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COSTS. BENEFITS AmID mE OPTIMl ROTATIC»t Of STMDIItG F<MSTS 

by 

Donald L. Snyder 
and 

Rabindra N. Bhattacharyya* 

The Faustmann model has played a key role in :the .determination of 

optimal forest rotations. Faustmann introduced a simple and determinis-

tic competitive economic model, the objective of which was to maximize 

the present va 1 ue of perpetua 1 returns to the fi xed factor of produc-

tion, a unit of timber 1 and. The optimal rotation probl em. as v iewed by 

him, is a timber management problem abstracting from the important 

multiple use characteristics of forest land. Hartman (1976) and Strang 

(1983) developed a modified Faustmann model where the forest resource 

stock 'per·.:se' is assumed to have consumptive value in the form of 

"recreation", . a genera 1 term used to capture non-timber forest uses. 

An important issue having a bearing on the problem of optimal 

forest rotation remains still to be explored. Hartman points out that 

in any realistic model, regeneration costs and the costs of making 

recreationa 1 serv ices accessibl e to users woul d have to be expl icitl y 

considered. The required management decision is based on net values. 

Therefore, recreational as well as timber values should be considered 

net of their costs of production and/or maintenance. While regeneration 

costs ha ve been accounted for in part by some authors, recreation costs 

in the context of the rotation problem have received 1 ittle attention. 

This paper represents an attempt to account for these costs in a 

general way. This analysis extends the earlier work completed by Hart-

*Authors are, respecti vely, Associate Professor and Ph.D. 
Candidate, Economics Department, Utah State University, Logan, Utah. 
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man and Strang by incorporating recreation cost into a more generalized 

Fa us tm ann mod e 1 • 0 u ran a 1 y sis s h 0 ws t hat the dec i s ion 0 f "n eve r cut

ting" the forest as the global maximum as derived by Strang is valid 

on 1 y under very res tri ct i ve as sumpt ions. When recreat i ona 1 costs and 

va 1 ues are adequate 1 y accounted for, rotation pattterns other than "never 

cutting" are the general rule. In our approach', rotation period de

ci si ons, in the sense of 1 oca 1 max imum differ from the Hartman-Strang 

formulation. 

Setting of the Problem 

As is we 1 1 known, the prob 1 em of determi n i ng the opt i rna 1 rota t ion 

of a forest is fundamentally a problem in capital theory. Although the 

growing forest stock may be considered as an asset in the form of goods 

in proces~ or inventory, a standing forest may be treated as a special 

kin d 0 f d u r a b 1 e eq u i pm e n t pro v i din g a flow 0 f s e r vic e s • T his mo del 

incorporates both the commercial value of timbers when the forest is 

harvested as well as the value of services flowing from a standing 

forest. Hence, both the concepts of forest asset are relevant here. 

The distinctive feature of economic activity involving capital is 

that it takes place at more than one point in time. Both the holding of 

inventories and the management of durable equipment may be treated in a 

un if i ed manner through the tempora 1 theory of production. For both, a 

stock of productive goods may be represented as an input to th€ stock

holdin'g process when it is acquired. Output/service levels of the 

stockholding activity depend not only on acquiring a stock of productive 

goods, but a 1 so on various other inputs of materia 1 and services that 

represent production and maintenance activity (Jorgenson, et al.). 
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In this forestry problem, timber production and recreational ser-

vices invol ve regeneration inputs, inputs required for preparing camp-

grounds, maintaining mountain rescue teams, generating wildlife habitat 

improvement programs, and providing program administration. Maintenance 

acti v ity i nvo 1 ves inputs re 1 ated to preserv i ng the flow of serv ices of a 

standing forest besides preserving the stock of trees. · 

The object i ve of a harvest ing or mai ntenance po 1 icy is to fi nd a 

sequence of times for harvesting successive forest stands that maximize 

the dis c 0 u n t ed tot a 1 II net II ben e fit s 0 v e r t he 1 i f e 0 f the i n v e s tm e n t 

process. Any time sequence for harvesting constitutes a rotation 

policy; a sequence that maximizes the total net benefits is an "optimal 

rotation pol icy." 

