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a b s t r a c t

This paper describes the development of a numerical model of (0°/90°) CFRP plates subjected to low

velocity crushing, based on physical observations. The developed model is represented at the meso-scale

and is based on five main ideas: 1 – meshing of each ply of the laminate; 2 – use of cohesive elements to

represent delamination and plies splaying; 3 – simulation of macro-scale fragments; 4 – representation

of the localized crushing of plies at their extremities with the introduction of a free-face-crushing con-

cept; 5 – representation of contacts between plies, plies and impacted base, plies and debris. The results

of the Abaqus/Explicit simulations show a good agreement with the experimental results, which demon-

strates that the proposed methodology is able to predict the force, the main failure mechanisms and the

phenomenology observed during experiments. Furthermore, an analysis of the repartition of absorbed

energies is done, which shows that the most efficient mechanism is the localized crushing in the 0° plies.

1. Introduction

The use of composite materials in vehicles structural design is

increasing significantly which requires a comprehensive under-

standing of their behavior when subjected to crash loads. The

aim is to demonstrate their ability to maintain the same level of

safety and crashworthiness as compared to conventional materials.

Therefore many studies on composite crashworthiness have been

done for the last 30 years with a wide range of knowledge and

information gained concerning their crushing behavior.

However, in recent years [1–6], the interest in crashworthiness

studies focus more on the development of numerical modeling

resulting from the availability of better computational resources

and new explicit finite element codes in order to replace the high

cost experimental works. The numerical modeling of composite

crashworthiness was initiated in 1989 [7]. Starting from that point,

many efforts have been made by many researchers to improve the

numerical modeling of composite crashworthiness in various as-

pects such as the choice of constitutive models [3,4], delamination

techniques [4] and triggering mechanisms [5] in order to predict

with accuracy the crushing morphology, specific energy absorption

(SEA) and force–displacement curve, as observed experimentally.

However, the complex nature of fracture behaviors in crushing

makes them difficult to be predicted numerically. These behaviors

are highly dependent on many parameters such as geometry, lam-

inate sequences, mechanical properties, contact and friction [7,8].

Thus, the capability of existing numerical models to describe the

initiation and progression of a crushing mode right up to the point

of final failure is still limited.

Crush phenomenon in composites generally involves failure

modes different from those observed in conventional metallic

materials which take place at different length scales [8]. Hence,

limitations in numerical models can also result from the choice

of modeling scales to predict the crushing mechanisms. Some of

the models developed in the past [2–5,9,10] are based on global

test characterizations (macro-scale) making the model strongly

dependent on the laminate behavior. Even though this methodol-

ogy makes modeling simpler and decreases computational time,

but it cannot represent the damage mechanisms that takes place

at sub-ply scale.

Concerning models using micro-scale approach, physical repre-

sentation of such a complex phenomenon is difficult, and even if it

is possible, detailed physical parameters and internal variables

concerning each kind of damage involved [11] are needed which

are very difficult to obtain. Furthermore, it requires high computa-

tional time that would restrain study cases only to small

structures.
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Between these two scales, the meso-scale approach, commonly

used in composite modeling [12], seems to be the appropriate one.

Although it requires more detailed laws as compared to macro-

scale models, it nonetheless has the potential to capture most of

the physical phenomena occurring at the crushing front [1].

A challenge in composite crashworthiness modeling is to be

able to predict crushing damage modes, their evolution during

crushing, and the energy absorption. This paper describes the

development of a numerical modeling for carbon fiber reinforced

plastic (CFRP) laminated plates subjected to crushing. The model-

ing methodology presented is based on numerous physical obser-

vations made during experimental crushing tests of composite

plates [13–15]. Results of these observations enabled to determine

the appropriate scale (ply scale or meso-scale), to numerically rep-

resent the mechanical phenomena involved in the progressive

crushing of composite plates.

