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Parameter Estimation For Multivariate
Generalized Gaussian Distributions

Frédéric Pascal, Lionel Bombrun, Member, IEEE, Jean-Yves Tourneret, Senior Member, IEEE, and
Yannick Berthoumieu

Abstract—Due to its heavy-tailed and fully parametric form,
the multivariate generalized Gaussian distribution (MGGD) has
been receiving much attention in signal and image processing
applications. Considering the estimation issue of the MGGD
parameters, the main contribution of this paper is to prove that
the maximum likelihood estimator (MLE) of the scatter matrix
exists and is unique up to a scalar factor, for a given shape pa-
rameter . Moreover, an estimation algorithm based on a
Newton-Raphson recursion is proposed for computing the MLE of
MGGD parameters. Various experiments conducted on synthetic
and real data are presented to illustrate the theoretical derivations
in terms of number of iterations and number of samples for
different values of the shape parameter. The main conclusion of
this work is that the parameters of MGGDs can be estimated using
the maximum likelihood principle with good performance.

Index Terms—Covariance matrix estimation, fixed point algo-
rithm, multivariate generalized Gaussian distribution.

I. INTRODUCTION

U NIVARIATE and multivariate generalized Gaussian
distributions (GGDs) have received much attention in

the literature. Historically, this family of distributions has been
introduced in [1]. Some properties of these distributions have
been reported in several papers such as [2]–[4]. These properties
include various stochastic representations, simulation methods
and probabilistic characteristics. GGDs belong to the family of
elliptical distributions (EDs) [5], [6], originally introduced by
Kelker in [7] and studied in [8], [9]. Depending on the value
of the shape parameter , multivariate GGDs (MGGDs) and
the distributions of spherically invariant random vectors share
common properties (see [10], [11] for more details).

MGGDs have been used intensively in the image processing
community. Indeed, including Gaussian and Laplacian distri-
butions as special cases, MGGDs are potentially interesting for
modeling the statistical properties of various images or features
extracted from these images. In particular, the distribution of
wavelet or curvelet coefficients has been shown to be modeled

accurately by GGDs [12]–[15]. This property has been exploited
for many signal and image processing applications including
image denoising [16]–[19], content-based image retrieval [20],
[21], image thresholding [22] or texture classification in indus-
trial problems [23]. Other applications involving GGDs include
radar [24], video coding and denoising [25]–[27] or biomedical
signal processing [26], [28], [29]. Finally, it is interesting to note
that complex GGDs have been recently studied in [30], [31] and
that multivariate regression models with generalized Gaussian
errors have been considered in [32].

Considering the important attention devoted to GGDs, esti-
mating the parameters of these distributions is clearly an inter-
esting issue. Classical estimation methods that have been in-
vestigated for univariate GGDs include the maximum likeli-
hood (ML) method [33] and the method of moments [34]. In the
multivariate context, MGGD parameters can be estimated by a
least-squares method as in [18] or by minimizing a distance
between the histogram of the observed data and the theoretical
probabilities associated with the MGGD [35]. Estimators based
on the method of moments and on the ML method have also
been proposed in [36]–[38].

Several works have analyzed covariance matrix estimators
defined under different modeling assumptions. On the one hand,
fixed point (FP) algorithms have been derived and analyzed in
[39], [40] for SIRVs. On the other hand, in the context of robust
estimation, the properties of M-estimators have been studied by
Maronna in [41]. Unfortunately, Maronna’s conditions are not
fully satisfied for MGGDs (see remark II.3). This paper shows
that despite the non-applicability of Maronna’s results, the MLE
of MGGD parameters exists, is unique and can be computed
by an FP algorithm. Although the methodology adopted in this
paper has some similarities with the one proposed in [39], [40],
there are also important differences which require a specific
analysis (see for instance remark III.1). More precisely, the FP
equation of [39] corresponds to an approximate MLE for SIRVs
while in [40] the FP equation results from a different problem
(see Eq. (14) in [40] compared to (15) of this paper).