In t~e following analysis, the forest resource is assumed to be 

owned by a hypothetical competitive firm operating in an environment of 

certainty. Further, a given plot of land is considered, with all trees 

harvested simultaneously (clear cutting as opposed to selective cut-

ting). Individual trees are assumed to be identical when they are 

regenerated. Rotation restores the investment and regeneration process 

to its original state. 

The Objective Function and Existence 
of an Optimal Rotation Age 

This section formulates the appropriate objective function to be 

maximi~ed under the above assumptions and examines the existence of the 

optimal harvesting age for two specific situations. 

Fol lowing Hartman and Strang, let G(t) denote the stumpage value in 

a for est 0 fag e t. T his can bet h 0 ugh t 0 f as the val u e 0 f the tim be r 

less the cost of harvesting. G(t) is assumed to be bounded and, unlike 
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standard durable equipment, has the following growth curve shape: 

appreciating in value at an increasing rate, then at a decreasing rate, 

reaching a maximum, depreciati.ng, leveling off, and finally, again 

gradua 11 y fa 11 i ng. The Hartmann-Strang G( t) curve does not exhi bi t thi s 

last possible eventuality. Natural biological de~y 1~ likely to over-

whelm the steady-state forest at a very old age. Further, harvesting 

cost may be an increasing function of forest age. Taken together, these 

imply the ultimate falling phase of G(t). The value of the flow of 

serv ices of the standing forest at age t (e.g., wi ld 1 ife habitat, flood 

control, viewing, and hunting), will be referred to as F(t) or recre

ational services. F(t) is assumed to be bounded and that initially F(t) 

rises at an increasing rate, then at a decreasing rate, reaching a 

maximum, and eventually decl ines gradually. This characterization of 

F(t) again ' contrasts with the Hartman-Strang F(t) function that asymp

totical ly approaches a maximum and never decreases with age. But in the 

present analysis, it is plausible to assume that old growth trees are 

subject to "wear out," defined as the decl ine in the recreational value 

or quality of the standing forest attributable to the normal forest 

aging process. Hence, F(t) eventually declines. Figures 1 and 2 depict 

the assumed characteristics of G(t) and F(t) respectively. (The sub

script H is used to depict the Hartman-Strang specifications.) 

F(t) may be considered as the flowof the .9..!:0s~ value of recrea

tionalservices. In contrast, this analysis highlights the impact of 

net values associated with the life of a forest on the optimal rotation 

time. So, the costs associated with the producing and maintaining the 

flow of recreational services are introduced to derive the flow of net 

value. 



5 

s - C(t) 

"::"\:..: 
. -.. 

-t --\ t 

Figure 1. Stumpage Value Growth Curve. 
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Recreational Services. 
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Consider a forest stand consisting of a stock of homogeneous trees 

planted and used along with other cooperat ing factors (such as road 

development and maintenance, campground preparation and clean-up, wild-

life habitat improvement programs) for producing a flow of recreational 

services, Q. Over time, Q is made available in a competitive market. 
~ 

Let qt denote the flow of Q at instant t. The c~rresponding value of 

recreational service flow is Ft - The forest stand is regenerated in an 

initially barren land at time -t=O at a fixed regeneration costs, C~. 

The input cost flow to produce and make recreational services accessible 

to prospective users, Cl' is a function of qt. The maintenance cost 

flow for the tree stock and other durable co-operating inputs, C~, is a 

function of both the flow of services and of the age of the forest 

(assuming that ages of other inputs are linearly related to age of the 

forest). . :Consequent 1 y, 

where Ct may be cal led the variable cost function. It seems reasonable 

to assume that CI and CM and hence Care nondecreasing and continuous. 

It is also assumed that C is bounded. 

