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ENVIRONMENTAL DETERMINANTS OF COST SHARING­

AN APPLICATION TO IRRIGATION 

David Aadland and Van Kolpin 

ABSTRACT 

Multiple-cost sharing rules often coexist in seemingly identical environments. We use 

shared irrigation costs as a context for examining the extent to which the structural environment 

explains the selection of a cost sharing rule. We find that environmental factors that-induce 

greater dependence on the cooperation of others, influence majority interests, create difficulties 

for interpersonal utility comparisons, or impact notions of "faimess"-all have impressive 

explanatory power. These results present the first formal empirical analysis of the manner in 

which structural features influence the actual cost-sharing choices of economic agents. 

JEL Classification: C71, D63, C25 
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ENVIRONMENTAL DETERMINANTS OF COST SHARING-

AN APPLICATION TO IRRIGATION l 

Introduction 

The success of cooperative ventures often hinges on the arrangements made to share the costs 

and benefits generated. Examples range from the large scale, such as funding of public projects 

through the taxation of a nation's citizenry, to the small scale, such as allocation of a restaurant's 

tips between its waiters and chef. Allocation mechanisms which are ill-suited for the task at 

hand may induce a "tragedy of the commons" or even create outright conflict. An extensive 

axiomatic literature has emerged that sheds light on such pitfalls and characterizes "optimal" 

allocation procedures. (See Moulin (forthcoming) and Thomson (forthcoming) for a broad 

coverage of the axiomatic approach to cost and resource allocation problems.) Even so, 

mUltiple-sharing mechanisms can often be observed coexisting harmoniously in seemingly 

identical environments. Does such behavior suggest that several sharing mechanisms are equally 

appropriate and the choice of which to adopt is essentially arbitrary? Or do environmental cues 

exist that reliably reveal the sharing mechanism of choice? If such explanatory power can be 

empirically established, does it support or run counter to the central spirit of axioms employed in 

the theoretical cost-sharing literature? 

We use the costs incurred from the upkeep of a shared irrigation ditch as a context for 

examining the questions posed above. As detailed in section 3, our sample of irrigation ditches 

are drawn from Carbon and Stillwater Counties of Montana, USA. These ditches are used 

IThe authors wish to thank Jim Kindle and Marty van Cleave (MT Department of Natural Resources and 
conservation); the survey respondents from Carbon and Stillwater Counties, MT; Stephanie Kuster (MT Secretary of 
State Office); Dan Gustafson (Montana State University); Rick Krannich and Bob Hill (Department of Sociology 
and Department of Irrigation and Water Resources, respectively, Utah State University). 



primarily to irrigate hayfields, although they are occasionally used to irrigate other cash crops, 

water stock animals, and irrigate lawns or gardens. A typical ditch begins at the headgate (a 

device that controls the volume of water diverted from the source stream) and then continues on 

a sequential path through the lands of each agent using this "main" ditch. (See Figure 1.1.) 

Agents (typically ranchers) also have their own private ditches that branch off from the main 

ditch and transport water to their parcels of land. Only the costs associated with the main ditch 

are shared as each agent is individually responsible for expenses incurred on their private 

ditches. The most common expenses on a main ditch include headgate repair, silt and debris 

removal, and replacement of deteriorating ditch banks. 
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Figure I_I 

The data we have compiled from this sample of irrigation ditches provide a compelling 

framework for our study. Indeed, the cost-sharing rules employed on these ditches have 

typically been in place for many decades (often over a century), suggesting that if a rule were ill-

behaved, it would likely have been discarded long ago. We are able to partition all rules in our 
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sample into either the average or serial class. A rule is in the average class if all agents pay 

according to an identical fixed "rate" for use of the irrigation ditch.2 Serial rules apply this same 

principle, though do so in a serial fashion along the ditch. That is, the ditch is partitioned into a 

sequence of segments such that all agents require the first segment to be operational in order to 

receive water, all but the first agent on the ditch additionally require the second segment to be 

operational, ... , all but the ith agent additionally require the i+ 1 segment to be operational, and 

so on and so forth. Each segment is then treated like a separate ditch whose costs are covered by 

having all agents requiring its use pay an identical fixed rate. An agent's total obligation for 

access to the main ditch is thus the sum of its obligations on each of these individual segments. 

(The reader may note that in this context the resulting allocation is identical to that generated by 

the Shapley value, introduced in Shapley (1953), of the corresponding coalitional game.) We 

define the serial class to contain those rules that protect agents from the burden of costs incurred 

downstream from their property. Thus the serial class contains both true serial rules as well as 

"marginal rules" in which agents are individually responsible for maintaining portions of the 

main ditch lying on their property. 

In addition to cost share rule classification, our dataset includes information on the benefits, 

costs, and distributional features associated with the irrigation ditches and the parcels of land 

they service. Our econometric analysis reveals that the selection of a cost share rule is far from 

arbitrary and that a reduced form of the structural environment has impressive explanatory 

power. Loosely speaking, we find that if environmental factors induce greater dependency on 

the cooperation of others, then a rule within the average class becomes more likely. If, on the 

other hand, environmental factors imply less need for cooperation, then an outcome in the serial 

2This "rate" may be defmed on a per capita basis, per irrigated acre basis, or on the basis of shares of stock 
owned in the ditch's controlling interest. Further details are provided in section 2. 
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class becomes more likely. We also find factors that influence majority interests, create 

difficulties for interpersonal utility comparisons, or impact notions of "fairness" to be important 

pieces of the puzzle. These results present the first formal empirical analysis of the manner in 

which structural features influence the actual cost-sharing choices of economic agents. Our 

results also provide direction through uncharted territory in that previous theoretical analyses do 

not always offer a clear view of how structural features should be expected to affect the choice of 

cost allocation. 

