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Abstract 
 

This study is an experimental investigation of the interactions between the bubbles, the coherent motion 

and the viscous drag in a Taylor Couette flow, for the outer cylinder at rest. The cylinder radius ratio η is 

0.9. Bubbles are injected through a needle at the bottom of the apparatus inside the gap. Different bubble 

sizes are investigated (ratio between the bubble size and the gap width 0.05 and 0.12) for very small void 

fraction (α≤0.012). Different flow regimes are studied corresponding to Reynolds number Re based on 

the gap width and the velocity of the inner cylinder ranging from 400 to 20000. For these Re values, 

Taylor vortices are persistent leading to an axial periodicity of the flow. PIV measurements of the liquid 

flow features, bubble tracking in a meridian plane and viscous torque of the inner cylinder measurements 

are performed. This study provides a first evidence of the link between the bubble localisation, the Taylor 

vortices and viscous torque modifications. Bubbles are attracted towards the inner cylinder, due to the 

rotation of the cylinder. For small buoyancy effect, bubbles are trapped and induce a decrease in the 

outflow intensity, thus leading to an increase of the viscous torque. When buoyancy induced bubble 

motion, by comparison to the coherent motion of the liquid is increased, a decrease in the viscous torque 

is suspected. 
 

 
Introduction 
 

The Taylor Couette device can be considered as an 

academic one to study bubble induced modifications of the 

viscous drag. Indeed, it is a closed system and 

characterizing the viscous drag consists in characterizing 

the viscous torque applied on the inner cylinder. Moreover, 

for high Reynolds numbers, the Taylor Couette flow has 

many similarities with the boundary layer flow developing 

over a flat plate.  

In the context of naval hydrodynamics, bubble injection 

can be intended to reduce the ship hulls’ viscous resistance. 

Actually, the physical mechanisms implied into the bubbly 

drag reduction expected for ship hulls applications are not 

completely understood. As a consequence, it is difficult to 

extrapolate results obtained for small scale models to large 

scale ship’s hull model and a bubble injection system that 

is appropriate for a typical ship hull and a specific velocity 

range can be no more fitted when it is carried out for a 

different ship hull and/or other velocity ranges.  

Therefore, injecting bubbles inside a Taylor Couette flow 

can make it possible to study the interactions between 

bubbles and the wall shear stress. In a turbulent Taylor 

Couette flow, there are 3 main contributions: a mean 

azimuthal flow, large scale Taylor vortices (with 

associated inflow/outflow jets regions) and small scale 

turbulent structures. Thus injecting bubble in this kind of 

flow is interesting because bubbles can interact with these 

different kinds of motions and can lead, for very specific 

conditions, to viscous torque reduction. In the literature, 

the bubbly drag reduction in the Taylor Couette flow was 

studied for the outer cylinder at rest. When it is observed, 

the torque reduction is likely to be associated either with a 

destructuration of the Taylor vortices by the bubble 

upward motion in the case of weak turbulent and turbulent 

Taylor vortex flow (Murai, 2008, Sugiyama et al., 2008) or 

associated with the contribution of the deformation of the 

bubbles in the case of the high Reynolds numbers (Re>8 

10
5
), (Van den Berg et al., 2005, 2007, Van Gils et al., 

2011a, 2011b).  According to Murai et al. (2008), there is 

a Reynolds range, for which the relative contribution of the 

Taylor vortices to the global flow and the bubble 

deformation are too small to bring about torque reduction, 

thus leading on the contrary to a torque augmentation. 

Nevertheless, a common point when viscous torque 

reduction is observed is the existence of a void fraction 

peak near the inner cylinder wall. It is then worth trying to 

characterize the bubble dispersion in this typical flow and 

trying to understand the link between the bubble dispersion 

and the viscous drag increase or decrease at the inner 



  

  

 

 

cylinder. 

Dispersion of bubbles in a Taylor Couette flow has been 

studied experimentally for different geometries (different 

radius ratios) and different Reynolds numbers range. For 

the weak turbulent flow and turbulent Taylor vortex flow, 

it is highlighted that bubbles have preferential 

accumulation regions, depending on the bubble size to the 

gap width ratio (db/d) and the Reynolds number: either in 

the Taylor vortices (Mehel, 2007) or in the outflow region 

(induced by the vortices) near the inner cylinder (Mehel, 

2007, Murai, 2008). For the turbulent flow, there is a 

preferential accumulation near the inner cylinder with a 

homogeneous axial distribution (Van Gils, 2011a). 

 

The strong accumulation of the bubbles near the wall is 

linked to the contribution of the added mass force induced 

by the mean azimuthal flow. This force plays the same role 

as the buoyancy force when bubbles are injected under a 

ships hull.  

