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Microscopic Mechanisms of the Formation, Relaxation and Recombination of Ex-

citons in Two-Dimensional Semiconductors

Samuel Brem

Department of Physics

Chalmers University of Technology

Abstract

Monolayers of Transition Metal Dichalcogenides (TMDs) present a giant
leap forward towards the realization of semiconductor devices with atomic
scale thickness. As a natural consequence of their two-dimensional charac-
ter TMDs exhibit a reduced dielectric screening, leading to the formation of
unusually stable excitons, i.e. Coulomb-bound electron-hole pairs. Excitons
dominate the optical response as well as the ultrafast dynamics in TMDs.
As a result, a microscopic understanding of excitons, their formation, relax-
ation and decay dynamics becomes crucial for a technological application of
TMDs. A detailed theoretical picture of the internal structure of excitons
and their scattering channels allows for a controlled manipulation of TMD
properties enabling an entire new class of light emitters and detectors.
The aim of this thesis is to investigate the many-particle processes governing
the ultrafast dynamics of excitons. The focus is to provide a sophisticated
picture of exciton-phonon and exciton-photon interaction mechanisms and
the impact of dark exciton states starting from the formation of bound exci-
tons out of a free electron-hole gas up to the eventual radiative decay of bright
and dark exciton populations. Based on an equations-of-motion approach for
the density matrix of an interacting electron, phonon and photon system, we
simulate the dynamics of excitons in TMDs across the full Rydberg-like se-
ries of bright and dark states. Our theoretical model allows us to predict
fundamental relaxation time scales as well as spectral features accessible in
multiple spectroscopic experiments, such as absorption, photoluminescence
and ultrafast pump-probe. In particular we predict intriguing features ap-
pearing in the terahertz absorption spectrum during the formation of excitons
as well as distinct -so far unexplained- low temperature luminescence features
stemming from phonon-assisted recombinations of dark excitons.

Keywords: excitons, density matrix formalism, Bloch equations, 2D materials,

relaxation dynamics, exciton-phonon interaction
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Scientific reports 8.1: 8238 (2018)

II. Intrinsic Lifetime of Higher Excitonic States in Tungsten Dis-
elenide Monolayers
S Brem, J Zipfel, M Selig, A Raja, L Waldecker, J Ziegler, T Taniguchi,
K Watanabe, A Chernikov, E Malic
arXiv preprint arXiv:1904.04729 (2019)

III. Phonon-assisted Photoluminescence from Dark Excitons in Mono-
layers of Transition Metal Dichalcogenides
S Brem, A Ekman, D Christiansen, F Katsch, M Selig, C Robert, X
Marie, B Urbaszek, A Knorr, E Malic
arXiv preprint arXiv:1904.04711 (2019)

My contributions to the appended papers
As first-author, I developed the theoretical model, performed the nu-
merical evaluation, analyzed the results and wrote the papers with the
help of my main supervisor.

Publications not appended in this thesis:
IV. Microscopic modeling of tunable graphene-based terahertz Landau-

level lasers
S Brem, F Wendler, E Malic
Physical Review B 96 (4), 045427 (2017)

V. Symmetry-breaking supercollisions in Landau-quantized graphene
F Wendler, M Mittendorff, JC König-Otto, S Brem, C Berger, WA de
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M Feierabend, G Berghäuser, M Selig, S Brem, T Shegai, S Eigler, E
Malic
Physical Review Materials 2 (1), 014004 (2018)

IX. Dielectric engineering of electronic correlations in a van der
waals heterostructure
P Steinleitner, P Merkl, A Graf, P Nagler, K Watanabe, T Taniguchi, J
Zipfel, C Schüller, T Korn, A Chernikov, S Brem, M Selig, G Berghäuser,
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1 Introduction

The ongoing miniaturization of electronic technologies has nowadays reached
fundamental limitations. Conventional concepts for semiconductor-based de-
vices often break down when the length scale of critical components reaches
the nanometre regime, in which quantum effects become dominant. However,
a new class of so-called quantum materials present a chance to overcome
these limitations and eventually even enable completely new paradigms for
information storage and processing, such as spin- and valleytronics [1, 2].

In particular, two-dimensional crystals with the thickness of a few atoms,
so called monolayers have attracted tremendous attention in research over
the last ten years. The first experimental realization of graphene (carbon
monolayers) has been awarded with the Nobel prize in 2010 and the sub-
sequent boom in 2D materials research has lead to the discovery of a large
library of stable monolayer materials [3–6], including the semiconducting
family of transition metal dichalcogenides (TMDs) [7]. This new class of
semiconductors exhibits a variety of outstanding physical properties, which
are advantageous not only for technological applications [8–11], but also for
fundamental research of correlated quantum systems [12].

Since TMDs are quasi two-dimensional, they exhibit a reduced dielectric
screening, which consequently leads to the formation of unusually stable ex-
citons [13–15], i.e. Coulomb-bound electron-hole pairs. These quasi-particles
dominate the optical characteristics of TMDs [16–18], so that a microscopic
understanding of excitons becomes of crucial importance for TMD-based
technologies. Moreover, the large exciton binding energies in TMDs facili-
tate the study of the exciton Rydberg series and intra-excitonic transitions
[19–21], which was technologically limited in conventional platforms used
for the study of exciton physics, such as GaAs quantum wells. A detailed
theoretical picture of the internal structure of excitons and their scatter-
ing channels might enable a controlled manipulation of TMD properties and
thereby an entire new class of light emitters and absorbers.

The aim of this thesis is to investigate the many-particle processes govern-
ing the temporal dynamics of excitons in TMDs. The focus hereby is to
provide a sophisticated picture of exciton-phonon and exciton-photon inter-
action mechanisms, starting from the formation of bound excitons out of a
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free electron-hole gas, up to the eventual radiative decay of different exciton
species. To this end we use a density matrix approach to calculate the dy-
namics of an interacting system of electrons, phonons and photons. Thereby,
we can map the trajectory of excitons through their energy landscape which
allows for a microscopic interpretation of recent experiments performed on
TMDs. Our model predicts fundamental relaxation timescales of excitons
as well as spectral features accessible in multiple spectroscopic experiments,
such as absorption, photoluminescence and ultrafast pump-probe.
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2 Transition Metal Dichalcogenides

In the following section we first consider the – for this thesis relevant –
physical properties of TMD monolayer crystals. The second part of this
section introduces the mathematical framework used to include the material
specific properties into a general many-particle quantum theory presented in
Sec. 3.

2.1 Crystal Symmetry and Electronic Band Structure

TMD monolayers are composed by a central plane of transition metal atoms
(often Mo or W) sandwiched by two planes of chalcogen atoms (S or Se),
which are covalently bond to the neighbouring metal atoms [22]. In a top
view, the atoms are arranged in a hexagonal honeycomb lattice with alter-
nating atomic species on the lattice sites, cf. Fig. 1a. The corresponding
hexagonal Brillouin zone of the reciprocal lattice is displayed in Fig. 1b
showing the definition of relevant high symmetry points. Due to the fact
that the unit cell of TMDs contains two atoms, we find two inequivalent
corners of the Brillouin zone denoted K and K’. The generic form of the elec-
tronic band structure in TMD monolayers is shown along the symmetry path
in Fig. 1c. Most importantly, we find a direct band gap at the K point [23]
which exhibits a significant splitting denoted ∆cb and ∆vb, between differently
spin-polarized bands, which results from the large magnetic momentum of
the transition metal d orbitals constituting the corresponding Bloch waves.
Interestingly, as a result of time-reversal symmetry, the energetic ordering
of the spin-split bands is inverted at K and K’ points. Together with the
special optical selection rules discussed in Sec. 2.4 this facilitates the optical
excitation of spin- and valley polarized excitons in TMDs [24–28]. Apart
from the K point, there is another local minimum of the conduction band
at the Λ point, which is also often referred to as Q point. Due to its close
energetic proximity to the conduction band edge at the K point, the Λ point
can play an important role for transport and optical characteristics of TMDs
[29–32], since it presents an efficient scattering channel as will be shown in
this thesis.

Instead of considering the complex band structure across the full Brillouin

3



Figure 1: Overview of crystal properties in TMDs. a) top and side view of the
hexagonal lattice structure. A layer of transition-metal atoms (blue) is sandwiched
by two layers of chalcogen atoms (yellow). b) Corresponding first Brillouin zone
together with important high-symmetry points. c) Typical electronic band struc-
ture of a TMD monolayer along the high-symmetry lines calculated with DFT.
Figure c) is adopted from Ref. [23].

zone, we will throughout this work apply simplified, effective models which
are valid in vicinity of minima and maxima of the valence and conduction
band. Thereby, material specific properties will enter via effective masses
and electronic valley distances extracted from full density functional theory
(DFT) in ref. [23].
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2.2 Tight-binding approach

A convenient way to introduce the general lattice symmetry into an effective
model of the electronic properties, is to describe the lattice wave functions
Ψk with momentum k in the tight binding approach [33, 34]

Ψk(r) =
∑
l=1,2

clkψ
l
k(r) =

1√
N

∑
l=1,2

clk
∑
Rl

eikRlΦl(r−Rl). (2.1)

Here we sum over the two sub-lattices l, whose wave functions are written as
superposition of atomic orbitals Φ localized at the respective lattice sites Rl.
Note that the analysis of wave functions obtained from DFT shows that the
dominant orbital contribution to the wave function of valence and conduction
band change throughout the Brillouin zone. While the conduction band at
the K point is well described by superposition of dz orbitals, the wave function
at the Λ point inherits the symmetry of dx and dy orbitals [23]. Therefore, the
following consideration is only valid in close vicinity of certain high symmetry
points.

