

To link to this article: DOI: 10.4018/ijertcs.2013100101

 URL: http://dx.doi.org/10.4018/ijertcs.2013100101

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 11321

To cite this version: Adjir, Noureddine and Saqui-Sannes, Pierre de and

Rahmouni, Mustapha Conformance Testing of Preemptive Real-Time

Systems. (2013) International Journal of Embedded and Real-Time

Communication Systems (IJERTCS), vol. 4 (n° 4). pp. 1-26. ISSN 1947-

3176

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/19983666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4018/ijertcs.2013100101
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

ABSTRACT
The paper presents an approach for model-based black-box conformance testing of preemptive real-time
systems using Labeled Prioritized Time Petri Nets with Stopwatches (LPrSwTPN). These models not only
specify system/environment interactions and time constraints. They further enable modelling of suspend/
resume operations in real-time systems. The test specification used to generate test primitives, to check the
correctness of system responses and to draw test verdicts is an LPrSwTPN made up of two concurrent sub-nets
that respectively specify the system under test and its environment. The algorithms used in the TINA model
analyzer have been extended to support concurrent composed subnets. Relativized stopwatch timed input/
output conformance serves as the notion of implementation correctness, essentially timed trace inclusion taking
environment assumptions into account. Assuming the modelled systems are non deterministic and partially
observable, the paper proposes a test generation and execution algorithm which is based on symbolic techniques
and implements an online testing policy and outputs test results for the (part of the) selected environment.

Conformance Testing of
Preemptive Real-Time Systems

Noureddine Adjir, Faculty of Exact and Applied Sciences, University of Oran, Oran, Algeria

Pierre de Saqui-Sannes, ISAE, University of Toulouse, Toulouse, France

Kamel Mustapha Rahmouni, Computer Science Department, University of Oran, Oran,
Algeria

Keywords:	 Conformance Testing, Online Testing, Preemptive Real-Time Systems, Stopwatches, Time Petri
Nets

1. INTRODUCTION

The embedded real-time industry is changing
fast – systems have become larger, more com-
plex, and preemptive. For real-time systems,
the timely reaction is just as important as the
kind of reaction. Thus the system must not
only produce correct result, but must do so at
the correct time; neither too early nor too late.
Fly-by-wire systems in modern airplanes are
an example for such embedded systems. If a
pilot hits the brakes, the breaking system should
engage almost immediately to ensure secure

travelling. Furthermore, real-time systems may
be interruptible. They may be interrupted at any
time while keeping the capacity to restart later
on without losing their state information (think,
e.g., of interrupting a washing machine in order
to remove a pencil from a shirt, and closing
the machine immediately after). Such systems
need to be tested in order to check their reli-
ability before use. In testing real-time systems,
the tester must consider when to stimulate the
system, when to interrupt or resume operations,
when to expect responses to be issued and how
to assign verdicts to any timed sequence it may

observe and partly control. Further, the test cases
must be executed in real-time.

Without automation and modeling tools,
testing remains ad hoc, time-consuming and
error prone. With the use of models in soft-
ware/hardware design and development, timed
model-based testing has received increasing
attention from industry practitioners. Therefore,
Timed Model-Based Testing uses timed models
describing the desired behaviour of a system
to automate the testing process. Using models
to generate test cases and assign verdicts is
cheaper and more effective than a completely
manual approach. Conformance testing is a
way of black-box testing in which common
testing tasks such as test case generation and
test result evaluation are based on a model of
the system. Thus, no knowledge about the in-
ternal workings of the program to be tested is
used and the tests are limited to the functional
and timing properties. A survey of the litera-
ture indicates that those papers which address
timed test sequence generation have extensively
discussed reactivity and timeliness. So, much
work on model based testing have considered
as formal modelling techniques timed automata
(TA) (Alur, 1994) or time Petri nets (Merlin,
1976). However, all this models cannot enable
to model the suspension and resumption of a
task or any kind of executable portion of code
in real-time systems. Therefore a real-time
specification model should include a sus-
pend/resume capability. The paper addresses
model-based black-box conformance testing
of preemptive real-time systems. It checks a
System Under Test (SUT) against its specifica-
tion. This is typically achieved in a controlled
environment where the SUT is executed and
stimulated with inputs and delays according
to a test specification, and the responses of the
SUT are checked to conform to its specification.
Precisely, the paper presents a technique for
conformance testing of preemptive real-time
systems based on Labelled Prioritized Time
Petri Nets with Stopwatches models (LPr-
SwTPN). The test specification is given as an
LPrSwTPN made up of two composed subnets
that respectively model the expected behaviour

of the SUT and the latter’s environment. The
proposal implements an online testing approach
and proposes a relativized conformance rela-
tion named rswtioco (Relativized Stopwatch
Timed Input Output Conformance), between
model and SUT which coincides with timed
trace inclusion taking assumptions about the
environment behavior explicitly into account.
It is an extension of the rtioco relation (Hes-
sel, 2008). In addition to allowing explicit and
independent modelling of the environment, it
also has some nice theoretical properties that
allow testing effort to be reused when the envi-
ronment or system requirements change. Unlike
other approaches based on offline testing, we
do accept unrestricted non-deterministic and
partially observable specifications.

The rest of paper is organized as follows.
Section 2 surveys related work. Section 3 shows
what is new in the test of preemptive real-time
systems. In section 4, we illustrate and compare
the two different approaches to timed testing:
offline and online testing. Section 5 describes
the test specification. Section 6 introduces
LPrSwTPN, their formal semantics in terms of
timed labeled transition systems, and their use
to model and specify the behavior of real-time
systems. The rswtioco relation is presented in
section 7. In section 8, we present an online
testing algorithm of real-time systems from
LPrSwTPN specifications allowing full non-
determinism. This algorithm combines test
cases generation and their execution. Finally,
section 9 concludes the paper.

2. RELATED WORK
AND MOTIVATION

Little work has been done on model-based test-
ing from TPNs (e.g. (Adjir, 2009; Lin 2000),
the subject being essentially addressed for TA.
Several extensions of timed automata have been
proposed in the literature in order to facilitate
and to improve the modelling and testing of real
time systems (e.g. (Bérard, 2000; Bouyer, 2004;
Choffrut, 2000). Unfortunately, we notice that:
(1) part of these extensions cannot be analyzed

using existing tools as UPPAAL (Bouyer, 2004).
Therefore, several authors only addressed
subclasses of TA or proposed to transform
TA in other models (e.g. TPN (Bérard, 2005;
Bouyer, 2006) to reuse their efficient verifica-
tion algorithms). (2) the extension dedicated
to model suspension/resumption of actions,
e.g. stopwatch automata (Cassez, 2000) and
interrupt timed automata (Bérard, 2012), have
not yet efficient analysis methods and are not
considered at all in timed testing.

Therefore, we decided to select LPrSwTPN
as starting point for timed test generation.
That model enables modelling of suspend/
resume operations and the interactions of the
reactive real-time systems. PN are character-
ized by their expressive power of parallelism
and concurrency, and the conciseness of the
models. TPN (Merlin, 1976) are one among
the important formal models widely used to
specify and verify real-time systems. In addi-
tion, the efficient analysis methods proposed by
(Berthomieu, 2004) have contributed to their
wide use. Chronometers (SwTPN) (Berthomieu,
2007) allow modelling the suspension of ac-
tions and their resumption later without losing
their information. They may be interrupted at
any time while keeping the capacity to restart
later on. Adding priorities to TPN (PrTPN)
increases their expressiveness. So it is shown
in (Berthomieu, 2006) that the expressiveness
of PrTPN is very close to that TA, in terms of
weak timed bisimilarity. Since we address the
testing of reactive systems, we associate a label
with each transition (LPrSwTPN). It may be an
input or an output or an internal action.

3. THE OUTPUTS OF
PREEMPTIVE REAL-
TIME SYSTEMS

In order to test preemptive real-time systems,
we must distinguish between two types of out-
puts. First, outputs in the common sense of the
word; we call them active (or standard) outputs.
Second, special outputs that we call suspended
outputs (or indicators). The latter are issued

by the SUT to give indications on suspended
actions. For correct behaviour of a system, a
response which corresponds to an active output
and/or suspended output(s) should not only
provide correct values, but the values should
also be provided at the right time points. So,
delays are also considered as outputs.

4. ONLINE VS.
OFFLINE TESTING

There are two different approaches to timed
testing: offline and online testing. In offline
test generation test cases and their verdicts are
pre-computed completely from the specifica-
tion before they are executed on the SUT. The
advantages of offline test generation are that test
cases are easier, cheaper, and faster to execute
because all time constraints in the specification
have been resolved at test generation time, and
in addition, that the test suite can be generated
with some a-priori guarantees, e.g., that the
specification is structurally covered, or that a
given set of test-objectives are satisfied. There
are two main disadvantages of offline testing.
One is that the specification must be analyzed in
its entirety, which often results in a state explo-
sion which limits the size of the specification that
can be handled. Another problem for real-time
systems is non-deterministic implementations
and specifications. In this case, the ordering and
timing output cannot be predicted, and the test
case must be adaptive. Typically, the timed test
case takes the form of a test-tree that branches
for all possible outcomes. The test case may
need to branch for all time instances where an
output could arrive and it cannot be represented
by a finite tree. Offline test generators therefore
often limit the expressiveness and amount of
non-determinism of the specification language.
This has been a particular problem for offline
test generation from timed models specifica-
tions, because the technique of determinizing
the specification cannot be directly applied.
For example, for the methods based on TA,
several authors brought solutions that consist
in determinizing explicitly the specification;

although (1) TA cannot be determinized in
general (Alur,1994), and (2) that it is some-
times impossible to withdraw internal actions
(Diekert, 1997). The result is that some works
only address a subclass of TA. Given a restricted
class of deterministic and output urgent TPN,
we have showed in (Adjir, 2009) how it is pos-
sible to synthesize test cases that are guaranteed
to take the least possible time to execute. We
also have defined a language for defining test
purposes and coverage criteria.

