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QUANTIFYING BORROWING CONSTRAINTS AND 

PRECAUTIONARY SAVINGS 

Makoto Nirei 

ABSTRACT 

This paper quantifies the effects of precautionary saVIngs In a dynamic 

stochastic general equilibrium model. I show that Zeldes's estimate [14] of the excess 

consumption growth for low asset holders is consistent with an incomplete market 

model when a borrowing constraint point is set at three months' worth of average wage 

income. The hypotheses of no-borrowing specification and solvency-constraint 

specification are rejected by a test distribution derived from the stationary equilibrium 

distribution. At the estimated borrowing constraint, an increase in endowment shock 

within the range of empirical findings can cause 1.2% increase in saving rate and 10% 

increase in capital. 

JEL classification codes: E21, C68 

Key words: liquidity constraint, precautionary savings, excess consumption growth, 
uninsured income shock, asset distribution 



QUANTIFYING BORROWING CONSTRAINTS AND 

, PRECAUTIONARY SAVINGS 

1 Introduction 

This paper provides a numerical assessment on the importance of precautionary sav­

ings in explaining the excess consumption growth rate observed among the consumers 

with low assets. To do so, this paper also reports a confidence interval of the bor­

rowing constraint point which is consistent with an empirical statistic for the excess 

consumption growth. 

The analysis is built upon Aiyagari's [1] macroeconomic model of uninsured en­

dowment shocks and Zeldes's [14] empirical finding on individual consumption growth. 

Zeldes reports that those who hold assets less than two months' worth of annual income 

exhibit 1. 7% higher consumption growth rate than those who have higher assets. Zeldes 

interprets this excess growth as an effect of liquidity constraints. Other researchers such 

as Carroll [4], Deaton [6] ; and Kimball [11] have emphasized the importance of precau­

tionary motive of savings in explaining the excess growth. However, the precautionary 

effect is often practically indistinguishable from the liquidity constraint effect in the 

data on individual consumption growth. Moreover, it has been recognized that the two 

effects work together in a dynamic consumption decision (Carroll and Kimball [5] and 

Huggett and Ospina [10]). 

In this paper I utilize simulations of a dynamic stochastic general equilibrium model 

with uninsurable endowment shocks and a borrowing constraint to quantify the con-



tribution of the two effects to the consumption growth and identify the parameter 

range for which Zeldes's estimate of excess growth is consistent under the framework. 

To pursue the simulation I follow Aiyagari's method [1] to numerically calculate such 

equilibria when borrowing is restricted. The basic assumption of the model is that the 

economy follows a steady state rational expectation equilibrium. 

I first estimate the borrowing constraint point which matches Zeldes's estimate. 

The methodological point is that the stationary equilibrium distribution is used to 

form a test distribution for a statistic which contains sampling errors due to the het­

erogeneous population. Each Monte Carlo run replicates Zeldes's estimate of the excess 

consumption growth rate for the low asset holders, and 500 runs constitute a test dis­

tribution for the estimate. I repeat the procedure for various values of the borrowing 

constraint point b, and obtain 90% confidence intervals for b in which the simulated 

excess growth supports Zeldes's estimate. The interval shows that Zeldes's estimate is 

supported by the borrqwing constraint points from one month's to six months' worth 

of income. This means that neither specification b = 0 (no-borrowing) nor b = wI/ r 

(solvency constraint) used by Aiyagari and Zeldes falls on the confidence interval. The 

mean excess growth is exactly equal to Zeldes 's estimate when the borrowing constraint 

point is around three months' worth of income. 

Provided with the estimated borrowing constraint point, I examine the aggregate 
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consequence of endowment shocks. I simulate the model with the calibrated b for the 

minimum and maximum estimates of the endowment shock variance in the empirical 

micro literature cited in Aiyagari. The result shows that the capital level increases by 

10% and the saving rate increases by 1.2% at the steady state equilibrium when the 

endowment risk is increased from the minimum to maximum. The increase in aggregate 

asset turns out to be carried out by the lower middle asset holders. These results imply 

a significant aggregate effect on savings caused by labor market fluctuations. 

The paper is organized as follows. The model is presented in the following section, 

and the liquidity constraint and precautionary savings effects are defined and calcu­

lated. In Section 3, two specifications for b are tested and an estimate for b is shown 

to be robust to preference specifications. Section 4 quantifies the aggregate effects of 

a change in income risks. The last section concludes the paper. 