Using Eq. 2.1 we can rewrite the Schrödinger equation into an algebraic
problem, ∑

l′

H ll′

k c
l′

k = εk
∑
l′

Sll
′

k c
l′

k, (2.2)

with H ll′

k = 〈ψlk|H|ψl
′

k〉 and Sll
′

k = 〈ψlk|ψl
′

k〉. With Eq. 2.1 these integrals can
be further decomposed into atomic interaction and overlap integrals. Taking
into account only the interaction between the nearest neighbors, we find

H ll′

k = Elδll′ + γf(k)(1− δll′); f(k) =
∑
bj

eikbj (2.3)

Sll
′

k = δll′ , (2.4)

with the atomic energy El = 〈Φl|H|Φl〉, the inter-atomic matrix element
γ = 〈Φ1|H|Φ2〉 and the next neighbour connection vectors bj introducing
the lattice geometry into the problem. With the above approximations, di-
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agonalizing Eq. 2.2 yields,

ελk = Ē12 + λ
√
γ2|f(k)|2 + (∆/2)2 (2.5)

c
(1)
λk = λ

f(k)

|f(k)|
c

(2)
−λ,k; c

(2)
λk =

1

2

√
1− ∆

2(ελk − Ē12)
, (2.6)

where we have abbreviated the energy offset Ē12 = 1/2(E1 + E2) and the
band gap ∆ = E1 −E2. Here the function f(k) contains all the information
about the hexagonal lattice and gives rise to energetic minima (maxima)
of the conduction band λ = +1 (valence band λ = −1) at the K and K’
point. We can now adjust the open parameters in Eq. 2.6 to obtain the
band gap and band curvature at the K-point from DFT calculations. The
great advantage of having an analytical expression for the components in
Eq. 2.6 is that we can now compute important interaction matrix elements
in TMDs, by taking into account the hexagonal lattice symmetry, and at the
same time keeping the model as simple as effective mass descriptions using
plane waves as a basis.

2.3 Effective Hamiltonian

To further simplify the model Hamiltonian we apply a Taylor expansion of
f in vicinity of ξK points (ξ = +1→ K; ξ = −1→ −K = K ′):

f(k ≈ ξK) ≈
√

3/2a0(ξk̃x − ik̃y); k̃ = k− ξK (2.7)

yielding an effective Hamiltonian in the form of a 2D Dirac particle [35]

Heff
ξk =

(
∆/2 a0t(ξkx − iky)

a0t(ξkx + iky) −∆/2

)
(2.8)

=
∆

2
σz + a0t(ξkxσx + kyσy) (2.9)

with t beeing the effective next neighbour hopping parameter. Comparing
the bandstructure resulting from the effective Hamiltonian with the generic
parabolic bandstructure of a semiconductor we find t ≈ h̄/a0

√
∆/(mc +mv).
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The eigenvectors of this Hamiltonian are referred to as pseudo-valley spinors

Ψ
(c)
ξk =

(
c

(1)
c,k

c
(2)
c,k

)
≈
(
ξe−iξθk

0

)
; Ψ

(v)
ξk ≈

(
0
1

)
, (2.10)

reducing the influence of our particular lattice geometry to a phase in the
effective valley wave function. This phase gives rise to a non-zero valley
winding numbers (Berry phase), which is connected to interesting topological
effects in TMDs [26]. However, we will later demonstrate, that it does not
affect the scattering dynamics of excitons in close vicinity of the Dirac points.

2.4 Interaction Matrix Elements

Based on the above described effective Hamiltonian and wave functions, we
can now find important matrix elements for the quantification of different
interaction mechanisms in TMDs. The interaction with light is directly pro-
portional to the inter-band momentum matrix element [35],

Mvc
k = −ih̄〈vk|∇|ck〉 =

m0

h̄
Ψ

(v)†
ξk (

∂

∂k
Heff
ξk)Ψ

(c)
ξk

≈ m0

h̄
a0te

−iξθk
(

1
iξ

)
. (2.11)

Most importantly, we find that the matrix element is proportional to a σ(ξ)-
polarized Jones vector. The coupling strength to the light field is given by
the projection of the field polarization to the momentum matrix element
(cf. section 3). Therefore we can directly deduce a so called circular valley
dichroism [25, 26, 35] from Eq. 2.11. While the K-valley only couples to σ−
light, K’ is only excited by σ+ polarization.

Another important quantity characterizing the strength of all scattering
mechanisms is the scattering form factor, which for small momentum trans-
fers q can be derived in next neighbour approximation:

Fλkk′(q) = 〈λk|eiqr|λk′〉 = δk′−k,qΨ
(λ)†
ξk Ψ

(λ)
ξk′

≈ δk′−k,q

{
eiξ(θk−θk′ ) for λ = c

1 for λ = v
(2.12)
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2.5 Dielectric Screening in two-dimensional Subsystems

One of the most important difference between monolayers and conventional
quasi-2D systems such as quantum wells, is the maximal confinement of
electrons to a plane and the resulting strong modification of the dielectric
screening [36, 37]. Figure 2 illustrates the difference between the field lines in
a 3D system and 2D system embedded into a 3D environment [37]. In a bulk

Figure 2: Dielectric Screening in a) bulk and b) monolayer. While in bulk systems
the field lines between interacting charges penetrate the surrounding crystal, in
the case of monolayers most field lines expand in vacuum or materials with lower
dielectric constants, giving rise to a weaker screening in two-dimensional systems.
Illustration inspired by Ref. [37].

system (Fig. 2a) the field lines between two attracting charges penetrate the
surrounding material and become weakened by the induced polarization. In
contrast, for the 2D system, most field lines penetrate the space surrounding
the monolayer and therefore -in the case of low dielectric constant- become
much less weakened than in the bulk material. Moreover, the resulting dis-
tance behaviour of the effective Coulomb potential becomes a mixture of 2D
and 3D components. To determine the potential V (r) we apply a fully clas-
sical approach, assuming point charges localized in the centre (z = 0) of a
homogeneous dielectric slab with thickness d. In this picture the potential

8



can be determined by the first Maxwell equation:

∇D = −e0δ(r); D = −ε0/e0

∑
i=1,2,3

εi(r)∂iV (r) (2.13)

εi(r) =

{
εi1 for |z| ≤ d/2

εi2 for |z| > d/2
(2.14)

where the second line defines the dielectric landscape through the dielectric
tensor of the TMD (ε1) and the environment(ε2). Using Gauss’s divergence
theorem, we can determine conditions for the field at the boundary of the
slab, yielding the 2D Fourier transformed potential (at z = 0)

Vq =
e2

0

2ε0qεs(q)
; εs(q) = κ1 tanh(

1

2
[α1dq − ln(

κ1 − κ2

κ1 + κ2

)]) (2.15)

whith κi =

√
ε
‖
i ε
⊥
i and αi =

√
ε
‖
i /ε
⊥
i .

In the limiting case of small momenta dq << 1 and large dielectric contrast
ε1 >> ε2 the potential can be approximated with the Keldysh form [38, 39]

Vq =
e2

0

2ε0q(κ2 + ε
‖
1dq/2)

(2.16)

Hence, for small wave vectors (large distances) we obtain an effective 2D
distance dependence (1/q) only screened by the environment, while at larger
wave vectors (small distances) the potential becomes more 3D (1/q2) with
increasing influence of the TMD screening. Throughout this thesis we use
dielectric constants for TMD monolayers obtained from DFT calculations
[40].
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3 Many-Particle Quantum Theory

In the following section we introduce the general theoretical framework ap-
plied throughout this thesis. In the first part the many-particle density ma-
trix approach is introduced and discussed. The second part focusses on the
approximations used in this work to reduce the mathematical complexity of
the problem. In principle the shown framework can be applied to model the
excitation kinetics of an arbitrary system of interacting electrons, phonons
and photons.

3.1 Canonical Quantization

In order to describe the quantized interaction between different degrees of
freedom, we have to use a theoretical model unifying the different properties
of light (photons), matter (here electrons) and lattice vibrations (phonons).
The quantum field theory has proven to be a powerful tool for treating many-
particle problems in condensed matter [41–44]. Here, the canonical quantiza-
tion scheme is used to transform classical field theories into a many-particle
quantum theory, by replacing Poisson brackets with commutators.

Photons

To obtain a quantized theory of the electromagnetic field (in Coulomb gauge)
the vector potential A is transformed to an operator acting on wave functions
in Fock space,

A(r,t) −→ Â(r,t) =
∑
σk

√
h̄

2ε0L3ωk
eσkcσk(t)eikr + h.a. (3.1)

Here c
(†)
σk annihilates (creates) a photon in mode σ, wavevector k, polarization

eσk and frequency ωk = ck. From the fundamental commutation relation,
[x,p] = ih̄ generalized to field coordinate and field momentum [45] we find
the bosonic properties of the photon

[cσk,cσ′k′ ] = [c†σk,c
†
σ′k′ ] = 0; [cσk(t),c†σ′k′(t)] = δσσ′δkk′ (3.2)

10



Moreover, the Hamiltonian of the electromagnetic field obtains the conve-
nient form

H =

∫
d3r[

1

2
ε0(∂tÂ)2 +

1

µ0

(∇× Â)2] (3.3)

=
∑
σk

h̄ωk(c
†
σkcσk +

1

2
) (3.4)

Hence, each mode of the electromagnetic field can be interpreted as a har-
monic oscillator with a quantized energy given by the integer number of
photons 〈c†σkcσk〉 in that mode.