Climent et al. (2007) and Chouippe et al. (2012) have 

performed numerical analysis of the bubble dispersion for 

the first instabilities and for the turbulent Taylor vortex 

flow respectively. Preferential accumulation of the bubbles 

in the axial and radial directions is discussed as a function 

of respective dimensionless parameters.  For very small 

bubbles, the size of which is of the order of the viscous 

length scale, it is evidenced that the small scale turbulence 

can play a role, by trapping bubbles inside the low shear 

stress streaks near the inner cylinder (Chouippe, 2012).  

In the case of experimental study of bubble dispersion 

inside Taylor Couette flow, as the void fraction was 

characterized by intrusive method (optical probes), very 

few profiles of void fraction are provided in the literature 

(Mehel, 2006, 2007, Murai, 2008, Van Gils, 2011a). 

Measurements can evidence the radial distribution of the 

void fraction at an axial position but they do not enable to 

characterize the axial distribution when it is subjected to 

the Taylor Vortices. In the numerical studies dedicated to 

bubble dispersion in Taylor Couette flow, the calculation 

carried out by bubble lagrangian tracking in the case of 

bubble passive dispersion (one way coupling, Chouippe, 

2012) or bubble active dispersion (two way coupling, 

Sugiyama et al., 2008, Chouippe, 2012) provides the void 

fraction distribution. Nevertheless, the numerical models 

do not take into account the interactions between the 

bubbles and the results are very sensitive to the 

formulation  of the lift coefficient (Sugiyama et al., 

2008).  

Thus performing fine measurements of the void fraction 

axial and radial distribution, when bubbles are injected 

inside a Taylor Couette flow, according to the conditions 

of the flow (radii ratio, bubble size to gap ratio, Reynolds 

number) is of interest, in order to understand the 

bubble-induced modifications of the wall shear stress. 

The aim of this paper is to shed more light in the 

mechanisms of bubble interactions with the wall shear 

stress in a Taylor Couette flow by focussing on the link 

between the bubble dispersion and the liquid flow. 

Experiments are carried out in the same experimental set 

up as in Mehel et al. (2006, 2006b, 2007), corresponding to 

a radius ratio of 0.91, The Reynolds number range 

investigated in this study [400, 20000] is larger than in 

Mehel et al. Two typical sizes of bubbles (db/d=0.12 and 

0.05) are tested. In order to enable the characterization of 

the bubble dispersion by visualisation, the global void 

fraction was willingly limited to a small value (α<0.012), 

smaller than in Mehel et al. 

Section 1 is a description of the experimental set up, The 

viscous torque measurements are shown and discussed in 

section 2. Section 3 deals with the description of the 

bubble arrangement. Void fraction distributions and the 

eulerian velocity fields of the bubbles measured in a 

meridian plane are presented in section 4. Section 5 shows 

some PIV /velocity maps of the liquid flow. Section 7 is 

dedicated to the discussion. 

  

 

Nomenclature 
 

d 

db 

g 

G 

L 

Lc 

Gap between outer and inner cylinders (m) 

Bubble diameter (m) 

gravitational constant (ms
-2

) 

dimensional torque 

Cylinder length (m) 

Needle’s length (m) 

P pressure (Nm
-2

) 

Qg 

R 

Air injection rate (m3/s) 

Cylinder radius (m) 

Re 

T 

Ta 

U 

u* 

Vb 

W 

Reynolds number 

Viscous Torque (Nm) 

Taylor number 

Radial velocity (m/s) 

Friction velocity (m/s) 

Upward rising velocity of the bubble (m/s) 

Axial velocity (m/s) 

  

Greek letters 

α void fraction  

η 

λ 

ν 

Φc 

τ 

Ω 

ratio of inner over outer cylinder radii 

axial wavelength (m) 

kinematic viscosity of the fluid (m
2
.s

-1
) 

needle’s diameter (m) 

wall shear stress (N/m
2
) 

rotational angular velocity (rad/s) 

  

Subsripts 

i 

o 

g 

l 

relative to inner cylinder 

relative to outer cylinder 

relative to gas phase 

relative to liquid phase 

 

 

Experimental Facility 
 

Figure 1 shows a sketch of the experimental set up. The 

experiments were carried out in a vertical Circular 

Couette-Taylor device, composed of concentric inner and 

outer cylinders. The outer cylinder is at rest. The radius of 

the inner and outer cylinders are Ri=200 mm and Ro=220 

mm respectively, the height L of the inner cylinder is 

886mm. The device’s geometry is characterized by a radius 

ratio η=
0

i

R

R
equal to 0.91 and a clearance ratio Γ=

d

L
of 

44.3. The gap, the width of which being d=20mm, was  



  

  

 

 

 filled with a mixture of water and glycerol, with a free 

surface 1cm above the inner cylinder.  The device is the 

same as used in Mehel et al. (2006), set apart that the motor 

has been displaced from the bottom to the top of the device, 

to ensure a better seal and make easier the installation of a 

torquemeter and that the bubble generation system is 

different (bubble injection instead of ventilation by the free 

surface or gaseous cavitation in Mehel, 2006). A further 

modification with respect to Mehel et al. (2006) lies in the 

fact that the device can be enclosed into a plexiglass box, 

filled with the same mixture as in the gap, in order to limit 

optical distortion effect. 