To adequately describe the crushing morphology in the numer-

ical modeling which involves large deformation, the use of non-lin-

ear analyses via an explicit code is recommended along with

suitable damage models [6]. Most of the damage models used in

crushing modeling are based on conventional failure criterions

with varying degrees of success in simulating crushing behaviors

in composite structures. However, in this work an unconventional

damage model is used to develop a meso-scale numerical model in

order to represent the mixed-mode crushing (fragmentation and

splaying) including the modeling of localized crushing at the

extremity of the plies in fragmentation mode and at the same time

other failures that might occur away from the plate extremity dur-

ing progressive crushing. Details of the failure modes, constitutive

laws and the numerical modeling strategy are explained in this pa-

per. All parameters required in this model are elementary material

characteristics, identified at the ply scale.

2. Experiments

2.1. Specimen and test set-up

Two types of experimental tests taken from previous studies

[13–15] are used to observe damage mechanisms involved in low

velocity crushing of plates for the development of the numerical

model and also for validation purpose. For each configuration,

the experimental tests are carried out twice. The same type of

specimen but with different dimensions is used in both tests. These

specimens are 16 ply laminates [(0°/90°)4]s made of T700/M21 car-

bon epoxy UD prepregs and the ply thickness is 0.26 mm. One end

of each specimen is cut to form a 45° chamfer trigger (Fig. 1).

The first kind of test is a dynamic plate crushing test performed

using a drop tower with a 9 m/s initial speed and a 36 kg falling

weight. The specimens are 160 mm � 60 mm flat plates. The test

fixture of this test is shown in Fig. 1a [13,14]. The unsupported

length was fixed to 20 mm and is constant throughout the crushing

test. The design of this test fixture enables introducing constant

boundary conditions across the whole width of the crushing front.

As a result, the visible edges of the plate are representative of the

crushing phenomenon in the whole width. The use of high speed

cameras allows a real-time visualization of the crushing front dur-

ing the initiation and propagation of damage and allows correla-

tions with the force–displacement curve. The image acquisition

speed is 20,000 frames per second, with a 40 pixels per mm reso-

lution. Detailed explanations of this test can be found in [13,14].

The second test is a medium-scale quasi-static crushing test on

smaller specimens: 60 mm length and 10 mm width. This test is

performed using a hydraulic testing machine in compression, at a

6 mm/min constant speed. The unsupported length is set to

30 mm and decreases as the imposed displacement increases.

Cameras are also used to observe precisely the crushing mecha-

nisms (1 Hz acquisition, 100 pixels per mm). Fig. 1b shows this test

set-up, and test details are available in [15].

Apart from that, additional observations are also made frommi-

cro-scale quasi-static crushing tests performed inside a scanning

electron microscope (SEM), on the same laminates (but smaller

specimens), to investigate details of the micro-mechanisms. High

quality images of the front geometry are obtained during all tests

to support a physical observation work in order to develop a phe-

nomenological model.

2.2. Damage mechanisms

Due to the chamfer trigger at one end of the plate, most of the

specimens experienced crushing under a combination of fragmen-

tation and splaying. Generally, during crushing one can observe

three main kinds of damage in both tests (dynamic or static) as

shown in Fig. 2 and described in the following sections.

2.2.1. Splaying

Early in the crushing process, ply interfaces at the tip of the

specimens are subjected to high stresses. This leads to delamina-

tion and then splaying of plies. The proportion of plies that bend

on each side is variable. Initiation and propagation of delamination

can occur either in pure opening (mode I), shear (mode II) or more

often in a combination of these two modes.

2.2.2. Fragmentation

Plies that do not turn to the splaying mode undergo fragmenta-

tion which occurs at two different scales.

The first scale is a fragmentation localized at the tip of the plies.