The contributions of this paper are to establish some proper-
ties related to the FP equation of the MLE for MGGDs. More
precisely, we show that for a given shape parameter belonging
to (0, 1), the MLE of the scatter matrix exists and is unique
up to a scalar factor.1 An iterative algorithm based on a Newton-
Raphson procedure is then proposed to compute the MLE of .

The paper is organized as follows. Section II defines the
MGGDs considered in this study and derives the MLEs of their
parameters. Section III presents the main theoretical results

1From the submission of this paper, another approach based on geodesic con-
vexity was proposed in [38].



of this paper while a proof outline is given in Section IV.
For presentation clarity, full demonstrations are provided in
the Appendices. Section V is devoted to simulation results
conducted on synthetic and real data. The convergence speed
of the proposed estimation algorithm as well as the bias and
consistency of the scatter matrix MLE are first investigated
using synthetic data. Experimentations performed on real
images extracted from the VisTex database are then presented.
Conclusions and future works are finally reported in Section VI.

II. PROBLEM FORMULATION

A. Definitions

The probability density function of an MGGD in is defined
by [42]

(1)

for any , where is a symmetric real scatter
matrix, is the transpose of the vector , and is a
so-called density generator defined by

(2)

where is the indicator function on and and are
the scale and shape parameters of the MGGD. The matrix
will be normalized in this paper according to , where

is the trace of the matrix . It is interesting to note that
letting corresponds to the multivariate Gaussian distri-
bution. Moreover, when tends toward infinity, the MGGD is
known to converge in distribution to a multivariate uniform dis-
tribution [42].

B. Stochastic Representation

Let be a random vector of distributed according to an
MGGD with scatter matrix and shape parameter .
Gómez et al. have shown that admits the following stochastic
representation [2]

(3)

where means equality in distribution, is a random vector
uniformly distributed on the unit sphere of , and is a scalar
positive random variable such that

(4)

where is the univariate gamma distribution with param-
eters and (see [43] for definition).

C. MGGD Parameter Estimation for Known

Let be independent and identically dis-
tributed (i.i.d.) random vectors distributed according to an
MGGD with parameters , and . This section studies esti-
mators of and based on for a known value

of .2 The MGGD is a particular case of elliptical
distribution that has received much attention in the literature.
Following the results of [45] for real elliptical distributions, by
differentiating the log-likelihood of vectors with
respect to , the MLE of the matrix satisfies the following
FP equation

(5)

where . In the particular case of an
MGGD with known parameters and , straightforward com-
putations lead to

(6)

When the parameter is unknown, the MLEs of and are
obtained by differentiating the log-likelihood of
with respect to and yielding

(7)

(8)

After replacing in (6) by its expression (8), the following
result can be obtained

(9)

As mentioned before and confirmed by (9), can be estimated
independently from the scale parameter . Moreover, the fol-
lowing remarks can be made about (9).

Remark II.1: When , (9) is close to the sample covari-
ance matrix (SCM) estimator (the only difference between the
SCM estimator and (9) is due to the estimation of the scale pa-
rameter that equals 1 for the multivariate Gaussian distribution).
For , (9) reduces to the FP covariance matrix estimator
studied in [45]–[47].

Remark II.2: Equation (9) remains unchanged if is re-
placed by where is any non-zero real factor. Thus, the
solutions of (9) (when there exist) can be determined up to a
scale factor . The normalization will be adopted
in this paper and will be justified in the simulation section.

Remark II.3: Let us consider the function defined by

(10)

2We note here that most values of encountered in practical applications
belong to the interval (0,1). For instance, is suggested in [44] as a
good choice for most images.



where is a positive constant independent of (the index is
used here to stress the fact that changes with
but does not depend on ). Equation (9) can be rewritten as

(11)

Roughly speaking,3, satisfies Maronna’s conditions (re-
capped below, see [41, p. 53] for more details) for any

except the continuity at .
Maronna’s conditions for a function
(i) is non-negative, non increasing, and continuous on

.
(ii) Let and . The function

is non decreasing and strictly increasing in the interval
defined by with .