A solution to address a model with full
expressiveness is to use online testing. The latter
indeed enables working with non-deterministic
specifications. In online (on-the-fly) testing,
which combines test generation and execution,
the test generator interactively interprets the
model, and stimulates and observes the SUT.
Only a single test input is generated from the
model at a time that is then immediately executed
on the SUT. Then the produced outputs (active
and suspended if any) by the SUT as well as
their occurrence times are checked against the
specification, a new input is produced and so
forth until it is decided to end the test, or an error
is detected. Typically, the inputs and delays are
chosen randomly. There are several advantages
of online testing (Hessel, 2008). Testing may
potentially continue for a long time (hours or
even days), and consequently long, intricate test
cases that stress the SUT may be executed. The
state-space-explosion problem experienced by
many offline test generation tools is reduced
since only a subset of the state-space needs to be
stored at any point in time. Further, online test
generators often allow more expressive speci-
fication languages, especially non-determinism
in real-time models: Since they are generated
event-by-event they are automatically adaptive
to the non-determinism of the specification i.e.
the specification is determinized implicitly
on the fly. A disadvantage is that the test runs
are typically long, complex and consequently
the cause of a test failure may be difficult to
diagnose. Although some guidance is possible,
test generation is typically randomized which
means that satisfaction of coverage criteria can-
not be a priory guaranteed, but must instead be

evaluated post mortem. In Section 8 we present
an online testing algorithm allowing full non-
determinism specifications.

5. TEST SPECIFICATION

An embedded system interacts closely with its
environment. A major development task is to
ensure that the system works correctly in this
environment. So, testing involves a system sur-
rounded by an environment. An uncontrolled
and possibly imaginary environment would
indeed allow all possible interaction sequences.
But, due to lack of resources it is not feasible
to validate the system for all possible (imagi-
nary) environments. Also it is not necessary if
the environments are known to a large extent.
Practically, each system operates in specific
environments called its real operating environ-
ment, and it is only necessary to establish its
correctness under the modelled environment
assumptions. However, the requirements and
the assumptions of the environment should
be clear and explicit. Therefore, we make a
distinction between the specified system and
its environment. Modeling the environment
explicitly and separately from the system and
taking this into account during test generation
has several advantages: (1) we can synthesize
only relevant and realistic scenarios for the given
type of environment, which in turn reduces
the number of required tests and improves the
quality of the test suite; (2) the engineer can
guide the test generator to specific situations
of interest; (3) a separate environment model
avoids explicit changes to the system model if
testing must be done under different assump-
tions or use patterns. Otherwise, it is possible to
create a fully open environment for the SUT i.e.
a completely unconstrained one that allows all
possible interaction sequences. Consequently,
the conformance between an implementation
and its specification is heavily dependent
on the environment. Test verdicts obtained
for a specific environment remain valid for
more restrictive environments. Overall, the
conformance addressed by the paper is said to

“relativized” since results are obtained for the
considered environment.

We denote the system being developed
SUT and its real operating environment Re-
alENV (See Figure 1). The SUT and its environ-
ment communicate by exchanging input and
output signals (seen from the SUT). When the
SUT is being tested, the tester plays the role of
the environment. Using a model-based develop-
ment approach testing, the environment as-
sumptions and system requirements are captured
through abstract behavioral models, commu-
nicating on abstract signals. We assume that
the test specification, noted M=MSUT ||MEn, is
given as an LPrSwTPN made up of two concur-
rent subnets. MSUT models the expected behav-
ior of the SUT while MEn models the behavior
of the environment (See Figure 2). We need to
distinguish inputs and outputs between the SUT
and the environment, which are the only observ-
able events when we consider the SUT as a
black box. The set of all observable actions is
then partitioned in input and output actions
noted respectivelyA

in
andA

out
. An observable

action can be interrupted at any time and re-
sumed after. We must output to the outside the
suspension information by an indicator output.
The outputs are not controllable by the system
and should be tested also with their deliverance
dates. An input (a standard output) is post fixed
by ? (!) and an indicator output has the same

label as the observable action. We assume that
A is equipped with a mapping :A A→ such
that for all actionsa a= and a is the comple-
mentary action of a such that a a a a! ? ? != ∧ = .
The system may perform internal events. They
may result from an abstraction of low level
details made to facilitate the modelling or to
allow a certain freedom to the implementor or
more to events which we do not want that the
tester to observe them to facilitate its task. In-
ternal actions are not observed by the environ-
ment and thus to the tester. They are denoted
τ τ ∉()A . Aτ abbreviates A A

in out
∪ ∪ τ{ } .

6. ENVIRONMENT AND
SYSTEM MODELING

6.1 Labelled Prioritized Time
Petri Nets with Stopwatches

Time Petri Nets (TPN) (Merlin, 1976) extend
Petri Nets with temporal intervals on transitions
to model time constraints. Prioritized Time
Petri Nets (PrTPN) extend TPN with a prior-
ity relation on the transitions; so a transition
is not allowed to fire if some transition with
higher priority is fireable at the same instant.
Such priorities increase the expressive power of
TPN. TPN with Stopwatches (SwTPN) extend
(Pr)TPN by stopwatch arcs that control the

Figure 1. The SUT and its real environment RealENV

Figure 2. The test specification M composed of The SUT model MSUT and its environment model MEn

progress of transitions to express suspension
and resumption of actions (Berthomieu, 2007).
A label that may be empty is associated to each
transition (LPrSwTPN) to denote an observable
action or an internal operation of the system.

6.1.1 Notations for LPrSwTPN

The sets � � � � �, , , ,≥ ≥0 0
 are respectively the

sets of natural, rational, non-negative rational,
real and non-negative real numbers. We con-
sider the set I+ of non-empty real intervals a b,




with bounds a b, ∈ ≥� 0
. We consider both open

and closed bounds, and also allow a right open
infinite bound as in 1,∞


 . For i ∈ i+ ,↓i

represents its lower bound, and ↑i its superior

bound (if it exists) or ∞ . For any θ ∈ ≥� 0
, i �− θ

represents the interval x x− ≥ ∧ ≥{ }θ θ θ/ 0 .

A A A A A
S in out out in
= × ×∪ is the set of the

couples of synchronizing actions and
A A
S Sτ τ= { }∪ is the set of internal and syn-

chronizing actions.

6.1.2 Syntax of LPrSwTPN

Formally, a LPrSwTPN over the alphabet is a
tuple N Sw m

s
= ()P,T,Pre Post, , , , , ,≺

0
I Λ

where:

1. 	 P,T,Pre Post, ,m
0() is a Petri Net where

P is a finite set of places, T is a finite set
of transitions with P T =∩ φ , m

0
: P +→ �

i s t h e i n i t i a l m a r k i n g a n d
Pre Post T P, : → → � are respectively
the precondition and post-condition func-
tions. For f g, ,∈ →P +� f g≥ means that

 ∀ ∈() () ≥ ()()p P f p g p and f g+ −{ },

is f p g p() + −{ } (), for any p .

2.	 Is : T→ i+ is the static interval function.

It associates a firing temporal interval Is

with each transition. The rational ↓ ()Is t

(resp.↑ ()Is t) is the static earliest (resp.
latest) firing time of t after the latter was
enabled. Assuming that a transition t
became enabled at the last one at the time
θ , then t can’t be fired before θ+↓ ()Is t

and it must be done no later than θ+↑ ()Is t ,
unless disabled by firing some other transi-
tion. In this paper, intervals 0,∞


 are

omitted and w in the right end point of an
interval denotes∞ .

3. 	 ≺⊆ ×T T is the priority relation, assumed
irreflexive, asymmetric and transitive,
between transitions. t t

1 2
≺ means t

2
 has

priority over t
1
.

4. 	 Λ:T→Aτ is the labelling function that as-
sociates to each transition an action. The
internal τ-action is indicated by an absent
action-label.

5. 	 Sw : T P→ → � is the stopwatch inci-
dence function. Sw associates an integer
with each p t,() ∈ ×P T , values greater
than 0 are represented by special arcs,
called stopwatch arcs, possibly weighted,
and characterized by square shaped arrows.
Note that these arcs do not convey
tokens.

Figure 3 shows an LPrSwTPN. The arc
from place p0 to transition t2 is a stopwatch
arc of weight 1. The firing of t0 will freeze the
timing evolution of t2. t2 will be fireable when
its total enabling time reaches 5 time units. If
we replace the stopwatch arc by a normal arc,
t2 will never be fired.

The transitions of the net M =MSUT ||MEn
are partitioned into purely transitions of the
SUT model MSUT (invisible for the environment
MEn, normally labelled with τ and indicated by
an absent label action) and synchronizing tran-
sitions between the MSUT and the MEn models
(observable for both parties). We noteTSUT the
set of the SUT model transitions and TEn the set

of the environment model transitions. The set
of transitions labeled with internal actions is
T Tτ τ= ∈ ()={ }t tSUT /Λ . They are fired indi-

vidually. A couple t t, ′() ∈ ()×T - T TSUT Enτ is a
synchronizing transitions if they are labeled
with complementary actions a a, respectively
e.g.Λ t a()= ? (resp.a!) and Λ ′()=t a! (resp.
a?). We assume that the first component is an
action of the SUT model MSUT while the second
is of the environment model MEn. The synchro-
nizing transitions are fired by complementary
actions couples (e.g. a? anda!). The set of the
environment model transitions that complement
a synchronizing transition t∈TSUT is

CT andSUT Ent t t a t a() = ′∈{ ()= ′() = }T /Λ Λ .
To illustrate the concepts, we use the coffee

machine model depicted by Figure 4. It shows
an LPrSwTPN specifying the requirements to a
coffee machine. The SUT model accepts a coin
and a request for coffee (inputs). Depending
on when the request for coffee is issued, weak
(light) or strong coffee (outputs) is produced.
However, allowing insufficient brewing time
results in a light coffee. Waiting less than 30
time units definitely results in a light coffee,
and waiting more than 50 definitely results in a
strong coffee. Note the non-determinism when

the request is issued in the time interval [30,
50[. The choice is non-deterministic, meaning
that the SUT/implementor may decide what to
produce. After the request, the machine takes
10 to 30 (30 to 50) time units to produce light
coffee (strong coffee). The user requesting for
strong coffee can take his/her coffee at any time
during its preparation and can again put back the
cup to resume what remains in the machine, on
the condition to not exceed 5 time units. This
service is not allowed for the user requesting
light coffee. The machine makes internal actions
to be reset or to choose between preparing light
or strong coffee in the non-deterministic case.