We further note that both the average and serial mechanisms have received considerable 

attention in the theoretical literature, a small sample of which includes Friedman and Moulin 

(1999), Koster et al. (1998), and Sprumont (1998). Even the specific context of irrigation cost 

sharing has been highlighted in works such as Aadland and Kolpin (1998) and Moulin (2001). 

These analyses suggest that, depending on one's axiomatic perspective, either mechanism may 

be deemed "optimal." The central axiomatic theme that distinguishes serial mechanisms from 

average mechanisms is the protection of those imposing small demands on the shared resource 

from those imposing large demands. In the context of our sample of shared irrigation ditches, 

the demands an agent places on the system are synonymous with the length of ditch that must be 

maintained to service the agent's needs. Thus agents imposing small demands are located at the 

front of the ditch, while agents imposing large demands are located at the ditch's tail. 

Empirically, we find that serial mechanisms are indeed prone to emerge when the pressure for 

such protection is most keen, indicating that the theoretical literature on the subject is reflective 

of real-world cost-sharing behavior. 

The remainder of the paper is organized as follows . Section 2 introduces a theoretical model 

that serves to motivate our empirical analysis. We outline the data we have collected and the 



sources from which it was derived in section 3. Section 4 presents our empirical analysis and 

results. Closing comments are found in section 5. 
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2. Theoretical Structure 

We first consider a simple representation of shared irrigation costs. In this simple structure 

we assume that a finite number of agents N={I, ... ,n} are ordered sequentially along an irrigation 

ditch from its beginning to its end. Given this ordering, the ditch can be partitioned into a 

sequence of uniquely defined segments. Segment 1 is the portion of ditch from the headgate to 

the last point required to service agent 1, segment 2 is the portion of ditch from the end of 

segment 1 to the last point required to service agent 2, .. . , segment i is the portion of ditch from 

the end of segment i-I to the last point required to service agent i, and so on and so forth. For 

each i=I, ... ,n, let Ci denote the annualized costs affiliated with segment i and let c =(Ci)ieNE9i+N 

denote the vector of all such costs. The pair (c,N) will be referred to as a simple irrigation game. 

Note that the aggregate costs of servicing any coalition S~N can be characterized by 

V(S)=Cl+ ... +Cmax{ieS}, i.e., the aggregate costs on all ditch segments necessary to service the last 

member of S (and thus all of S). A cost allocation for a simple irrigation game is a vector 

X=(Xi)ieN that covers the total cost LCi, i.e., LXi = Ctotal=LCi. (Note that summation limits will be 

omitted when no confusion results.) Examples of cost allocations include: 

average cost sharing: a = (ai)ieN where ai = Ctota/n for each iEN, 

serial cost sharing: s = (Si)ieN where Si = c1/n+ ... +c/(n-i+ 1) for each iEN. 

Average cost sharing simply divides total costs equally between all agents. Serial cost 

sharing divides each segment cost equally between all agents who use the segment. Since agent i 

uses segments 1 through i, agent i' s aggregate cost share under the serial rule is the sum of i' s 

share of the costs Cl through Ci. 
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Real-world applications naturally have much more detail than is provided by simple 

irrigation games. For instance, on a given ditch each agent may irrigate different quantities of 

land, which may not be sequentially ordered, may have different seniority of water rights, or may 

use the water for different purposes. Moreover, ditches have different geographic locations, 

which may lead to variation in rainfall, erosion, land value, etc. All such details are potentially 

relevant in determining the cost allocation adopted on any given ditch. We shall define a 

detailed irrigation game to be a simple irrigation game paired with a profile of additional detail 

d. The central theme of this paper is to determine the manner and extent to which environmental 

details are capable of explaining the cost-allocation rule that is employed. 

Detailed irrigation games offer new variations of cost-sharing rules, even for the specific 

. 
examples of average and serial cost sharing rules. First, consider the average rule. Total costs 

might be distributed equally across each agent (as we have defined above), equally across each 

acre irrigated (so each agent pays a fixed price per acre), or equally across shares of stock owned 

in the ditch's controlling interest (so each agent pays a fixed price per unit of stock owned). The 

serial variants, on the other hand, divide costs equally across all acres requiring a given segment 

for irrigation on either a per capita, per acre, or per share of owned stock basis. Despite the wide 

array of possibilities, our survey data indicate that the vast majority of ditches employ a cost 

allocation rule that falls into one of these two general classes (each containing a substantial 

portion of our sample): 

average class: total costs are distributed equally per capita, per acre, or per shares of 

stock owned. 

serial class: total costs are either distributed serially per capita, per acre, or per shares of 

stock owned; or agents pay only for costs incurred on their property (recall the marginal 



rule is also classified as "serial" as it too protects agents from the demands of 

downstream users). 