In 0° plies, localized fragmentation is due to micro-buckling of

Fig. 1. Test fixture: (a) dynamic plate test (b) medium-scale quasi-static test. (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)



fibers near the contact surface between plies and the metallic base

as illustrated in Fig. 2b (case ii). In 90° plies, the localized fragmen-

tation is due to multiple shear micro-cracks at the tip of the plies as

shown in Fig. 2b (case iii) and Fig. 3. This localized fragmentation

(both in 0° and 90° plies) is the mechanism leading to the defini-

tion of the ply mean crushing stress (MCS) presented in [15]. In this

paper, it will be called localized crushing.

The second level of fragmentation is the one induced by classi-

cal intra-laminar ply failure, fiber breakage and matrix cracks due

to a combination of compression, bending and shear, but it is not

localized at the tip of the plies (Fig. 2b case i and iv). In this paper,

it will be called inside ply failure to differentiate from the localized

crushing previously described.

2.2.3. Debris accumulation

These different kinds of failures occurring at the crushing front

generate different sizes of fragments or debris.

The size of fragments created by localized crushing in 0° plies is

under 0.25 mm (Fig. 2b case ii and Fig. 3). In 90° plies, localized

crushing develops multiple micro-cracks that can lead to a

macro-crack through the whole thickness of the ply, and conse-

quently to larger fragments having size from 0 to 0.5 mm as ob-

served in Fig. 3.

On the contrary, in the case of inside ply failure fragmentation

for both 0° and 90°, because failure occurs further from the

extremity of the ply, the debris are bigger: from 0.5 mm to 5 mm

as shown in Fig. 2a and illustrated in Fig. 2b (case i and iv). Besides

that, fragments made of 0° and 90° plies attached together can also

be observed.

The accumulation of fragments can create a debris wedge dur-

ing the crushing process, which can change the evolution of the

crushing front. Unfortunately, from experimental observations, it

seems that the slipping (and evacuation) or accumulation of debris

is quite random. Debris due to localized crushing in 90° plies can

have a particular role in the crushing process. Fig. 3 shows the for-

mation of a trapezoidal wedge at the tip of a 90° ply. The shape of

this wedge, with a 45° angle crack, and its confinement between 0°

plies instigates a transverse load on the 0° neighboring plies that

leads to the delamination of one of the 0°/90° interfaces. If the

transverse force is high enough, it can initiate the splaying of one

of the 0° plies. If this is not the case, the 0° ply will be subjected

to localized crushing.

3. Numerical modeling

3.1. Finite element model

Numerical models of the previously described tests – medium-

scale quasi-static (FEM static) and dynamic plate crushing tests

Fig. 2. (a) Major kinds of damage in mixed-mode crushing (Note: white painted stripes are used to follow the plate displacement) (b) fragmentation modes: (i) inside ply matrix

cracking (ii) 0° localized crushing (iii) 90° localized crushing (iv) inside ply fiber breakage. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Fig. 3. Creation of a debris wedge in a 90° ply: SEM in situ test. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)



(FEM dynamic) – have been developed in Abaqus/Explicit. Taking

into account the experimental observations, the choice of the mod-

el scale is essential for accurate representation of the mechanisms

involved in the development and the propagation of a crushing

front in laminates. Because all mechanisms (fragmentations, splay-

ing, fiber ruptures, debris accumulation, etc.) occur at the scale of

the ply, it will be considered as the scale for the model (meso-

scale). Therefore, each ply of the laminate is meshed with one eight

integration points 3D element in the thickness. The 3D element

type used is C3D8I, which improves the behavior in bending, even

with only one element in the thickness [16].

Only one element of 0.25 mm width is used to represent the

whole width of the plate and plane strain conditions are assumed,

making solution effectively 2D. This is consistent with experimen-

tal observations that show little variation across the width. The

dimension of each element is 0.26 mm in the ply thickness and

0.25 mm in the other two directions.

To be able to predict delamination and splaying mode as ob-

served during experiments, 8 nodes 3D cohesive elements

(COH3D8) with zero thickness are used to model 0°/90° plies inter-

faces. The first interface element of each interface (i.e. at the spec-

imen extremity) is removed to initiate delamination.