The forest cou 1 d be harvested and timber cou 1 d be so 1 d in a 

competitive market whenever the entrepreneur decides to capture the 

rents ~~sociated with the standing forest from time t=O through t=T, the 

stumpage value of the tree stock at time t=T, GT• is a function of the 

age of the forest: 

GT c G(T) (2.2) 
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where G(T). as assumed earl ier, is bounded and continuous, G'(T) ~ a as 
< 

shown in Figure 1. The derivatives G'(T»O, G'(T)<O and G'(T) = 0, 

give. respectively, the rate of gain (appreciation). the rate of loss 

(depreciation). and the steady-state stumpage val ue from continuing to 

keep the forest on 1 and. . 
The entrepreneur's optimization problem under ,'suc~ a situation can 

be separated into two parts: (1) determining optimal input and output 

(recreational services) 1 evel s for each point in time whil e the forest 

is standing, and (2) determining optimal lives · (rotation age) of 

forests for one or more cycles. The optimal input and output levels are 

cons id ered fi rs t. Then the appropriate objective functions are 

formulated to examine the existence of and criteria for an optimal 

rotation age for a single cycle and for an infinite chain of cyc1es. 

Given :that the entrepreneur has decided to operate a forest from 

time t I:: 0 through t I:: T, the i ni ti a 1 cost and stumpage va 1 ue may be 

ignored. The firm's problem is to maximize the present value of the 

quasi-rent flow from the standing forest, i.e., the difference between 

th e p re sen t val u e 0 f rev en u e from re c rea t ion a 1 s e r vic e s F ( t) and the 

present value of the variab~e costs C(t). Since, the value of recrea-

tional services and costs at different points in time are independent in 

the case considered here, the firm can maximize the present value of its 

quasi-rent flow over the cutting cycle by maximi zing the rate of 

discounted quasi-rent flow at each point in time (Henderson and Quandt). 

Fur the rm 0 r e , sin c e the dis c 0 u n t fa c tor e - r tis a con s tan t for any 

fix e d val u e 0 f tan d ass u min g r i s g i v en, the firm can a chi eve the 

desired result by maximizing the rate of quasi-rent flow at each point 

in time without discounting. 
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The firms rate of quasi-rent flow at instant t. Rt is 

(2.3) 

Setting the derivate of Rt with "respect to qt equal to zero impl ies that 

dFt del aCM 

----+- (2.4) 
dqt dqt aqt 

The firm equates its rate of marginal cost flow which, in this case, is 

a sum of input and maintenance costs, to its fixed rate of marginal 
dF t 

revenue flow (since the market is competitive), ----.. The second-order 
dqt 

condition 

(2.5) 

implies tha~ the sum of the marginal costs increases with output. 

We assume that (2.4) may be so 1 ved for the opt imum val ue of qt as 

a function of t. Substituting this function into equation (2.3), an 

optimal quasi-rent stream may be expressed as a function of t 

Rt a:: R( t). (2.6) 

Similar substitution in equation (2.1) leads to 

Ct I:: C( t) (2. 1') 

the opti~al variable cost flow as a function of t. 

Since F and C are bounded and continuous, R is also bounded and 

continuous (Buck). Figure 2 depicts the shape of the R(t) function. 
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The Quasi-rent function gives the maximum Quasi-rent obtainable 

at each point in time from operating a standing forest. It is based 

upon the underlying optimal combination of inputs and output. The 

quasi-rent function holds for all values of t, and its form is 

unaffected by the choice of a particular value for rotation length. 

10 

Thus, the quasi -rent function may be used for ana 1 y'zi ng the rotat ion 

length without the explicit introduction of outputs (recreational 

services), value of services Ft , and costs. 

The existence of an optimal rotation age is treated under two 

specific situations: (1) under the Fisherian one-cycle and (2) under 

the Faustmann many cycles. For this, we utilize the logical steps 

developed by Jorgenson, et al. 

Fisherian one-cycle situation 

This situation concerns when the planning horizon runs through only 

one cutting '"of the forest. The present va lue of net return from the 

operat ion of a forest from t = 0 through t = T is the present va 1 ue of 

quasi-rent stream minus the initial regeneration cost plus the present 

value of the receipt from the stumpage when the forest is cut at t = T 

at the termination of one cycle, or 

V,(T) = 
T 
1 R(t)e-rtdt _ CR + G(T)e-rT 

o 
o 

where r > 0, is the discount rate. 

(2.7) 

Th~. ·firms objective is to maximize V,(T) with respect to the 

choice variable T. 

