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A MORE GENERAL APPROACH TO MODELING 

EXCHANGE RATE VOLATILITY 

Kai-Li Wang, Christopher Fawson, Christopher B. Barrett, James B. McDonald 

ABSTRACT 

Exchange rates commonly exhibit periods of stability punctuated by infrequent, substantial 

adjustments. Statistically, this generates empirical distributions of exchange rate changes that have 

high peaks, long tails, and, sometimes, are asymmetric. Existing time-series estimation methods do 

not account for these characteristics satisfactorily. This paper introduces a more general GARCH 

model, based on the exponential generalized beta (EGB) family of distributions, which can 

accommodate most nonnormal characteristics of data, including leptokurtosis, skewness, and high 

peakedness, and yet remains tractable for estimation. Applied to daily U.S. dollar exchange rate data 

for six major currencies, the GARCH-EGB2 model uniformly outperforms conventional time-series 

models of exchange rate volatility. 



A MORE GENERAL APPROACH TO MODELING 

EXCHANGE RATE VOLATILITyl 

I. Introduction 

Contemporary modeling of exchange rate time series makes widespread use of generalized 

autoregressive conditional heteroscedastic (GARCH) models? Not only can GARCH models 

capture the volatility clustering often found in exchange rate series, they also accommodate a degree 

ofleptokurtosis (i.e., thick tails) that is also an empirical regularity of exchange rate series. In recent 

years, however, researchers have expressed concern that the GARCH maximum-likelihood 

estimation based on the common assumption of conditional normality fails to capture sufficiently 

the leptokurtosis evident in most asset returns (Bollerslev 1987; Baillie and Bollerslev 1989; Hsieh 

1989; Baillie and DeGennaro 1990; and Wang, Barrett, and Fawson 1996). This has led to a 

widespread adoption of conditional distributions, more general than the normal, most commonly the 

Student-t (Bollerslev 1987). 

Increasingly, widespread adoption of the Student-t conditional distribution in GARCH 

modeling is, however, contrary to the intuition generated by economic theories of exchange rates. 

While we do got develop a formal derivation of the statistical implications of exchange rate 

determination models in this paper, it is nonetheless useful to consider this issue casually.3 We 

lThe authors are fonner graduate research assistant, associate professor, and assistant professor, respectively, 
in the Department of Economics, Utah State University, and professor in the Department of Economics, Brigham Young 
University. Fawson is the corresponding author at Department of Economics, Utah State University, Logan, UT 
84322-3530, email: cfawson@b202.usu.edu. We thank Basudeb Biswas and Terry Glover for comments, and Ron 
Schoenberg for programming advice. Remaining errors are ours. This work was supported by the Utah Agricultural 
Experiment Station and approved as journal paper # __ . 

2Bollerslev, Chou, and Kroner (1992) offer a good survey. 

3Taylor (1995) and Obstfeld and Rogoff (1996) offer excellent, fonnal treatments of exchange rate 
determination models. 
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believe that selection of a conditional distribution for maximum-likelihood GARCH estimation 

should draw on the implications economic theory offers regarding the empirical distribution of the 

dependent variable, in this case, exchange rates. 

What might cause the leptokurtosis commonly observed in exchange rate series and which 

often induces econometricians to employ leptokurtic conditional distributions (e.g. , the Student-t) 

in estimation? Economic theories of exchange rate determination offer two likely explanations. The 

first is the overshooting of floating nominal exchange rates associated with monetary or fiscal 

shocks in the presence of sticky prices (Dornbusch 1976). The other is speculative attacks against 

fixed exchange rates (Krugman 1979). Both models imply infrequent, extraordinarily sharp 

movements in exchange rates, i.e. , the sorts of movements that appear as long (i.e. , fat) tails in a 

distribution of differenced exchange rates. Sharp exchange rate movements do not necessarily imply 

leptokurtosis, however, they could imply high variance in the time series. The key is that sticky 

prices in floating rate regimes, and especially fixed exchange rates, also generate modal daily 

exchange rate changes near zero (Obstfeld and Rogoff 1996). The implication is that exchange rate 

changes are concentrated near the mean but have long tails and hence leptokurtosis.4 The choice 

of a Student-t conditional distribution, however, ignores the likelihood that the leptokurtosis 
I 

evidenced in exchange rate series is bound up with the high peakedness of those series. The low 

peakedness of the Student-t signals that perhaps the time-series literature on exchange rates has gone 

off in an inadvisable direction. One really wants to use a conditional distribution that accommodates 

both long tails and high peaks. 

4An alternative way to view this, following Friedman (1953), is to recognize that profit-maximizing speculators 
will adjust their currency holdings in a manner that stabilizes transitory shocks to the exchange rate and accelerates 
movement in response to permanent shocks. If transitory shocks are far more common than permanent shocks, this will 
yield an empirical distribution of exchange rate changes that is high peaked and long tailed. 
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Moreover, the literature curiously leaps from concern with variance to concern with 

leptokurtosis. Theory suggests the third central moment, skewness, might also be important in 

exchange rate series. Skewness in exchange rate series comes from episodes of sharp depreciation 

(appreciation) not offset by subsequent sharp appreciation (depreciation). There are two likely 

reasons for such phenomena. First, permanent shocks that lead to changes in the equilibrium 

exchange rate may be highly asymmetric; rapid improvements in Japanese productivity over the past 

thirty years seem an excellent example. Second, speculative attacks against a currency tend to be 

one-sided (causing depreciation/devaluation). The 1992-93 European and 1994 Mexican currency 

crises-including attacks against the British pound and the Italian lira of particular relevance to this 

study-are good recent examples of such episodes. Since significant skewness is often observed 

in exchange rate series (Boothe and Glassman 1987; Hsieh 1988; and Peruga 1988), it would seem 

advisable to employ estimation methods that can accommodate skewness. 5 

GARCH estimation based on conditional Student-t distributions can capture the long tails 

evident in most exchange rate series, but fares less well in replicating their high peakedness and 

skewness. As a step toward resolving this deficiency, we introduce a more general GARCH model, 

based on the exponential generalized beta (EGB) family of distributions (McDonald and Xu 1995), 

which can accommodate nonnormal characteristics of data and yet remains tractable for estimation. 