 

The Reynolds number of the flow Re is defined as: 

ν

Ω
=

dR
Re

ii . The Taylor number is a correction of the 

Reynolds number, taking into account curvature effect: 

η

η−
=

1
ReTa . For the geometry at stake, the critical 

values of Re and Ta, characteristic of the 1
st
 instability, are 

Rec=137, and Tac =43.3 (Mehel, 2006), respectively. The 

Reynolds number was varied both by changing the angular 

velocity of the rotating inner cylinder Ωi and by changing 

the viscosity ν of the mixture (mixture of 65% glycerol or 

40% glycerol). Attention was paid to reproduce the same 

start up procedure to achieve a given Reynolds number as in 

Mehel et al. (2006b), leading to same state of the flow for 

the single-phase flow. For the two-phase flow, injection 

began before the start up of the motor. Same procedure of 

the acceleration of the inner cylinder was then applied in 

two-phase flow as in single-phase flow. 

Bubbles were injected through a needle in a box filled with 

the mixture at rest localised at the bottom of the apparatus. 

The injection pressure was controlled by a manometer of 

accuracy ±0.01bar. Different needles diameters were tested 

(Φc=20µm and Φc=180µm), leading to different mean 

bubble size (db=992µm and db=2400µm) respectively. The 

injection was characterized by video recording for different 

conditions, the results (pressure, bubble size, air injection 

rate) are summarized in Table 1.  

Vb is the bubble rising velocity, determined in infinite and 

still mixture, based on the bubble size and viscosity of the 

mixture at 20°C (linearized form of the drag force 

coefficient applied on the bubble from Mei et al. (1994)). 

As can be seen, the global air injection rate Qg was very 

small, in order to enable individual bubbles tracking by 

visualisations inside the gap.  

 

 
Figure 1: Sketch of the experimental setup.  

 
Mixture 

% of 

glycerol 

Φc 

(µm) 

Lc 

(mm) 

P (bars) 

Injection 

pressure 

db(µm) Qg 

(mm3/s) 

Vb 

(m/s) 

65% 

 

180 50 1.18 

±0.01 

2400 

±89 

583 

±17 

0.27 

 

40% 20 10 6 

±0.01 

992 

±47 

23 

±5 

0.23 

 

Table 1: Characteristics of the bubble injection for the 

different air injection conditions.  

(Lc and Φc are the length and inner diameter of the needle 

respectively. For the smallest needle, the air flow rate Qg is 

determined by video recording of the bubble size and 

frequency at detachment. For the largest needle, Qg is 

measured with an airflow meter (Gilmont instrument, ref. 

GF-4001).  

Table 2 gathers the value of the parameters characterizing 

the two-phase flow for the different operating conditions.  

 

Mixture 

% of 

glycerol 

Re 

ν

dW
 

C H db+ <α> 

(%) 

cas

e 

65% 2470 300* 0.94 0.6 15.3 0.14 a 

40% 3000 350* 0.26 0.55 7.5 0.011 b 

 6000 632** 0.46 0.45 12.4 0.024 c 

 10000 930** 0.68 0.35 18.2 0.035 d 

Table 2: Dimensionless parameters characterizing the 

two-phase flow for different operating conditions (* is 

referred to Mehel measurements (2006 b), ** is referred to 

Chouippe simulations (2012) for same geometry, db+ (eq. 6) 

is evaluated based on Wendt (1933) correlation for the 

dimensionless torque. C, H are dimensionless parameters 

(eq. 4 and eq. 5) crucial for the bubble localisation in the 

gap that are defined in section 6. 

 
Torque measurements 

 

The torquemeter (KISTLER, reference 4503A) is composed 

of strain gauges. It was mounted on the shaft which drives 

the rotation of the inner cylinder. The measurement range 

was chosen according to the Reynolds number value: it was 



  

  

 

 

set to [0-4Nm] if Re<10000, otherwise it was set to 

[0-20Nm].  The torquemeter ensures the measurement of 

the torque with a global accuracy of ±0.1% of the 

measurement range, taking into account linearity and 

hystereris errors. The systematic error due to temperature 

drift in the range [15°C- 25°C] is 0.015% of the 

measurement range per degree. It leads to a possible 

systematic error less than 1% of the measured value. Data 

are collected by a 24 bits acquisition board, the output 

voltage level being in the range 0-10V. 