Assumptions made about R, G and r imply that V, is bounded and 

continuous (Buck). To determine the existence of an optimal rotation 
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age ~ V1 is differentiated with respect to ~ 

Vi(T) = [R(T) - rG(T) + G'(T)]e-rT• (2.8) 

It can be shown that under certain reasonable assumptions, an 

optimal rotation age, say T, does exist, and that it is not zero. 
~ 

First. since Rand G are bounded and monotonic in ,the "relevant intervals 

['t: CD) and [1:", CD) respectivel y (in Figure 2 and Figure 1), the 1 imits 

lim R(t) II: R(CD) 
t--7 CD 

lim G(t) a G(CD) 
t---+ CD 

exist. Further, it is assumed that 

lim G'(t) c (> • 
t~~ 

(2.9) 

(2. 10) 

, 
With these a,ssumptions and conclusions, it follows from (2.8) that V1 

tends to zero as T gets large~ howeve~ 

1 im er.tV; (T) = R( co) - rG( co) • 
t--1co (2. 11) 

If the limit (2.11) were negative, then V1(T) would be negative for 

s u f f i c i e n t 1 y 1 a r geT, and hen c e V 1 ( t) w ou 1 d bed e c rea sin g for s u f f i -

ciently large T. The 1 imit (2.11) is negative if and only if 

which implies that 

R( co) 
G( (0) > __ = i R( oo)e-rt dt • 

o r (2. 12) 
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The inequal ity (~'2) is interpreted as follows: the left-hand side 

expression is the net stumpage value derived by starting initially with 

an infinitely old forest and "cutting it down immediately. The right

hand side is the discounted quasi-rent derived from starting with an 

infinitely old forest stand and never cutting it. In light of this 
i -

interpretation and noting that R(t) < F(t), it i "s assumed that (2.12) 

ho 1 d s. Hence V 1 (T) is decrea si ng for T 1 arger th an say T o. Thi sis 

also intuitively plausible since both R(t) and G(t) are falling when T 

is large. Thus, since V, is continuous, it attains a maximum on the 

interval [0, To]; ~ fortiori it attains a maximum on [O,~] for some 

T ~ To. 

In the Hartman-Strang formulation with R(t) replaced by F(t) > 

R(t), it is not improbable that for a single-cycle G(oo) ~ F ( 00), if 
r 

the value"""of standing forest is relatively high. This possibility 

exists because of the nondecreasing F(t) function in their model s. In 

that case, V,(T) is nondecreasing and any finite solution T for rotation 

age may not exist. Mathematically it is inappropriate to suggest (as 

Strang did) that V,(T) has global maximum at infinity (Glaister~ Of 

course, never cutting a forest may well be a consequence of such a 

result. 

let us now examine the possibility that T = O. From (2.7) and 

(2.8), 

V 1 CO r = -c ~ and (2.13) 

Vi(O) = R(O) - rG(O) + G1(O) = 0 

since a noneXisting forest can earn neither quasi-rent nor stumpage 
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value equation (2.13). with V1(0} < A. implies that zero cannot be an 

optimal valueof T. 

Thus, under the assumptions made, the maximum net return is 

attained at a finite, positive rotation age (which may be more than 

one). 

Faustmann many-cycle situation 

Let us consider a firm which plans for an infinite horizon and an 

infinite chain of identical forests succeeding one another. We assume 

th at th e qua s i -r e n t fun c t ion. the i nit i a 1 reg en era t ion cos t. and th e 

stumpage value function are the same for each rotation cycle. The 

present value of net return from the first cycle is given by (2.7). The 

prese~t value of the net return from the second and third-cycle forest 

are respe~tively, 

2T 
~ I R(t-T)e-rtdt - CR e-rT + G(T)e-r2T 

T 0 

= V1(T)e-rT (2. 14) 

and 

3T 
V3(T) ~I R(t-2T)e-rtdt - CRe-r2T + G(T)e-r3T 

2T 0 

= V1(T)e-r2T • (2. 15) 

In general 

. T 
Vk(T) =[1 R(t)e-rtdt - C~ + G(T)e-rt ] e-r (k-1)T 

o 

= V1(T}e-r(k-l)T. (2. 16) 
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Consequently, the present value of the aggregate net return from an 

infinite chain of forest cycles is 

T 
~ 6 R(t) e-rt dt - C~ + G(T)e-rT 

V(T) -= rVk(T) -= --------;-----
k-=l 1 - e-rT 

V1(T) 

1 -rT - e 

which can alternatively be written as 

T 
V(T) II: 1 R( t) ertdt - c~ + G(T) e-rT + V(T)e-rT • 

o 

(2.17) 

( 2.18) 

Again the assumptions made about R, G, and r imply that function V is 

bounded and con t i nuou s. 