2 The Model 

2.1 An Aiyagari economy 

I follow Aiyagari's [1] model of uninsured endowment shocks. Households maximize 

their utility over infinite series of consumption: 

E [~!3tci-7/(1 - 'Yl] (1) 
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with a period utility specified as exhibiting a constant relative risk aversion. A house­

hold is endowed with labor l whose growth rate follows an AR(l) process, namely: 

logl' = ¢logl + (J~E (2) 

where E follows the standard normal distribution and is independent over time. The 

prime indicates a next period variable henceforth. I assume that there is no aggregate 

risk in the economy. Thus there exists a steady state equilibrium where the interest 

rate is constant over periods. Let r denote the real interest rate , and w the wage. A 

household can lend and borrow, but its net asset cannot go below the borrowing con­

straint point b :::; o. The commodity price is normalized to one. Thus their constraints 

are as follows: 

(1 + r) a + wl > a' + c 

a' > b 

c > O. 

(3) 

(4) 

(5) 

The second constraint is called a borrowing constraint or a liquidity constraint ex­

changeably. The utility maximization given the prices yields households' policy func­

tions c(a, l; w, r) and a'(a, l; w , r). 

The supply side of the economy is expressed by a representative firm which takes 
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prices as given. I assume a Cobb-Douglas production technology: 

(6) 

where K , L , and Yare the aggregate capital, labor , and product , respectively. The 

capital is depreciated at rate 5. The stationary competitive price has to satisfy w = 

(1- B)Y/L and r = BY/K - 5. 

Let f (a, l) denote the joint density function of asset and endowment across house­

holds and let p( l'; l) denote the conditional density for the labor endowment process. 

Market clearing conditions require L = 1 (labor supply is normalized to one), K = 

J J af(a, l)dadl, and Y = J J(c(a, l; w, r)+a'(a, l; w, r)-(1-5)a)dadl. A stationary dis­

tribution f(a, l) must satisfy the functional equation: f(a , l) = J J f(a'(a, l), l')p(l'; l)da dl. 

The stationary equilibrium is the price (w, r), the aggregate allocation (K, L, Y), the 

policy functions (c(a , l) , a'(a, l)) , and the distribution f(a , l) that solve the household's 

problem and satisfy the production function, the competitive price conditions, the 

market clearing conditions, and the stationarity condition. 

The Euler equation must hold for an optimal consumption path. Define Al as a 

Lagrange multiplier for the liquidity constraint (4). Then the Euler equation is: 

Al = c-, - E[c'-' I a, l](1 + r){3. (7) 

Following Zeldes [14] and Dynan [7] , the liquidity constraint effect A and the precau-
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tionary effect p, are defined as follows. 

A log (1 + All (E[c'-r I a, l] (1 + r );:3)) II' 

- (logE[(c'le)-r la, l] + log((l + r)f3)) II' 

Var [log (c' I e) la, l] 1'12 

(8) 

(9) 

Then, by following Deaton [6], an approximation for the Euler equation is obtained: 

log (e'lc) = log((l + r)f3)11' + A + P, + e. (10) 

E[ela , l] = 0 holds if c' follows a log-normal distribution, as Deaton argues. This is 

the case in my model when the elasticity of consumption to current endowment, i.e. 

a log c( a, l) I a log l , is constant. This is because the random term in the conditional 

consumption growth (log( c' I c) I a, l) is concentrated in the second variable of the 

consumption policy function c' = e(a'(a, l), l<P + eIJVl-<P2E) and E is assumed to be 

normally distributed. With this constant elasticity holding, the first three terms in the 

right hand side of (10) give an unbiased estimate for the consumption growth. 

Finally, let us define the unexplained growth ji as the mean of the residual of the 

Euler equation regression: the mean consumption growth less the fundamental growth 

log((1 + r)f3)11' and the liquidity effect A, namely, 

ji = E [log (e'le) I a, l] -log((l + r)f3)11' - A(a, l). 

8 
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Then we obtain: 

log (c'lc) = log((l + r)f3)/'Y + A + jj, + e (12) 

where E[ela, l] = 0 holds regardless of the consumption function form. The unexplained 

growth jj, coincides with the precautionary effect p, when the elasticity of consumption 

to endowment is constant. I call A + jj, an excess growth, since it represents the surplus 

consumption growth of consumers to that of consumers with maximum asset. 

