology and methods

that are needed to be able to understand the foundations of classification problems and

more precisely the GOWA-variant of the similarity classifier. The practical part of the

thesis contains benchmarking of a set of selected classical classifiers against the GOWA-

variant of the similarity classifiers. Three different data sets are used for this

benchmarking process. The benchmarking process is executed with mathematical tool

called MATLAB.

The first sub-question posed is:

1. What previous academy research literature exists on similarity based classifi-

ers and what are the results of the said previous research?

To answer this question, a literature review was performed and the results of that

review are presented in chapter 3.4. The literature review shows that not a lot of research

exists on similarity classifiers in the business context. Most of the research on similarity

classifiers concentrates in the concept itself, further development of the method, and its

capabilities and not so much on the possible application areas. It was observed the medical

diagnostic data seems to be the most used type of data and thus medicine the most

prolifically used application area for similarity classifiers. There were only a few research

papers that concentrate directly on solving business related problem. Those papers were

shortly introduced in Table 1. Credit scoring seems to be the most popular business related

area for similarity classifiers. Some of the papers that were reviewed in chapter 3.4 relate

to credit scoring data. One set of credit card client data is also used for this thesis in the

classifier benchmarking process.

All in all, the previous research is “interested in” the quality of similarity classifiers,

i.e., on how well they can perform and on which variants are the best. Most of the previous

research can be categorized under mathematical or computer science research, but there

is a research gap in the application of similarity classifiers to business related problems.

There is a room for more research on how well similarity-based classifiers are suited for

73

solving business related problems and how they can be used to help business related

decision making.

The second sub-question for this research is:

2. How do similarity-based classifiers work and especially how does the

GOWA-variant of the similarity classifier work?

This sub-question is answered partly in the theoretical part of this thesis. Chapter 3.2

on similarity-based classification discusses the similarity-based classification in general

and the chapter 3.3 on the GOWA-variant of the similarity classifier explains in more

detail what the GOWA-variant of the similarity classifier is and how it is built. Classifiers

in general aim to categorize new items to a set of pre-determined target classes.

Similarity-based classifiers use a similarity measure to determine the correct class. There

are different ways to determine the similarity measure and to aggregate similarities of

individual attributes to a one common similarity value. The classifier used in this thesis

uses generalized ordered weighted average operator in aggregation. When the GOWA-

variant of the similarity classifier is trained ideal vectors that represent the target classes

are generated first. The ideal vectors are representative vectors of centroid samples for

each class. They include a set of measured features, also called predictors. A similarity

value is calculated between a new sample and these ideal vectors (of all classes) and the

sample is set to belong in the class from which the ideal vector it is most similar to the

sample.

A MATLAB model of the GOWA-variant of the similarity based classifier is

generated and tested with various data sets in chapter 4.5. The script that is used for

executing the classification tasks in this thesis can be found from the appendix, see the

codes under gowa_classifier.m. In that script both training and test data is first initialized

so that all features are scaled between 0…1 and observations are ordered according to

class (classes are labeled in a descending order, starting form 1). After that the ideal

vectors are generated for training data for each fold. Then similarities are calculated

between the ideal vectors and test data. The class label for each instance in test data is

selected based on to the class with which the instance has the largest similarity value.

After that the needed performance measure values, such as classification accuracy, are

calculated.

The GOWA-variant of the similarity classifier was used to classify observations in

three different data sets. Two of them were the same sets that were used in the research

paper by Kurama et al. (2017). These two data sets (Haberman’s survival data and New-

thyroid data) were selected so that the results from this research can be compared to the

research performed by Kurama et al. With Haberman’s survival data Kurama et al.

reached 76.3% classification accuracy with Basic RIM quantifier (the quantifier that is

74

used in this thesis). In this thesis the classification accuracy varied with different random

data partition for training/cross-validation and test data, so it is hard to make a clear

comparison. The whole training and testing procedure was repeated six times, for the last

run 78.02% classification accuracy was achieved. The mean classification accuracy over

the six consecutive runs was 73.8%. The figures are roughly in the same scale as what

Kurama et. al received in their work. For the New-thyroid data set, the reference

classification accuracy is 97.44% (taken from Kurama’s et al. paper). The New-thyroid

data set is quite small and it was observed in this thesis that classification accuracy varies

a little when the random partition for initial model selection (the data used for cross-

validation) and test data is done. Results in chapter 4.5.2 are reported with one random

data split and also as a mean value of six different random splits. For one random split,

the resulted accuracies are 94.7% for test data and 98.44% for the cross-validation. The

mean value of the six subsequent runs is 95.5%. There are slight variations in the accuracy

figures between different runs. But they are still quite close to the results provided by

Kurama et al. The results between these two studies are not directly comparable as the

data used for the classifier training and testing are not exactly the same. Even though the

original data is the same data, it is split differently into training and test data sets, which

will have an effect on the results – this is especially relevant since these two data sets are

fairly small.

The third sub-question is:

3. How well does the studied similarity-based classifier(s) function in compari-

son with other selected classifiers?

To answer this question, a benchmarking process was performed were the GOWA-

variant of the similarity classifier was compared against four classical classifiers. The

different classifiers selected for the benchmarking are the K-nearest neighbor,

discriminant analysis, decision tree and Support Vector Machine classifiers. All five

classifiers were trained and tested with three different data sets. The exactly the same data

was used for training and testing in each case to ensure comparability. The MATLAB

scripts that were used for the benchmarking can be found in the appendix. The results for

the comparison process are presented in detail in chapter 4.5. The classification accuracy

is the most common way to assess classification performance, but the fitness function

used in this thesis adds also to other measurement criteria to the performance evaluation,

specifically the sensitivity and specificity, i.e., the classifiers capability to correctly

classify positive and negative instances. The use of a fitness function in measuring

performance of classifiers can be considered a small novel scientific contribution. Each

measurement criteria was given a weight and the fitness function is built in the way that

75

output values are always from within the range 0…1 and for a perfect classifiers the result

is 1.

With the Haberman’s survival data, the GOWA-variant of the similarity classifier

performed best. The GOWA-variant gave the value 0.685 for the fitness function (mean

value of six runs), the second best decision tree classifier gained 0.673 fitness function

value and results from the other tested classifiers were in the range 0.629…0.671. If we

compare the mean classification accuracies, the discriminant analysis classifier has the

best classification accuracy. See Figure 21 for details on the result.

New-thyroid data was the second benchmarking data set. It differs from the first one,

as this is not a binary classification problem, instead there are three target classes.

Therefore also the used fitness function is a bit different, than what is was for the

Haberman’s survival data. For New-thyroid data set, sensitivities for each target class are

calculated and weighted equally in addition to classification accuracy to determine the

fitness function value and thus the classifier performance. With this data set the results

varied with different random data splits into cross-validation data and test data. Therefore

it is harder to make a comparison between classifiers, different classifiers performed best

in different runs. Only the decision tree classifier was clearly the worst performing

classifier with this data in all runs. The results for a one run are gathered in Figure 30. To

gain more reliable results, the classifiers were trained, cross-validated and tested six times

with different random data split and the mean fitness function values of these six

consecutive runs were calculated. If we look at those mean values, the GOWA-variant of

the similarity classifier was third in performance - both in the mean fitness function value

and in the mean classification accuracy. Discriminant analysis classifier performed best

with this data set. But ranking the selected classifiers is not clear in this case, since the

results varies quite a bit between different data splits. For instance the GOWA-variant of

the similarity classifier outputs fitness function value 0.951 in the sixth run and 0.855 in

the fourth run. The difference is quite significant. The performance of other classifiers

also varies, but not that significantly. It can be claimed that it is hard to build a robust

classifier with a rather small data set, but it might be even more so with the similarity

classifier. At least this was the case with the New-thyroid data set.

The third data set is significantly larger than the other two sets and it is directly related

to the business-related decision making. The third data set contains information of credit

card clients and the target is to find out whether the clients are trustworthy or not, i.e.,

whether they will make their payments duly or will they be in default. As this data set

was much more complex than the other two sets, also the running time plays some role

when comparing different classifiers. But the main comparison was done with the fitness

function as it was also done with the other two data sets. This time discriminant analysis

classifier resulted the best fitness function value 0.703, but the GOWA-variant of the

similarity classifier was only a slightly worse than that, giving a fitness function value

76

0.694. The rest of the classifiers had fitness function values from within the range

0.664…0.678. The notable difference with this data set was in the sensitivity values. The

discriminant analysis classifier is clearly the best at recognizing true positive items, the

GOWA-variant of the similarity classifier comes in second, but they are both worse than

the other classifiers at recognizing true negative items. So it depends on what feature is

valued the most, which classifier is most beneficial. For this thesis the fitness function

was used to determine the ranking of classifiers. In the fitness function the sensitivity has

a little more weight than the specificity. With this measurement criteria, discriminant

analysis performs the best (fitness function value = 0.703) and the GOWA-variant of the

similarity classifier is nearly as good as the discriminant analysis classifier (fitness

function value = 0.694). The training times for each of the classifiers were also observed

with this data set. If the lambda parameter value is determined beforehand for the GOWA-

variant of the similarity classifier, then the training time is comparable with the other

classifiers, but if we test a lot of different options for all parameters, then the training time

gets fairly long. But it is the same with other classifiers as well, the more options you

tests, the longer it takes. But as said, with one parameter set beforehand, training a

similarity classifier is quite smooth even with bigger data.