For each model, boundary conditions and loadings are imposed

according to the experimental test as illustrated in Fig. 4. Never-

theless, to reduce the calculation time, only the first 80 mm of

the length of the plate is modeled for dynamic plate crushing tests,

which is considered long enough to represent the sliding of the

plate inside the vertical guides. The rigid guides and the metallic

base are modeled using analytical rigid bodies. For medium-scale

quasi-static tests, only 35 mm of the specimen is represented with

the first 5 mm being clamped (Fig. 4). Like in the experimental test,

the unsupported length in Fig. 4a decreases as the imposed dis-

placement increases. The constant loading speed in medium-scale

static test modeling is artificially increased from 6 mm/min (exper-

imental test) to 2 m/s to reduce the calculation time in the explicit

simulations. This increase in speed should not affect the results of

simulation, according to the results of the study of Duong et al.

[14]. Using the same specimens, they found that the influence of

crushing speed (from 20 mm/min to 9 m/s) on the energy absorp-

tion and force–displacement curve is relatively small. For dynamic

plate crushing test modeling, an additional mass of 36 kg is added

on the top nodes of the plate to represent the falling weight as im-

posed in the experimental test.

The mechanical input properties are listed in Table 1. They

came from a series of identification tests [17–19] and from the

manufacturer. Based on current simulation results, calculation

times are approximately 2.5 h for medium-scale static model and

3.5 h for dynamic plate model, on 8 CPUs with parallel loops.

3.2. Modeling of fragmentation: free-face-crushing concept

According to the two different kinds of fragmentation observed

in experiments – localized crushing and inside ply damage – it is

essential that the simulation can represent these two mechanisms

for a good prediction of the crushing morphology. In order to take

into account the localized fragmentation, Matzenmiller et al. [20]

introduced a concept of advancing crashfront. It consists in the

use of a SOFT parameter which reduces the allowable strength of

the elements in the crushing zone (only elements directly in con-

tact with the impacted target). This concept has been implemented

in Materials 54-55 of LS-Dyna and used to simulate the crushing of

sinusoidal composite specimens [2] and square tubes [21]. The re-

sults of these simulations show that the deletion of elements leads

to a series of unrealistic peaks in the load–displacement curve,

which need to be filtered in post-processing. Moreover, the SOFT

parameter is not related to any physical property.

To overcome such limitations, a similar free-face-crushing con-

cept is introduced in the current model, coupled with a specific

behavior law. In order to represent the localized crushing, with

small debris and a constant mean crushing stress, elements at

the extremity of plies (i.e. having free face in the direction of crush-

ing) will have a different behavior than others. For elements be-

hind, namely inside ply elements, classical failure criteria are

applied.

The operating principle is illustrated in Fig. 5. Initially, only the

element at the extremity of the ply is a free-face-crushing element

(1). Subjected to compression, it will be crushed (see next para-

graph for the localized crushing law applied). Once totally dam-

aged, it will be deleted, and the element behind (2) will become a

free-face-crushing element, and its behavior law will automatically

change from inside ply to localized crushing law. Of course, the

choice of this law is of first importance, as the use of discrete

Fig. 4. Model lay-up: (a) medium-scale quasi-static (b) dynamic plate. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)



elements with deletion to represent a continuous mechanism leads

to limitations in the model. This will be discussed further.

3.2.1. Localized crushing law

The implementation of a crushing criterion in the model, and

especially in the free-face-crushing elements, is the main idea of

this work. This criterion is based on the mean crushing stress

(MCS) that a ply can sustain, for each direction (0° and 90°) [13].