Phonons

Similar to the electromagnetic field, we can quantize the collective lattice
vibrations in a crystal. The motion within a lattice of N interacting atoms
can be described with the classical Hamiltonian,

H =
N∑
i=1

p2
i

2M
+
∑
i,j

ui ·Θij · uj, (3.5)

where pi is the momentum of the ith particle and ui is a small deviation from
its rest position Ri. The dynamical matrix Θij contains the forces between
all particles resulting from the repulsion of their nuclei and the attraction
mediated by the core and valence electrons. By diagonalising the dynamical
matrix, we can find the collective eigenmodes (α,q) of the system, which are
subsequently quantized,

ui(t) −→ ûi(t) =
1

N

∑
αq

√
h̄

2MΩαq

eαqbαq(t)eiqRi + h.a. (3.6)

in terms of phonon operators bαq, creating or annihilating energy quanta of
size h̄Ωαq in the respective mode. The corresponding commutation relations
and the form of the quantized Hamiltonian are completely analogue to the
case of photons.
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Fermions in second Quantization

For the description of interactions between e.g. light and matter, it is con-
venient to express the electronic part of the system in terms of creation and
annihilation operators as well. Moreover, many-particle quantum theories
for massive particles have to take into account the Pauli exclusion prin-
ciple. While systems of two or three particles might be treated by using
anti-symmetric products of single particle wave functions, the Schroedinger
equation of 109 particles (typical excitation number per cm2 in a semicon-
ductor) is simply not manageable. However, we can find a similar field the-
oretical description of electrons as for phonons and photons, by treating the
Schroedinger equation as a classical field theory, to which the canonical quan-
tization scheme is applied. Choosing a “classical” Hamiltonian [46],

H =

∫
d3rΨ∗(r,t)[− h̄

2m0

∆ + V (r)]Ψ(r,t), (3.7)

directly yields the Schroedinger equation as the corresponding equation of
motion with Ψ as generalized field coordinate and ih̄/2Ψ∗ as field momentum.
The quantization now follows from defining field operators Ψ → Ψ̂ with
fermionic anti-commutators to obey the Pauli principle,

{Ψ̂(r,t),Ψ̂†(r,t)} = δ(r− r′) (3.8)

{an(t),a†m(t)} = δnm (3.9)

Where the second line is obtained when expanding the field operator Ψ̂ =∑
φnan in terms of an orthogonal basis {φn}. From Eq. 3.7 we can di-

rectly deduce a transformation rule for obtaining a Hamiltonian in second
quantization from the single particle Hamiltonian h1(r):

H =
∑
nm

〈n|h1|m〉a†nam (3.10)

The quantization scheme for two-particle interactions h2(r,r′) can be ob-
tained in a similar manner by including non-local contributions to the action
[46]:

H =
1

2

∑
ijkl

〈ij|h2|kl〉a†ia
†
jakal (3.11)
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In total the Hamiltonian for an interacting system of electrons reads

H =
∑
λk

ελka
†
λkaλk +

1

2

∑
λλ′kk′q

V λλ′

kk′qa
†
λk+qa

†
λ′k′−qaλ′k′aλk (3.12)

with the Coulomb matrixelement V λλ′

kk′q = VqFλk (q)Fλ′k′ (−q), which is deter-
mined by the form factors and the Fourier transform of the screened Coulomb
potential, both derived in section 2. Note that we assumed very small mo-
menta and the derive Coulomb Hamiltonian corresponds to a monopole ap-
proximation. However, under certain conditions the dipole-dipole interaction
between electrons can become important, e.g. giving rise to electron-hole ex-
change interactions, which is neglected throughout this work.

Further details about the canonical quantization scheme can be found in the
standard literature about quantum field theory and many-particle physics
[47, 48].

3.2 Interaction Mechanisms

Based on the quantization scheme for electrons, phonons and photons de-
scribed above, we can now determine interaction Hamiltonians in second
quantization.

Electron-Light Interaction

Starting point for the description of interactions in second quantization is
the single particle Hamiltonian. The interaction of an electron with an ex-
ternal classical electromagnetic field can be introduced into the Schroedinger
equation via the so called minimal coupling. Here, we replace the canoni-
cal momentum p with the kinetic momentum p + e0A in the Hamiltonian
introducing the Lorentz force in classical equations of motion. Hence, we
find

H =
(p + e0A)2

2m0

=
p2

2m0

+
e0

2m0

(p ·A + A · p) +
e2

2m0

A2. (3.13)
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In case of irradiation with plane waves with perpendicular wave vector to a
monolayer, the vector potential A does not depend on the spatial coordinate
in the monolayer plane. In this case the last term only periodically shifts the
overall bandstructure, which has no influence on the dynamics of carriers.
Moreover, if A is homogeneous throughout the sample, it commutes with p
and we find the electron light interaction via

hel-l =
e0

m0

A · p −→ Hel-l =
e0

m0

∑
nm

A ·Mnma
†
nam, (3.14)

where we have used the transformation rule Eq. 3.10 and the definition
Mnm = −ih̄〈n|∇|m〉. A fully quantized electron-photon interaction is now
obtained by expanding the vector potential in terms of photon operators, cf.
Eq. 3.1, which yields

Hel-pt =
∑
nm,σk

gnmσk a
†
namcσk + h.a., gnmσk =

e0

m0

√
h̄

2ε0L3ωk
eσk ·Mnm (3.15)

The interpretation of the Hamiltonian is quite intuitive: the creation (emis-
sion) or annihilation (absorption) of a photon is accompanied by the tran-
sition of an electron between two states. Here, the electron-photon matrix
element g, which is often referred to as oscillator strength, determines how
strong a certain transition couples to the light field.

Electron-Phonon Interaction

A similar interaction Hamiltonian as for photons can be derived for elec-
trons and phonons. However, here the interaction term is derived from the
change in the electronic energies induced by the lattice distortion accom-
panying the vibration of the crystal. Therefore the electron-phonon matrix
is much more sensitive to material properties than in the case of photons
and one finds qualitative differences depending on the mode type of the
involved phonons. The calculation of material realistic coupling parame-
ters here requires sophisticated computational methods, such as the density
functional perturbation theory (DFPT). However, the general form of the
interaction Hamiltonian can be obtained by assuming that the electrostatic
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potential of the resting crystal lattice can be decomposed into atomic poten-
tials V 0

lattice(r) =
∑

i vatom(r − Ri). Hence the time dependent potential of
the weakly vibrating lattice is approximated via

Vlattice(r,t) = V 0
lattice(r)−

∑
i

∇vatom(r−Ri) · ui(t) (3.16)

with small deviations ui of the atoms from their rest positions Ri. While the
first term in Eq. 3.16 is already included in the electronic bandstructure, the
second part represents the electron-phonon Hamiltonina in first quantization.
To transfer this term into quantum field theory, we use the expansion of ui
in terms of phonons, cf. Eq. 3.6, and apply the transformation rule Eq. 3.10
yielding

Hel-ph =
∑
nm,αq

Dnm
αq a

†
nam(bαq + b†α,−q) (3.17)

Dnm
αq = −i

√
Nh̄

2MΩαq

q · eαqṽatom(q)Fnm(q). (3.18)

However, since we do not have access to the exact atomic potentials, we
will throughout this work use effective matrix elements deduced from DFPT
calculations in ref. [49, 50].

3.3 Many-Particle Dynamics

Within the above described formalism, we can now derive the dynamics of
an interacting system of electrons, phonons and photons. In particular, we
are interested in analysing and explaining experimental results or want to
predict the outcome of measurements involving large many-particle systems.
In Sec. 5 we will show how certain observables in experiments can be related
to expectation values of different particle operator combinations.

Equations of Motion and Hierachy Problem

To obtain the time evolution of an observable, we apply the Heisenberg equa-
tion of motion to the expectation value of the corresponding operator O,

ih̄∂t〈O〉 = 〈[O,H]〉 (3.19)
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Thereby all relevant operator combinations can be classified by the number
of particle transitions they involve [42], viz.

O{N} = β†1..β
†
nα
†
1..α

†
mα1..αmβ1..βl, N = n+m+ l. (3.20)

Here α and β represent an arbitrary fermion and boson operator respec-
tively. Note, that the generic operator above can contain single creation or
annihilation of bosons, while each creation of a fermion is accompanied by
an annihilation. This restriction results from the fact that our Hamiltonian
only contains processes which conserve the total number of fermions, which
corresponds to a canonical ensemble in classical mechanics. If we now ap-
ply the equation of motion to an N-operator (with m 6= 0), the presence
of many-particle interactions induces a coupling to an (N+1)-operator. In
turn, the equation of motion for (N+1)-operators couple to (N+2)-operators
and so forth, giving rise to an infinite hierachy of coupled equations. If we
for example want to determined the dynamics of the occupation of a certain
fermionic state |n〉 the electron-phonon contribution yields

ih̄∂t〈a†nan〉
∣∣∣∣
el-ph

= 2
∑
m,q

<e

{
Dnm
q

(
〈a†nambq〉+ 〈a†namb

†
−q〉
)}
, (3.21)

which connects an electronic single particle observable, to a mixed electron-
phonon expectation value. The equation of motion for 〈a†nambq〉 further cou-
ples to even more complex expectation values and so on. In order to solve
the equations of motion of a many-particle system, we therefore need a sys-
tematic approach to truncate the hierarchy problem.