For a measurement time of 60s, and a sampling frequency of 

1kHz, the statistical convergence of the time averaged 

torque was ensured with a maximum relative uncertainty of 

±0.17% (confidence level of 95%). 

The measured torque includes both the contribution of the 

mechanical torque due to connection between the shaft and 

the inner cylinder and the contribution of the viscous torque 

exerted by the flow on the inner cylinder. The mechanical 

torque was characterized as a function of the rotational 

velocity for the gap filled with air and subtracted to the 

global measured torque.   

The normalized viscous torque G (eq. 1) obtained in 

single-phase flow is plotted with respect to the Reynolds 

number in Figures 2 and 3 for the mixtures containing 65% 

and 40% of glycerol respectively. Error bars take into 

account hysteresis error, linearity error, drift error due to 

temperature drift relative to 20°C and statistical 

convergence uncertainty. Two sets of data made at several 

days interval allow to quantify the reproducibility. The 

reproducibility error is less than 6% of the value, except for 

the largest values of the Reynolds numbers (30% for 

Re=1900 and Re=20000 in the mixture of 40% glycerol, 

18% for Re=470 in the mixture of 65% glycerol).  

In figure 2, and 3, good agreement is found between the 

measured viscous torque in single phase flow and the 

correlations of Wendt (1933) applied for a value of η=0.91 

(eq. 2 and eq. 3). The relative difference is less than 5% for 

3500<Re<12000. The viscous torque is underestimated 

(-20%) for Re<3500 and overestimated (+15%) for 

Re>12000. Curves plotted as a function of logarithmic 

coordinates evidence that the torque expands as a power of 

the Reynolds number, as expected by Wendt. For 

2000<Re<10000, the power is 1.5, in agreement with 

Wendt’s correlation. For Re>10000, the power of the law is 

1.78, a little larger than 1.7 given by Wendt.  

 

L

T
G

2
νρ

=  (eq.1) 

( )
10000Re400for    eR

-1

*1,45G
5.1

47

1.5

≤≤
η

η
=   (eq.2) 

 

( )
100000Re10000for   eR

-1

*23.0G
7.1

47

1.5

≤≤
η

η
= (eq.3) 
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Figure 2: Viscous torque of the inner cylinder in 

single-phase flow measured as a function of the Reynolds 

number for a mixture of 65% glycerol. Comparison with 

Wendt’s correlation (1933).  
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Figure 3: Viscous torque of the inner cylinder in 

single-phase flow measured as a function of the Reynolds 

number for a mixture of 40% glycerol. Comparison with 

Wendt’s correlation (1933).  

 

Figure 4 and 5 display the viscous torque measured in 

two-phase flow for the largest and smallest bubbles 

respectively. To test reproducibility of injection effect on 

the viscous drag, different dataset were obtained for the 

same time after the inner cylinder velocity had reached its 

steady state, at several days interval. For the largest bubbles, 

the viscous torque increases with the Reynolds number (up 

to 10% of relative increase for Re=3000). For the smallest 

bubbles, the relative modifications of the torque are less 

important. Nevertheless, even if the trends are not very 

obvious, they are reproducible. It can be observed an 

increase (+5%) in the torque for Re≥14000 (ie: Ta≥4400)  

and a weak decrease (-2%) for Re≤6000 (ie: Ta≤1900), out 

of the range of systematic errors.  

For same bubble size to gap width ratio (db/d≈0.05), Murai 

et al. (2008) attested that there is a drag decrease for 

Re≤4000 (ie : Ta≤1810, taking into account η=0.83 of their 
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experimental set up) and a drag increase for larger Reynolds 

numbers. Note that in our experiment, the range of Taylor 

numbers for which drag reduction is suspected, is in 

agreement with the critical value of Murai.   
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Figure 4: Viscous torque of the inner cylinder measured as 

a function of the Reynolds number. for a mixture of 65% 

glycerol,  Φc=180µm, P=1.08b. 50 mn after stabilizing the 

rotational velocity. Comparison with single-phase flow. 

!"#$!!

%"#$!&

'"#$!&

("#$!&

)"#$!&

! %!!!! '!!!!

*+

,

single

phase

two phase

dataset1

two phase

dataset 2

  
 

Figure 5: Viscous torque of the inner cylinder measured as 

a function of the Reynolds number for a mixture of 40% 

glycerol, Φc=20µm, P=6b, 1h30 after stabilizing the 

rotational velocity. Comparison with single phase-flow. 