The benchmarking process did not give a clear winner, as could be expected. Solving

a classification problem solving is always a heuristic process, where you need to try many

different methods and then choose the one that gives best results and is most suitable for

the use case. There is no one method that would be suited best for all the classification

problems. But as the GOWA-variant of the similarity classifier was compared against a

set of classical classifiers, it was shown that its performance is in line with the other

classifiers. It outperformed the other classifiers with one data, and did fairly well also

with the other two data. After given and answer to all of the sub-questions, we can also

answer to the main research question, which was whether the GOWA-variant of the

similarity classifier is a useful classifier to be used in the business context. According to

the findings in this research, and specifically to answer the main research question posed,

the GOWA-variant of the similarity classifier seems to be a viable option when classifiers

are selected to be used in the business context.

5.2 Criticism and future research directions

Both of the small data sets used in this study indicated that the original split into a training

data and test data could affect significantly to the final classification accuracy. This study

used a method where a predetermined amount of data (30% or 40% in this study) was left

out as test data and the rest of the data was used for model training and cross-validation.

77

Another option could have been to divide the whole data set into training and test data,

and repeat that random split several times. The final classification accuracy would then

be calculated as a mean value of those repeated runs. For a smaller data sets, the repeated

splits and mean value calculation could generate more robust results, but separating a part

of data from a beginning for testing helps to avoid overfitting. For the smaller data sets,

this thesis combined these two approaches. A part of the data was left out for testing at

the beginning to avoid overfitting, but the whole procedure was repeated several times

and mean values were calculated for the these consecutive runs. Since there are different

options on how data is divided into training and test data, the comparison of different

methods should always be done with exactly the same data. If random data split is used,

the random seed should be predetermined to ensure repeatable results. This study

confirms the two aforesaid requirements.

As said several times already earlier in this study, choosing a classifier is always a

heuristic process, and there is no one method that is best suited for all classification

problems. Thus, the results gained in this study cannot not be generalized to a wider

content, i.e., it cannot be guaranteed that classifiers, which performed best with the data

sets used in this thesis, will also perform best with some other data sets.

This research is quite narrow with only three data sets and only one of them being a

business related data, it still did not show any reason why similarity based classification

should not be used in business related decision making. It was observed that for small

data sets the results varied a lot depending on the used test data. So in the future more

benchmarking should be performed with larger data sets to gain more insights of the

performance of the GOWA-variant of the similarity classifier. The data sets that were

used in this research contained only numerical data and there were no missing items.

Further research should be performed to find out if the GOWA-variant of the similarity

classifier is suitable for data sets were there are also categorical attributes. Further

research could also study how well similarity classifier deal with missing items in

predictors. This study only used data from the UCI Machine Learning Repository, which

is a common source for data in machine learning research. In the future it would be

interesting to compare different classifiers with some real world business data, were input

data is probably not that uniform and more pre-processing of the data is needed before

training the classifiers can be performed.

78

79

REFERENCES

Allaby, M. (2013). A dictionary of geology and earth sciences Oxford University
Press.

Berthold, M. R., Borgelt, C., Höppner, F., & Klawonn, F. (2010). Guide to intelli-
gent data analysis: How to intelligently make sense of real data Springer
Science & Business Media.

Bonabeau, E. (2003). Don't trust your gut. Harvard Business Review, 81(5),
116-23, 130.

Breastcancer.org. (2018), Lymph node involvement. <https://www.breast-
cancer.org/symptoms/diagnosis/lymph_nodes >, retrieved 6.3.2019.

Cazzanti, L. (2007). Generative models for similarity-based classification. (Dis-
sertation, University of Washington).

Cazzanti, L. – Gupta, M. R. – Srivastava, S. (2009). Fusing similarities and eu-
clidean features with generative classifiers. Information Fusion, 2009. FU-
SION'09. 12th International Conference On, pp. 224-231.

Cengiz, Ö. (2017), Neural networks and pattern recognition using MATLAB -kn –
nearest neighbor estimation. <https://www.byclb.com/TR/Tutorials/neu-
ral_networks/ >, retrieved 18.10.2018.

Chen, Y. – Garcia, E. K. – Gupta, M. R. – Rahimi, A. – Cazzanti, L. (2009). Sim-
ilarity-based classification: Concepts and algorithms. Journal of Machine
Learning Research, 10(Mar), 747-776.

Cortes, C. – Vapnik, V. (1995). Support-vector networks. Machine Learning,
20(3), 273-297.

Davenport, T. H., & Harris, J. G. (2007). Competing on analytics: The new sci-
ence of winning Harvard Business Press.

Detyniecki, M. (2001). Fundamentals on aggregation operators. This Manuscript
is Based on Detyniecki’s Doctoral Thesis and can be Downloaded From,

DeZyre. (2018), Top 10 machine learning algorithms.
<https://www.dezyre.com/article/top-10-machine-learning-algorithms/202 >,
retrieved 17.10.2018.

Eriksson, P., & Kovalainen, A. (2015). Qualitative methods in business re-
search: A practical guide to social research Sage.

Fink, A. (2005). Conducting research literature reviews: From the internet to pa-
per Sage.

80

Forbes technology council. (2018), 15 business applications for artificial intelli-
gence and machine learning. <https://www.forbes.com/sites/gordon-
kelly/2018/10/02/apple-iphone-xs-max-charging-battery-life-upgrade-price-
cost-iphone-xr/#65f162b81a07 >, retrieved 3.10.2018.

Fullér, R. – Majlender, P. (2003). On obtaining minimal variability OWA operator
weights. Fuzzy Sets and Systems, 136(2), 203-215.

Garg, R. (2018), 7 types of classification algorithms. <https://www.analyticsindi-
amag.com/7-types-classification-algorithms/ >, retrieved 17.10.2018.

Gonçalves, L. – Subtil, A. – Oliveira, M. R. – de Zea Bermudez, P. (2014). ROC
curve estimation: An overview. REVSTAT-Statistical Journal, 12(1), 1-20.

Hevner, A. R. – March, S. T. – Park, J. – Ram, S. (2004). Design science in in-
formation systems research. MIS Quarterly, 28(1), 75-105.

Hossin, M. – Sulaiman, M. (2015). A review on evaluation metrics for data clas-
sification evaluations. International Journal of Data Mining & Knowledge
Management Process, 5(2), 1.

Imran, M. – Afzal, M. T. – Qadir, M. A. (2016). Malware classification using dy-
namic features and hidden markov model. Journal of Intelligent & Fuzzy
Systems, 31(2), 837-847.

Janssen, D. (2018), Business analytics (BA). <https://www.techopedia.com/defi-
nition/344/business-analytics-ba >, retrieved 13.2.2018.

Janusz, A. (2008). Similarity relation in classification problems. Rough Sets and
Current Trends in Computing, Proceedings, 5306, 211-222.

Kotsiantis, S. (2007). Supervised machine learning: A review of classification
techniques. Informatica, 31(3), 249-268.

Kuechler, B. – Vaishnavi, V. (2004). Design science research in information
systems. URI: Http://Www.Desrist.Org/Design-Research-in-Information-
Systems/.Online,

Kurama, O. – Luukka, P. – Collan, M. (2017). A similarity classifier with general-
ized ordered weighted averaging operator. Fuzzy Systems Association and
9th International Conference on Soft Computing and Intelligent Systems
(IFSA-SCIS), 2017 Joint 17th World Congress of International, pp. 1-6.

Kurama, O. – Luukka, P. – Collan, M. (2015). Credit analysis using a combina-
tion of fuzzy robust PCA and a classification algorithm. Scientific Methods
for the Treatment of Uncertainty in Social Sciences, 377, 19-29.

Kurama, O. – Luukka, P. – Collan, M. (2016a). AN N-ARY lambda-AVERAG-
ING BASED SIMILARITY CLASSIFIER. International Journal of Applied
Mathematics and Computer Science, 26(2), 407-421.

81

Kurama, O. – Luukka, P. – Collan, M. (2016b). A similarity classifier with bonfer-
roni mean operators. Advances in Fuzzy Systems, , 7173054.

Le, J. (2018), A tour of the top 10 algorithms for machine Learning Newbies.
<https://towardsdatascience.com/a-tour-of-the-top-10-algorithms-for-ma-
chine-learning-newbies-dde4edffae11 >, retrieved 17.10.2018.

Lichman, M. (2013), UCI machine learning repository. <http://ar-
chive.ics.uci.edu/ml >, retrieved 2018.

Liu, X. – Han, S. (2008). Orness and parameterized RIM quantifier aggregation
with OWA operators: A summary. International Journal of Approximate
Reasoning, 48(1), 77-97.

Luukka, P. (2010a). Nonlinear fuzzy robust PCA algorithms and similarity classi-
fier in bankruptcy analysis. Expert Systems with Applications, 37(12), 8296-
8302.

Luukka, P. (2010b). Nonlinear fuzzy robust PCA algorithms and similarity classi-
fier in bankruptcy analysis. Expert Systems with Applications, 37(12), 8296-
8302.

Marr, B. (2016), The top 10 AI and machine learning use cases everyone
should know about. <https://www.forbes.com/sites/bernard-
marr/2016/09/30/what-are-the-top-10-use-cases-for-machine-learning-and-
ai/#373f66b094c9 >, retrieved 3.10.2018.

Mathworks. (2018), What is machine learning?
3 things you need to know. <https://www.mathworks.com/discovery/ma-
chine-learning.html >, retrieved 15.10.2018.