The plan of the paper is as follows. Section II introduces the EGB family of distributions, 

including the specific variant used in this paper, the exponential generalized beta of the second kind 

(EGB2), and then develops a GARCH-EGB2 model based on this more flexible conditional 

5Hansen' s (1994) method does this, but by using a modified Student-t distribution, so that he cannot 
simultaneously accommodate high peakedness. Moreover, Hansen's model depends on appropriate ex ante lag selection. 
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distribution. In section III, we estimate time-series models of the u.s. dollar exchange rates for six 

maj or industrial economy currencies, using daily data. These exchange rate series all exhibit high 

peakedness and leptokurtosis, and several are skewed. The likelihood dominance criterion (for 

nonnested models), goodness-of-fit statistics, and plots of the standardized residuals all indicate that 

the GARCH-EGB2 model systematically outperforms Gaussian GARCH and GARCH-t models for 

each of the exchange rate series modeled. The concluding section summarizes our findings and 

highlights some implications for future research. 

II. The GARCH-EGB2 Model 

McDonald and Xu (1995) introduced the five-parameter generalized beta (GB) distribution 

and its logarithmic transform, the exponential generalized beta (EGB) distribution. The GB 

includes, as special cases, many distributions commonly employed in maximum-likelihood 

estimation in econometrics, including the lognormal, logistic, Pareto, generalized gamma, and Burr 

and Weibull distributions. In this paper we use the EGB distribution because it can model both 

positive and negative random variables, while the GB models just positive random variables. The 

EGB is the natural choice for a generalized distribution in much time-series estimation, in particular 

when one needs to difference nonstationary variables like daily exchange rates, thereby generating 

stationary regressands that are negative as well as positive. When combined with a GARCH 

specification for conditional variance, this very flexible distribution seems to account better for the 

characteristics of daily exchange rate data than commonly used alternatives. 

The EGB distribution is defined by the probability density function (pdf): 
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p(z - o ) (z- 0) q-l 
EG~z; 0, a, c,p, q) 

e a (1 - (1 -c)e a ) 

101 ap, q) ( 1 +c e '~b rTq 
z -o (1) jor - 00 < -- < In -- , 

a 1 - C 

where ° is a location parameter that affects the mean of the distribution, a reflects the peakedness 

of the density function, p and q are shape parameters that together determine the skewness and 

kurtosis of the distribution, and 0 :::; c :::; 1. Of special interest are the exponential generalized beta 

distributions of the first and second kind, EGB 1 and EGB2, respectively, which correspond to the 

limiting values of c = 0 and c = 1 and are alternative representations of the generalized exponential 

and generalized logistic distributions, respectively (Johnson and Kotz 1970; and Patil, Bowell, and 

Ratnaparkhi 1984). The associated probability density functions are 

EGBl(z; o,a ,p,q) EGB~; o , a,c O,p , q) 

p(z - o) ( (z- o) )q-l 
e a 1 - e a 

laIB(p ,q) 

EGBX...z; o,a,p , q) = EGB(z; o,a ,c = 1,p,q) 
e a 

Note that, unlike the more general EGB distribution, EGB 1 and EGB2 do not involve a 

nonlinear inequality constraint for the random variable. This feature makes numerical estimation 

of the latter distributions simpler than for the EGB . Furthermore, while the higher order moments 

of the EGB involve a relatively complex, hypergeometric series, the variance, skewness, and 

kurtosis ofEGB 1 and EGB2 are relatively simple expressions. Table 1 presents equations for the 

variance, skewness, and kurtosis of the EGB2 distribution employed in the empirical portion of this 



Table 1. The Moments of the EGB2 Distribution 

Mean 

Variance 

Skewness 

Kurtosis 

o +a[ljJ(p)-ljJ(q)] 

a2 [ ljJ'(p )+ljJ'(p)] 

(ljJ"(p) _ljJ"(q) )/ (ljJ'(p) + ljJ'(q))1.5 

[(ljJ"'(p) + ljJ"'(q)) + 3(1jJ'(p) + ljJ'(q)i]/ (ljJ'(p) + ljJ'(q)i 

6 

Note: where 1jJ( ), ljJ'( ), 1jJ"( ), and 1jJ"'( ) are digamma, trigamma, tetragamma, pentagamma 
functions, respectively (Davis 1935). 

paper. Tractability therefore favors estimating four-parameter EGB 1 or EGB2 distributions over 

the more general EGB form as long as the c parameter lies near one or zero. In this spirit, 

McDonald and Xu (1995, p. 134) find that, "[t]he exponential generalized beta of the second kind 

(EGB2) provides the basis for partially adaptive estimation in regression and time series models to 

accommodate possibly thick-tailed and skewed error distributions." Since the prevailing concern 

about existing GARCH modeling of exchange rate series is unsatisfactory accommodation of 

leptokurtosis, skewness, and high peakedness in error distributions, the EGB, or one of its two 

limiting distributions, seems a natural conditional distribution to employ in GARCH estimation. In 

order to have 4 probability density function without restricted support and because preliminary 

results of estimating both the EGB and the EGB2 models suggest c is close to the unit boundary of 

the parameter space for each exchange rate, with the EGB2 specification uniformly favored over the 

EGB by likelihood ratio tests (Table 2), we use the EGB2 in this study. 

