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Abstract

The battery is the limiting system for automotive electrification due to cost,
size, and uncertain degradation. To be competitive the battery must there-
fore be used optimally. This thesis address the on-line battery management
problem, with primary objectives to (i) enable optimal usage of the battery
by providing accurate estimates of its power and energy capability, while (ii)
ensuring durability by keeping the battery inside predefined operating lim-
its at all times. This means translating measurable information of current,
voltage, and temperature into cell related quantities such as state-of-charge
(SOC) and state-of health (SOH), and vehicle related quantities such as
power capability and available energy.

The main difficulty of battery management is that battery cells have
complex, non-linear dynamics that changes with both operating conditions,
usage history, and age. This thesis and the appended papers proposes a sys-
tem of adaptive algorithms for on-line battery estimation. Several aspects
are considered, from modelling and parameter estimation to estimation of
SOC, energy, and power. Recursive algorithms are proposed for estima-
tion of parameters and SOC, while power and energy are estimated using
algebraic expressions derived from equivalent circuit battery models. The
algorithms are evaluated on lithium-ion battery cell data collected labora-
tory tests. For the cell chemistries considered, the evaluation indicates that
accuracy within 2% can be achieved for both SOC and power, also in cases
with limited prior information about the cell.

Keywords: Battery management, lithium-ion batteries, state estimation,
parameter estimation, state-of-charge estimation.
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Chapter 1

Introduction

Batteries are passive systems and it is therefore easy to dismiss the problem
of battery management as being trivial from an automatic control perspec-
tive. In fact, to develop a fully functioning battery management system
is not that complex as long as the battery is operated well within its per-
formance limits. Still, this thesis is centred around the deceptively simple
question:

Question 1. How much power and energy can the battery pack deliver with-
out violating cell level constraints?

As will be seen, however, this becomes a quite complex question once
you scratch the surface.

1.1 Motivation and scope

Market analysts predicts a boom in sales for electric vehicles (EVs) in the
coming years [1]. As an example, Volvo Car Corporation has announced
that all their vehicles will be electrified from 2019, either as hybrid electric
vehicles (HEV), plug-in hybrids (PHEV) or fully battery electric vehicles
(BEV). This increase in sales is fuelled by legislations and incentives by
governments, improved performance, and reduced cost of batteries.

Despite the rapid increase in battery performance in recent years [2], the
battery system is still limiting for electrification in terms of:

e Cost: The battery is by far the most expensive system of an EV.
Analysts estimate that the battery contributes to almost half of the
production cost of Tesla Model S [3]. While costs are expected to
decrease, a rapid increase in volumes may affect supply and thereby
impact profit margins of the vehicle manufacturers [2, 4].
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Figure 1.1: Number of contributions to the field of battery management
per year according to Google Scholar. The bars for Energy+power combines
several search-terms. This is by no means a thorough investigation, but still
gives a clear indication as to where the main focus of battery management
is within the academic field.

e Size and weight: On pack level the energy density is typically below
150-200Wh/1 and 100-150Wh/kg, which means that the battery for
a 500 km range BEV containing around 80kWh can have a volume of
over 3001 and weigh more than 500kg.

e Life-time: Batteries may degrade faster than intended if they are
used too aggressively, which is a major concern for both customers
and vehicle manufacturers.

This signifies the importance of using the installed battery capacity as much
as possible while addressing the trade-off between short-term performance
and long-term degradation.

In the academic community battery management has been more or less
synonymous with state-of-charge estimation, as indicated in Figure 1.1,
which shows the number of results in a Google Scholar search using different
keywords related to battery management. The aim of this thesis is to widen
the scope according to Question 1, which can be illustrated as in Figure 1.2.
Without going into details of the internal workings of lithium-ion batteries,
they need to be operated in some safe region to avoid side-reactions that
lead to accelerated degradation. The boundary of the safe operating region,
i.e. when side-reactions start, depends on internal dynamics that are not
measurable on production-ready cells. In fact, even in laboratory condi-
tions, specially prepared three-electrode cells are needed to get cell internal
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Figure 1.2: A highly simplified view on battery control.

measurements (see e.g. [5]). To handle this problem, an operating window
can be defined in terms of measurable quantities (current, voltage, and tem-
perature) together with some estimated quantities such as state-of-charge
(SOC). This constrains the battery cell to be in the safe region, but the
operating window is still described in terms of cell related quantities. The
vehicle on the other hand needs information about the energy and power
that the pack can deliver, and the battery management system (BMS) must
therefore understand how all these quantities are related. Question 1 can
thereby be broken down into two main problems:

Problem 1. Ensure durability of the battery by keeping operation inside the
operating window at all times.

Problem 2. Enable optimal usage of the battery for other controllers of the
vehicle by providing accurate estimates of power and energy capability of the
battery.

There are several impacts of poor estimates. In terms of energy capa-
bility, the accuracy is directly related to range prediction. The main issues
are, however, found on the shorter time-scales where over-estimating the
power capability can lead to accelerated degradation if cells are used out-
side the usage window, or to poor drivability if power is suddenly reduced
to stay inside (or get back into) the operating window. Under-estimating
the power capability can on the other hand lead to poor performance since
the potential performance is not utilized.

The difficulty in estimating power and energy capability is that battery
cells have complex and non-linear dynamics that change with both operating
conditions and age. This means that the models must handle changes on
several time-scales, from milliseconds to years. Many unmeasurable internal
states of the cells are needed, such as SOC, concentration gradients (or
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Figure 1.3: Overview of the adaptive estimation system investigated in
the thesis. The choice of model structure impacts all algorithms which is
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polarization voltages), and state-of-health (SOH). Furthermore, automotive
battery packs are complex systems containing hundreds of cells (all needing
individual monitoring), cooling system, cabling, etc. (see Section 2.3), and
therefore computationally efficient algorithms are needed.

The scope of this thesis is to investigate the problem of tracking battery
capability on-line in the BMS. Several aspects of the resulting estimation
problem are covered with focus on robust algorithms that can be imple-
mented on typical automotive control units.

1.2 Contributions

An overview of the set-up investigated in the thesis is illustrated in Fig-
ure 1.3. In itself this is not an outcome of the thesis; several others have
proposed similar set-ups (see e.g. [6, 7, 8]). However, there are novel con-
tributions to each part of this system of algorithms, as described in the
following.

Cell model structure

All proposed algorithms for battery estimation are based on a cell model
that relates the current and voltage of the cell to each other. Since the
algorithms are to be run on-line in the BMS, the model structure needs
to be fairly simple (i.e. few states). Most of this work is based on equiv-
alent circuits (which is the most common model structure for BMS found
in the literature). However, one contribution to battery modelling is found
in Paper 5, where an extension to the equivalent circuit to improve volt-
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age prediction at low temperatures and high discharge power operation is
proposed.

Parameter estimation

The characteristics of the battery changes with operating conditions and to
maintain accuracy of the battery model, its parameters must be updated
during operation. Since the battery model contains both static (purely re-
sistive) and dynamic parts, for which the excitation conditions are quite
different, the accuracy of the parameter estimation is improved by separat-
ing the estimation task into different algorithms, as described in Paper 3.
The resistance of the cell is then estimated using a recursive least-squares
algorithm, while the parameters for the dynamics are estimated using an
adaptive Kalman filter.

SOC estimation

Tracking SOC on-line is one of the most covered topics of battery manage-
ment in the literature. There are two contributions to this in the thesis. The
first is found in Paper 1, where three different algorithms are compared to
assess their accuracy and robustness for SOC estimation. The main result
is that the best choice of algorithm depends on both cell characteristics and
intended vehicle application. The second contribution is found in Chap-
ter 5 where an extended Kalman filter from Paper 1 is combined with the
parameter estimation from Paper 3 and tested on experimental laboratory
cell data. The results show that SOC can be estimated to an accuracy
within 2% also with very limited prior knowledge of the cell.

SOH estimation

Estimating SOH is also well covered in the literature. It is often calculated
as a reduction in capacity and/or increase of resistance of the cell. The thesis
contribution to this area, found in Paper 2, proposes a novel application of
the Kalman filter to update look-up tables also in areas of the table not
being visited. This way changes of battery resistance due to ageing can
be separated from changes due to operating conditions (temperature, SOC,
etc.).

Power estimation

Power capability estimation is important for vehicle operation. There are
two contributions to this in the thesis, both found in Paper 4. Firstly, a
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thorough validation of an adaptive power estimation algorithm is performed
on aged cells in a wide temperature range. Secondly, power estimation turns
into a closed-loop controller of the battery power when the cell is operated
at the limit of its capability. An analysis of the robustness of this closed-
loop shows that time-delays in the controller network may cause the power
limitation algorithm to become unstable if the bandwidth of the closed-loop
is not constrained.

Energy estimation

Energy estimation is important for range predictions of the vehicle. The
thesis contribution here is a novel analytic expression of available energy
that considers the thermal trajectory of the battery pack during discharge,
which is presented in Paper 6.

1.3 Outline

Part T of this thesis serves as an introduction and provides background
information on adaptive battery management. Chapter 2 presents the au-
tomotive battery system, and its most important components. Chapter 3
gives an overview of methods and theory used throughout the thesis work.
In Chapter 4 the most common ways of modelling lithium-ion batteries
are presented. Chapter 5 presents the adaptive battery state estimation
problem. Chapter 6 discuss how to translate the state information to pre-
dictions/estimations of the battery capability. Chapter 7 summarizes the
appended papers, and finally, Chapter 8 closes Part I with concluding re-
marks and possible future research directions. Part II contains full text
versions of the papers that this thesis is based on.



Chapter 2

Automotive battery systems

This chapter provides an introduction to automotive battery systems.

2.1 Definitions

There are several measures, parameters, and states referred to both in this
thesis and in battery management literature in general. Many of them are
also used in slightly different form in cell related research, which can cause
confusion. Therefore, their use in the context of this work is defined here.

Definition 1. The current (i) is positive for charging and negative for
discharging.

Definition 2. The operating window (W) is the region where the cell
is allowed to be used, described in terms of measurable (current, voltage,
temperature) and estimated (SOC, power, enerqy) quantities.

Definition 3. The C-rate is the current scaled to the capacity of the cell
such that a current of 1C will (dis)charge the cell in one hour.

Definition 4. The open-circuit voltage (v..) is the equilibrium voltage
of a cell.

Definition 5. A cell is fully charged when v, = Viax.
Definition 6. A cell is fully discharged when vy, = Viin-

Definition 7. A cell is 1C discharged when the terminal voltage veen =
Viwin with 1C constant current discharge.

Definition 8. The nominal capacity (Quom) of the cell is the number of
ampere-hours between a fully charged and a fully discharged cell.
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Definition 9. The 1C capacity (Qic) of the cell is the number of ampere-
hours between a fully charged and a 1C' discharged cell.

Remark. (Q1¢ is popular for cell characterization since it approximates the
usable capacity in different operating conditions. For on-line BMS applica-
tions, Quom is preferable since it is approximately constant for all operating
conditions, but changes with age.

Definition 10. The state-of-charge (z) is the ratio of remaining capacity
to the nominal capacity of the cell.

Definition 11. The nominal energy (E.om) is the energy stored in the
cell.

Definition 12. The available energy (E...i) is the energy in the cell that
can be used.

Definition 13. The awvailable charge power (P,..) is the maximum
power that can be charged into the cell without violating constraints set by
the cell usage window.

Definition 14. The available discharge power (P,,) is the mazimum
power that can be discharged from the cell without violating constraints set
by the cell usage window.

2.2 Lithium-ion cells

Lithium-ion cells are currently the dominating battery type in the automo-
tive industry [9]. There are several combinations of materials used to tailor
the cell to different requirements, such as energy content, power capabil-
ity, or life-time. This section summarizes some common characteristics of
lithium-ion batteries.

2.2.1 Working principles of lithium-ion batteries

Lithium-ion cells consists of four basic parts; positive and negative elec-
trodes, a separator, and electrolyte (see Figure 2.1). The negative electrode
is most often of graphite, while the positive electrode can be of different
materials. The separator is electrically insulating while letting lithium-ions
through.

When the cell is discharged, lithium-ions leave the negative electrode and
enters the positive electrode by a process called intercalation. At the same
time, electrons move in an outer circuit producing electric work. Charging
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Figure 2.1: Schematic view of a lithium-ion cell.

reverses the process. Most of the work in the thesis uses a cell of lithium
nickel manganese cobalt oxide (NMC) type, for which the negative electrode
reaction is

LiCg = Cg + LiT + e,

while the positive electrode reaction is
Ni1/3MD1/3001/302 + L1+ +e = LiNil/ng’ll/gcol/g,Ol/?,.

Remark. In Paper 1 also a lithium iron phosphate (LFP) cell is used.

The energy of the cell depends on the difference between the energy
states of the lithium intercalated in the positive and negative electrode. At
rest these potentials are called open circuit potentials (OCP) and gives rise
to a potential difference referred to as the open circuit voltage (OCV). Dur-
ing use, the voltage depends on concentration gradients built up inside the
cell, caused primarily by diffusion in the solid particles, charge transfer re-
sistance, and mass transport in the electrolyte. For more details on battery
electro-chemistry, see [10, 11, 12].

2.2.2 Ageing

Apart from the main process of moving lithium-ions between the electrodes,
there are unwanted parasitic side-reactions that can occur inside the cell.
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Table 2.1: Summary of important ageing factors of lithium-ion batteries
with carbon based anode [16].

Ageing mechanism Enhanced by Result

Growth of solid elec- low SOC, high C- impedance increase
trolyte interface (SEI), rate
changes in  surface

porosity

Loss of active surface high temperature, impedance increase
high SOC

Electrode and binder high temperature, impedance increase,

dissolution high SOC capacity loss

Lithium plating low  temperature, impedance increase,
high C-rate capacity loss

Active mass particles low SOC, high C- capacity loss

loss of contact rate

Cracking of graphite over-charging capacity loss

Conductor corrosion over-discharging, impedance increase
low SOC

The occurrence and rate of these side-reactions depend on internal dynamics
that by existing technology are not measurable on production-ready cells.
Experimental studies of these have to be conducted using cells with reference
electrodes or on “half cells” [5]. Side-reactions do not originate from one
single cause, but from a number of various processes and their interactions
[13, 14, 15]. Some general ageing mechanisms, common to most lithium-ion
battery chemistries with graphite negative electrodes, are listed in Table 2.1
(see [16] for details).

On cell level, the effect of degradation is normally described in terms
of capacity loss and impedance increase. For the vehicle, this translates to
energy fade (i.e. reduced range), power fade due to increased losses, and
increased heat generation (thus requiring more cooling).

2.2.3 Current—voltage characteristics

Since the important internal dynamics are not directly measurable in nor-
mal battery management applications, it is important to relate the existing
measurement information to the states of the cell. The most fundamen-
tal relationship is that between current and voltage, and all models and
algorithms described in later chapters rely on this.

Different chemical compositions of lithium-ion batteries affect details
in their characteristics. However, for the chemistries considered here, the
current—voltage response can be divided into equilibrium and transient re-

10
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Figure 2.2: Open circuit voltage as a function of SOC for an NMC and an
LFP cell.

sponse. For some chemistries hysteresis effects must be considered.

Equilibrium voltage

The equilibrium voltage of the cell at rest (voe), often referred to as open
circuit voltage (OCV), is related to SOC by

Voe(t) = hoev (2(1)), (2.1)

where hoy : R — R is a non-linear function that maps SOC (z) to OCV
(see Figure 2.2).

There are slight variations in the OCV depending on temperature [17],
but this effect was tested to be very small on the cells used in this work
and is therefore neglected (see Figure 2.3). The OCV also changes with
degradation since ageing effects normally are not equal on both electrodes

[18].

Transient voltage response

When current is fed through the cell its voltage differs from equilibrium due
to electrical resistance and concentration gradients. There are two main
chemical processes that determine the dynamic voltage response of lithium-
ion batteries; diffusion and double-layer effects [19]. Diffusion is caused
by concentration gradients within the cell. It is a slow effect, typically on
the time-scale of seconds to minutes. The double-layer effects are faster
(typically below 1s) and comes from charge zones that are created between
the electrode and electrolyte and have a behaviour similar to a capacitance.

11
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Figure 2.3: Voltage at constant SOC levels when sweeping the temperature
of an NMC cell. Temperature dependency of the OCV manifests as a change
in voltage during the sweep. The maximum change observed here is for 20%
SOC where the maximum difference is around 5mV, which corresponds to
less than 0.5% in SOC, and was therefore considered negligible.

The double-layer effect occurs in parallel to the charge transfer resistance.
There are also even faster dynamics caused by electric and magnetic effects.
However, these occur on a millisecond time-scale, which means that for a
BMS application they can be regarded as purely resistive losses. Figure 2.4
displays a typical voltage response to a current pulse.

Hysteresis

Hysteresis is to a varying degree present in all types of lithium-ion chemistries,
and its main causes are strain and thermodynamic effects [20]. The conse-
quence is that the OCV at the same SOC will be different depending on if it
was reached after charging or discharging. The asymptotic OCV is typically
higher if the cell has been charged than if it has been discharged. Results
from [21] indicate that hysteresis is a difficult phenomenon to model. Plett,
[22], models hysteresis using a dynamic system in SOC, while Tang et al.,
[23], indicates that the hysteresis converges to its boundaries quickly enough
to be modelled as a two-state switch. The lack of consensus in the literature
may be related to the fact that it is hard to measure the dynamic behaviour
of the hysteresis, since even small currents also triggers other dynamic ef-
fects. Hysteresis is mainly important to model if its size is large compared
to the derivative of the OCV curve, since it will then have a significant
impact on SOC estimation. Based on the OCV curves in Figure 2.2 it can

12
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Figure 2.4: Voltage response to a current discharge pulse on an NMC cell.

be assumed that hysteresis modelling is more important for the LFP cell
than for the NMC cell.

For the NMC cells used in this work, hysteresis was small and therefore
did not need to be considered in the models.

2.3 Automotive battery packs

An automotive battery pack is a complex system [24, 25, 26]. Apart from
the battery cells and sensors, the pack must also contain cooling, cabling,
insulation, and a protective enclosure (see Figure 2.5). While the power
and/or energy capability of the pack is often discussed, many more con-
siderations are required when designing a battery pack for series produc-
tion. Some examples are design of the mechanical construction to handle
crash safety, high-voltage electrical distribution to handle high currents,
low-voltage sensors with sufficient accuracy, a thermal system to keep the
cells within specified temperatures, and so on.

The nominal pack voltage is typically around 400V for passenger cars,
which means that around 100 battery cells must be placed in series. De-
pending on which cell is chosen, there might be a need to have more energy
in the pack than what 100 series connected cells provide. Then several cells

13
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may be placed in parallel to increase the pack energy without changing the
nominal voltage. An extreme example of this is Tesla that uses over 40 cells
in parallel to reach the required energy levels. To handle flexibility and to
simplify production and service, the cells are built into modules. All manu-
facturers uses different configurations and the choice is primarily a trade-off
between flexibility and over-head in terms of weight, volume, and material
cost.

A cooling system is normally used to keep the cells in their preferred
temperature range. These can be either based on cooling using ambient air
directly, or by a liquid system where water is cooled using either ambient
air or an AC compressor. In some systems, particularly for battery electric
vehicles, the liquid cooling system can also be used to heat the battery in
cold temperatures. Both systems using heat generated from other compo-
nents of the vehicle, such as electric machines, or systems with dedicated
heaters are used.

The SOC of the cells of the battery pack may slowly drift unevenly due
to current leakages in the electrical system, uneven ageing, production vari-
ability causing differences in self discharge, etc. Since the series connected
cells will then reach their fully charged state at different times, and since the
system is limited by the cell that first becomes fully charged, this will limit
the available energy of the pack. To remedy this, the cells can normally be
balanced individually. The most common solution is that each cell can be
discharged with a small current to reduce its SOC. This balancing method
has the drawback that the energy to balance away is dissipated as heat, and
thereby lost. There are also systems where energy can be moved between
cells or where individual cells can be bypassed from the series string to con-
trol their charge levels individually. The benefit of this is that no additional
energy is lost, but this kind of system is unfortunately expensive.

2.4 Battery management systems

The battery pack requires an advanced monitoring system [27, 28, 29, 30].
The main functionalities can be divided into four parts; (i) monitor, (ii)
protect, (iii) control, and (iv) estimate.

Monitor

There is normally one sensor measuring the current through each series
connected string of cells, i.e. normally one sensor per battery pack. The
voltage is monitored for each cell since it is highly correlated to safety issues.
For temperature, there are normally at least some sensors in each module

14
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Figure 2.5: An example of an automotive battery pack from a Volvo XC90
T8 plug-in hybrid electric vehicle.

15
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to get measurements of the warmest and coldest cell of the pack, since they
are potentially limiting the performance. For safety of the battery pack also
other sensors, measuring pressure, gases, etc. may be included.

Protect

Safety is a crucial aspect of battery management. Normally these func-
tions are certified according to automotive safety standards, which in prac-
tice limit the use of advanced control functions in favour of simpler logics.
Many of the instantly dangerous conditions are also actually measurable.
Examples of potentially hazardous situations are over-charging, which may
lead to thermal runaway and explosion [31], and too high currents which
can cause excessive heating of cells, cabling and other parts of the pack
and must therefore be avoided. Since the battery system is passive from a
power delivery perspective, the only action that is possible in a hazardous
situation is to disconnect the affected parts of the battery from the rest of
the electrical system of the vehicle, and for this there are switches controlled
by the BMS.

Control

An important task of the BMS is to control the thermal system to keep
the battery cells in optimal temperature range for both performance and
durability. This is a major energy consumer of an electric vehicle, and
therefore one of the primary objectives is to achieve energy efficient thermal
strategies.

The BMS controls the balancing circuit mentioned in the previous sec-
tion. The main objective is to make sure that the energy available from
the system is not reduced by unbalanced cells. Depending on the balancing
circuit configuration, the control strategies will be different [32, 33, 34].

While there is normally another system controlling charging, the BMS
is responsible for determining the charging current. Therefore, this can also
be seen as a control problem where the main objective is to charge as fast
as possible while not degrading the battery faster than necessary. There
are several contributions in the literature to optimal charging strategies,
see e.g. [35, 36].

Estimate

Several internal states and attributes of the battery pack cannot be mea-
sured directly and must therefore be estimated. Examples are SOC level,
health status, and power and energy capability, which are main topics of the

16
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upcoming chapters. Although not covered here, estimations are also needed
for temperature of cells without dedicated temperature sensing, charging
time, and remaining useful battery life, to name a few.
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Chapter 3

Methods

To solve the diverse set of problems encountered in battery management, a
set of model structures and estimation algorithms are used. This chapter is
mainly aimed at readers unfamiliar with the field of automatic control, and
provides an introduction to the methods used and why one method may be
preferred over the other for some specific tasks.

3.1 Research approach

The work presented here has been done in close collaboration with industry
and, hence, most investigations were derived from actual problems found in
battery management system development. The typical approach has been to
start by analysing a problem and reviewing existing research on the topic.
Laboratory experiments on cell level that reveals specific aspects of the
problem were then performed to use for model and algorithm development.
Final results were, when applicable, evaluated in a rapid prototyping test
rig on physical cells.

3.2 Modelling

The starting-point for most methods for analysis and synthesis in automatic
control is that the system is described in some generic format. Depending
on the task, different formulations are preferred and in this work three types
of models have been used:

e State-space models for synthesis of state estimators
e Input-output models for synthesis of parameter estimators

e Transfer function models for analysis
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All these models can be described in both continuous and in discrete time.
In the following text, we will refer to these generic models as model struc-
tures.

3.2.1 State-space models

State-space models are common in control and estimation synthesis both
for linear and nonlinear systems. They collect a system of first order or-
dinary differential equations (ODE) into a generic structure. Dynamic, as
opposed to static, systems have a behaviour that depends on its history.
This memory of the system is contained in the state vector z. In this work,
focus is most often on systems described in discrete time, where the most
general form used can be written as:

Tr1 = f (T, up, Wi, Ok)

yr = h (@, ug, vg, 0k) (3.2)

where z € R™ are the states, u € R™ are the inputs, y € R™ are the
outputs, § € R" are the parameters, w € R™ and v € R™ are unmea-
surable disturbances, and f and g are (non)linear functions of appropriate
dimensions.

Batteries can often be described as linear parameter varying systems
(LPV) by the generic model

g1 = A(p)zr + B(p)ug + wy
yr = C(p)zr + D(p)ug + vy,

where p is a scheduling parameter (possibly a vector). Then f and ¢ in (3.1-
3.2) are consequently defined by matrices A, B, C, and D of appropriate
dimensions and parametrised by 6. The rest of the variables are as defined
above.

State-space models are the most common models for use in state esti-
mators. However, they can also be used for parameter estimation, and then
it is common to model the parameters as random walks, i.e.

9kz+1 = 9k + €L, (35)
where e ~ N(0,0y4) is Gaussian white noise with standard deviation oy.

The parameters can then be redefined as additional states in the models
above.
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3.2.2 Linear input-output models

Linear input-output (IO) models are particularly useful for estimating pa-
rameters. The reason is that the parameters describing the system enter lin-
early and they can therefore be estimated using, for instance, least-squares
techniques. Identification of IO models use sampled data from the system,
but the models and parameters estimated can be for systems described in
both continuous and discrete time.

The output of a linear 10 model without noise can be described by the
regression model

y(k) = 07 k), (3.6)
where p € R™ is the regression vector.
Remark. The notation y, = y(k) is used interchangeably throughout this
work to enhance readability.

The model (3.6) is often extended with a noise model. There are several
alternatives, but here only ARX and ARMAX models are considered for
on-line estimation of battery model parameters. For a thorough description
of linear IO models, the reader is referred to [37].

ARX models

Auto-regressive models with exogenous inputs (ARX) are described by
A(q)y(k) = B(q)u(k) + e(k), (3.7)
where ¢ is the time-shift operator (¢-™u(k) = u(k — m)), and
Alg) =14 ag ™+ +ang ™
B(q) =bo+big '+ +bpqg ™

are polynomials with parameters a; and b;, respectively.
Equations (3.7-3.9) can be rewritten as

y(k) = [1 = Ag)ly(k) + B(q)u(k) + e(k), (3.10)
or as the linear regression
y(k) = O parx(k) + e(k) (3.11)
with
—ay y(k - 1)
o Qn, _ y<k - na)
earx - bo a'nd Qparx - u(k) Y
| by, | _u(k — nb)_
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where Ouy, Parx € R™ ™™ T are the parameter and regression vectors, re-
spectively.