Cluster Expansion Approach

An effective way to treat the hierarchy problem is the cluster expansion
scheme. Here many-particle expectation values are factorized into products
of lower order expectation values and corresponding correction terms, which
are a measure for the particle correlations in the system. As an example, a
two-particle expectation value 〈A{1}B{1}〉 would be factorized into single-
particle expectation values (singlets) via 〈AB〉 = 〈A〉〈B〉 + δ〈AB〉, where
δ〈AB〉 can be seen as a measure of the correlation between particle A and
particle B. The expansion of an arbitrary N-particle expectation value 〈N〉
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is obtained recursively via [42, 44]

〈2〉 =
∑
σ

(−1)σfPσ〈1〉〈1〉+ δ〈2〉 (3.22)

〈3〉 =
∑
σ

(−1)σfPσ〈1〉〈1〉〈1〉+
∑
σ

(−1)σfPσ〈1〉δ〈2〉+ δ〈3〉 (3.23)

〈N〉 = f(〈1〉, δ〈2〉, ..., δ〈N〉), (3.24)

where the sum symbolizes the summation over all unique factorizations of
permuted operator sequences and σf denotes the number of involved per-
mutations of fermionic operators. An important cluster expansion is the
so-called Hartree-Fock factorization for electronic operators a:

〈a†1a
†
2a3a4〉 = 〈a†1a4〉〈a†2a3〉 − 〈a†1a3〉〈a†2a4〉+ δ〈a†1a

†
2a3a4〉 (3.25)

In principle, the above shown expansion does not represent an approxima-
tion and the hierarchy problem will now appear in terms of many-particle
correlations. However, in this framework we can now systematically truncate
the system of equations by consistently neglecting particle correlations of a
certain order. If we for example only take into account single particle expec-
tations values and neglect all appearing correlations, we obtain an effective
mean field theory, such as the Hartree-Fock-approximation of the Coulomb
interaction. When further accounting for two-particle correlations, we can
add contributions describing particle scattering as well as the formation of
bound particle configurations, such as excitons.

Born-Markov-Approximation

In addition to the cluster expansion, we can further reduce the number of
relevant equations of motion by using approximative analytical solutions for
many-particle correlations. One frequently used approach in the treatment of
interacting open quantum systems is the Born-Markov-approximation. Here
non-linearities resulting from quantum memory effects are neglected to obtain
adiabatic solutions describing instantaneous interactions. In this thesis the
Markov-approximation is referred to as a specific mathematical step. The
generic form of a Heisenberg equation of motion reads

∂tX (t) = (iω0 − γ)X (t) + S(t), (3.26)
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which has the formal solution

X (t) = X (t0)e(iω0−γ)(t−t0) +

∫ t

t0

dτS(τ)e(iω0−γ)(t−τ) (3.27)

=

∫ ∞
0

dτS(t− τ)e(iω0−γ)τ (3.28)

Where the second line results from setting the initial time to t0 −→ −∞,
so that we can neglect the first term of Eq. 3.27, assuming a fast decay of
the initial value of X . Now we assume that the source terms S can be split
into an oscillation with a characteristic frequency ωs and a slowly varying
envelope S̃. Hence we find [33]

X (t) =

∫ ∞
0

dτ S̃(t− τ)e[i(ω0−ωs)−γ]τ+iωst (3.29)

= S̃(t)eiωst
∫ ∞

0

dτe[i(ω0−ωs)−γ]τ =
S(t)

γ − i(ω0 − ωs)
. (3.30)

The Markov approximation has been performed in Eq. 3.30, where S̃(t− τ)
was pulled out of the integral and approximated by its value at the current
time. Here we assume that memory effects are negligible and X adiabat-
ically follows the source term. This step is however only good if S̃ varies
slowly compared to the oscillatory term in the integral of Eq. 3.29. The
damping constant γ is usually included phenomenologically, assuming that
the coupling to higher order correlations is well described as dephasing. It
is often beneficial to consider the limiting case γ → 0, claiming exact reso-
nance for the interaction between system ω0 and bath ωs. In PAPER I we
use this approach to obtain semi-classical Boltzmann scattering equations
within a second order Born-Markov approximation for exciton-phonon corre-
lations. In contrast, in PAPER II and III we are particularly focussing on the
microscopic origin of dephasing times and their impact on optical spectra.
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4 Excitons – Energy Quanta of the Polariza-

tion Field

In the following section the concept of excitons is introduced from a quantum
field theoretical perspective. While the first part gives a short motivation for
the treatment of matter-light interaction in terms of excitons, the second
part introduces the bosonic approximation for pairs of electronic operators.

4.1 Mott-Wannier-Excitons

In this section the concept of excitons is motivated by the Coulomb-induced
modification of inter-band transition energies of a semiconductor. We will
later see, that the here applied basis transformation, can already be applied to
the Hamiltonian, allowing to formally replace electrons and holes by excitonic
operators.

4.1.1 Semiconductor Bloch Equations

The interaction of a semiconductor with an externally applied laser field
can be described with the semi-classical Maxwell-Bloch equations. Here
the macroscopic Maxwell equations are extended by a quantum mechani-
cal description of the induced polarization field P in the material. While
classical theories assume -per se unknown- electromagnetic response func-
tions of the material, we can decompose the polarization P(t) = 〈ψ†rψ〉 =∑

nm dnmpnm(t) into transition dipoles dnm = 〈n|r|m〉 and quantum me-
chanical coherences pnm = 〈a†nam〉, which we will refer to as microscopic
polarizations. A quantum mechanical description of the polarization field is
now obtained by the Heisenberg equation of motion for the microscopic po-
larization. In particular, considering the Hamiltonians for electron-electron
and electron light interaction and applying a Hartree-Fock factorization of
Coulomb correlations, we find the semiconductor Bloch equations for the
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polarization pλλ
′

kk′ = 〈a†λkaλ′k′〉 and the band occupations fλk = 〈a†λkaλk〉,

ih̄∂tp
λλ′

kk′ = (ε̃λ
′

k′ − ε̃λk)pλλ
′

kk′ + (fλ
′

k′ − fλk )Ω̃λλ′

kk′(t) (4.1)

h̄∂tf
λ
k = −2

∑
λ′k′

=m{(Ω̃λλ′

kk′)∗pλλ
′

kk′}, (4.2)

with the Coulomb renormalized band energies,

ε̃λk = ελk −
∑
q

V λλ
k,k+q,qf

λ
k+q (4.3)

and the generalized Rabi energy,

Ω̃λλ′

kk′(t) =
e0

m0

Mλ′λ
k ·A(t)δkk′ +

∑
q

V λλ′

k,k′+q,qp
λλ′

k+q,k′+q. (4.4)

Throughout this work, we consider low excitation powers, meaning that we
neglect the changes in band occupations f induced by the laser pulse. More-
over, we assume that the Fermi-level lies deep within the band gap, where
the latter is large compared to the considered thermal energies. In this case
we can neglect the so called phase space filling, viz. (1−f e

k−fh
k) ≈ 1, as well

as occupation induced energy renormalizations. For the low density regime
the Bloch equations can be simplified to (pcv → p and V cv → V ):

ih̄∂tpkk′ = −
∑
q

Wkk′qpk+q,k′+q +
e0

m0

Mvc
k ·A(t)δkk′ (4.5)

Wkk′q = εkk′δq,0 − Vk,k′+q,q, (4.6)

with the free particle transition energy εkk′ = εck − εvk′ . The from of Eq. 4.5
illustrates how the presence of the electron-hole interaction modifies the op-
tical properties of the system. While in the case V −→ 0 the eigenfrequency
of pkk′ is given by the free particle transition energy εkk′ , the presence of
Coulomb interaction gives rise to a mixing of electronic states with different
quasi-momenta k, rendering it as a “bad” quantum number.

4.1.2 Wannier Equation

In order to obtain analytic insights into the new resonance energies of the
system, we need to find the eigenvalues and -functions of the Wannier matrix
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W on the right hand side of Eq. 4.6. Later we will perform a basis trans-
formation to simplify the equation of motion. The corresponding eigenvalue
problem reads,

(εcke − ε
v
kh

)Φ(ke,kh)−
∑
l

Vke,kh+l,lΦ(ke + l,kh + l) = Eex
ke,kh

Φ(ke,kh), (4.7)

which resembles the Schroedinger equation for a single electron and hole, and
is referred to as Wannier equation [34, 42, 44]. Here, Φ and Eex denote the
wave function and eigenenergy of the exciton respectively. In principle Eq.
4.7 can be solved numerically when the band structure and Coulomb matrix
element is known throughout the whole Brillouin zone. However, in case
of so called Wannier excitons, where the binding radii are larger then the
unit cell, the excitonic wave function in momentum space becomes strongly
localized in the vicinity of energetic minima of the band structure. In this case
the problem can be simplified significantly by expanding the bandstructure
in vicinity of its extrema. Assuming that there is a local minimum in the
conduction band at ke = Ke and a maximum of the valence band at kh = Kh,
we introduce a valley index ζ = (Kζe ,K

ζ
h) and decompose the momenta via

ki = kζi + Kζi . Within the valley coordinates kζi the eigenvalue problem can
be separated in relative (q) and centre of mass (Q) coordinates which are
defined through the effective electron and hole valley masses mζ

e and mζ
h via

qζ = αζk
ζ
h + βζk

ζ
e and Qζ = kζe − kζh (4.8)

kζe = qζ + αζQζ and kζh = qζ − βζQζ , (4.9)

where α = me/M ,β = mh/M and M = me + mh. Hence the kinetic energy
of the electron hole pair can be decomposed

εcke − ε
v
kh

=
(h̄kζe)

2

2mζ
e

+
(h̄kζh)

2

2mζ
h

+ ∆ζ =
(h̄qζ)