Before turning to our empirical analysis, it is interesting to note that while cost sharing 

sometimes creates tension between irrigators, there is often great clarity of thought involved in 

the selection of a cost share rule. Consider, for instance, the following discussion provided by 

one of our survey respondents, outlining serial cost sharing and its advantages as implemented 

on the respondent's ditch. 

There are five shares with four people holding the shares. If a problem occurs at the head 
of the ditch, everyone pays the amount that their share would dictate. If the problem 
extends beyond the headgate of the first owner, the other four shareholders pay their 
share which of course would be the four shares. If the problem extends beyond the 
second headgate or shareholder, the other three shareholders take care of it and so on. 
This keeps ownership within the confines of his rightful share and the shareholder really 
doesn't have a say in what happens below his headgate .... The owner at the end of the 
ditch has a fairly long area to take care of so ifhe wants to put money in it in cleaning or 
repairs, he can without having everyone agree to pay etc. so he does have some freedom 
in his own management. The cost is divided equally among the shareholders so everyone 
pays their share according to the way described above. No.4 shareholder has two shares 
because of the acreage so he has two shares to pay for where the others have one share to 
pay. The cost at the head of the ditch would be divided by 5 shares to headgate No.1, and 
the cost at headgate No.2 and below would be divided by 4 shares and so on. 

3. Survey and Other Data 

In this section, we describe the cost -sharing surveys, introduce the data from sources other 

than the survey, and define the variables to be used in the econometric analysis. 

3.1 Cost-Sharing Surveys 

We begin by noting that the irrigation ditches in our sample are typically small ditches 

(average of nine users) with an informal and unrecorded agreement on how costs will be shared. 

As a result, it was necessary to survey the irrigators to identify the cost-sharing rule employed on 

each ditch. We accomplished this through a sequence of two mail surveys. The first survey 
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presented the irrigators with the following options and asked them to identify the method of cost 

sharing that best describes the one used on their ditch: 

1. All users pay equal amounts to cover total ditch maintenance costs. 

8 

2. All users on or below a maintenance project pay equal amounts to cover total project costs. 

3. Each user pays only the cost of maintaining the portion of the main ditch located on their 

property. 

We also presented respondents with per acre and per share-of-owned-stock variants to 

options 1 and 2. However, we choose to focus solely on the distinction between the average and 

serial class of rules, rather than on all their possible variants, because our data are insufficient to 

accurately distinguish between all possible variations of the average and serial mechanisms. We 

also included the option to "write in" other cost sharing rules. Even though the open-ended 

option allowed respondents to report rules that do not conform to either the average or serial 

classifications, all responses fit into one of these two classes. 

Following up on the first survey, we sent out a postcard survey to the same set of irrigators 

asking them to either validate their responses to the initial surveyor, if they had failed to respond 

to the first survey, provide information for the first time. The postcard survey expanded the cost­

sharing questions slightly to ensure that the distinction between the average and serial rules was 

transparent: 

1. Is it customary for each user of your ditch to help pay for maintenance proj ects on the 

main ditch, even if these projects are located downstream from them? 

2. Ifmaintenance costs are to be shared by some group of users on the main ditch, 

how are these costs distributed? (Check whichever fits most closely.) 



_ Everyone in the group pay equal amounts. 

_ Costs are never shared, everyone pays only for costs on their own land. 

When combining the two surveys, we received a total of 270 usable responses on 98 ditches. 

To put this into perspective, there are a total of 169 irrigation ditches in Carbon and Stillwater 

Counties. Furthermore, four ditches in our sample and 10 ditches outside our sample are listed 

as "single-user" ditches in the MT state records. We, therefore, have in our sample the majority 

(94 of 155) of the state-listed, multi-user ditches in the two counties. 

9 

For both surveys, we generated our mailing list using water-rights information from the 

Water Resource Division of the Montana Department of Natural Resources and Conservation 

(DNRC) (http://www.dnrc.state.mt.us/wrdlhome.htm). All irrigators are required by state law to 

file a water right, granting them a legal right to a specified amount of water. As part of the filing 

process, irrigators provide their names, mailing addresses, ditch name, and other specifics 

regarding their irrigation environment. We mailed the first survey to every irrigator holding a 

water right in Stillwater and Carbon Counties. 

In some instances, respondents from the same ditch issued conflicting reports regarding their 

cost-sharing rule. We offer two possible explanations for this apparent inconsistency (certainly 

others exist as well). First, it could be that the irrigators genuinely disagree about the cost­

sharing agreement (recall that the rules are not typically recorded in written form). Second, it 

could be that the location of the irrigators along the ditch influences their perception of the cost­

sharing rule. Indeed, maintenance and improvement proj ects often occur on an irregular basis 

and irrigators at the head of the ditch (front-enders) may actually be unaware of costs incurred at 

the ditch's tail. Should this be the case, front-enders may perceive serial cost sharing as 

indistinguishable from the average rule, while a tail-ender would not share this misperception. 
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Apparent inconsistencies in the stated cost-sharing rule are resolved through the following 

procedure: 

(1) assign to each ditch the rule stated by the majority of its respondents 

(2) break ties in (1) by assigning the ditch's majority response from the more detailed 

postcard survey 

(3) break ties in (2) by assigning the most common rule in the entire sample. 

There were 18 ditches reporting some sort of inconsistency in the stated cost-sharing rule, of 

which, 14, 2, and 2 were settled using criteria (1), (2) and (3), respectively. 