(iii) Let denotes the empirical distribution of
. There exists such that for all hy-

perplanes with

(12)

Because of non continuity of around 0, the properties of
M-estimators derived by Maronna cannot be applied directly
to the estimators of the MGGD parameters. The objective of
Section III is to derive similar properties for the estimator of
defined by the FP (9).

D. MGGD Parameter Estimation for Unknown

When the shape parameter of the MGGD is unknown, the
MLE of , and is obtained by differentiating the log-
likelihood of with respect to and and , i.e.,
by combining (7) and (8) with the following relation

(13)

where is the digamma function. Equations (9) and (13)
show that and can be estimated independently from the
scale parameter .

III. STATEMENTS OF THE MAIN RESULTS

As the estimation scenario presented in the previous section
has some similarities with the FP estimator studied in [39], sim-
ilar results about the estimator existence, uniqueness (up to a
scale factor) and FP algorithm convergence are expected to be
true. This section summarizes the properties of the FP estimator
defined by (9) for a known value of (all proofs are
provided in the Appendices to simplify the reading). The case
of an unknown value of will be discussed in the simulation
section.

3Actually, Maronna’s function depends only on the th sample and not on all
the samples as it is the case here!

A. Notations

For any positive integer , denotes the set of integers
. For any vector , denotes the Euclidean

norm of such as , where is the transpose
of . Throughout the paper, we will use several basic results
about square matrices, especially regarding the diagonalization
of real symmetric and orthogonal matrices. We invite the reader
to consult [48] for details about these standard results. Denote
as the set of real matrices, the set of
orthogonal matrices and the transpose of . The identity
matrix of will be denoted as . Several subsets of ma-
trices used in the sequel are defined below

• is the subset of defined by the symmetric positive
definite matrices;

• is the closure of in , i.e., the subset of
defined by the symmetric non negative definite matrices;

• For all

(14)

where is a compact subset of , being the
Frobenius norm.

For , we introduce the open-half line spanned by
defined by . Note that the order associated
with the cone structure of is called the Loewner order for
symmetric matrices of and is defined as follows: for any
pair of two symmetric real matrices ,
( respectively) means that the quadratic form defined
by is non negative (positive definite respectively), i.e.,
for all non zero , , ( 0 respectively).
Using that order, one has ( respectively) if and only
if ( respectively).

This section will make use of the following two applications

(15)

and

(16)

where , and .
The function is the likelihood of in which the
parameter has been replaced by its estimator (8), up to a mul-
tiplicative constant and a power factor. Indeed



It is clear that is homogeneous of degree zero whereas
is homogeneous of degree one, i.e., for all and ,
one has

In order to understand the relationships between the two func-
tions and , we can compute the gradient of at .
Straightforward computations lead to

(17)

Clearly is an FP of if and only if is a critical point of
the vector field defined by on , i.e., .

Remark III.1: There are some close links between the
MGGDs and the SIRV distributions (that are both specific
elliptical distributions). However, all MGGDs are not SIRV
distributions and conversely. As a consequence, the FP (9)
associated with the MGGDs relies on the function which
differs from the FP equation studied in [39] (which corresponds
to the particular case ) and from that of [40] which
corresponds to SIRVs with random multipliers . Similarly,
the shape of the function differs significantly from the
likelihoods studied in [39] and [40] that are defined as products
of integrals depending on the distribution of the unknown
multipliers (see [39], [40] for more details).

In the sequel, we also use for to denote the -th
iterate of , i.e., , where is repeated
times. We also adopt the standard convention , where

is the identity function defined in . To finish this section,
we introduce an important assumption about the vectors for

• : For any set of indices belonging to and sat-
isfying , the vectors are
linearly independent.

This hypothesis is a key assumption for obtaining all our sub-
sequent results. Hypothesis has the following trivial but
fundamental consequence that we state as a remark.

Remark III.2: For all vectors with
, , the vector space generated by

has dimension .

B. Contributions

The contributions of this paper are summarized in the fol-
lowing theorems with proofs outlined in the next section.