To know about the existence of an optimal rotation age, V in (2.18) 

is differentiated with respect to T. 

VieT) = R(T)e-rT - rG(T)e-rT + G'(t)e-rT - rV(T) e-rT + V'(T)e-rT 

= e T I [R(T) + G I (T) - rG(T) - rV(T)] • r, 
-rT I 

~ - e-
r J (2. 19) 

It fo 11 ows from (2.19) that V'(T) approaches zero as T gets 1 arger. 

However, if the 1 imits (2.9) exist and (2.10) is val id, then 

T 
li,Q1 ":.e rT VieT) = R(~) - rG(oo) - r[f R(t)e-rtdt-C~] • 
T---t~ 0 

(2.20) 

If the 1 imit (2.20) were negative, then VieT) would be negative for 

sufficiently large T, and hence VeT) would be decreasing for a suffi-

ciently large T. The limit (2.20) is negative if and only if, 
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rG(_) + r [i R(t)e-rtdt - C~] > R(-) 
o 

which implies 

R (-) 
> (2.21) 

o r 

The inequality (2.21) can be interpreted as fo1 lows: the left-hand 

side is the total discounted net return obtained by starting at time 

zero with an infinitely old forest, cutting it immediately to get the 

stumpage value G(Oo), replanting the forest immediately incurring a 

regeneration cost C~ without ever cutting it again to derive a dis-
00 

counted flow of quasi-rent I R(t)e-rtdt. The right-hand side is the 
o 

total discounted quasi-rent stream derived from starting with an 

infinitely old forest and never harvesting it, since 

R(~) 
--- = 7 R(oo)e-rtdt • (2.22) 

r o 

Given the nature of the quasi-rent function (2.6), as shown in 

Figure 2; the G(t) function (2.2), as sho'wn in Figure 1; and the above 

interpretation; it is assumed that (2.21) hol ds. 

Hence VeT) is decreasing for T larger than, sayTo• Again, as in 

the single-cycle case, since VeT) is continuous, it attains a maximum on 

the interval [0, To]; ! fortiori it attains a maximum on [O,~) for some 

T ~ To. 

The line ver cut" s i tuat i on of Hartman-Strang imp 1 i es the reverse of 

the inequality (2.21) with the R function replaced by a larger valued F 

function and C~ = Q That is 

(2.21') 
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in that case VeT) is nondecreasing for T larger than To and any finite 

solution T for optimal rotation age may not exist. Here again, of 

co u r s e , n eve r cut tin g may be a con s e qu en ceo f (2. 2 " ). The situ at ion 

characterizing (2.21') depends crucially on the assumptions of steady 

state G(t)as t--t ao, never decreasing F(t). and noninclusion of variable 

and regeneration costs. Taken together. they imply nondecreasing Vet) 

as t~ao and hence (2.21 '). The situation (2.21'). though not 

improbable. can occur only under very restrictive situations. 

Thus. under the more general situation considered and the assump-

tions made. the maximum net return is obtained at a finite and positive 

rotation age. though there may be more than one local maximu~ 

It is to be noted that the never cutting decision is more likely 

under the one-cycle problem because its alternative (cutting the trees) 

is more limited in value in the one-cycle than in many-cycle case 

(Strang) • 

A Formal Solution and Comparison 
with Alternative Formulations 

This section provides a formal solution of the models formulated in 

the previous section for optimal rotation age in terms of certain 

criteria. Here, again, two cases are considered: the Fisherian one-

cycle case and the Faustmann many-cycle case. The former is considered 

for the sake of its more intuitive appeal and the help it provides for 

later comparisons among contending formulations. 