3.2 Other Data 

The remaining data include physical attributes of the irrigation environment and information 

from the irrigators' water-rights profile. We organize this section by the source of the data. 

The majority of our data were made available through the Water Resource Division of the 

Montana DNRC. From the DNRC, we obtained water-rights information for every irrigated 

field in Carbon and Stillwater Counties. This produced approximately 2,840 individual parcels 

of irrigated land (covering approximately 150,000 acres) in our sample and approximately 900 

irrigated parcels outside our sample. Each water-rights claim contains the owner's name and 

address, the name of irrigation ditch and its point of diversion, the purpose of water right and its 

date of priority, and the location and size of each parcel of land irrigated with the water right. 

The owner's name, address, and ditch name were used to initiate the mail surveys (as discussed 

above) and to identify each irrigator with a single ditch. 3 The purpose of the water right is 

almost always listed as irrigation, although a small percentage is listed as stock water, domestic 

3Many irrigators owned water rights on multiple ditches. In our survey, we asked that they choose the multi­
user ditch with the smallest number of users. 
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use, or lawn/garden use. The point of diversion refers to the place where the irrigation ditch is 

diverted from its primary source (see Figure 1.1). The priority date is an important date for 

irrigators. It determines how water is to be allocated among irrigators sharing the resource and is 

a legally binding in case of disputes over water allocation. The following is an excerpt from the 

Montana DNRC regarding water rights: 

Water rights in Montana are guided by the prior appropriation doctrine, that is, first in 
time is first in right. A person's right to use a specific quantity of water depends on 
when the use of water began. The first person to use water from a source established the 
first right, the second person could establish a right to the water that was left, and so on. 
During dry years, the person with the first right has the first chance to use the available 
water to fulfill their right. The holder of the second right has the next chance. 

Our survey respondents did indicate, however, that there is generally ample water for all users to 

irrigate their fields so that cost allocation (rather than water allocation) is their central concern. 

The point of diversion and location of each field were recorded by county, range, township, 

section and quarter section. To aid in recovering other physical data (discussed below), we 

translated the township data into latitude and longitude coordinates using the TRS2LL program 

provided by Martin Welfald (http://www.geocities.com/jeremiahobrien/trs2Il.html). The 

TRS2LL program recognizes location down to the section level. 

The second source of data is the GRAPHICAL LOCATOR, a program developed by Daniel 

Gustafson, a research scientist with the Department of Biology at the University of Montana-

Bozeman (http://www.esg.montana.edulgl/cst/index.html). The GRAPHICAL LOCATOR 

accepts longitude/latitude data as input and can be used to calculate "local roughness" for each 

irrigated field and the point of diversion. (Local roughness is discussed in more detail in the 

following section.) 

The third data source is the pair of Soil Surveys for Carbon and Stillwater Counties, 

published by the United States Department of Agriculture in cooperation with the Montana 
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Agricultural Experiment Station. These surveys represent a detailed study and mapping of the 

chemical, physical, and environmental characteristics of soils present throughout these counties. 

We focus attention upon those characteristics that affect the benefits or costs derived from 

irrigation, and thus seem most likely to influence the cost-sharing procedure agents choose to 

adopt. (A discussion of the specific variables considered is found in the following section.) 

The fourth source of data is a set of spatial climate maps generated by researchers at the 

Oregon Climate Service (OCS). These are the most detailed, highest-quality spatial climate data 

sets currently available (http://www.ocs.orst.edu/). OCS used the PRISM model to generate 

mean monthly precipitation estimates for the time period 1961-1990 (Daly et al. 1994; Daly et al. 

1997). The data are measured in millimeters of rainfall per month and are reported in a spatial 

grid, where the reported values are an average across each cell. Each cell spans approximately 

0.04167 latitudinal and longitudinal units (approximately 2 sections or 0.5 miles). 

The fifth and final source of data is the office of the Secretary of State for Montana. For 

some of the ditches, the irrigators came together and filed articles of incorporation, making the 

ditch a formal company. Using information from the Water Resource Surveys for Carbon and 

Stillwater Counties (State Water Conservation Board, 1946 and 1966) and the Secretary of 

State's office, we were able to identify which ditches had filed articles of incorporation. 

3.3 Variable Definitions 

In this section, we define and provide motivation for the variables to be used in the 

econometric analysis. Table 1 presents descriptive statistics for these variables over the 94 

multiple-user ditches used in our sample. Our dependent variable, AVERAGE CLASS, is a 

ditch-level binary variable set equal to one for an average and zero for a serial cost-sharing 

classification. As Table 1 indicates, our sample is moderately unbalanced in the sense that the 
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majority (71 %) of the ditches in our sample use cost-sharing rules within the average 

classification. 

The explanatory variables of our econometric model are chosen to offer proxies for the 

following types of information: (1) the (absolute and relative) benefits derived from irrigating a 

specific parcel of land, (2) the (absolute and relative) costs incurred from maintaining a specific 

ditch, and (3) the (current and historical) distribution of agents along the ditch. Benefit and cost 

information are suggestive of the stakes involved in being a member of a given irrigation ditch, 

and as such, may indicate the compromises that agents may be willing to make. Distributional 

information presents insight as to what agents may collectively perceive as fair cost sharing, as 

well as what the majority would prefer in their own self-interest. Let us now tum to the specific 

variables we use to elicit benefit, cost, and distributional information. 