Theorem III.1: For a given value of , there exists
with unit norm such that, for all , admits

a unique FP of norm equal to . Moreover,
reaches its maximum in , the open half-line spanned by

.
Consequently, is the unique positive definite ma-

trix of norm one satisfying

(18)

where .

Remark III.3: Theorem III.1 relies on the fact that
reaches its maximum in . In order to prove this result, the
function is continuously extended by the zero function on
the boundary of , except for the zero matrix. Since is
positive and bounded in , we can conclude (see Appendix A
for details).

As a consequence of Theorem III.1, the following result can
be obtained.

Theorem III.2: Let be the discrete dynamical system de-
fined on by the recursion

(19)

Then, for all initial conditions , the resulting sequence
converges to an FP of , i.e., to a point where

reaches its maximum.
Theorem III.2 can be used to characterize numerically the

points where reaches its maximum and the value of this max-
imum. Note that the algorithm defined by (19) does not allow
the norm of the FP to be controlled. Therefore, for practical con-
venience, a slightly modified algorithm can be used in which a

-normalization is applied at each iteration. This modified al-
gorithm is proposed in the following corollary

Corollary III.1: The recursion

(20)

initialized by

(21)

yields a sequence of matrices which converges
to the FP up to a scaling factor. Moreover, the matrices

are related to by

IV. PROOF OUTLINE

This section provides the proofs of Theorems III.1 and
III.2. Each proof is decomposed into a sequence of lemmas
and propositions whose arguments are postponed in the
Appendices. For the proofs that can be directly obtained from
those of [39], we refer to [39]. In these cases, the differences
due to the definitions of the function and the MGGD model
for the observed vectors , for , imply only slight
modifications.

A. Proof of Theorem III.1

The proof of Theorem III.1 is the consequence of several
propositions whose statements are listed below. The first propo-
sition shows the existence of an FP satisfying (9).

Proposition IV.1: The supremum of in is finite and is
reached at a point with . Therefore,
admits the open-half line as fixed points.

Proof: See Appendix A.



It remains to show that there is no other FP of than those
belonging to . For that purpose, it is sufficient to show
that all FPs of are collinear. However, Corollary V.1 of [39]
indicates that all FPs of are collinear if all the orbits of
are bounded in . We recall here that the orbit of associated
with is the trajectory of the dynamical system defined
in (19) starting at (See [49] for more details about orbits
in dynamical systems). Moreover, according to [39], when a
function admits an FP, every orbit of is bounded if the
following proposition is verified.

Proposition IV.2: The function verifies the following
properties

• (P1): For all , if , then
(also true with strict inequalities);

• (P2): for all , then

(22)

where equality occurs if and only if and are collinear.
Proof: Since the function used in this paper differs from

the one used in [39], a specific analysis is required. It is the
objective of Appendix B.

To summarize, Proposition IV.1 establishes the existence of
matrices satisfying the FP (9) while Proposition IV.2 together
with the results of [39] can be used to show that there is a unique
matrix of norm 1 satisfying (9).

B. Proof of Theorem III.2

In order to prove Theorem III.2, we have to show that each
orbit of converges to an FP of . For that purpose, we con-
sider for all the positive limit set associated with

, i.e., the set of cluster points of the sequence when
tends to infinity, where and .

Since the orbit of associated with is bounded in , the
set is a compact of and is invariant by : for all

, . It is clear that the sequence
converges if and only if reduces to a single

point. According to [39], reduces to a single point if the
following proposition is satisfied.

Proposition IV.3: The function is eventually strictly in-
creasing, i.e., for all such that and ,
then

(23)

Proof: Since the function used in this paper differs from
the one used in [39], a specific analysis is required. It is the
objective of Appendix C.

V. SIMULATIONS

This section presents simulation results to evaluate the perfor-
mance of the MLE for the parameters of MGGDs. The first sce-
nario considers i.i.d. dimensional data vectors
distributed according to an MGGD. These vectors have been
generated using the stochastic representation (3) with a matrix

defined as

(24)

Fig. 1. Variations of versus number of iterations for ,
and .