2

2mζ
r

+
(h̄Qζ)

2

2M ζ
+ ∆ζ (4.10)

with the reduced mass m−1
r = m−1

e + m−1
h . Next we use that the elec-

tronic form factor Fλk (q), determining the coulomb matrix element, in vicin-
ity of band extrema can be written in terms of a phase factor Fλk (q) =
exp(iθλkζ − iθ

λ
kζ+q), where θλkζ is the topological valley phase. This phase is

directly inherited by the exciton wave function, conserving important elec-
tronic selection rules. By defining a phase corrected wave function Ψ via
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Φ(q,Q) = exp(iθeq+αQ− iθhq−βQ)Ψ(q), we can completely split off the center-
of-mass motion and find

(h̄q)2

2mζ
r

Ψζµ(q)−
∑
l

VlΨ
ζµ(q + l) = Eb

µΨζµ(q), (4.11)

with the binding energy Eb
µ of the excitonic state µ, which is independent of

the centre of mass motion. Hence, the equation of motion for the microscopic
polarization can be diagonalized by performing a basis change pke,kh −→ πζµQζ

via

pke,kh =
∑
ζµ

πζµQζ
Ψζµ(qζ)exp(iθeqζ+αζQζ

− iθhqζ−βζQζ
) (4.12)

=
∑
ζµ

πζµ
ke−kh−Q0

ζ
Ψζµ(αζkh + βζke − q0

ζ)exp(iθe
kζe
− iθh

kζh
) (4.13)

where Q0
ζ = Kζe − K

ζ
h is the exciton valley and q0

ζ = αζKζh + βζKζe is the
relative momentum at which the exciton wave function is peaked. Finally,
we find the equation of motion in the excitonic basis

ih̄∂tπ
ζµ
Q = −Eζµ

Q πζµQ + ΩζµδQ,0 (4.14)

Eζµ
Q =

h̄2(Q−Q0
ζ)

2

2M ζ
+ ∆ζ + Eb

µ (4.15)

Ωζµ =
e0

m0

δKζe ,Kζh

∑
k

Ψζµ(k)∗Mvc
k ·A(t)exp(iθek − iθhk) (4.16)

4.2 Excitonic Hamiltonian

The considerations of the last section have shown that the Coulomb interac-
tion between electrons and holes completely restructures the eigenenergies of
transitions between conduction and valence band. We found that the expan-
sion of inter-band transition amplitudes pke,kh can be drastically simplified by
expanding them in terms of excitonic wave functions. In principle, this basis
transformation can also be done in other equations of motion, e.g. those in-
volving phonon-scattering and higher order electron hole correlations, which
are important for the luminescence of the system. However, the derivation
of Coulomb contributions to the equations of motion in the electron-hole
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picture are often quite cumbersome and the exciton basis transformation
also becomes more complex when dealing with e.g. two-particle correla-
tions. Therefore it is convenient to apply the Hartree-Fock approximation
and low-excitation limit directly on the level of the Hamiltonian and trans-
form the electron-hole operators into exciton basis. This step dramatically
simplifies the derivation of equations of motion and allows to study higher
order processes such as phonon-assisted exciton-photon interaction thanks
to a reduced number of operators in play. While the transformation proce-
dure shown below has a rather empirical character, the resulting Hamiltonian
hast the same form as obtained in more sophisticated theoretical approaches
towards excitonic Hamiltonians [51–53].

The first step towards an excitonic Hamiltonian is the definition of electron-
hole-pair operators A as combination of conduction (c) and valence band (v)
electrons:

A†kk′ = c†kvk′ (4.17)

[Ak1k2 , A
†
k3k4

] = δk1k3δk2k4 − χk1k2k3k4

≈ δk1k3δk2k4 (4.18)

Here the term χ1234 = v4v
†
2δ13+c†3c1δ24 accounts for the fermionic substructure

of the otherwise bosonic pair operators. Since χ resembles the operator for
the electron and hole densities, in the low excitation limit, we can set 〈χ〉 <<
1, giving rise to a fully bosonic commutation of electron-hole excitations. In
order to describe the full Hamiltonian in terms of pair creation operators,
we now need to find a way to express intra-band transitions, such as c†1c2, as
combinations of inter-band operators A. Since the many-particle dynamics
of the system is fully determined by the commutator with the Hamiltonian,
we can change the representing operators when conserving the underlying
commutation relations. As an example, we consider the follwing equivalent
commutators

[c†1c2,A
†
34] = [c†1c2,c

†
3v4] = c†1v4δ23 = A†14δ23 =

∑
i

[A†1iA2i,A
†
34]. (4.19)

Similar relations can be shown for A and/or intra-band transitions in the
valence band. Consequently, when strictly neglecting the correction factors
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χ, the following substitutions are valid in the Hamiltonian:

c†kck′ −→
∑
l

A†klAk′l (4.20)

vkv
†
k′ −→

∑
l

A†lkAlk′ (4.21)

Next we neglect the intra-band Coulomb interaction, which for higher densi-
ties gives rise to band gap renormalization and electron-electron scattering,
but in the low excitation regime has no impact on the dynamics of the system
on a Hartree-Fock level. Hence the electronic part of the Hamiltonian can
be rewritten as:

Hel → Hx-0 =
∑
kk′

[
(εck − εvk′)A

†
kk′ −

∑
q

Vkk′qA
†
k+q,k′+q

]
Akk′ (4.22)

=
∑
ζµQ

Eζµ
Q X†ζµQXζµQ, (4.23)

where in the last line we used the expansion into excitonic eigenmodes,

A†kekh =
∑
ζµ

X†
ζµ,ke−kh−Q0

ζ
Ψζµ(αζkh + βζke − q0

ζ)exp(iθe
kζe
− iθh

kζh
) (4.24)

which is analogue to the transformation of the microscopic polarization Eq.4.12.
Note that the Coulomb interaction is now fully contained within the exci-
ton single particle energy. In the electron picture the Hamiltonian contained
many-particle interactions, giving rise to a hierarchy problem in Coulomb
correlations. Now the negligence of the fermionic correction term χ has led
to an effective single particle problem. With the above described transfor-
mation and commutation rules, we have restricted the problem to the low
density regime and applied a Hartree-Fock factorization of the Coulomb in-
teraction directly within the Hamiltonian.

Applying the same approach to the electron-phonon scattering gives rise to
a convenient exciton-phonon Hamiltonian:

Hx-ph =
∑

ζµρν,qQ

Dρν,ζµ
Qq X†ζµ,Q+qXρν,Q(bq + b†q) (4.25)
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Interestingly, the Hamiltonian above has the same form as the electron-
phonon scattering. However the exciton-phonon matrix D now has two con-
tributions stemming from scattering of electrons and holes respectively:

Dρν,ζµ
Qq = (Dρν,ζµ

Qq )c − (Dρν,ζµ
Qq )v (4.26)

(Dρν,ζµ
Qq )c = δKρh,K

ζ
h
D̃c

Kρe→Kζe ,q

∑
k

Ψρν∗(k)Ψζµ(k + βζ∆kρζe [q,Q]) (4.27)

(Dρν,ζµ
Qq )v = δKρe ,KζeD̃

v

Kρh→K
ζ
h,q

∑
k

Ψρν∗(k)Ψζµ(k− αζ∆kρζh [q,Q]) (4.28)

∆kρζi [q,Q] = q−Kρi +Kζi + (1− Mζ

Mρ

)Q (4.29)

The appearing overlap of excitonic wave functions
∑

k Ψi(k)Ψj(k + p) is
the momentum space representation of the scattering form factor Fij(p) =
〈i|eipr|j〉, which is a probability measure of the transition i → j under mo-
mentum transfer p. In the case of intra-valley scattering (ζ = ρ) we find that
the exciton-phonon matrix element Dij

q ∝ Dc
qFij(βq) − Dv

qFij(−αq). This
reflects the fact that the exciton can change its centre of mass momentum by
q, either by electron-phonon scattering in the conduction band, which is ac-
companied with a change of the relative momentum by βq, or in the valence
band (hole scattering), which simultaneously transfers the relative momen-
tum −αq. Hence the excitonic form factors account for the simultaneous
transfer of relative momentum when the exciton changes its centre of mass
momentum, which can be interpreted as exciton-phonon selection rules.

Finally, the exciton-photon interaction is also transformed giving rise to

Hx−pt =
∑
σq,ζµ

gζµσqX
†
ζµ,0Bσq + h.a. (4.30)

gζµσq = δq‖,0δKζe ,Kζh
g̃cvσq
∑
k

Ψζµ(k). (4.31)

In contrast to the other Hamiltonians above, the exciton-photon interaction
describes a conversion of excitons to photons and vice versa, which does
not conserve the total number of excitons. The excitonic factor

∑
k Ψ(k) =

Ψ̃(r = 0), reflects the fact that excitons can only recombine if the probability
of finding an electron and hole at the same position is not zero (as e.g. for
p-type wave functions). Note that the electronic matrix elements appearing
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in the exciton-photon/phonon matrix are phase free (symbolized by g̃ and
D̃), since the electronic valley phases exactly cancel with the exciton phase,
as explicitly shown for the optical matrix element in the last section.

In the following sections, the valley index will be suppressed or rather in-
cluded within the exciton compound index. Moreover, the weak Q depen-
dence of the exciton-phonon matrix element is neglected to simplify the nu-
merical treatment of scattering equations.
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5 Exciton Spectroscopy

In the following section we review the experimental observables studied in
this work. Hereby, we focus on how different emission and absorption spectra
can be related to exciton properties of the system. The actual results of this
thesis, e.g. calculated spectra and their comparison to the experiment, are
discussed in the next section.