The behavior (Fig. 6a) is similar to an elasto-plastic stress–strain

constitutive law but only for the free-face-crushing elements in

compression. The MCS of 0° plies (277 MPa) and 90° plies

(270 MPa) used in this criterion are identified from characteriza-

tion tests and are intrinsic parameters of the ply, independent from

global parameters such as laminate lay-up, geometry and chamfer-

ing angle. Identification tests have been done under static condi-

tions [15]. Results from plate crushing tests with different

velocities performed by Duong et al. [14], show very small differ-

ences in the global plate behavior, which seems to indicate that

the MCS is not dependent on the velocity (in the range of

0–10 m/s). Specific crushing tests to identify MCS should be carried

out to verify this assumption.

The same type of criterion is also used by Greve et al. [9] in their

phenomenological modeling based on Energy Absorbing Contact

formulation and the results have showed good agreement with

the experimental tests. However, their criterion depends on the

global fragmentation stress of the laminate, obtained from a series

of dynamic axial and oblique impact tests that makes it dependent

on global parameters. As a consequence, the global fragmentation

stress needs to be identified for each test configuration, which in-

creases test costs and time consuming. The same limitation is also

found in other phenomenological crush modeling like the CZone

Abaqus crushing approach [10]. In addition, both phenomenologi-

cal models mentioned here are suitable for larger scale composite

structures, where the energy absorption is the only main motiva-

tion, and not the precise representation of damage occurring at

sub-ply scale.

In the localized crushing law (Fig. 6a), the local crushing (|e| > eo)

starts when the compression stress of the element in the crushing

direction reaches the MCS. Once the crushing is initiated, the

element is compressed at the constant MCS until it reaches e
c.

The use of discrete elements, with deletion at the end, to represent

the continuous crushing behavior raises the problems of excessive

distortion before deletion and peak force release at deletion. To

solve these problems, after reaching e
c, a linear decrease of the

stress is applied in order to smooth the force release, and the max-

imum allowable compression strain (ef) needed to delete the ele-

ment is set to 95%. The localized crushing law is implemented in

both 0° and 90° plies according to their local axis and MCS (Fig. 6b).

Unlike 0° plies in which small debris are continuously ejected

from the crushing front, the debris wedge due to localized crushing

in the 90° plies (Fig. 3) remains in the crushing front, and can insti-

gate the delamination and splaying of adjacent 0° plies. Therefore,

to represent this phenomenon, a pseudo-plastic deformation is im-

posed in the transverse direction (in laminate thickness or z-direc-

tion) of 90° plies, with a volume conservation rule to take into

account the constant volume of the debris. However, even with a

constant volume, the transverse expansion needs to be limited to

avoid unrealistic expansion and premature delamination around

the element. In practice, the expansion can be stopped after

15–45% compression without affecting significantly the results in

terms of global crushing morphology. In this study, this transverse

deformation is then stopped when the compression strain of the

element in the loading direction reaches 40%, only to enable the

initiation of an eventual splaying (Fig. 6c).

The pseudo-plastic transverse deformation law can be ex-

pressed as:

De
P
zz ¼ ÿDePtt only true if jePttj < e40% ð1Þ

where ePtt and DePtt are the plastic strain and plasticity increment of

90° element in the loading direction, while DePzz is the plasticity

increment of 90° element in the laminate thickness.

3.2.2. Inside ply criterion

The inside ply criterion is implemented to simulate inside ply

failure in inside ply elements (Fig. 5). This criterion is separated

into two main failure modes: fiber failure and matrix cracking.

3.2.2.1. Fiber failure. Experimental observations show that most fi-

ber failures are due to a combination of bending and compression

in the 0° plies, leading to the two different modes of fiber rupture

in the same ply: compression and tension, as shown in Fig. 7a. In

addition, fiber breakages normally induce large energy release

rates [18]. Thus, it is essential to take into account this energy to

have a good prediction of the overall dissipated energy in the plate

during crushing. For that reason, a fiber failure model developed by

Bouvet et al. [22] is used in this work. They introduced an approach

Table 1

Material properties of T700/M21 [17–19].