Meyer, D. – Wien, F. T. (2001). Support vector machines. R News, 1(3), 23-26.

Mitroff, I. I. – Betz, F. – Pondy, L. R. – Sagasti, F. (1974). On managing science
in the systems age: Two schemas for the study of science as a whole sys-
tems phenomenon. Interfaces, 4(3), 46-58.

Provost, F., & Fawcett, T. (2013). Data science for business: What you need to
know about data mining and data-analytic thinking " O'Reilly Media, Inc.".

Qiu, J. – Wu, Q. – Ding, G. – Xu, Y. – Feng, S. (2016). A survey of machine
learning for big data processing. EURASIP Journal on Advances in Signal
Processing, 2016(1), 67.

Raschkam, S. (2014), Linear discriminant analysis. <https://sebastian-
raschka.com/Articles/2014_python_lda.html >, retrieved 19.2.2019.

Rouse, M. (2017), Business analytics (BA). <https://searchbusinessanalyt-
ics.techtarget.com/definition/business-analytics-BA >, retrieved 25.9.2018.

82

Rouse, M. (2018), Machine learning (ML). <https://searchenterpriseai.tech-
target.com/definition/machine-learning-ML >, retrieved 3.10.2018.

Samuel, A. L. (1969). Some studies in machine learning using the game of
checkers. II—Recent progress. Annual Review in Automatic Programming,
6, 1-36.

Saunders, M., Lewis, P., & Thornhill, A. (2009). Research methods for business
students (5th ed.) Pearson Education Limited.

Shirkhorshidi, A. S. – Aghabozorgi, S. – Wah, T. Y. (2015). A comparison study
on similarity and dissimilarity measures in clustering continuous data. PloS
One, 10(12)

Shmueli, G., Patel, N. R., & Bruce, P. C. (2016). Data mining for business ana-
lytics: Concepts, techniques, and applications with XLMiner John Wiley &
Sons.

Siegel, E. (2013). Predictive analytics: The power to predict who will click, buy,
lie, or die John Wiley & Sons.

Skabar, A. (2013). Direction-of-change financial time series forecasting using a
similarity-based classification model. Journal of Forecasting, 32(5), 409-
422.

Sokolova, M. – Lapalme, G. (2009). A systematic analysis of performance
measures for classification tasks. Information Processing & Management,
45(4), 427-437.

Spackman, K. A. (1989). Signal detection theory: Valuable tools for evaluating
inductive learning. Proceedings of the Sixth International Workshop on Ma-
chine Learning, pp. 160-163.

Steffens, T. (2005). In Kaelbling L. S.,A. (Ed.), Partial and vague knowledge for
similarity measures

Takeda, H. – Veerkamp, P. – Yoshikawa, H. (1990). Modeling design process.
AI Magazine, 11(4), 37.

Tan, P., Steinbach, M., & Kumar, V. (2006). Classification: Basic concepts, de-
cision trees, and model evaluation. Introduction to data mining (pp. 145-
195) Pearson Addison Wesley.

Tao, A. (2018), The most successful companies today are data-driven.
<http://blogs.mccombs.utexas.edu/mstc/2018/04/16/the-most-successful-
companies-today-are-data-driven/ >, retrieved 19.3.2019.

Thoma, M. (2018), Evaluation of binary classifiers. <https://martin-
thoma.com/binary-classifier-evaluation/ >, retrieved 18.2.2019.

83

Torra, V., & Narukawa, Y. (2007). Modeling decisions: Information fusion and
aggregation operators Springer Science & Business Media.

Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327.

Varone, M. – Mayer, D. – Melegari, A. (2018), What is machine learning? A def-
inition. <https://www.expertsystem.com/machine-learning-definition/ >, re-
trieved 3.10.2018.

Wang, S. – Wang, H. (2010). Towards innovative design research in information
systems. Journal of Computer Information Systems, 51(1), 11-18.

Wang, Z., Chong, C. S., Lan, L., Yang, Y., Ho, S. B., & Tong, J. C. (2016). Fine-
grained sentiment analysis of social media with emotion sensing

Watson, Jane Webster Richard T. (2002). Analyzing the past to prepare for the
future: Writing a literature review. MIS Quarterly, 26, 2.

Yager, R. R. (1988). On ordered weighted averaging aggregation operators in
multicriteria decisionmaking. IEEE Transactions on Systems, Man, and Cy-
bernetics, 18(1), 183-190.

Yager, R. R. (1996). Quantifier guided aggregation using OWA operators. Inter-
national Journal of Intelligent Systems, 11(1), 49-73.

Yager, R. R. (2004). Generalized OWA aggregation operators. Fuzzy Optimiza-
tion and Decision Making, 3(1), 93-107.

Zhou, L. – Chen, H. (2014). Generalized ordered weighted proportional averag-
ing operator and its application to group decision making. Informatica,
25(2), 327-360.

84

APPENDIX

knn_classifier.m:
%% Train K-nearest neighbor classifier
rng(1);
Mdl = fitcknn(predictors, ClassData.class_label, 'OptimizeHyperparame-
ters', ...
 'auto', 'HyperparameterOptimizationOptions', ...
 struct('AcquisitionFunctionName', 'expected-improvement-plus'));
opdist = Mdl.ModelParameters.Distance;
opneigbors = Mdl.ModelParameters.NumNeighbors;

fitCum = zeros(length(distances),length(numNeighbors));
for j=1:length(distances)
 for i=1:length(numNeighbors)
 knnmdl = fitcknn(predictors, ClassData.class_label, ...
 'Distance', string(distances(j)), ...
 'NumNeighbors', numNeighbors(i), ...
 'DistanceWeight', 'Equal', 'Standardize', true);
 cvknnmdl = crossval(knnmdl, 'CVPartition', cv_data);
 [predictions, score] = kfoldPredict(cvknnmdl);
 [Accuracy, sn, sp] = evaluate_classifier(predictions,
 ClassData.class_label, classes, 0, '');
 if (length(classes)==2)
 fitness = calc_fit(Accuracy, sn, sp, fitness_weights);
 else
 fitness = calc_fit_multiclass(Accuracy, sn(1),sn(2),sn(3),…
 fitness_weights);
 end
 fitCum(j,i) = fitness;
 end
end

% train model with results of hyperparameter optimization
knnmdl = fitcknn(predictors, ClassData.class_label, 'Distance',…
 opdist, ...
 'NumNeighbors', opneigbors, ...
 'DistanceWeight', 'Equal', 'Standardize', true);
cvknnmdl = crossval(knnmdl, 'CVPartition', cv_data);
[predictions, score] = kfoldPredict(cvknnmdl);
[Accuracy, sn, sp] = evaluate_classifier(predictions,…
 ClassData.class_label, classes, 0, '');
if (length(classes)==2)
 optfitness = calc_fit(Accuracy, sn, sp, fitness_weights);
else
 optfitness = calc_fit_multiclass(Accuracy, sn(1),sn(2),sn(3), …
 fitness_weights);
end
%% find maximum fitness function value
maxfit = max(max(fitCum));
[j1,i1]=find(maxfit==fitCum);

% train the model with optimal parameters
if (maxfit>optfitness)
 knnmdl = fitcknn(predictors, ClassData.class_label, ...
 'Distance', string(distances(j1(1))), ...
 'NumNeighbors', numNeighbors(i1(1)), ...
 'DistanceWeight', 'Equal', 'Standardize', true);
 cvknnmdl = crossval(knnmdl, 'CVPartition', cv_data);
 optimal_knn_distance = string(distances(j1(1)))

85

 optimal_num_neighbors = numNeighbors(i1(1))
end

cvAccuracy = (1 - kfoldLoss(cvknnmdl, 'LossFun', 'ClassifError'));

tree_classifier.m:
function [treemdl, cvtreemdl, treecvAccuracy] = …
 tree_classifier(ClassData, cv_data, predictors, …
 classes, fitness_weights)

%% Train Decision tree classifier
i_val = [];
k_val = [];
Fit_Cum = [];
for i=1:10
 for k=1:10
 treemdl = fitctree(predictors, ClassData.class_label,…
 'SplitCriterion', 'gdi', ...
 'MaxNumSplits', i*2+2, 'MinLeafSize', 10+k*2, …
 'Surrogate', 'off');
 cvtreemdl = crossval(treemdl, 'CVPartition', cv_data);
 [predictions, score] = kfoldPredict(cvtreemdl);
 [Accuracy, sn, sp] = evaluate_classifier(predictions,…
 ClassData.class_label, classes, 0, '');
 if (length(classes)==2)
 fitness = calc_fit(Accuracy, sn, sp, fitness_weights);
 else
 fitness = calc_fit_multiclass(Accuracy, sn(1),sn(2),sn(3),…
 fitness_weights);
 end
 Fit_Cum = [Fit_Cum fitness];
 i_val = [i_val i];
 k_val = [k_val k];
 end
end
[M, I] = max(Fit_Cum);

treemdl = fitctree(predictors, ClassData.class_label,…
 'SplitCriterion', 'gdi', ...
 'MaxNumSplits', i_val(I)*2+2, 'MinLeafSize',…
 10+k_val(I)*2, 'Surrogate', 'off');
cvtreemdl = crossval(treemdl, 'CVPartition', cv_data);
treecvAccuracy = (1 - kfoldLoss(cvtreemdl, 'LossFun',…
 'ClassifError'));

svm_classifier.m:
function [svmmdl,cvsvmmdl,svmcvAccuracy] = svm_classifier(ClassData, …
 cv_data, predictors, classes, fitness_weights, doHyperOpt)