ARMAX models

Auto-regressive moving average models with exogenous inputs (ARMAX)
use a noise model according to

A(q)y(k) = B(q)u(k) + C(q)e(k), (3.12)
where
Alg) =1+ ag "+ +ang ™

B(q) = by + blq_l 4+t ban_nb
Clg)=1+cig "+ + g™

As for the ARX model, this can be rewritten as
y(k) = [1 = A(g)ly(k) + B(q)u(k) + C(q)e(k),

where we notice that this can no longer be described by a linear regression
since the sequence e(k) is unknown. One way to overcome this problem is
to approximate e(k) by the prediction error £(k) = y(k) — g(k) and write
this as

g(k) = [1 = A(g)ly(k) + Blq)u(k) + [C(q) — 1e(k), (3.13)
which can be written as a pseudo-linear regression
:I.](k) = eg;max(parmax(k) (314>
with
[ —ay | [y(k—1)7
—an, y(k —nq)
bo U(k)
earrnax = and Parmax = ) (315)
Do, u(k — nyp)
C1 8(]{3 — 1)
| ¢, L e(k —n.) |

where Oarmaxs Parmax € R Tt are the parameter and regression vec-
tors, respectively.

An ARMAX model is, for example, proposed for estimating the dynam-
ics of the battery model in Paper 3.
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3.2.3 Transfer function models

Analysis of linear closed loop systems can often be conducted using transfer
function models. In this work, only transfer functions in continuous time
are used, which can be formulated as

where s is the Laplace variable, Y (s) = L{y(t)}, U(s) = L{u(t)}, and

G(s) bo +b1s+ -+ + by, s™
S =
1+as+...a,,s5"

where a; and b; are system parameters.

More information on transfer function models can be found in any text-
book on linear systems, e.g. [37]. The battery is described by a transfer
function when analysing closed loop properties for power prediction in Pa-
per 4.

3.3 State and parameter estimation

In general, all algorithms for state and parameter estimation considered here
are based on using the difference between measured and estimated /predicted
output of the system to find states and/or parameters that are optimal in
some sense. Depending on the assumptions of the system and in what way
the solution should be optimal, the algorithms looks different. In some
cases the optimal solution can be found analytically, by e.g. recursive least
squares and Kalman filters for unconstrained linear systems. In other cases,
approximate solutions, such as the extended Kalman filter for unconstrained
non-linear systems, or optimization based algorithms such as moving hori-
zon estimation must be used.

3.3.1 Recursive least squares

The least squares solution to an over-determined set of equations deter-
mines the parameter vector # that minimizes the squared error between the
measured output and the output predicted by the model (3.6), i.e.

k
(k) = arg min % Z N (y(i) — @7 (0)0), (3.16)

where 0 < A < 1 is a forgetting factor introduced to weigh recent data
more than old. This minimization problem has an analytic solution that
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can be implemented as a recursive algorithm:

O(k) = O(k — 1) + K (k) (y(k;) — T (R)O(k — 1)) (3.17)
K(k) = Pk = Do(k) A+ TP — D)p(k)) " (3.18)
P(k) = (I — K(k)p" (k) P(k— 1)/, (3.19)

where K is the estimator gain and P is the covariance estimate.

In the literature, there are several versions of recursive least squares
(RLS) estimators [37, 38, 39]. By simplifications, reformulations of the
cost function or avoiding estimation of the covariance estimate, they can
be tailored to different system requirements. In this work, the regular RLS
algorithm with exponential forgetting factor (3.17)—(3.19) is used for pa-
rameter estimation in Paper 3. In the battery estimation field, RLS is also
used for parameter estimation in e.g. [40, 41].

3.3.2 Kalman filters

A common approach to state estimation is to use a Kalman filter. Although
originally for linear systems, Kalman filters can be used for non-linear sys-
tems using either extended (EKF) or unscented (UKF) transformations,
both of which will be introduced shortly. The basic idea of the Kalman
filter is to use a model of the system to provide an a priori estimate of the
states and then correct this estimate using measured data of the process out-
put. Given that the model structure and parameters are correct and that
the noise covariance probability distributions are white and Gaussian, the
Kalman filter is the optimal estimator, in the sense that it is unbiased and
minimizes the estimation error variance [39]. Also in cases when the noises
are not Gaussian, the Kalman filter will still be the linear estimator with
minimum variance. However, the performance of the Kalman filter cannot
be guaranteed if these prerequisites are not met. An illustrative example of
this was presented by Ljung in [42], where the EKF is used for parameter
estimation. Recommended reading for Kalman filters are otherwise [43, 44].

Extended Kalman filter

The EKF treats the non-linearities by linearising the state space represen-
tation (3.1-3.2) at each time step. It is a two-stage procedure where the
a priori state (27) and covariance (P~) estimates are first calculated us-
ing the state-space model. Based on the predicted and measured system
output, the estimates are then corrected by the Kalman gain K to form
the a posteriori estimates, 2+ and P*. This can be formed in a recursive
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algorithm according to

Ty = [ (&1, up1, W) (3.20)
Pr = A PF AT 4+ Q (3.21)
O = h (), , ur, Or) (3.22)
Ky = P CL (6P O+ R] (3.23)
Ty =&y + K (yr — Or) (3.24)
b= (I - Kkék> Py (3.25)

where () € R" and R € R™ are the noise covariance matrices for the model
(wg) and measurements (vg), respectively, and can be regarded as tuning
matrices that weigh uncertainties in the model to those of the measurements,
while Ak and C’k are the Jacobian matrices

N af (xkyukhwk)

A Oh (zp, ug,v
Ck _ ( ky Wk k’) |x .
&vk =Tk

It should be noted that implementing the EKF according to Eq. (3.20—
3.25) may result in an algorithm with poor numerical properties because
of recursive propagation of the error covariances from one time-step to the
next [45]. To improve the numerical properties, there are several versions
of the Kalman filter that propagates the square root of the error covariance
instead. Algebraically the implementations are equivalent, but the numeri-
cal properties can be significantly improved. For a description and in-depth
derivation of the square-root algorithm, the reader is referred to [46].

Uncented Kalman filter

The UKF uses a similar predict/correct procedure as the EKF, but rather
than using the Jacobians to linearise the system, the UKF lets several per-
turbed versions of the state vector, called sigma points, pass the non-linear
system (3.1-3.2). The estimated state is then calculated as a weighted av-
erage of the outputs for each sigma-point. For strong non-linearities, the
UKF theoretically provides a better approximation of the output probabil-
ity distribution than the EKF [44].

The recursive algorithm is more complex than the EKF. First, an aug-
mented state vector 2 and an augmented covariance matrix P are defined
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by
2 = [T, wl,of]" e R
Py = diag (P, Q, R) € R"™",

where n = 2n, + n,. Next, the matrix of sigma points y € R™?"*1 ig
updated in each time-step by

a,+ __ ~a,+ sat a2+ ~a+ a,+
Xko1 = {xk—hxk—l +\ B T = Pk—l} :

Note that the rows are related to the augmented state vector and each
column corresponds to one sigma point where the state vector is shifted
based on the covariance estimate P{". By indexing the columns as Xk,is We
define Xy ;, Xj;, and xj ; as the rows of column ¢ that are related to z, w,
and v, respectively. Then the update of the state and covariance estimates
are given by

[ 7+ 7+
Xi,i =f (Xi_Lpuk—l,XZJ_Li)

2n
S (m) Z,—
T = Zo‘i Xk,i
i=0

2n
— ( ) T ot y ~—\T
Py = Zo‘ic (Xiz _xk) (Xzz _xk) :
i=0
An estimate of the output is calculated from the predicted state using the

same weights as for the states
Viei=h (Xiji_, U, ijlz)
2n
U = Z Oégm)yk,r
=0
The gain of the estimator is

2n
Sin =D o Voo — i) Vi — e)"
=0

2n

. T o= ~ T

Saoe = 2087 (i = a) Ves — i)
i=0
- vyl
Kk = 2125 k-
Finally, the state and covariance estimates are corrected according to

Tk =2y + K (Yo — U)
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Table 3.1: Weighting parameters of the unscented Kalman filter. «, 3, and
Kk are tuning parameters.

A |a?(n+kK)—n
vl Vn+A
ag” |
o™ 1
k 2(n+A)
a(()c) ﬁ +1—-0%24+8
a'o 1
k 2(n+A)

The tuning parameters -, o™

., and agc) can be selected in different ways.
For the UKF, values according to Table 3.1 shall be selected. A thorough
background to the unscented transformation and derivation of the UKF
can be found in [44]. For SOC estimation, UKF is used in [47, 48], and in

Paper 1 it is compared to the EKF.

Tuning of Kalman filters

In theory the covariances R and @) of the EKF and UKF are determined by
the noise models. In practice they are, however, often treated as tuning pa-
rameters. Finding a tuning that provides good performance of the filter can
be a time consuming task, and therefore automatic calibration procedures
have been proposed in robot navigation applications, see [49] for EKF and
[50] for UKF. These procedures are more or less directly transferable to SOC
estimation, and they are also used in Paper 1 to get a fair comparison of
the estimators. In the battery SOC estimation field, there were no previous
examples of automatic tuning of Kalman filters found in a literature review
for Paper 1, seeming that mostly a trial-and-error approach had been used.

3.3.3 H filters

H, filters have close similarities to Kalman filters, as pointed out in [44].
They are, just like Kalman filters, originally derived for linear systems, but
can also be used for non-linear systems by extended [51] and unscented
[52] transformations. In the SOC estimation field, Yan et al. [53] promotes
the use of the H. filter, based on the fact that it does not require any
information on noise characteristics.

In [54], the sub-optimal H,, filtering problem is formulated as that of
finding an estimate & such that

| Lize — Le@l)3 <?

sup (3.26)

roweHzveHs [1T0 = ol v + [[well3 + [lvell3
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for some predefined error bound v and state weight matrix L. A solution
to the problem is given by the recursion

jlz :f (i.z_fpuk—hwk—l)
I 0 Ch R

Ry = {o e [} + [ LJ P1 [CFLT]

P =A, P AT + W, W

Ch

— AP [CT LT Ry { L

] P, AT
N PN R R —1
K, =P,CT [vkv,f + Ckpkc,{]

For the solution to actually solve the sub-optimal H, filtering problem, the
following condition must also hold:

P+ CFCy — 4 2LE Ly, > 0. (3.27)

The H.-filter is compared to UKF and EKF in Paper 1.

3.3.4 Moving horizon estimation

Moving horizon estimation (MHE) is an optimization-based method that
uses a receding time-horizon covering a limited number of past measure-
ments. A dynamic optimization problem is repeatedly solved on-line in each
time-step. Disturbances in the form of unknown and slowly time-varying
parameters can be estimated along with the states in a consistent way by
adding them as single degrees of freedom to the optimization problem. Let-
ting k be present time, N be the time horizon, and defining L = k — N,
the MHE considering states (x), parameters (6) and state noise (w) can be
described by

. xr — ITp,
min =
xj,wjﬁ Q_QL

2 k k-1
2 2
+ 3 s = bl up, O+ > fwill,,
Pt =L i=L
S.t. 1:j+1:f(a:j,uj,0)+wj, ]:L,,k—l
0ecP,xe X,w;eW, j=0L,...k,
where the notation ||a||3 = a¥Aa is used, Z and @, are initial estimates
based on the previous iteration, P, € R"™*" R € R, and () € R™ are

positive definite weighting matrices, and P, X', and VW define constraints
on parameters, states, and noise, respectively.
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There are three parts of the objective function, (i) the arrival cost, (ii)
the prediction error, and (iii) the state noise, all having their individual
weighting matrices. The prediction error and state noise can be given static
weights while the arrival cost is used to sum up information prior to the
present time window and must therefore be updated in each iteration. In
general, the exact arrival cost cannot be calculated but there are numerous
approximations available (see e.g. [55, 56]). One strategy for computing
an approximate arrival cost is to use a first-order Taylor expansion around
the trajectory of past estimates. This is equivalent to applying an EKF
recursion for the covariance update [57, 58].

Moving horizon estimation is used in Paper 5 for joint estimation of
parameters and states.

3.3.5 Other observers

There are several other observers that can be used for the estimation task.
In this work, also Luenberger and sliding mode observers were considered,
but never used in any of the appended papers.

Luenberger observer

The overall structure of the Luenberger observer is similar to that of the
Kalman filter and its background is also from linear systems theory. The
main difference compared to the Kalman filter is the way the gain is chosen.
In the Kalman filter it is the statistically optimal balance of the model and
observation in terms of the noise covariances. The Luenberger observer
choose the gain based on desired closed-loop properties of the error dynamics
instead, i.e. the difference between measured and predicted output. Hu
et al. [59] implements an adaptive Luenberger observer for battery SOC
estimation that manages to handle both initial errors and noise.

Sliding mode observer

As described by Misawa and Hedrick in [60], sliding mode observers are
basically Luenberger observers and, hence, does not rely on perfect models
or Gaussian noise processes. To improve robustness to modelling errors and
uncertainties compared to the normal Luenberger observer, the sliding mode
observer adds a switching term. Using Lyapunov theory, design parameters
of the observer are chosen so that the error dynamics are asymptotically
stable, i.e. the difference between the estimated and real states go to zero
as time goes to infinity.
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Figure 3.1: Schematics of the rapid prototyping setup used for algorithm
development. The signal flow is such that the HIL rig sends out a power
request that the cell cycler actuates. The resulting cell voltage, current,
and temperature are measured using the same sensors as in Volvo XC90 T8
vehicles and are fed back to the HIL rig.

Kim [61] presents a sliding mode observer for SOC estimation that is
within 3% accuracy compared to lab data using a simple model. Unfortu-
nately, the experiments lack robustness analysis, even though that is where
this observer design theoretically should prove its strength.

3.4 Rapid prototyping environment

A rapid prototyping environment (schematically illustrated in Figure 3.1)
was set up for testing the algorithms proposed in the upcoming chapters.
The BMS algorithms and a vehicle model are executed in real-time on a
hardware-in-the-loop (HIL) rig, which sends power requests that the cell
cycler actuates. The test object is a lithium-ion cell of NMC type used in
Volvo XC90 T8 plug-in hybrids, and it is located in a temperature chamber
where the ambient temperature can be varied between —20 and +50°C. The
current, voltage, and temperature of the cell are measured using the same
sensors as in Volvo vehicles and are sent to the HIL rig.
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Chapter 4

Battery modelling

Model-based BMS algorithms often use the current-voltage characteristics
to estimate internal states of the cell. As with all mathematical modelling
of physical systems, the correct choice of model depends on the intended
application. Aspects to consider when selecting a model for BMS are:

e Battery packs can contain hundreds of cells, each potentially requiring
their own cell model, which means that the computational load grows
rapidly with model complexity.

e To be able to track degradation effects, parameters and states should
preferably be observable from current and voltage measurements.

e The model will be used for prediction rather than simulation.

The battery models considered here can be divided into two categories;
physical models of the electro-chemistry of the cells, and empirical models
based on equivalent circuits. A short introduction to these two types of
models follows next.

4.1 Physics-based modelling

Physical models start from the reactions inside the cell, as described in
Section 2.2.1. Electrode and electrolyte potentials and concentrations are
calculated to capture cell behaviour. These models can explain internal dy-
namics of the cell, but that comes at the price of computational complexity.
Therefore, electro-chemical models are most common in off-line simulations,
where details on a low level are needed.
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Figure 4.1: Schematic figure of a lithium-ion cell with dimensions used in
the P2D model.

4.1.1 The Newman model

Most physical models of lithium-ion batteries are versions of the Newman
model [62], sometimes called pseudo 2D (P2D) since it contains one dimen-
sion for the particle and one for the electrolyte. Figure 4.1 illustrates a
schematic view of the cell as defined in the P2D model. The model consists
of a set of partial differential equations (PDEs) and algebraic equation for
each electrode [11, 62, 63, 64].

Assuming that the particles are homogeneous and that the transport
of ions follow Fick’s law of diffusion, conservation of lithium in solid phase

gives
% D, 0 <r28cs)

ot rzor\ or
where ¢,(t,r, x) is the solid phase lithium concentration, r is the particle
radial distance, and D; is the solid phase diffusion coefficient.
Analogous, conservation of lithium in electrolyte phase gives

o 0 (.0 i
o T or <D60x06> -t

where €, is the electrolyte volume fraction, c.(t, z) is the electrolyte lithium
concentration, D, is the electrolyte ionic diffusion coefficient, ¢, is the
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4.1. PHYSICS-BASED MODELLING

lithium ion transference number, j(¢, z) is the volumetric transfer current
density, and F' is the Faraday’s constant.
Charge balance in the solid phase yields

0 0 .
7 (Ugﬁbs) —jf =0,

where o is the electrode electronic conductivity and ¢s(t,z) is the solid
phase potential. The boundary condition is linked to the cell current i as
0 0 i(t)
—va st>0 =035 staL = T
o bu(t,0) =0 6,1, 1) = 1
where A is the electrode surface area.
Charge balance in the electrolyte phase gives

IR Y TR
ox Hax © ox K;Dﬁx 1 Ce Jr =5

where ¢.(t, x) is the electrolyte potential, k is the electrolyte ionic conduc-
tivity, and kp is the electrolyte diffusional conductivity.

The current density is a function of over-potential, 7(¢,z), and is de-
scribed by the Butler-Volmer equation

F
= 2a.igsinh 7
Jf asloSin <_2RT77>

where a; is the solid/electrolyte interface area, ig is exchange current, R
is the universal gas constant, and T is absolute temperature. The over-
potential is described by

Rsei .
n:¢5_¢6_UOCp_a_jfa (4.1)
where Uyep(cs(t, 75, z)) is the open circuit potential, ry is the particle radius,
and Ry is the solid /electrolyte film resistance.
The terminal voltage of the cell can then be described by the potential
difference between the electrodes as

o(t) = ¢s(t, L) — ¢(t,0). (4.2)

More information about the above equations together with the complete
set of boundary conditions can be found in [64, 65].
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4.1.2 Single particle models

Single particle models (SPM) are simplifications to the P2D model to ad-
dress the high computational load. They neglect current distribution in the
electrodes as well as concentration gradients in the electrolyte, which means
that all particles in one electrode behave in the same way. Thus, each elec-
trode can be represented by one single, spherical particle. Several versions
of the SPM have been proposed for SOC estimation (see e.g. [11, 63, 66, 67]).
However, even if SPMs are simplifications of the underlying physics, they
are still described by systems of non-linear PDEs, and for use in on-line ap-
plications, further simplifications are needed. Several different model order
reduction techniques have been suggested in the literature [68, 69, 70, 71].
Usually these techniques manages to reduce the models down to ODEs with
four to six states while maintaining reasonable accuracy. Compared to an
equivalent circuit model, which often contains only two states, trade-off be-
tween accuracy and complexity must, however, still be assessed. Also, the
combination of estimating parameters and states together may pose a prob-
lem since they model individual electrodes, while measurement information
is aggregated to the cell (i.e. difference between electrodes).

4.2 Empirical modelling

Empirical models aims to mimic the current—voltage characteristics of the
battery as described in Section 2.2.3. One of the most commonly used mod-
els is the equivalent circuit model (ECM) that uses electrical components
such as resistors and capacitors to describe the relationship between current
and voltage in a battery. There are several versions of the equivalent circuit
model presented in the literature. In most cases, the model will be based on
a circuit like the one in Figure 4.2. Sometimes incorporating more RC pairs
in series and sometimes non-linearities, such as hysteresis. The parameters
in the models may be varying with SOC, temperature and current.

One drawback with this type of “grey-box” models is that the circuit
elements only have limited relation to the physical reactions inside the cell.
This may limit the validity of the model in applications far from equilibrium,
such as extreme temperatures and currents. The benefit is their simple
structure, which means that they simulate fast and that their parameters
are easier to estimate on-line than for electrochemical models.

There are several papers on battery modelling using equivalent circuits,
see e.g. [72, 73, 74]. In [72], twelve different equivalent circuit models are
compared to experimental data. Considering the trade-off between accu-
racy and complexity, these results show that a first-order RC model often is
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Figure 4.2: Thevenin equivalent circuit model with n RC-pairs and hystere-
sis.

sufficient. It should be noted that these results are mainly for +22°C. Our
work has verified these results for room temperature, but at colder temper-
atures, more advanced models were needed to handle slower relaxation and
non-linear effects.

4.2.1 Dual RC model

The ECM in Figure 4.3 can be described by the following state-space model
(see Section 3.2.1) in discrete time

At _At
v(k+1) e 0 0] [v(k) Bi(l—en
wk+1)| =1 0 e o |vE)]| + |Ry(1—e =) |ik) (43)
z(k+1) o o 1| L=k 1At
V(k) = hoey(2(k)) + v1(k) + va(k) + Roi(k) (4.4)

where A, is the non-linear OCV curve, and vy, v9, Ry, R1, Ry, 71 = R1C1,
and 7, = Ry are the voltages, resistances, and time constants of the RC
network, At is the sampling time, Qo is the nominal capacity and 7 is
the Coulombic efficiency (set to 1 in all coming models).

With constant parameters, the ECM is only valid for narrow operat-
ing conditions (SOC and temperature). There are different approaches to
extend the validity range. In this work, mainly two alternatives were used:

e Off-line parametrisation of the model from laboratory data using meth-
ods of system identification. Parameters are then typically stored in
look-up tables for use in the BMS (see e.g. [75, 76]).
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e On-line estimation of model parameters from current and voltage mea-
surements. The methods found in the literature can be categorised as,
model-based recursive and non-recursive methods, and data-driven
machine learning methods. A comprehensive review of methods and
references can be found in [6].

Figure 4.3: Equivalent circuit model with two RC-pairs.

4.2.2 An extended equivalent circuit model

In some cases the ECM cannot capture the voltage response of the cell.
An example is provided in Paper 5, where a cell is subject to high-power
discharge in cold temperature. To handle this problem, an extension to the
ECM is proposed that is based on comparison of the voltage model of the
ECM (4.4) with that of SPMs, which can normally be described by

v(t) = Up(e) (1) = Un(e) (8)) + (1) = 1a(t) + Roi(t),  (4.5)

where cj(,s) and ¢ are the surface concentrations in the positive and negative

electrodes, U, and U, are non-linear material dependent scalar functions
that maps the surface concentrations to potentials, 7, and 7, are over-
potentials, and Ry is a lumped resistive term.

As described in [77], a major conceptual difference between the two is
the use of open circuit voltage (OCV) based on cell average SOC versus
individual open circuit potential (OCP) based on surface concentration.
This means that the polarization voltages v; in the ECM will have to account
for the over-potentials as well as the diffusion dynamics in the solid phase.
This simplification will work well as long as the OCV curve is relatively
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linear, but in areas where the derivative changes, such as below 10% SOC in
Figure 2.2, the ECM needs to compensate for the effect by using a different
set of parameters. However, this may not be sufficient if the non-linear
effects are too strong, or if the non-linearity depends on a dynamic state.

The proposed extended ECM (XECM) instead introduces an additional
state to model the electrode surface SOC (z;) that is fed through the OCV
function. The XECM of first order can be written as

vi(k +1) = aqvi(k) + Bri(k)
Azl(k’ + 1) = OngZl( ) + 522(1{7)
2(k+1) = 2(k) + AlQponi(F)
v(k) = ey (2(k) + Az (E)) + v1(k) + Roi(k),

where the algebraic equation for surface SOC z; was introduced to enhance
readability. This model is described in more detail in Paper 5.

4.3 Thermal model

Some algorithms, such as energy estimation, also requires a thermal model
of the battery. Assuming that the heat is only generated in the resistances
of Figure 4.3, a lumped mass model can be described by

mcT'(t) = R(T(1))i(t) + Peoar(1), (4.6)

where R is the total resistance, m is the thermal mass, ¢ is the specific
heat capacity, and P, is the cooling power applied to the battery [75, 76,
78]. The total resistance will be cycle dependent and contain Ry plus some
portions of R; and Rs that depends on the load-cycle (i.e. current). For
further details on this, see Paper 6.
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Chapter 5

Adaptive battery state
estimation

The main objective of battery state estimation is to relate measurements of
current, voltage, and temperature to the cell operating window W over the
complete operating range and life-time of the battery.

This can be divided into three parts:

e Selecting a model-structure that relates measurements to internal
states of the cell.

e Parametrisation of the selected model.
e Estimation of internal states of the cell using the parametrised model.

In this chapter, an adaptive estimation system is proposed and demon-
strated on laboratory data.

5.1 Combined estimation of parameters and
states

In the context of this work, adaptive battery state estimation refers to com-
bined estimation of model parameters and states on-line during operation.
This is often handled by either joint estimation where they are estimated
in the same algorithm, or by dual estimation where the tasks are separated.

In joint estimation it is common to use state-space formulations and then
augment the state vector with the unknown parameters that are modelled
as random walks, i.e.

|:$lc+1:| _ [f(ffk,uk,@k)} N [ka}
9k+1 O, We '
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Figure 5.1: Overview of the dual estimator proposed in this thesis. The
parameters Ry, 75 and () are not estimated on-line in the upcoming tests
and are therefore simply stated as “remaining parameters”.

The algorithms presented in Chapter 3.3 can then be applied to estimate
the augmented state vector. The main benefit of joint estimation is that it is
easy to implement since it only involves adding the unknown parameters to
the states. Joint estimation has been proposed in the literature for battery
estimation by e.g. [79, 80, 81]. In practice there are several pitfalls to
consider when using this approach. During the course of this work it was
found that the combination of uncertainties in model-structure, parameters,
and states requires accurate initial values and slow adaptation to guarantee
convergence of the joint estimator. The main reasons identified were that

e parameters and states vary on very different time-scales.
e excitation requirements of the parameters and states are not the same.

In Paper 5, MHE is used for joint estimation of the extended ECM. The
algorithm is able to handle the task for the purpose of the article, but future
work is proposed to separate estimation of parameters and states for the
reasons just mentioned.

In dual estimation the parameters and states are estimated by differ-
ent algorithms. The main benefits are that tailored algorithms, excitation
conditions, and sampling-times can be used to attack different properties of
each sub-problem. Based on the results of Papers 1 and 3, the algorithm
system illustrated in Figure 5.1 is proposed. It is based on the dual RC
model of Section 4.2.1 and all included parts will be further described in
the upcoming sections.
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Figure 5.2: Illustration of how parameter errors impacts voltage predic-
tion errors for of the ECM. Note that (),,m dominates the low frequencies
while Ry dominates for high frequencies. R, and 7 dominate in the middle
frequency range if the error in Ry is small. Finally, Ry and 75 are only
dominant if all other errors are small.

5.2 Parameter estimation

Parameter estimation is related to tracking battery characteristics on-line.
This work focus on model-based recursive methods using the ECM (4.3-4.4)
with parameters Ry, Ry, 71, Rs, 7 and Quom. Some common algorithms
used in the literature are the Recursive Least Squares (RLS) [40, 41], the
Kalman filter [82, 83] or parameter adaptation laws based on Lyapunov
theory [84].