 

Bubble arrangement  

 

Bubbles are periodically arranged in the axial direction as 

bubble strings (Figure 6). The string spacing is identified as 

the axial wave length. By counting the number of strings 

distributed over the height of the device, it was possible to 

determine the axial wave length, assuming that the flow is 

not axially stratified (this was not the case when waiting for 

at least 15 mn after the rotational velocity was stabilized). 

Figure 7 exhibits the axial wave length in single and 

two-phase flows, as a function of the Reynolds number, 

obtained for the different bubble sizes.  

 

 
a)   b) 

 

 
c)   d) 

Figure 6: Visualisations of the two-phase flow arrangement 

for the different cases a to d. Traces of the bubbles are 

visible for several wavelengths over the height of the device 

by integrating with an exposure time of 20ms.  
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Figure 7: Axial wave length measured as a function of the 

Reynolds number for the different mixtures and bubble sizes. 

Comparison with single- phase flow is also added based on 

Mehel’s measurements (2006) (Note that for Re=10000, 

Mehel didn’t evidence very clear Taylor vortices in single 

phase flow). 

 

For the small bubbles, different trends are observed: a 

decrease in the axial wavelength for Re<=6000, an increase 

in the axial wavelength for Re>=14000. Interesting enough 

is the fact that these opposite trends observed on the 

wavelength can be associated with the opposite trends 

observed on the viscous torque.  Note that for Re<=3000, 
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small bubbles were not obviously organised as rings 

periodically arranged in the axial direction (Figure 6a).  . 

One reason is that there are too few bubbles to evidence a 

clear arrangement and the other reason is that it seems that 

during a period of rotation, bubbles are shifted from a string 

to the upper string, leading to a spiral arrangement.  

Large bubbles bring about a decrease in the axial 

wavelength for Re<3500, as it was observed in Mehel et al. 

(2006b) for bubbles of size db/d=0.16 (db=3.2mm). 

Mehel (2006) evidenced that the increase or decrease in the 

axial wavelength is closely linked to the localisation of the 

bubbles in the gap. More precisely, a preferential location in 

the Taylor vortices would entail a squeezing of the vortices, 

whereas a preferential location in the outflow region near 

the inner cylinder would lead to a stretching of the vortices. 

Thus, it is worth characterizing the bubble distribution 

inside the gap. For this purpose, high frequency 

visualisations of bubbles trajectories were carried out in a 

meridian plane. 

 

Bubbles tracking  

 

Ombroscopic lightning, associated with a Photron Fastcam 

SA3 caméra (8 bits, 12024*1024 pix2) and a Sigma 105mm 

macro lens (f2.8) were used to visualise the bubbles in a 

focusing plane, aligned with a radius (plane r-z). The 

sampling frequency was adjusted to 
π

Ω

2
1000

i . A sketch of 

the set up is shown in Figure 8. 

  

 
 

Figure 8: Top view of the set up for bubbles tracking. 

 

 

For this configuration, the device was enclosed into the 

plexiglass box, the size of the viewing window was reduced 

to 1024*512 pix
2
 (ie: 3.77d*1.88d), the size of the pixel 

being 74µm. As the axial length of the field of view can be 

less than one axial wave length, the camera can be displaced 

axially and the images can be recomposed.  

The spatial resolution was quantified, based on the line 

spread function, defined as the derivative of the intensity in 

the direction normal a sharp edge. For this purpose, a 

reference pattern made of alternative black and white lines 

(25lines per inch) was used. The effective spatial resolution 

was deduced from the width at half the maximum value of 

the line spread function, ie: 294µm, making possible to 

detect with a good contrast bubbles larger than 588µm.  

 

The depth of field was characterized using a reference 

pattern inside the gap, it was 20 mm, leading to a possible 

contribution of the azimuthal velocity less than 10% of the 

measured radial velocity in the outflow/inflow regions for 

bubbles at the edge of the depth of field.  

 

Bubbles contours were detected on the images, by applying 

both a threshold on the grey levels and a threshold on the 

gradient of the grey levels. Contours were then filled. The 

double threshold method enables to get rid of bubbles 

localized out of the depth of field. The area, the equivalent 

radius and the coordinates of the gravity centre of each 

individual bubble were determined. Two bubbles at 

consecutive time step were assumed to be the same bubble, 

if the displacement of the gravity centre was less than half 

the equivalent radius, thus making possible to determine the 

instantaneous velocity of the bubble.  

 

The distribution of the instantaneous gas volumetric 

characteristic function was calculated in an eulerian grid of 

20*20pix
2
 (ie : 0.074d*0.074d). Same eulerian grid was 

used for the determination of eulerian phase averaging 

velocities of the bubbles. Statistical informations, such as 

the mean void fraction and the eulerian mean gas velocity 

were deduced from several thousand images, corresponding 

to 2 time period of the cylinder’s rotation.  For this number 

of images, the statistical convergence of the time and space 

average void fraction is ensured.  