To summarize, the Euler equations show that the excess growth A + jj, is decomposed 

into two factors: the liquidity constraint effect A and the precautionary effect p,. The 

precautionary effect p, is an approximation of the unexplained growth jj" that is, A + P, 

is an unbiased estimator of the excess growth A + jj, if the consumption function c( a, l) 

has a constant elasticity with respect to l. 

2.2 Liquidity constraint and precautionary savings effects 

In this section a steady state equilibrium is numerically calculated when consumers 

cannot have a net debt position at all, i.e. b = O. I employ Aiyagari 's specification for 

parameters as follows. The production and preference parameters are set as f3 = 0.96, 

'Y = 3, A = 1, e = 0.36, and 5 = 0.08. The parameters for endowment shock follow 

Aiyagari's benchmark case: a = 0.4 and ¢ = 0.6. These values for a and ¢ fall on 

the upper bound of the empirical findings cited in Aiyagari. The endowment process 
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Figure 1: Liquidity constraint effect ,\ (left) and stationary distribution of asset (right) 

is approximated by a five-state Markov transition matrix by a quadrature method 

of Tauchen and Hussey [13]. Then I numerically obtain the value functions , policy 

functions , prices wand T, and the stationary asset distribution. 

Figure 1 shows the liquidity constraint effect ,\ as a function of asset and labor state. 

The asset is normalized by the mean annual wage wEll] in all the plots henceforth. 

The liquidity constraint is shown to be binding for the consumers with the worst labor 

shock and the lowest asset holding less than about two months' worth of mean annual 

wage income. In the present model , the binding region is largely determined by the 

endowment shock size CJ. The binding region for CJ = 0.4 corresponds well to the wealth 

split used by Zeldes where the constrained group is defined by asset holdings less than 

two months ' worth of income. The right panel shows the stationary distribution of 
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Figure 2: Precautionary effect p, (left) and unexplained growth jJ, (right) 

asset. The plot captures the right-skewed distribution of asset correctly, but it is too 

much concentrated in the middle range compared to empirical distributions. 

Figure 2 plots the precautionary effect p,( a, l) = Var[log( c' / c) la , ll, /2. In the left 

panel, we observe that the precautionary effect converges to the minimal level about 

0.1 % as the asset increases. In the right panel, the unexplained growth rate jJ, is plotted 

for three labor states. The plots of jJ, are compared with the precautionary effects p, 

which are shown in dotted lines. The precautionary effect p, tracks the unexplained 

growth jJ, well except for the lowest asset group with the worst labor shock. The 

divergence between p, and jJ, occurs exactly at the asset/labor states for which the 

consumers are liquidity-constrained. The unexplained growth jJ, is constant in the 

liquidity-constrained region because the Lagrange multiplier absorbs the effects. 
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Figure 3: Precautionary effect f.L and excess growth A + p, for the lowest l (left) and 

probability distributions of consumption growth rates (right) 

The left panel in Figure 3 compares the precautionary effect f.L with the excess 

growth A + p, for the lowest endowment state. The precautionary effect explains most 

of the excess growth for the high asset consumers . The precautionary effect is signif-

icantly smaller than the excess growth for the liquidity constrained group bacause of 

the liquidity constraint effect A. Interestingly, f.L exceeds A + p, for the asset near the 

liquidity constrainted group (around 0.2-0.5). This discrepancy occurs because of the 

skewness of the consumption growth distribution in this region. The right panel in 

Figure 3 shows the growth rate distribution for different asset levels. The distribution 

is skewed to the left not only for the liquidity constrained asset level but also for the 

level above it (the middle distribution in the figure). 
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To summarize, the growth rate contains A only for the consumers with assets less 

than two months ' worth and with the worst endowment shock. It contributes at most 

20% growth of consumption of the constrained consumers, but the fraction of those 

consumers is small. The precautionary effect fJ, is prominent for a wider range of assets 

holders. It contributes at least 1 % growth of consumption for the consumers with assets 

less than three years' worth. The maximum contribution is about 20%. Hence , in this 

model, the precautionary effect dominates the liquidity constraint effect for most of 

the asset levels. 