First, TOWN is defined as the fraction of irrigators on a given irrigation ditch that have at 

least one field within a one mile radius of the center of a town.4 Only 27 of the 94 ditches had 

any irrigators located within a one-mile radius of a town, and of those 27 ditches, the average 

value for TOWN was approximately 0.38. The presence of users within and near towns is likely 

to produce a disparity in the benefits associated with the irrigation water. Users within a town 

generally use the water to irrigate their lawns or gardens while users outside town generally use 

the water to irrigate their fields, which produce hay and crops often crucial to their financial 

livelihood. Furthermore, users near town may be irrigating land with a higher market value 

relative to those further away from towns and the extent of this disparity (real or perceived) may 

influence what cost-sharing rule is deemed to be fair. 

4For Carbon and Stillwater Counties, the towns under consideration are Absarokee, Bridger, Columbus, 
Fromberg, Joliet, Red Lodge, and Roberts. 
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Second, ALTERNATIVE USE is defined as the fraction of users on a given irrigation ditch 

that either use the water from the main ditch for something other than irrigation (i.e., stock water, 

domestic use, etc.) or irrigate a field of less than half an acre. We choose half an acre because 

our own experience leads us to believe that fields less than half an acre are likely to be used for 

nontraditional purposes. Only 10 of the 94 ditches had non-zero values for ALTERNATIVE 

USE and of those la, the average value was approximately 0.18. We expect that TOWN and 

ALTERNATIVE USE may be related to the choice of cost-sharing rule because they represent 

possible differences in benefits derived from irrigation. For instance, if ranchers irrigating a crop 

benefit more per unit of water used than do users that simply irrigate their lawns, then 

interpersonal utility comparisons are much less transparent. Although we are a priori unsure 

whether greater variation in use will push agents toward an average or serial class of rules, it 

seems plausible that it may nonetheless be influential. 

Third, RAINFALL measures the total rainfall received during the growing months of May, 

June, July, and August. The more rainfall fields receive, the less beneficial is the irrigation water 

on the margin. As such, there may be less pressure for irrigators to fully cooperate in sharing the 

costs along all segments of the main ditch and thus push them toward the serial rule. 

RAINF ALL is averaged over all fields on the ditch on a per-acre basis. That is, RAINFALL is 

the weighted sum of the rainfall for each field}, with the weights equal to the ratio of irrigated 

acres for field} relative to the total number of irrigated acres on the ditch. There is substantial 

variation in rainfall across the ditches in our sample, varying from a minimum of 116 millimeters 

to a maximum of 244 millimeters per growing season. 

Fourth, ROUGHNESS is defined as the standard deviation of surrounding elevation values. 

This calculation uses the nearest 16 elevation values in the original I-degree (3 arc second) 



15 

digital elevation model data, which corresponds to a radius of about 125 meters (Gustafson 

2000). Each field is assigned a roughness value and then we take an acre-weighted average of 

these values across the entire ditch to form ROUGHNESS. Higher ROUGHNESS values have 

two important implications. First, higher values for ROUGHNESS imply ditches associated with 

a more contoured surface area, for which it is typically more difficult to effectively irrigate. 

Therefore, we would expect less benefit from irrigation, all else equal. Second, irrigation ditches 

located on steeper terrain generally are associated with higher construction and maintenance 

costs due to greater erosion of ditch banks. 

Fifth, RUNOFF is a measure of the propensity of the soil to absorb water. Higher values for 

RUNOFF imply soil types that absorb less water (i.e., have more runoff), and as a result, are not 

as well suited for irrigation. This also may imply higher costs due to greater erosion of ditch 

banks. Higher costs associated with higher values of RUNOFF (and ROUGHNESS) may imply 

increased pressure for irrigators to fully cooperate by sharing costs along all ditch segments. 

Sixth, NUMBER OF USERS is simply the number of irrigators distributed on a ditch. Some 

of the irrigation ditches filed for a single water right as an incorporated entity. For these ditches, 

it was not possible to directly identify the number of users, but only the number of irrigated 

fields. Therefore, to calculate the number of users, we used the average number of fields per 

irrigator for the remaining ditches in the sample (approximately 3.5 fields per user) to impute the 

number of users on the incorporated ditches. The number of users varies widely from only two 

users up to 61 users, with the "typical" ditch having approximately nine users. We anticipate 

that, all else equal, the more users there are on a ditch, the more likely it is that the rule will be 

average because the implied higher costs may necessitate a need to fully cooperate in sharing the 

costs. Furthermore, the prescribed average cost allocations are more transparent and typically 
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easier to calculate than serial allocations, a difference that is generally magnified as the number 

of users increases. 