5.1 Linear Absorption – Probing Interband Transitions

One of the standard techniques to characterize the properties of a material
is the absorption or transmission spectroscopy. Here the laser field transmis-
sion through / reflection from the sample is measured in dependence of the
wavelength to determine the resonance energies of the material. The absorp-
tion coefficient α ∝ =m{χ} is given by the electromagnetic susceptibility χ,
which describes the relationship between the incident light field E and the
induced polarization P of the material. For weak excitation conditions it
holds,

Pi(ω) = ε0
∑
j

χ
(1)
ij (ω)Ej(ω) (5.1)

χi(ω) =
Pi(ω)

ε0Ei(ω)
=

ji(ω)

ε0ω2Ai(ω)
(for χ

(1)
ij = χiδij) (5.2)

In the second step we have expressed the electrical field in terms of the vector
potential and rewrite the oscillating polarization as a macroscopic current
j = ∂tP. To calculate the response χ in a quantum mechanical frame work,
the current j is interpreted as the probability current [33]

〈j〉 =
e0

m0V

∫
d3r〈Ψ†(r)pΨ(r)〉 (5.3)

⇒ 〈j〉


inter
=

2e0

m0V

∑
k

<e{Mvc∗
k pcvk } (5.4)

Note that we here only took into account the contribution resulting from
interband transitions, since absorption experiments are usually performed in
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frequency ranges, which are to large to induce oscillations of charge carrier
occupations (cf. Sec. 5.2). To determine how the polarization reacts to the
incident light field, we make use of the semiconductor Bloch equations for
the microscopic polarization pcv, cf. Sec. 4. The transformation into exciton
basis and evaluation of the Bloch equations in frequency domain gives rise
to the Elliot formula for the excitonic absorption [42, 54, 55],

ασ(ω) =
e2

0

m2
0ε0nc0ω

|M vc
σ |2

∑
µ

=m
( |∑k Ψµ(k)|2

Eµ
0 − h̄ω − iΓµ

)
δKµe ,Kµh . (5.5)

Hence, each momentum direct excitonic state µ contributes a Lorentzian
response at its eigenenergy Eµ

0 . The peak surface (oscillator strength) is given
by the probability to find the electron and hole at the same position Ψ̃µ(r =
0) =

∑
k Ψµ(k). The width of the peaks is determined by the parameter Γ

containing all mechanisms leading to a decay of the polarization. In PAPER
II we have used a second order Born Markov approximation for exciton-
phonon 〈X†µb(†)〉 and exciton-photon correlations 〈X†µB(†)〉 to calculate the
scattering induced broadening of exciton resonances, which will be discussed
in Sec. 6.

Note that the above equation only holds for weak excitation conditions, since
we assume negligible electron and hole densities. For intermediate and high
excitation powers, the phase space filling factors in the Bloch equation be-
come dominant giving rise to a so called absorption bleaching. Moreover,
significant amounts of excited electrons and holes lead to changes in the
exciton binding energy (blue shift), band gap renormalizations (red shifts)
[56–58].

5.2 Pump-Probe – Mapping Internal Transitions

In contrast to linear absorption experiments, addressing the static proper-
ties of the system, the so called pump-probe spectroscopy allows to study
the dynamics of excited charge carriers and - similarly intriguing- the inter-
nal degrees of freedom of excited quasi-particles. The most frequently used
pump-probe method uses two pulses adressing interband transitions. While
the first pump pulse is strongly absorbed by the material, giving rise to ex-
cited charge carriers in the conduction band, the second probe pulse becomes
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less absorbed by the material, which results from the Pauli blocking of the
already excited carriers. Therefore, the change in the absorbtion of the probe
pulse as function of delay between pump and probe provides information of
the carrier relaxation process on ultrafast timescales. However, in this thesis
we focus on a slightly different approach to pump-probe spectroscopy, where
the probe pulse adresses low frequency intraband transitions. The idea be-
hind this technique is that the presence of excitons created by the first pump
pulse can significantly modify the low frequency response of the material,
which subsequently can be probed by the absorbtion of a the probe pulse
[59, 60]. The reason for the change in the response function, is that the
optically injected excitons can interact with light by performing transitions
between internal degrees of freedom, e.g. from their ground state (1s) to
the first excited state (2p). For TMD monolayers, this change in the relative
motion of the electron-hole pair can occur via the absorption of terahertz/far
infra-red light [21, 61, 62]. From a theoretical point of view, the so called
intra-excitonic response results from oscillating intraband currents induced
by the electrical field of the probing laser. To derive the response function we
consider the intraband contribution of the electron-light interaction [63, 64]

Hintra =
∑
λk

jλk ·Aa
†
λkaλk; jλk =

e0

h̄
∇kε

λ
k (5.6)

as well as the intraband contribution to the quantum mechanical current,

〈j〉


intra
=
∑
λk

jλkf
λ
k . (5.7)

While the intraband current results from asymmetries in the electronic oc-
cupation, the intraband Hamiltonian Eq. 5.6 corresponds to an oscillation
of the electronic bandstructure, which does not directly influence the carrier
occupation dynamics, viz. [a†iai,Hintra] = 0. However, the carrier occupations
are coupled to intra-excitonic correlations through the Coulomb interaction (
∂tfi ∝ V 〈X†νXµ〉 with µ 6= ν). These excitonic correlations in turn do couple
to the low frequency fields, since they induce periodic changes of the band
gap. Consequently, transitions between different exciton states also lead to
a reconfiguration of the electron-hole occupation and thus potentially to a
current. Evaluating the equation of motion for the transition correlations
〈X†νXµ〉 in the frequency domain yields the atom-like Elliot response [63, 65]

χσ(ω)


intra
∝ 1

ω2

∑
νµQ

|jνµσ |2(N ν
Q −N

µ
Q)

Eν
Q − E

µ
Q − h̄ω − i(ΓνQ + ΓνQ)

(5.8)
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where Nν
Q = 〈X†νQXνQ〉 is the exciton density. Again we find a sum of

lorentzian responses, however here at energies corresponding to intra-exciton
transitions. From the form of the excitonic current matrix element

jνµσ(Q) = êσ
∑
k

Ψ∗ν(k)Ψµ(k)(jck+αQ − jck+βQ)δζµ,ζν (5.9)

= êσ
eh̄

mr

∑
k

kΨ∗ν(k)Ψµ(k)δζµ,ζν , (5.10)

we can directly read off important optical selection rules. Only when the
product of initial and final state is antisymmetric, the transition is optically
allowed. For the radially symmetric problem this means that the angular
quantum number has to change by one, just as in atomic transitions. In
contrast to the linear absorption, the intra-excitonic response is proportional
to the exciton number, since the bare semiconductor does not share the
resonance energies of the quasi-particles it can host. Therefore, the low
frequency response after an initial laser excitation can not only be used to
map intra excitonic transition energies, but also provides access to the time
dependent exciton distribution.

5.3 Photoluminescence - Traces of Recombinations

An other complementary experimental technique to the absorption spec-
troscopy is the detection of the delayed light emission stemming from the
material after an initial excitation, which is referred to as photoluminescence
(PL). While the absorption spectrum reveals the frequencies at which the sys-
tem responds to a coherent excitation, the PL spectrum represents a finger
print of the incoherent emission stemming from the spontaneous recombina-
tion of electron hole pairs. One of the advantages of this technique is that
the signal, similar as in the case of pump-probe, is proportional to the occu-
pation probability of the initial states [66]. Therefore, the low temperature
emission can reveal quantum states with very weak matter-light coupling,
only becoming visible due to large occupations. From a theoretical point of
view, the measured PL intensity is proportional to the energy flux S of the
electromagnetic field, which obeys the continuity equation

∇ · S = −∂tρEM (5.11)
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Assuming that the detector integrates over an infinitely large sphere, we can
use Gauss law to obtain the radiation power

Prad =

∮
dA · S = ∂t

∫
d3r

1

2
(ε0E

2 +
1

µ0

B2) (5.12)

=
∑
σq

h̄ωq∂t〈B†σqBσq〉 =

∫
dωh̄ωI(ω,t). (5.13)

In the second line we have used the expansion of the electromagnetic field
in terms of photon creation and annihilation operators, cf. Sec. 3, and
introduced a spectral decomposition of the radiation power, defining the
spectral PL signal (photon flux)

I(ω,t) =
∑
σq

ṅσq(t)δ(ω − ωq) (5.14)

as a measure for the temporal change of the photon number nq = 〈B†qBq〉.
Hence, to calculate the emission spectrum of a material, we have to solve
the equation of motion of the photon numbers, which are coupled to the
excitonic system via the photon-assisted polarization Sµq = 〈B†qXµ〉. Here
different orders of many-particle correlations within the hierarchy of exciton-
photon/phonon correlations, give rise to a variety of intriguing spectral phe-
nomena within the PL. In particular, the form of the exciton-photon inter-
action Hamiltonian cf. Sec. 3, illustrates that each creation of a photon
is accompanied by the annihilation of an exciton. Hence, the spectrally
and temporally resolved PL spectrum can provide information about the
energy as well as occupation dynamics of different exciton species. In PA-
PER III we have investigated the impact of phonon-assisted recombinations
of momentum-indirect dark excitons on the PL spectrum, which is also out-
lined in Sec. 6.
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6 Results

In this section we summarize the main results of this thesis. Based on the the-
oretical approach presented in the previous sections, we have studied different
aspects of the exciton-phonon and exciton-photon interaction including lin-
ear optical properties, formation of bound excitons out of a free electron-hole
gas as well as the phonon-assisted radiative decay of dark excitons. While
several aspects of these properties/phenomena have already been studied in
previous works [29, 30, 32, 67], the special focus of this work is to investigate
the impact of excited exciton states (Rydberg excitons) as well as the influ-
ence of indirect excitons, where electrons and holes are located at different
high symmetry points of the Brillouin zone.