Figure 5.2 illustrates how the model parameters impacts voltage predic-
tion by plotting |F(s) — F'(s)|, where

_ K 1%1 ]%2
F(S) N (Qnoms + 1 + 7118 + 1 + 728 - RO) I(S) (51)

is a transfer function version of the linearised ECM, & is the derivative of
the OCV curve, and F'is the corresponding transfer function where one of
the parameters is set incorrectly.

First, it can be noted that errors in Ry are visible for all frequencies,
and totally dominant for high frequencies, while Q.o dominates at lower
frequencies. For the parameters related to R, and 7; we see that they are
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dominating in the middle frequency range, but only if there are no errors in
Ry. Finally, note that R, and 75 are not dominant in any region, unless all
other parameters are correct. These observations together with the analysis
found in Paper 3 motivates a division of the estimation task into separate
estimators, as described next.

Estimation of R,

Accurate estimation of Ry is crucial for SOC estimation (and for capability
estimations in the next chapter). The good news is that Ry turns out to be
relatively easy to estimate based on the observation that (4.4) for sampling
instants £ — 1 and k are

U(k’ — 1) = 'Uoc(k — 1) + Ul(k — 1) + Ug(k’ — 1) + R()Z(k’ — 1)
v(k) = voc(k) + vi(k) + va(k) + Roi(k),

where vy = hoey(2(k)). If the sampling-time is short enough, v,., v, and
v Temains approximately constant and therefore

Av(k) ~ RoAi(k),

with Av(k) = v(k) —v(k — 1) and Ai(k) = i(k) —i(k — 1).
The RLS algorithm (3.17-3.19) with exponential forgetting factor is pro-
posed for estimation of Ry based on results presented in Paper 3.

Estimation of R; and 7

Accurate estimation of Ry and 71 is important for model accuracy in use-
cases where significant polarisation of the cell is expected (see Paper 6,
where R; contribution to overall resistance is investigated). Typical exam-
ples are during charging and in depleting drive-cycles.

R, and 7 affects the polarization voltage v;. Since the estimation of the
resistance Ry assumed that the sampling-time was short enough to consider
vy constant, it cannot be estimated in the same algorithm as R; and 7.
The time-constant 7y is typically in the order of 20-40s for the cells used in
this work, and a rule of thumb is to sample at 10 times per the expected
dynamics (see [37]). Thereby a sampling-time of ~ 2 — 4s is suggested for
estimation of R; and 7.

A negative side-effect of separating the estimation of R; and 7 from
that of Ry is that uncertainties in both Ry and v,. may impact perfor-
mance. Especially errors in v,. can be interpreted as a long time-constant.
To improve accuracy and robustness an ARMAX model together with an
adaptive Kalman filter, which was found to be less sensitive to excitation
than other tested algorithms, is proposed in Paper 3.
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Estimation of Ry and 7

When the dual RC model is used also Ry and 75 are needed. However, they
turn out to be hard to estimate robustly on-line using recursive algorithms.
The main reason is that 7 found in off-line parametrisation is in the order
of 100-200s, and the effect is therefore hard to distinguish from changes
in SOC. Since the impact of Ry and 75 on other algorithms was found to
be minor they were parametrised off-line and stored in look-up tables over
SOC and temperature.

Estimation of (),on

The capacity of the battery must also be tracked since it changes with
ageing. For this task existing literature was considered sufficient and there
were no additional results derived in the thesis work. The simplest concept
(see e.g. [85]) is to use Coulomb counting

1 t
0 /0 i(T)dr,

z(t) = 2(0) +

which can be rewritten as

fg i(T)dr
z(t) — z(0)

to get a measurement of the capacity. Here it is important to use SOC
measured from the OCV rather than estimated SOC. Since capacity is the
most important parameter for SOC estimation, the combined parameter
and state estimator may otherwise fail to converge. The measured capacity
can be corrupted by noise due to the integration of a noisy current over
a possibly long period of time. To improve accuracy, a Kalman filter can
be used to estimate capacity based on several measurements. There are
also more sophisticated capacity estimators proposed in the literature (see
e.g. [86, 87, 88]).

Qnom =

5.3 State-of-charge estimation

Tracking the cell SOC on-line is a well-covered topic of battery management
in the literature. Some examples of proposed algorithms are EKF [83],
UKF [47], Luenberger Observers [59], Sliding Mode Observers [61], and H,
observers [53].

The difficulty in SOC estimation is strongly related to the OCV curve
of the cell, since a weak correlation between SOC and voltage leads to
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poor observability. As an example, the flat OCV of LFP cells depicted in
Figure 2.2 makes them significantly more difficult to track than NMC cells.
The performances of EKF, UKF, and H,, are compared in a simulation
study in Paper 1, which shows that the appropriate choice of observer al-
gorithm depends on both cell chemistry and intended vehicle application.
The EKF provides a good compromise between accuracy and complexity,
and is therefore used for SOC estimation in the rest of the thesis. Klintberg
et al. [89] also confirmed that the EKF provides close to optimal results for
NMC cells modelled as ECMs by studying the Cramer-Rao lower bound.

5.4 State-of-health estimation

SOH is normally defined as the ratio of capacity and/or resistance of an
aged cell compared to a new cell. Based on the definitions of Section 2.1,
the capacity remains relatively unaffected by operating conditions and the
approach to capacity estimation presented in Section 5.2 can therefore be
used. For resistance, however, the effect of operating conditions (particu-
larly temperature) can be significantly larger than the changes due to age-
ing, and these two effects must therefore be distinguished from one another.
Variations with age are, typically, much slower than changes with operat-
ing conditions [19], which motivates handling these two types of variations
separately.

Handling temperature dependency of resistance

Parameter variations due to operating conditions can be mapped in look-up
tables [75, 76, 82, 90]. As the battery ages, these look-up tables must then
be updated to reflect the changes in characteristics. It is difficult to find
algorithms for updating look-up tables in the battery community. In other
fields there have been previous work on updating look-up tables at operating
points close to the present operating conditions using Kalman filters [91, 92]
and recursive least squares [93]. This means that the parameter estimate in
operating points that have not been visited for a long time may be far from
the true value, which can cause problems. As an example, under-estimating
the resistance of the battery leads to errors in the estimation of available
power, which in turn may result in problems starting the vehicle [94].

In Paper 2, a novel use of the Kalman filter for updating complete look-
up tables based on measurement information in the currently active oper-
ating conditions is presented. In particular this was applied to the mapping
of Ry w.r.t. temperature. The proposed method is, however, more general,
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and was in later work extended to two-dimensions and applied to adapt the
OCV w.r.t. SOC and age [95].

5.5 Coordinating dual estimators

To improve robustness, the dual estimators for parameters and states are
coordinated based on the following heuristics about the prediction error of
the adaptive model:

e Errors in different parameters have different effects over the frequency
range, where Ry dominates in high frequencies, R; and 7 in mid
frequencies, and SOC in the low frequency range, see Figure 5.2.

e The model should be correct after some time with low current, since
the polarization voltages converges to zero and SOC thereby can be
updated from the OCV.

These observations are used to automatically recalibrate the estimators.
Future work is needed to formalize this procedure and prove properties of
the dual estimator.

5.6 Verification

The proposed dual estimator was implemented in Simulink and tested on
real cells using a rapid prototyping environment (see Section 3.4). A test
cycle from typical usage of a plug-in hybrid vehicle was used, where the
battery starts from fully charged (~90% SOC) and is then discharged down
to approximately 15% SOC. In the literature, SOC estimation accuracy
is often evaluated by studying convergence from an initial error. This is,
however, not a probable case in a real battery application since SOC can
be measured by OCV when the cell is at rest. The tests therefore focus
on handling uncertain parameters of the battery model instead. All pa-
rameters were given initial errors, and Ry, Ry, and 7 were then estimated
on-line together with SOC. Test cases were run for several temperatures,
but here only results from —10 to +25°C are reported. The results, which
are previously unpublished, are promising, with SOC estimation accuracy
within 2% compared to reference SOC calculated using sensors in laboratory
equipment.

The first test, illustrated in Figure 5.3-5.4, examines accuracy of the
SOC estimation when the capacity is uncertain, which means that SOC
estimated by Coulomb counting will drift over time. Three tests are shown
where the capacity is set to Quom (i.e. nominal capacity determined from
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reference test), 0.95Qnom, and 1.05Q,om respectively. Note that noise on
the BMS current sensor causes additional drift in the Coulomb counting
compared to the laboratory equipment, which is most visible in Figure 5.3
where also the use of Qo results in over 4% error in Coulomb counting.
The EKF still manages to correct SOC, and the error compared to the
reference is within £2% for all cases in +25°C. In —10°C, the results are
similar but the maximum error is slightly larger than 2% at some occasions.

Figure 5.5-5.6 show the adaptation of Ry, Ry, and 7, from three differ-
ent starting values. The performance is evaluated in terms of the voltage
prediction error, which is typically within £50mV at +25°C, while the ac-
curacy deteriorates in the low SOC region, which can be seen in the test at
—10°C. Note that the larger spikes in the prediction error come from incon-
sistencies in the data that were intentionally introduced to test robustness
of the algorithms. It can be seen that Ry rapidly converges to the same
values for all cases. Also R; and 7, seems to converge to the same value,
but the adaptation is not fast enough to converge during the cycle.

Summarizing the results, it can be concluded that the SOC accuracy is
consistent also in cases with limited prior information about cell character-
istics (i.e cell model parameters). Similar results should thus be possible
for the entire battery life-time.
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Figure 5.3: SOC estimation accuracy at +25°Cwith error in capacity. Ref-
erence SOC is calculated by Coulomb counting using laboratory equipment,
while the “Coulomb” signal is integration of the current measured by the

BMS sensor.
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Figure 5.5: Parameter adaptation for three different parameter initialization
at +25°C. It can be seen that Ry rapidly converges to the same value for all
initialization values. Also R; and 71 seem to converge to the same values.
The adaptation is, however, not fast enough to converge during the cycle,
but they all approach the same value slowly. Note the “spikes” in the voltage
prediction error. They are caused by inconsistencies in the data that were
intentionally added to test robustness to sensor errors.
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Chapter 6

Estimating battery capability

It is now time to address Question 1, which boils down to estimating the
battery capability to deliver power and energy without violating constraints
set by the operating window W. Optimal operation of the electrified vehicle
requires information about the battery capability in different time-scales,
from short-term maximum power (typically seconds) up to remaining energy
that is available until the battery is drained. From the adaptive battery
model of the previous chapter, analytic expressions can be derived for both
energy and power estimations.

6.1 Estimating available energy

In the literature, energy estimation is often treated similarly to SOC esti-
mation (see e.g. [96, 97, 98]). By comparing the energy stored in the battery
at present time to the energy of a fully charged battery, the state-of-energy
(SOE) is estimated. When considering not only the energy stored in the
battery, but how much energy that can actually be used by the vehicle
there is, however, a major difference between SOC and energy estimation
that is not handled explicitly in the existing SOE formulations. SOC and
SOE only depends on the present conditions while the available energy also
depends on the future driving profile. To see this, start by noting that the
energy delivered from the battery over a drive cycle can be calculated by
integrating the power, i.e.

Ean(t) = /t " (F)i(r)dr, (6.1)

where t,q is the time when the battery is fully discharged (see Section 2.1).
To simplify expressions, we discard the dynamics of the polarization and
consider a purely ohmic battery model

v(t) = voe(t) + R(T(2))i(t), (6.2)
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CHAPTER 6. ESTIMATING BATTERY CAPABILITY

where R(T'(t)) is a temperature dependent resistive term (see Paper 6 for
how this resistance can be derived from an ECM). The power integral can
then be rewritten

Foan(t) ~ /t " e (2(P))i(7) + R(T)i2(r)dr

tend tend
_ / voe(P)imdr+ [ RT)E(F)dr (6.3)
Enom(®) Eiow(?)

where F, ., is the energy stored in the battery, and Ej. is a resistive loss-
term.

Elom can be solved by parameter substitution and depends only on bat-
tery capacity and SOC. Ejs on the other hand depends on the future drive
profile. A common solution in the literature to overcome the problem of
dependency on future driving profile for SOE is to implicitly include it by
using 1C capacity, Qic (see Section 2.1). Q¢ depends on both tempera-
ture and current, which means that the available energy can be estimated,
but only for well defined cycles. It will, however, not handle cases when
the temperature changes. To overcome this, an energy estimation based on
solving (6.3) is presented in Paper 6, where statistical information about
the future driving profile is assumed to be known. A thermal model is then
used to handle the temperature trajectory of the battery during the cycle.

6.2 Estimating power capability

To ensure safety and durability, batteries must remain inside the operation
window W at all times. W is normally defined by bounds on voltage, cur-
rent, temperature, and SOC, and this means that the power that the battery
can provide is limited. For optimal operation of an electrified vehicle, the
BMS must give an accurate estimation of how these limitations impact the
power capability of the battery in both short (less than 2s) and long term
(~30s).

Maximum power capability

The maximum power capability, which must be considered both for charging
and discharging, is used to keep the battery inside the operating window.
It can be defined as the maximum constant power that can be handled on a
short time-horizon, typically a few second. Since power is non-linear (prod-
uct of current and voltage), the problem is often simplified by estimating
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maximum constant current rather than constant power. The short time-
horizon means that slower dynamics, such as SOC and temperature, can
usually be considered constant and thereby no predictions are needed for
them. The difficult part is instead to predict how the power is affected by
current and voltage limits.

There are several existing approaches on the topic of power estimation:

e Analytic expressions based on an equivalent circuit model (see [99,

100])
e Kalman filter based estimation (see [7, 97, 101])
e Particle filter based estimation (see [102])
e Neural networks (see [103]).

The method proposed here is based on an analytic expression and was devel-
oped in collaborative work [99]. In Paper 4 it is connected to the adaptive
model from Chapter 5 and validated on aged cells in laboratory.

Continuous power capability

A battery cannot be operated at maximum power for extended periods of
time. Firstly, due to voltage sometimes dropping rapidly at discharge, and
secondly because this puts additional stress on the cell. This means that
maximum power may have to be rapidly reduced in some cases, which may
introduce issues with drive-ability. To handle this, maximum power can be
calculated also for longer time-horizons to provide strategic information to
the energy management system of the vehicle.

Theoretically, the same function as for maximum power capability can
be used. However, there are some more problems to consider, firstly, also the
slower dynamics may become limiting (also temperature and SOC changes
during the time-horizon must be considered in the calculations). Secondly,
the models are sometimes not accurate for long discharge powers. An ex-
ample of this for high power discharge in cold temperatures is treated in
Paper 6, where an extended ECM is proposed to handle the voltage predic-
tion.

6.3 Limiting power

In addition to estimating power capability, the BMS must also limit the
power if the vehicle demands more than the battery can deliver. In the limit-
ing case, e.g. when the battery is operated at the voltage limit, a closed-loop
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Figure 6.1: Block schedule of the feedback system for power limitation.
Due to the time-delay introduced from networked controllers this loop may
become unstable if the resistance of the battery is under-estimated.

system containing several networked controllers is formed (see Figure 6.1).
The stability of the closed-loop system is examined in Paper 4, where it
is concluded that a combination of communication delays and uncertain
model parameters may impact stability of the system.
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Chapter 7

Summary of included papers

Paper 1

B. Fridholm, M. Nilsson and T. Wik, “Robustness compari-
son of battery state of charge observers for automotive appli-
cations”, 19th IFAC World Congress 2014, August 2014, Cape
Town, South Africa.

At the time of this work, several different methods to estimate SOC had
been proposed in the literature. The results were inconclusive and no thor-
ough comparison between the different methods had been done. This paper
compares the robustness of three different battery SOC estimation algo-
rithms: the Extended Kalman Filter (EKF), the Unscented Kalman Filter
(UKF) and the H.-filter. Their performance when subject to disturbances
such as parameter uncertainties, different sensor noise characteristics and
sensitivity to tuning are examined. Simulations show that the appropriate
choice of observer algorithm will depend on battery chemistry as well as on
the intended application. For batteries with a strong correlation between
SOC and OCV, the UKF is robust to disturbances such as sensor bias. The
H,-filter shows performance on par with the UKF but the variability of
the estimation errors are larger. The EKF is found to be a good all-round
choice.

Paper 2

B. Fridholm, T. Wik, and M. Nilsson, “Kalman filter for adap-
tive learning of look-up tables with application to battery ohmic
resistance estimation”, Control Engineering Practice, 48, 2016.

In on-line automotive applications, look-up tables are often used to
model non-linearities in component models that are to be valid over large

95



CHAPTER 7. SUMMARY OF INCLUDED PAPERS

operating ranges. If the component characteristics change with ageing or
wear, these look-up tables must be updated on-line. In this paper, a method
is presented where a Kalman filter is used to update the entire look-up table
based on local estimation at the current operating conditions. The method
is based on the idea that the parameter changes observed as a component
ages are caused by physical phenomena having effect over a larger part of the
operating range that may have been excited. This means that ageing pat-
terns at different operating points are correlated, and these correlations are
used to drive a random walk process that models the parameter changes over
the entire operating window. To demonstrate properties of the method, it
is applied to estimate the ohmic resistance of a lithiumion battery. In simu-
lations the complete look-up table is successfully updated without problems
of drift, even in parts of the operating range that are almost never excited.
The method is also robust to uncertainties, both in the ageing model and
in initial parameter estimates.

Paper 3

B. Fridholm, T. Wik, and M. Nilsson, “Robust recursive impedance
estimation for automotive lithium-ion batteries”, Journal of Power
Sources, 304, 2016.

Recursive algorithms, such as recursive least squares (RLS) or Kalman
filters, are commonly used in battery management systems to estimate the
electrical impedance of the battery cell. However, these algorithms can in
some cases run into problems with bias and even divergence of the esti-
mates. This article illuminates problems that can arise in online estimation
using recursive methods, and lists modifications to handle these issues. An
algorithm is also proposed that estimates the impedance by separating the
problem into two parts; one estimating the ohmic resistance with an RLS
approach, and another one where the dynamic effects are estimated using
an adaptive Kalman filter (AKF), which is novel in the battery field. The
algorithm produces robust estimates of ohmic resistance and time constant
of the battery cell in closed loop with SOC estimation, as demonstrated
both in simulations and with experimental data from a lithium-ion battery
cell.

Paper 4

B. Fridholm, T. Wik, H. Kuusisto, and A. Klintberg, “Esti-
mating power capability of aged lithium-ion batteries in presence
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of communication delays”, Journal of Power Sources, 383, 2018.

Efficient control of electrified powertrains requires accurate estimation of
the power capability of the battery for the next few seconds into the future.
When implemented in a vehicle, the power estimation is part of a control
loop that may contain several networked controllers which introduces time
delays that may jeopardize stability. In this article, we present and evaluate
an adaptive power estimation method that robustly can handle uncertain
health status and time delays. A theoretical analysis shows that stability of
the closed loop system can be lost if the resistance of the model is under-
estimated. Stability can, however, be restored by filtering the estimated
power at the expense of slightly reduced bandwidth of the signal. The
adaptive algorithm is experimentally validated in lab tests using an aged
lithium-ion cell subject to a high power load profile in temperatures from
—20 to +25°C. The upper voltage limit was set to 4.15 V and the lower
voltage limit to 2.6 V, where significant non-linearities are occurring and
the validity of the model is limited. After an initial transient when the
model parameters are adapted, the prediction accuracy is within 2% of
the actually available power.

Paper 5

B. Fridholm, T. Wik, C. Zou, and A. Klintberg, “Long-term
voltage prediction for lithium-ion batteries using an extended
equivalent circuit model and moving horizon estimation”, Sub-
mitted for publication in Journal of Power Sources.

Equivalent circuit models are commonly used for predicting the current—
voltage response in algorithms for battery management. One example is
prediction of power capability where a voltage model can be used to estimate
the maximum allowed power for different time-horizons into the future. For
long prediction horizons (e.g. 30s or more) the battery characteristics may,
however, change considerably. This is in particular a problem for high
discharge power in cold temperatures and can then result in significant
prediction errors. In this article an extended equivalent circuit model is
proposed, where states related to local state-of-charge (concentration) on
the particle surface are added. The voltage prediction accuracy is improved
compared to the regular equivalent circuit model, which is demonstrated on
laboratory data collected in temperatures ranging from —20 to +25°C.
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Paper 6

B. Fridholm, M. Hedegrd, and T. Wik, “An analytic estimate
of available battery energy considering thermal effects”, Submit-
ted for publication in Journal of Power Sources.

The electrical range of electrified vehicles is limited by the energy avail-
able from the battery system. The available energy differs from the total
energy stored in the battery due to resistive losses that are highly nonlinear
w.r.t. temperature and drawn current. This introduces a dependency on
future operating conditions that must be accounted for to get accurate es-
timates of the available energy. Based on statistical measures of the future
driving profile, together with an electro-thermal battery model, an approx-
imate analytical expression for the available energy that considers the tem-
perature trajectory of the battery is derived. The expression is evaluated
in simulations using a battery pack model with a thermal system calibrated
to laboratory data. The approximation error is within 1% for the tested
temperature range —15 to +30°C.
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Chapter 8

Concluding remarks and future
research directions

A main objective of automotive battery management is to address the trade-
off between usage and degradation. This problem was here defined as that
of translating measurement information (current, voltage, and temperature)
into estimations of battery characteristics (cell model parameters), internal
states (SOC and SOH), and energy and power capability. A system of adap-
tive algorithms was proposed to solve the on-line battery estimation problem
and was demonstrated on both laboratory cell data and in simulations.

While this thesis aims at describing major parts of the on-line battery
estimation problem, there are of course still open research questions. A first
example, directly applicable to the work here, is related to formalising the
coordination of the different estimators for parameters and SOC. Here, a
heuristic approach utilizing how parameters and states affects the frequency
response of the voltage model was proposed. Another extension is to treat
the problem of inhomogeneous battery packs, i.e. when the cells of the
pack are not equal in terms of capacity, impedance, and/or temperature.
This work was focused on cell level, and the conversion to pack poses some
questions on how to translate cell level results in a computationally efficient
way.

Here we focused mainly on cells using NMC chemistry, but should be
transferable also to other chemistries. The main prerequisite is that all al-
gorithms requires that the current-voltage characteristics can be described
sufficiently well using an equivalent circuit model (ECM). If future cell
chemistries, e.g. solid-state or lithium-sulphur, are not behaving as de-
scribed by an ECM the choice of algorithms may therefore have to be
re-evaluated.

An interesting topic, not covered in this thesis, is how data-driven meth-
ods can be used for better understanding of ageing phenomena. Today cars
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have the possibility to collect huge amounts of statistical data that can be
used for this purpose. Cloud-connected vehicles also enables parts of the
battery control problem to be handled off-line and generic strategies for this
are needed.

Electrochemical control is already a topic of the battery research field.
However, it is still difficult to utilize in practical applications due to limited
measurement information and high computational complexity. New sensor
concepts measuring chemical characteristics inside the cell together with
increased computational power can open new opportunities in this field in
the coming years. For this to be a feasible direction for the automotive
industry, the benefits provided by these methods must, however, be further
researched. An example is to quantify how much additional energy, power,
and/or life-time that can be expected using electrochemical rather than
electrical constraints.
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Abstract

This paper compares the robustness of three different bat-
tery State of Charge (SoC) estimation algorithms: the Extended
Kalman Filter (EKF), the Unscented Kalman Filter (UKF) and
the H, filter. Their performance when subject to disturbances
such as parameter uncertainties, different sensor noise charac-
teristics and sensitivity to tuning of the filter are examined.

Simulations show that the appropriate choice of observer al-
gorithm will depend on battery chemistry as well as on the in-
tended application. For batteries with a strong correlation be-
tween SoC and OCV, the UKF is robust to disturbances such as
sensor bias. The H., observer shows performance on par with
the UKF but the variability of the estimation errors are larger.
The EKF is a good all-round choice.

1 Introduction

To secure safety, reliability and performance of an electrified vehicle, it is
important to monitor the State of Charge (SoC) of the battery system [1].
Batteries are electrochemical components and there are currently no sensors
that can measure SoC directly. Instead, electrical signals, such as current
and voltages of the battery are used to estimate the SoC via some algorithm.
There are several approaches to model based SoC estimation available in
literature, such as the Extended Kalman Filter (EKF) [2], the Unscented
Kalman Filter (UKF) [3], Luenberger Observers (LO) [4], Sliding Mode
Observers (SMO) [5] and H., observers [6].

There are also several types of Li-lon batteries in production today.
These differ in electrode materials, leading to different electrical behaviour
when subject to a charging or discharging current. Due to these differences,
the model used in the observers are not necessarily the same for different
cell chemistries [7].
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Another aspect to consider when evaluating SoC estimators is that the
battery usage is different depending on vehicle application. In a Battery
Electric Vehicle (BEV), the battery is the only energy source and thus a
large part of the SoC range will be used. In a Hybrid Electric Vehicle (HEV),
the electric system is mainly used to boost power in accelerations and thus
the battery will be designed to handle large charge and discharge power,
but the used SoC range is normally rather small. A Plug-In Hybrid Electric
Vehicle (PHEV) can be used as either a BEV or HEV or any combination
in between.

Comparative studies of SoC estimators have been performed before, [§]
compare EKF, UKF and LO while [9] focus on LO compared to SMO.
The main focus in those papers are on the algorithms and implementation
aspects of the observers. In [10], the robustness of an EKF is analysed
with respect to temperature and ageing for two different battery types.
However, there has been no thorough comparison of the performance of
different observers for different battery chemistries.

This paper compares the performance of the EKF to that of the UKF
and the H filter for two different battery chemistries. Using a Monte Carlo
simulation approach, robustness to problems such as parameter uncertain-
ties, sensor noise characteristics and observer tuning is analysed. The choice
of observers is based on promising results shown in [2], [3] and [6]. These
observers can also be implemented by simple and efficient recursive algo-
rithms. In [5], Kim show the potential of the SMO. The implementation is,
however, complex compared to the chosen observers, and it is thus left out
of the evaluation.

The paper is structured as follows: Section 2 presents the test environ-
ment used in the evaluation with battery model, observers and the con-
sidered use cases. In Section 3, the robustness evaluation is presented. In
Section 4 some conclusions of the tests are drawn and the results are dis-
cussed.

2 Experiment Setup

This section describes the test setup used, i.e. the simulation environment
consisting of battery and sensor models and the evaluated observers. Also
the drive cycles used in the tests are presented, together with metrics to
evaluate the observers.
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2.1 Battery Model

The observers evaluated are all model based and require a model of the
process. The general nonlinear discrete time state space form

T = f (T, up, w)
Yk h (g, ug, vg)
WE N(’U_}k, Ew,k)
Vi N(@k, Ev,k)

is used, where A/ (7, ) denotes normally distributed noise with mean 7 and
variance X.