 

Due to optical distortion, there was a shadow region near 

the inner cylinder, the size of which was 148 µm (0.007d) 

and 255 µm (0.013d) for the mixtures made of 65% and 

40% glycerol respectively.  

A six degrees polynomial function was used to correct both 

the radial position and the radial measured velocity 

(correction factor being 1.1 and 1.7 near the inner and outer 

cylinders respectively). The correction laws were validated 

on the pattern made of 25 pairs of lines per inch. The fit 

introduces an inaccuracy in the radial position determination 

that is maximum near the outer cylinder, approximately 

±0.13mm (±0.0065d). Thus the global uncertainty on the 

radial positioning, taking into account the uncertainty in the 

shadow’s edge positioning, is expected to be ±424 µm (ie: 

±0.02d). 

 

The radial and axial positions are normalized by d and the 

velocity components are normalized by
d

ν
. The 

dimensionless radial position x is defined as: 

( )
5.0

d

Rr
x

i
−

−
= , the zero position being the middle of the 

gap, x=-0.5 being the position of the inner cylinder. 

 

Figure 9 shows the void fraction distribution for the 

different cases referenced in Table 2. 

 

Focusing plane= 

meridian plane 



  

  

 

 

 
     a)    b) 

 

 

 
    c)   d) 

 

Figure 9: Void fraction distribution measured in a meridian 

plane by bubbles tracking for the different cases a, b, c and 

d. 

 

Figure 10 shows the distribution of the mean eulerian gas 

axial velocity for the different cases referenced in Table 2. 

 

 

 
     a)    b) 

 

 
    c)   d) 

 

Figure 10: Axial component of the mean gas velocity 

measured in a meridian plane by bubbles tracking for the 

different cases a, b, c and d. 

 

Alternative positive and negative gas axial velocity 

evidences the counter rotating Taylor vortices. Thus 

comparison between maps of axial velocity and maps of 

void fraction enable to understand how bubbles are 

preferentially arranged into the gap. Figure 11 depicts a 

schematic view of the bubble localization obtained for the 

different cases.  

As expected, for cases a and c, bubbles are rather trapped in 

a vortex on two, in the region of downward velocity near the 

inner cylinder. This is in agreement with the observed 

decrease in the axial wave length. For case d, bubbles can 

still be trapped into a vortex on two but they are 

preferentially localized in the outflow region near the inner 

cylinder (maximum value of the void fraction). Preferential 

accumulation in the outflow region is in agreement with the 

observed increase in the axial wave length. The void 

fraction obviously increases with the augmentation of the 

Reynolds number, leading to more and more bubbles 

trapped. For case b, however, Figure10b doesn’t exhibit a 

clear alternance in the sign of the axial velocity, letting 

suppose that bubbles have rather an upward motion than 

being really trapped. 

It should be noticed that the increase in the viscous torque 

of the inner cylinder is rather observed when bubbles are 

localized closer to the outflow than from the inflow (cases a 

and d). Small decrease in the torque is suspected when 

bubbles have an upward sliding motion near the inner 

cylinder (case b).  

 

 

 

 



  

  

 

 

Figure 11: Schematic view of the bubble localisation in the 

meridian plane from a to d (left to right) (interpretation 

based on gas axial velocity and void fraction maps) 

 

PIV  

 

The velocity field of the liquid was investigated in a 

meridian plane by PIV.  The system was composed of a 

double cavity pulsed laser (Newwave Gemini Solo 2) 

aligned with a radius, and a camera (Highsense PIV/LIF 

1280*1024pix
2
) shifted by a 90° angle. The flow was 

seeded with fluorescent particles of size 20-50 µm. Pairs of 

images were acquired at a sampling rate of 4Hz and 

processed with Flowmanager 3.1. 

The field of view was chosen in order to cover in the axial 

direction 3.3d. For the configuration at stake, the size of a 

pixel was 52µm. 

The depth of field was limited by the width of the laser 

plane, which was 2mm, leading to a possible contribution of 

the azimuthal particle velocity less than 1% of the measured 

radial velocity in the outflow/inflow regions.  

The spatial cross-correlation was calculated on a grid made 

of 64*64 pix
2
, with a 50%. recovering. Thus, the spatial 

resolution of the velocity measurement is 0.17d, and the 

velocity is displayed every 0.08d. With a time between two 

consecutive laser pulses set to 1ms, the subpixel resolution 

enabled a measurement of the velocity with an accuracy of 

±5mm/s. 