A substantial amount of recent research has found that conditional variance in asset prices, 

including exchange rates, is time varying. Beginning with Engle (1982), econometricians have thus 



Table 2. Comparison of EGB and EGB2 Estimation Results 

C 

LLHEGB 

LLHEGB2 

LR 

DM 

0.9999 
3244.41 
3235.40 

18.02* 

£ 

1.0000 
3122.94 
3078.89 

88.10* 

¥ 

1.0000 
3087.57 
3047.50 

80.14* 

c is the parameter estimated from EGB distribution. 

FF 

1.0000 
3114.19 
3097.70 

32.98* 

BF 

1.0000 
3225 .66 
3210.02 

31.28* 

IL 

1.0000 
3109.09 
3090.04 

38.10* 
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LLHEGB and LLHEGB2 represent the negative of the maximal log-likelihood value of the models 
under the EGB and EGB2 distributions, respectively. 

LR represents the likelihood ratio test statistic of GARCH -EGB2 model against the corresponding 
GARCH-EGB model. 

*denotes statistical significance at the 1 % level. 

modeled the conditional variance process of time series as potentially autocorrelated. GARCH 

models have been found particularly useful in explaining the behavior of monetary and financial 

time series (Bollerslev, Chou, and Kroner 1992), although as Hall, Miles, and Taylor (1989) note, 

the ARCH parameterization of the conditional variance is merely a convenient and parsimonious 

representation of the data; it does not have solid grounding in economic theory. Nonetheless, one 

maj or contribution of the GARCH literature is that change in asset price risk emerges predictably 

from a specific type of nonlinear dependence rather than depending on exogenous structural changes 

to the variance process. 

GARCH models are commonly estimated under the assumption that the standardized 

residuals are normally distributed. Yet, although the unconditional distribution of a GARCH process 

with normal errors is leptokurtic (Engle 1982; and Bollerslev 1986)-i.e., its kurtosis is greater than 

3 .0, the benchmark value from the normal distribution-Gaussian GARCH models nonetheless 
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regularly fail to account adequately for the fat tails found in unconditional asset price distributions 

(Hsieh 1989; and Wang, Barrett, and Fawson 1996). As a consequence, many researchers now 

employ nonnormal conditional distributions, particularly the Student-t, in GARCH modeling. 

Our concern about the evolution of the GARCH literature, especially as applied to exchange 

rate series, is that accommodation of leptokurtosis but not of the high peakedness or asymmetry 

commonly found in exchange rate series, for reasons discussed in the opening section, may lead to 

poor choice of conditional distributions for maximum-likelihood estimation. Given the problems 

associated with quasimaximum-likelihood GARCH estimation (Pagan and Sabau 1987; Lee and 

Hansen 1994; and Deb 1996), incomplete accommodation of the regular statistical characteristics 

of exchange rates may yield inaccurate estimates of exchange rate dynamics . We therefore develop 

a GARCH model based on the EGB2 distribution and study its performance versus the normal and 

Student-t GARCH models most commonly used in the literature. 

We begin by adopting a general autoregressive moving average (ARMA) specification in 

the conditional mean equation with GARCH(l, 1) errors.6 With the right conditional distribution to 

describe the standardized errors, Zt, this specification can account for most of the characteristics 

observed in empirical financial distributions, including time-varying variance, asymmetry, thick 

tails, and high peakedness. Denoting a time-series dependent variable as Yt, the general form of this 

model is given by 

ARMA(m,n) conditional mean equation: 

6The GARCH(l,l) specification we employ is generally excellent for a wide range offmancial data (Bollerslev, 
Chou, and Kroner 1992). 



GARCH(1, 1) conditional variance equation: 

Conditional distribution: 

E = h 0.5 7 . ttL 

9 

where the <p(B) are polynomials in the lag operator of order p and q, respectively, and w, cx b and 

PI > 0 to ensure strictly positive conditional variance. The Et are the residuals from the conditional 

mean equation and are a function of the independent and identically distributed Zt, which have zero 

mean and unit variance, and of the variance, ht, conditional on the information set Wt-l' The errors 

follow the assumed conditional density function, further described by the parameter vector 'I1t. These 

are "shape" parameters, 'I1t = {p, q} under EGB2, '11 t = {u} under the Student t-distribution, and 

'I1t = {0} under the normal distribution. To achieve efficiency, we jointly estimate the conditional 

mean and conditional variance equations with the conditional distribution by full information 

maximum likelihood using the GAUSS constrained maximum-likelihood module. 

For the standardized EGB2 distribution with the shape parameter p and q, the log-likelihood 

function of the GARCH-EGB2 model is 

} n /ITE t /IT Et Loit = T[log( ~~) - log(B(P, q)) + p8] + L [(P (--) -log(h
t
) - (p + q)log(l +exp(-- + 8)] 

h
t 

h
t 

where Ll = W(p) - W( q), n = W' (p) + W' (q), and W(p) and W'(p) represent digamma and trigamma 

functions, respectively. We show the detailed parameterization of the GARCH-EGB2 model in the 

technical appendix. For the Student t-distribution with v degrees of freedom, the log-likelihood 

function of the GARCH-t model is, as presented by Bollerslev (1987), is : 



10 
2 

u+ 1 u E t 10gL = 1110gr(-) -logr(-) - 0.510g(u-2)] - 0.5I.Uoght + (u+ 1)log(1 + ] 
2 2 ht(u-2) 

where r denotes the gamma function. 