Fisherian one-cycle solution 

At an optimal rotation age T, the first and second order conditions 

for an interior maximum are VieT) I: 0 and VlieT) < 0 respectively. 
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Thus. setting (2.8) equal to zero 

R(T) + G'(T) ~ rG(T) (2.23) 

or 

G'(T) R(T) 
-- a r - __ 

G(T) G{T) (2.24) 

The second-order condition is (after simplification) 

R' (T) + G' '(T) < rG' (T) • (2.25) 

Hence. for an interior max imum R{t) + G'{T) must intersect rG{t) from 

above (Figure 3). 

The optimality condition (2.23) can be interpreted easily. On the 

right is the interest foregone by postponing forest h~rvesting for one 

period. On the 1 eft is the gain from postponing the harvest one period: 

it consists of the quasi-rent flow (net recreational value) during the 

period plus "(minus) the value of the timber growth (decay) over the 

period. Thus, for optimality, the margin'al gain from postponing the 

harvest one period must equal the marginal loss of postponmen~ 

In the absence of costs associated with providing recreational 

services C{t) = 0 and (2.24) reduces to the Hartman-Strang result 

G' (T) F(T) 
-- = r ---
G (T) G(T) (2.24') 

Furtherm~.re, in the absence of net recreational value (quasi-rent), 

R(t) = 0, and (2.24) simpl y reduces to the well-known Fisherian resul t 

G' (T) 
-- ~ r, 
G (T) (2.26) 
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R(t}+C'(t} 

T* T1i f T** --t t 

Figure 3. Marginal Benefits and Marginal Costs of Not Harvesting Under 
Alternative Assumptions. 



a forest should be harvested when its rate of growth equals the discount 

rate. With recreational value only, F(T)/G(T) > 0, and therefore 

(2.24') suggests that the forest should be harvested when the rate of 

growth is less than the discount rate. This is achieved by delaying the 

harvest. For simi lar reasons, (2.24) suggests de layed harvesting. But 

the quasi-rent, R(T) in our formulation, is less :tha·n F(T) for Hartman-

Strang, implying R(T)/G(T) < F(T)/G(T). Hence [r - R(T)]/G(T»[r -

F(T) ]/G(T). This suggests that the optima 1 rotation age in the presence 

of costs for providing recreational services will be shorter than that 

,·in the presence of recreational benefits alone (Hartman-Strang 

solution), but longer than Fisherian solution. Thus our result is a 

further generalization of the generalized Fisherian solution of Hartman-

Strang. 

R(t)/G(t) is the ratio of net recreational value per time period of 

the standing forest to the stock value of harvested timber. If this 

ratio is greater than the discount rate, then the right-hand side of 

(2.24) is negative. The first-order condition (2.23), as Hartman 

pointed out, does not necessarily imply that G'(t) > 0 at the optimum. 

Moreover, the second-order condition wi 11 be satisfied for G'{t) 

negative, provided G"{t) is a large enough negative value. Hence an 

optimum may occur at a long enough time involving a negative rate of 

g row th • Fin all y, i f the R ( t) fun c t ion i s 1 a r gee no ugh (a dis tin c t 

possibil ity in Hartman's formul ation but rather unl ikely in our formu-

lation.'~ince R(t) < F(t) and declining in the interval Ct, 00]) relative 
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to G(t), there may be no definiti ve so lution to (2.23). The most 1 ikel y 

general case is shown in Figure 3~. 1 

Faustmann many-cycle solution . 

An optimal rotation age T under the many-cycle Faustmann case 

requires, V'eT) - 0 and V"(T) < O. Thus, from~2.17) and (2.19) and . 
setting V'(T) equal to zero 

-rT e 
([R(T) - rG(T) + G'(T)] -V I (T) a: 