%% Train SVM classifier
if (doHyperOpt==1)
 rng(1);
 opts = struct('Optimizer','bayesopt','ShowPlots',true,…
 'CVPartition',cv_data,...
 'AcquisitionFunctionName','expected-improvement-plus');
 rng(1);
 svmmod = fitcsvm(predictors,ClassData.class_label,…
 'KernelFunction','rbf',...
 'OptimizeHyperparameters','all',…
 'HyperparameterOptimizationOptions',opts);

86

 scale_f = [1e-5 1e-4 1e-3 1e-2 1e-1 1 10 100 1000 10000 100000];
else
 scale_f = [1e-4 1e-2 1 10 100];
end

%Retrain the SVM classifier, but adjust the 'KernelScale' and 'BoxCon-
straint' name-value pair arguments.
svmmod2 = fitcsvm(predictors, ClassData.class_label, ...
 'KernelFunction', 'gaussian', ...
 'PolynomialOrder', [], 'KernelScale', 'auto', ...
 'BoxConstraint', 1, ...
 'Standardize', true);
scale = svmmod2.KernelParameters.Scale;

Fit_Cum = [];
for i=1:(length(scale_f))
 svmmdl = fitcsvm(predictors, ClassData.class_label, ...
 'KernelFunction', 'gaussian', ...
 'PolynomialOrder', [], 'KernelScale',…
 scale*scale_f(i), ...
 'BoxConstraint', scale_f(i), ...
 'Standardize', true);
 cvsvmmdl = crossval(svmmdl, 'CVPartition', cv_data);
 [predictions, score] = kfoldPredict(cvsvmmdl);
 [Accuracy, sn, sp] = evaluate_classifier(predictions,…
 ClassData.class_label, classes, 0, '');
 fitness = calc_fit(Accuracy, sn, sp, fitness_weights);
 Fit_Cum = [Fit_Cum fitness];
end

if (doHyperOpt==1)
 if (isnan(svmmod.HyperparameterOptimizationResults.XAtMinObjec-
tive.KernelScale))
 scale = 1;
 else
 scale = svmmod.HyperparameterOptimizationResults.XAtMinObjec-
tive.KernelScale;
 end
 svmmdl = fitcsvm(predictors, ClassData.class_label, ...
 'KernelFunction', string(svmmod.HyperparameterOp-
timizationResults.XAtMinObjective.KernelFunction), ...
 'BoxConstraint',…
svmmod.HyperparameterOptimizationResults.XAtMinObjective.BoxCon-
straint,...
 'KernelScale', scale,...
 'Standardize', true);
 cvsvmmdl = crossval(svmmdl, 'CVPartition', cv_data);
 [predictions, score] = kfoldPredict(cvsvmmdl);
 [Accuracy, sn, sp] = evaluate_classifier(predictions,…
 ClassData.class_label, classes, 0, '');
 fitness = calc_fit(Accuracy, sn, sp, fitness_weights);
 Fit_Cum = [Fit_Cum fitness];
end

[M, I] = max(Fit_Cum);

if (I==length(scale_f)+1)
 kScale = svmmod.HyperparameterOptimizationResults.XAtMinObjec-
tive.KernelScale
 BoxC = svmmod.HyperparameterOptimizationResults.XAtMinObjec-
tive.BoxConstraint

87

 KFunction = string(svmmod.HyperparameterOptimizationRe-
sults.XAtMinObjective.KernelFunction)
else
 kScale = scale*scale_f(I)
 BoxC = scale_f(I)
 KFunction = 'gaussian'
end

svmmdl = fitcsvm(predictors, ClassData.class_label, ...
 'KernelFunction', KFunction, ...
 'PolynomialOrder', [], 'KernelScale', kScale, ...
 'BoxConstraint', BoxC, ...
 'Standardize', true);
cvsvmmdl = crossval(svmmdl, 'CVPartition', cv_data);

svmcvAccuracy = (1 - kfoldLoss(cvsvmmdl, 'LossFun', 'ClassifError'));

discriminant_classifier.m:
function [dismdl, cvdismdl, cvdisAccuracy] = discriminant_classi-
fier(ClassData, cv_data, predictors, classes, fitness_weights, discri-
minant_types)

%% Train Discriminant Analysis classifier
gammap = [0, 1];
fillp = {'off', 'on'};
i_val = [];
k_val = [];
n_val = [];
Fit_Cum = [];
for i=1:length(discriminant_types)
 for k=1:2
 for n=1:2
 dismdl = fitcdiscr(predictors, ClassData.class_label, ...
 'DiscrimType', string(discriminant_types(i)), ...
 'FillCoeffs', string(fillp(n)), ...
 'Gamma', gamma(k));
 i_val = [i_val i];
 k_val = [k_val k];
 n_val = [n_val n];
 cvdismdl = crossval(dismdl, 'CVPartition', cv_data);
 [predictions, score] = kfoldPredict(cvdismdl);
 [Accuracy, sn, sp] = evaluate_classifier(predictions,…
 ClassData.class_label, classes, 0, '');
 if (length(classes)==2)
 fitness = calc_fit(Accuracy, sn, sp, fitness_weights);
 else
 fitness = calc_fit(Accuracy, sn(1), sp, fitness_weights);
 end
 Fit_Cum = [Fit_Cum fitness];
 end
 end
end

[M, I] = max(Fit_Cum);

dismdl = fitcdiscr(predictors, ClassData.class_label, ...
 'DiscrimType', …
 string(discriminant_types(i_val(I))), ...
 'FillCoeffs', string(fillp(n_val(I))), ...
 'Gamma', gamma(k_val(I)));
cvdismdl = crossval(dismdl, 'CVPartition', cv_data);

88

cvdisAccuracy = (1 - kfoldLoss(cvdismdl, 'LossFun', 'ClassifError'));

gowa_classifier.m:
function [Accuracy, class, sn, sp, truelabels, cvfitness, cvclass,…
truecvlabels, fitness_f] = gowa_classifier(ClassData, cv, testData,…
classes, fitness_weights, v, c, p, m, lambda, pl)

measure = 1; % Which quantifier in OWA operators you want to use.

fitness = zeros(1,cv.NumTestSets);
fit = zeros(1,cv.NumTestSets);
meanfit = zeros(length(p),length(m));
Vars = zeros(length(p),length(m));
Maxsf = zeros(length(p),length(m));
Minsf = zeros(length(p),length(m));

for j = 1:length(m)
 for i = 1:length(p)
 y = [p(i), m(j), measure, lambda];
 for k = 1:cv.NumTestSets
 trIdx = cv.training(k);
 teIdx = cv.test(k);
 datalearn = table2array(ClassData(trIdx, :));
 datatest = table2array(ClassData(teIdx, :));
 [datatest, tc_sizes, cstart_idx] = …
 init_data(datatest,v,c);
 [datalearn, lc_sizes, cstart_idx] = …
 init_data(datalearn,v,c);
 ideal_vec = idealvectors(datalearn, y);
 [fitness(k), class, Simil] = calcfit(datatest, …
 ideal_vec, y);
 [acctmp, sn, sp] = evaluate_classifier(class,…
 datatest(:,end), classes, 0, '');
 if (length(classes)==2)
 fit(k) = calc_fit(fitness(k),sn,sp,fitness_weights);
 else
 fit(k) = calc_fit_multiclass(fitness(k),sn(1),sn(3),…
 sn(3), fitness_weights);
 end
 end
 meanfit(i,j) = mean(fit);
 Vars(i,j) = var(fit);
 Maxsf(i,j) = max(fit);
 Minsf(i,j) = min(fit);
 end
 fitness=[];
 fit = [];
end
maxfit = max(max(meanfit));
[p1,m1]=find(maxfit==meanfit);
% if maximum value is there more than once, take the first one and
find out the actual parameter
% p and m values for that index
p_o = p(p1(1));
m_o = m(m1(1));

data_h = table2array(ClassData);
data_h = init_data(data_h, v, c);
testArraytmp = table2array(testData);
testArray = init_data(testArraytmp, v, c);

89

truelabels = testArray(:,end);
truecvlabels = data_h(:,end);

% find optimum parameter for max fitness function and calculate test-
data values with those parameters
y = [p_o, m_o, measure, lambda];
% calculate ideal vector with the best parameters for the whole train-
ing data
final_ideal_vec = idealvectors(data_h, y);
% calculate cross-validation fitness
[cvfitness, cvclass, cvSimil] = calcfit(data_h, final_ideal_vec, y);
% calculate fitness for the test data (that data has not been used for
training)
[fitness, class, Simil] = calcfit(testArray, final_ideal_vec, y);
% calculate sensitivity & specificity for the final classifier with
test data
[acc, sn, sp] = evaluate_classifier(class, testArray(:,end), …
 classes, 0, '');
% calculate fitness function value for test data
if (length(classes)==2)
 fitness_f = calc_fit(fitness, sn, sp, fitness_weights);
else
 fitness_f = calc_fit_multiclass(fitness, sn(1), sn(2), sn(3), fit-
ness_weights);
end

Accuracy = fitness;

if (pl==1)
 [X,Y] = meshgrid(m,p);
 figure
 surfc(X,Y,meanfit)
 title('Mean classification accuracies','FontSize',15)
 xlabel('\alpha-values')
 ylabel('p-values')
 zlabel('Classification accuracy')
 end
 clear Y
end

multisvm_classifier.m:
function [svmmdl,cvsvmmdl,svmcvAccuracy] = …
 multisvm_classifier(ClassData, cv_data, predictors, …
 classes, fitness_weights)

%% Train SVM classifier
opts = struct('Optimizer','bayesopt', 'ShowPlots',true, …
 'CVPartition',cv_data,...
 'AcquisitionFunctionName','expected-improvement-plus');
rng(1);
svmmod = fitcecoc(predictors,ClassData.class_label,…
 'OptimizeHyperparameters', 'auto',…
 'HyperparameterOptimizationOptions', opts);

%Retrain the SVM classifier, but adjust the 'KernelScale' and 'BoxCon-
straint' name-value pair arguments.
template = templateSVM('KernelFunction', 'gaussian', ...
 'PolynomialOrder', [], ...
 'KernelScale', 'auto' , ...
 'BoxConstraint', 1, ...