By adding just one extra parameter to be estimated, the GARCH-EGB2 model is able to 

account not only for the first , second, and fourth moments of the conditional distribution of the 

variable of interest, as do popular Gaussian GARCH and GARCH-t models, it is also able to 

accommodate the third moment and high peakedness. Although economic theory suggests these 

latter two features should be common to exchange rates, they have been largely ignored in empirical 

work to date. EGB2 incorporates the normal distribution as a limiting case when p = q approaches 

infinity. It is symmetric for p = q and is positively (negatively) skewed for p > q (p < q) for a > 0; 

the skewness results reverse for a < O. The EGB2 can accommodate coefficient of skewness values 

between -2 and 2 and coefficient of kurtosis values up to 9 (McDonald 1991), which will suffice for 

most data series, in particular the exchange rate data we study in this paper. 

ill. An Empirical Application to Six Daily Exchange Rates 

The data are the daily noon spot U.S. dollar exchange rate ($/local currency) for the German 

deutsche mark (DM), British pound (£), Japanese yen (¥), French franc (FF), Belgian franc (BF), 

and Italian lira (IL) over the period January 1, 1985, to November 21, 1996 (3,016 observations per 

series), as reported by the Exchange Rate Service of the Pacific Data Center at the University of 

British Columbia. To achieve stationarity, we use first-differenced exchange rate series.7 With 

R > 0 ® < 0) indicating currency appreciation (depreciation), the data are of the form8 

7Unit root test results demonstrating each series is 1(1) are available from the authors. 

8 There is no adjustment made for the weekend or holiday effects, so R indicates the exchange rate changes 
between two successive trading days. 
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R; t = In[Si, t / Si, t-d* 100 

where R;t = percentage change in the U.S.$/LC exchange rate of currency i at period t; Sit = foreign 

exchange rate of currency i at period t, expressed as U. S. $/LC. 

Table 3 presents descriptive statistics for each exchange rate series, including the coefficients 

of skewness9 and kurtosis,lo inter-percentile ranges (fo.75 - fO .25 and fO.6 - fO.4), the Jarque-Bera 

asymptotic normality test statistics, and Ljung-Box-Pierce portmanteau test statistics. The skewness 

properties are diverse among currencies. The yen, pound, and lira all show significant skewness. 

The former is likely attributable to permanent structural shocks that led to the yen's dramatic 

appreciation over the sample period. The negative skewness in the pound and lira series no doubt 

reflect the 1992 speculative attacks that knocked those currencies out of the European monetary 

system's exchange rate mechanism (ERM). As we will see in section IV, the GARCH-EGB2 model 

is especially appealing for currencies such as these, which exhibit significantly skewed percentage 

change distributions. The higher the coefficient of kurtosis (KUR) , the less probability is 

concentrated around the mean, meaning that the distribution are more fat-tailed than normal 

distribution. For all currencies, the coefficients of kurtosis are greater than five and significantly 

different from the reference value of three drawn from the normal distribution. The high peakedness 

of each unconditional distribution is confirmed by inter-percentile ranges (e.g., fal - fa2 indicates the 

range between the probabilities a l and a2 ) . Given a l and a2, the lower the value of fal - fa2' the 

higher the peakedness of the distribution. Across all six exchange rates, the value fO.75 -f0.25 is 

9This is ECRt - J.-l)3 /0 3, where J.-l is the mean and 0 is the standard deviation. 

lOThis is ECRt - /-1-)4/04, where J.-l is the mean and 0 is the standard deviation. 
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Table 3. Descriptive Statistics 

SK Kur fo.75-fO.25 io.oio.4 JB Q(30) Q2(30) 

DM -0.037 5.1 1.13 0.41 566.73* 30.03 391.36 
(0.045) (0 .09) [0.46] [0.00] 

£ -0.12 5.2 1.08 0.40 604.92* 37.98 451.30 
(0.045) (0.09) [0.15] [0.00] 

¥ 0.286 6.1 1.02 0.38 1282.9* 37.80 233 .98 
(0.045) (0 .09) [0.16] [0.00] 

FF 0.02 6.0 1.14 0.39 511.89* 41.16 391 .67 
(0.045) (0 .09) [0.08] 0.00] 

BF 0.024 5.0 1.12 0.41 521.53* 41.69 370.85 
(0.045) (0.09) [0.08] [0.00] 

~ -0.616 8.8 1.14 0.41 4377.65* 33.39 641.75 
(0.045) (0 .09) [0.31] [0.00] 

SK = coefficient of skewness. 
KUR = coefficient of kurtosis (the value for the normal distribution is 3.0) . 
The asymptotic standard errors of SK and KUR are reported in parentheses and computed as (6/T)0.5 

and (24/T)0 .5, respectively. 
JB = Jarque-Bera normality test statistic. 
Q and Q2 represent the Ljung-Box test statistics for up to 30th order serial correlation for each 

exchange rate series. Similar results obtain at different orders. P-values against the null 
hypothesis of white noise are reported in brackets. 