It is well noticed that the liquidity constraint effect is dominated by the precau­

tionary effect for infinitely-living households in a stationary equilibrium at which few 

consumers are bound by the borrowing constraint. It is also known that Zeldes's es­

timator can pick up the precautionary savings effect when the conditional variance of 

forecast error correlates with wealth or disposable income [14, page 319] . The task 

of disentangling the liquidity constraint and precautionary savings effects empirically 

has been pursued elsewhere. In this paper I focus on the combined effect A + fJ, or the 

excess growth A + j1, to match Zeldes's estimate. 
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3 Quantifying Borrowing Constraint Point 

3.1 Test for specifications on borrowing constraint 

In this section, I test specifications for the borrowing constraint point b by Monte Carlo 

simulations. I replicate the procedure of Zeldes's estimation for the growth bias of the 

low asset consumers and give a test distribution for the estimate. A state (a , l , l') is 

randomly drawn from a stationary distribution for low and high asset groups, and a 

corresponding consumption growth rate is calculated. By mimicking Zeldes 's samples, 

2731 samples of the consumption growth rates are drawn from the low asset group 

and 1583 from the high asset group, then the estimators such as average A and f-L are 

computed. The splitting point for the low and high groups is set at two months ' worth 

of mean annual wage income. I test two specifications: b = 0 and b = -Lwlr. The 

former specification that allows no-borrowing is used by Zeldes as well as Aiyagari's [1] 

benchmark simulation. The latter specification is called a natural debt limit [1 , 12] and 

implies a solvency constraint. Under these null hypotheses , the estimation procedure 

is iterated for 500 times, and the result is plotted to give a test distribution for the 

estimators. 

The above testing procedure is methodologically an extension of the calibration 

procedure. In the calibration, the mean equilibrium excess growth rates are calculated 
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by using the stationary distribution for various b, and a value of b is determined so 

that the equilibrium excess growth rate matches with an empirical estimate. To de­

rive a testing distribution, sets of households are randomly drawn from the stationary 

distribution, and a sample average excess growth rate is calculated for each set. This 

testing procedure exploits the fact that the equilibrium model predicts both the sta­

tionary distribution and the policy function. In other words, the stationary equilibrium 

not only provides the population excess growth but also the distribution of the excess 

growth. This method is particularly useful in our case where the underlying hetero­

geneity significantly contributes to the behavioral difference within the sample groups 

(the constrained and unconstrained groups). As seen in the previous section, the pre­

cautionary effect differs among the households in each group. Thus the distribution 

of the sampling error in the estimate of the excess growth rate depends on the policy 

function and the stationary distribution of asset and endowment. 

The left panel in Figure 4 shows the mean differences in A, /-L, A + /-L , and A + jl 

between low and high asset groups. The difference in A accounts for 0.26% higher 

growth rate of consumption on average. The difference in /-L accounts for 2.5%. The 

difference in excess growth A + jl is distributed around 2.8%. The support of the 

distribution of the excess growth difference is above Zeldes 's estimation 1.7% which is 

shown by a vertical line. Thus the hypothesis b = 0 is rejected. 
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Figure 4: Distributions of estimated differences in liquidity constraint and precaution-

ary effects between the low and high asset holders for the no-borrowing case (b 0, 

left) and for the solvency constraint case (b -11.7, right). The vertical line shows 

Zeldes's estimate. 
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The position of the histogram of A + J-L matches the average excess growth A + jj 

reasonably well. This is a convenient property, since both A and J-L can be calculated 

only from the conditional consumption growth with appropriate assumptions on pa­

rameters. Let us note, however, that the distribution of A + J-L has a smaller variance 

than that of excess growth. This implies that the standard error of A + J-L is conservative 

to be used as an estimated standard error for the excess growth. 

The right panel in Figure 4 shows the same plots for b = -11.7, which corresponds 

to the natural debt limit or solvency constraint b = -wIlr. By this constraint, a 

household is required to be able to pay at least the interest of its debt at any event . 

Note that the solvency constraint point b is determined endogenously by the stationary 

equilibrium prices, and my simulations show that the prices wand r and the constraint 

b are consistent when b = -11. 7. As seen in the graph, the simulated distributions of 

the liquidity constraint and the precautionary effects are far below 1.7%. Therefore 

the hypothesis b = - wIlr is rejected. Zeldes's estimate implies a severer borrowing 

constraint than the solvency constraint. 