90

 'Standardize', true);
classificationSVM2 = fitcecoc(predictors, ClassData.class_label, ...
 'Learners', template);

% hyperpamater optimization is quite slow for this classifier. That is
% why it is not run each time, the values should be the same since %
rng(1) was called before the above optimal values were generated
opt_coding =…
 svmmod.HyperparameterOptimizationResults.XAtMinObjective.Coding;
opt_scale = …
svmmod.HyperparameterOptimizationResults.XAtMinObjective.KernelScale;
opt_box = …
svmmod.HyperparameterOptimizationResults.XAtMinObjective.BoxCon-
straint;

k_func = {'gaussian', 'linear', 'polynomial'};
Fit_Cum = [];
for i=1:4
 if (i==4)
 tmpl = templateSVM('KernelFunction', 'gaussian', ...
 'PolynomialOrder', [], ...
 'KernelScale', opt_scale, ...
 'BoxConstraint', opt_box, ...
 'Standardize', true);
 svmmdl = fitcecoc(predictors, ClassData.class_label, ...
 'Learners', tmpl, ...
 'Coding', string(opt_coding));
 else
 tmpl = templateSVM('KernelFunction', string(k_func(i)), ...
 'PolynomialOrder', [], ...
 'KernelScale', 'auto', ...
 'BoxConstraint', 1, ...
 'Standardize', true);
 svmmdl = fitcecoc(predictors, ClassData.class_label, ...
 'Learners', tmpl);
 end
 cvsvmmdl = crossval(svmmdl, 'CVPartition', cv_data);
 [predictions, score] = kfoldPredict(cvsvmmdl);
 [Accuracy, sn, sp] = evaluate_classifier(predictions,
 ClassData.class_label, classes, 0, '');
 fitness = calc_fit_multiclass(Accuracy, sn(1), sn(2), sn(3),…
 fitness_weights);
 Fit_Cum = [Fit_Cum fitness];
end

[M, I] = max(Fit_Cum);

if (I==4)
 kernel_func = 'gaussian';
else
 kernel_func = k_func(I);
end

tmpl = templateSVM('KernelFunction', string(kernel_func), ...
 'PolynomialOrder', [], ...
 'KernelScale', 'auto', ...
 'BoxConstraint', 1, ...
 'Standardize', true);
svmmdl = fitcecoc(predictors, ClassData.class_label, ...
 'Learners', tmpl);

91

cvsvmmdl = crossval(svmmdl, 'CVPartition', cv_data);

svmcvAccuracy = (1 - kfoldLoss(cvsvmmdl, 'LossFun', 'ClassifError'));

calc_fit.m:
function fitness = calc_fit(Accuracy, sn, sp, weights)

fitness = weights(1)*Accuracy + weights(2)*sn + weights(3)*sp;

calc_fit_multiclass.m:
unction fitness = calc_fit_multiclass(Accuracy, sn1, sn2, sn3,…
 weights)

fitness = weights(1)*Accuracy + weights(2)*sn1 + weights(3)*sn2…
 + weights(4)*sn3;

evaluate_classifier.m:
function [Accuracy, sn, sp] = evaluate_classifier(predictions,…
 truelabels, classes, plot_ch, charttitle)

[cm,cl] = confusionmat(truelabels, predictions);

if (plot_ch==1)
 figure
 confusionchart(truelabels,predictions, 'ColumnSummary',…
 'column-normalized', ...
 'RowSummary','row-normalized');
 title(charttitle);
end

if (length(classes) == 2)
 FP = cm(cl==classes(1), cl==classes(2));
 FN = cm(cl==classes(2), cl==classes(1));
 TP = cm(cl==classes(2), cl==classes(2));
 TN = cm(cl==classes(1), cl==classes(1));
 sn = TP / (TP+FN);
 sp = TN / (TN+FP);
 Accuracy = (TP+TN)/(TP+TN+FP+FN);
else
 T1 = cm(cl==classes(1), cl==classes(1));
 T2 = cm(cl==classes(2), cl==classes(2));
 T3 = cm(cl==classes(3), cl==classes(3));
 F12 = cm(cl==classes(2), cl==classes(1));
 F13 = cm(cl==classes(3), cl==classes(1));
 F21 = cm(cl==classes(1), cl==classes(2));
 F23 = cm(cl==classes(3), cl==classes(2));
 F31 = cm(cl==classes(1), cl==classes(3));
 F32 = cm(cl==classes(2), cl==classes(3));
 sn = zeros(1,length(classes));
 sn(1) = T1/(T1+F21+F31);
 sn(2) = T2/(T2+F12+F32);
 sn(3) = T3/(T3+F13+F23);
 sp = 0;
 Accuracy = (T1+T2+T3)/(T1+T2+T3+F12+F13+F21+F23+F31+F32);
end

Haberman_import.m:
%% Import data from text file.
filename = ‘haberman.data';

92

delimiter = ',';
%% Format for each line of text:
formatSpec = '%f%f%f%f%[^\n\r]';
%% Open the text file.
fileID = fopen(filename,'r');
%% Read columns of data according to the format.
dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, …
'TextType', 'string', 'ReturnOnError', false);
%% Close the text file.
fclose(fileID);
%% Create output variable
haberman = table(dataArray{1:end-1}, 'VariableNames', …
{'age','year','nodes','class_label'});
%% Clear temporary variables
clearvars filename delimiter formatSpec fileID dataArray ans;
predictorNames = {'age', 'year', 'nodes'};
close all
knncvAcc = [];
treecvAcc = [];
svmcvAcc = [];
discvAcc = [];
gowacvAcc = [];
gowaAccu = [];
knnAcc = [];
treeAcc = [];
svmAcc = [];
disAcc = [];
knn_fitness = [];
tree_fitness = [];
svm_fitness = [];
dis_fitness = [];
gowa_fitness = [];
for r=1:6
%% Create training and validation data partition.
% 30% of data is left out for validation the generated classified
% 70% of data is used for training the classifier and for cross-vali-
dation
% rgn() is called first for reproducible results in different runs
rng(r*16);
c1 = cvpartition(haberman.class_label,'HoldOut', 0.3);
testData = haberman(c1.test, :);
test_predictors = testData(:, predictorNames);
ClassData = haberman(c1.training, :);
predictors = ClassData(:, predictorNames);
%% Create partition to be used for crossvalidation for each classifier
rng(1);
cv = cvpartition(ClassData.class_label,'KFold',10);
%% set fitness function weights
fitness_weights = [0.5 0.25 0.25];
classes = [1 2];

%% Optimize and train K-nearest neighbor classifier
distances = {'cosine', 'euclidean', 'jaccard', 'chebychev', 'seuclide-
an'};
numNeighbors = [10:30];
[knnmdl, cvknnmdl, knncvAccuracy] = knn_classifier(ClassData, cv, pre-
dictors, classes, fitness_weights, ...
 distances, numNeighbors);
[knnPredictions, knnscore] = kfoldPredict(cvknnmdl);
knncvAcc(r) = knncvAccuracy;
%% Optimize and train Decision tree classifier

93

[treemdl, cvtreemdl, treecvAccuracy] = tree_classifier(ClassData, cv,
predictors, classes, fitness_weights);
[treePredictions, treescore] = kfoldPredict(cvtreemdl);
treecvAcc(r) = treecvAccuracy;
%% Optimize and train SVM classifier
doHyperOpt = 1;
[svmmdl, cvsvmmdl, svmcvAccuracy] = svm_classifier(ClassData, cv, pre-
dictors, classes, ...
 fitness_weights, doHyperOpt);
[svmPredictions, svmscore] = kfoldPredict(cvsvmmdl);
svmcvAcc(r) = svmcvAccuracy;
%% Optimize and train Discriminant Analysis classifier
discriminant_types = {'linear', 'pseudolinear', 'diaglinear', 'quad-
ratic', 'pseudoquadratic', 'diagquadratic'};
[dismdl, cvdismdl, discvAccuracy] = discriminant_classifier(ClassData,
… cv, predictors, classes, fitness_weights, discriminant_types);
[disPredictions, disscore] = kfoldPredict(cvdismdl);
discvAcc(r) = discvAccuracy;
%% GOWA
lambda = 2.0;
%lambda= [0.1:0.1:5];
v=[1:3];c=4;
p = [0.1:0.25:4]; % p parameter range
m = [0.25:0.25:5]; % alpha parameter range
if (r==6)
 pl=1;
else
 pl=0;
end
%for i=1:length(lambda)
%[gowaAcc(i), gowaPredictions, gowasn(i), gowasp(i), gowatruelabels,
gowacvfitness, cvpredictions, truecvlabels, ...
% gowafitness_f] = gowa_classifier(ClassData, cv, testData, classes,…
% fitness_weights, v, c, p, m, lambda(i), pl);
%end
[gowaAcc, gowaPredictions, gowasn, gowasp, gowatruelabels, …
gowacvfitness, cvpredictions, truecvlabels, gowafitness_f] = …
gowa_classifier(ClassData, cv, testData, classes, fitness_weights, v,
… c, p, m, lambda, pl);
gowa_fitness(r) = gowafitness_f;
gowacvAcc(r) = gowacvfitness;
gowaAccu(r) = gowaAcc;
%figure
%subplot(1,3,1)
%plot(lambda,gowaAcc)
%title('Gowa accuracies');
%ylabel('accuracy');
%xlabel('lambda');
%subplot(1,3,2)
%plot(lambda,gowasn)
%title('Gowa sensitivity');
%ylabel('sn');
%xlabel('lambda');
%subplot(1,3,3)
%plot(lambda,gowasp)
%title('Gowa specificity');
%ylabel('sp');
%xlabel('lambda');