Parameters Symbol Values

Elastic data

Density (kg/m3) q 1500

Longitudinal modulus

Tensile (GPa) Elt 130

Compressive (GPa) Elc 100

Transverse modulus (GPa) Et 9

Shear modulus (GPa) Glt 5

Poisson’s ratio mlt 0.33

Material strength

Transverse tensile strength (MPa) YT 75

In plane shear strength (MPa) SC 110

Fiber failure (Mode I)

Tensile strain at damage initiation e
�

t 0.016

Compression strain at damage initiation e
�

c
ÿ0.012

Fracture toughness in tension (N/mm) Gf
It

133a

Fracture toughness in compression (N/mm) Gf
Ic

40b

Interface fracture toughness

Mode I (N/mm) GI 0.6

Mode II/Mode III (N/mm) GII/GIII 2.1

a Extrapolated from material T300/913 ([18]).
b Estimated value in [19].

Fig. 5. Illustration of free-face-crushing concept. (For interpretation of the refer-

ences to colour in this figure legend, the reader is referred to the web version of this

article.)



to dissipate the fracture energy in an element defined as a function

of the eight integration points. So, an energy release rate per unit

area of crack can be obtained by dissipating energy throughout

the volume of an element using the formulation in Eq. (2) based

on crack band theory [23], with a characteristic element length.

This approach enables to have a mesh-size independent model.

Z

V

Z e1

0

rl � del

 !

dV ¼ S � Gf
I ð2Þ

where rl(el), e
1, S, V are the stress (strain) in the fiber direction,

strain at full damage in the fiber direction, element’s cross section

normal to the fiber direction and element’s volume, respectively.

Gf
I is the fracture toughness for opening mode (mode I). Details of

this criterion can be found in [19,22].

Besides that, this equation works even if tension and compres-

sion states occur at the same time in one element as shown in

Fig. 7b, in order to represent bending behavior in the element:

compression at certain integration points, tension for the others.

Thus, at each time increment, the choice of damage calculation de-

pends upon the critical loads, either in tension or compression and

the damage evolution is computed taking into account the energy

dissipated in both states (Gf
It and Gf

Ic have different values). (Once

an element is fully damaged, it is deleted.)

Fig. 6. (a) Localized crushing law (b) local axis of elements (c) 90° elements expansion in transverse direction. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

Fig. 7. (a) Ply breakage in bending (b) the fiber failure constitutive law. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)



3.2.2.2. Matrix cracking. Matrix damage is essentially created by the

transverse stress (rt) and the out-of-plane shear stress (stz).

Therefore, the following criterion is used to determinate the failure

in 90° elements:

hrti
þ

YT

� �2

þ
stz

SC

� �2

¼ 1 ð3Þ

where hrti
+, stz are the positive transverse stress and the shear

stress in (tz) plane, respectively. Moreover, hrti
+ value is the maxi-

mum transverse stress among the eight nodes of each element,

extrapolated from the eight integration points. While stz is the aver-

age value of eight integration points. This is done to account for the

bending behavior in elements. Damage evolution is not considered

in this criterion since it induces very low energy compared to fiber

failure, and can thus be neglected. Once the criterion reaches unity,

the element is deleted.

The deletion of inside ply elements is important for the creation

of macro-scale fragments (debris) during the simulation. However,

it will cause a loss of mass and debris in the numerical model. Con-

sidering the size of debris in experiments compared to the size of

an element, and the first simulation results, deletion of elements

in these simulations seems acceptable.