The Monte Carlo simulations show that neither specification b = 0 nor b = - wIlr 

IS consistent with Zeldes's estimate under an Aiyagari economy. The specification 

b = 0 is too strict and b = - wIlr too slack. The next section will show that such a b 

exists between the two extremes that Zeldes 's estimate is consistent under the Aiyagari 
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model. 

3.2 Confidence interval of borrowing constraint point 

In this section, the same Monte Carlo simulations are executed for vanous values 

of the borrowing constraint b, and the 90% confidence interval of b which supports 

Zeldes's estimate is reported. Again I concentrate on the combined effects of liquidity 

constraints and precautionary effects A + /-L. 

Figure 5 shows the means and 90% confidence intervals of the difference in excess 

growth between the low and high asset groups. The left panels show the cases for 

'"'( = 2,3,4. The right panels show the cases for f3 = 0.94, 0.96 , 0.98. The benchmark 

case, '"'( = 3 and f3 = 0.96 , is shown in the middle row (the two panels are identical but 

shown for comparison with other plots). 

The real lines show the mean growth difference between low and high asset groups 

for various b. The plot shows that the mean difference in excess growth is increas­

ing in b. This is because, as b increases, the low asset group becomes closer to the 

constraint point on average, and hence the average effects of liquidity constraints and 

precautionary savings become larger. It is seen that, in the benchmark parameter set, 

Zeldes 's estimate 1.7% corresponds to about b = -0.25 , which is a net debt worth 

three months' wage. 
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uidity constraint point b. The mean is calculated by the stationary distribution and 

the interval is obtained by 500 Monte Carlo runs. 
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The dashed lines show confidence intervals of b. The confidence interval is obtained 

from 500 iterations of a Monte Carlo run which simulates Zeldes's estimation procedure. 

The 500 estimates of the consumption growth difference are sorted in ascending order, 

and the 25th and 476th estimates are taken as boundaries of the confidence interval of 

the excess growth difference for a particular b. I define the 90% confidence interval of 

b as the region which contains Zeldes 's point estimate of the growth difference (1.7%) 

between the 25th and 476th estimates. This conversion of the confidence interval from 

the excess growth to the borrowing constraint is secured by the monotonic increasing 

property of the growth difference with respect to b observed in Figure 5. The middle 

panels of Figure 5 show that the confidence interval b for a benchmark case is (-0.5 , 

-0 .2). It is a range of net debts worth from two to six months' wage. 

The confidence interval is fairly robust to parameter specifications. The panels in 

the top and bottom rows in Figure 5 show the confidence intervals for various ry and {3. 

The intervals always reside within the range (-0.7, -0.1). Hence for various parameter 

settings , Zeldes's estimate is consistent with an Aiyagari model with a mild liquidity 

constraint less than one year 's worth of income. Let us note that b decreases in ry and 

increases in {3. This result is natural, since the precautionary effect strengthens when 

consumers are more risk averse or less patient. 

Finally, Figure 6 shows the mean excess growth for various b. The excess growth is 
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Figure 6: Decomposition of excess growth A + fJ, into effects of liquidity constraint A 

and precautionary savings f..L 

sensitive to b, and it decreases from 2.8% to 0.5% as b decreases from 0 to -1 (i.e., an 

annual wage worth). The plot also shows the decomposition of the excess growth into 

A and f..L for various b. The liquidity effect is visible only when b = O. This is because 

the liquidity-constrained group quickly becomes a minority among the consumers with 

less than two months' worth asset as the borrowing constraint is relaxed. For the range 

b ::::; -0.1 , the precautionary effect mostly explains the excess growth, and f..L matches 

well with the unexplained growth fJ,. 
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4 Aggregate Effects of Income Risk 

In this section I quantify the effects of income risks on aggregate savings and capital 

accumulation. I fix the borrowing constraint point at b = -0.25 , for which the excess 

growth is consistent with Zeldes 's estimation. In a benchmark case, the standard devi­

ation of the innovation in log of endowment is set at (j = 0.4. The equilibrium interest 

rate r is 3.37%, and the average net saving rate is 3.09%. Naturally, the interest is 

greater than the Aiyagari 's benchmark case 2.78% where b was set to zero. Yet it is 

still significantly smaller than the Aiyagari 's full insurance case 4.17%. Hence the pre­

cautionary savings decrease the equilibrium interest significantly when the borrowing 

constraint is set to be compatible with Zeldes's estimate. 