The LPrSwTPN shown in Figure 4 can be
composed in parallel with the environment
models MEni shown in Figure 5, 6 and 7 respec-
tively. We obtain three composed models
M i = M S U T | | M E n i (i = 1 2 3, ,) o v e r
A
in
= { }coin, req, tackeCup, returnCup a n d

A
out
={ }strongCoffee,lightCoffee . Figure 5

models potential users of the machine that pay
before requesting coffee and take their coffee
after its preparation. In Figure 7, the user re-
questing for strong coffee can take his/her
coffee at any time during its preparation and
can again put back the cup to resume what
remains in the machine.

Figure 3. PrSwTPN example

Figure 4. MSUT: a specification LPrSwTPN of the SUT coffee machine

Figure 5. An environment model MEn1

Figure 6. n other environment MEn2

6.1.3 Semantic of LPrSwTPN

6.1.3.1 Timed Transition Systems
Timed Transition Systems (TTS) describe
systems that combine discrete and continu-
ous evolutions. Here, they are used to define
the semantics of the parallel composition of
LPrSwTPN.

A TTS over a finite set of actions A
Sτ is a

transition system E = →()E e A
S

, , ,
0 τ where

E is the, possibly infinite, set of states of the
system,e

0
is the initial state,A

Sτ is the set of
actions composed of internal action τ and
couples of synchronizing actionsA

S
. The tran-

s i t i o n r e l a t i o n
→⊆ × ×() { }()×≥E A A E

S
* ∪ ∪�τ

0
 consists

of (1) discrete transitions e e
a a, ,

'() →
λ or

e eτ → ' representing instantaneous actions
(a a A

S
,() ∈ and λ ∈ A* is the set of eventual

suspended actions that may arise by the firing
of a a,()) and (2) continuous (delay) transitions

e ed → ' representing the passage of d units
of time. Moreover, we require the following
standard properties for TTS: (1) Time-deter-
minism: if e ed → ′ and e ed → ′′ then
′= ′′e e , (2) 0-delay: e e0 → , (3) Additivity:

if e ed → ′ and ′ → ′′ ′∈()′
≥e e d dd , , �

0

then e ed d+ ′ → ′′ , (4) Continuity: if
e ed → ′ t h e n

∀ ′ ′′ ∈ = ′+ ′′() ∃()≥d d d d d e, : "�
0

 such that

e e ed d' "" ' →  → .

6.1.3.2 Notations for TTS
Let..α α, ,

0...n
∈ A

S

β β τ,
0 0...n
∈ { } ≥∪ �

ω ω τ, *
0...n
∈ ×() { }A A

S
∪

λ λ, *
0...n ∈ A ,d d

O
,

0...n
∈ ≥� .

We write e α λ, → iff e eα λ, → ′ and
 e β → iff e eβ → ′ for some ′e . The
transition relation  → � is the relation→
where internal actions were abstracted (

 → ∈ ×()()≥
∗

� ∪ �A A
S

*
0

). We write

e α λ, → ′�e

iff e eτ α λ τ →  →  → ′* *,

and e d e → ′�

iff
e

e

d

d dn

τ τ

τ τ

 →  →  →

 →  →  →  → ′

* *

* *

0

1 �
 (

d d d dn= + + +0 1 �). We write e α λ, →�

Figure 7. An other environment model MEn3

i f f e α λ, → ′�e and e d → � i f f

e d e → ′� for some ′e . We extend  → �

to sequences in the usual manner e σ → ′�e

iff e e e e
n

= = ′ ∧
0
, e e

i i
i

-

, i

1

α λ → � or

e e
i

d

i
i

-1
 →� where

σ α λ α λ α λ=d d d
n n n0 0 1 1 10

... .
A SUT (resp. an environment) model is

strongly input enabled iff e a

SUT

? →∏

(resp. e a

Env

? →∏) for all states e and for
all input (resp. output) actions a? . It is weakly

input enabled iff e a

SUT

? →∏ � for all states
e and for all input actionsa? . We assume that
input actions (seen from the system point of
view) are controlled by the environment and
outputs are controlled by the system. An input
enabled system cannot refuse input actions.
However it may decide to ignore the input by
executing a synchronizing transition that results
in the same state. A SUT model is non-blocking
iff for any state e and anyd ∈ ≥� 0

there is a

timed trace σ α λ α λ= +d d
n n n0 0 10

... where

α
i i i
a a= (), and a A

i out
∈ (all the first com-

ponents of the SUT are outputs), such that
 e σ → � and d d

ii
≥∑ . Thus the SUT

will not block time in any input enabled envi-
ronment. This property ensures that a system
won’t force or rush its environment to deliver
an input, and vice versa, the environment will
never force outputs from the system.

An observable timed trace is the timed

word σ ∈ ×()()∗
≥

∗

A A
S

∪ �
0

which is of the

form σ α λ α λ= +d d
k k k0 0 0 1

 ... where α
i
 is

a couple of synchronizing actions andλ
i
is an

eventual set, may be empty, of suspended ac-
tions which may appear after the firing of α

i
.

We define the observable timed traces of a state
e as:
 TTr e A A

S() = ∈ ×()()  →










≥

∗

σ σ* ∪ � �
0

e .

For a state e (and a subset ′ ⊆E E) and a timed

trace σ , After e,σ() is the set of states which
c a n b e r e a c h e d a f t e r σ .
After e e e e,σ σ() = ′  → ′{ }� ,

After E After e
e E

′() = ()
∈ ′

, ,σ σ∪ . The set

Out e() of observable active and suspended
outputs or delays from states e E∈ ′ ⊆ E is
d e f i n e d a s :
Out e

a A A a A e

d e

out in

a a

d

()=
()∈ × ∃ ∈  →{ }
∈  →{ }

()

≥

, :* , ,λ λ
� ∪

� �
0

,

Out Out′() = ()
∈ ′

E
Ee

e∪
6.1.3.3 States of an LPrSwTPN
A state of an LPrSwTPN is a pair e m= (), I ,
where m is a marking of the net. A marking is
a function m : P→ +� with m p() the num-
ber of tokens in place p . A transition t is enabled
at markingm iff m t≥ ()Pre . We denote by

En m() the set of transitions enabled at m . It
is then equal to
 En m t m t() = ∈ ≥ (){ }T Pre/ . In addition,
an enabled transition t at m is active iff
m t≥ ()Sw , otherwise it is said “suspnded”.
The set of active (resp. suspended) transitions
at m is denoted by
Ac m t t En m m Sw t() = ∈ ()∧ ≥ (){ }

(resp. Su m t t En m m Sw t() = ∈ ()∧ < (){ }
). M e() is the marking of the state e . I is a
partial function called the interval function. It
associates exactly a temporal interval in i+
with every enabled transition (I :En m() → i+).

I t() represents the firing interval of the enabled

transition t. Intuitively, if t Ac e∈ ()()M , I t()
is shifted towards the origin as time elapses,
and truncated to no negative times while a
suspended transition ′ ∈ ()()t Su eM has its

temporal interval I ′()t unchanged. Assuming
that the amount of time that has elapsed since

t is enabled for the last one is θ then
I Ist t() = ()−� θ if t is an active transition. An
enabled transition t is fireable if (1) it is active,
(2) it is immediately fireable (0 I∈ ()t) and, (3)
no other transition with higher priority is fire-
able at the same instant, (4) if t is sychronizing
transition then its complementary transition is
also fireable. After the firing, some transitions
are associated with their intervals Is t() and we
say that they are newly enabled. The initial state
is e m

0 0 0
= (), I

 where I I I
0 0 0
= ↓ ()



 ↑ ()









s s

En m En m, (the

interval function I0 is Is restricted to the en-
abled transitionsEn m

0()).
The initial state of the LPrSwTPN M1=MSUT

||MEn1 is e p q t k
0 0 0 0 0

0 0= ∞

() ∞


(){ }(), , , , , ,

where (places p q
0 0
, are both marked with one

token),
En m t k

0 0 0() = { }, , Ac e t kM
0 0 0()() = { },

and Su eM
0()() = φ . The transitions (,)t k

0 0

labeled respectively by (coin?, coin!) can be
fired respectively on 0,∞


 .

The temporal information in states will be
seen as firing domains instead of interval func-
tions. The firing domain of a state e m= (), I
is then described by an equations linear system
with one variable per enabled transition (noted
as transitions). The state will be then noted
e m= (), D

where D t En m t
t

= ∀ ∈ ()() ∈ ()(){ }φ φ I .

T h e s t a t e e m
0 0
= (), D0 o f M 1 i s

e m
t k0 0

0 0
0 0

= ≤ ≤{ }(), ,φ φ φ .

6.1.3.4 Newly Enabled Transition
For m ∈ �+ , l ∈ TSUT and t ∈ Tτ such that
t En m∈ () and t Ac m∈ () we define a

predicate neτ l m t, ,() which is true if l is
newly enabled by the firing of t from m , and

false otherwise. Formally, the predicate is
defined by:
neτ l m t

l En m t t

l En m t l t

, ,() =
∈ − ()+ ()() ∧
∉ − ()() ∨ =()



 Pre Post

Pre












. F o r

m k∈ ∈�+ T, , t ∈ −()T TSUT τ a n d

′ ∈ ()t CT tSUT such that t t En m, ′ ∈ () and

t t Ac m, ′ ∈ () the predicate ne
a a
k m t t

,
, , , ′()()

which is true if k is newly enabled by the fir-
ing of t tand ′ simultaneously from m , and
false otherwise by:

ne
a a
k m t t

k En m t t t t
,

, , , ′()() =
∈ − ()− ′()+ ()+ ′()()∧Pre Pre Post Post

kk En m t t k t k t∉ − ()− ′()() ∨ = ∨ = ′()














Pre Pre

.