6.1 Linewidth of Exciton Resonances

While conventional semiconductor systems used to study exciton properties,
e.g. GaAs quantum wells, usually only exhibit one distinguishable exciton
resonance, the significantly increased Coulomb interaction in TMDs and the
related increase in exciton binding energies allows to spectrally resolve several
excited excitons between ground state and band edge. In particular the
rather new method of encapsulating monolayers with hexagonal boron nitride
(hBN) reduces the inhomogeneous broadening of spectral lines, making the
intrinsic linewidth of excitons accessible. The position of excitonic resonances
in the absorption spectrum provides information about the binding energies
and thus the Coulomb forces in the system [16, 68]. In addition to that, the
linewidth is a measure for the lifetime of the induced optical coherences and
therefore contains information about the many-particle scattering processes
[29, 69–73]. In particular, the broadening Γµ in the low excitation regime,
cf. Eq. 5.5 results from the interaction between excitons and phonons or
photons Γµ = Γrad

µ + Γphon
µ . To obtain access to these dephasing rates, we

solve the equations of motion for exciton-phonon 〈A†µb(†)〉 and exciton-photon

correlations 〈A†µB(†)〉 within a Born-Markov approximation [29, 74, 75], which
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gives rise to the Fermi golden rules,

Γrad
µ = π

∑
σq⊥

|gµσq⊥,0
|2δ(Eµ

0 − h̄ωq⊥) (6.1)

=
h̄e2

0

2m2
0ε0nc0

∑
σ

|M vc
σ |2
|
∑

k Ψµ(k)|2

Eµ
0

(6.2)

Γphon
µ = π

∑
±,λ,ν,q

|Dµν
λq|

2(
1

2
± 1

2
+ nλq)δ(Eν

q − E
µ
0 ± h̄Ωλq). (6.3)

Figure 3(a) schematically illustrates the exciton bandstructure and relevant
scattering mechanisms. Excitons are excited at zero center-of-mass momen-
tum and can either decay by radiative recombination (yellow) or scatter into
a dark state with a non-zero center-of-mass momentum. Apart from intra-
valley scattering via absorption of -mostly low energy acoustic- phonons (or-
ange) or transitions into lower lying states after emission of a phonon (red),
the electron or hole can scatter into a different valley (blue) giving rise to
indirect intervalley excitons.

Figure 3: Exciton dephasing mechanisms. a) Schematic illustration of the exciton
bandstructure and possible scattering mechanisms. Radiative recombination or
scattering into a dark state with finite center-of-mass momentum via interaction
with phonons leads to a broadening of exciton absorption lines. b) The linewidth
of bright ns excitons as function of n for dfferent temperatures. Our microscopic
model yields a decreasing trend for high n resulting from a reduced scattering
efficiency for excited states.
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Fig. 3 (b) shows the calculated full width at half maximum of exciton ab-
sorption lines (s-type states) calculated with Eq. 6.2 and 6.3 as a function
of the principal quantum number n for three different temperatures. The
calculated values are based on parameters for WSe2 encapsulated with hBN
[23, 40, 49, 76] (represented as bars) and are directly compared to the exper-
imentally measured values (points). Apart from the case of the 2s exciton at
room temperature, we find – in reasonable agreement with the experiment –
a general decrease of the linewidth with increasing quantum index n. This
result somehow contradicts the physical intuition, since excited states have
a larger phase space of lower lying states to scatter into. To understand the
observed behaviour we have to consider the influence of exciton wave func-
tions on radiative and non-radiative scattering probabilities. With increasing
index n the orbital functions become larger in space, which reduces the ra-
diative recombination efficiency ∝ Ψ̃(r = 0) , cf. Eq.6.2. At the same time
the larger orbitals of excited states correspond to narrower wave functions
in momentum space. Since the exciton-phonon matrix element is given by
the overlap of initial and final state in momentum space, cf. Eq. 4.28, larger
exciton radii lead to a reduction of scattering probabilities [51, 77, 78]. This
is similar to Heisenbergs uncertainty principle, in the sense that a weaker
localization in space yields smaller momentum uncertainties and therefore a
reduced tolerance for momentum transfers. In PAPER II we analyse the tem-
perature dependence of different contributions to the linewidth and discuss
in detail the comparison between experiment and theory. The overall good
comparison between the theoretically predicted intrinsic scattering rates and
the actually measured broadening indicates that the studied hBN encapsu-
lated samples are only weakly influenced by inhomogeneities, which is further
elaborated on in PAPER XIII. Moreover, in PAPER XV we ivestigated the
impact of elastic impurity scattering on the linewidth of different exciton
states. Here we find similar behaviour with increasing quantum index as
observed for scattering with phonons. However, due to the lack of resonant
states, the elastic scattering with impurities is strongly suppressed in the
ground state, while phonon-scattering is very efficient.
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Figure 4: Intra-excitonic relaxation cascade in MoSe2. Excited hot electron-
hole pairs dissipate energy via a sequence of phonon emissions, perform-
ing a cascade-like relaxation through the Rydberg series of exciton states
including momentum indirect KΛ states. Figure is also published in PA-
PER I under the Creative Commons Attribution 4.0 International License, cf.
https://creativecommons.org/licenses/by/4.0/.

6.2 Exciton Relaxation Cascade

TMD monolayers are considered as promising candidates for the realiza-
tion of atomically thin solar cells, photo detectors and other optoelectronic
semiconductor devises. However, most of these devices conceptionally re-
quire freely moving charge carriers. However, since excitons represent bound
electron-holes states, which are externally charge neutral, they give rise to
much different conductivity properties then free charges. Therefore a tech-
nological application of these materials requires a microscopic understanding
of the formation of bound excitons out of a quasi-free electron-hole plasma.
Within our theoretical approach we can derive the phonon-induces relaxation
dynamics of coherent excitonic polarizations P µ

Q = 〈X†µQ〉 as well as incoher-

ent exciton occupations Nµ
Q = 〈X†µQXµQ〉 − |P µ

Q|2. Again we treat exciton-
phonon and exciton-photon correlations within a second order Born Markov
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approximation giving rise to the coupled equations of motion [29, 32, 75]

Ṗ µ =
i

h̄

(
Eµ

0 + iΓrad
µ +

ih̄

2

∑
νQ

σµν0Q

)
P µ + iΩµ, (6.4)

Ṅµ
Q =

∑
ν

σνµ0Q|P
ν |2 − 2

h̄
Γrad
µ δQ,0N

µ
Q +

∑
νQ′

(σνµQ′QN
ν
Q′ − σµνQQ′N

µ
Q),(6.5)

σµνQQ′ =
2π

h̄

∑
±,λ

|Dµν
λ,Q−Q′ |2(

1

2
± 1

2
+ nλQ−Q′)δ(Eν

Q′ − Eµ
Q ± h̄ω

λ
Q−Q′),(6.6)

where σµνQQ′ is the probability to scatter from state (µ,Q) to (ν,Q′). Note, that
the solutions of the Wannier equation (index µ) contain bound electron-hole
pairs (negative eigenenergy), but also a continuum of free scattering states
(positive eigenenergy) which resemble the free electron and hole plasma states
with pair energies above the band edge.

Figure 5: Exciton formation and relaxation dynamics. Evolution of the momentum
integrated exciton occupations N. The black line shows the overall number of
incoherent excitons, while the coloured surfaces below the black line represent the
relative fraction of the respective exciton state. After 1.5 ps a 1/e-fraction of the
excited pairs has relaxed into the 1s-ground state. Figure is also published in
PAPER I under the Creative Commons Attribution 4.0 International License, cf.
https://creativecommons.org/licenses/by/4.0/.

Figure 4 schematically illustrates the exciton band structure and the domi-
nant relaxation mechanisms after an excitation close to the band edge. The
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pump pulse creates quasi-free electron-hole pairs at the scattering contin-
uum (yellow arrow), which subsequently dissipate their excess energy via a
sequence of phonon emissions, performing a cascadic relaxation [79] across
the Rydberg-series of lower lying exciton states (orange arrows), in particular
also scattering to momentum indirect pairs, such as KΛ excitons. Fig. 5,
shows the simulated exciton dynamics after an excitation 20 meV below the
free-particle band gap and parameters for MoSe2 on a SiO2 substrate. The
colour-coded areas under the black curve (total number of electron-hole pairs)
illustrate the fractions of appearing exciton states. Note that the contribu-
tions were added up successively to pile up to the total number. Moreover,
the large amount of different excited states close to the band gap (E > E2s)
have been grouped for a better overview. After the optical excitation (yellow
shaded area) most electron-hole pairs occupy exciton states above the 2s.
Those hot pairs dissipate their energy by decaying into lower lying states via
the emission of phonons. Our simulation predicts that after 1.5 ps a 1/e-
fraction of the excited pairs has decayed into the 1s-ground state revealing
an ultrafast formation of bound excitons out of a free electron-hole plasma.
In PAPER I we discuss the most efficient relaxation channels determined
by the symmetries of exciton wave functions and the arrangement of energy
levels. Moreover, we also show snap shots of the momentum resolved exciton
dynamics across the Rydberg series of bright and dark exciton states.