* denotes statistical significance at the 1 % level. 

uniformly less 1han 1.36, the reference range corresponding to the normal distribution. The 

unconditional distributions of these exchange rates have higher peaks than does a normal 

distribution around the central 50% of probability mass. The high peakedness is corroborated over 

the narrower interval fO.6 - fO.4, for which all exchange rate ranges are less than 0.5, the 

inter-percentile value of the standard normal over its central 20% of probability mass. Given 

skewness, leptokurtosis, and high peakedness, it is not surprising that the null hypothesis of 

normality is strongly rejected by the Jarque-Bera (JB) asymptotic test for each exchange rate. 
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Table 3 also presents the Ljung-Box test statistics for autocorrelation in ~t at a lag of 30 trading 

days (Q(30)), and in squared exchange rate changes (Q2(30)), the latter serving as a test for GARCH 

effects . Only the French and Belgian franc series appear autocorrelated. However, all the series 

exhibit serial correlation in their second moments, i.e., GARCH effects. 

In summary, the descriptive statistics of Table 3 suggest the unconditional distributions of 

daily exchange rate changes are generally far from the traditional Gaussian assumption and also 

exhibit heteroscedasticity of the GARCH form. 11 These results are consistent with previous findings 

(Boothe and Glassman 1987; Hsieh 1988; and Wang, Barrett, and Fawson 1996). In particular, the 

empirical distributions of percentage exchange rate changes uniformly exhibit leptokurtosis and high 

peakedness and are often asymmetric, just as economic theory would predict. 

We began estimation by identifying and estimating a common ARMA process for the 

stationary R;t. First, Box-Jenkins techniques were used to reduce the set of prospective ARMA 

specifications. Next, we further narrowed the pool of possible models to those having a p-value for 

the Ljung-Box portmanteau Q(30) statistic of greater than 0.3, a significance level clearly supporting 

the assumption of white noise. Finally, we chose the ARMA specification having the lowest 

Schwarz Bayesian criterion (SBC) value from among the candidate models having passed the 

Box-Jenkins and Q(30) screens. In other words, the Ljung-Box Q statistic was used to identify a 

few possible models and then the information criterion (SBC) selected the final ARMA specification 

for the conditional mean equation. 

11 These characteristics are evident as well in a graphical appendix available by request from the authors. 
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Table 4 reports Ljung-Box portmanteau statistics for the squared standardized residual (zJ 

for all currencies under homoscedastic (HOMO), Gaussian GARCH (GARCH), Student-t GARCH 

(GARCH-t) and GARCH-EGB2 specifications. The p-values of the test statistics (reported in 

brackets) clearly suggest that each of the GARCH specifications satisfactorily eliminates the serial 

correlation in conditional variance found in the homoscedastic model. Accommodating volatility 

clustering is clearly not difficult in these exchange rate data. 

While all the GARCH models appear to accommodate second-order serial correlation 

successfully, the issue of nonnormality remains. Skewness and excess kurtosis of the standardized 

residuals persist in all the Gaussian models (m3 GARCH and m4 GARCH in Table 5), although the 

leptokurtic characteristics (m4 GARCH) have generally been muted somewhat relative to the 

homoscedastic model ( m4 HOMO) . 12 As discussed in section II, Gaussian GARCH models inherently 

Table 4. Tests for Serially Correlated Conditional Variance 

DM £ ¥ FF BF IL 

HOMO 403 .20 447.50 239.53 404.10 370.75 620.03 
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 

GARCH 29.28 24.36 28 .72 25 .50 35 .82 23 .67 
[0.50] [0.76] [0.53] [0.70] [0.21] [0.79] 

GARCH-t 28.71 24.46 29.06 25.41 34.73 26.22 
[0.53] [0.75] [0.52] [0.71] [0.25] [0.66] 

GARCH-EGB2 28 .96 24.64 29.52 25 .50 35 .01 25 .03 
[0.52] [0.74] [0.49] [0 .70] [0.24] [0.72] 

The figures in brackets are the p-values of the Ljung-Box Q(30) test against the null hypothesis of 
no serial correlation. 

12Millwj (1987), Hsieh (1989), and MaCurdy and Morgan (1987) found similar results. 



Table 5. Skewness and Kurtosis of Sample Standardized Residuals and Predicted Values 

DM ¥ ¥ FF BF 

HOMO 
m HOMO 

3 -0.034 -0.100 0.281 0.026 0.036 -0.586 
m HOMO 

4 5.054 5.053 6.099 4.943 4.966 8.550 
GARCH 
m GARCH 

3 0.075 -0.110 0.464 0.094 0.114 -0.11 8 
m GARCH 

4 4.419 4.365 6.154 4 .350 4.402 4 .745 
GARCH-t 
mt 3 0.083 -0.108 0.502 0.103 0.127 -0 .160 
mt 4 4.451 4 .345 6.373 4 .398 4.462 5.172 
4>4t 4.433 4.652 15.49 4.361 4.445 4.680 
v 6.093 5.816 4 .240 6.210 6.075 5.785 
GARCH-EGB2 
m EGB2 

3 0.083 -0.115 0.502 0.102 0.125 -0.148 

4>3
EGB2 0.088 -0.071 0.326 0.087 0.076 -0.025 

m EGB2 
4 4.451 4.395 6.355 4 .394 4.457 5.065 

4>4
EGB2 4.584 4.778 5.356 4.541 4.601 4.909 

m3 is the coefficient of skewness of the standardized residuals from the estimated model. 
m4 is the coefficient of kurtosis of the standardized residuals from the estimated model. 

15 

For each model, the asymptotic standard error of the coefficients of skewness and kurtosis are 0.045 
and 0.089, respectively. 

v is the degree offreedom estimate from GARCH-t model. 
4>4t is the predicted kurtosis coefficient of Student t-distribution = 3 (u - 2)/(u - 4 ), u > 4. 
4>3 EGB2 is predicted skewness coefficient of EGB2 distribution = [W"(p) - W"( q) ]/[ W' (p) + W' (q)] 1.5 . 