In the following, 1000 Monte Carlo runs have been averaged
in all experiments to evaluate the performance of the proposed
estimation algorithms. Before analyzing the performance of the
FP estimators based on (9), we illustrate the importance of the
normalization advocated in this paper.

A. Influence of the Normalization

The main advantage of the normalization (i.e., decomposition
of as the product , and trace constraint for the matrix

) concerns the convergence speed of the algorithm. To illus-
trate this point, Fig. 1 shows the evolution of the criterion

(25)

where for the blue curves and for the
red curves. is the Frobenius norm and is the estimator
of at step . As observed, the convergence speed is signifi-
cantly faster when a normalization condition is imposed at each
iteration of the algorithm.

Fig. 2 shows the evolution of the estimated bias and consis-
tency of (the plain curves correspond to whereas

for the dotted lines) versus the number of samples when
is not estimated (the parameters are , and

). The estimated bias of is defined as where
the operator is the empirical mean of the estimated matrices

(26)

For a given sample size, the experiments are performed times
( in the following). Note that the bias criterion based on
(26) was used in [47] for assessing the performance of matrix
estimators. Note also that other approaches based on computing
the mean on the manifold of positive definite matrices could
also be investigated [50], [51]. The estimated consistency of
is verified by computing . As observed, the estimation
performance is the same when a normalization constraint for the
scatter matrix is imposed or not.



Fig. 2. Influence of the normalization of the scatter matrix on the estimation
performance: estimated bias and consistency versus number of samples .

Fig. 3. Variance of versus number of samples .

A similar comment can be made for the shape parameter
when this parameter is estimated (see Fig. 3). The Fisher in-
formation matrix has been recently derived for the parameters
of MGGDs [36]. It has been shown that this matrix only de-
pends on the sample size and the shape parameter . The
Cramér-Rao lower bounds (CRLBs) for the MGGD parameters
can then be obtained by inverting the Fisher information matrix.
These CRLBS provide a reference (in terms of variance or mean
square error) for any unbiased estimator of the MGGD param-
eters. As observed in Fig. 3, the variance of is very close to
the Cramér-Rao lower bound for normalized or non-normalized
scatter matrices.

To summarize, the normalization of the scatter matrix (de-
composition of as the product , and trace constraint
for the matrix ) does not affect the statistical properties of the
MLE. However, it ensures an increased convergence speed of
the algorithm. Note also that a similar normalization was pro-
posed in [46, Eq. (15)].

B. Known Shape Parameter

1) Convergence of the Scatter Matrix MLE: Fig. 4 shows
some convergence results associated with the MLE of the scatter

Fig. 4. Variations of for , and . (a) versus
number of iterations for different initializations . (b) versus
number of iterations for various values of .

matrix . These results have been obtained for ,
(shape parameter) and . Convergence results are first
analyzed by evaluating the sequence of criteria defined as

(27)

Fig. 4(a) shows examples of criteria obtained for various
initial matrices (“moments” stands for equal to the es-
timator of moments [36], “identity” stands for and
“true” corresponds to ). After about 20 iterations,
all curves converge to the same values. Hence, the convergence
speed of the proposed algorithm seems to be independent of its
initialization. Fig. 4(b) shows the evolution of criteria for
various values of . It can be observed that the convergence
speed increases with as expected.

2) Bias and Consistency Analysis: Fig. 5(a) shows the esti-
mated bias of for different values of (precisely for

). As observed, the bias converges very fast to a
small value which is independent of . Some consistency re-
sults for the proposed estimator are displayed in Fig. 5(b). Here,
a plot of as a function of the number of samples
is shown for different values of (0.2, 0.5 and 0.8). It can be
noticed that, for any value of , converges to a small
value when increases.

C. Unknown Shape Parameter

When is unknown, the MLE of and is defined
by (9) and (13). If would be known, one might think
of using a Newton-Raphson procedure to estimate . The



Fig. 5. (a) Estimated bias for different values of , (b) estimated consistency
for different values of .

Newton-Raphson recursion based on (13) is defined by the
following recursion

(28)

where is an estimator of at step , and the function
has been defined in (13). In practice, when the parameters
and are unknown, we propose the following algorithm to es-
timate the MGGD parameters.