3.3. Delamination

In this work, the classical traction–separation damage model in

Abaqus software is used to govern the initiation and propagation of

delamination between plies either in pure opening, shear or

mixed-mode. This damage model [16] is basically derived from

Fig. 8. Simulation for friction coefficient identification. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

Fig. 9. Comparison of mixed-mode crushing morphologies between simulation and experiment (a) medium-scale quasi-static test (b) dynamic plate test. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)



fracture mechanics approach which considers the amount of

energy required to create new fracture surfaces and has been

developed based on a study by Camanho et al. [24]. The traction–

separation law involves three states: a damage initiation, a damage

evolution and a complete separation. Damage initiation is based on

the quadratic nominal stress criterion presented in Eq. (4).

hrni

ro
n

� �2

þ
rs

ro
s

� �2

þ
rt

ro
t

� �2

¼ 1 ð4Þ

where rn, rs, rt are stresses normal to the interface, and in first and

second shear directions.

The propagation of delamination is ruled by a linear decrease in

the traction–separation law, and the mode mix phenomenon is

also taken into account as a linear interaction between the three

energy release rates (Gic), expressed in Eq. (5).

X Gi

Gic

¼ 1 ð5Þ

3.4. Contact

Friction plays an important role during crushing especially fric-

tion between the crushing surface and the metallic base (during

splaying), and as friction relates to debris accumulation and debris

wedge formation. The available general contact formulation with

classical friction model based on Coulomb approximation is used

to simulate the contact behavior between all exterior surfaces

[16]. Since the friction coefficient has a great influence on the

crushing process [6], it is necessary to have a good estimation of it.

The friction coefficient is identified from a series of elementary

simulation tests (both static and dynamic models). Simulations are

done with different friction coefficients from 0.05 up to 0.3. Then,

for a given crushing displacement, the radius curvature and hori-

zontal displacement of certain splaying plies are compared with

experimental results, as presented in Fig. 8. Based on these simula-

tions, friction coefficient l = 0.15 is set in both static and dynamic

models. In this work, static and kinetic coefficients of friction are

assumed to be the same.

4. Results and discussion

Two 0°/90° laminated plates are simulated under crushing with

different loadings and boundary conditions. Fig. 9 presents the

crushing morphologies of both static and dynamic models, com-

pared with the experimental tests. Globally, the numerical models

in both tests are able to represent the mixed crushing mode includ-

ing all the major kinds of damage (splaying, localized crushing, in-

side ply failures and debris creations) and their coupling. The

development of a specific wedge resulting from localized crushing

of 90° elements in the numerical model is effective in initiating the

delamination of 0°/90° interfaces and then drives the adjacent 0°

plies to an eventual splaying. A stable progressive crushing due

to localized crushing in central plies can be observed in both cases,

as in the experiments (Fig. 9a(iii and iv) and b(iii and iv)).

In the model, for most of the fragments due to inside ply failure

in 0° and 90° plies, the sizes are relatively close to the ones mea-

sured in experimental tests. For the medium-scale quasi-static

model, the debris size is between 0.5 mm and 2.0 mm which is

close to experimental results (0.5–2.5 mm), as can be seen in

Fig. 9a. In dynamic plate tests, the size of debris is in the range from

0.5 mm to 5 mm for the experiments and 0.65 mm to 4.0 mm for

the numerical model. This validates the choice made for the

representation of fragments by the means of inside ply elements

deletion.

While all major damage is well represented, during the transi-

tion phase from initiation to the progressive crushing, the numer-

ical models show minor differences in terms of crushing

morphology correlations. For example, in Fig. 9a(iii), the model

simulates well the multiple delaminations on the right side as in

the experimental test, but the delamination length is slightly un-

der-predict in the numerical model. Consequently, both models

have differences in the number of plies involved in splaying or

localized crushing, compared to experiments (see Fig. 9a(iii and

iv) and b(iii and iv)). Nonetheless, this does not affect much the re-

sult of force–displacement curve in numerical model. Crushing of

composite plates involves significant displacements, rotations

and geometric transformations that lead to large dispersion in glo-

bal morphology of crushing processes, as verified experimentally.

For example, the number of plies in fragmentation mode can vary

significantly although tests are performed under the same condi-

tions [13–15].