4> 4 EGB2 is predioted skewness coefficient of EGB2 distribution = {[ W"I(p) + W"l( q)] + 3 [w' (p) 
+ W'(q)]2}/(W'(p) + W'(q))2 . 

capture some unconditional nonnormality but not always enough to represent exchange rate series 

accurately. 

As a result, many applied econometricians have turned to using the Student-t conditional 

error distribution to account for, in particular, leptokurtosis. As measured by maximal 

log-likelihood values or likelihood ratio test statistics, the GARCH-t and GARCH-EGB2 models 
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appear uniformly superior to the Gaussian GARCH model in fitting these exchange rate series 

(Table 6) .13 Note also the low estimated values in Table 5 for the degree offreedom parameter, u, 

in each of the GARCH-t models (u ~ 30 indicates asymptotic normality). Moreover, Table 5 shows 

that the conditional kurtosis values predicted by the estimated values for the shape parameters (v in 

the case of GARCH-t, p, and q for GARCH-EGB2), <P4t and <P4EGB2 under GARCH-t and 

GARCH-EGB2 assumptions, respectively, are reasonably close to the kurtosis of the standardized 

residuals (m4t and m4EGB2) for all series except the Japanese yen, where the GARCH-EGB2 model 

still performs very well (far better than the GARCH-t). This suggests that both the conditional 

Student-t and EGB2 distributions satisfactorily capture the leptokurtosis of exchange rate 

movements, permitting the applied econometrician significant gains in estimation accuracy. 

Table 6. Comparisons of Alternative Specifications 

HOMO GARCH GARCH-t GARCH-EGB2 
LLHHOMO LLHGARCH LRGARCH LLHt LRt LLHEGB2 LREGB2 

DM -3342.19 -3228.52 227.34* -3163.46 130.12* -316l.31 134.42* 
£ -3200.57 -3059.32 282.50* -299l.03 136.58* -2987.83 142.98* 
¥ -3236.48 -312l.97 229.02* -2970.24 303.46* -2963.68 316.58* 
FF -3197 .86 -3085.85 224.02* -3024.20 123 .30* -3022.09 127.52* 
BF -33q9.58 -3201.02 217.12* -3137.07 127.90* -3134.82 132.40* 
IL -325l.40 -3078.24 346.32* -3005.76 144.96* -3002.04 152.40* 

LLHHOMO
, LLHGARCH

, LLHt, and LLHEGB2 represent the maximal log-likelihood value of HOMO, Gaussian GARCH, 
GARCH-t and GARCH-EGB2 models, respectively. 

LRGARCH indicates the likelihood ratio test statistic for the Gaussian GARCH models against the HOMO model. 
The LRt and LREGB2 statistics are for the GARCH-t and GARCH-EGB2 against the corresponding Gaussian GARCH 

models, respectively. 
*denotes statistical significance at the 1 % level (using the X2(3), X2(l), and X2(2) distributions for the LRGARCH

, LR\ and 
LREGB2

, respectively). 

13The Gaussian GARCH models are likewise uniformly preferable to a homoscedastic null. There are 
considerable gains to be had from capturing GARCH effects; our point is that there are considerable further gains to be 
had from accommodating nonnormal innovations. 
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The most important weaknesses remaining in the GARCH-t specification, however, are the 

apparent asymmetry of the standardized residuals (m3 t "* 0 in Table 5) and the high peakedness 

observed in the data (Table 3), which the Student-t distribution will systematically fail to capture. 

By contrast, the estimated coefficients of skewness in the standardized residuals of the 

GARCH-EGB2 model (m3 EGB2) are reasonably close to the predicted coefficients implied by the 

estimated distribution parameters p and q (<P3 EGB2). Unlike the conditional distributions commonly 

assumed in GARCH modeling-the normal and the Student-t-the more flexible EGB2 distribution 

appears to capture well all of the higher order moments of exchange rate series. 

The superiority of the GARCH-EGB2 model in capturing the high peakedness inherent to 

most exchange rate series is most evident graphically. Figures 1 through 12 show paired plots of 

the densities of the observed standardized residuals and the corresponding predictions derived from 

the estimated shape parameters of GARCH-t (the top of each pair) and GARCH-EGB2 (the bottom 

of each pair) models. These figures clearly show that the observed standardized residuals generated 

by the GARCH-t model vary considerably from their assumed distribution, in particular, exhibiting 

high peakedness, asymmetry, or both. The empirical density plots for the standardized residuals of 

the GARCH-EGB2 model, by contrast, match the predicted densities closely for each exchange rate. 

While the GARCH-t model is only able to account for the fat tails, which make these exchange rate 

series nonnormal, the GARCH-EGB2 model is also able to accommodate skewness and high 

peakedness, which economic theory suggests are likely important features of exchange rate series. 

While both the Student-t and the EGB2 nest within them the normal distribution, enabling 

the likelihood ratio tests used in Table 6, GARCH-t and GARCH-EGB2 are not nested within each 

other, so some other criterion must be used to test formally the null hypothesis that the two models 
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Figure 6. GARCH-EGB2 model for Japanese yen. 
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Figure 9. GARCH-t model for Belgian franc. 
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Figure 10. GARCH-EGB2 model for Belgian franc. 
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are equivalent in these data. An appropriate option is the likelihood dominance criterion (LDC) 

proposed by Pollak and Wales (1991), which offers an approach to nonnested model selection 

consistent with the conventional inferential approach to hypothesis testing. The idea of LDC is to 

nest two nonnested competing models-HI and H2-within a fictive composite and then consider 

a set of admissible composite parametric sizes. In most applications, the largest interesting sizes of 

the composite should range from one parameter more than the larger hypothesis (n2 + 1) to one 

parameter more than the sum of the number of parameters in two hypothesis (ni + n2 + 1). In this 

sense, the LDC model selections rules are as follows: 

(i) LDC prefers HI to H2 ifL2 - LI < [C(n2 + 1) - C(ni + 1)]/2, 

(ii) LDC is indecisive between HI and H2 if [C(n2 - ni + 1) - C(1)]/2 > L2 - LI > [C(n2 + 1) 
- C(ni + 1 )]/2. 