The predicate ne
a a
k m t t

,
, , , ′()() (resp.

neτ k m l, ,()) indicates the necessity to associ-
ate to k its static interval after firing simultane-
ously the couple t t, ′() (resp. individually the
transition l) at the marking m . Intuitively, it
associates to the couple t t, ′() (resp. l) and to
the transitions that could not be fired in paral-
lel with t t, ′() (resp. l) their static intervals.
6.1.3.5 The Semantics of an LPrSwTPN
The s eman t i c s o f an LPrSwTPN
N = ()P,T,Pre Post, , , , , ,Sw m

s
≺

0
I Λ is a TTS

� �N = →()E e A
S

, , ,
0 τ where E is the set of

states m, I() of N , e
0

 its initial state and

→⊆ × ×(){ }()×≥E A A E
S

* τ ∪ �
0

 consists

of two kinds of transitions between states:
discrete and continuous transitions.
6.1.3.6 Transitions Firing Algorithms
The continuous transition relation is the result
of t ime elapsing. I t is defined by
e m e md= () → ′ = ′(), ,I I iff

1. 	 d ∈ ≥� 0

2. 	
 ∀ ∈() ∈ ()∧ ∈ () ⇒ ≤↑ ()()t t En m t Ac m d tT I

3. 	

 ∀ ∈() ∈ ()⇒ ′()=
∈ () ()−












t

t En m t

t Ac m t d
T

I
if then I

e
 �

llse I t()

A continuous transition of size d is pos-
sible iff d is not greater than the latest firing
time of all enabled and active transitions. (2)
Prevents time to elapse as soon as the latest
firing time of some active transition is reached.
All firing intervals of active transitions are
shifted synchronously towards the origin as
time elapses, and truncated to non negative
times (3). The elapsing of time has sense only
for active transitions and changes of dates are
thus made only for these transitions. Priorities
do not modify the time-elapsing rules: all en-
abled transitions are considered in (3), wheth-
er or not t has priority over them.

The discrete transitions are the result of the
transitions firings of the Petri net. As it is showed
above, they may be partitioned into internal
independent and synchronizing transitions.

•	 the internal independent transition relation
is defined by
 e m e m= () → ′ = ′ ′(), ,I Iτ iff

1. 	
 ∃ ∈() ∈ ∧ ∈ ()∧ ∈ ()()t t t En m t Ac mT TSUT τ

2. 	 0 ∈ ()I t

3. 	 ∀ ∈()
∈ ()∧ ∈

()∧ ⇒ ∉ ()











k

k En m k

Ac m t k k
T

SUT ≺ 0 I

4. 	 ′ = − ()+ ()m m t tPre Post

5. 	
∀ ∈() ′ ≥ () ⇒ ′() =(

() () ()
k m k k

k m t k k

T PreSUT I

if then I else Isneτ , ,

An internal transition t of the model MSUT
may fire from a state m, I() if it is enabled and
active at m (1), immediately firable (2) and no
internal or synchronizing transition of the SUT
model with higher priority satisfies these con-
ditions (3). The conjunction 1 2 3()∧ ()∧ () is
called the fireability predicate of an internal

transition t from state e and is noted
e

SUT

τ →∏ . (4) is the standard marking
transformation. (5) In the target state, the tran-
sitions which are newly enabled are associated
with their static intervals.

•	 The synchronizing transition relation is
defined by
e m e m

a a Su m
= () → ′ = ′ ′()() ′(), ,

, ,I I iff

1. 	
 ∃ ∈ −() ()= ∧ ∈ ()∧ ∈ ()()t t a t En m t Ac mT TSUT τ Λ

2. 	 0 ∈ ()I t
3. 	
 ∀ ∈() ∈ ()∧ ∈ ()∧ ⇒ ∉ ()()k k En m k Ac m t k kTSUT ≺ 0 I

4. 	 ∃ ′∈() () = ∧ ′∈ ()()t t a t En mTEn Λ

5. 	 0 ∈ ′()I t
6. 	
 ∀ ′ ∈() ′ ∈ ()∧ ′ ′ ⇒ ∉ ′()()k k En m t k kTEn ≺ 0 I
7. 	
 ′ = − ()+ ′()()+ ()+ ′()m m t t t tPre Pre Post Post
8. 	
∀ ∈() ∈ ′() ⇒ ′() =(

′()() ()
k k En m k

k m t t k
a a

T I

if then I else Isne
,

, , , kk()
T h e s y n c h r o n i z i n g t r a n s i t i o n s

t t, ′() ∈ ×T TSUT En labeled respectively a a,()
may fire simultaneously from the state e if
they are enabled and active (1 and 4), immedi-
ately fireable (2 and 5) and neither a transition
of MSUT nor a transition of MEn with higher
priorities compared to t and ′t respectively
satisfies these conditions (3 and 6). The con-
junction 1 2 3()∧ ()∧ () (resp. 4 5 6()∧ ()∧ ())
is called the fireability predicate of the synchro-
nizing transition t of the SUT model (resp. ′t
of the environment model) from the state e
and it is noted e a

SUT
 →∏ (resp.

e a

Env
 →∏). (8) In the target state, the

transitions that remained enabled while t t, ′

fired (t t, ′ being excluded) retain their intervals,

the others which are newly enabled are associ-
ated with their static intervals.

With the properties of TTS, a run ρ of
� �N can be defined as a finite sequence of
moves
e e e e e

e e

d d

n n
n

0 0 1 1 2

1

0 0 1 1 → ′  →  → ′  →

 → +

ω ω

ω

�

where discrete and continuous transitions (pos-
sibly of duration 0) alternate. The discrete
transitions are either synchronizing transitions
followed by the eventual suspended actions (
ω α λ
i i i
= , w h e r e α

i
a a AS= ()∈, a n d

λ
i
A∈ * are suspended transitions) or pure

transitions (ω τ
i
=), and d

i i n,0≤ ≤ are their
relative firing times.

From the initial state e m
0 0
= (), D0 of the

composed model M1 Figure 4 and 5, if the cof-
fee machine receives a coin at 0.85t.u. then we
have a discrete transition t k

0 0
,() preceded by

a t empora l t r ans i t i on l ead ing t o
e p q t k

1 0 0 0 0
0 0= ≤ ≤{ }(), , . The firing of

t k
0 0
,() labeled with (coin?, coin!) from e

1

leads to e m
2 1
=(), D2 where m

1 1 1
: p q ; D

2
:

0 1

0 3

30 2

50 1

≤ ≤∞
≤ ≤∞

≤ ≤∞
≤ ≤∞



 k

t

t

t

 and t t t t t
2 1 3 1 2
≺ ≺ and , . Suppose

that the user requests a coffee at 10t.u. then the
transitions t k

3 1
,() labeled with (req?,req!) will

b e f i r e d t h u s d e f i n i n g t h e r u n
e e e

e
0

0 85
1 2

10
3

. ,

,

 →  →

 →  →

()

()

coin?,coin!

req?,req!

φ

φ
e

4

. At this time,

t t
1 2
 and can’t f i re (the pred ica te

e t

SUT 3
3 →∏ i s t r u e w h i l e

e
t

SUT

i i

3

1 2=() →∏ , are both false because

0
1

∉ ()I t and 0
2

∉ ()I t) The states e m
3 1
=(), D3

and e m
4 2
=(), D4 where D

3
:

0 1

0 3

20 2

40 1

≤ ≤∞
≤ ≤∞

≤ ≤∞
≤ ≤∞



 k

t

t

t

and

m
2 4 2
: p q ;D

t

k

k
4

9

2

3

10 30

0

0

:

≤ ≤
≤ ≤∞
≤ ≤∞










From e
4

 only the synchronizing transitions
t k
9 3
,() can be fired while k

2
 can’t be fired (

e k

Env 4
2 →∏ is not true because the

complementary transition Λ k
2() is not enabled).

Their firing after 20t.u. (e.g. the brewing of a
light coffee takes 20t.u.) from the state e

4
 leads

t o e
0

 p a s s i n g b y e m D
5 2 5
=(),

e e e
4

20
5 0

 →  →()()lightCoffee!,lightcoffee? ,φ where

D

t

k

k
5

9

2

3

0 10

0

0

:

≤ ≤
≤ ≤∞
≤ ≤∞










.

Suppose now that the user requests a cof-
fee at 55t.u. then the transitions t k

1 1
,() labeled

with (req?,req!) will be fired at this time. The
c o r r e s p o n d i n g r u n i s
e e e

2
55

6 7
 →  →()req?,req! ,φ . Observe that

from e
6

, despite t En m
i
∈ ()1 , t Ac m

i
∈ ()1 and

0 ∈ ()I t
i

 i =()1 2 3, , only t
1
 can be fired and

the user can only have a strong coffee. The
predicate e t

SUT 6
1 →∏ is true while

e
t

SUT

i i

6

2 3=() →∏ , are both false because

t t t
2 3 1
, ≺ . The states e m

6 1 1 1
=(): ,p q D6 where

D

t

t

t

k

6

1

2

3

1

0

0

0

0

:

≤ ≤∞
≤ ≤∞
≤ ≤∞
≤ ≤∞











and e m
7 3 2 3 2
=(): ,p p q D7

where D

t

t

k

k

7

4

8

2

3

0

30 50

0

0

:

≤ ≤∞
≤ ≤
≤ ≤∞
≤ ≤∞











 .