Here are just presented first measurements for one case 

(case a), for which millimetric bubbles are trapped by the 

vortices and induce viscous torque increase. These 

measurements are rather qualitative than quantitative, they 

just aim at comparing the maxima of axial and radial 

velocities in the vortices for the single phase and two-phase 

flows. 

Thus, as a first approximation, the set up was not enclosed 

into the optical correction box for this application. Optical 

distortion in the radial direction was more important than for 

bubble tracking and leads to a shadow region near the inner 

cylinder of 988 µm for the mixture made of 65% glycerol. 

Optical correction was applied both on the radial position 

and radial velocity measured, by using a polynomial law, 

taking into account the absence of the box. 

625 pairs of images were used to determine the mean 

velocity with a relative uncertainty of ±1% and ±4% for 

axial and radial components respectively and the rms 

velocities with a relative uncertainty of ±0.05%; These 

uncertainties are based on a confidence level of 95%. 

Velocity maps are compared between the single phase and 

case a, corresponding to bubble trapping by the Taylor 

vortices. Figure 12 shows the distribution of the mean liquid 

axial velocity.  

 

 
Figure 12: Axial component of the mean liquid  velocity 

measured in a meridian plane by PIV (left : single phase, 

right : two-phase case a) 

 

Evidence of the bubble induced axial wavelength reduction 

can be observed for this case. Figure 12 depicts a decrease 

in the downward axial velocity of the liquid due to bubble 

capture, the upward velocity being of the same order as in 

single phase flow.   

 

Figure 13 shows the distribution of the mean liquid radial 

velocity for same case.  

 

 
Figure 13: Radial component of the mean eulerian liquid  

velocity measured in a meridional plane by PIV (left : single 

phase, right : two-phase case a) 

 

The mean radial velocity of the liquid appears to be reduced 

by bubbles trapping. Interesting enough is the fact that the 

reduction of jets intensity is more important in the outflow. 

Figure 14 shows the distribution of the rms eulerian liquid 

velocity for same case. Taking into account the fact that the 

rms velocity was obtained by subtracting the local time 

averaged velocity of the liquid, this rms value is 

representative of the small scale turbulence (the large scale 

coherent motion contribution due to the Taylor vortices 

being included into the mean value). 

 



  

  

 

 

 
Figure 14: Axial component of the rms liquid velocity 

measured in a meridian plane by PIV (left : single phase, 

right : two-phase case a) 

 

As the Taylor vortices velocities are reduced by the bubbles, 

the small scale turbulence is obviously more homogeneous 

in the axial direction. What is interesting is the increase in 

the value of the rms velocity particularly near the wall, in 

agreement with the increase in the viscous torque observed 

for this case. Note that only the axial component of rms 

velocity is displayed but same result is encountered for the 

radial rms velocity. 

 

Discussion 

 

Climent et al. (2007) introduced dimensionless parameters 

to characterize the bubble accumulation into a Taylor 

Couette flow for the first instabilities. 

The comparison between the centripetal force of the Taylor 

vortices and the centripetal force due to the inner cylinder 

rotational velocity makes it possible to characterise the 

radial accumulation of the bubbles. Indeed, an important 

value of parameter H (eq. 5) leads a bubble trapping inside 

the Taylor vortices, whereas a small value is in agreement 

with accumulation of the bubbles near the inner cylinder. 

The ratio of the axial velocity in the Taylor vortices to the 

bubble rising velocity, defined as parameter C (eq. 4) is 

expected to characterize the axial localisation of the bubbles. 

Indeed, a small value of C is representative of important 

buoyancy effects. If C is very small by comparison to 1, it 

can lead to bubbles rising regardless of the coherent motion, 

if C is the order of 1, it can bring about a bubble 

accumulation either in the Taylor vortices or in the outflow 

region near the inner cylinder, according to the value of H.  

With an important value of C, one can expect an axially 

uniform accumulation of the bubbles near the inner cylinder.  

 

Parameters C and H only characterizes interactions between 

the bubbles and the Taylor vortices. In the case of turbulent 

flow, another parameter db+, which compares the size of the 

bubbles to the size of the small scale turbulent structures 

must be introduced. As a first approximation, db+ can be 

based on the viscous length scale, deduced from the friction 

velocity (eq. 6 and 7). A small value of db+ will entail a 

bubble capture by the small scale turbulent structures, rather 

in the streaks of minimum wall shear stress, as observed by 

the numerical calculations of Chouippe (2012) and by Nino 

and Garcia (1996) for particles.  For the turbulent Taylor 

vortex flow, the streaks of minimum wall shear stress are 

rather localised in the outflow region, with a periodical axial 

arrangement of 100 viscous length (Dong, 2008). 