1 -rT -e 

T 
r[rR(t)e-rtdt + G(T)e-rT - CR 

] ) - 0 o 0 

l-e-rT 
(2.27) 

which implies that 

rCR 
T 

rG(T)e-rT r ' I R( t)e-rtdt 
R(T) ... G' (T) + 

0 
a: rG(T) + 0 + 

1 -rT -e l-e rT l-e-rT 

(2.28) 

which for simplified expression can be written as 

1 T 

[I R(t)e-rtdt - C~ + G(T)] 
o 

(2.29) R(T) + G I (T) -=-

l_e-rT T 
where A -= = I e-rtdt is the present va 1 ue of a doll ar stream of 

r 0 
return for T years • 

. ----
1 It is ' relevant to note that Figure 3 of Strang seems to be in error. 
ihe falling portion of F(t) + G'(t) curve implies G'(t) < 0 and large 
enough since F(t) is nondecreasing. But on the same time interval, his 
rG(t) curve is shown rising. With G'(t) < 0, G(t) and hence rG(t) 
should be fall ing. However, this does not have much bearing on his 
conclusion. 
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Equation (2.28) can be rearranged as 

T 
CR G' (T) 1 I R( t)e-rtdt R(T) 

r[ 0 0 
] _I: + ---

G(T) 1 -rT -e G(T) (l_e-rT) G(T) (l_e-rT ) G(T) 

(2.30) 

Jhe first-order condition of interior maximum :expressed in the form 

of (~29) can be interpreted as: a forest is harvested when its marginal 

rate of quasi-rent flow per period plus (minus) appreciation 

(depreciation) equals the present value of the average quasi-rent return 

per period of a regenerated forest net of its regeneration cost plus the 

stumpage value of the previous forest stand just harvested. The 

bracketed term on the right-hand side of (2.29) gi ves a net return for T 

years. Division by A converts it to an annual basis. The second-order 

condition ·V"(T) < 0 requires, under this interpretation, that the 

marginal ne~ return on the old forest cut be decreasing more rapidly 

than the average net return on the regenerated new fores~ 

Equation (2.28) also provides a useful interpretation. On the 

left- hand side is the gain from postponing the harvest for one period. 

It cons is ts of the quasi -rent flow during the peri od p 1 us (minus) the 

value of the timber growth (decay) over the period plus the gain in 

interest on capital ized va lue of regeneration cost for not harvesting 

and thus not incurring the regeneration cost in a sequence of infinite 

cutting cycles. On the right is the interest foregone by postponing 

harvesting the forest for one period. 

In the absence of costs associated with recreational services and 

the cost of regeneration, C(t) I: C~ I: 0, and therefore equation (2.30) 

reduces to the Hartman-Strang result 
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T 
G' (T) rr. 1 + ~ F(t)e-rtdt )_ F(T) • 

L 1-e -rT G(T) (l-e -rT G(T) (2.30') 

__ I: 

G(T) 

Except for the term in the brackets, (2.30 1
) is the same as 

(2.24 1
). Loose 1 y speak ing .. and fo 11 owing Hartman, the term in the 

~ 

brackets acts as a "correction factor" for the interest rate. 1-e-rT 

lies between zero and one, and therefore, 1/1 - e- rT is greater than 
T 

one. Further G(t) and I e-rtF(t)dt, are both positive. Thus, the 
o 

expression in the brackets is greater than one gi ving rise to an 

"effective interest rate" (the interest rate multiplied by the 

"correct i on factor"), whi ch is greater than the interest rate appea ri ng 

in (2.24'). This has the effect of reducing the optimal harvest age 

re 1 a ti ve to the mode 1 wi th a one-harvest hori zone For identi ca 1 

reasons, (2.30) has the effect of reducing the optimal harvest age 

relative to , our model with a one-harvest horizon and indicated by 

(2.24). Of course, this conclusion is contingent on the assumption that 

the bracketed term on the right of (2.30) is posi ti ve and greater than 

one. This requires a very plausible assumption that the present value 

of the quasi-rent flow for T years net of regeneration cost is positive, 

i . e. , 

T 
r I R(t)e-rtdt 

o r CR 
o 

------------ > 0 
(2.31) 

Similar comparisons between the optimal rotation lengths implied by 

the solution of (2.30) and the solution of the Hartman-Strang rule 

(2.31') is not that intuitive. To make a comparison, we adopt the 

fo 11 owing step by step procedu re, where each step imp 1 ies, by the 
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preceeding logic, a particular optimal rotation age. This is also shown 

in Figure 4. We take the simple Fisherian solution as our point of 

reference. A review of our previous discussion impl ies the following 

rotation 1 engths: 