(iii) LDC prefers H2 to HI ifL2 - LI > [C(n2 - ni + 1) - C(1)]/2. 

where Lb L2 denote the maximum log-likelihood values corresponding to the two models, and ni 

and n2 are the numbers of parameters in HI and H2, respectively. LDC also assumes that ni < n2. 

C( y) is the critical values of the chi-square distribution with y degrees of freedom at the prespecified 

significance level. In most practical situations, the LDC proves decisive for model selection. 

Because;GARCH-EGB2 always involves one more parameter than the GARCH-t model, the 

value of the criterion ([ C( n2 - n I + 1) - C( 1 ) ]/2) is fixed at 1. 29 for the 1 % significance level. For 

all six exchange rates, GARCH-EGB2 dominates GARCH-t in the LDC sense (Table 7) . The 

superiority of the GARCH-EGB2 specification is especially evident in modeling the pound, yen, 

and lira, each of which has a significantly skewed unconditional distribution. The returns to 

employing a more general conditional distribution appear greatest for asymmetric distributions, and 

exchange rate data commonly exhibit asymmetry. 
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Table 7. Comparisons of GARCH-t and GARCH-EGB2 Models by LDC 

nt nEGB2 LLHEGB2 - LL~ [C(n2 + 1) - C(nl + 1 )]12 [C(n2 - n l + 1) - C(l )]/2 

DM 6 7 2.15 0.81 l.29 
£ 6 7 3.20 0.81 l.29 
¥ 6 7 6.56 0.81 l.29 
FF 6 7 2.11 0.81 1.29 
BF 8 9 2.26 0.77 1.29 
IL 8 9 3.72 0.77 1.29 

nt and nEGB2 are the number of parameters in the GARCH-t and GARCH-EGB2 models, respectively. 

LLHEGB2 - LLHt is the difference of log-likelihood value between the GARCH-EGB2 and GARCH-t models. 

[C(n2 + 1) - C(nl + 1 )]/2 is the critical value to determine if GARCH-t is preferred to GARCH-EGB2 when LL~ is 
greater than LLHEGB2; whereas [C(n2 - nl + 1) - C(l)]/2 is used to determine ifGARCH-EGB2 is preferred to 
GARCH-t when LLHEGB2 is greater than LLHt. The critical values are derived from the X2 distribution evaluated at 

the 1 % significance level. 

The superiority of the GARCH-EGB2 model is further confirmed by goodness-of-fit test 

statistics (Table 8). These test statistics compare the frequency distribution of the residuals from the 

estimated models with the distribution predicted by the estimated distribution shape parameters, Tlf, 

For each exchange rate, the test statistics for the GARCH-EGB2 model are far less than that from 

the GARCH-t model. 14 

Finally, J Table 9 reports the parameter estimates and associated standard errors of the 

GARCH-EGB2 models fit to each exchange rate series. We report two standard errors for each 

estimated parameter: a conventional standard error and a White robust standard error (White 1982). 

White showed that if the model is correctly specified, the different methods to compute the 

14The goodness-of-fit test has an asymptotic chi-squared distribution. For each estimated GARCH-EGB2 
model , the test statistics support rejecting the hypothesis that the residuals are drawn from the assumed distribution at 
conventional levels of significance. However, this is common in large sample sizes, where this is a low power test. 



Table 8. Chi-Square Goodness-of-Fit Test Statistics 

GARCH-t GARCH-EGB2 
Currency Test Statistic Test Statistic 

DM 194.41 102.79 
£ 197.00 83.45 
¥ 364.63 87.04 
FF 179.64 81.32 
BF 194.76 99.88 
IL 239.28 99.82 

The test statistics are obtained by evaluating ~(t; - FJ2IFj, 
where!; is the observed count frequency of the standard­
ized residuals, Fi is the predicted count frequency, and 
i = 1, . .. ,40. The X2 critical value at the 1 % level is 63.69. 
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covariance matrix of the parameter will be ( stochastically) the same. Our results routinely yield 

nearly identical standard error estimates by either method, providing informal evidence that the 

GARCH-EGB2 model is correctly specified. 

V. Conclusions 

Although GARCH modeling based on normal or Student-t conditional distributions has been 

found useful in capturing the volatility clustering and leptokurtosis commonly present in asset price 

series, it cannot accommodate other commonly observed stylized effects in high frequency exchange 

rate data, notably high peakedness and skewness. Since economic theory suggests these are 

important statistical features, we propose a more flexible GARCH model based on the EGB2 

distribution first introduced by McDonald and Xu (1995) . The GARCH-EGB2 specification can 
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model either mesokurtic or leptokurtic data and can accommodate asymmetry, high peakedness, or 

both. An application to daily log price changes in six major exchange rates over the last ten years 

reveals the GARCH-EGB2 model significantly outperforms commonly employed specifications, as 

demonstrated by likelihood ratio tests against nested alternatives and by plots of standardized 

residuals, goodness-of-fit statistics, and the likelihood dominance criterion against nonnested 

alternatives. This more general GARCH-EGB2 approach can easily be applied to most financial 

time series. Since the improvements enjoyed due to employing a conditional EGB2 distribution are 

especially pronounced for unconditionally skewed data series, application to commodity price series 

appear especially promising. 
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Table 9. Parameter Estimates from GARCH-EGB2 Models 