The transitions t
4

and k
3

 can’t fire (

e t

SUT 7
4 →∏ and e k

Env 7
3 →∏ are

false (the complementary transitionΛ k
3() is

not enabled and there is no complementary
transition of t

4
). The firing of t k

8 2
,()after

35t.u.(e.g. the brewing of a strong coffee takes
35t.u.) from e

7
 leads to e

0
 passing by

e m D
8 3 8
=(), a n d e m p p q D

9 4 2 7 0 9
= =(),

e e e e
7

35
8 9

 →  →  →()strongCoffee!,strongcoffee? ,φ τ
00()

where D

t

t

k

k

8

4

8

2

3

0

0 15

0

0

:

≤ ≤∞
≤ ≤
≤ ≤∞
≤ ≤∞











 and D
t

k9
10

0

0 0

0
:
≤ ≤

≤ ≤∞






.

Consider now the model M2 composed of
MSUT and MEn3 (Figure 4 and 7). Starting from
the init ial state ′e

0
, the t imed trace

σ φ φ= ()() ()()0 85 55. , ,coin?, coin! req?,req!
is performed by M2. We have the sequence of
transitions
′  → ′  → ′ → ′() ()e e e e
0

0 85
1 2

55
3

. ,coin?,coin! req?,req!φ ,,φ
 → ′e

4

and then σ ∈ ′()TTr e
0

; After ′() = ′{ }e e
0 4
,σ

where ′= ′ ′()e m
4 2

, D4 and ′m
2 2 3 5
: p p q and

D

t

t

k

k

4

4

8

6

10

0

0 15

0

0

′

≤ ≤∞
≤ ≤
≤ ≤∞
≤ ≤∞











: .

As above, the user cans only be served a
strong coffee because he has requesting for a
coffee at 50t.u. Suppose that he likes to taste
the coffee during its preparation and return
the cup to have the remain of his coffee. He
can takes the cup and returns it not after than
5t.u as specified in Figure 4. suppose that he
takes it at 35t.u and return it at 4t.u. We have
the following run
′  → ′  →()e e
4

35
5

tackeCup?,tackeCup! strongcoffee!,

′  → ′  → ′  → ′)(e e e e
6

4
7 8

0 5
9

returnCup?,returnCup! , .φ

τ → ′  → ′  → ′(

)
e e e

10
10

11 12

strongcoffee!,

strongcoffee? ,φφ
 → ′e

0

and:

2. 	
Ac e

t t k k

M ′()() =6

5 7 7 9
, , , : returnCup?labeled respectively by ,,

 returnCup!,strongcoffee?τ,















3. 	
Su e t tM ′()() = ()={ }6 8 8

Λ strongCoffee!

4. 	
Out ′()= (){ } ∪ ∈ ≤{ }≥e d d

5 0
5φ,strongCoffee! �

(a suspended output strongCoffee! and a
delay d).

6.1.4 Non-Determinism and Time

For many real-time systems the ordering or tim-
ing of events cannot be known a priori, and hence
a deterministic model cannot appropriately
capture its behavior. Non-determinism plays
a particular role because it is used to express
timing and ordering uncertainty. A typical real-
time requirement is that the SUT must deliver
an output within a given time bound, but as long
as the deadline is satisfied, the SUT conforms.
In TTS, this is specified as a nondeterministic
choice between letting time pass and producing
an output. In LPrSwTPN this is described by
associating a temporal interval with the transi-
tion producing the output. Non-determinism
is also used in specification as a means of
abstraction. It may be that the implementation
internally exhibits non-determinism that can-
not be observed or controlled by the tester. A
further typical use of non-determinism is to
model optional behavior that is permitted, but
not required by all implementations.

A non-deterministic model may reach
several possible states after having executed an
action, and as a consequence it may have dif-
ferent possible next behaviors. This possible
set of states represents the uncertainty the tes-
ter has about the exact state of a (conforming)
SUT, and the tester must be prepared to accept
any legal next behavior according to the state
set. Non-deterministic timed specifications are
algorithmically and computationally more

complex to analyze because they require sym-
bolic manipulation of sets of infinite sets of
states. The required reachability algorithms for
online testing are similar to those used for
model analysis except that only states up to a
certain time limit need to be computed. Due to
non-determinism it is necessary to represent
the state-set as a set Q of symbolic states.

The specification of Figure 4 is non-deter-
ministic in two ways. First, the coffee machine
switches state within interval delays, but it is
unknown when. Thus from e.g., state e

7
the

controller of the coffee machine may execute
a n y o f t h e o b s e r v a b l e t r a c e s ,
d. strongCoffee!, strongcoffee?(),30 d 50≤ ≤ .
N o t e t h a t
Out e d d

7
30 50()= (){ } ∪ ∈ 


{ }strongCoffee!,φ ,

(An active output strongCoffee! , no sus-
pended output and a delay d). Second, there are
several next states to a request for a coffee if it
i s i s sued i n t he i n t e rva l 30,50





e.g.After e
2
,40 req?,req!()() the machine may

brew in non-deterministic way light or strong
coffees.

6.1.5 Symbolic State-
Set Computation

Because of temporal non-determinism (dense
time), a state may admit an infinity of successor
states, which implies that the state space of an
LPrSwTPN may be infinite. Finitely represent-
ing state spaces involves grouping some par-
ticular sets of states into symbolic states. For
TPN, state space abstractions are available that
preserve markings and all traces, and states and
traces (Berthomieu, 2008). Unfortunately, the
first abstraction termed SC for classical State
Class is too coarse to preserve the effects of
priorities (Berthomieu, 2007) We investigate
in this paper the extensions of the second ab-
straction termed SSC (for Strong State Classes),
also called state zones by some authors, to
LPrSwTPN. For the construction of the SSC,
clock domains serve this purpose where the
principal is as follows. With each reachable

state, one may associate a clock function γ .
The later associates with each enabled transition
at the state the time elapsed since it was last
enabled. Clock functions may also be seen as
vectors γ indexed over the enabled transitions

(γ
t
is the time elapsed since t was last enabled).

The initial state of the LPrSwTPN M1=MSUT

||MEn1 is s p q
t k

0 0 0
0 0

0 0= = =








, ,γ γ .

Informally, the system leaves the initial
state s m t En m

t0 0 0
0= = ∈ ()(),γ by mak-

ing alternately two types of transitions: discrete
transitions if the current value allows it and
time transitions that increase the clock values
of the active transitions by the same duration.
The time in the suspended transitions is frozen.
So, when a frozen transition becomes active
again, due to a change in markings, it resumes
with the clock domain captured in the state
rather than the value 0. The new transition rela-
tion  is also decomposed to:

1. 	 The continuous transition defined by

s m s m
d

= () ′ = ′(), ,γ γ iff

a. 	 d ∈ ≥� 0

b. 	

 ∀ ∈() ∈ ()∧ ∈ ()⇒ ≤↑ ()−()t t En m t Ac m d t
t

T Is γ

c. 	 ∀ ∈() ∈ ()⇒ ′ =

∈ () +












t

t En m

t Ac m d
t

t t

T
γ

γ γif else
2. 	 The internal independent transition relation

d e f i n e d b y

s m s m= () ′ = ′ ′(), ,γ γ
τ

 iff

a. 	 ∃ ∈() ∈ ()∧ ∈ ()()t t En m t Ac mTτ
b. 	 γ

t
t∈ ()Is

c. 	

 ∀ ∈()
∈ ()∧ ∈ ()∧
⇒ ∉ ()












k

k En m k Ac m

t k k
k

TSUT ≺ γ Is

d. 	 ′ = − ()+ ()m m t tPre Post

e. 	
∀ ∈() ∈ ′() ⇒ ′ =(

())
k k En m

k m t
k

k

TSUT γ

γτ

if then 0 elsene , ,

3. 	 The synchronizing transition relation de-

fined by m m
a a Su m

, ,
, ,

γ γ() ′ ′()
() ′()
 iff

a. 	
 ∃ ∈ −() () = ∧ ∈ ()∧ ∈ ()()t t a t En m t Ac mT TSUT τ Λ

b. 	 γ
t

t∈ ()Is

c. 	

 ∀ ∈() ∈ ()∧ ∈

()∧ ⇒ ∉ ()











k

k En m k

Ac m t k k
k

TSUT ≺ γ Is

d. 	
 ∃ ′ ∈() ′() = ∧ ′∈ ()∧ ′∈ ()()t t a t En m t Ac mTEn Λ

e. 	 γ
′
∈ ′()t

tIs

f. 	
 ∀ ′ ∈() ′ ∈ ()∧ ′ ′ ⇒ ∉ ′()()′
k k En m t k k

k
TEn ≺ γ Is

g. 	
 ′ = − ()+ ′()()+ ()+ ()m m t t t tPre Pre Post Post

h. 	
∀ ∈() ∈ ′() ⇒ ′ =(

′()())
k k En m

k m t t
k

a a k

T γ

γ

 iff

then 0 else ne
,

, , ,

From the initial state in the model M1, if
the coffee machine receives an input request
from the user at 0.85t.u. then we have a transi-

tion s s
0

0 85

1


.

(s p q
t k

1 0 0
0 0

0 85 0 85= = =








, . , .γ γ). The

firing of the synchronizing transitions t k
0 0
,()

from s
1
 leads to

 s
2

s s
t t t k

1 2 1 1
1 2 3

1

0 0 0 0
coin?,coin!()

= = = = =









,

, , , ,
φ

γ γ γ γ

p q 












.

As we have shown above the state space
of an LPrSwTPN may be infinite. Therefore,
we use the SSC abstraction. A class or a sym-
bolic state is of the form m Q,() : a marking and

a clock system Q G g= ≤{ }γ . The set of

states denoted by m Q G g, = ≤{ }()γ is the

set m Q, φ γ γ() ∈{ } , where Q is the

solution set of Q and firing domain φ γ() is

t h e s o l u t i o n s e t i n φ o f :

0 ≤ ≤ + ≤φ φ γand er lt where

er kk ≤↓ ()Is and lt kk ≤↑ ()Is . The initial

symbolic state m Q
0 0
,() is obtained from the

state m Q
0
, ε() where

Q G g m

m t En m

t

d

t

0 0

0 0

0 0= { ′ ≤ ≤ ≤()
′






∧ ∈ () }
γ γ

γ

,

,


 and

Q t En m
tε γ= ≤ ≤ ∈ (){ }0 0

0
. The solu-

tion set Qε assigns all clocks of enabled

transitions En m
0() to zero.