Two different batteries are considered in the study; one lithium iron
phosphate (LFP) and one lithium nickel manganese cobalt oxide (NMC).
Equivalent circuit models, see Figure 1, were fitted to lab data for both bat-
teries. While it was concluded that both batteries can be suitably modelled
by single RC-circuit models, the LFP battery needed a hysteresis state, uy,
to improve the fit to measured data.

ibatt +

IE "
() Uoev

Upatt

Figure 1: Equivalent circuit battery model

The model equations for both batteries are given in the following sec-
tions. For further descriptions of the models, see [2] and [7].
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NMC
In room temperature, the NMC battery can be modelled with sufficient
accuracy using the following model:
_ At _ At ]
URCk+1 = € "“FURCck + Rk <1 —e ””“> Thatt,k

niAt .
Zk+1 = 2k + C Thatt,k
n

Upattk = Uocv(2k) + Urcrk + Ro(2k)ibatt k

Here, ugrc, R and 71 = R;C are the voltage, resistance and time constant
of the RC network, At is the sampling time, ip.t and up.e are battery
current and voltage, z is the battery SoC, 7; is the Coulombic efficiency, C},
is the nominal capacity of the battery, Upcy is the open circuit voltage and
Ry is the internal resistance of the battery. Note that the circuit parameters
are varying with SoC, i.e. 7, Ry, Ry and Upcy are all functions of SoC.

LFP

The LFP battery needs an additional hysteresis state. The model used is

( _ At _ At
URCh+1 = € "“FPurckr + g [ 1—¢€ ™F | dpapep

U1 = €y g + (1 — e ™2 Up max(21)

At
Zk+1 = 2 + C Thatt,k
n

\
Ubatt k = Uocv(2k) + Urck + tnk + Ro(2k)ibatt k

where wy, is the hysteresis voltage, k is the time constant of the hysteresis
which is a function of the battery current and Uy max is the maximum hys-
teresis. For the LFP battery, also variations with respect to current and
charge/discharge are needed, and thus 7 and R; are functions of battery
current as well as SoC.

2.2 State of Charge Observers

Three SoC observers were implemented, sharing battery model and param-
eters according to Section 2.1.

Extended Kalman Filter

The EKF treats the nonlinearities by linearizing the state space represen-
tation (1) at each time step. It is a two-step procedure where the a priori
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state and covariance estimates, £~ and X, are first calculated using the

T

state space model. Based on the predicted and measured system output, the
estimates are then corrected by the Kalman gain K to form the a posteriori
estimate, 2% and 7.

A recursive algorithm suited for real-time implementation is described
by

T, =f (i‘;{_puk—h@kq)

Z:f_,k = Ak—@;{kqﬁ& + Wk—le,ng—l (2)
O = h (&, up, Uk)
Ky = 55,07 (657,07 + i
iy =&y + Ky (ye — Ur)

She= (1= KGy) 23,

where flk, Wk, C’k and Vk are the Jacobians:

N af (xk‘auk‘ywk)

Oz |mk::e;
i, = L))
R
R

Note that in (2), the Jacobians Ay and W;_; from the previous time step
are used. For more information on how to derive the EKF, the user is
referred to e.g. [2], [11] and [12].

Unscented Kalman Filter

The UKF uses a similar predict/correct procedure as the EKF, but rather
than using the Jacobians to linearize the system, the UKF lets several per-
turbed versions of the current state vector, called sigma points, pass the
nonlinear system (1). The estimated state is calculated as a weighted mean
of the result, in general providing a better approximation for strong nonlin-
earities [11].

The recursive algorithm is more complex than the EKF. First, define
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the augmented state and sigma point vectors

2 = [of i, o]

xi = o™ o) o]
State and covariance estimate predictions are given by

a,+ ~a,+ a,+
Xk 1= {xk I 1+7\/ Em 11—/ E:’i,kl}

Xiz_ =f (Xkll,w Uk—1, inl,i)
P
&, = Z o, m)X‘,’; ;
i=0
- (o) T
_ c ,— ~_ ,— ~_
Yok = Z% (Xiz - %) (Xiz - %)
i=0
An estimate of the output is calculated from the predicted state
Vi =h (Xiji_, Uk, iju)

p
Uy = Z agm)yk,i
=0

The gain of the estimator is

gk = Za ykz k) (yk,i - ?)k)T

Sk = Z ol (27 = 27) Vs — 90)"
1=0
K =55, 551

Finally, the state and covariance estimates are corrected according to

iy =1y + Ki (ye — k)
=S5 — KXy oK}

A thorough background to the unscented transformation and derivation of
the UKF can be found in [11] and [3].

Extended H,, Filter

H,, filters have close similarities to Kalman filters, as pointed out by [11].
They are just like Kalman filters for linear systems, but can also be used
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for nonlinear systems by extended [13] and unscented [14] transformations.
In the SoC estimation field, [6] promotes the use of the H, filter, based on
the fact that it does not require information on noise characteristics.
In [15], the sub-optimal H,, filtering problem is formulated as that of
finding an estimate & such that
| Zezx — Lid||3 2

sup = - <7 (3)
sowetwets [0 = Foll o + [Fwgllz + [loxl3

for some predefined error bound v and state weight matrix L. A solution
to the problem is given by the recursion

T, =f (i'z__p Ug_1, wkq)

I 0 Ch )

Ry, = {0 e [} + { LJ Py [CFLT]
Py =Ay P AT + W, W

Ci

~ AP [CF LT Ry [Lk

] P, AT
T . -1
K, =P,CT [vkv,f + BT }
B =a + Ky (ye — h (2 up, )
For the solution to actually solve the sub-optimal H, filtering problem, the
following condition must also hold:

P 4+ CFCy =y 2L Ly > 0 (4)

2.3 Filter Tuning

The H, filter is not relying on the noise covariance estimates, >, and %,,.
The only parameters chosen by the user is the state weight matrix L and
error bound 7. They must be chosen such that (4) is fulfilled, but otherwise
the estimate is rather insensitive to tuning, as will be shown later in Section
3.

The performance of the EKF and UKF observers depend on the tuning
of the covariance matrices >, and »,. To make a fair comparison, an
automatic procedure for tuning the covariance matrices was implemented.
The procedure, presented by [16], uses information from an improved set of
measurements, y*, compared to the final application. Here, it is assumed
that the improved output has a linear relation to the state, i.e. y* = Hux.
The prediction likelihood is maximized by solving the optimization problem

N

(Y, X,) = arg max Z —log 27| — 75T ; (5)
wHs~v k:()
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with Q, = HkE:g,ka,T + ¥+, where Y,« is the variance of the improved
measurement, N is the number of samples in the test and 7; = (y; — yx)-

This work is simulation based, and thus the true SoC is available to
use as y*. For the urc and wy, voltages, no individual measurements are
available. However, they are related to the SoC via circuit parameters and
the output equation, so it is possible to get an estimate of the complete
covariance matrix.

Having only the SoC as y*, (5) can be simplified. First note that Hy = 1
in this case and secondly that X, was assumed small compared to the
variance of the SoC estimate X:, and was discarded. The optimization
problem (5) then simplifies to the scalar expression

. (Y — 2)°
= E 1 . k k
(Ew, Zv) arg gﬂljagi 2 0g]27r22,k] "

which was solved using a simple search algorithm presented in [16].
The two main difficulties found using the method were:

e The result is sensitive to initial estimates. This was overcome by using
several different initial estimates.

e The improved SoC signal uses Coulomb counting, as do the estima-
tors. In order to find a trade-off between Coulomb counting and the
information from the measured cell voltage, an initial SoC estimation
error was needed.

2.4 Use Cases

Depending on the level of electrification of the target vehicle, the use of the
battery will be different. An HEV using only a small part of the SoC range
will have fewer possibilities to calibrate the estimation, while a PHEV or
BEV must handle larger SoC ranges and may also need higher precision
in their estimates. In the evaluation, two cycles were used, see Figure 2.
One for HEV where the SoC swing is approximately 10 % and one PHEV
cycle starting from a fully charged battery and then slowly draining it to
empty with a charge sustaining part in the middle. BEV is considered to
be similar to PHEV with the exception of the charge sustaining portion of
the cycle and thus no additional cycle was added for this case.

2.5 Performance Indicators

In order to assess the performance of the different observers, a set of metrics
is needed. The evaluations are based on 100 Monte Carlo simulations and
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PHEV Cycle HEV Cycle

100

801

601

SoC [%]

401

201

0 05 1 15 2 0 0.5 1 15 2 25 3 35 4
Time [h] Time [h]

(a) PHEV (b) HEV

Figure 2: Drive cycles for the PHEV and HEV use case, note the different
scaling of the y-axis

the performance indicators used must give a representative value over all
these simulations. In [17], several aspects of the choice of performance
indicators are discussed. In this evaluation, the following were selected:

Mean Absolute Percentage Error

The average error in percent was considered an appropriate measure since
it has a direct interpretation. The MAPE is given by

1 .
MAPE = WZZ’ZL]'

7j=1 =1

where M is the number of Monte Carlo simulations, N is the number of
samples in one simulation and zZ = z — £ is the SoC error in percent.

Max Percentage Error

The max error gives an important worst case measure. It is taken over all
simulations according to

MAX = max |Z; ;|
2¥)

Note that the first n samples of each simulation is left out in order to reduce
the influence of the initial error. In this work, n = 1000 seconds was used.

2.6 Limitations

There are some limitations imposed on the test setup and evaluation.
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Tuning

To reduce the time needed for tuning of the observers, the procedure pre-
sented in Section 2.3 is used to optimize the covariance matrix over the
whole SoC range. Improved estimates may be achieved using matrices that
depend on SoC. The same tuning is also used for both the HEV and PHEV

cycles.

Unmodelled Behaviour

The performance of the observers is highly dependent on the quality of
the model used. To minimize the influence of unmodelled behaviour in the
evaluation, the same model is used to provide the reference SoC as is used
in the observers.

3 Robustness Analysis

This section presents the different test cases and the results of the robustness
evaluation.

3.1 Benchmark Test

The first test uses correct model and observer parameters and only adds
Gaussian noise on the current and voltage sensors. Also, based on this
noise, an initial SoC error is imposed on the observers. The results from
this test provide an indication on the best performance that can be expected
from each observer type.

In Figure 3 the results of 100 Monte Carlo simulations are plotted. It
can be seen that the errors are small in almost all cases. Only the UKF for
the LFP battery has trouble finding the correct SoC due to the flat OCV
curve, see Figure 4a. Note that the tuning used is a compromise between
the HEV and PHEV cycles. The UKF can be tuned to produce slightly
better estimates for HEV, but that negatively impacts the performance for
PHEV case.

3.2 Model Parameter Uncertainties

The characteristics of a battery depends on several factors, e.g. SoC, tem-
perature and age. Even if the battery model parameters are calibrated
on-line, the algorithm must be robust to deviations from optimal parame-
ters in the model. In the evaluation, the reasons for a deviation in parameter
values are not considered. Instead, it is the algorithms’ ability to handle the
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Figure 3: Benchmark simulation only adding Gaussian noise with small
variance to current and voltage sensor values. Most simulated cases are
acceptable from a SoC accuracy perspective, but the UKF estimate for the
LFP battery on the HEV cycle shows an almost constant offset depending
on the initial estimation error.
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erroneous model parameters that is in focus. The parameters of the battery
model used in the observers were randomly distorted from the values used
in the reference model. Gaussian noise was also added to the measurement
signals as in the benchmark test.

For the analysis, the case where the OCV is uncertain was separated
from the other parameter variations since the impact of an erroneous OCV
can be severe.

OCYV Errors

In Figure 4, the OCV curves of the two batteries are shown. The OCV
robustness tests evaluate how the observers handle perturbations of magni-
tudes up to 0.01V compared to the nominal OCV curve.
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Figure 4: OCV curve of the evaluated batteries

In Figure 5, the results of 100 Monte Carlo simulations are shown for
all four combinations of battery and use case. In general, the impact of an
uncertain OCV curve is most severe for the NMC battery. The reason for
this is that the observers use the OCV curve more for the NMC battery
compared to the LFP battery. For the NMC battery all three estimators
show similar results, both for HEV and PHEV cycles. For the LFP battery
the UKF have trouble converging with a more or less constant estimation
error for most part of the SoC range. The impact of this is most severe on
the HEV cycle. The estimation error of the H, filter is varying a lot during
the cycle, but the convergence rate is fast also for the combination of LFP
battery and HEV cycle, which is the most difficult combination.

Parameter Errors

The parameters of the battery model used by the observer will vary with
SoC, temperature, age, etc. This test is designed to examine the ability
of the respective observer to handle uncertainties in the model parameters.
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Random perturbations are added to the resistances Ry and Ry, to the time
constant 7, and to the capacity of the battery C). The worst-case errors
are rather large in order to push the observers to the limits of what they
can handle. The results of the simulations are shown in Figure 6.

The H, observer is most sensitive to errors in model parameters for both

batteries. The differences between observers are, however, rather small for
all but the PHEV cycle with the LFP battery.

3.3 Sensor Noise

Gaussian noise is added to the sensors in all the tests in this evaluation.
Two tests were specifically designed to evaluate the robustness to erroneous
assumptions of noise characteristics, one adding bias to the current sensor
estimate and the other increasing the variance of the voltage measurement.

Current Sensor Bias

In this test, the bias of the current sensor is chosen as a normally distributed
random variable with variance chosen to give a maximum deviation over the
realizations of approximately 1A. The results are shown in Figure 7. For
the LFP battery, the H,, filter shows no drift of the estimation. However,
just as in all other cases, the variability of the estimates are large. The EKF
performance is on par with H., for the whole cycle, but is also constantly
drifting which means that it is not suitable for a long-term drive with biased
current sensor. The UKF also shows drift and is further set back by its
poor performance for the LFP battery. When the OCV curve provides the
observer with more information, like in the case of the NMC battery, the
UKF handles the bias well for both the HEV and PHEV cycles. We may
also note that the H, estimate is slightly better than the EKF estimate for
the NMC battery.

Voltage Sensor Variance

In this test, the variance of the voltage sensor is varied. The standard devi-
ation of the voltage sensor used in the simulations are 0.1-1mV, compared
to 0.3mV used in the other simulations. The main observation in this test
is the poor performance of the H, filter, particularly for the NMC battery,
see Figure 8. This makes the H, filter less suited if the uncertainty of the
voltage measurement is large. This result can seem surprising, given that
the H, filter does not use any information on the noise characteristics of
the measurement signals. For this reason, it is easy to assume that it is
robust to differences in variance. However, a closer study of the robustness
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Figure 6: Results from Monte Carlo simulations with perturbations of model
parameters.
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Figure 7: Results from Monte Carlo simulations with biased current sensor
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bound (3) using the actual values for L and ~, gives a bound that is actually
larger than the full SoC range.

3.4 Sensitivity to Observer Tuning

The EKF and UKF have covariance matrix parameters, >, and X,, that
must be tuned. Tuning is expensive and in real world applications it is
not feasible to expect that an optimal set of observer parameters is used.
For this reason it is interesting to see how sensitive the algorithms are to
perturbations in parameter tuning.

In this test, two versions of the observers using the same measurement
signals and battery models were run. A reference observer using parame-
ters from the procedure in Section 2.3 was compared to an observer where
uniformly distributed noise was added to the covariance matrices, >, and
>,. For the UKF, also the parameter controlling the distance and weight
of the sigma points was changed. For the H., observer, the L matrix was
changed in the same manner.

The results are shown in Figure 9, where the differences between the
reference observer estimates and the estimates using the perturbed covari-
ances are plotted. The results are similar for all simulations. H,, produces
the same estimate as long as the requirement of positive definitiveness of
(4) is met. For the EKF, it is mainly the convergence rate that is affected
by the tuning and the estimation converged for all simulations. The UKF
is most sensitive to tuning, and especially the tuning of the parameter con-
trolling the distance and weight of the sigma points. Also note that the
UKF estimation diverges for some simulations on the HEV cycle with the
LFP battery.

3.5 Comparison

Figure 10 provides an overview of the performance of the different observers.
The main findings are:

e For the NMC battery, with strong correlation between OCV and SoC,
the UKF outperforms the other observers. On the other hand, when
the SoC-OCV relation is flat, the UKF is not a good option since it
has convergence problems in several test cases.

e The EKF shows robust behaviour in most cases, except for biased

current sensor readings. The impact of the drift is not so obvious in
Figure 10, but is best studied in Figure 7.
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Figure 8: Results from Monte Carlo simulations with different variance on
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cycle.

94



3. ROBUSTNESS ANALYSIS

. Extended Kalman Filter: Error 5 Extended Kalman Filter: Error
X
2 0
(%)
< _5 1 1 1 J
0 0.5 1 15 2
Time [h] Time [h]
. Unscented Kalman Filter: Error Unscented Kalman Filter: Error
S
Q
[e]
0
<
Time [h] Time [h]
H_ Filter: Error H,, Filter: Error
g 5 g 5
2 o 2 0
(%) n
< g L L L I L L L )
0 0.5 1 1.5 2 0 1 2 3 4
Time [h] Time [h]
(a) LFP, PHEV (b) LFP, HEV
Extended Kalman Filter: Error Extended Kalman Filter: Error
S S
3 o 3 o
(%) n
< _5 1 1 1 J < _5 1 1 1 J
0 0.5 1 15 2 0 1 2 3 4
Time [h] Time [h]
Unscented Kalman Filter: Error Unscented Kalman Filter: Error
< 10 < 10
2 o 2 o
n %)
Q _10 1 1 1 J q _10 1 1 1 J
0 0.5 1 15 2 0 1 2 3 4
Time [h] Time [h]
H_ Filter: Error H,, Filter: Error
g ® g 5
3 o 3 o
(%) n
< g L L L S G L L L )
0 0.5 1 15 2 0 1 2 3 4
Time [h] Time [h]
(c) NMC, PHEV (d) NMC, HEV

Figure 9: Difference between reference observer estimation and estimation
using perturbed covariance matrices
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Figure 10: Comparison of the performance in the different cases. Cau-
tion should be taken when looking at the absolute values of the estimator
performance. It is the relative differences that are in focus here.

e The H,, observer performs very well considering that there are ba-
sically no tuning parameters. However, the estimates for the H
observer are somewhat unpredictable, sometimes giving large errors.

4 Conclusions

The simulation study reveals significant differences in observer performance
that can not be purely attributed to tuning of the observers. Some influence
of the tuning can, however, not be ruled out.

The general finding is that when the observability of the system is poor,
e.g. on the flat part of OCV curve for the LFP chemistry, it is important
that the observer can do controlled Coulomb counting. EKF proved to be
best at this task. When the observability is stronger, e.g. for the NMC
chemistry, the choice of observer will affect the performance. In this study,
UKF performed best for most cases, while H,, provided the most consistent
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estimates with respect to different uncertainties.

The guaranteed robustness bounds of the H, filter are too generous for

practical use in SoC estimation. However, the performance of the observer
was good in the case of good observability.
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look-up tables with application to battery
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Abstract

In online automotive applications, look-up tables are often
used to model nonlinearities in component models that are to be
valid over large operating ranges. If the component character-
istics change with ageing or wear, these look-up tables must be
updated online. Here, a method is presented where a Kalman
filter is used to update the entire look-up table based on lo-
cal estimation at the current operating conditions. The method
is based on the idea that the parameter changes observed as a
component ages are caused by physical phenomena having effect
over a larger part of the operating range than may have been
excited. This means that ageing patterns at different operating
points are correlated, and these correlations are used to drive
a random walk process that models the parameter changes. To
demonstrate properties of the method, it is applied to estimation
of the ohmic resistance of a lithium-ion battery. In simulations
the complete look-up table is successfully updated without prob-
lems of drift, even in parts of the operating range that are almost
never excited. The method is also robust to uncertainties, both
in the ageing model and in initial parameter estimates.

Keywords: Kalman filter; Parameter estimation; Automo-
tive battery; Li-ion battery; Battery resistance estimation.

1 Introduction

The characteristics of many physical systems vary with both operating con-
ditions and age. These variations typically occur on very different time-
scales and can thus be treated separately in parameter estimators. Parame-
ter variations due to operating conditions are often modelled explicitly, e.g.
using look-up tables, while ageing is typically handled by robust design or
by an adaptive scheme acting on a slower time scale.
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An example of such a system is automotive lithium-ion batteries, where
the ohmic resistance changes considerably both with temperature, State-of-
Charge, and age [1, 2, 3]. Variations with age are much slower than changes
with operating conditions [4], which motivates handling these two types of
variations separately. In the literature, there are several articles focusing
on building models valid over the operating range, using look-up tables
[5, 6, 7, 8] and elementary functions [9, 10, 11, 12]. To handle variations
due to ageing, recursive algorithms such as recursive least squares (RLS)
[13, 12] or Kalman filters [6, 14] are commonly used for online estimation
of parameters at the current operating conditions.

Within the battery community, there appears to be no published meth-
ods for updating look-up tables. Some previous work on updating look-up
tables can, however, be found in other fields using Kalman filters [15, 16]
and recursive least squares [17], though the focus is then on an update of
the look-up table only at the operating points closest to the current op-
erating conditions. This means that the parameter estimate in operating
points that have not been visited for a long time may be far from the true
value. For vehicle batteries, this can cause a problem, for instance when
cold cranking in operating conditions that have not been updated for a long
time [18].

In this work, we present a novel method for updating an entire look-up
table based on information only at the current operating conditions. This is
made possible by modelling correlations between changes in parameter val-
ues at different operating points over ageing and include them in a Kalman
filter that handles the update of the look-up table.

This article is structured such that Section 2 introduces some notation
used in the article. Section 3 presents look-up tables and Section 4 the age-
ing model. In Section 5, the proposed algorithm is presented and in Section
6, it is tested in a simulation study. Eventually, Section 7 summarizes the
results.

2 Notation

Some terms used in the paper have specific meaning that are important to
keep in mind and are therefore listed in Table 1 with a short description.
Some other important non-standard notations are listed in Table 2. Note
that subscripts k always is a time index, i.e. O = ©(k), while indices i and
J always refers to an element of the vector containing the operating points.
More standardised notation are described when introduced.
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Table 1: Abbreviations and nomenclature

BoL Beginning-of-Life, i.e. a new battery where SoH =
100%.

EoL End-of-Life, i.e. when a battery is considered use-
less for the application, SoH = 0%.

MoL Middle-of-Life, not always well defined in litera-

ture, but here we mean SoH around 50%.
Operating condition Currently active conditions. In this document, the
operating condition is always temperature.

Operating points Discretization of the operating range into a vector.

Operating range The expected range that must be handled by the
model, e.g. highest to lowest temperature.

SoC State-of-Charge.

SoH State-of-Health, in this work only defined by num-
ber of charge/discharge cycles the battery has been
exposed to.

Spilling effect Refers to when information from one operating

condition is used to update operating points re-
lated to other operating conditions.

3 Look-up tables

In Fig. 1, a one dimensional look-up table is depicted. Denote by z;, 1 =
1,...,n, the operating points defining the look-up table break-points. Let
© € R" be the corresponding vector of look-up table values, and define the
time varying index, i(k), as
i(k) =max{j=1,...,nlz; <z(k)},
where z(k) is the current operating condition, which in general is between
the break-points of the look-up table. Define the scalar value n € [0, 1] as
2(k) — i)

n(k) = ,
(k) Tiky+1(K) — @igr)

where 7 is limited to be 0 if z(k) < x; and 1 if (k) > z,,. With linear
interpolation, the current parameter value is given by (cf. Fig. 1)

07 (k) = (1 = n(k)) i) (k) + n(k) i1 (k).
In the following, the vector Cy = [c1(k),...,cn(k)] will be defined by the

1 < z(k) <z,

elements
1_77(k)7 j :Z(k>
cj(k) = n(k), j=i(k)+1
0, otherwise
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Table 2: Notation

S} Look-up table parameter vector with elements cor-
responding to the operating points. Note that it is
always the same physical parameter, e.g. ohmic re-
sistance, but at different operating points, e.g. dif-
ferent temperatures.

0; Parameter value at operating point 1.

Ok Parameter vector at current time step, i.e. short
notation for O(k).

6" Parameter value at current operating condition.

x Operating condition.

T Operating point 1.

i, J Index of operating point.

k Time index in discrete time.
n Interpolation variable.
v
)y

w, v, e Realizations of Gaussian random variables.

Covariance matrix used to model ageing.

Lbi Expected value for parameter 6;.

o; Standard deviation for parameter 6;.

pij  Correlation coefficient between parameter ¢, and
0;.
A

Oit1

/\

A

HIE

Ti—1 ZT; T Tit1

Figure 1: Example of 1-D look-up table. Here n = 0.6
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Figure 2: (Left) The ohmic resistance for three different battery cells of the
same type but at different stages of ageing, cell A is new, cell B was aged
200 cycles and cell C was aged 1900 cycles. (Right) An X-Y scatter plot
of all battery data at —10°C and +25°C together with line-fits for 10% and
70% SoC respectively. The data has been extracted from the experimental
results presented in [20].

which means that the look-up table output can be written in matrix notation
as

0" (k) = C,O(k). (1)

4 Ageing model

The ageing model proposed here builds on the idea that the changes ob-
served due to ageing has an underlying physical cause and will thus affect
the parameters values at all operating points. This leads to a long-term
trend in the changes that can be utilized to improve estimation at parts
of the look-up table where data have not been collected for a long time.
In [19], several reasons for an increase in battery impedance as the battery
ages are presented, such as conductor corrosion and loss of active electrode
surface. It is reasonable to assume that these effects are visible across the
entire operating range. Such a correlation is also observed in the data pre-
sented in [20], where data from three different cells at two stages of ageing
are shown for five different temperatures and two SoC levels. The data are
reproduced in Fig. 2, where cell A is new, cell B was aged 200 cycles and
cell C was aged 1900 cycles.

In Fig. 2, the resistance for all three batteries at two different operating
points, —10°C and 25°C, are shown in an x—y plot. It indicates strong cor-
relation between changes in parameter values at different operating points
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over ageing, where an increase in resistance at one temperature correlates
well with an increase at other temperatures.

4.1 Assumptions

In the derivation of the model used for ageing, there are three important
assumptions made:

e First, it is assumed that the parameter vector © can be seen as
a stochastic process with a multivariate normal distribution. This
means that all linear combinations of §; are normally distributed, and
consequently 6% is normally distributed.

e For the look-up table adaptation presented in the next section to work,
the break-point grid must be dense enough to consider linear interpo-
lation to be a sufficiently good approximation of the values between
the grid points. If this fails to be fulfilled, convergence problems may
occur.

e Finally, the initial parameter vector and its variance are assumed to
be known. This is often the case in battery management applications,
where the characteristics of new cells are thoroughly investigated.