Algorithm 1: MLE for the parameters of MGGDs

1: Initialization of and .

2: for do

3: Estimation of using one iteration of (9) and
normalization.

4: Estimation of by a Newton-Raphson iteration combining
(13) and (28).

5: end for

6: Estimation of using (8).

1) Bias and Consistency Analysis: Fig. 6 compares the al-
gorithm performance when the shape parameter is estimated
(solid line) and when it is known (dashed line). As observed,
the simulation results obtained with the proposed algorithm are
very similar to those obtained for a fixed value of .

Fig. 6. Estimated bias and consistency for .

Fig. 7. Estimation performance for parameter . (a) Variance of versus
number of samples for , and , (b) Variance of
versus for , and .

2) Shape Parameter : A comparison between the variances
of estimators resulting from the method of moments and the ML
principle as well as the corresponding CRLBs are depicted in
Fig. 7 (versus the number of samples and versus ). Fig. 7(a)
was obtained for , and , while Fig. 7(b)
corresponds to , and . The ML
method yields lower estimation variances compared to the mo-
ment-based approach, as expected. Moreover, the CRLB of
is very close to the variance of in all cases, illustrating the
MLE’s efficiency.

D. Experiments in a Real-World Setting

In this part, we propose to evaluate the performance of the
MLE for the parameters of MGGDs encountered in a real-world



Fig. 8. Images from the VisTex database. (a) Bark.0000 and (b) Leaves.0008.

TABLE I
ESTIMATED MGGD PARAMETERS FOR THE FIRST SUBBAND OF

THE BARK.0000 AND LEAVES.0008 IMAGES

application. MGGDs have been used successfully for modeling
the wavelet statistics of texture images [37], [52]. In order
to analyze the potential of MGGDs for texture modeling, we
have considered two images from the VisTex database [53],
namely the “Bark.0000” and “Leaves.0008” images displayed
in Fig. 8. The red, green and blue channels of these images
have been filtered using the stationary wavelet transform with
the Daubechies db4 wavelet. For the first scale and orientation,
the observed vector (of size ) contains the realiza-
tions of the wavelet coefficients for each channel of the RGB
image. MGGD parameters have then been estimated using the
proposed MLE for an unknown shape parameter (Algorithm
1), i.e., using the algorithm described in Section V-C. The
results are reported in Table I. Fig. 9 compares the marginal
distributions of the wavelet coefficients with the estimated
MGGD and Gaussian distributions for the first subband of
the red, green and blue channels (the top figures correspond
to the image “Bark.0000” whereas the bottom figures are for
the image “Leaves.0008”). These results illustrate the good
potential of MGGDs for modeling color cue dependencies in
texture images. For a more in depth analysis, the interested
reader is referred to [37], [52] where goodness-of-fit results
have been given for wavelet coefficients computed from a large
database of natural texture images.

In the next experiments, we have generated 3-dimensional
data vectors according to an MGGD with param-
eters given in Table I. Fig. 10 shows the MLE performance
for these parameters resulting from real texture images. As ob-
served in Fig. 10, the performance of the MLE of is very
similar when is estimated or not (illustrating the unbiased-
ness and consistency properties of the scatter matrix estimator
and the MLE efficiency of that have also been observed for
synthetic data).

VI. CONCLUSION

This paper has addressed the problem of estimating the
parameters of multivariate generalized Gaussian distributions
using the maximum likelihood method. For any shape param-
eter , we have proved that the maximum likelihood
estimator of the scatter matrix exists and is unique up to a scalar
factor. By setting to zero the partial derivative with respect to
the scale parameter of the likelihood associated with general-
ized Gaussian distributions, we obtain a closed form expression
of the scale parameter as a function of the scatter matrix. The
profile likelihood is then obtained by replacing this expression
in the likelihood. The existence of the maximum likelihood
estimator of the scatter matrix was proved by showing that this
profile likelihood is positive, bounded in the set of symmetric
positive definite matrices and equals zero on the boundary of
this set. We have also proved that for any initial symmetric
positive definite matrix, the sequence of matrices satisfying
a fixed point equation converges to the unique maximum of
this profile likelihood. Simulations results have illustrated
the unbiasedness and consistency properties of the maximum
likelihood estimator of the scatter matrix. Surprisingly, these
unbiasedness and consistency properties are preserved when
the shape parameter of the generalized Gaussian distribution
is estimated jointly with the other parameters. Further works
include the use of multivariate generalized Gaussian distribu-
tions for various remote sensing applications including change
detection, image retrieval and image classification.