Values of these non dimensional parameters have been 

estimated and reported in Table 2 for the different cases 

studied. 
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with u*, the friction velocity taking into account curvature 

effects. u* is defined as 
ρ

Ωµ−τ
= ii

*u (eq. 7). 

τi is the wall shear stress at the inner cylinder, deduced from 

the dimensionless torque G: 
2
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π

νρ
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Values of these dimensionless parameters have been 

estimated and reported in Table 2 for the different cases 

studied. As expected, case b is in agreement with the 

smallest value of C<1 and thus bubbles are less sensitive to 

the coherent motion, they are less trapped, the void fraction 

is smaller and their upward velocity tends to induce a spiral 

arrangement (Figure 6 a). As shown by Figure 11, when C 

increases, with the same magnitude as 1, bubbles are more 

and more trapped by the vortices, their equilibrium position 

shifting from a position near the inflow to a position near 

the outflow inside the vortices (comparison between cases b, 

c and a). For a value of C, same magnitude as 1, when H is 

too small to enable bubbles trapping by the vortices, bubbles 

are then trapped in the outflow region, in agreement with 

case d.  

 

The bubbles accumulation in the flow has a direct influence 

on the liquid flow structures. As was shown from PIV 

measurements, bubbles trapping inside the Taylor vortices 

can lead to a decrease of the velocities of the Taylor vortices, 

leading to a contribution of the coherent motion that is 

reduced in favour of an enhancement of the small scale 

turbulence of the liquid. Generally speaking, in a Taylor 

Couette flow, the outflow is the region of minimum wall 

shear stress, and the inflow corresponds to the region of 

maximum wall shear stress applied on the inner cylinder.  

Thus the observed preferential decrease in velocity of the 

outflow can be responsible for the increase in the viscous 

torque. This situation is observed when bubbles are trapped 

by the vortices near the outflow (case a) and expected to 

occur also for bubbles accumulated in the outflow (case d). 

Thus one could expect the opposite trend (ie bubbles 

localized near the inflow close to the inner cylinder) for a 

bubble induced reduction in the viscous torque, but this 

trend needs to be confirmed by experimental investigation 

of the liquid flow.  

  

 

Conclusions 
 

This study provides experimental evidence of the 

interactions between the dispersion of the bubbles, the 



  

  

 

 

coherent motion and the viscous drag in a Taylor Couette 

flow. Two sizes of bubbles were tested in different mixture 

of water-glycerine, covering a wide range of Reynolds 

numbers. Bubbles accumulated near the inner cylinder. 

Different configurations were observed: bubbles can slide 

along the inner cylinder, they can be trapped by the vortices 

a vortex on two or they can accumulate in the outflow 

region. The trapping of the bubbles by the Taylor vortices 

induces a decrease in the axial wave length of the flow 

whereas a preferential accumulation of the bubbles in the 

outflow leads to an increase in the Taylor vortices. 

For Re≥1000 and bubbles of size 0.12d or for Re≥10000 

and bubbles of size 0.05d, the viscous torque applied on the 

inner cylinder is increased. This torque augmentation seems 

to be associated to bubbles trapping in the Taylor vortices 

near the outflow region or to bubbles accumulation in the 

outflow region near the inner cylinder, leading to a global 

attenuation of the liquid coherent motion, particularly the 

outflow motion.  

For Re≤6000 and bubbles of size 0.05d, a small decrease in 

the viscous torque applied on the inner cylinder is suspected. 

It is associated to a bubble capture in the Taylor vortices 

near the inflow or to bubble sliding in a spiral arrangement.  

Thus, the dimensionless parameter characteristic of drag 

increase or decrease is likely to be parameter C, which 

compares the axial velocity of the Taylor vortices and the 

bubble upward velocity. An important value of C, 

representative of weak buoyancy effects, is expected to 

augment the viscous torque of the inner cylinder. In the 

present study a value of C≥0.6 induces an increase in the 

viscous torque, regardless the Reynolds number and the 

bubble size to gap width ratio. 

These results must be considered as early indication of 

bubble interactions with the coherent motion and the 

viscous drag. 

More measurements are required to characterize the liquid 

flow and a systematic characterization of the bubble 

dispersion, as a function of C, H and db+ should be carried 

out. Further investigations are still to be performed to 

compare 2D distribution of the void fraction with local void 

fraction measurements by optical probe. 

In order to have a better insight into the mechanisms of 

interactions, it would be worth characterizing the 

intermediate regime where drag reduction is suspected to 

changes into drag increase (6000≤Re≤10000).  

The observed decrease in the viscous torque was very small. 

Indeed, the void fraction was limited a lot to enable bubble 

tracking but it would be interesting to increase the number 

of needles in order to enhance observed modifications and 

support the conclusions. 
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