4.2 Resulting ageing model

Slowly time-varying parameters can often be modelled as a random walk
process, such as

Ok +1) =0(k) + w(k), (2)

where w € R", w ~ N(0,Q) is a white Gaussian noise term that induces
the variations. @ € R™™" is a symmetric and positive definite covariance
matrix, where the diagonal entries contain the parameter variances while
correlations between parameters appear as non-zero off-diagonal entries.
The ageing model proposed in this article includes the correlations observed
in Fig. 2 in the covariance matrix Q).

Now, assume we have a set of m batteries at different stages of ageing,
from beginning-of-life (BoL) to end-of-life (EoL). Denote the parameter
vector for each battery by ©;, € R", [ = 1,...,m and form the sample
mean © € R” for all batteries at each operating point as

_ 1 &
6=—> 0. (3)
m =1
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Then the unbiased sample covariance is given by

m

1 _ _

T
=L (0-0) (0-9)". (4)
The contents of ¥ will be
o3 P120102 ... P1p010,
5 [P 03 P20 | )
P1n010n  Pan020, .. afL

where o7 is the sample variance for operating point i, and p;; is the corre-
lation coefficient between parameters at operating points ¢ and j.

5 Look-up table adaptation

Based on local estimation of the parameter value at the current operating
conditions, the goal is to construct an algorithm that produces the best
possible estimate of the parameter value at all operating points of the look-
up table. In this context, “best” means finding an unbiased estimate O of ©
with the least variance, under the model assumptions made in Section 4.1.

5.1 Method outline

The block scheme in Fig. 3 illustrates the two main parts of the look-up table
adaptation system. First, the parameter value 67 and its corresponding
error variance P are estimated under the current operating conditions using
a Kalman filter, see [6, 21, 14] for examples on how this can be done. Given
07 and P7, the look-up table adaptation block updates the parameters of
the look-up table at all operating points. It turns out that a Kalman filter
can be used also for this update. In this work, focus is on the look-up
table adaptation, and hereafter, the local parameter estimator is assumed
to provide the look-up table adaptation with the estimate (:)i and its time
varying estimation error variance Py .

5.2 Kalman filter

Using Kalman filters for parameter estimation requires a model of how
the parameters are expected to change. Assume that the slowly varying
parameters can be modelled as random walk processes, i.e.

@k+1 = @k + Wy (6)
9% = Ck@k + vg, (7)
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u(k) —> 05 .
y(k) > Local > 0*
parameter | pe Look-
estimation > up table
adaptation pP*

Figure 3: Block scheme of the combined parameter estimation and look-up
table adaptation. 6° and P? from the look-up table adaptation block are
used to initialize the local parameter estimation, which in turn provides the
look-up table adaptation with updated estimates of the parameter vector
and its variance.

where wy, ~ N (0,) is a white noise term that model the slow variations, 3
is the covariance matrix described in Section 4, vy ~ N (0, P¥) where P? is
the estimation variance of the parameter estimate at the current operating
point, and finally C} is defined by (1).

The Kalman filter equations used to update the look-up table parameter
vector § are then

Py =Pl +9% (8)
Ky = Py Cl (CoP CT+Pp) ™ (9)
6r = 0,1 + K, (éi . Ckék,l) (10)
P} =P, — K,C, P, (11)

where v is a design parameter that can be used to tune the rate of adapta-
tion.

The use of v is similar to how Kalman filters are often tuned, where
the covariance matrices are used to tune the filter to a desired behaviour
rather than reflect the uncertainties directly. In the simulations presented
here, a scalar-valued ~ was used. If more flexibility is needed, for instance
the possibility to control the rate of adaptation in the current operating
condition and “spill-over” separately, a matrix-valued ~ can be used. Note
in that case that a Hadamard product, i.e. element-wise multiplication,
must be used rather than normal matrix multiplication.

5.3 Observability analysis

For stochastic systems, observability is often defined in terms of a strict
reduction of the conditional state covariance given the outputs (see e.g.
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[22] or [23]). A necessary, but not sufficient condition for the stochastic
system to be observable is that the corresponding deterministic system is
observable.

The deterministic time-varying discrete-time system

2(k + 1) = Aga(k) (12)
y(k) = Cya(k) (13)

is said to be observable on the time frame [k, k¢] if the observability matrix

Cho

Cro+1P (ko + 1, ko)

O(ko, ky) = : (14)

Ch, 1®(ky — 1, ko)

where ®(ky — 1,ko) = Ag;—1Ak, -2+ Ay, is the transition matrix, has full
rank.

Using the random walk parameter update (6)—(7) means that the system
matrix A is the identity matrix, and consequently also the transition matrix
is the identity matrix. Observability of the system then turns into

Cho
C
Olho k)= | " (15)
Ck
and we can see that this matrix has full rank only in the special case when

the entire operating region has been covered. In all other cases, the observ-
ability matrix is rank deficient and thus the system is not observable.

f

5.4 Analysis of non-observable parameters

Since all parameters are updated by the algorithm, it is important to ex-
amine what happens to the non-observable parts of the parameter vector.
This is done by examining the one-step prediction for an example with only
two parameters. Extension to the general case is straightforward.

Assume that the parameter vector is ©p = [0y 64 ]7 and that the
current operating conditions are such that only parameter 6 ; is estimated®.
This means that Cy, =[1 0]. Let Oy_1 be the estimate at time step k — 1
having a covariance

P+ P+
P+_ — |: 11,k—1 12,k1:| ) (16)
U Pheo Pabgea

LCf. the example depicted in Fig. 2 and let data be collected for —10°C while also the
resistance value in +25°C is updated based on this information.
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Assuming that the covariance model (5) holds at time-step k, (8)—(9) be-
comes

P = [ Pl ol Pl T p120109 _ (17)

_Pl—ak—l + YP120102 PQ—g,k—l + ,.)/O.g
(P, P
= |7 Pl‘z’k} (18)
L™ 12,k 22,k
[ P +”ya2 »
Kp=|pe W0 (Pl ol + ) = 19
) -Pl—g,k—1+7p120102 ( 1,k—1 T 701 k) ( )
p- ) .
= ;W}Ghﬁ+&) : (20)
12,k

L )

which means that (10) gives the estimate of the unobserved state 6, as

A A P A A
Oo = a1 + _1—“:,: <9i - 91,1471) , (21)
P+ By

which we recognise as the conditional expectation of #, given a noisy obser-
vation of 01, i.e.

by = E {92,,6\9]%7 - é,ﬁ} . (22)

In [24], Anderson and Moore prove that this is a general property of the
Kalman filter. Furthermore, the Kalman filter is the minimum variance
estimator. This means that the proposed algorithm will produce an esti-
mate of the look-up table parameters that reflects the expected value of the
parameter vector conditioned on all previous observations, i.e.

ék:E{@k\ég, 1ek} (23)

The lack of observability will, however, come at the price of a potentially
unbounded state covariance. For parameters with weak correlation to the
currently excited operating range, the term K,CpP, in (11) is close to
zero, which in turn means that the covariance for those parameters increase
linearly according to (8). One way to avoid this problem, is to introduce
anti-windup by covariance saturation, i.e. replacing (11) with for example

P+: P];_chkpk_ P]C_<Pmax
k P, otherwise

where the choice of P, is a trade-off between robustness and alertness to
changes when an operating point is visited.
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Figure 4: Resistance over all operating points for three stages of aging from
the validation realization of the model.

6 Simulation study

A simulation study was designed to demonstrate the methods ability to
update parts of the look-up table that are infrequently excited. Due to
lack of experimental data with sufficiently many ageing points? to build the
model and method entirely on real data, the results presented in [20] are
used together with the assumptions from Section 4.1 to generate the input
data.

The basic behaviour that we want to capture with the algorithm can
be seen in Fig. 4. The parameter’s value at four different temperatures is
plotted for three different stages of ageing.

6.1 Data generation model

Data for the ageing model and a virtual validation dataset were created
using the model

ei(zsoh) = /M(Zsoh) + wi<zsoh) (24)

where 6;, 1 = 1,...,n, are the parameter values at the operating points, p;
is the expected value of the parameters at different stages of ageing based
on [20], zn is & measure of the age of the battery often referred to as State-
of-Health (SoH), and w; ~ N (0, 0;(zsn)) is a white noise term that reflects
the fact that not all batteries are equal. Using the model (24), data for 10

2Note that to accurately test the algorithm on real-world data requires data to be
stored during each cycle, or that the algorithm runs in parallel with the tests from BoL
to EoL, a process that will take several years to complete.
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Table 3: Parameter values used in data generation. Mean values are ap-
proximated from [20].

Operating Point °C | -10 0 15 30 | Std dev

Res @ BOL m| 16 6 2 1 0.1
Res @ MOL m |23 9 3 2 0.2
Res @ EOL m |50 21 7 3 0.3

rho=1.00 rho=1.00 %107 rho=0.84
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= E E .
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Figure 5: Data used for correlation model (blue dots) and validation (red
line) in X-Y plots for all combinations of four data points. There are three
clusters of blue dots corresponding to BoL,, MoL and EoL from left to right.
The algorithm assumes that the red line passes through the centre of each
cluster. This is not the case for the validation data here, which means
that there are discrepancies between model and validation data, as can be
expected in reality.

different batteries were generated with settings according to Table 3. The
resulting data are illustrated as blue dots in Fig. 5, where the operating
points are plotted in an x—y plot for each of the operating points and age
points. From these data, the covariance matrix used to model the ageing
correlations was calculated.

The virtual validation battery was also generated using data from Ta-
ble 3, and its resistance was assumed to change linearly from BoL to MoL
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Figure 6: Temperature used in simulations. Note that for the first 1600
cycles, the temperature is mostly above 0°C. For the final 400 cycles the
complete operating range is covered, which means that the convergence
properties of the algorithm can be studied when actual data are collected
for the operating point in —10°C.

and from MoL to EoL. In the intended application, the parameter value
used by the look-up table adaptation algorithm will come from an estima-
tion of the true parameter value at the current operating conditions. To
reflect this, an additional uncertainty was added to the virtual validation
battery, implemented by

07 = 0% + vy, (25)

where vy ~ N (0, PF). The validation data can be seen as red lines in Fig. 5.
é,‘f and the noise statistics P, are known to the look-up table adaptation
Kalman filter but not the realization, i.e. the actual value of v}, is not known.
In simulations, a constant value P¥ = 10~* was used for all operating points.

To define the operating conditions for each cycle, the temperature was

assumed to vary according to a sine wave with ten evolutions overlaid with
white noise

2(k) = 15 + A(k) sin(7/100) + e [C] , (26)

where e ~ N(0,3), and A(k) is 10 for & < 1600 and 26 for k£ > 1600. This
could be seen as representing 1900 drive cycles performed over 10 years.
However, the important aspect here is that the operating point —10°C is
not excited until the 400 last cycles uses a sine wave with larger amplitude
to make sure the entire operating range is covered (see Fig. 6).
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6.2 Simulation results

In Fig. 7 the parameter evolutions for the four different temperature op-
erating points, as defined in Table 3, are shown together with a reference
simulation not using the correlation over ageing, i.e. without “spill-over”.
With only a few exceptions, data are collected for temperatures above 0°C
and before cycle 1700 actual data for the operating point in —10°C is never
received. For the estimation without “spill-over”, the resistance in the oper-
ating point in —10°C is only updated on the occasions when the temperature
is below 0°C. With the correlation model of the ageing, this operating point
is updated at all temperatures and, hence, the changes are tracked continu-
ously. As can be seen in Fig. 7, the estimation using the correlation model
performs very well compared to the case of no “spill-over”, and a significant
improvement is seen for the operating points that are seldom excited. In
regions that are frequently excited, the behaviour is more or less the same as
for the case when no correlation model is used, which is a desired property.

The covariance matrix estimated by the Kalman filter is plotted in Fig. 8
for both diagonal and cross terms. It can be seen how the elements change
with temperature such that the variances decrease in operating points close
to the current operating conditions and increase in operating points further
away. Because of this, there may be reason to include some kind of co-
variance anti-windup mechanism in a practical application, see Section 5.4.

When the complete range is excited, there are some fluctuations in the
estimation in the —10°C operating point where the estimate is actually
changed in the wrong direction. The reason for this is that the validation
battery does not fully follow the covariance model and when the Kalman
filter updates the —10°C operating point based on data from warmer tem-
peratures, the changes can be in the wrong direction. This is an inherent
risk using a feed-forward update like this, and to reduce the impact of this
the tuning parameter v was introduced.

6.3 Sensitivity to ageing model

Next, the sensitivity to the ageing model was investigated by imposing
uncertainties to o; of the covariance model (5), where the parameters were
randomly perturbed by up to +20% from the correct value. A set of 100
Monte Carlo simulations were run and the results can be seen in Fig. 9. The
algorithm behaves well in all these cases and even though the uncertainties
results in decreased performance, it is still slightly better than the update
without “spill-over” in Fig. 7. Note that also the case of no “spill-over”
would have been affected by these uncertainties since it uses the o; terms
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Figure 7: (Left) Illustration of the evolution of the resistance for the four

temperature operating points over 1900 cycles.

Black lines are the true

parameter values as generated by the model, thick lines are the estimates
using the proposed algorithm with v = 0.1 and dashed lines are estimations
without “spill-over”. (Right) The errors in the individual estimations; blue
is the estimate using the ageing model, while red dashed uses no “spill-
over”. Note that before cycle 1700, no data were collected for the operating

point at T'= —10°C.
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Figure 8: Variance and cross terms for all operating points as estimated by
the Kalman filter. The variance decreases when the temperature is close to
an operating point and vice versa. Note the different scaling on the y-axes.

116



6. SIMULATION STUDY

0.06

Err@ -10 [Ohm]
o

L _5 1 1 1 J
0.05 0 500 1000 1500 2000
Cycle [#]
-3
'g 5X 10
<
0.04}F [©)
o
T ©
< = -5 I I I J
O, W 500 1000 1500 2000
8 0.03f Cycle [#]
8
R
2]
[0
[hd

0.02f

Err@ 15 [Ohm]

0 500 1000 1500 2000
Cycle [#]

e

0 500 1000 1500 2000

0.01r

Err@ 30 [Ohm]
o

0 1 1 1 J
0 500 1000 1500 2000 Cycle [#]
Cycle [#]

Figure 9: Overview of look-up table update when uncertainty is imposed on
the ageing model. Black lines represent the true parameter values generated
by the model. Note that there is no constant drift in the estimate in -10°C,
even though the feed-forward update is based on an erroneous model.

for its update. It should also be clarified that these results are positive
since the feed-forward update based on erroneous model does not lead to

a significant parameter drift in the infrequently excited operating point
—10°C.

6.4 Robustness to erroneous initialization

In the regions of the operating range that have not been excited, the look-up
table adaptation will provide a feed-forward update of the parameters. For
the update to behave correctly, the initial parameters must thus be accurate.
To assess the robustness to erroneous initialization, 100 simulations varying
the resistance uniformly within £50% from the true values were performed.
The initial error is independent between operating points, which basically
means that the algorithm updates the resistance at non-excited operating
points based on incorrect assumptions.

As can be seen in Fig. 10, also this case is handled well but it takes
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some time before the operating point —10°C, which is hardly excited at all,
converges to a reasonable estimate.
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Figure 10: Overview of look-up table update when the initial resistance is
incorrect. Black lines represent the true parameter values generated by the
model.

7 Summary and future work

A method for updating look-up tables to reflect changed characteristics as
a component ages has been proposed. In the method, a Kalman filter is
used to update an entire look-up table based on local estimation at current
operating conditions by utilizing correlations between changes in parameter
values at different operating points. While the system in the general case is
unobservable, a feed-forward update is still performed in non-excited regions
that reflect the expected value of the complete look-up table conditioned on
the observations.

The correlations, that are estimated offline, are included in the noise
covariance matrix in the Kalman filter to introduce a “spill-over” of infor-
mation between different regions of the look-up table. One tuning parameter

118



8. ACKNOWLEDGEMENTS

v is included in the algorithm to tune the amount of “spill-over” and rate
of parameter adaptation.

In a simulation study, the method was applied to estimation of the ohmic
resistance of a lithium-ion battery. The entire look-up table was successfully
updated without problems of drift, even in parts of the operating range that
were seldom excited. Robustness to uncertainties both in the ageing model
and errors in the initial parameter estimates was assessed, and even though
the performance decreased, the method performed better than updating the
look-up table without “spill-over”.

Future work includes validating the method on a larger set of battery
measurements. Also, extensions to higher dimensions in order to handle
variations in both temperature and SoC is ongoing.
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Abstract

Recursive algorithms, such as recursive least squares (RLS)
or Kalman filters, are commonly used in battery management
systems to estimate the electrical impedance of the battery cell.
However, these algorithms can in some cases run into problems
with bias and even divergence of the estimates. This article illu-
minates problems that can arise in the online estimation using
recursive methods, and lists modifications to handle these issues.
An algorithm is also proposed that estimates the impedance by
separating the problem in two parts; one estimating the ohmic
resistance with an RLS approach, and another one where the
dynamic effects are estimated using an adaptive Kalman filter
(AKF) that is novel in the battery field. The algorithm pro-
duces robust estimates of ohmic resistance and time constant of
the battery cell in closed loop with SoC estimation, as demon-
strated by both in simulations and with experimental data from

a lithium-ion battery cell.
Highlights:

e Identifies potential problems encountered in recursive pa-
rameter estimation

e Methods to improve performance and robustness of recur-
sive parameter estimators

e Robust algorithm for estimation of battery cell impedance
parameters

Keywords: Recursive parameter estimation; Kalman filter;
Adaptive estimation; Battery impedance estimation; Robust-
ness; Lithium-ion battery.

1 Introduction

The electrical impedance of the battery cell is used when estimating for
instance State of Charge (SoC), State of Energy (SoE), State of Power (SoP)
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and State of Health (SoH). As the battery ages, its impedance increases due
to e.g. loss of electrode surface area and conductor corrosion [1, 2|, and in
order to maintain accuracy in all the estimations, it is vital to continuously
monitor and update the impedance [3, 4, 5, 6].

In the literature, several different approaches to impedance estimation
have been presented. Most common are offline system identification meth-
ods using some type of lab tests. Two such approaches are frequency domain
identification using electrochemical impedance spectroscopy (EIS), and time
domain identification using pulse tests [7, 8]. These methods rely on spe-
cialized equipment, test cycles and processing of large amounts of data, and
are thus not suited for online implementation on low-cost processors used
in automotive applications.

Focusing attention to methods suitable for online implementation, most
of these rely on using an equivalent circuit model of the battery. The param-
eters are then estimated using primarily current and voltage information.
Three conceptually different approaches are presented in the literature:

e Recursive methods store only data needed to perform one re-calculation
of the model (see e.g. [9, 10, 11, 12]). The parameter estimates are
then updated based on the new information in each time step. Low
computational and storage costs have made this a popular choice for
online parameter estimation.

e Non-recursive methods estimates parameters based on batches of data
and thus requires larger amounts of data to be stored. While often
used in offline system identification methods, the storage requirements
means that they are less suitable for online applications. There can,
however, be cases when non-recursive methods are needed (see e.g.
(3, 13, 14]).

e Machine learning algorithms such as structured neural networks (SNN)
(see e.g. [15]) and support vector machines (SVM) (see e.g. [16]) are
useful when the battery characteristics cannot be accurately described
by a simple model. Using training data, the algorithms learn how the
system works. Problems such as large storage requirements and risk
of overfitting reduces their applicability in online automotive tasks.

A comprehensive review of methods used in the literature, can be found in
[17].

The rest of this article will focus on recursive methods with three main
contributions; (i) a set of examples illustrating when recursive algorithms
can fail; (ii) modifications to handle these issues; and (iii) design and ex-
perimental evaluation of an algorithm for estimation of battery impedance.
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The structure is such that in Section 2, the recursive methods in focus
are presented. In Section 3, the test environment and battery model used for
evaluation of the estimators are described. Section 4 highlights issues that
can be encountered in recursive estimators and proposes solutions to these
problems. An algorithm is proposed in Section 5 and then evaluated using
both simulations and experimental data in Section 6. Finally, Section 7
summarizes the results.

2 Recursive parameter estimation

In the following sections, two frequently used recursive parameter estimators
are presented; the recursive least squares (RLS) and the Kalman filter.
These algorithms are related and both use a linear regression model of the
system in generic form,

y(k) = " (k)0(k) + e(k), (1)

where y is the observed output, ¢ is the regressor,  is the parameter vector
to be estimated and e is a noise term.

2.1 Recursive least squares

The method of solving an over-determined set of equations using least
squares is well known to most engineers. In mathematical terms, the method
determines the parameter vector f that minimizes the squared error between
the measured output and the output predicted by the model (1), i.e.

k
O(k) = argmin 5 3N (y() - 7 (06) 2)

where 0 < A < 1 is a forgetting factor introduced to weigh recent data
more than old. This minimization problem has an analytic solution that
can be implemented as a recursive algorithm:

0(k) = 0(k — 1) + K (k)e (k) (3)
K(k) = P(k — 1)p(k) (A + " (k) P(k — 1)p(k)) (4)
P(k) = (I = K(k)" (k) P(k—1)/, (5)

where K is the estimator gain, P is the covariance estimate and (k) =
y(k)— T (k)0(k—1) is the residual between measured and estimated output.

In the literature, there are several versions of recursive least squares es-
timators [18, 19, 20]. By simplifications, reformulations of the cost function
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or avoiding estimation of the covariance estimate, they can be tailored to
system requirements. In this work, the regular RLS algorithm with expo-
nential forgetting factor (3)—(5) is used. In the battery estimation field,
RLS has been used for parameter estimation in e.g. [10, 12].

2.2 Kalman filter

The Kalman filter can be seen a special case of the RLS algorithm, where
the parameter variations are modelled as random walks, i.e.

O(k+1)=0(k)+w(k),

where w(k) ~ N (0, R,) is a Gaussian white noise. Like in (1), the mea-
surement is distorted by additive noise,

y(k) =" (k)0(k) + v(k), (6)

but now it is assumed that v(k) ~ N (0, R,) is a Gaussian white noise. The
Kalman filter algorithm then becomes

0(k) = 0(k — 1) + K(k)e(k) (7)
K (k) = P(k — 1)g(k) (Ry(k) + T (k)P(k — 1)g(k)) (8)
P(k) = P(k—1) — K(k)p" (k)P(k — 1) + Ry(k), (9)

where we note that the noise covariances, R, and R,,, which represents the
noise statistics, often are considered as tuning parameters. Derivation of
the linear Kalman filter can be found in several sources, for instance the
original paper [21] or more recent descriptions, such as [22]. In the battery

estimation field, Kalman filters are used for parameter estimation in e.g.
[9, 11].

3 Test environment

In the upcoming discussions, a test environment is used to evaluate the
algorithms and to highlight potential problems.

3.1 Equivalent circuit battery model

In online battery management systems, it is common to use a model of
the current—voltage response in form of an equivalent circuit like the one
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Figure 1: Equivalent circuit model with two RC-pairs.

in Fig. 1. Discretized with sampling time At and zero order hold, it is
described by

ey (k1) = ¢ @t upe, (k) + By (1= € 707 ) e (K) (10)
URCg(k + 1) = eiﬁuRCQ(k) + RQ (1 - efﬁ) icell(k) (11)

ucell(k) = uocv<zsoc(k)) + URC, (k) + uRCg(k) + ROicell(k)y (12)

where 2z is the SoC of the battery, and the rest of the parameters and sig-
nals are defined in Fig. 1. Note that the notation is slightly simplified, since
all impedance parameters are varying with respect to operating conditions
such as temperature, SoC, current and age (zsn). As an example, this means
that the ohmic resistance should be denoted Ry (7' (k), zsoc(k), icen(k), Zson(k))-
It is also common to report the time constant 7; = R;C; instead of the
individual values for the dynamic part of the model. In the upcoming dis-
cussions, the model (10)—(12) is referred to as the dual RC model. Also a
first order version of the model, referred to as the single RC model, is used
where (11) is omitted and ugrc, in (12) is set to zero.

A dual RC reference model with parameters that are non-linear with
respect to temperature and SoC was identified offline from lab tests of a
commercially available lithium ion cell of nickel manganese cobalt oxide
(NMC) type intended for use in a plug-in hybrid electric vehicle (PHEV).
The voltage prediction accuracy of the model is within 20mV for the valida-
tion cycles used in Section 6.2. It should be noted that the non-linear dual
RC model is a simplification of a real battery cell, which means that the
reference parameters reported are not “true” parameters. However, the ac-
curacy of the voltage prediction indicates that the found parametrization is
a good approximation, and thus the parameters estimated by the recursive
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algorithms are expected to be close to the reference parameters.

3.2 SoC estimator

For SoC estimation an extended Kalman filter (EKF) was used (see e.g. [4,
7]). There are two different versions using single and dual RC models re-
spectively. In both cases, Ry, R; and C are coming from the parameter
estimator, while Ry and C5 for the dual RC model uses fixed values based
on an offline system identification. Tuning of the SoC estimator, to get a
trade-off between Coulomb counting and voltage feedback, was done man-
ually. The same tuning was used for all parameter estimators to enable a
fair comparison between them.

3.3 Setup used in simulations

In Fig. 2a, a block scheme of the setup used in the simulation studies in
Sections 4 and 6.1 is presented. The dual RC reference model is used to
calculate SoC and voltage from the current. The parameter estimator can
use either true SoC from the battery model, i.e. 2z, referred to as open
loop estimation, or use estimated SoC, Z.., from an EKF using a single
RC model with the estimated parameters. This is referred to as closed loop
estimation.

3.4 Setup used with experimental data

In Section 6.2, the algorithm proposed in the article is tested on experi-
mental data from lab tests. The impedance parameters (Ry, Ry, Cy) are
estimated in closed loop with a SoC estimation algorithm based on an EKF.
In order to produce accurate SoC estimates in cold temperatures, the SoC
EKF needed a dual RC model. Since the algorithm proposed here focus on
estimating only a single RC model, the SoC EKF uses a fixed time constant
for the slower dynamics (Rg, Cs). A block scheme of this setup is shown in
Fig. 2b.

3.5 Load profile

The load profile used in the simulations is based on a complete vehicle
simulation of a charge sustaining drive cycle. The current and voltage of a
single cell can be seen in Fig. 3.
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Figure 2: (a): Block scheme of the setup used in simulations. A reference
battery model with parameters estimated offline from lab tests is used to
generate the cell voltage given current and temperature test vectors. The
estimators, i.e. RLS or Kalman filter, estimates a single RC model either
in open loop using the true SoC from the battery model, i.e. zy e, or in
closed loop using estimated SoC from the EKF, i.e. Z,.. Sensor noises
are assumed to be white and Gaussian. (b): Block scheme of the setup
used when examining performance on experimental data. The parameter
estimator has a single RC model while the EKF uses a dual RC model with
fixed time constant for the slower dynamics.
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Figure 3: Current and voltage load profiles used in the evaluation.