APPENDIX A
PROOF OF PROPOSITION IV.1

First, it is interesting to note that if is an FP of ,
is also an FP of for all . This property is a

direct consequence of the homogeneity of degree one of . We
start by demonstrating the following lemma.

Lemma A.1: The function can be extended as a contin-
uous function of such that for all non
invertible matrix .

Proof: It is enough to show that, for all non invertible
, and all sequence of converging to zero such

that is invertible, we have

Using the definition of in (15), the following result can be
obtained for all

Since , the conclusion holds true if
such that

which was demonstrated in [39] and concludes the proof.



Fig. 9. Marginal distributions of the wavelet coefficients with the estimated MGGD and Gaussian distributions of the first subband for the red, green and blue
channels of the Bark.0000 (a,b,c) and Leaves.0008 images (d,e,f).

End of the Proof of Proposition IV.1: The end of the proof
of Proposition IV.1 is similar to the one given in [39]. Since

is defined and continuous in the compact , this function
reaches its maximum in at a point denoted as . Since

is strictly positive in and equals 0 in , the
inequality leads to . In order to
complete the proof of Proposition IV.1, we need to show the
following lemma.

Lemma A.2: Let maximizing the function .
Then, , which implies that is an FP of

.
Proof: Since the function defined in (15) differs from

the one used in [39], a specific analysis is required. By definition
of , one has

By defining , one has .
The Lagrange theorem ensures that

for . Straightforward
computations lead to

Since , one has
which completes the proof of Lemma

A.2.

APPENDIX B
PROOF OF PROPOSITION IV.2

We start by establishing . Let with .
Then, and, for all , we have

which proves the property . The reasoning for the case with
strict inequalities is identical.

We next turn to the proof of . Using the definition of
in (16), the following result can be easily obtained

(B.29)

For all unit vector such that and all , it
is well known that

(B.30)



Fig. 10. Estimation performance in a real-world setting. Estimated bias and consistency for (a) the Bark.0000 and (b) the Leaves.0008 settings. Variance of
versus number of samples for (c) the Bark.0000 and (d) the Leaves.0008 settings.

where the minimum is reached for the vectors belonging to
the line generated by . Moreover, since , one
has

For , after noting that the function is un-
changed if we replace each vector by the normalized vector

, the following results can be obtained

where

More generally

for all functions and set giving a sense to the previous
inequality. The same reasoning can be applied to the function

introduced above. Thus, clearly holds true. It re-
mains to study when equality occurs in . The property
becomes an equality if and only if, for all , one has

(B.31)

which was shown in [39] to be true if and only if and are
collinear.

APPENDIX C
PROOF OF PROPOSITION IV.3

The proof of Proposition IV.3 is similar to the proof of Propo-
sition V.3 of [39], even if the function used in this paper
differs from the one defined in [39]. We first show that for all

, we have

(C.32)



Since implies , for all , we
have

Assuming and using hypothesis yields for
all ,

Moreover, assuming that there exists such that
, i.e., implies

which contradicts . Thus,
yields , for all . As a conse-
quence, for all

Since , the previous equality indicates that
, for all . Using hypothesis

, the claim (C.32) is proved.
We now move to the proof of Proposition IV.3. We consider

such that and . As shown above, we
have and , which implies the
existence of an index such that

Note that for , this result reduces to what was obtained in
[39]. Up to a relabel, we may assume that , hence

(C.33)

which is the same result as the one obtained in [39]. As a conse-
quence, the end of the proof of Proposition V.3 derived in [39]
can be applied to our problem without any change.
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