Force–displacement curves from models and tests are displayed

in Fig. 10 for comparison. The curves from experiments and

numerical model are comparatively close to each other which

means that the main phenomena are well represented i.e. the

curves initiation and the maximum forces obtained for both static

and dynamic models are close with experimental results as a result

of the implementation of localized crushing laws in the models.

After that, both curves are flattened out to have steady crush load

(plateau after peak force) as in experimental tests. One can observe

small differences in the plateau level: 10.5% for the medium-scale

quasi-static model and 10% for the dynamic plate model compared

to the experimental tests. However, by taking into account the

complexity of the fracture modes in the laminated plate crushing

and the dispersion in tests, these small differences can be consid-

ered acceptable [6]. Furthermore, in order to reduce calculation

Fig. 10. Force displacement curves (a) medium-scale quasi-static test and (b)

dynamic plate test (9 m/s).



time, the numerical model for dynamic tests was solved for only

the first 20 mm crushing length, which is considered enough to

represent both initiation step and steady progressive crushing

(plateau).

Results from the simulations also allow quantifying the contri-

bution of eachmechanism in energy absorption during the crushing

tests: (a) 0° plies damage; (b) 90° plies damage; (b) delamination;

(c) friction; and (d) viscous effect. Furthermore, the energy

absorbed by 0° plies damage can be divided into two categories,

which are energy absorbed via localized crushing and via inside

ply failures. For 90° plies, the energy dissipated in inside ply failure

is neglected, as assumed in Section 3.2.2.2.

The evolution of energy dissipation for each of these mecha-

nisms during the crushing tests is presented in Fig. 11 for each test.

In both cases, 0° plies damage mechanism via localized crushing

absorb the highest part of the energy (49% and 30% of the total en-

ergy absorbed for static and dynamic tests, respectively) compared

with the other mechanisms. This matches with the experimental

observations that show the ability of 0° plies to perform a steady

localized crushing throughout the crushing process while there

are less inside ply failures (8% in static and 10% in dynamic tests).

Although 90° plies have the same energy absorption ability as 0°

plies (very close MCS), they dissipate less energy than 0° plies

(13% in static test and 21% in dynamic test). This is due to the

behavior of 90° plies that often turn into inside ply rupture due

to their weakest strength compared to 0° plies. Thus, the volume

of 90° plies involved in localized crushing is actually lower than

in 0° plies during crushing.

The energy absorbed by friction is 17% and 19% of the total en-

ergy for static test and dynamic test respectively. Besides that, the

delamination energy is significant and important to accurately cap-

ture the crushing morphology of mixed-mode crushing plate

although it provides less energy absorption (10% in the static test

and 13% in the dynamic tests, respectively).

5. Conclusion

The aim of this study is to propose a pseudo 2D finite element

model for mixed-mode crushing in laminated plates subjected to

low velocity crushing, depending only on the elementary material

characteristics of the ply. Based on the presented results, the cur-

rent development of the numerical model shows the capability

to represent mixed-mode crushing for 0°/90° laminates with all

major damages as observed experimentally. In addition, a good

correlation is observed between the force–displacement curves

from numerical models and experimental tests.

Despite some small differences in terms of crushing morphol-

ogy, the main idea of this work is the introduction of a free-face-

crushing concept in the model. This concept allows the use of

two failure criteria at the same time in order to represent the phe-

nomenology of localized crushing apart from classical inside ply

failures. Furthermore, the implementation of the localized crush-

ing law and the creation of a specific debris wedge in the 90° plies,

free-face-crushing elements are capable to reproduce the complex

localized damage mechanisms that occur at sub-ply scale and at all

crushing modes (splaying and fragmentation) at the same time.

Results from the simulation also allow making analyses of energy

absorbed by each damage mechanism which is not possible during

the tests. The results have demonstrated that localized crushing,

especially in the 0° plies, dissipates the highest part of the total

energy.

The next step of this work will be the extension of the same

modeling strategy to a full 3D finite element model, including plies

with orientations different from 0° or 90°.
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