4 Potential problems in recursive estimators

Both the RLS and the Kalman filter algorithms assume some special prop-
erties of the problem formulation, such as a correct model and known noise
statistics. In a real application, these assumptions are generally not met
and the impact of violating them are in the best case biased estimates and
in the worst case diverging estimates. The following section will present
some examples of situations when these algorithms can fail and propose
modifications from the literature to handle these problems. Most of the
discussions are kept general but some application specific motivations are
used.

4.1 A motivating example

Two estimators, one RLS (3)—(5) and one Kalman filter (7)—(9) were im-
plemented to estimate Ry, R and C of the single RC model. For the open
loop simulation case presented in Section 3.3, it is straightforward to tune
both estimators to achieve performance according to solid lines in Fig. 4
when there is no noise added to the current or voltage sensors. However,
when the estimation is performed in closed loop with SoC estimation, the
results with dashed lines are obtained. In the example, Gaussian white
noise was also added to the current and voltage signals with standard de-
viations of 3A and 1.5mV, respectively. As can be seen, the performance is
no longer acceptable since the Kalman filter has problems with convergence
on both ohmic resistance and SoC estimates, and the RLS shows undesired
behaviour around 2 hours into the cycle when the time constant estimation
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suddenly increases. In the upcoming sections, some of the reasons for the
poor performance will be examined together with solutions to handle the
problems.

4.2 Amount of parameters to estimate

The first and most obvious problem when estimating impedance in batteries
is that there are several parameters to estimate based on relatively few mea-
sured variables. Here, we want to estimate ohmic resistance and one or two
time constants with two parameters each, leading to 3—5 parameters based
on only current and voltage information. In some papers, e.g. [9, 3], even
more complex implementations of the diffusion time constant is proposed.
In [3], however, the estimation task is handled by using a non-recursive
estimation of the diffusion parameters. Parameters also vary non-linearly
with for instance temperature and if this effect is also to be included in the
estimation, there will be even more parameters to estimate introducing risk
of insufficient excitation.

4.3 Noise effects

The RLS is good at handling Gaussian noise since it will perform an aver-
aging of the data. However, Gaussian noise on the regressor variable can
lead to biased estimates [23], as can be seen by the dotted blue line in the
estimation of Ry presented in Fig. 4. The size of the bias will depend on
the signal to noise ratio (SNR) of the regressor. In this example, amplitude
dependent noise is added to the current sensor, where the standard devia-
tion of the noise is increased linearly from 0 to 5A as the current goes from
0 to 100A. Note that the noise added in this example is more extreme than
in the other simulations in order to illustrate the effect.

Dead-zones

An effective way to guarantee high SNR is to use a dead-zone. The idea
behind dead-zones is to allow parameter adaptation only when the estima-
tion residual, e, is significantly larger than the noise term e. In [18], the
following bound is suggested:

|e(k)| = 2 suple(k)]
Since it may be difficult to know the upper bound of the noise term, knowl-

edge about the application is often used to set the size of the dead-zone.
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Figure 4: Estimation of parameters Ry, R; and C using both Kalman filter
and RLS. (Solid) No noise is added to the sensor signals and estimation
is done in open loop, i.e. based on true SoC. Both estimators handle the
task, though the RLS must be tuned for slower adaptation than the Kalman
filter. (Dashed): Noise is added to the sensor signals and estimation is done
in closed loop with SoC estimation. Here we see that both estimators have
problems. The Kalman filter estimates of ohmic resistance and SoC does not
converge, and all attempts to improve this by tuning failed. The RLS also
have some undesired behaviour when the time constant estimate suddenly
increase at around 2h. (Dotted): RLS estimation of ohmic resistance when
signal to noise ratio of the regressor, i.e. current, is low. Note that 7 =
R,C] is plotted instead of the individual estimates of R; and C}.
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Pre-filtering

When the estimated parameters are time-varying, a forgetting factor is often
used to weigh recent data more than older. This will reduce the noise
suppression since the contribution to the averaging is gradually reduced by
the age of the data. There will thus be a trade-off between noise suppression
and ability to adapt the parameters to actual changes.

A way to reduce this problem is to apply a pre-filter to the sensor signals.
The pre-filter may be of low-pass, high-pass or band-pass type, depending
on the noise characteristics. It is important though, to use the same filtering
on all inputs and outputs to reduce the risk of biased estimates.

4.4 Model errors

To guarantee convergence to the correct set of parameters, the algorithms
must use a correct model description. Failing to provide the correct model
means that the parameters becomes biased and the bias depends on the
excitation [18]. In the battery application, a “grey-box” model based on
physical insights is used. As already discussed, this is not a complete de-
scription of processes inside the battery and for this reason, it is important
to retain caution in the adaptation task.

Three of the main contributors to uncertainties in the single RC model
used for parameter estimation are:

e Gaussian sensor noise on both current and voltage measurements.
e Unmodelled slow dynamics.

e Error in OCV from the fact that estimated SoC is used.

Since unmodelled slower dynamics and OCV uncertainties are effects that
change slowly, the error in (12) will not be white noise, but correlated to
the regressor vector, i.e.

E {o" (K)e(k)} # 0. (13)

Modelling correlated noise

One way of handling effects not explained by the chosen model structure is
to include a noise model, where additional parameters are used to estimate
the noise colour. From the assumptions in the previous section, one can
conclude that the error may be an almost constant offset with a rapid mea-
surement noise superimposed. A reasonable model for this is a first order
system, with a long time constant, driven by white noise, that is

e(k) = ce(k — 1) +v(k), (14)
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where ¢ is an unknown parameter defining the correlation of the error and
v is white noise. Since the noise term is not known, it cannot be directly in-
cluded in the regression model. The way to overcome this is to approximate
it by the estimation residual, e(k) = y(k) — T (k)0(k — 1).

Note that reducing the bias with a noise model generally comes at the
cost of increased variance in all estimates, as well as increased storage and
computational requirements due to the additional parameter(s).

Robust estimation

Least squares estimation rely on Gaussian estimation residuals, which means
that the probability of having large residuals is small. This may not be the
case in reality and one way of reducing the influence of large errors suggested
by [18] is to normalize the error by, for instance, replacing (5) with

O(k) =0(k —1) + K(k;)%.

4.5 Time-varying parameters

The main reason for using an adaptive system for battery impedance esti-
mation is to handle parameter variations due to ageing effects. If the RLS
is to be alert to changes in the parameters, old data must be discarded.
The simplest way to include this in a recursive manner, is to introduce an
exponential forgetting factor, A, as in the cost function (2). The forgetting
factor is always between zero and one, where a value of one means that old
data is given the same importance as recent data, and decreasing A\ cor-
responds to a shorter historic time-horizon influencing the estimate. Most
often, X is chosen to be very close to one.

When the excitation of the system is poor, the forgetting factor may
cause a phenomenon called covariance windup, which refers to an increase
in the estimated covariance. The reason for this is that the term K (k)p? (k)
in this case is close to zero, which for the RLS implies that (5) becomes

Pk)~ P(k—1)/\, A<1

and the covariance thus grows exponentially. When there is information
in the signals again, the estimator gain may become very large, causing
large jumps in estimated parameter values. In Fig. 4 this effect can be seen
both after 1 hour and around 2 hours, when the time constant estimation is
increasing rapidly for the RLS estimate. This is due to covariance windup,
which can be seen by red lines in Fig. 5 that includes a plot of the estimated
covariance for the time constant estimate.
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Figure 5: Examples of covariance windup from simulation of the RLS algo-
rithm with forgetting factor (red) and the Kalman filter when fast adapta-
tion is allowed (blue).

In the Kalman filter, the random walk model introduces an alertness to
time-varying parameters via the matrix R,, that is added to the estimated
covariance. Just like the RLS algorithm, poor excitation (small K (k)T (k))
may cause covariance windup in the Kalman filter, since the covariance
estimate becomes

P(k) ~ P(k —1) + Ry (k).

In the example above, this problem was not so obvious because the adap-
tation is relatively slow. However, as can be seen by blue lines in Fig. 5,
faster adaptation can lead to problems of the same type as for the RLS
algorithm. This is admittedly a rather extreme example, but it reveals a
potential problem of the regular Kalman filter in this application.

Time-varying forgetting factor

To handle the problem of covariance windup for poorly exciting inputs, as
exhibited by the RLS algorithm, the forgetting factor can be made time-
varying. Most of the approaches presented in literature are ad-hoc solutions
limiting the covariance estimate in some way. In [24], use of a time-varying
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forgetting factor is suggested by modifying the RLS algorithm according to:

Py = 4 WA, (W) < C
- W (k), otherwise

where two new tuning parameters are introduced; a gain of the forgetting
factor (o) and an upper bound to the trace of the estimation covariance
matrix.

Adaptive Kalman filters

One method to avoid covariance windup for Kalman filters is to use an
adaptive Kalman filter as proposed by [25]. Rather than viewing R, as a
matrix chosen by the designer, it is actively used to drive the covariance
estimate P to a user-defined desired covariance P;. This is achieved by
choosing

Pap (k)" (k) Py
Ry (k) + " (k) Pup(k)

In [26], Evestedt and Medvedev show that this alternative method provides
good anti-windup properties in the parameter estimator.

Ry (k) = (15)

4.6 Numerical issues

Both RLS and Kalman filters involves matrix computations that may ex-
hibit poor numerical properties when implemented on microprocessors [27].
To quantify numerical properties, the condition number of the covariance
matrix can be used as an indicative measure. In Fig. 6, the condition number
of the estimated covariance is plotted for RLS and Kalman filters together
with the result from the algorithm proposed in Section 5. It can be seen how
the proposed algorithm successfully reduce the condition number by a factor
of 10* compared to the regular Kalman filter by use of scaling and square
root implementation. Even if the condition number contains no information
about the performance of the estimator, poor numerical conditioning may
lead to instability of the estimator.
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Figure 6: Condition number of the covariance estimate produced by the
RLS, Kalman filter and AKF. It can be seen how signal scaling and square
root implementation are two very successful techniques to reduce the con-
dition number of the covariance estimate.
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Signal scaling

The first measure to take in trying to avoid numerical issues is to scale the
signals such that they are in the same order of magnitude. In an automo-
tive battery system, the current can be several hundred amperes, while the
voltages are in the order of a few volts and the interesting deviations of the
voltage are in the order of tens of millivolts. Based on this, it is wise to
scale the input current and voltage with their maximum values.

Square root implementation

As seen in Fig. 6, straightforward implementation of the RLS and Kalman
filter according to equations (3)—(5) and (7)—(9) can result in algorithms
with poor numerical properties because of the recursive propagation of the
error covariances from one time-step to the next. To reduce this issue, and
improve the condition number of the covariance matrix, the algorithm can
be modified to propagate the square root of the error covariance instead
[28]. Algebraically the implementations are equivalent, but the numerical
properties are significantly improved.

4.7 SoC and parameter estimation interaction

One important aspect to consider when designing the adaptation algorithm
is that there is an interaction between impedance and SoC estimation. As
described in Section 4.4, errors in SoC introduces uncertainty in the OCV
voltage, and the time constant estimation is then based on biased voltage
information. Fortunately, the bias decreases when the OCV curve is flat,
which is contrary to SoC uncertainty which increases in that case. In Fig. 4,
it can be seen how the SoC estimation fails to produce accurate estimates
when the parameters are estimated using the Kalman filter. This problem
is even more prominent when the algorithms are subject to real-world data.

Convergence of combined state and parameter estimators normally rely
on separation of time constants, implying that the parameters vary much
slower than the states of the system. In a battery, the impedance change
on very different time-scales [29], and since it depends statically on SoC,
temperature and current, this jeopardizes the assumption that parameters
and states can be separated. For instance, having unmodelled current de-
pendency may lead to parameter values changing faster than SoC itself.
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5 Proposed estimation method

Based on the descriptions in previous sections, a novel algorithm for esti-
mating Ry, R; and C] is proposed. The algorithm splits estimation of ohmic
resistance from the estimation of the dynamic part of the model in order
to improve robustness. It also uses a type of adaptive Kalman filter that
has, to the best of the authors’ knowledge, not been proposed for battery
parameter estimation before. A similar approach to separate the problem
is also suggested in [9], but the chosen algorithms for each part are different
compared to this work.

5.1 Estimation of ohmic resistance

Using a sufficiently short sampling time, we can assume that both the volt-
ages Uoey and urcy of (12) are almost constant. Ry is a slowly varying
parameter and it can thus be approximated by

ucell(k) — Uceu(k — 1)
Fo =3 ~ ; 16
’ Zcell(k) — Zceu(]{ — 1) ( )

providing that the denominator is non-zero. Introducing the notation Aueey (k) =
Ucen (k) —ucen(k—1) and Aidcen(k) = dcen(k) —icen(k—1), the ohmic resistance
can be estimated using the RLS algorithm, i.e.

A

Ro(k) = Ro(k — 1) + Kg(k) <Auceu(k) ~ Rolk — 1)Az’ceu(k)> . an

where
Pr(k — 1)Adcen(k) ] ,
) ’ if AZCG >0 eadzone
Kr(k) =4 A+ Algeu(/f)PR(k -1 I u dead (18)
0, otherwise
Pr(k) = (1 — Kp(k)Aica(k)) Pr(k —1)/X. (19)

The dead-zone reduces the risk for covariance windup by acting as a noise
suppressor and makes sure that the system has been sufficiently excited
before using data for identification. It should be noted that Ry estimated
this way will not be a pure ohmic resistance, it will also include dynamic
effect that are faster than the used sampling time. For the purpose of
e.g. SoC estimation, this is wanted since
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5.2 Estimation of time constant

To simplify notation, the following symbols are used in the forthcoming:

__At
a=e¢e Cik1

_ At
=R (1—6 01R1>.
The single RC model can then be written as

URC, (k + 1) = QURC, (k) + ﬁicell(k)
ucell<k) = uocv(zsoc(k>> + ROicell(k) + URC, (k> + B(k),

where a noise term e(k) is introduced to model errors in the voltage predic-
tion as described in Section 4.4.
By introducing

y(k> é ucell(k) - uocv<ésoc(k')) - ROicell(k)u

the model can be expressed in terms of the backwards time-shift operator
q !, defined by ¢ tz(k) = x(k — 1), as

-1
y(k) = 1f)q—aq_1icen(k) + 6(/<I)

Transforming back to the time domain we have
y(k) = ay(k — 1) + Bicen(k — 1) + e(k) — ae(k — 1) (20)

Finally, the noise model (14) and introduction of scaling variables k, and
k; to the voltage and current, respectively, yields

(k) =ag(k —1)+ 5 zceu(k — 1)+ ky(c—a)e(k —1) (21)

Z

where §(k) = kyy(k), i(k) = ky(k) and ¢ is the estimation residual used as
an approximation of e.
In the generic form of (1), this gives the regression and parameter vector

o(k) = [kuy(k = 1) kicen(k —1) (k- 1)]"
k)= [0 62 65)" =[a 28 kic—a)],

which means that the parameters of interest can be recalled from the ex-
pressions

Rlzﬁ b2
ko1 — 6, (22)
o ky At(6 — 1)

]{72 Hglog(Ql)
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Note that the only use of the parameter ¢ is to reduce bias in the other
terms.

Estimation of R; and C}, is then based on the AKF algorithm (7)-
(9) and (15), where the design variables are R, and the desired covariance
estimate P;. The algorithm tested in the next section also applies linear,
first order low-pass filters to current and voltage measurements to remove
high frequency content.

6 Evaluation

The proposed algorithms will now be used to estimate the values of Ry, R;
and C in Fig. 1, both in simulations and on lab data from an commercially
available NMC battery intended for use in a PHEV. The simulated case,
which is identical to the motivating example of Section 4.1, is mainly used
to visualize the robustness to different initial values. The lab data cases are
combined with an initial estimation error in SoC to see how the combined
uncertainty in both SoC and parameters is handled.

6.1 Simulation study

To evaluate robustness of the parameter estimation algorithm, the conver-
gence properties for different initial parameter values are investigated in
a simulation study, using the setup presented in Section 3.3. Estimation
is done in closed loop with SoC estimation, starting from an initial SoC
error of 5%. The results in Fig. 7 show that even for rather large initial
errors, both parameter and SoC estimates converges. These results can be
compared to Fig. 4, where neither RLS nor Kalman filter, in their standard
form, managed to produce reliable estimates. The fast adaptation that oc-
curs after approximately 15 minutes is because that is the first time the
current is large enough to provide sufficient excitation of the system. The
single time constant converges close to the shorter of the time constants
of the dual RC model. The reason for this is the frequency content of the
excitation signal.

6.2 Algorithm applied to lab data

To further evaluate the algorithm, it was subjected to lab data for two
different temperatures. The combined estimation task was also complicated
by introducing initial errors to both SoC and parameters. As seen in Fig. 8,
the performance of the combined SoC and impedance estimator is good in
both validation temperatures. SoC converges to within 1% from reference
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Figure 7: Robustness analysis. The ohmic resistance Ry and time constant
71 = R1C as estimated in 100 Monte Carlo simulations where the initial
estimate was chosen randomly. Note that the reference model (black lines)
uses the non-linear dual RC model, while only a single RC model is esti-
mated. The convergence rate of the estimation is very dependent on initial
value, but it still converges to a region around the expected value, which
should be between the short and long time constant of the model. The rea-
son for convergence closer to the short time constant is due to the frequency
content of the input signal, which excites the fast dynamics more than the
slower.
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Figure 8: Parameter convergence of ohmic resistance and time constant to-
gether with voltage prediction accuracy and resulting SoC estimation based
on identified parameters for (a) 0°C and (b) 4+22°C. Reference parameters
are from simulation of the dual RC reference model.

SoC given by Coulomb counting in test rig and the parameter estimates
also converge to close to the reference model. Voltage prediction based on
the estimated parameters is within 50mV in 0°C and 20°C after parameters
are adapted, which allows strong voltage feedback in the SoC estimation.

7 Summary and Future Work

When using recursive estimators such as Kalman filters or RLS to estimate
parameters in battery cell models there are some potential pitfalls to con-
sider. An example was shown where both Kalman filter and RLS exhibited
problems with sensor noise, covariance windup and poor numerical stability.
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Several actions proposed in the literature to handle these issues were pre-
sented leading up to a novel algorithm for estimation of battery impedance
in closed loop with SoC estimation.

In the algorithm, the estimation of ohmic resistance is separated from
the estimation of the time constant in order to improve robustness. Ohmic
resistance is then estimated using an RLS algorithm with a dead-zone to
ensure proper excitation and signal to noise ratio. The time constant is
estimated with an adaptive Kalman filter that handles poor excitation and
include features such as pre-filtering and signal scaling to further improve
robustness.

The performance of the algorithm was demonstrated by successfully es-
timating the ohmic resistance and time constant of the battery cell in closed
loop with SoC estimation for data recorded in lab.

Future work includes extending the algorithm to also estimate the second
time constant needed to get an accurate SoC estimate in colder tempera-
tures.
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Abstract

Efficient control of electrified powertrains requires accurate
estimation of the power capability of the battery for the next
few seconds into the future. When implemented in a vehicle,
the power estimation is part of a control loop that may contain
several networked controllers which introduces time delays that
may jeopardize stability. In this article, we present and evaluate
an adaptive power estimation method that robustly can handle
uncertain health status and time delays. A theoretical analysis
shows that stability of the closed loop system can be lost if
the resistance of the model is under-estimated. Stability can,
however, be restored by filtering the estimated power at the
expense of slightly reduced bandwidth of the signal.

The adaptive algorithm is experimentally validated in lab
tests using an aged lithium-ion cell subject to a high power load
profile in temperatures from -20 to +25°C. The upper voltage
limit was set to 4.15V and the lower voltage limit to 2.6V, where
significant non-linearities are occurring and the validity of the
model is limited. After an initial transient when the model pa-
rameters are adapted, the prediction accuracy is within £2% of
the actually available power.

Keywords: Adaptive estimation; lithium-ion; power capa-
bility; batterymanagement; time-delay systems; state of power.

1 Introduction

The energy management system (EMS) of a plug-in hybrid electric vehicle
(PHEV) uses information about the power available from the electric sys-
tem to optimize efficiency, performance, and driving experience [1, 2, 3]. To
avoid premature ageing, the battery power must be limited by specifying
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regions of safe use in terms of limits on voltage, current, and tempera-
ture. Power capability of the battery cannot be measured directly and
the battery management system (BMS) must therefore estimate the power
available for the next few seconds into the future [4]. This can be achieved
using model-based techniques where the current—voltage characteristics are
used to predict the voltage response to a given constant current. A major
difficulty in this task is that the characteristics of the battery changes con-
siderably with both operating conditions and age [5, 6, 7]. However, on-line
parameter estimation techniques such as recursive least squares or Kalman
filter can be used to maintain accuracy in the power estimation, by keeping
the battery model updated over time.

State-of-power (SoP) can be divided into two separate parts; (i) pre-
dicting the maximum charge and discharge power that is available without
violating constraints on voltage, current, etc., and (ii) limiting the power if
the request of the vehicle exceeds the available power. A typical set-up in a
vehicle application is shown if Fig. 1. The BMS measures current, voltage
and temperature of the battery cells and estimates the maximum power that
the battery pack can deliver. This is sent over the controller area network
(CAN) to the EMS. The EMS collects power requests from all subsystems
connected to the battery and communicates how much power each compo-
nent may use. The consumers (here represented by the power controller)
then actuates the power out-take from the battery. In the limiting case,
closed-loop control of the power containing several networked controllers is
formed. As will be shown later in this article, a combination of communi-
cation delays and uncertain model parameters may impact stability of the
system. Similar observations are also presented in [8].

Adaptive power estimation has been analysed before, see for instance
[9, 10] for two recent review articles on the subject of power prediction. In
summary, different approaches have been considered, such as:

e Analytic expressions based on an equivalent circuit model (see e.g. [11,
12])

e Kalman filter based estimation (see [13, 14, 15])
e Particle filter based estimation (see [16])

e Neural networks (see [17])

This article extends the work in [11], where an analytical calculation
of the battery SoP was presented. The method was analysed for stability
and performance in simulations, and the main contributions in this article
are (i) stability analysis of adaptive maximum (minimum) current estima-
tion in the presence of parametric uncertainty and communication delays;
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Figure 1: Typical controller configuration in vehicle application.

and (ii) experimental validation in battery lab using an aged cell in cold
temperatures.

The article is structured as follows; in Section 3 the models and algo-
rithms are introduced. Section 4 presents a robustness analysis together
with an extension to the power limit algorithm that handles parameter un-
certainty. In Section 5, a laboratory validation of the adaptive system is
presented. Section 6 summarizes the results.

2 Nomenclature

In Table 1, the notation used in this article is listed.

3 Adaptive state-of-power algorithm

An adaptive state-of-power algorithm consists of three major parts, (i) a
battery model, (i) parameter estimator, and (iii) a prediction of the power
that can be delivered or absorbed without violating battery constraints.
This section presents these parts by reviewing some previous results.

3.1 Battery model

In battery estimation applications, equivalent circuit models are often used
to predict voltage as a function of current (see e.g. [18, 5, 19]). The pre-
diction horizons of interest for the SoP considered here are in the range
of 1-5 seconds, which means that slower dynamics of the cell can be dis-
carded. Here, a first-order equivalent circuit model, where the voltage v,
models diffusion effects (see Fig. 2), is considered suitable for the purpose.
In continuous time, the equivalent circuit model is described by

n(t) =~ (1) + 50 (1)
(1) = tuc(uae(t)) + 01(6) + Roi), )

where zg . is the state-of-charge, v,., is the open circuit voltage, T' = R,;C
is the time constant, and ©; = dv; /dt. The parameters Ry, Ry, C' € RT and
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Symbol
v
i

At
Vlim
Umax
Umin
Ulim
ilim,v
ilim,c
imax
Z'rnin
Av
IV
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Table 1: Nomenclature

Description

Cell voltage

Current

Power

Voltage over RC' pair in equivalent circuit model
Time constant of RC' pair in equivalent circuit model
Capacitance in equivalent circuit model

Resistances in equivalent circuit model

State of charge

Open circuit voltage function

Output in linear regression model

Regression vector in linear regression model
Parameter vector in linear regression model

Noise term

Prediction horizon of SoP algorithm

Voltage limit used in SoP algorithm, either vy, Or vy
Upper voltage limit

Lower voltage limit

Current limit used in SoP algorithm, either 7,,, or iy,
Current limit based on voltage

Fixed current limit

Maximum current

Minimum current (i.e. maximum discharge current)
Voltage margin from v to vy,

Laplace transform of ¢ and v respectively

Gain of SoP algorithm

Transfer function representation of equivalent circuit
model

Transfer functions describing the SoP algorithm
Time delay from CAN communication

State of charge

State of power

Plug-in hybrid electric vehicle

Battery management system

Energy management system

Controller area network

Open circuit voltage
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Figure 2: Equivalent circuit battery model.

variables v, v1,7 € R are defined in Fig. 2. The sign convention is such that
a positive current (power) charges the battery.

3.2 Recursive parameter estimation

Since the battery characteristics change significantly with both operating
conditions and age, it is common to include some kind of parameter adap-
tation in the algorithms of the BMS. There are several alternatives to this,
both in continuous time [12, 20], and in discrete time [21, 22, 23].

For parameter estimation, models are often formulated in regressor form,
ie.

y(t) = @' ()0(t) + e(t),

where y € R is the output, ¢ € R" is the regression vector, # € R" is the
parameter vector, e € R is a noise term, and n is the number of parameters.
Given recorded data at discrete times t;, k = 1,..., N, the parameter vector
6 can then be estimated using the least squares solution

= [Z wT(tk)w(tk)] Z@T(tk)y(tk>‘

Assuming that the OCV remains constant during the time-horizon con-
sidered, the battery model (1-2), can be described in regressor form by

D>

[ . difﬁ, i(1)]
(7, .
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For more details on how the above procedure can be implemented in a
practical application, the reader is referred to [20, 22].

3.3 Power limit estimation

The power limit algorithm contains two parts, one for calculating the lim-
iting current (i.e. the current that will drive the voltage to its limit at the
end of the defined time horizon), and one for calculating the power. The
algorithm was originally presented in [11], and only the main results are
described here.