DM £ ¥ FF BF IL 

Conditional mean equation parameters: 

C 0.021 0.020 0.023 0.020 0.024 0.014 
(0.012)sE (0 .012)sE (0.012)sE (0.012)sE (o.013iE (0.012)sE 
(0.012lsE (0.011 )RSE (0.012lsE (0.012lsE (0.013lsE (0.012lsE 

AR(l) 0.378 0.345 0.040 0.392 
(0.183)sE (0.183)sE (0. 178iE (0.184)sE 
(0. 186lsE (O.191lsE (0. 189)RSE (0. 186lsE 

AR(3) 0.218 
(0.179iE 

(0. 180lsE 

AR(6) -0.248 -0.189 
(0.1 79iE (0. 174)sE 
(0. 183lsE (0.171lsE 

AR(8) -0.319 
(0 .177iE 

(0. 179lsE 

MA(l) 0.033 0.006 
(0 .019iE (0.019)sE 
(0.019lsE (0.019lsE 

Conditional variance equation parameters: 
-- -------------------------------------------------------- ------ -- - --------------

w 0.015 0.01 0.011 0.016 0.015 0.022 
(0.005)SE ( . i E (0.004)SE (0 .006iE (0 .006iE (0.007)SE 
(0.006lsE ( . lSE (0.006lsE (0.007lsE (0.007lsE (0.008lsE 

a1 0.908 0.920 0.922 0.897 0.908 0.876 
(0.018)sE (0.008)SE (0.018)sE (0.021)sE (0.020)SE (0 .025iE 

(0.020lsE (0.009lsE (0.026lsE (0.024lsE (0.024)RSE (0.030lsE 

~1 0.065 0.061 0.058 0.071 0.065 0.081 
(0.012)sE (0.010)sE (O.013)SE (0.014)sE (0.013iE (0.016)sE 
(o.D13lsE (0.010lsE (0.017lsE (0.015lsE (0.014lsE (0.019lsE 

---------------------------------------------------------------------------------

Distribution parameters: 
---------------------------------------------------------------------------------
p 0.746 0.596 0.425 0.775 0.730 0.538 

(0. 122)sE (0.099iE (0.077)SE (0.128)sE (0. 122)sE (0 .108)sE 
(0.118lsE (0.097lsE (0.077)RSE (0. 123)RSE (0.1 18lsE (0 .131lsE 

q 0.698 0.625 0.351 0.724 0.690 0.548 
(0 .112iE (0 .106iE (0.061)sE (0.117)sE (0.1l3iE (0.112)sE 
(0.109lsE (0.103lsE (0.061lsE (0.112lsE (0.110lsE (0.135lsE 

Standard errors reported in parentheses. 
( )SE indicates the conventional standard error, while ()RSE is the White robust standard error. 
(.) indicates that the standard error cannot be estimated because the parameter estimate lies on the boundary of the 
feasible parameter space. 
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Technical Appendix 

Following the traditional definition of a GARCH process, suppose that 

E = h 0,5 z 
I t I, (AI) 

where {E t } is the error term sequence from the conditional mean equation and {z} is an i.i,d, 
sequence with zero mean and unit variance, Let hi evolve according to a GARCH( I , I) process 

If Zt is drawn from an EGB2 distribution, then the density is given by 

EGB1.E ;o,a,p,q) 

peE - 0) 

exp a 

E-O p+ q 

laIB(p, q)(l +e a ) 

The mean and variance of z are then as follows: 

Var(z) = 0 2 (w'(p) + W'(q) ) = I 

E(z) = 0 + o[W(p) - W(q)] = 0 

Hence, solving for a and 0 in terms of 11 and Q 

where 

a = ~ tJI '(P) : tJI'(q) = # 
o = -a[tJI(p) - tl.(q)] -Ll~ 

11 = W(p) - W (q) 

Q = W'(p) + W'(q) , 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 

(A8) 

(A9) 

Substituting those expressions for 0 and 0 back into the EGB2 distribution yields an EGB2 density 
function with zero mean and unit variance as 



Ll /IT exp (p (z + -)/IT) 

EGB2(;<:p ,q) = ~ 
B(p ,q)(l +exp«z + -)/IT))p+q 

yIT 

According to the assumption (AI), 

Changing the variable from z to E as follows: (dz = dE/h) 

/IT exp(p( ~ + ~ /IT) 
/h Va EGB2(E;h,p,q) = ------'------'------

/hB(p ,q) (l +exp« ~ + ~ /IT)y+q 
/h va 

Algebraic manipulation then yields 

/ITexp(p (/IT E + Ll)) 

EGB2(E;h,p,q) = _----Ih""'---h_. __ _ 

/hB(p ,q) (l + exp( /IT E + LlY +q 

/h 
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(AIO) 

(All) 

(AI2) 
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Figure 5. GARCH-t model for Japanese yen. 
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Figure 6. GARCH-EGB2 model for Japanese yen. 
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Figure 7. GARCH-t model for French franc. 
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Figure 8. GARCH-EGB2 model for French franc. 
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Figure 9. GARCH-t model for Belgian franc. 
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Figure 10. GARCH-EGB2 model for Belgian franc. 
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Figure 11. GARCH-t model for Italian lira. 
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Figure 12. GARCH-EGB2 model for Italian lira. 
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