The saving rate as a function of (a, l) is plotted in the left panel in Figure 7. It is 

clear that the low asset holders increase their saving rates as the prospect of liquidity 

constraint binding in future becomes higher. Let us note that the saving rates vary 

more across the endowment states than across the asset levels. For the asset holders 

with two to six years' worth of wage, the consumption is fully financed by dissaving 

when the worst endowment shock hits (the saving rate is -1). The dissaving amount 

is forced to be reduced for the consumers with asset less than two years' worth and 

with the worst shock because of the current and future borrowing constraints. This 

corresponds to the large f..L in this state range. 
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Figure 7: Saving rates when (7 = 0.4 (left) and (7 = 0.2 (right) 

N ow let us see how the aggregate savings change as the riskiness of endowment 

process (7 varies. I take (7 = 0.2 which is the lower bound among the empirical findings 

cited in Aiyagari , and compare the steady state to the benchmark case (7 = 0.4 which 

is about the upper bound. The endowment state vector is altered for different (7 

in the quadrature approximation, but the percentile of each state in the stationary 

distri bution is kept unchanged. 

The right panel in Figure 7 shows the saving rate functions for three endowlnent 

states for (7 = 0.2 (the dotted lines show their counterparts for (7 = 0.4). It is clear that 

the dispersion of the saving rates across the endowment states is much decreased for 

the smaller (7. The saving pattern across asset levels is not changed very much. These 

imply that the smaller (7 causes the smaller variance in consumption growth and thus 
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a K w r (%) saving rate (%) 

0.2 5.57 l.19 4.00 l.89 

0.4 6.05 l.22 3.37 3.09 

Table 1: Aggregate equilibria for different endowment shocks 

smaller precautionary savings for a wide range of asset. 

The aggregate equilibria for different a are reported in Table l. The result is 

consistent with precautionary savings models. The riskier the income process is , the 

larger the steady state capital accumulation and the saving rate are. The interest 

rate becomes lower as the endowment becomes riskier since the precautionary motives 

generate larger supply of savings. 

Finally, Figure 8 shows the stationary distribution of asset for different endowment 

shocks. The asset level is normalized by the mean annual wage of the case a = 

0.4 so that two distributions compare in the same unit. The plot shows that the 

increased asset holding occurs across a wide range of asset levels. The consumers up 

to the 90th percentile shift their asset position up, and the magnitude of the shift 

is largest in the lower middle asset holders. The change in aggregate savings can be 

attributed to the change in savings of consumers in this range. This implies that 

the precautionary motive can be quantitatively an important factor to transmit the 
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5 Conclusion 

In this paper I quantify the effects of precautionary savings on the consumption growth 

rate difference between the low and high asset holders, as well as on the aggregate 

savings, in the framework of a steady state dynamic general equilibrium model. 

I test specifications for the borrowing constraint point b by a test distribution for 

Zeldes 's estimate of the excess growth. The test distribution is generated by Monte 

Carlo simulations under various borrowing constraint points. The test rejects the no­

borrowing hypothesis b = 0 as well as the solvency constraint hypothesis b = -wE[lJ/r. 

Instead, a mild borrowing constraint at three months' worth of wage income is shown to 

be consistent with Zeldes's estimate. Using the same Monte Carlo simulations, I form 

90% confidence intervals of b under various parameter sets. The confidence interval for 

the benchmark case is the asset range from two to six months' worth of wage income. 

The intervals fall in the range of less than one year worth net debt for all the parameter 

sets I examined. 

Under the borrowing constraint consistent with Zeldes's estimate, the aggregate 

saving is shown to be considerably affected by the riskiness of the labor endowment 

process. When the riskiness is changed from the minimum to the maximum in the range 

of empirical findings, the aggregate saving rate increases by 1.2% and the aggregate 

capital increases by 10% at the steady state. The stationary asset distribution is 
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shifted upward in the wide range of the lower middle asset holders. This suggests that 

a persistent change in labor market, such as that in the recent Japanese economy, might 

affect the aggregate consumption propensity in a quantitatively significant manner. 
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