Seventh, SOURCE DISTANCE is the distance between the point of diversion and the first 

private ditch branching off the main irrigation ditch.5 Ditches with large SOURCE DISTANCES 

were likely to have experienced large initial costs simply to get the water to the first user. In 

order to overcome this large initial expense, a critical number of users may be necessary to share 

the costs and therefore it is probably less likely that the ditch would develop piecewise (i.e., 

adding ranchers incrementally to the tail end of the ditch). To the extent that a more piecewise 

development is more likely to adopt a serial rule to accommodate new tail-end users, we would 

expect ditches with large SOURCE DISTANCES, all else equal, to be associated with average 

rules. Furthermore, this portion of the main ditch involves resources used by every irrigator on 

the main ditch. Therefore, the longer this segment is relative to the length of the entire ditch, the 

more average and serial allocations will tend to resemble one another (assuming costs are 

proportional to length and for a given number of agents). As a result, we expect that ditches with 

larger SOURCE DISTANCES will experience pressure to cooperate fully in sharing costs and 

thus be more likely to employ an average rule. As shown in Table 1, the average SOURCE 

DISTANCE is substantial; slightly less than one mile long. 

Eighth, TAIL DIFFERENTIAL measures the distance between the last field on the "original" 

ditch and the last field on the "current" ditch relative to the number of current users. (Hereafter, 

original and current refer to the ditch as it stood near the date of the first filed water right and the 

SIn actuality, our dataset provides field locations rather than the locations where private ditches branch off the 
main irrigation ditches. We estimate SOURCE DISTANCE by assuming that segment 1 of the main irrigation ditch 
is approximately linear and that the first private ditch is: perpendicular to the main ditch, leads to the center of the 
first field, and is 114 mile in length (our results are robust to variations in this length). The Pythagorean Theorem is 
then applied to calculate SOURCE DISTANCE. (Inspection of the maps from the Carbon and Stillwater Water 
Resource Surveys suggest the linearity assumption is reasonable for all ditches except Gruell and Weast. For those 
two ditches we calculate SOURCE DISTANCE by summing the lengths of approximately linear subsegments). 
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date in which the survey was administered, respectively).6 Again assuming that costs are 

proportional to distance, TAIL DIFFERENTIAL captures the incremental per capita costs 

associated with adding new users to the tail of the ditch. The larger is this value, the stronger the 

tendency may be for the original users to push for adoption of a serial rule as it approximates the 

increased cost shares the average rule would present to original users as compared to the serial 

rule. In this sense, TAIL DIFFERENTIAL also represents the degree to which original users 

may feel the need to be protected from demands imposed on the system by new users at the tail 

of the ditch. 

Ninth, ORIGINAL CENTER OF GRA VITY (CoGo) characterizes the manner in which the 

irrigated acres are distributed along the original ditch. The CoGo variable for the /h ditch is 

calculated as follows 

~ (~ .. - mined. .) acre· .) ~ I, J . I, J I,J 
O . I 

CoG
j 

= 1-1 m j 

(-ax(d .. )-min(d . . ) '"' acre·· ~. ~ . ~ ~ ~ 
I I i=i 

where diJ is the linear distance from the headgate to the ith private point of diversion, acreiJ is the 

number of irrigated acres associated with the ith private point of diversion, and mj is the total 

number of fields. Since the differences in the numerator and denominator both involve min ( diJ), 

this measure "nets out" the SOURCE DISTANCE. CoGo is bounded between zero and one, with 

values near zero indicating ditches with a higher relative concentration of irrigated acres to the 

left of center (i.e., toward the top of the ditch) and vice versa. In theory, this measure could be 

6More precisely, the original ditch is given by the ditch as it stood within the three-month window after the fIrst 
fIled water right, except for incorporated ditches which are treated as having been created at the time of 
incorporation. In calculating this window, we ignore the winter months of December, January and February because 
it is seems unlikely that any ditch construction could take place during that time frame. We choose a three-month 
window based on the presumption that the individuals who originally share ditch resources may not all fIle their 
water right on the same date. Varying the length of this window up to one year does not qualitatively affect our 
results. 



either negatively or positively correlated with AVERAGE CLASS. One might expect that a 

sense of fairness would drive irrigators with tail-heavy ditches (i.e., CoGo large) to choose a 

serial rule so that front-enders are not overly burdened by sharing costs from resources they do 

not use. However, it may also be that for tail-heavy ditches, tail-enders vote out of self-interest 

for the average rule in order to reduce their prescribed share of total costs. 
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Tenth, CoG DIFFERENTIAL is defined as the CURRENT CENTER OF GRAVITY (CoG1
) 

less CoGo. CoG1 is identical to CoGo except that it pertains to the current profile of ditch users, 

rather than the original profile. Holding constant CoGo, an increase in CoG DIFFERENTIAL 

implies a shift over time in the distribution of users toward the tail of the ditch. We anticipate 

that its direction of correlation with AVERAGE CLASS to be the same as that for CoGo. 

4. Econometric Analysis 

In this section, we introduce the econometric model and the estimation methods. The 

primary goal of this section is to build an empirical model of the cost-sharing environment that is 

capable of explaining the choice of cost-sharing rule. 