%% plot confusion matrixes for each classifier for cross validated
models
if (r==6)

94

plot_cv_confusion(knnPredictions, treePredictions, svmPredictions,
disPredictions, cvpredictions, ClassData, truecvlabels);
end
%% Evaluate each classifier with test data (30% of data separated in
the beginning and not used for training)
plot_ch = 0;
%knn
[knntestPredictions, knntestscore] = predict(knnmdl, test_predictors);
[knnAccuracy, knnsn, knnsp] = evaluate_classifier(knntestPredictions,…
testData.class_label, classes, plot_ch, …
'Confusion chart for KNN classifier');
knnAcc(r) = knnAccuracy;
% tree
[treetestPredictions, treetestscore] = predict(treemdl, …
test_predictors);
[treeAccuracy, treesn, treesp] = evaluate_classifier(…
treetestPredictions, testData.class_label, classes, plot_ch, …
'Confusion chart for Tree classifier');
treeAcc(r) = treeAccuracy;
% svm
[svmtestPredictions, svmtestscore] = predict(svmmdl, test_predictors);
[svmAccuracy, svmsn, svmsp] = evaluate_classifier(svmtestPredictions,…
testData.class_label, classes, plot_ch, …
'Confusion chart for SVM classifier');
svmAcc(r) = svmAccuracy;
% dis
[distestPredictions, distestscore] = predict(dismdl, test_predictors);
[disAccuracy, dissn, dissp] = evaluate_classifier(distestPredictions,…
 testData.class_label, classes, plot_ch, …
 'Confusion chart for Discriminant Analysis classifier');
disAcc(r) = disAccuracy;
if (r==6)
plot_confusion(knntestPredictions, treetestPredictions, …
svmtestPredictions, distestPredictions, gowaPredictions, ...
testData.class_label, gowatruelabels);
end

%% calculate fitness functions for each classifier
knnfit = calc_fit(knnAccuracy, knnsn, knnsp, fitness_weights);
treefit = calc_fit(treeAccuracy, treesn, treesp, fitness_weights);
svmfit = calc_fit(svmAccuracy, svmsn, svmsp, fitness_weights);
disfit = calc_fit(disAccuracy, dissn, dissp, fitness_weights);

knn_fitness = [knn_fitness knnfit];
tree_fitness = [tree_fitness treefit];
svm_fitness = [svm_fitness svmfit];
dis_fitness = [dis_fitness disfit];

if (r==6)
 knnfitness = knnfit;
 treefitness = treefit;
 svmfitness = svmfit;
 disfitness = disfit;
%% create a table of the results
sp = [knnsp; treesp; svmsp; dissp; gowasp];
sn = [knnsn; treesn; svmsn; dissn; gowasn];
var_names = {'sp', 'sn', 'accuracy', 'cross_val_acc', 'fitness'};
row_names = {'knn','tree','svm', 'discriminant', 'gowa'};
cvaccu = [knncvAccuracy; treecvAccuracy; svmcvAccuracy; discvAccuracy;
gowacvfitness];
accu = [knnAccuracy; treeAccuracy; svmAccuracy; disAccuracy; gowaAcc];

95

fitness = [knnfitness; treefitness; svmfitness; disfitness; gowafit-
ness_f]; %gowafitness];
T = table(sp, sn, accu, cvaccu, fitness, 'VariableNames', var_names,
...
 'RowNames', row_names)

%% plot ROC curves for all referenve classifiers
[knnX, knnY, knnT, knnAUC] = perfcurve(testData.class_label,knntest-
score(:,knnmdl.ClassNames==2), 2);
[treeX,treeY,treeT, treeAUC] = perfcurve(testData.class_label,treet-
estscore(:,treemdl.ClassNames==2), 2);
[svmX, svmY, svmT, svmAUC] = perfcurve(testData.class_label,svmtest-
score(:,svmmdl.ClassNames==2), 2);
[disX, disY, disT, disAUC] = perfcurve(testData.class_la-
bel,distestscore(:,dismdl.ClassNames==2), 2);

figure
hold on
plot(knnX,knnY)
plot(treeX,treeY)
plot(svmX,svmY)
plot(disX,disY)
hold off
legend('knn', 'tree', 'svm', 'discr','Location','SE');
xlabel('False positive rate'); ylabel('True positive rate');
title('ROC for reference classifiers');
end
end

%% calculate mean values for the 6 runs with different random data
partition
knnmeanAccuracy = mean(knnAcc);
treemeanAccuracy = mean(treeAcc);
svmmeanAccuracy = mean(svmAcc);
dismeanAccuracy = mean(disAcc);
gowameanAccuracy = mean(gowaAccu);
knncvmeanAccuracy = mean(knncvAcc);
treecvmeanAccuracy = mean(treecvAcc);
svmcvmeanAccuracy = mean(svmcvAcc);
discvmeanAccuracy = mean(discvAcc);
gowacvmeanAccuracy = mean(gowacvAcc);

%% Create a table for results of 10 differente runs
knnf = [round(knn_fitness(1),3); round(knn_fitness(2),3); …
 round(knn_fitness(3),3); round(knn_fitness(4),3); …
 round(knn_fitness(5),3); round(knn_fitness(6),3); ...
 round(mean(knn_fitness),3); round(knnmeanAccuracy,4)];
treef = [round(tree_fitness(1),3); round(tree_fitness(2),3); …
 round(tree_fitness(3),3); round(tree_fitness(4),3); …
 round(tree_fitness(5),3); round(tree_fitness(6),3); ...
 round(mean(tree_fitness),3); round(treemeanAccuracy,4)];
svmf = [round(svm_fitness(1),3); round(svm_fitness(2),3); …
 round(svm_fitness(3),3); round(svm_fitness(4),3); …
 round(svm_fitness(5),3); round(svm_fitness(6),3); ...
 round(mean(svm_fitness),3); round(svmmeanAccuracy,4)];
disf = [round(dis_fitness(1),3); round(dis_fitness(2),3); …
 round(dis_fitness(3),3); round(dis_fitness(4),3); …
 round(dis_fitness(5),3); round(dis_fitness(6),3); ...
 round(mean(dis_fitness),3); round(dismeanAccuracy,4)];
gowaf = [round(gowa_fitness(1),3); round(gowa_fitness(2),3); …
 round(gowa_fitness(3),3); round(gowa_fitness(4),3); …
 round(gowa_fitness(5),3); round(gowa_fitness(6),3); ...

96

 round(mean(gowa_fitness),3); round(gowameanAccuracy,4)];
row_names = {'fit1','fit2','fit3','fit4','fit5','fit6',…
 'mean_fit', 'mean_accuracy'};
var_names = {'knn', 'tree', 'svm', 'discriminant', 'gowa'};
T = table(knnf, treef, svmf, disf, gowaf, ...
 'VariableNames', var_names, 'RowNames', row_names)

thyroid_import.m:
%% Import data from text file.
filename = 'C:\Users\Salla\Documents\Gradu_matlab\new-thyroid.data';
delimiter = ',';
% Format for each line of text:
formatSpec = '%f%f%f%f%f%f%[^\n\r]';
% Open the text file.
fileID = fopen(filename,'r');
% Read columns of data according to the format.
dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter,
'TextType', 'string', 'ReturnOnError', false);
% Close the text file.
fclose(fileID);
% create thyroid data table
thyroid = table(dataArray{1:end-1}, 'VariableNames', {'class_la-
bel','T3','thyroxin','trii', 'TSH', 'TSH_diff'});
% Clear temporary variables
clearvars filename delimiter formatSpec fileID dataArray ans;
predictorNames = {'T3','thyroxin','trii', 'TSH', 'TSH_diff'};
close all
%% Initialize variables
knncvAcc = [];
treecvAcc = [];
svmcvAcc = [];
discvAcc = [];
gowacvAcc = [];
gowaAccu = [];
knnAcc = [];
treeAcc = [];
svmAcc = [];
disAcc = [];
knn_distances = [];

%% all classifiers are trained 6 times, with different random data
partition
for r=1:6
 %% Create training and validation data partition.
 % 30% of data is left out for validation the generated classified
 % 70% of data is used for training the classifier and for