A symbolic computation step consists of
performing a synchronizing or an internal ac-
t i o n , n o t e d r e s p e c t i v e l y b y

m Q m Q
a a Su m

, ,
, ,

() ′ ′()
() ′()


and m Q m Q, ,() ′ ′()
τ

, followed by some
d e l a y . I t i s p e r f o r m e d i f f

m m
a a Su m

, ,
, ,

γ γ() ′ ′′()
() ′()
 or

m m, ,γ γ
τ

() ′ ′′() and
′ =

′ ≤ ′ ()
′ ′′







∧ ′ ′′








() ′()

Q

G g m

m m

a a Su m

γ γ

γ γ

,

, ,

, ,



 ′ ′()





















d

m ,γ

 or

′=

′≤ ′ () ′ ′′






∧ ′ ′′






 ′ ′()

Q

G g m m m m
d

γ γ γ γ γ
τ

, , , , 












.

Symbolic transition relation between classes
 are:

1. 	 The internal symbolic transition

m Q m Q, ,() ′ ′()
τ

iff
a. 	

 ∃ ∈() ∈ ∧ ∈ ()∧ ∈ ()()t t t En m t Ac mT TSUT τ

b. 	 Q augmented with
i. 	 ↓ ()− ≤Is t t

γ 0

ii. 	
 ↓ ()− > ∈ ∧ ∈ ()∧ ∈ ()∧{ }Is k k k En m k Ac m t k

k
γ 0 TSUT ≺

is consistent
c. 	 ′ = − ()+ ()m m t tPre Post
d. 	 ′′Q obtained by

i. 	 The constraints (b) above, and
ii. 	

 ∀ ∈ ′()() ′′ = ()()k En m k m t
k k

γ γτ if then 0ne , , else

iii. 	 The variables γ are eliminated

e. 	 ′′Q augmented with
i. 	 d ≥ 0
ii. 	

d k k En m k Ac m
k

≤↑ ()− ′′ ∈ ′()∧ ∈ ′(){ }Is γ

is consistent
f. 	 ′Q obtained by the constraints (5)

above, and
i. 	

 ∀ ∈ ′()()
′ = ∈ ′() ′′ +

′ ∈ ′
k En m

k Ac m

d k Su
k k

k

γ γ

γ

 if then

 else

 mm()()












ii. 	 The variables ′′γ and d are
eliminated

2. 	 The synchronizing symbolic transition

mQ m Q
a a Su m

, ,
, ,

() ′ ′()
() ′()
 iff

a. 	

 ∃ ∈() ∈ − ∧ () =
∧ ∈ ()∧ ∈ ()












t

t t

a t En m t Ac m
T

T T
SUT

τ Λ

b. Q augmented with
i. 	 ↓ ()− ≤Is t t

γ 0

ii. 	

 ↓ ()− >

∈ ∧ ∈ ()∧ ∈ ()∧














Is k

k k En m k Ac m t k
k
γ

0 TSUT ≺

c. 	
 ∃ ′∈() ′() = ∧ ′∈ ()∧ ′∈ ()()t t a t En m t Ac mTEn Λ

d. Q augmented with
i. 	 ↓ ′()− ≤

′
Is t t

γ 0

ii. 	
↓ ′()− >

′ ∈ ∧ ′ ∈ ()∧ ′ ′















′
Is k

k k En m t k
k
γ 0

TEn ≺
 is

consistent

e. 	

′ =

− ()+ ′()()+ ()+ ()
m

m t t t tPre Pre Post Post

f.
′′Q obtained by (a) The constraints
(2) and (4) above, and

i. 	

 ∀ ∈ ′()()
′′ =

′()()




k En m
k m t t

k

a a k

else

γ

γ

 if then 0ne
,

, , ,







ii. 	 The variables γ are eliminated

g.
′′Q augmented with

i. 	 d ≥ 0
ii. 	
 d k k En m k Ac m

k
≤↑ ()− ′′ ∈ ′()∧ ∈ ′(){ }Is γ

is consistent
h.
′Q obtained by

i. 	 The constraints (g) above, and
ii. 	

 ∀ ∈ ′()()
′ =

∈ ′() ′′ +

′′ ∈ ′(
k En m k Ac m

d k Su m

k

k

k

γ

γ

γ

if then

 else

))()













iii. 	 The variables ′′γ and d are eliminated

7. THE RSWTIOCO
CONFORMANCE RELATION
AND TEST HYPOTHESIS

A conformance relation formalizes the set of
SUT that behave correctly compared to a ref-
erence specification. In this paper, we require
Relativized Stopwatch Timed Input/Output
Conformance relation (rswtioco). This rela-
tion supports reactivity, timing, suspension/
resumption principal characteristics of real time
systems and tacks environment assumptions
into account. So, it is indexed by the name of
the considered environment (rswtiocoEn). Our
notion derives from the rtioco relation (Hessel,
2008). The latter is itself an extension of tioco
(Krichen, 2009) which in turn is an extension
ioco (De vries, 2000 ; Tretmens 1999).

Under assumptions of weak input enabled-
ness rswtiocoEn coincides with relativized timed
trace inclusion i.e. Timed Traces of the SUT
operating under an environment En must be

included in those of the specification under the
cover of the same environment. Like rtioco,
this relation ensures that the SUT has only the
behavior allowed by the specification with the
difference that outputs here may be both stan-
dard outputs or delays and indicator outputs
(suspended actions). In particular, 1) the SUT is
not allowed to produce an output at a time when
one is not allowed by the specification, 2) it is
not allowed to omit producing an output when
one is required by the specification (the SUT
may delay only if the specification also may
delay). Unlike tioco (Krichen, 2009) rswtioco
distinguishes between the system’s constraints
and the environment’s ones. Due to this separa-
tion, testing can be limited to certain parts of
the SUT (model). So, the question “does the
SUT conform to its specification?” is answered
not for any type of possible environment but
for the considered one. A “yes” answer to the
previous question obtained for one environment
still applies to more restrictive environments. A
relativized conformance relation can be help-
ful to give restrictions of the environment to
avoid generating and executing uninteresting
test cases. These restrictions can also be seen
as guiding to especially wanted test cases. So,
in order to test the suspension or resumption of
an action a we have to consider the (part of the)
environment that drives the syntactical parts of
the SUT that satisfies this objective, the input
to supply to the SUT, and also when to supply
it, that enable to suspend or resume the action
a (see Algorithm 1).

The rswtioco relation does not only allow
outputs to be emitted in advance or on late by
the SUT but also allows having more informa-
tion about the non-conformance of a system.
So, when the system emits an indicator or an
output that was not expected at that time, then
we can know if that indicator (resp. output)
must be an active output (resp. an indicator)
or nothing (see algorithm 1). The proposed
rswtioco relation makes it possible to answer
another question: “does some action a resume
at the expected date?

A SUT is not a formal object. However, for-
mally proving its conformity requires modeling
its semantics by a formal object. We assumes it

can be modeled by an unknown LPrSwTPN de-
noted MHI (hypothesis implementation model).
For the SUT to be testable the LPrSwTPN of its
specification should be controllable in the sense
that it should be possible for an environment
to drive the model through all of its syntacti-
cal parts (transitions and places). We therefore
assume that the SUT specification is a weak-
input enabled and non-blocking LPrSwTPN,
and that the SUT can be modelled by some
unknown weak-input enabled and non-blocking
LPrSWTPN. We allow for the SUT to be reset
to its initial state.

Given an environment En expressed by the
LPrTPN model MEn, a SUT I expressed by an
unknown LPrSwTPN model MHI and a speci-
fication S of the SUT expressed by the LPr-
SwTPN model MSUT. Let M be the LPrSwTPN
of S together with its intended environment
(M=MSUT ||MEn) with the initial states

0
 and M’

be the LPrSwTPN of the SUT together with the
same environment (M’=MHI ||MEn) with the
initial statee

0
. Let M and M’ be two weak-

input enabled and non-blocking LPrSwTPN.
The En-relativized conformance relation rsw-
tiocoEn between systems I and S is defined as:

I rswtioc S iff TTr M

Out After e Out After s
En

∀ ∈ ()
()() ⊆ ()

σ

σ σ

:

, ,
0 0(()

	

(1)

Whenever I SEnrswtioc we say that I is
a correct implementation of the specification
S under the environment constraints expressed
by En. Given the notion of relativized confor-
mance, it is natural to consider the preorder on
environments based on their discriminating
power. For environments En and En’:

En En En En ′ ⊆′ iff rswtioc rswtioc (To
be read En’ is more discriminating than En).	

It follows from the definition of rswtiocoEn
that En En ′ iff the behaviour of En is in-

cluded in the behaviour of En ′ . There is a most

(least) discriminating input enabled and non-
blocking environment Enu (Eno) (See Figure
1 0 (a) a n d 1 0 (b)) g i v e n b y
TTr A TTr A

out
E Enu no() = () () = ∪()






≥

∗

≥

∗
∪ � �

0 0
.

The corresponding conformance relation rsw-
tiocoEnu (rswtiocoEno) specializes to simple trace
inclusion (timed output trace inclusion).

Moreover, because we treat environment
constraints explicitly and separately, rswtiocoEn
has some nice theoretical and practical attractive
properties that allows the tester to re-use testing
effort if either the environment assumption is
strengthened, or if the system specification is
weakened. Assume that I SEnrswtioc , then
without re-testing

if then S S I SEn ′ ′rswtioc 	 (2)

if then En En I SEn
′

′ rswtioc 	 (3)

In the following we exemplify how our
conformance relation discriminates systems,
and illustrate the potential power of environment
assumptions and how this can help to increase
the relevance of the generated tests for a given
environment.