4.1 Econometric Model 

We begin by assigning the unit of observation to be the irrigation ditch, which is indexed 

from i = 1, ... ,no We assume that the irrigators on each ditch are restricted to choose from the two 

classes of cost-sharing rules; average or serial. The choice of rule is in tum assumed to depend 

on structural characteristics as indicated by the following equation: 

where Yj is a latent variable measuring the likelihood of choosing either the serial or average 

cost-sharing class of rule for ditch i, Xi is a row vector of explanatory variables for ditch i 

(1) 
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thought to influence the choice of rule, P is a column vector of coefficients, and Ei is a normally 

distributed error term. By assuming a normal distribution, we then form the likelihood function 

conditional on the observed data. Letting <l> indicate the mean-zero normal cumulative density 

function, we can write the probability that the ith ditch chooses a rule from the average class 

(indicated by COj = 1) as: 

Since there are only two classes of cost-sharing rule, the probability that the ith ditch chooses the 

serial rule (COi = 0) is given by 1 - Pi = <l>(-XiP). Then assuming independence of error terms, we 

can write the (log) likelihood function as 

n 

In( L ) = L (co i In(~) + (1- co ) In(1- ~)). 
i=l 

The problem of forming and maximizing the (log) likelihood function by choosing p, given 

normally distributed error terms, is referred to as the probit model. This procedure results in an 

estimation problem requiring nonlinear optimization techniques to generate estimates of the P 

parameters and the associated marginal effects (see Greene 2000).7 

4.2 Discussion of the Results 

The estimation results from the probit model described above are presented in Table 2. The 

estimated coefficients are nearly all statistically significant (at standard significance levels) and 

the signs are generally in agreement with our expectations. Moreover, the overall fit of the 

model is excellent. As shown in Table 2, the likelihood ratio statistic testing whether all the 

variables are jointly able to explain variation in the dependent variable equals 72.6 with a 5% 

7The estimation was carried out in Gauss 3.5 using the Constrained Maximum Likelihood (CML) module and 
Newton's method for the nonlinear optimization. 
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critical chi-square value of 18.3. Furthermore, Table 3, which reports the number of correct and 

incorrect predictions, shows that we are able to correctly predict 64 of the 67 average rules and 

23 of the 27 serial rules, for nearly a 930/0 overall correct prediction percentage. It is particularly 

impressive that the model is able to correctly predict 85% of the serial rules, given the 

unbalanced nature of the dependent variable. As Greene (2000) points out, in order for the 

model to predict the less common category, it " ... may require an extreme configuration of the 

regressors."g In sum, using a relatively parsimonious model based solely on physical attributes 

of the irrigation environment, we are able to accurately predict which cost-sharing rule irrigators 

will collectively agree to use. 

Turning now to the individual estimated coefficients in Table 2, we find that all the 

coefficients other than the constant and ROUGHNESS are statistically significant at standard 

levels. Note the missing P-value and marginal effect for the ALTERNATIVE USE variable. 

Since every ditch with a non-zero value for ALTERNATIVE USE also employs an average rule, 

the coefficient is not identified and any arbitrarily large value for the coefficient will guarantee 

that the model always correctly associates the ALTERNATIVE USE ditches with the average 

rule. Therefore, although we omit the P-value and marginal effect for the ALTERNATIVE USE 

variable, it is important to recognize that it provides a substantial source of explanatory power. 

The signs on the coefficients also generally conform to our expectations. Higher values for all 

the variables except RAINFALL and TAIL DIFFERENTIAL imply greater likelihood of 

observing the average rule. 

8We also investigated the performance of the semi-parametric maximum score (MS) estimator. The MS 
estimator chooses the coefficients (P) to directly maximize the number of correct predictions. Using the MS 
estimator, we correctly predict only one more cost-sharing rule (88 of 94) than the probit model. Therefore, 
although the probit model does not directly maximize any traditional goodness-of-fit measure, it appears to fit the 
data nearly as well as a semi-parametric estimator that does. 
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It is also interesting to note the magnitude of a change in the explanatory variables on the 

probability of choosing a particular cost-sharing rule. The marginal effects in column three of 

Table 2 measure the change in probability of choosing the average rule for an incremental 

change in each variable (evaluated at the means). Several marginal effects stand out as 

noteworthy. First, while holding all other variables constant at their means, adding an additional 

user (increase from 9 to 10 users at the mean) increases the probability of choosing an average 

rule by 0.9 percentage points. Second, increasing SOURCE DISTANCE from approximately 

one to two miles, all else equal, increases the probability of choosing an average rule by 20.6 

percentage points. Third, adding one mile to the tail of the ditch (i.e., increase TAIL 

DIFFERENTIAL from approximately 0.10 to 0.21 at the average number of current users) 

increases the likelihood of choosing the serial rule by approximately 4.0 percentage points, all 

else equal. Fourth and finally, increasing the original center of gravity from 0.5 to 0.6 (i.e., 

moving the center of gravity of irrigated acres toward the tail of the ditch) increases the 

likelihood of choosing the average rule by 4.4 percentage points, while a similar increase in the 

current center of gravity, for a fixed original center of gravity, increases the likelihood of 

choosing the average rule by 6.4 percentage points. Thus, our data support the conjecture that an 

increase in either CoGo or CoG DIFFERENTIAL tends to increase the likelihood of observing a 

rule within the average class as tail-end irrigators vote out of self-interest for an average 

mechanism to reduce their prescribed cost shares. 

5. Conclusion 

At the outset, we posed the question of whether the choice of cost-sharing mechanisms is 

arbitrary or systematically related to the physical environment of the agents involved in sharing 

costs. Our results, using data from a sample of irrigators in south central Montana, indicate that 
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the chosen cost-sharing rules are far from arbitrary. In fact, detailed information on the variation 

in (relative and absolute) benefits and costs associated with irrigation, as well as the distribution 

of agents along an irrigation ditch, display impressive explanatory power in determining whether 

agents on a particular ditch will choose a rule from either the average or serial class of cost­

sharing mechanisms. Moreover, our survey indicates that the majority of these rules are quite 

stable, in the sense that the rules have typically remained unchanged through the better part of 

the previous century. This suggests that agents collectively (though not necessarily individually) 

consider the prescribed cost shares from the rules to be reasonably equitable. 