Limiting current

The polarization voltage (v;) in Eq. (1) is a linear ordinary differential
equation, which has the analytical solution

T—t

_ 1 [t .
vi(t) = e%vl(to) + —/ e T i(T)dr.
C Ji,
Thus, if a constant current i(¢") is applied to the RC-circuit on the time
interval (t,t + At] we get an analytical expression for the future voltage:

,%).
Assuming that the OCV is unchanged on this time interval, and that the
constant (but yet unknown) limiting current iy, v (¢) is applied to the system
on the time interval (¢, ¢+ At], then by definition, the voltage at time ¢+ At
will be

vt + At) = v, (e T + Ryi(tT) (1 —e

Viim = Voc -+ R(Jilim,v (t) -+ U1 (t + At)
= Voc + Rofitimv(t) + v1(£)e™ T + Ry (t)(1 — e~ T).
Here it is worth noting that the current ¢y, , is considered constant during
the prediction horizon. However, a new calculation of 4}y, v is done at each
time step and for this reason it is given an explicit time dependency.
The margin between the measured voltage v(t) and the limit voltage vy,
is:
Av(t) = vy — ()
. . _At
= Ro(limy (1) —i(t)) +oi(O)(e” T = 1)+
Rlilinl,v<t)(1 - 6_%)
= (Ro+ Ry — Rie™ 7 i (t) — Roi(t) +
At
vi(t)(e” T —1),
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where we have used the assumption that v, is constant during the prediction
horizon. Solving this equation for the limiting current iy, (t), we get:

i (1) = Awv(t) —i—ARoi(é) + 0 (ti(;— e ?)’ )
Ry+ Ri(1—e 7)

where the notation (A) was introduced to stress that these parameters and
states are not available as measurements, but are estimated. Note also that
the limitation pair (Vlim, iim.y) Will appear once for charging (Vmax, tmax.v)
and once for discharging (Vmin, min.v)-

In addition to the voltage based limits on current, there are normally also
system dependent constraints on the current (i) that must not be vio-
lated'. As a consequence, the final limit will be 4y, () = Min(imax.cs max.y (f))
for charging and i, (t) = max(imin.c, iminv(t)) for discharging.

Predicted maximum power

In a vehicle application it is the power rather than the current that is of
interest, and hence also what is limited. To calculate the power, predicted
voltage at time t+ At given the constant current 4, (¢) during the prediction
horizon is used. Note that this will be a conservative estimate for the
discharge case since the actual voltage will be higher than vy, for most of
the pulse.

The voltage at time t + At can be estimated as previously by

At

Bt + At) = voo + Roiym(t) + 01 (t)e” T + Ryigm(t)(1 — e 7).

If the OCV is unavailable or uncertain, a similar approach as for the calcu-
lation of iy (f) can be used, i.e.

B(t+ At) = v(t) + Rolinm(t) —i(t)) + 01(t) (e T — 1)+

Rllhm( )( ?)

The reader can verify that inserting the current from (3) will indeed give
f)(t + At) = Vlim-
Finally, the power limit is calculated as

Prim (t) = 0(t + At)iym (2). (4)
Tt should also be mentioned that additional limitations from battery SoC and tem-

perature are sometimes included in the current limitation, but they were not considered
in this work.
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Figure 3: Feedback system where the power is limited by the BMS. Time
delay on CAN is represented by the Delay block. Optional blocks to improve
robustness are marked in grey.

4 Robustness analysis

The power actuated in the vehicle will be limited by the power from Eq. (4).
Assuming that the requested power exceeds this limit, the algorithm acts
as a closed-loop system controlling the voltage to vy,. In [11] the stability
of this closed loop system was examined. The result was that, assuming
correct model description, the closed loop system is always stable. In this
work we extend the analysis by relaxing the assumptions of correct model
to allow parametric errors (since the parameters are estimated) and we also
examine the impact of communication delays.

4.1 Feedback system

It should be noted that the true system is nonlinear due to power being the
communicated signal. However, assuming that we are close to the voltage
limit vy, and that the actuation from battery power to current is fast, the
system can be approximated by the linear version in Fig. 3, where we have
also included two block in grey that will be described shortly.

To derive the transfer functions in Fig. 3, start from the limitation on
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current in Eq. (3) that in the Laplace domain can be rewritten as

R R » 1 — —At/T
Lim(s) = K (AV(S)  Rol(s) + Tl =€ )](s)>
1+Ts
— RAV(s) + TS
1+Ts

2 KAV(s) + Fy(s)I(s),
where s is the Laplace variable, I(s) = L{i(t)}, Lim(s) = L{um(t)},
AV (s) = L{Av(t)}, and

- 1

K = — - —.
R0+R1<1—6_?)

Noting that i(t) = im(t — 7), which in the Laplace domain corresponds to
I(s) = e ™ Iiin(s), the transfer function F'(s) from AV (s) to I(s) is

Ke ™

o = T Rme

Deriving a transfer function for the battery model, i.e. Eq. (1-2) is not
possible due to the nonlinear function v,.. However, v,. changes slowly
compared to the system dynamics and it can thus be regarded as a low
frequent load disturbance. This means that it will not impact the stability
analysis and, for this purpose, the battery model can therefore be written
as

Ry

G(S) :Ro—f- ]_—|—TS

4.2 Stability under uncertainty

The stability properties of the closed loop system are determined by the
loop gain L(jw) = F(jw)G(jw). Sensitivity analysis based on parameter
perturbations identified that under-estimation of Ry have the greatest im-
pact on closed loop stability. For this reason, using the parameters of Tab. 2,
the Nyquist and Bode diagrams are plotted for two different cases (i) the
parameters of F are correct, and (ii) Ry is under-estimated (Ro = 0.4Ry).
The results are presented as dashed lines in Fig. 4.

Under the assumption that the model and parameters are correct, the
system is stable, however, with under-estimated Ry the system becomes
unstable. The limit according to the theoretical analysis is just below Ry <
0.5Ry. It should be noted that this bound will most probably be optimistic
since the equivalent circuit model is a simplification of the true battery, and
thus, for a real application instability may occur even if Ro > 0.5R,.
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Bode Diagram
Gm =14.5dB (at 3.3 rad/s), Pm = 74.5 deg (at 0.592 rad/s)
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Figure 4: (a) Bode, and (b) Nyquist diagrams for the loop gain of the closed
loop system in presence of delay. Depending on accuracy of Ry estimation
at limit, the system may become unstable. Dashed lines are for system
without filter and solid lines are with the filter proposed in Section 4.3.
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Table 2: Settings used in the stability analysis.

Prediction horizon | At  2s
Time delay T 05s
Battery model Ry 1 m{2
R1 1 mQ
T 20s
LP filter a 3

4.3 Improving robustness

To improve the robustness of the system, several alternative solutions were
considered, as described below. The method finally chosen for implemen-
tation was to use the low-pass filter. The motivation behind this choice
was the simplicity of implementation and the effectiveness to remove the
unwanted behaviour.

Low-pass filter of power limit

The chosen method used in the laboratory tests was to introduce a first
order low-pass filter to the predicted power (see grey block in Fig. 3). The

transfer function is |

1+ as
From a stability perspective, this is not the obvious choice since it intro-
duces an additional negative phase shift up to 90°. However, the reduced
bandwidth stabilizes the system. The effect of the low-pass filter can be
seen as solid lines in Fig. 4. We can see that the system is successfully
stabilized also in the case of under-estimated Rj.

Fip

Lead-lag compensator

Time-delays only affect the phase of the system. In automatic control it
is common to use lead-lag filters to affect the phase characteristics. The
transfer function of the lead-lag filter can be described by

E ( ) 1—|—]€1T1$1+k27'28
S) =
. 14+7s 14+m7s '

where k1 > 1, 0 < ks < 1 and 71 < 7». For this application, one lead filter
followed by dual lag filters were needed to achieve the desired effect. This
was significantly more complex than the low-pass filter previously described.
It did, however, have less effect on system bandwidth and should that be
important for the application, the lead-lag filter could be a better solution.
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Smith predictor

Another common technique for handling time delays is to use a so called
“Smith predictor” where a model of the system is used to compensate for
the time delay. In this application, the standard solution is a feedback of
the current before the communication delay trough the transfer function

N

Gip(s) = (1= e™)G(s),

as the grey block in Fig. 3. For this application, the Smith predictor had
problems to handle the combination of battery model inaccuracies, esti-
mated parameters, and uncertain time delays, sometimes causing severely
degraded performance of the power limits. For this reason it was not con-
sidered a good solution here. For more information on Smith predictor the
reader is referred to [24, 25].

Separate control law for feedback case

It is of course also possible to switch from one structure for the power
prediction case to another function for controlling the voltage to vy, when
the requested power is limited. This would require some form of bump-
less transfer between prediction and limitation. There is also the matter
of actually identifying when the power is limited if the time delay is not
known exactly.

5 Experimental validation

The proposed algorithm was evaluated at Volvo Cars battery testing fa-
cilities using a rapid prototyping environment that mimics the system in
Fig. 3. The tests were performed on an aged NMC lithium-ion cell with ap-
proximately 90% capacity retention. The cell is intended for use in plug-in
HEV applications.

5.1 Rapid prototyping environment

The rapid prototyping environment (see Fig. 5(a)) is based around a dSpace
hardware-in-the-loop (HIL) rig running the adaptive power limit algorithm.
Configurable time delays are used to model the CAN communication and
the inputs to the algorithm are measured by sensors used in the Volvo XC90
T8 Twin Engine vehicles. The power is then actuated by a Bitrode battery
cell cycler, and the cell is in a climatic test chamber where the ambient
temperature can be varied. Forced cooling of the cell provided by fans is
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Table 3: Settings used in the validation. Note: current direction is positive
for charging.

Prediction horizon | At 2s
Maximum voltage | vpmax 4.15V
Minimum voltage | vy, 2.6 V
Maximum current | imaxe 100 A
Minimum current | imine -250 A
Time delay T 0.5s

used to keep its surface temperature close to the chamber temperature also
when subjected to high charge and discharge power.

Test cycle

The test cycle used to represent the driver request is based on the stan-
dard drive cycles Hyzem and US06. The battery starts at approximately
80% SoC and is then depleted using a repeated Hyzem rural cycle down to
approximately 20% followed by a charge sustain part using the US06 cycle
(see Fig. 5(b)). The overall power profile is highly dynamic, causing sig-
nificant polarization of the cell. Total test time is 2800 seconds. Based on
this cycle two tests are performed, one to evaluate the prediction accuracy
of the algorithm and one for the adaptation to the voltage limit.

5.2 Closed loop stability

Before evaluating system accuracy, robustness to parameter uncertainties
was examined by intentionally adding a bias to the estimate of Ry. As the
results of the theoretical analysis predicted, the algorithm becomes unstable
without the proposed filter, see Fig. 6(a). In the tests, Ry was approximately
0.8Ry as estimated without bias. The power limit when the request exceeds
the available power, exhibit serious oscillations in the power. The filter
successfully removed the oscillation just as expected from the theoretical
analysis (Fig. 6(b)). Since Ry is under-estimated we can observe significant
under voltage in this case. For results with unbiased Ry, see Section 5.4.

5.3 Power prediction

The purpose of this test was to investigate the predictive ability of the
algorithm. The test cycle in Fig. 5(b) was run for +25, 410, 0, —10, and
—20°C. At irregular intervals the maximum (minimum) power predicted by
the algorithms was actuated for At = 2s. In order to evaluate the accuracy,
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(a) Schematics of experimental setup with HIL rig, cell
cycler and climatic chamber with cell. The signal flow is
such that the HIL rig sends out a power request that the
cell cycler actuates. The resulting cell voltage, current
and temperature are measured using sensors that could
typically be used in on-board BMS application and fed
back to the HIL rig.
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(b) Test cycle used in the evalutation based on the standard drive cycles
Hyzem rural and US06.

Figure 5: Test setup in battery lab.
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Figure 6: Test with under estimated Ry (a) without and (b) with the pro-
posed filter on power.
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the limitation at vy, was inactive during this test, thus allowing the voltage
to go outside of the range vy — Umax if the power was over-estimated.
Note that the pulses occur at slightly different SoC levels for the different
temperatures. This is because of charging constraints over temperature and
also that the power and energy of the test pulses are different.

Depending on the limiting factor (current or voltage), the margin to the
limit after prediction horizon was recorded and documented in Table 4. The
measures used in the table are

AV — v(t) — Umax .Charg%ng
Umin — V() Discharging
AJ — z(t) — ir.nax .Charg?ng
Goin — (1) Discharging

which means that a negative value always relate to under-estimated power
and vice versa.

The overall results are within +2% of the actually available power, which
is good considering the extreme use case with high power for an aged cell at
cold temperatures. In the first pulse of the test the prediction is rather poor
because the parameters are still adapting (see Fig. 7 for an example of the
parameter adaptation). Also, the accuracy of the equivalent circuit model is
sometimes poor in the tested cases, typically when significant polarization
is built up in the cell after repeated pulses. The accuracy then degrades
due to the inability of the equivalent circuit model to predict voltage, see
e.g. pulse 11 and 12 in Table 4. Pulse 9 of the test in +10°C occurs just
after a heavy discharge of the cell and the power is then under-estimated
due to the filter described in Section 4.3.

5.4 Adaptation to voltage limit

To validate the behaviour of the algorithms when the power request exceeds
the available power, the same test cycle as before was used, but with the
modification that the predicted available power was actuated for 15s. This
time the limitation was not overridden and instead it was examined how
the power was ramped down to keep the voltage within the allowed limits.
In Fig. 8, a zoom of one of the pulses at —20°C is shown. The behaviour is
typical for the application when a time delay is present. First a small under-
shoot in the order of 10mV occurs at around 6915s but it quickly recovers
and converges to v,. Note that none of the stability issues described in
Section 5.2 were present in the tests.
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Table 4: Test results for power prediction. It will be either voltage or current
that limits the power. In the table ' is reported for the signal that was not

limiting, ’

%

is used for pulses that was not actuated due to battery power

already being limited. ’C’ is charge and D’ is discharge. Positive sign is
used if power was over-estimated and negative is used for under-estimation
(this applies to both charge and discharge cases).

Pulse Nr 1 2 3 4 5 6 7 8 9 10 11 12 13
Time s 449 559 866 1032 1200 1341 1506 1559 1731 2185 2247 2816 2955
Type - D C D D C D C C D C D D ¢
+25°C
SoC % 89 85 69 66 64 57 53 54 40 28 28 22 22
AV Y - 0.0 - - = - - = - - - - =
AT A -2 — -2 -4 -1 -3 -1 -1 +4 -1.5 -1 +0.5 -2
+10°C
SoC % 85 82 64 62 59 51 47 49 33 21 22 22 22
AV Y - -0.01 - - = - - — -0.1 - +0.02 - —
AT A -5 — +4 -3 0 +3 -1.5 -1 - -1.5 - -0.5 -1.5
0°C
SoC % 80 77 60 57 53 46 42 42 28 19 19 18 20
AV v - +0.01 -0.08 - — -0.04 - — -0.05 - - - —
AT A -20 — - -15 -2 - -4 -2 - -3 -7 -3 -3
—10°C
SoC % 75 71 52 49 46 38 34 35 24 23 23 23 24
AV v -0.3  +0.01  +0.05 -0.05 — +0.1 — - * — +0.15  -0.02 —
AT A — — — — -1 - -5 -1 * -2 - - -3
—20°C
SoC % 75 71 54 50 49 41 37 38 31 25 25 23 24
AV Y -0.2 +0.05 F0.02 -0.12 -0.05 0.0 - — * - +0.35 0.3 -0.07
AT A — — — - — - -4 -3 * -10 - - —
10 T T T
E L
5
g ST )
o
nd
0 . . . . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
_ 5
IS
<
Q M
£
i
nd
0 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
25
@ 20 1
-
= 15t d
Ml/"\’v\__v
10 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time [s]

Figure 7: Parameter adaptation for test in —20°C.
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Figure 8: Example of voltage adaptation to vy, in test in —20°C.

6 Conclusions and future work

An adaptive power estimation algorithm was implemented, analysed and
tested to evaluate its suitability for on-line implementation on a vehicle bat-
tery management system. The algorithm was designed to handle changed
battery characteristics and also time delays caused by network control of
vehicle power distribution.

The algorithm performs as expected in laboratory tests and estimation
accuracy is normally within 2% of the actually available power. However,
there are occasional outliers when parameters are not fully adapted and for
discharge cases at low state-of-charge.

Focus of this work was on short term power estimation (i.e. 1-5 seconds
prediction horizon). The algorithm was also tested for longer prediction
horizons (up to 30 seconds). For that task, significantly degraded perfor-
mance was noted. The indication is that this is due to poor model validity
for long, high power pulses in cold temperatures. Further work is needed to
improve the algorithm also for long term power estimation.
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circuit model and moving horizon estimation

Bjorn Fridholm, Torsten Wik, Changfu Zou, and Anton Klintberg

Abstract

Equivalent circuit models are commonly used for predicting
the current—voltage response in algorithms for battery manage-
ment. One example is prediction of power capability where a
voltage model can be used to estimate the maximum allowed
power for different time-horizons into the future. For long pre-
diction horizons (e.g. 30s or more) the battery characteristics
may, however, change considerably. This is in particular a prob-
lem for high discharge power in cold temperatures and can then
result in significant prediction errors. In this article an extended
equivalent circuit model is proposed, where states related to lo-
cal state-of-charge (concentration) on the particle surface are
added. The voltage prediction accuracy is improved compared
to the regular equivalent circuit model, which is demonstrated
on laboratory data collected in temperatures ranging from —20
to +25°C.

Keywords: Adaptive estimation; power capability; battery
management; state of power; battery modelling; moving horizon
estimation.

1 Introduction

Algorithms for predicting power capability of batteries often use equivalent
circuit models to relate current and voltage constraints (see e.g. [1, 2, 3]).
As an example, the model can be used to calculate the voltage response to a
known maximum current, and similarly to calculate the current that would
cause the voltage to reach a predefined limit. To deliver consistent behaviour
of the electric vehicle, it is often the power that can be provided during some
time into the future that is sought, rather than the instantaneous power,
and then the voltage response must be predicted. The accuracy of power
prediction is thus directly related to the accuracy of the voltage prediction.
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When a short-term prediction of the voltage response is sufficient (typ-
ically less than 5s), a first or second order equivalent circuit model (ECM)
can be used [4, 5, 6]. With constant parameters the ECM is, however,
only valid for a limited operating window (charge level, temperature, age,
etc.). To extend the accuracy to a wider operating range the ECM can
be improved by estimating its parameters online [7]. Parameter adaptation
inevitably relies on the assumption that the parameter variations are slow
in comparison to both the system dynamics and the prediction horizons
of interest. If the characteristics change too fast, the adaptation will not
be able to track the changes and the recent past is not representative for
predicting the near-term future. In some cases, such as low state-of-charge
(SOC) or low temperature operation, the battery behaviour as described
by a traditional ECM changes considerably. The ECM can then produce
significant errors as illustrated in Figure 1, where the assumption of slowly
time-varying parameters is violated at around 1600s. The failure to capture
this voltage-drop will limit the models applicability for estimation tasks.
The consequences may be that SOC is under-estimated, while the power
capability is over-estimated.

An alternative to online estimation of the parameters is to use parameter-
varying techniques such as gain-scheduling, where the parameters are var-
ied w.r.t. scheduling parameters, e.g. SOC, temperature, and current (see
e.g. [8, 9, 10]). By visual inspection of the error in Figure 1, it seems
reasonable to assume that the observed behaviour cannot be captured by
scheduling the parameters this way. Temperature and SOC remains rela-
tively constant for the considered time-horizon, while the response to cur-
rent is very different at e.g. 1570s compared to 1620s. To improve the
voltage prediction, a new or improved model is needed.

Ouyang et al. [11] captured the voltage drop in low SOC ranges by
introducing additional states to the ECM related to electrode surface con-
centration. Similar effects of low surface concentration were noted by [12]
in operation at high power and low temperatures. Then slow diffusion dy-
namics lead to low local concentrations even in cases when the bulk SOC
was not particularly low. In this article, results from [11] and [12] are com-
bined to form an extended equivalent circuit model for improved voltage
prediction.

Voltage prediction online requires correct model parameters and initial
state. In the battery example, neither of those are directly measurable,
and it is therefore common to use an observer to estimate them. There are
several algorithms available for this task, and in the battery research field
different types of Kalman filters [13, 14, 15] and moving horizon estimation
(MHE) [16, 17, 18] have been proposed.
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Figure 1: Example of simulation result of a first order RC equivalent circuit
model tuned to a lithium-ion cell. For the major part of the test, the
model produces accurate voltage predictions, but for extended high power
discharge pulses between 1600-1720s the prediction is far off. If this voltage
model is used for power prediction, the available power will be significantly
over-estimated, which in a vehicle application can impact driveability.
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The contributions of the article are:

e An extended ECM for low temperature, high discharge power cases
inspired by [11] and [12].

e A formulation and evaluation of MHE for online estimation of param-
eters and states of the extended ECM.

e A validation of voltage prediction accuracy on laboratory data in a
wide temperature range.

The rest of this article is structured such that Section 2 presents the
extended ECM. Section 3 describes the parameter and state estimation.
In Section 4 the accuracy of the voltage prediction is evaluated on labora-
tory battery cell data. Section 5 concludes the article by summarizing the
findings and proposing future work.

2 Extended equivalent circuit model

The aim of this section is to derive a “grey-box” model structure to handle
the observed current—voltage response for low temperatures. For this pur-
pose, a comparison between physics based single particle models and ECMs
is used to motivate an extended ECM.

Remark. The model uses insights from electrochemistry, but the intention
is not to give a detailed description of the internal dynamics of a battery.

2.1 Generic model structure

There are several models used throughout this article. To enhance read-
ability of the upcoming algorithms, a generic nonlinear state-space model
in discrete time is used, according to

L1 = f(ﬂ,wm Qk) (1)
Y = h(xlﬁuk? ek)v (2)

where x € R™ are the internal states, u € R is the input (current), y € R
is the output (terminal voltage), and § € R"™ are the parameters.

Remark. The parameters will normally be considered constant and then the
time index k is excluded.
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2.2 Single particle model

Most electrochemical models of lithium-ion batteries stems from the model
proposed in [19]. By imposing a series of assumptions, this non-linear model
based on partial-differential equations can be simplified to a system of non-
linear differential-algebraic equations called a single particle model (SPM).
SPMs use only one particle for each electrode, and depending on the as-
sumptions and methods used for the simplification, the resulting model
becomes slightly different (see e.g. [20, 21, 22]). For the purpose of this ar-
ticle, we will only consider the description of the terminal voltage, and then
all the models are conceptually similar. Discarding electrolyte dynamics,
the terminal voltage depends on surface concentration, over-potentials, and
an ohmic drop, i.e.

v(t) = Up(cf) (1)) = Un(el? () + mp(t) — 1a(t) + Roi(t),
where cés) and ¢ are the surface concentrations in the positive (p) and
negative (n) electrodes, Uy, U, : R — R are nonlinear material dependent
functions that maps the surface concentrations to potentials, i, and 7, are
over potentials, and Ry is a lumped resistive term.

2.3 Equivalent circuit model

In equivalent circuit models (ECM) electrical circuit elements are used to
mimic the current—voltage response of the battery cell. In discrete time the

ECM can be described by

Ul(k‘ + 1) = 0111)1(]{3) + ﬁl’L(k)

Uy (k + 1) = @, v, (k) + B, i(k)
2(k+1) = z(k )+At@;§m'< )

vecm<k) = hocv + Z U] + ROZ )

where z is the SOC related to the average (bulk) concentration of lithium
in solid phase, h,., : R — R is a nonlinear function that maps z to open
circuit voltage (see Figure 2), v; are polarization voltages describing dif-
fusion dynamics, At is the sampling time, Rj is a lumped resistive term,
a; = exp(—At/R;C;) and p; = R;(1 — exp(—At/R;C})) are parameters
related to the circuit parameters, Quom is the capacity, and j = 1,...,n, is
an integer index.
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The parameters and states of the ECM are then
Lecm = [/Ula N Z]T € anJrl
eecm = [al’ sy Oy 517 cee a/Bnm Q;olmv RO]T € R2nv+2.

In the following sections, the ECM will be referred to as ECM1, ECM2,
and ECM4, where the number refers to n,, i.e. the number of polarization
voltages (RC-circuits) included in the model.

2.4 Extended equivalent circuit model

As described in [11], a major conceptual difference between the ECM and
SPM is the use of open circuit voltage (OCV) based on cell average SOC
versus individual open circuit potential (OCP) based on surface concen-
tration. The polarization voltages v; in the ECM, thus, models both the
over potentials and the diffusion dynamics in the solid phase, a simplifica-
tion that works well as long as the OCV-curve is relatively linear. In areas
where the derivative changes fast, such as below 10% SOC in Figure 2, the
ECM needs to compensate for this nonlinear effect by using a different set
of parameters. The idea in the extended ECM (XECM) is to approximate
surface SOC (z5) by

B+ Axk)

where Az represents the difference between bulk and surface concentrations
and is governed by first order dynamics that in discrete time can be written
as

Azl(k‘ + 1) = OélAZl(k') + 61@(1{?),

where a; and [3; are constants. It is then the surface SOC that is fed through
the OCV curve rather than bulk SOC. The output equation can then be
written as

Vseem (£) = hooy (2( +Zvj ) + Roi(k),

where the parameters and states are

_ T Ny+n.+1
Txeen = ULy« vy Unyy D21, .., Az, 2]" € R

-1
execm = [0417 sy Opygn,, 517 ce aﬁnv-i—nz? Qnom? RO]

The models are referred to as XECM1 when n, = n, = 1 and XECM2 when
Ny =Ny, = 2.

T c ];{27%—}—271Z +2

Remark. The number of states for polarization voltages (v;) and local SOC
(Az) can be selected independently, but in the forthcoming they are always
set to the same number.
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Figure 2: Open circuit voltage of the battery used in the laboratory tests.

2.5 Model structure evaluation

To assess the potential of the proposed model structures, laboratory data
from an NMC cell tested in temperatures from —20 to +25°C were used.
The current cycle is the same as in Figure 1 for all temperatures, except the
part between 1600-1720s where the current is selected so that the voltage
approaches the lower voltage limit 2.5V.

Initial state zy and constant parameters 6 of the five models ECM1,
ECM2, ECM4, XECM1, and XECM2 were identified by minimizing the
prediction error subject to the model dynamics, i.e.

N
. 2
min ; (g1, — h(zg, uy,, 0))
s.t. Th+1 :f(xk,uk,Q), kZO,...7N—1
0eP,

where y;, and u; are measured voltage and current respectively, and P is
the set of feasible values for the parameters.

The optimization was implemented and solved in Matlab using the func-
tion fmincon and the results of simulating the models using their optimal
solutions of zy and @ are illustrated in Figure 3. The first conclusion to
draw is that the results are very similar most of the time. In tempera-
tures above 0°C the ECM performance is very similar to XECM, except for
ECM1. When the temperature is below 0°C and the voltage drops below
3V in high power discharge, the XECM provides a better fit. This can
be seen in Figure 4, where details of the results for ECM4 and XECM2
are plotted (these models were selected since they have the same number
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Figure 3: (a)-(e) Cumulative distribution function of the voltage error when
simulating the models using optimized parameters. Note how similar the re-
sults are except for ECM1 and low temperatures where the estimation error
of the ECMs are larger on the negative side, i.e. voltage is over-estimated.
(f) RMS error for each temperature and model structure. Note, the colour
coding is the same in all sub-figures.

of free parameters). The ECM4 fails to capture the high current part be-
tween 1600-1720s, even though the initial state and parameters have been
optimized. The XECM2 provides an improved fit, and this coincides with
when the estimated local SOC drops below the “knee” of the OCV curve.
The performance of ECM2 and ECMA4 is very similar (see Figure 3) and
therefore it was concluded that adding more dynamics to the ECM does
not solve the problem, instead, non-linear dynamic effects must be taken
into consideration, which is what the XECM provides.