The implementation I1(Il, Is) in Figure 9
produces light coffee (strong coffee) after less
than 40t.u. (more than 41t.u) and an additional
brewing time in ↓ ↑



I Il l, (↓ ↑



I Is s,). Notice

Figure 8. An environment model MEn4

Figure 9. MSUT1: A SUT: I1((Il, Is) of the coffee machine

that I1 ↓ ↑




 ↓ ↑



()I I I Il l s s, , , does not allow the

user requesting light coffee to take his cup
before the brewing time Il. Observe that any
trace of the SUT I1([20, 25],[40, 45]) in Enu can
be matched by the specification; hence I1([20,
25],[40, 45]) rswtiocoEnu S. Thus also I1([20,
25],[40, 45]) rswtiocoEni S (i= 1,2,3,4) by (3).
In contrast, I1([2, 5],[60, 70]) rswtiocoEnu S for
two reasons: 1) it has the timed trace: 10.
(coin?,coin!)ø.30.(req?,req!)ø.3.
(lightCoffee!,lightcoffee?)ø that S does not, i.e.
it may produce light coffee too soon (no time
to insert a cup); 2) it has a trace: 15.(coin?,coin!)
ø.50.(req?,req!)ø.65.
(strongCoffee!,strongcoffee?)ø not in S mean-
ing that it produces strong coffee too slowly.
The SUT can thus perform standard outputs at
a time not allowed by the specification. Assume
now that the strong coffee error is fixed, and
that the machine I1([2, 5],[40, 45]) is used in
the restricted environment En2; here despite the
remaining light coffee error in Enu, I1([2, 5],[40,
45]) rswtiocoEn2 S because En2 never requests
light coffee. The SUT I2 shown in Figure 11 is
different from I1. It allows all users to take their
coffee during its preparation (including those
requesting light coffee). We have I2([20, 25],[40,
45]) rswtiocoEnu S and I2([20, 25],[45, 45])
rswtiocoEni S for i=3,4 because it has the timed
trace 10.(coin?,coin!)ø.30.(req?,req!)ø.10.
(tackeCup?,tackeCup!)
lightCoffee.4.(returnCup?,returnCup!)light-
Coffee.10.(lightCoffee!,lightcoffee?)ø that S
does not. The SUT outputs a suspended output

lightCoffee! at a time not allowed by the
specification. If the transitions k6 and k13 in the
environments En3 and En4 labelled with takeCup!
are associated with the interval 50 60,


 then

we have I2([20, 25],[45, 45]) rswtiocoEni S for
i= 3,4. In these cases, the transitions k6 and k13
will never be fired and thus the transitions
strongcoffee! and lightcoffee! will never be
suspended. Assume now that the strong coffee
error is fixed, and that the machine I2([2, 5],[40,
45]) is used in the restricted environment En2;
here despite the remaining light coffee error in
Enu, I2([2, 5],[40, 45]) rswtiocoEn2 S and thus
also I2([2, 5],[40, 45]) rswtiocoEn1 S because En2
never takes the cup during the preparation of
the coffee while En1 never requests light coffee.

8. TEST GENERATION
AND EXECUTION

The Main idea of the algorithm1 is the follow-
ing. Start where Q contains the initial sym-
bolic state m Q

0 0
,() . Then continually compute

the set of states Q that both the environment
composed to the specification can be in after
the observed test run so far. This is done until
either Q is empty (no legal states) or improper
suspended output(s) is (are) issued and a fail
verdict is assigned, or it has reached the defined
number of iterations N and a passed verdict is
assigned. The randomized online testing algo-
rithm is then a state estimator; it occupies a set
of symbolic states Q and modifies it after every
test event. The set Q is updated each time an

Figure 10. (a) the environment Enu (b) the environment Eno

input is offered or an output or a delay is ob-
served. This information allows us to choose
the proper test primitive and validate the outputs
of the SUT. The algorithm randomly performs
one of three basic actions: (1) Sends an input
a (enabled environment output) randomly
chosen among legal inputs according to Q to
the SUT, then updates Q according to
After Q , ?, !a a()() . (2) Waits for an output o
after a delay δ. Randomly chooses how long it
will wait. If an active output active o() and/or

suspended output(s) suspend o() or a delay δ’
≤ δ are observed, the tester verifies if these are
conforming to the specification. If it observes
an active output and/or suspended outputs
before the chosen time has passed, it updates
the state set Q according to how long it has
waited (After Q , ′()δ . It checks also if the
outputs are legal ones according toQ . If they
are legal outputs, Q is updated according to

After Q , ,active(o) active(o)()() ; else a fail

verdict is assigned. If no output is observed
during sleeping the setQ is updated according
to the passing of time (After Q ,δ()). (3) Resets
the SUT and restarts.

The functions used in Algorithm 1 are
defined as:

EnvOutput

a A t e
t

a ein a

Env

Q

Q

() =

∈ ∃ ∈ ∧ ∃ ∈() () =
∧  →





 ∏
!

! !TEn

Λ























	

Delays

d
t e

t a e e e a

Env

Q

Q

() =

≤
∃ ∈ ∧ ∃ ∈()
() = ∧  → ′ ∧ ′  →()




∏
δ δ

TEn

Λ ! !













	

ImpOutput Q

Q

()=

∈
∃ ∈ ∧ ∃ ∈()
() = ∧  →()




∏
a A

t e

t a eout a

SUT

!
! !

TSUT

Λ













	

ImpSuspend Q

Q

()=

∈
∃ ∈ ∧∃ ∈()
() = ∧ ∈ ()()()








a A

t e

t a t Su e

TSUT

Λ M










	

EnvOutput Q() is the set of input actions
(enabled environment outputs) that are allowed
by the environment in the current symbolic
state set Q , and is empty if the environment
model has no outputs to offer. RandomlyChoos-
eAction selects randomly an input from
EnvOutput Q() applicable to the SUT. If the
environment must offer an input to the SUT
before a certain moment in time, delays cannot
be randomly chosen; in this case,Delays must

Figure 11. MSUT2: Another SUT: I2((Il, Is) of the coffee machine

pick a real number from the interval that fulfils
those constraint. ImpOutput Q() is the set of
active output actions that are allowed according
to SUT specification in the current state set.
ImpSuspend Q() is the set of actions that are
suspended according to SUT specification in
the current state set. An output o is a pair (ac-
tive output, suspended actions) denoted

respectively by the functions active o() and

suspend o() . Any illegal occurrence or absence
of a standard output or a delay from the SUT
is detected if the set Q update by the function
After leads to an empty set, which happens
when the observed trace is not allowed by the
specification. The presence (resp. absence) of
improper (resp. proper) suspended outputs from

Algorithm 1. GenExeTest S E, , ,SUT N() // Generation and execution of test.

Initially Q := m Q
0 0
,(){ }

whileQ ≠ ∧ ≤φ iterations N do RandomlyChoose(Action, Delay, Restart)

 case Action: // offer an input to the SUT

 If EnvOutput Q() ≠ ∅ then

 a!:= RandomlyChooseAction EnvOutput Q()()
 send a! to the SUT

 Q Q:= a aAfter , ?, !()()
 case Delay: // wait for an output of the SUT. Sleep for δ and wake up on
output o
 (o contains eventually suspended actions) sent
by the SUT.

 δ := ()()RandomlyChooseDelay Delays Q
 if o occurs at δ’ ≤ δ then do

 Q Q:= After , ′()δ
 a!:= active(o)

 if Suspend o ImpSuspend() /⊆ ()Q then

 do return fail
 For each

b ! ∈ ()∩ ()ImpOutput Suspend oQ
 then “b! must be a an active
output”
 done

 if a ImpOutput!∉ ()Q then do return fail

 if a ImpSuspend!∈ ()Q then “a!

must
 be a suspended action”
 done

 else Q Q:= a aAfter , !, ?()()
 done

 else Q Q:= After ,δ()
 case Restart: Q := m Q

0 0
,(){ } and Reset SUT // reset and

restart

If Q = ∅ then return fail else return pass

SUT is detected if the outputs suspend o() are

not (resp. are) in ImpSuspend Q() .

T h e f u n c t i o n After ,Q α() (r e s p .

After ,Q δ()) computes the set of states ′Q

reachable after the action α ∈ A
S

(resp. time
delay δ). After computes a closure of states
reachable after performing all potential internal
transitions and one observable synchronizing

action or delay. It returns an empty set if the
action or delay was not allowed by the speci-
fication. Different strategies can be applied to
guide the test generation to interesting or un-
covered states by changing the model of envi-
ronment, “choose” functions and adopting them
to a particular test purposes.

Algorithm 4 computes the function
Closureδτ Q ,d() that collects the reachable
symbolic state set within a delay of d. The

Algorithm 2. After Q , a a,()()
Passed : := ∅ = () , Waiting Closureτ Q

 For each symbolic state m Q,() ∈Waiting

 For each symbolic transition m Q m Q
a a Su m

, ,
, ,

() ′ ′()
() ′()
 if

¬ ′ ′()()contains Passed m Q, ,

Then Passed Passed m Q: ,= ′ ′(){ }∪

return Closureτ Passed()

Algorithm 3. After Q ,δ()
After Q Q, = Closureδ δδτ() ′() () ∈ (){ }()m Q m Q, , ,

Algorithm 4. Closureδτ Q ,d()
Passed : := ∅ = , Waiting Q
 whileWaiting ≠ ∅ do

 Waiting Waiting : ,= − (){ }m Q // pick a symbolic state

 if m Q m Q
d

, ,() ′()
′

 where ′ ≤d d then

Passed Passed m Q: ,= ∪ ′(){ }
 For each symbolic transition m Q m Q, ,′() ′ ′′()

τ

if

¬ ′ ′′()()contains Passed m Q, ,

 then

Waiting Waiting: ,= ∪ ′ ′′(){ }m Q
return Passed

predicate Contains Q , ,m Q()() tests whether

a symbolic state m Q,() is covered by a sym-

bolic state inQ . Q is the set of solutions of
the temporal variables associated with the en-
a b l e d t r a n s i t i o n s . Closureτ Q() i s

Closureδτ Q , 0() . It collects the reachable
symbolic state set after all possible internal
transition in zero delay and.