Our results are also supportive of the spirit underlying axioms appealed to in the theoretical 

cost-sharing literature. Indeed, one of the fundamental principles of serial cost sharing is the 

protection of those placing small demands on a shared facility from the burdens imposed by 

those with large demands. (See, for instance, Moulin and Shenker 1992 or Kolpin 1998.) We 

find that when there is greater pressure for "fully cooperative" efforts, an outcome in the average 

class becomes more likely. Conversely, when cooperative pressure is reduced, or in the extreme, 

when there is a mounting tension from the introduction of "high demand" agents (those at the tail 

of the ditch), it follows an outcome in the serial class becomes the more likely result. 

Furthermore, our empirical results appear to be robust. We considered alternative 

specifications by incorporating other theoretically reasonable explanatory variables such as the 

yield ratio between irrigated and non-irrigated land, ditch length, maximum ditch flow, total 

number of irrigated acres, variation in irrigated acres across users on a given ditch, gradient of 

the land, propensity for soil erosion, elevation, and a measure of cost savings to front-enders 

caused by the addition of new tail-enders. In addition to experimenting with other explanatory 

variables, we also examined (1) other tie-breaking rules for the few cases where irrigators 
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appeared to disagree about the existing cost-sharing rule; (2) a model allowing the irrigator, as 

opposed to the ditch, to be the unit of observation (allowing us to directly incorporate 

information on differing perceptions of the cost-sharing agreement); and (3) the possibility that 

the cost-sharing rules may display some degree of spatial clustering. Our overall conclusion is 

that our empirical results are not an anomaly, but rather representative of a stable relationship 

between the physical irrigation environment and the chosen cost-sharing rule. 

Finally, we note that the results from this study may be useful in determining equitable and 

stable resource allocation mechanisms in other applications. Examples may include allocating 

resources across academic units at a university, sharing the costs stemming from increasing 

electrical output to a regional power grid, or determining a protocol for sharing costs associated 

with reducing the production of green house gases. While the structural parameters of such 

settings are quite different from those examined here, many of the same tensions and pressures 

between the partners of a cooperative venture remain. 
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Table 1. Descri,Etive Statistics 

Statistics 
Variable 

Standard Sample 
Mean 

Deviation 
Minimum Maximum 

Size 

Average Class 0.713 0.455 0.000 1.000 94 

Town 0.382 0.336 0.033 1.000 27 

Alternative Use 0.181 0.146 0.040 0.500 10 

Rainfall 198.791 25.460 116.306 243.946 94 

Roughness 3.777 3.246 0.000 18.716 94 

Runoff 1.408 0.451 0.000 2.333 94 

Number of Users 8.848 10.416 2.000 61.417 94 

Source Distance 0.998 1.045 0.000 5.403 94 

Tail Differential 0.101 0.211 0.000 1.342 94 

Original CoG 0.497 0.144 0.140 0.859 94 

Current CoG 0.514 0.125 0.192 0.859 94 

Notes: For the Town and Alternative Use variables, the reduced sample size reflects 
only ditches with positive values for the variables. The Number of Users variable 
has a non-integer maximum because the number of users was not listed in the state 
records. Therefore, we imputed the number of users for the incorporated ditches 
using the sample ratio of fields per user for unincorporated ditches (the number of 
fields was available for incorporated ditches). 



Table 2. Probit Estimates (Average Rule = 1, Serial Rule = 0) 

Statistics 
Variable 

Coefficient Estimate P Value Marginal Effect 

Constant -2.570 0.248 

Town 5.419** 0.037 0.376 

Alternative Use 86.355 

Rainfall -0.025* 0.061 -0.002 

Roughness 0.076 0.137 0.005 

Runoff 1.421 ** 0.023 0.099 

Number of Users 0.125** 0.031 0.009 

Source Distance 2.971 *** 0.000 0.206 

Tail Differential -5.259*** 0.001 -0.365 

Original CoG 6.301 ** 0.012 0.437 

CoG Differential 9.156*** 0.002 0.636 

Sample Size 94 

Likelihood Ratio 
72.627 

Statistic 

McFadden's 
0.644 Pseudo R2 

Notes: The marginal effects are evaluated at the mean. (*), (**), and (***) indicate 
significance at the 10%, 5%, and 1 % level, respectively. The Alternative Use coefficient is 
not identified as every ditch with positive values for the variable employ the average rule. 
In this sense, it is a perfect predictor of the cost-sharing rule and any arbitrarily large 
coefficient would generate the same goodness-of-fit. 
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Table 3. Number of Correct and Incorrect Predictions 

Actual 

Totals 

Average Serial 

Predicted Average 64 4 68 

Serial 3 23 26 

Totals 67 27 94 

Notes. 64 of the 67 average rules (96%) and 23 of the 27 serial rules (85%) were 
predicted correctly. Overall, 87 of the 94 rules (93%) were predicted correctly. 
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