 %crossvalidation. rgn(1) is called first for reproducible results
 % between different runs
 rng(r*45);
 c1 = cvpartition(thyroid.class_label,'HoldOut', 0.3);
 testData = thyroid(c1.test, :);
 test_predictors = testData(:, predictorNames);
 ClassData = thyroid(c1.training, :);
 predictors = ClassData(:, predictorNames);

 %% Create partition to be used for cross-validation
 %% for each classifier
 rng(1);
 cv = cvpartition(ClassData.class_label,'KFold',4);

 %% set fitness function weights and define used classes

97

 fitness_weights = [0.55 0.15 0.15 0.15];
 classes = [1 2 3];

 %% Optimize and train K-nearest neighbor classifier
 distances = {'cosine', 'euclidean', 'jaccard', 'chebychev',…
 'seuclidean'};
 numNeighbors = [2:25];
 [knnmdl, cvknnmdl, knncvAccuracy] = knn_classifier(ClassData, cv,…
 predictors, classes, fitness_weights, distances, numNeighbors);
 [knnPredictions, knnscore] = kfoldPredict(cvknnmdl);
 knncvAcc(r) = knncvAccuracy;

 %% Optimize and train Decision tree classifier
 [treemdl, cvtreemdl, treecvAccuracy] = tree_classifier(ClassData,…
 cv, predictors, classes, fitness_weights);
 [treePredictions, treescore] = kfoldPredict(cvtreemdl);
 treecvAcc(r) = treecvAccuracy;

 %% Optimize and train SVM classifier
 [svmmdl, cvsvmmdl, svmcvAccuracy] = multisvm_classifier(ClassData,…
 cv, predictors, classes, fitness_weights);
 [svmPredictions, svmscore] = kfoldPredict(cvsvmmdl);
 svmcvAcc(r) = svmcvAccuracy;

 %% Optimize and train Discriminant Analysis classifier
 discriminant_types = {'pseudolinear', 'diaglinear',…
 'pseudoquadratic', 'diagquadratic'};
 [dismdl, cvdismdl, discvAccuracy] = …
 discriminant_classifier(ClassData, cv, predictors, ...
 classes, fitness_weights, discriminant_types);
 [disPredictions, disscore] = kfoldPredict(cvdismdl);
 discvAcc(r) = discvAccuracy;

 %% Gowa
 c=1; %class label column number
 v=[2:6]; % column numbers for predictors
 % plot mean accuracies only for the last round
 if (r==6)
 pl=1;
 else
 pl=0;
 end
 % optimum lambda value is searched separately to shorten
 % the simulation time. The codes for testing different lambda
 % values are commented out here, best lambda value is determined
 % based on the plots
 %lambda= [0.1:0.1:5];
 lambda = 2.0;
 p = [1.0:0.25:8];
 alpha = [0.5:0.25:8];
 [gowaAcc, gowaPredictions, gowasn, gowasp, gowatruelabels, …
 gowacvfitness, cvpredictions, truecvlabels, gowafitness_f] =…
 gowa_classifier(ClassData, cv, testData, classes,fitness_weights,…
 v, c, p, alpha, lambda, pl);
 %for i=1:length(lambda)
 % [gowaAcc(i), gowaPredictions, gowasn, gowasp, gowatruelabels,…
 % gowacvfitness, cvpredictions, truecvlabels, ...
 % gowafitness_f] = gowa_classifier(ClassData, cv,…
 % testData, classes, ...
 % fitness_weights, v, c, p, alpha, lambda(i), 0);
 % sn1(i) = gowasn(1);

98

 % sn2(i) = gowasn(2);
 % sn3(i) = gowasn(3);
 %end
 gowacvAcc(r) = gowacvfitness;
 gowaAccu(r) = gowaAcc;

 %% plot confusion matrixes for each classifier for cross validated
 %% models, plot only results of one of the six runs
 if (r==6)
 plot_cv_confusion(knnPredictions, treePredictions, …
 svmPredictions, disPredictions, cvpredictions, ClassData,…
 truecvlabels);
 end

 %% Evaluate each classifier with test data (30% of data separated
 %% in the beginning and not used for training)
 plot_ch = 0;

 %knn
 [knntestPredictions, knntestscore] = predict(knnmdl, …
 test_predictors);
 [knnAccuracy, knnsn, knnsp] = evaluate_classifier(…
 knntestPredictions, testData.class_label, classes, plot_ch,…
 'Confusion chart for KNN classifier');
 knnAcc(r) = knnAccuracy;

 % tree
 [treetestPredictions, treetestscore] = predict(treemdl,…
 test_predictors);
 [treeAccuracy, treesn, treesp] = evaluate_classifier(…
 treetestPredictions, testData.class_label, classes,…
 plot_ch, 'Confusion chart for Tree classifier');
 treeAcc(r) = treeAccuracy;

 % svm
 [svmtestPredictions, svmtestscore] = predict(svmmdl,…
 test_predictors);
 [svmAccuracy, svmsn, svmsp] = evaluate_classifier(…
 svmtestPredictions, testData.class_label, classes, plot_ch,…
 'Confusion chart for SVM classifier');
 svmAcc(r) = svmAccuracy;

 % dis
 [distestPredictions, distestscore] = predict(dismdl,…
 test_predictors);
 [disAccuracy, dissn, dissp] = evaluate_classifier(…
 distestPredictions, testData.class_label, classes, plot_ch, …
 'Confusion chart for Discriminant Analysis classifier');
 disAcc(r) = disAccuracy;

 if (r==6)
 plot_confusion(knntestPredictions, treetestPredictions,…
 svmtestPredictions, distestPredictions, ...
 gowaPredictions, testData.class_label,…
 gowatruelabels);
 end

 %% calculate fitness functions for each classifier
 if (r==6)
 knnfitness = calc_fit_multiclass(knnAccuracy, knnsn(1),…
 knnsn(2), knnsn(3), fitness_weights);

99

 treefitness = calc_fit_multiclass(treeAccuracy, treesn(1),…
 treesn(2), treesn(3), fitness_weights);
 svmfitness = calc_fit_multiclass(svmAccuracy, svmsn(1),…
 svmsn(2), svmsn(3), fitness_weights);
 disfitness = calc_fit_multiclass(disAccuracy, dissn(1),…
 dissn(2), dissn(3), fitness_weights);
 % create vectors for the result table
 sp = [knnsp; treesp; svmsp; dissp; gowasp];
 sn1 = [knnsn(1); treesn(1); svmsn(1); dissn(1); gowasn(1)];
 sn2 = [knnsn(2); treesn(2); svmsn(2); dissn(2); gowasn(2)];
 sn3 = [knnsn(3); treesn(3); svmsn(3); dissn(3); gowasn(3)];

 end
end % for r=1:6

%% calculate mean values for the 6 runs with different random data
partition
knnmeanAccuracy = mean(knnAcc);
treemeanAccuracy = mean(treeAcc);
svmmeanAccuracy = mean(svmAcc);
dismeanAccuracy = mean(disAcc);
gowameanAccuracy = mean(gowaAccu);
knncvmeanAccuracy = mean(knncvAcc);
treecvmeanAccuracy = mean(treecvAcc);
svmcvmeanAccuracy = mean(svmcvAcc);
discvmeanAccuracy = mean(discvAcc);
gowacvmeanAccuracy = mean(gowacvAcc);

%% Create a table of the results
var_names = {'sn1', 'sn2', 'sn3', 'accuracy', 'cross_val_accuracy',…
 'fitness'};
row_names = {'knn','tree','svm', 'discriminant', 'gowa'};
accu = [knnAccuracy; treeAccuracy; svmAccuracy; disAccuracy;…
 gowaAcc];
cv_accu = [knncvAccuracy; treecvAccuracy; svmcvAccuracy; …
 discvAccuracy; gowacvfitness];
fitness = [knnfitness; treefitness; svmfitness; disfitness; …
 gowafitness_f];
T = table(sn1, sn2, sn3, accu, cv_accu, fitness, 'VariableNames',…
 var_names, 'RowNames', row_names)

%% Create a table for results of 6 differente runs
acc1 = [knnAcc(1); treeAcc(1); svmAcc(1); disAcc(1); gowaAccu(1)];
acc2 = [knnAcc(2); treeAcc(2); svmAcc(2); disAcc(2); gowaAccu(2)];
acc3 = [knnAcc(3); treeAcc(3); svmAcc(3); disAcc(3); gowaAccu(3)];
acc4 = [knnAcc(4); treeAcc(4); svmAcc(4); disAcc(4); gowaAccu(4)];
acc5 = [knnAcc(5); treeAcc(5); svmAcc(5); disAcc(5); gowaAccu(5)];
acc6 = [knnAcc(6); treeAcc(6); svmAcc(6); disAcc(6); gowaAccu(6)];
meanaccus = [knnmeanAccuracy; treemeanAccuracy; svmmeanAccuracy; …
 dismeanAccuracy; gowameanAccuracy];
var_names = {'accuracy1', 'accuracy2', 'accuracy3', 'accuracy4', …
 'accuracy5', 'accuracy6', 'mean_accuracy'};
row_names = {'knn','tree','svm', 'discriminant', 'gowa'};
T = table(acc1, acc2, acc3, acc4, acc5, acc6, meanaccus, ...
 'VariableNames', var_names, 'RowNames', row_names)

 credit_import.m:
 %% Import data from spreadsheet
%% Setup the Import Options

100

opts = spreadsheetImportOptions("NumVariables", 24);
% Specify sheet and range
opts.Sheet = "Data";
opts.DataRange = "B3:Y30002";
% Specify column names and types
opts.VariableNames = ["givencredit","gender","education",…
"maritalstatus","age","past1","past2","past3","past4","past5","past6",
"billsep","billaug","billjul","billjun","billmay","billapr","prev1",
"prev2","prev3","prev4", "prev5", "prev6","class_label"];
opts.VariableTypes = ["double", "double", "double", "double", "dou-
ble", "double", "double", "double", "double", "double", "double",
"double", "double", "double", "double", "double", "double", "double",
"double", "double", "double", "double", "double", "double"];