As discussed in Sec. 5, ultrafast pump-probe experiments can be utilized
to make the exciton dynamics experimentally accessible. Probing intra-
excitonic transition after an interband pump pulse allows to indirectly mea-
sure the relaxation dynamics on a femtosecond timescale, since the response
is proportional to the occupation of the states involved in the transition.
Figure6 shows the calculated low frequency absorption as function of the
probe energy at different delay times after the pump. The colour shaded
curves result from the dynamics at room temperature, while the black curves
show the resulting spectra simulated for 77 K. Shortly after the pump pulse
(t=0.5 ps and t=1 ps) we predict several absorption peaks at low energies,
predominantly stemming from the close lying transitions of high energy exci-
tons. In particular, we predict that transient population inversions between
s- and p-states arise during the relaxation process, since the relaxation prefer-
ably occurs between states with the same orbital symmetry. For the spectra
measured at 77 K, where the absorption lines become narrow enough, we
therefore observe pronounced gain signals (i.e. negative absorption).With

37



Figure 6: Pump-induced low frequency absorption as function of the probe energy
for four different times. Shortly after the pump the occupation of excited states
leads to multiple absorption features for energies below 150 meV, inter alia optical
gain resulting from transient population inversions. For large delay times the spec-
trum is dominated by the response of the 1s-2p transitions of excitons in the ground
state. Figure is also published in PAPER I under the Creative Commons Attribu-
tion 4.0 International License, cf. https://creativecommons.org/licenses/by/4.0/.

increasing delay time, as the population equilibrates, we find a shift of the
response towards the 1s-2p transition energy, stemming from excitons in the
ground state. The rise time of this resonance is a direct measure of relaxation
from free to bound states. In PAPER I we further discuss the different spec-
tral features and the comparison with experiments. This study shows that
the developed theoretical approach presents a powerful tool, for the inves-
tigation of exciton relaxation dynamics and can be applied to a wide range
of excitonic systems. In particular, we applied the same approach to model
the exciton dynamics in a van-der-Waals heterostructure, consisting of two
different monolayers, published in PAPER XII and XVI.
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6.3 Phonon-assisted Luminescence from Dark Excitons

Monolayer materials, apart from their large potential for innovative tech-
nologies, remain in the focus of fundamental condensed matter research,
because the strong many-particle interactions in these systems provide an
excellent platform to study intriguing quantum phenomena of correlated sys-
tems. One of the major puzzles of the TMD research is the low-temperature
photoluminescence (PL), which exhibits a plenitude of emission peaks below
the apparent exciton ground states resonance [80–83]. The microscopic ori-
gin of these low temperature emissions features is to large extend unknown.
Most studies on this topic have so far focused on the impact of bound ex-
citon congurations, such as trions [84], biexcitons [85] and trapped excitons
[86, 87], while the potential influence of indirect phonon-assisted recombina-
tion of intrinsically dark exciton states has been ignored to a large extend.
Momentum indirect excitons are considered as dark since momentum con-
servation forbids the radiative decay of an exciton with non-zero centre of
mass momentum. However, the simultaneous emission of a phonon, carrying
away the exciton momentum, enables an indirect radiative decay of momen-
tum dark excitons. In particular, in so called indirect semiconductors, where
momentum indirect states are energetically more favourable then the bright
state (direct transition), the luminescence at low temperatures can exhibit
strong phonon-assisted PL signals resulting from the large population of dark
states. Figure 7 illustrates the excitonic band diagram and the associated
processes of this mechanism.

While the direct radiative decay of bright excitons has been extensively stud-
ied in previous works [88, 89], the theoretical description of the simultaneous
phonon and photon interaction has remained challenging because of the non-
markovian nature of these processes [90–92]. Based on the theoretical frame-
work presented in this thesis, we derive a set of coupled equations of motion
for the photon number 〈B†B〉, the photon-assisted polarization 〈B†Xµ〉, the
photon- and phonon-assisted polarization 〈B†b†Xµ〉, exciton-phonon correla-
tions 〈B†X†µXν〉, as well as higher order exciton-phonon and -photon corre-
lations giving rise to a dephasing of the before mentioned central quantities.
In PAPER III we present the full set of equations of motion and discuss the
central approximations made in the derivation. Due to the large amount of
degrees of freedom in these equations, a numerical evaluation would require
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Figure 7: Luminescence from dark excitons. Sketch of direct and indirect decay
channels showing the underlying scattering processes in the excitonic center-of-
mass dispersion (right) and the corresponding PL signals (left). Momentum-dark
excitons can decay by simultaneously interacting with phonons and photon, giving
rise to phonon side peaks (red).

large computational resources and time, which is not very reasonable for this
purpose. However, the empirical knowledge about the different time scales in
our system, we can find an analytical expression for the luminescence spec-
trum. Since the exciton and phonon occupation numbers, after an ultrafast
initial equilibration, change slowly compared to the dephasing times, we can
obtain the static luminescence signal by solving the equations in the adia-
batic limit. For the perpendicular emission from the monolayer we find the
following closed expression for the luminescence spectrum

Iσ(ω) =
2

h̄

∑
µ

|Mµ
σ |2

(Eµ
0 − ω)2 + (Γrad

µ + Γph
µ )2

(
Γrad
µ Nµ

0

+
∑
νq,α±

|Dµν
αq|2N ν

q(
1

2
± 1

2
+ nαq)

Γph
νq

(Eν
q ∓ Ωα

q − ω)2 + (Γph
νq)2

)
,(6.7)
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where N and n are the exciton and phonon occupation numbers, respectively.
Figure 8 shows calculated PL spectra for hBN-encapsulated monolayer WSe2
at dierent temperatures. The full spectra calculated from Eq. 6.7 are colour
shaded, whereas the solid lines represent the result for Γph

νq, i.e. requiring
exact energy conservation.

Figure 8: Temperature dependent PL. Calculated PL spectra of hBN-encapsulated
WSe2 monolayers for four temperatures. Together with the calculation from Eq.
6.7 (coloured curves) we also show the corresponding Fermis golden rule solution
(thin solid lines). While at higher temperatures, the spectrum is dominated by
an asymmetrically broadened bright state resonance, cryogenic temperatures give
rise to strong indirect peaks stemming from the phonon-assisted recombination of
dark excitons.

Therefore the sharp steps in the solid line conveniently illustrate the mul-
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titude of exciton valleys and phonon modes involved in the PL spectrum.
Each step corresponds to transitions from the minimum of a certain val-
ley by absorbing or emitting a phonon. At 300 K and 150 K the PL only
shows one main peak at the bright exciton resonance. However, the peak
is asymmetrically broadened due to phonon-assisted recombinations of dark
states (denoted with KK and KΛ) below the bright exciton. At lower tem-
peratures the optical the emission shifts towards several indirect PL peaks
below the bright exciton. These peaks result from the phonon-assisted re-
combination of the lowest lying K-K exciton. The predicted temperature
behaviour as well as the observed low temperature PL peaks at about -60
meV (K-K - acoustic phonon assisted) and -75 meV (K-K - optical phonon
assisted) agree well with experimental observations [80–83]. Although these
peaks have been clearly observed in several independent measurements on
hBN encapsulated samples, they were to a large extent ignored in literature
due to their unclear origin. Our work ascribes these peaks to signatures of
indirect phonon-assisted transitions from lower lying momentum-dark exci-
tons in tungsten-based TMDs. In PAPER III, we show a direct comparison
between experiment and theory and also analyse and explain the differences
in the emission properties of tungsten- and molybdenum based monolayers.
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7 Outlook – Heterostructures

After the intense research on monolayer materials, producing thousands of
publications per year, most of the microscopic mechanisms guiding the char-
acteristics of these materials are quite well understood and first prototypes of
detectors and transistors based on TMDs have already been demonstrated.
Therefore the research focus has recently shifted towards more complex sys-
tems, such as so called hetero-bilayers. These are comprised of two different
monolayers materials stacked on top of each other, which only weekly interact
through Van-der-Waals forces. For example, stacking two monolayers with
different work functions gives rise to an atomically sharp p-n-junction. As
we have demonstrated in PAPER XVI the optical excitation of one layer is
followed by an ultrafast charge separation, giving rise to interlayer excitons
with electron and hole residing in different layers. The energetic structure
and the dynamics of interlayer excitons can easily be tailored by combining
different materials and substrates, which enables a whole new play ground for
physical phenomena and possible applications. One particularly interesting
topic, which we will consider in our future studies, is the impact of lattice
mismatches between the two monolayers.

Due to the different periodicities of the stacked monolayers, the physics of the
heterostructure will be guided by the emergence of super-cells or so called
Moire patterns, characterizing the periodicity of the overall system. Par-
ticularly appealing about these moire patterns, is that their seize can be
controlled by changing the stacking angel. Together with the freedom of
choice for the underlying monolayer materials, this tunability of properties
gives rise to a completely new field in nano electronics, nowadays in litera-
ture already referred to as twistronics. In our future studies, we will focus
on the theoretical description of moire patterns and their impact on exciton
formation and relaxation dynamics.

43



Acknowledgments

I sincerely want to thank all the people who enabled me to write this thesis.
First of all, I would like to thank my supervisor Ermin Malic for his patience
and the outstanding support over the last years. I also thank my examiner
Jari Kinaret for his helpful comments and advices. I thank Paul Erhart for
supporting me as second supervisor and Bo Hellsing for reviewing my thesis.
Furthermore, I would like to thank the whole work group at Chalmers and
the TU Berlin for all the fruitful discussions. Last but not least, I would
like to express my cordial thanks to my family, friends and my partner Lea
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