3 State and parameter estimation

To maintain accuracy during operation, for instance in an electric vehicle,
the parameters and unmeasurable internal states must be tracked. This
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Test condition:
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Figure 4: Laboratory data and simulations of the ECM4 and XECM2 using
optimal parameters and initial state for data collected at -10°C. Note that
both models have the same number of parameters and states. The parame-
ters are optimized for the data in the example, illustrating that the XECM
is possible to tune to the desired behaviour better than the ECM, which
fails to capture the voltage response in spite of an optimal set of parameters

and initial state.
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is normally achieved by an observer and in this work a moving horizon
estimation scheme was selected. The motivation behind that choice is its
flexibility to handle joint estimation of parameters and states, and that it
can handle constraints.

3.1 Moving horizon estimation

Moving horizon estimation (MHE) is an optimization-based method that
uses a receding time-horizon covering a limited number of past measure-
ments. A dynamic optimization problem is repeatedly solved online in each
time-step. Disturbances in the form of unknown and slowly time-varying
parameters can be estimated along with the states in a consistent way by
adding them as additional variables to the optimization problem. Letting &
be present time, N be the time horizon, and defining L = kK — N, the MHE
considering states (x), parameters (f) and state noise (w) can be described
by

. xrr — T,
1min =
$J‘,’u)j,9 0 - HL

2 k k—1
+ 3 [y = pas, s, 01+ Y sl
Pl =L j=L

s.t. Tjt1 :f($j,Uj,9)+lUj, j:L,,k—l
QGP,JIJ‘EX,U)]'GW, j:L,...,k’,

where P, € R™*% R € R, and Q € R™ are positive definite weighting
matrices, P, X, and W define the constraints, and the notation |la||} =
a® Aa is used.

There are three parts of this objective function, (i) the arrival cost, (ii)
the prediction error, and (iii) the state noise. They all have their individual
weighting matrices. The prediction error and state noise were here given
static weights while the arrival cost, described next, must be updated in
each iteration.

For the parameters and states estimated at time k& to actually be opti-
mal, all data from time —oo to present time k& must be considered in the
optimization. Even if the problem is truncated to start at time 0, this
means that the optimization problem to solve grows unbounded with time.
To overcome this, the arrival cost is used to sum up the information prior to
the current time window, thereby transforming the problem to an equivalent
one of fixed size. In general, the exact arrival cost cannot be calculated but
there are numerous approximations available (see e.g. [23, 24]). Usually, it
is assumed that some prior information is available in the form of the ini-
tial state and parameter estimates (Zr, f;) with a corresponding covariance
matrix Pr. Hence, letting the inverse of P, determine the weight relative to
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the other terms in the objective, results in a large (small) cost of choosing
(z1, 01) far away from (Zr, ;) when the confidence in the estimate is high
(low).

One strategy for computing an approximate arrival cost is to use a first-
order Taylor expansion around the trajectory of past estimates. This is
equivalent to applying an EKF recursion for the covariance update [18, 25].
The weighting of the arrival cost can be calculated as the smoothed Kalman
filter estimate using the following recursion:

N\ —1
Ky = PCT (CLPch + R)
hy = h(xp,ur,0r)
T _ 7L T — T
o) — |8 Ky (g — by — |
e el 7 R (O Vil )
Try1 flar,ur, QL)} [372 1= IL"L}
_ = + A; | Lt
|:(9L+1:| [ - O — 0L
1= — K Cr) P
Pry = AP AL +Q
P =AL(I-K.C)PAT +Q

where R € R and Q € R™"™ are tuning matrices, and A; and Cy are
Jacobians of the state dynamics and output equation respectively.

4 Voltage prediction

The concept of future voltage prediction is explained in Figure 5. Based on
current and voltage measurements up to present time, the MHE is used to
estimate parameters and states. In the prediction step, the model is simu-
lated 30s forward, assuming that the current is known, and the predicted
voltage is then compared to the true measured voltage.

To reduce the size of both the estimation and prediction steps the data,
which were originally sampled with a step-time of 1s, were down-sampled to
5s by averaging. This also has the advantage of focusing the estimation on
the dominating dynamics. To further limit the amount of free parameters,
only XECM1 and ECM2 are evaluated. The optimization is implemented
and solved in Matlab using the CasADi framework [26].
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Figure 5: Example of how voltage prediction is done. Based on data up to
time t = 0 the state and parameters are estimated using the MHE algorithm.
Based on the estimated parameters, final state, and future current, the
model is simulated 30s ahead to predict what the voltage should be. This
is then compared to the actual voltage at that point in time.

4.1 Horizon in MHE

First, the impact of the estimation horizon length was investigated on the
XECM1 by testing various setting from N = 1 (EKF) up to N = 60
(i.e. 300s of data). Note that N = 1 uses a regular EKF instead of MHE.
The results are illustrated in Figure 6. It can be seen that the RMS error is
significantly reduced when including more historic data for the estimation.
However, using too long horizons increases the RMS error somewhat, and
the minimum error was achieved with N = 30 (150s of data). While more
careful calibration may have changed the RMS error, it was considered un-
likely that the overall results would have changed significantly. The reason
that the estimator benefits from an extended time-horizon is that the lin-
earised system is almost unobservable due to similar dynamics of the v; and
Az states.

4.2 XECM vs ECM

Next the performance of the XECMI1 is compared to the ECM2 in an online
setting using the same data as in Section 2.5. Manual calibration of @)
and R matrices of the MHE was done for a horizon of N = 30 using a
training data set in —10°C. The same calibration was then used for all
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Figure 6: RMS prediction error for different horizons of past data included
in the MHE algorithm. The data for N=1 (5s), uses a regular EKF.

temperatures, except for parameter initialization that was taken from the
offline optimizations presented in Section 2.

The results for ECM2 and XECM1 in —10°C are illustrated in Figure 7,
where it can be seen how the prediction accuracy is improved using XECM1
in longer periods of high discharge power. In Figure 8, the state trajectories
of XECM1 are plotted. Note the extremely low local SOC estimated at
around 1300s, which coincides with the part of the cycle that ECM2 fails
to capture.

An overview of the performance for all tested temperatures is given in
Figure 9, which depicts the cumulative distribution function of the predic-
tion errors for both models. The accuracy of the XECM1 model is overall
better in all temperatures. The full potential as compared to offline opti-
mization (Figure 3) is, however, not achieved. Future work is needed to
further investigate the reasons, but it is either due to that the optimal set
of parameters cannot be found using historic data, and in that case some
gain-scheduling technique might be needed, or it might be that the joint
estimation of parameters and states is difficult due to different excitation

conditions, and in that case dual estimation of parameters and states might
be needed.

5 Conclusions and future work

Equivalent circuit models (ECM) are often used in algorithms for predict-
ing power capability of batteries. When operated at low SOC and/or low
temperatures, ECMs may, however, fail to capture the voltage response of
the battery. An extended ECM that includes additional states related to
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Figure 7: Voltage prediction based on 30s simulation using initial state and
parameters from moving horizon estimation.
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Figure 8: Estimated state trajectories of the XECM1 for the test in —10°C.
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Figure 9: Cumulative distribution of prediction errors for all tested tem-
peratures together with RMS error. The evaluated part of the drivecycle is
the same as in previous examples. In the CDF plots, it is in particular the
negative errors that are interesting since they lead to an over-estimation of
voltage (and hence also available power).

192



REFERENCES

local SOC was proposed to improve the prediction accuracy. To estimate
parameters and states of the model online, a moving horizon estimation
scheme was used. The improvement of the extended model was demon-
strated by comparing it to the standard ECM using laboratory data from
a wide temperature range. Future research directions are to further im-
prove the online estimation accuracy of the MHE by e.g. dual estimation of
parameters and states, and to incorporate the extended model in a power
prediction algorithm.
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Abstract

The electrical range of electrified vehicles is limited by the
energy available from the battery system. The available energy
differs from the total energy stored in the battery due to resistive
losses that are highly nonlinear w.r.t. temperature and drawn
current. This introduces a dependency on future operating con-
ditions that must be accounted for to get accurate estimates
of the available energy. Based on statistical measures of the
future driving profile, together with an electro-thermal battery
model, an approximate analytical expression for the available
energy that considers the temperature trajectory of the battery
is derived. The expression is evaluated in simulations using a
battery pack model with a thermal system calibrated to labora-
tory data. The error introduced by the approximate expression
is within 1% for the tested temperature range —15 to +30°C.

Keywords: Lithium-ion; energy estimation; battery man-
agement; state of energy; battery modelling; thermal modelling.

1 Introduction

Information about the energy available from the battery system is impor-
tant for electrified vehicles, both to enable optimal energy management and
for calculating remaining driving range [1, 2]. In the literature, energy es-
timation is often described in terms of state-of-energy (SOE), where the
remaining energy is related to the energy for a fully charged battery. The
problem can then be approached analogous to state-of-charge (SOC) esti-
mation by e.g. model-based estimators, such as different types of Kalman
filters [3, 4], neural networks [5], and H filters [6], or by introducing direct
relationships between SOC and SOE [7]. While there is a clear relationship
between SOC and the energy stored in the battery, the energy that the ve-
hicle can use (hereafter referred to as available energy) will differ from the
stored energy due to losses, which depend primarily on the drawn current
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and the internal resistance [2]. Theoretically, the available energy is given
by integrating the battery power over the remaining drive cycle, i.e.

Epn(t) = /t " ()i, (1)

where v is battery terminal voltage, ¢ is current, and Z.,q is the instant when
the battery reaches its minimum allowed charge level (zpyin)-

Calculating the available energy thus requires knowledge about future
operating conditions of the battery, information that is normally unavailable
in online vehicle applications. Still, Liu et al. [8] demonstrated accurate
estimates of the available energy by solving (1) for an assumed future current
profile together with an equivalent circuit model. Full knowledge of the
future driving profile may not be realistic to expect in online applications,
but historical data on driver behaviour together with route information
can provide statistical information about the future driving profile [9, 10].
Barai et al. [2] utilize this to solve (1) for an assumed future average current.
However, one important aspect that is not considered in [2, 8] is how the
battery temperature impacts available energy.

It is well established that the resistance of lithium-ion batteries is highly
nonlinear w.r.t. temperature, where lower temperature causes significantly
increased resistance [11] and thus also increased losses. Therefore, it is
important to also consider the temperature trajectory of the battery when
estimating available energy. For SOE estimation, temperature dependencies
have been dealt with by using a definition the energy for a fully charged
battery that varies with temperature (see e.g. [3, 4, 5]). Validation of SOE
estimation accuracy has then in general focused on constant temperatures,
even though [3] also considered linearly varying temperature and constant
discharge current. Literature review for this work revealed no contributions
on modelling the future temperature trajectory of the battery.

One motivation for studying the energy in a thermal steady-state may
be that the battery pack is normally controlled to some reference operating
temperature using a cooling system. To reduce cost it is, however, quite
common to exclude actuators for heating the battery. Instead, the battery
heating is left to rely on the internal heat-generation caused by resistive
losses [11]. When starting from a low temperature, there will thus be a
transient phase when the losses are significantly higher compared to op-
eration in a thermal steady-state. As an example, the available energy is
approximately 95% of the total stored energy for a battery that is operated
constantly close to a reference temperature of +30°C, whereas it may drop
below 90% when the battery is heated by losses from an initial temperature
below 0°C (see Section 6).
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This article falls into the category of solving the power integral (1),
but extends the existing results by providing (i) an analytic expression of
available energy, (ii) including the thermal dynamics of the battery pack,
and (iii) using the future current statistics instead of a given current profile.

The remainder of this article is structured such that Section 2 introduces
the vehicle application considered. Section 3 describes an electro-thermal
battery model suitable for energy estimation. Section 4 presents a deriva-
tion of the proposed analytic expression for available energy. Section 5 gives
the algorithm for implementation, which is evaluated in simulations in Sec-
tion 6. Finally, Section 7 concludes the article and suggests future research
directions.

2 Vehicle system

Before moving into the main results of the work, it must be noted that
an exact calculation of available energy is not possible in online vehicle
applications. However, based on assumptions presented in this section, an
expression for estimating the available energy can be derived.

2.1 Future driving conditions

In online applications it is not feasible to have full knowledge of the future
driving profile. However, given the extensive efforts and rapid development
of data-driven methods (see e.g. [10, 12]), improved predictions of driver
intent and future traffic situations can be expected. Here, we assume that
statistical information is available according to:

Assumption 1. The average (iayg) and standard deviation (iga) of the
future current are known.

2.2 Battery pack

An automotive battery pack contains hundreds of battery cells that are
all slightly different due to variations in manufacturing, uneven ageing,
etc. [13]. However, this variability is not considered here where it is pre-
sumed that

Assumption 2. all cells of the battery pack are identical.

Remark. By this assumption, the battery pack can be regarded as one single
cell.
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The upcoming calculations rely on a battery model, where the param-
eters and states are not directly measurable in the vehicle. This problem
has been thoroughly investigated (see e.g. [14]) and to focus on energy es-
timation, it is assumed that

Assumption 3. all needed model parameters and state-of-charge (SOC)
are available.

Remark. The parameters and states are also needed for other tasks of the
battery management system. The energy estimation therefore does not
introduce any additional needs.

2.3 Thermal system

To calculate a temperature trajectory of the battery pack, also thermal
management must be considered. There are many configurations available
(see [11]) but here it is assumed that

Assumption 4. no external heating is applied to the battery.

Remark. The thermal management can, thus, be divided into two parts; (i)
uncontrolled heating by internal heat generation, and (ii) controlled cooling
to a reference temperature.

3 Simplified electro-thermal battery model

This section introduces an electro-thermal battery model suitable for avail-
able energy estimation. Based on the limited information about future op-
erating conditions provided by Assumption 1, a first order equivalent circuit
model (see Figure 1) with temperature dependent parameters is simplified
to a purely resistive model that can be used to calculate the power integral

(1).

3.1 Electrical dynamics

Our estimation approach requires a capacity definition that remains con-
stant over a charge cycle. This is achieved by relating measures to the open
circuit voltage.

Remark. There might be small variations in the open circuit voltage (OCV)
w.r.t. temperature, but this effect is negligible for the cells and temperature
range considered in this work, as was also found in [15].

The following definitions will then lead to an (almost) temperature in-
dependent capacity definition:
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Definition 15. A battery cell is fully charged, i.e. state-of-charge z = 1,
when its open circuit voltage 1S Vpax.

Definition 16. A battery cell is fully discharged, i.e. state-of-charge z = 0,
when its open circuit voltage 1S Vpyin-

Definition 17. The nominal capacity (Qnom) is the number of ampere sec-
onds between fully charged and fully discharged.

Definition 18. The minimum state-of-charge (zwn) is the minimum al-
lowed charge level of the battery.

Remark. Normally the battery is not used down to z = 0 for both safety
and durability reasons and therefore z,,;, is often set to some value above
0, typically 2z, = 0.1.

In continuous time the temperature dependent equivalent circuit model
in Figure 1 can be described by

) = e — L

n0= s aam )
£(t) = g —i(t) 3)
06) = hae((0) + 1) + RolT(0))i(0), (@)

where z is SOC, v; is dynamic voltage, he. is a non-linear function that maps
SOC to open circuit voltage, T' is temperature, and Ry, C; and 71 = R;Cy
are temperature dependent parameters (see Figure 1).

Remark. Tt is assumed that the parameters are fairly constant over the used
SOC range, and the model therefore does not depend explicitly on SOC.
Yet, the parameters of the simulation model used for evaluation in later
sections do depend on SOC.

3.2 Thermal dynamics

For the thermal dynamics, a simplified lumped mass model based on energy
balance is used. Only Joule heating is considered, while entropy effects are
neglected [16]. Convective cooling is assumed, but only considered via a
cooling power directly on the battery. It is assumed that the heat is only
generated in the resistances Ry and R; of Figure 1 such that the energy
balance for the battery becomes

meT'(t) = Ro(T(8))i(t) + Ru(T(1))i(t) + Peoar(t), ()

where m is the thermal mass, c is the corresponding specific heat capacity,
and P, is the cooling power applied to the battery. Similar models have
previously been used in [16, 17, 18].
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Figure 1: Equivalent circuit model.

3.3 Simplification of resistance

Based on the limited information about the future current from Assump-
tion 1, the dynamic voltage (2) cannot be resolved in time. Instead, a
simplified resistive model for v(t), i.e.

v(t) = vac(2(t)) + R(T)i(), (6)

with the same statistical properties as (4) is sought.
First let

for an arbitrary fixed temperature T*. Also note that by Assumption 1,

Bli(t)] = ave (7)
E[ZQ <t>] = ngg + Z'ztd = ?:?ms' (8)

The derivation is more straight-forward using the discrete-time equiva-
lent of (2), which with sampling time ¢, can be described as

ik +1) = ¢ oik) + Rl — e M) i(k). (9)
o B=Ri(1—a)

Since it is unrealistic that the current can be modelled as white noise, it is
assumed that

Z(k) = Z.avg + AZ(]{), (10)

where A is filtered white noise according to

Aik + 1) = yAi(k) + w(k), (11)
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with w ~ N(0,62) and v < 1 is the time-correlation of the current.
Studying the correlation between v; and i using (9-11) it can be shown
that

-2 22
Ustd + Rlzavg'

21 _ o (1 —a)(
E[Ul] _Rl (1 (

[ J/

Returning to (5) we see that the approximation

-2 -2
Zavg + Plstd
72
rms

R=Ry+ R, (12)

leads to
E[Roi*(t) + Rii3(t)] = E[Ri*(¢)]. (13)

Since the temperature T is arbitrary, this holds for all temperatures.

3.4 Temperature dependent resistance

Inspired by [19], an explicit expression for the temperature dependence of
the resistance is introduced on the form

R(T) = Re™ "It (14)

where R is the resistance at the reference temperature Th¢, and  is a tuning
parameter to handle the temperature dependence.

Remark. Here we have implicitly assumed that the temperature dependence
for both Ry and R; can also be described by (14) using the same k. While
this may seem questionable the impact on the final results is small, as will
be seen in Section 6.

The future temperature can now be calculated for cases without cooling
(Peool = 0) using (5). However, it will be based on statistical information of
the future current, and the temperature and current are thus not indepen-
dent. Motivated by the fact that the temperature variations are significantly
slower than the variations in current, we will ignore this dependency and
use the approximation:

mc% E[T(1)] ~ Re *EIO-Te)2

which is a separable differential equation that can be solved by

T "
R To

to

m__c (e,{(Tl_Trcf) . 6:-c(To—Tmf)) = i12'ms (t; —to) - (15)
kR

S?
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Remark. From here on all variables related to future operating conditions
should be considered in terms of their expected values, for readability this
is, however, left out of the equations.

4 Available energy calculation

Based on (1) and (6), the available energy can be calculated as

Fon(t) ~ /t " e (2(P))i(7) + R(T)i2(r)dr

tend tend
_ / voe(2())i(Ddr+ | R(T)2(r)dr,
t t
Enom () Flow(?)

where E,y, is the nominal (total) energy, Fj.g is the temperature dependent
losses, and t¢,q is defined as the instant when SOC is at z.,;,, which can be
calculated by solving (3)

1 tend
Zmin = 2(t) + / i(r)dr
Qnom t

~ o(t) + — /t " Bli(r)dr

QHOH]

which gives

nom\<min — t
bena 7 ¢ 4 Do (Znin = 2(0)) (16)
lavg

4.1 Nominal energy

For the nominal energy, the integral can be solved using the variable sub-
stitution dr = dz/Z together with (3), which gives

Zmin

Enorn(t) - Qnom /(t) UOC(Z)dZ' (17)

The nominal energy is thus independent of the operating conditions and the
integral can therefore be solved offline and stored in the battery management
system.
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4.2 Resistive losses

Consider the case when the battery starts at a temperature below the refer-
ence, which is the hard case since the transient temperature initially leads
to increased losses. Equations (5), (6), and (13) gives

R(T)2,, = mcT(t) — Pepol(t).

rms

Now, assume that the temperature is allowed to increase freely until a refer-
ence temperature T, is reached, after which we have perfect cooling, i.e. all
of the generated heat is cooled away. The expected value of the cooling is

then
0, T(t) < Tret

T(t) > Tret- (18)

E[Pcool(t)] = {Ri2

so that '
MCT(t), T(t) < Tref

Ri? T(t) > Tt

rms?

R(T(t))izms = {

There are now two cases depending on whether T is reached during the
cycle or not. Referring back to (15) we define

mce K(T(£)—
tref =1+ T (1 — T Tref)) , (19)

and consequently T, is reached if e < tong.

4.3 Case 1: T,y is reached

Assuming that T} is reached it follows that

Beult) =B | [ RO

= /t " meT (1) — E[Peoot(7)]dT

rms
t tref

= mc(Tret — T(t)) — Ri%, (tena — tret) - (20)

rms

tref . _ tend
= mcT (7)dr — Ri? / ldr

Vo Vv
heat-up running loss

Combining equations (16), (19), and (20) yields the final expression for the
energy losses

. A
FEloss(t) = meAT(t) + me (1- e‘”AT(t)) _ Pl @nom A1)

- SECY

lavg

where AT (t) = Tret — T'(t) and Az(t) = zmin — 2(1).
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4.4 Case 2: T, is not reached

If the reference temperature is not reached before the battery is fully dis-
charged, we have to solve (15) with t; = tepg, i.e.

1 Ri2
Tend = Tref + —In (KJ s (tend —t+ GH(T(t)_Tref))) >
K mc

and the final expression for energy losses then becomes

Eloss (t) =1mc (Trcf - T(t)) +
= o
n Ecln (RRZrmS (tend ¢ eN(T(t)Tref))) ) (22)

K mc

5 Algorithm for energy estimation

The previous sections have presented several steps to calculate the available
energy. Here the needed steps are summarised into an algorithm.

Initialization

Input the states (z(¢) and T'(t)),
and load-cycle statistics (iayg, istd, and 7)

Step 1

Calculate tenq using (16).
Calculate t, using (19).

Step 2

Calculate F,on using (17).
If t1ef < tenq then calculate Fog using (21),
else calculate Flog using (22).

Output

Output Eavaﬂ - Enom + Eloss-
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Figure 2: Equivalent circuit parameters used for model together with ap-
proximate values used in energy calculation.

6 Simulation study

The validity of the proposed expression is now demonstrated in a simulation
study using two different drive cycles and initial temperatures ranging from
—15 to +30°C. The simulated model is of a complete battery system, cali-
brated to vehicle tests. The temperature dependence for the parameters of
the model is illustrated in Figure 2 together with the approximations used
in the energy calculation. Since the resistances vary a lot over the tem-
perature range, they are plotted using a logarithmic y-axis. In the model
Ry also varies with SOC, but here the average value over the SOC range
10-95% is illustrated. The values of the remaining model parameters are
detailed in Table 1.

6.1 Thermal management

A simple thermal control law provides a realistic temperature trajectory
of the battery pack. When the battery temperature exceeds 31°C, cooling
with constant power is activated until the temperature drops below 28°C.
These limits were chosen in order to keep the average temperature close to
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Table 1: Parameters used in the energy calculation.

Parameter Unit Value
Qnom [As] 95040
m [kg] 62
c [J/(kg K)] | 1330
Zmin (%] 15
T et [°C] 30
Ry Q) 0.101
Ry [Q] 0.144
K [1/K] 0.043

the reference T = 30°C. As already mentioned, no heating is applied. In
Figure 3 the temperature trajectories for all tested cases are shown.

Remark. This deviates from the ideal control law assumed in (18).

6.2 Drive cycles

Two drive cycles are used to test the accuracy of the energy estimation,
Hyzem rural (Hybrid zero emission) and UDDS (Urban Dynamometer Driv-
ing Schedule), both commonly used to evaluate energy consumption of elec-
trified vehicles. The drive cycles are scaled so that Hyzem rural discharges
the battery in one hour, while the UDDS takes approximately two hours.
In Figure 4 both current profiles are shown together with the statistical
measures based on Assumption 1.

6.3 Energy estimation accuracy
The energy efficiency of the battery pack, defined as

n = Eavail
- =
Enom

is illustrated in Figure 5 for true and estimated energies. When started
at the reference temperature +30°C, resistive losses are approximately 4%
of the total energy stored in the battery. When the initial temperature is
-15°C, the losses are over 11%. The error of the approximate expression is
within 0.7% in all tested cases -15, 0, 15, 25, and 30°C.

Since E,.y can be recalculated during the drive cycle, the accuracy is
improved as the battery is drained. An example can be seen in Figure 6
where the full trajectory of true and estimated available energy are plotted
for the Hyzem rural cycle with an initial battery temperature of -15°C,
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Figure 3: The temperature as a function of time for the two drive cycles.
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Figure 5: Actual and estimated energy efficiency as a function of tempera-
ture for the two drive cycles.

i.e. the case with largest error. The main reason for the convergence is
that the temperature increases and, thus, comes closer to the reference
temperature where the used approximations of the resistances are better.

7 Conclusions and future work

Estimating the remaining available energy in a battery pack is an important
function for electrified vehicles. We have derived an analytic expression for
the available energy that relies on statistical information about the future
drive cycle, and which handles temperature transients after starting with a
cold battery.

The accuracy is within 0.7% of the true energy when evaluated using a
highly accurate battery pack model calibrated to vehicle data, which can
be considered very good. In a real-world application the accuracy may be
reduced because of larger uncertainties of parameters, states, and the future
drive cycle.

213



PAPER 6. AN ANALYTIC ESTIMATE OF AVAILABLE BATTERY ENERGY...

Convergence
10
Enom

N E(‘st
§ E(,Y!l(‘
=,

By

&5

=

Q

=

£

I 1
60 70

60
=
E. 10
—
5
g
= 2
.2
-
=
£ 0
h7
=
_20 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70
Time [min]

Figure 6: Trajectory of true and estimated energy for Hyzem rural with
initial temperature of -15°C. The initial error in energy estimation is reduced
as the temperature of the battery increases, and for the lower SOC region
they are almost identical.
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Some of the assumptions were introduced to simplify the expressions and
improve readability of the article. Better approximations of e.g. resistances
can be included. Future work is needed to handle heating when starting
with a cold battery. Another interesting work is to consider the case when
the future power, rather than future current, is known. This introduces
difficulties since the current will then depend on the voltage response of
the battery system and an analytic expression can most likely no longer be
derived.
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