% Import the data
clients = readtable("defaultOfCreditCardClients.xls", opts,…
 "UseExcel", false);

observation_count = height(clients)
%find out the separate target classes
testClasses = clients.class_label;
[classes,~,idx] = unique(testClasses);
classes
%calculate how any instances there are in each class
nCount = accumarray(idx(:),1)

%% Clear temporary variables
clear opts
predictorNames = {'givencredit','gender','education','marital-
sta-
tus','age','past1','past2','past3','past4','past5','past6','billsep','
billaug','billjul','billjun','billmay','billapr','prev1','prev2',
'prev3', 'prev4', 'prev5','prev6'};
%% Create training and validation data partition.
% 30% of data is left out for validation the generated classified
% 70% of data is used for training the classifier and for crossvalida-
tion
% rgn(1) is called first for reproducible results in different runs
rng(1);
c1 = cvpartition(clients.class_label,'HoldOut', 0.4);
testData = clients(c1.test, :);
test_predictors = testData(:, predictorNames);
ClassData = clients(c1.training, :);
predictors = ClassData(:, predictorNames);

ClassData_count = height(ClassData)
cs = ClassData.class_label;
[classes,~,idx] = unique(cs);
nCount = accumarray(idx(:),1)
model_data_class0 = nCount(1)/ClassData_count
model_data_class1 = nCount(2)/ClassData_count

testData_count = height(testData)
cs = testData.class_label;
[classes,~,idx] = unique(cs);
nCount = accumarray(idx(:),1)
testdata_class0 = nCount(1)/testData_count
testdata_class1 = nCount(2)/testData_count

%% Create partition to be used for crossvalidation for each classifier
rng(1);

101

cv = cvpartition(ClassData.class_label,'KFold',10);

%% set fitness function weights
fitness_weights = [0.5 0.35 0.15];
classes = [0 1];

%% Optimize and train K-nearest neighbor classifier
tic
distances = {'cosine', 'euclidean', 'jaccard', 'chebychev', 'seuclide-
an'};
numNeighbors = [10:40];
[knnmdl, cvknnmdl, knncvAccuracy] = knn_classifier(ClassData, cv,…
 predictors, classes, fitness_weights, distances, numNeighbors);
[knnPredictions, knnscore] = kfoldPredict(cvknnmdl);
timeknn = toc;

%% Optimize and train Decision tree classifier
tic
[treemdl, cvtreemdl, treecvAccuracy] = tree_classifier(ClassData, cv,…
 predictors, classes, fitness_weights);
[treePredictions, treescore] = kfoldPredict(cvtreemdl);
timetree = toc;
%% Optimize and train SVM classifier
tic
doHyperOpt = 0;
[svmmdl, cvsvmmdl, svmcvAccuracy] = svm_classifier(ClassData, cv, …
 predictors, classes, fitness_weights, doHyperOpt);
[svmPredictions, svmscore] = kfoldPredict(cvsvmmdl);
timesvm = toc;
%% Optimize and train Discriminant Analysis classifier
tic
discriminant_types = {'linear', 'pseudolinear', 'diaglinear', 'quad-
ratic', 'pseudoquadratic', 'diagquadratic'};
[dismdl, cvdismdl,discvAccuracy] = discriminant_classifier(ClassData,…
 cv, predictors, classes, fitness_weights, discriminant_types);
[disPredictions, disscore] = kfoldPredict(cvdismdl);
timedis = toc;
%% Gowa
%lambda = 2.0;
c=24;
v=[1:23];
lambda= 3.4; %
%lambda = [0.1:0.3:5];
p = [0.25:0.25:5]; % p parameter range
alpha = [0.25:0.25:5];
tic
[gowaAcc, gowaPredictions, gowasn, gowasp, gowatruelabels,…
 gowacvfitness, cvpredictions, truecvlabels, gowafitness_f] =…
 gowa_classifier(ClassData, cv, testData, [1:2], ...
 fitness_weights, v, c, p, alpha, lambda, 1);
%for i=1:length(lambda)
%[gowaAcc(i), gowaPredictions, gowasn(i), gowasp(i), gowatruelabels,
gowacvfitness, cvpredictions, truecvlabels, ...
% gowafitness_f] = gowa_classifier_credit(ClassData, cv,
testData, [1:2], ... %_credit(ClassData, cv, testData, classes, ...
% fitness_weights, v, c, p, alpha, lambda(i), 1);
%end
timegowa = toc;

%% plot confusion matrixes for each classifier for cross validated
models

102

plot_cv_confusion(knnPredictions, treePredictions, svmPredictions,…
disPredictions, cvpredictions, ClassData, truecvlabels);

%% Evaluate each classifier with test data (40% of data separated in
the beginning and not used for training)
plot_ch = 0;
%knn
[knntestPredictions, knntestscore] = predict(knnmdl, test_predictors);
[knnAccuracy,knnsn,knnsp] = evaluate_classifier(knntestPredictions,…
 testData.class_label, classes, plot_ch,…
 'Confusion chart for KNN classifier');

% tree
[treetestPredictions, treetestscore] = predict(treemdl, …
 test_predictors);
[treeAccuracy, treesn, treesp] = evaluate_classifier(…
 treetestPredictions, testData.class_label, classes,…
 plot_ch, 'Confusion chart for Tree classifier');

% svm
[svmtestPredictions, svmtestscore] = predict(svmmdl, test_predictors);
[svmAccuracy, svmsn, svmsp] = evaluate_classifier(svmtestPredictions,…
 testData.class_label, classes, plot_ch, …
 'Confusion chart for SVM classifier');

% dis
[distestPredictions, distestscore] = predict(dismdl, test_predictors);
[disAccuracy, dissn, dissp] = evaluate_classifier(distestPredictions,…
 testData.class_label, classes, plot_ch,…
 'Confusion chart for Discriminant Analysis classifier');

plot_confusion(knntestPredictions, treetestPredictions, …
 svmtestPredictions, distestPredictions, gowaPredictions, ...
 testData.class_label, gowatruelabels);

%% calculate fitness functions for each classifier
knnfitness = calc_fit(knnAccuracy, knnsn, knnsp, fitness_weights);
treefitness = calc_fit(treeAccuracy, treesn, treesp, fitness_weights);
svmfitness = calc_fit(svmAccuracy, svmsn, svmsp, fitness_weights);
disfitness = calc_fit(disAccuracy, dissn, dissp, fitness_weights);
gowafitness = calc_fit(gowaAcc, gowasn, gowasp, fitness_weights);

%% create a table of the results
sn = [knnsn; treesn; svmsn; dissn; gowasn];
sp = [knnsp; treesp; svmsp; dissp; gowasp];
var_names = {'sp', 'sn', 'accuracy', 'cross_val_accuracy', 'fitness'};
row_names = {'knn','tree','svm', 'discriminant', 'gowa'};
accu = [knnAccuracy; treeAccuracy; svmAccuracy; disAccuracy; gowaAcc];
cv_accu = [knncvAccuracy; treecvAccuracy; svmcvAccuracy; discvAccu-
racy; gowacvfitness];
fitness = [knnfitness; treefitness; svmfitness; disfitness; …
 gowafitness];
T = table(sp, sn, accu, cv_accu, fitness, 'VariableNames', var_names,…
 'RowNames', row_names)

%% training times
traintimes = [round(timeknn/60,1); round(timetree/60,1);
round(timesvm/60,1); round(timedis/60,1); round(timegowa/60,1)];
t = table(traintimes, 'VariableNames', "training_time_in_minutes", …
 'RowNames', row_names)

103

%% plot ROC curves for all classifiers
[knnX, knnY, knnT, knnAUC] = perfcurve(testData.class_label, …
 knntestscore(:,knnmdl.ClassNames==1), 1);
[treeX,treeY,treeT, treeAUC] = perfcurve(testData.class_label,…
 treetestscore(:,treemdl.ClassNames==1), 1);
[svmX, svmY, svmT, svmAUC] = perfcurve(testData.class_label,…
 svmtestscore(:,svmmdl.ClassNames==1), 1);
[disX, disY, disT, disAUC] = perfcurve(testData.class_label,…
 distestscore(:,dismdl.ClassNames==1), 1);

figure
hold on
plot(knnX,knnY)
plot(treeX,treeY)
plot(svmX,svmY)
plot(disX,disY)
hold off
legend('knn', 'tree', 'svm', 'discr', 'Location','SE');
xlabel('False positive rate'); ylabel('True positive rate');
title('ROC for reference classifiers for credit default data');

Codes for functions init_data, ideal_vectors and calcfit, which are used in gowa_clas-

sifier, are available on request from the original author Pasi Luukka (pasi.luukka@lut.fi).