G' (T) 

G(T) 
- r -> T • o 

Fisherian one-cycle solution T; 

G' (T) F(T) 
--- r ---> 
G(T) G(T) 

(2.32) 

(2.33) 

the Fisherian solution of Hartman with recreational value added; 

T 
G'(T)~ r [1 + ~ F(t)e-rtdt J _ F(T) => T

2
• 

G(T) l_e- rT G(T)(l-e- rT ) G(T) 
(2.34 ) 

the generalized Faustmann solution of Hartman; 

G' (T) 
T 

[ 

1 ~ F( t)e-rtdt J R(T) 

= r l-e- rT + G(T) (l-e-rT) - G(D => 
(2.35) 

G(T) 

a hypothetical solution with F(T) rep 1 aced by R(T) < F(T) in 

the last term; and 

T 
G1 (T) 

r[l_e~rT 
bR(t)e-rtdt - C~ 

J 
R(T) 

= + - -- => T 4' 
G( T-) .-;. G(T)( l_e- rT ) G(T) 

(2.36) 

our more generalized Faustmann solution. 
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Figure 4. Comparative Optimal Rotation Time. 

Equation (2.34) implying T2 and (2.36) implying T 4 are the 

solutions for (2.30') and (2.30) respectively. This ·suggests that T 4 
A 

can be less than, equal to, or greater than T2• These alternative 

possibilities are explored below: 

Using the R(t) function defined in (2.3) and (2.6), equation (2.30) 

; • e., (2. 36) can be reexpressed as 

G' (T) 

G(T) 

. K r 

-= r 

[ 
1 

l-e-rT 

CR 
o 

+ 

T T 
~ F(t)e-rtdt f C( t)e-rtdt 

0 

G(T)(l-e-rT ) G(T)(l-e-rT ) 

F(T) C(T) 
-----] ---+--
G(T)(l-e- rT) G(T) G(T) 

T 
1 f F(t)e-rtdt 

[ + 0 ] 
F(T) 

---
l-e-rT G(T)(l-e-rT ) G(T) 

T 
C(T) 1 ~ C(t)e-rtdt C~ 

+ ( ---- - -- [ + ----]) (2.37) 
G(T) A G(T) G(T) 

T 
where X·:: · ~l-e-rT/r - I e-rtd~ is as defined before, the present value 

o 

of a dollar stream for T years. 

Now excepting the second term within the parentheses, (2.37) is 

exact ly the same as (2.30') or (2. 34). Thus~ .. the 1 ength of rotat ion T 4 



, ', 

25 

as compared to' T2 wi 11 depend on whether the term of cost components 

within the parentheses is positive, zero, or negative, i.e., whether 

T 
C(T) -~ [ f C(t)e-rtdt + ~~] ~ 0 • 

o 
(2.38) . 

Here C(T) is the amount of variable costs incurred to provide the 
, 

recreational services from the forest stand at the instant T (when the 
T ' 

forest is harvested); fC(t)e-rtdt is the present value of variable 
o 

costs incurred over the period t - 0 to t - T; and C~ is the initial 

regeneration cost of the stand. The term within the brackets may then 

be interpreted as the total cost associated with the forest stand for T 

ye a r s. 0 i vis ion by converts it to an annual total cost. Thus 

following the logic developed earl ier, 

T2 -= T 4' 
. . 

T2 > T4, ' 

and 

c:: 1 
T 

if C(T) [f C(t)e-rtdt + C~], 
A 

0 

T 
if C(T) > .l [f C(t)e-rtdt + C~], 

). 
0 

T 
if C(T) < .l [f C(t)e-rtdt + C~], 

). 0 

(2.39) 

(2.40) 

(2.41 ) 

In summary, the difference between the finite rotation lengths 

suggested by the Hartman-Strang formulation and the formulation 

developed here will depend crucially on the difference between the 

variable costs of recreational services and the annual total costs of 

the forest stand at the instant T. The differences in costs wi 11 be 

ref1 ected in the differences in "effective" interest rate and hence in 

the optimal rotation lengths. 
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