9. CONCLUSION AND
FUTURE WORK

In this paper, we have studied algorithms for test-
ing real time systems applicable to LPrSwTPN
models. The latter have been selected for their
capacities to model suspend/resume operations
in real-time systems (whereas surveyed papers
on timed testing only address system/environ-
ment interactions and timeliness). First, we
have reviewed the efficient algorithms derived
from ordinary analysis algorithm, similar to
those used in model-checking and analyzing
tools and extended them to support the paral-
lel composition of LPrSwTPN. Second, we
have introduced a formal real-time correct-
ness relation rswtioco. It differs from tioco
because it addresses the constraints captured
by the system separately from the ones inher-
ent to the environment. Also, rswtioco differs
from both tioco and rtioco because the latter
were defined for timed automata, a modelling
technique which does not enable description
of suspend/resume operations i.e. operations
where the system’s context has to be stored and
restored later on. Finally, we have proposed an
online testing technique that makes possible to

handle non determinism and partly observable
systems and ensures thoroughness through vol-
ume and brute-force. The approach proposed
in the paper will be soon implemented in the
TINA model analyzer. We plan to address other
types of testing in the near future (in particular,
robustness testing).

REFERENCES

Adjir, N., de Saqui-Sannes, P., & Rahmouni, K.
M. (2009). Testing real-time systems using TINA.
[). Springer-Verlag.]. TESTCOM-FATES, LNCS,
5826, 1–15.

Alur, R., & Dill, D. (1994). A theory of timed autom-
ata. Theoretical Computer Science, 126, 183–235.
doi:10.1016/0304-3975(94)90010-8

Bérard, B., Cassez, F., Haddad, S., Lime, D., & Roux,
O. H. (2005). When are timed automata weakly timed
bisimilar to time petri nets? In FSTTCS, LNCS (Vol.
3821, pp. 273-284). Springer.

Bérard, B., & Dufourd, C. (2000). Timed automata
and additive clock constraints. Information Pro-
cessing Letters, 75(1–2), 1–7. doi:10.1016/S0020-
0190(00)00075-2

Bérard, B., & Haddad, S., & Sassolas. (2012). Inter-
rupt timed automata: Verification and expressiveness.
Formal Methods in System Design, 40(1), 41–87.
doi:10.1007/s10703-011-0140-2

Berthomieu, B., Lime, D., Roux, O. H., & Verna-
dat, F. (2007). Reachability problems and abstract
state space for timed petri nets with stopwatches.
Discrete Event Dynamic Systems, 17(2), 133–158.
doi:10.1007/s10626-006-0011-y

Berthomieu, B., Peres, F., & Vernadat, F. (2006).
Bridging the gap between timed automata and
bounded time petri nets. In FORMATS, LNCS, (Vol.
4202, pp. 82-97). Springer-Verlag.

Algorithm 5. Contains Q , ,m Q()()
 For each state m Q Q Q, ′() ∈ ⊆ ′Q if then return true

 return false

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1016/S0020-0190(00)00075-2
http://dx.doi.org/10.1016/S0020-0190(00)00075-2
http://dx.doi.org/10.1007/s10703-011-0140-2
http://dx.doi.org/10.1007/s10626-006-0011-y

Berthomieu, B., Peres, F., & Vernadat, F. (2007).
Model checking bounded prioritized time petri nets.
In ATVA, LNCS (Vol. 4762, pp. 523–532). Tokyo,
Japan: Springer. doi:10.1007/978-3-540-75596-8_37

Berthomieu, B., Peres, F., & Vernadat, F. (2008).
Abstract state spaces for time petri nets analysis.
In ISORC, IEEE computer Society, Orlando, FL
(pp. 298–304).

Berthomieu, B., Ribet, P. O., & Vernadat, F. (2004).
The tool TINA: Construction of abstract state spaces
for petri nets and time petri nets. International Journal
of Production Research, 42(14), 2741–2756. doi:10
.1080/00207540412331312688

Bertrand, N., Jéron, T., Stainer, A., & Krichen, M.
(2012). Off-line test selection with test purposes for
non-deterministic timed automata. Logical Methods
in Computer Science, 8(4).

Bouyer, P. (2004). Forward analysis of up-
datable timed automata. Formal Methods in
System Design, 24(3), 281–320. doi:10.1023/
B:FORM.0000026093.21513.31

Bouyer, P., Serge, H., & Reynie, P. A. (2006).
Extended timed automata and time petri nets (pp.
91–100). Turku, Finland: IEEE Computer Society
Press. doi:10.1109/ACSD.2006.6

Brinksma, E., & Tretmans, J. (2000). Testing transi-
tion systems: An annotated bibliography. In Proceed-
ings of the MOVEP 2000, LNCS, (vol. 2067, pp.
187-195), Nantes, France. Springer-Verlag

Cassez, F., & Larsen, K. G. (2000). The impressive
power of stopwatches. CONCUR, LNCS, 1877,
138–152.

Choffrut, C., & Goldwurm, M. (2000). Timed
automata with periodic clock constraints. JALC,
5(4), 371–404.

de Vries, R., & Tretmans, J. (2000). On-the-fly
conformance testing using SPIN. Software Tools for
Technology Transfer, 2(4), 382–393. doi:10.1007/
s100090050044

Diekert, V., Gastin, P., & Petit, A. (1997). Removing
epsilon-transitions in timed automata. STACS, LNCS,
1200, 583–594. doi:10.1007/BFb0023491

En-Nouary, A., Dssouli, R., Khendek, F., & Elqor-
tobi, A. (1998). Timed test cases generation based
on state characterization technique. In RTSS (pp.
220–229). IEEE Computer Society. doi:10.1109/
REAL.1998.739748

Hessel, A. Larsen k, G., Mikucionis, M., Nielsen,
B., Petterson, P., & Skou, A. (2008). Testing real-
time systems using UPPAAL. In Formal methods
and testing, LNCS (Vol 4949, pp. 77-117). Springer.

Krichen, M., & Tripakis, S. (2009). Conformance
testing for real-time systems. Formal Methods
in System Design, 34(3), 238–304. doi:10.1007/
s10703-009-0065-1

Lin, J. C., & Ho, I. (2000). Generating real-time
software test cases by time petri nets. IJCA (EI
journal). ACTA Press, 22(3), 151–158.

Merlin, P. M., & Farber, J. (1976). Recoverabil-
ity of communication protocols: Implications of
a theoretical study. IEEE Transactions on Com-
munications, 24(9), 1036–1043. doi:10.1109/
TCOM.1976.1093424

Nielsen, B., & Skou, A. (2001). Automated test
generation from timed automata. In TACAS (Vol.
2031, pp. 343–357). Genova, Italy: LNCS.

Tretmans, J. (1999). Testing concurrent systems: A
formal approach. In J. C. M. Baeten, & S. Mauw
(Eds.), CONCUR, ICCT, LNCS (Vol. 1664, pp.
46–65). Springer-Verlag.

Noureddine Adjir is an assistant Professor at the Computer Science Department, University of
Saida, Algeria. He received the magister in Computer science from University of Sénia, Oran,
Algeria. His research interests include Real-time systems modeling, formal methods. He has a
two decades experience in teaching modeling techniques and formal methods.

http://dx.doi.org/10.1007/978-3-540-75596-8_37
http://dx.doi.org/10.1080/00207540412331312688
http://dx.doi.org/10.1080/00207540412331312688
http://dx.doi.org/10.1023/B:FORM.0000026093.21513.31
http://dx.doi.org/10.1023/B:FORM.0000026093.21513.31
http://dx.doi.org/10.1109/ACSD.2006.6
http://dx.doi.org/10.1007/s100090050044
http://dx.doi.org/10.1007/s100090050044
http://dx.doi.org/10.1007/BFb0023491
http://dx.doi.org/10.1109/REAL.1998.739748
http://dx.doi.org/10.1109/REAL.1998.739748
http://dx.doi.org/10.1007/s10703-009-0065-1
http://dx.doi.org/10.1007/s10703-009-0065-1
http://dx.doi.org/10.1109/TCOM.1976.1093424
http://dx.doi.org/10.1109/TCOM.1976.1093424

Pierre de Saqui-Sannes received the Ph.D. and “Habilitation à Diriger les Recherches” in com-
puter science from Université Paul Sabatier and Institut National Polytechnique de Toulouse,
respectively. He is now a full professor at the department of Mathematics, Computer Science
and Control Theory at ISAE (Institut Supérieur de l’Aéronautique et de l’Espace) in Toulouse,
France. His research interests include Real-time systems modeling, bridging the gap between
SysML and formal methods, and protocol engineering. He has a two decades experience in
teaching modeling techniques (formal methods, real-time UML, SysML) to industry practitioners.

M.K Rahmouni is a Professor at the Computer Science Department, University of Oran-Sénia,
Oran (Algeria). He holds a PhD from Southampton University (1987) and his interests include
Computer Security, Modelization of Information Systems, and Real-Time Systems modeling.

	Reference r1
	Reference r2
	Reference r3
	Reference r4
	Reference r5
	Reference r6
	Reference r7
	Reference r8
	Reference r9
	Reference r10
	Reference r11
	Reference r12
	Reference r13
	Reference r14
	Reference r15
	Reference r16
	Reference r17
	Reference r18
	Reference r19
	Reference r20
	Reference r21
	Reference r22
	Reference r23
	Reference r24
	Reference r25
	Figure f01
	Figure f02
	Figure f03
	Figure f04
	Figure f05
	Figure f06
	Figure f07
	Figure f08
	Figure f10
	Figure f09
	Figure f11
	Boxed Text ba Text
	Boxed Text bb Text
	Boxed Text bc Text
	Boxed Text bd Text
	Boxed Text be Text

