
 

To cite this document: Pereira de Rezende, Leiliane and Julia, Stephane and Cardoso, 

Janette Inconsistency recovery in Business Processes using a possibilistic WorkFlow net. 

(2012) In: 31st International Conference of the Chilean Computer Science Society, 

SCCC 2012, 12 November 2012 - 16 November 2012 (Valparaiso, Chile). 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible.  

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/  

Eprints ID: 10968 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@inp-toulouse.fr 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/19983648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr


Inconsistency recovery in Business Processes using a possibilistic WorkFlow net

Leiliane Pereira de Rezende∗, Stéphane Julia∗ and Janette Cardoso†

∗Faculdade de Computação - Universidade Federal de Uberlândia, UFU

2160, av. João Naves de Ávila, 38400–902 Uberlândia/MG, Brazil

Email: leily.rezende@gmail.com, stephane@facom.ufu.br
†Institut Supérieur de l’Aéronautique et de l’Espace,ISAE

10, av. Édouard Belin, 31055 Toulouse, France

Email: cardoso@isae.fr

Abstract—In this paper, an approach based on WorkFlow
nets and on possibilistic Petri nets is proposed to deal with non-
conformance in Business Processes. Routing patterns existing
in Business Processes are modeled by WorkFlow nets. To
express in a more realistic way the uncertainty attached
to human activities, possibilistic Petri nets with uncertainty
on the marking and on the transition firing are considered.
Combining both formalisms, a kind of possibilistic WorkFlow
net is obtained. An example of inconsistency recovery at a
process monitoring level due to human behavior in a “Handle
Complaint Process” is presented.

Keywords-WorkFlow net, possibilistic Petri net, process non-
conformance, process monitoring.

I. INTRODUCTION

The purpose of Workflow Management Systems is to exe-

cute Business Processes. Over the last few years, Business

Process Management has become important in order to raise

service quality and performance of firms [1].

Many papers [2] have already considered Petri net theory

as an efficient tool for the modeling and analysis of Work-

flow Management Systems. In [2], WorkFlow nets, which

are acyclic Petri net models used to represent Business

Processes, are defined. The main property that has to be

proven when considering WorkFlow nets is the soundness

property [2] which guarantees that no deviation from the

process description will be allowed during the real time

execution.

In fact, good properties of well defined formal models

such as WorkFlow nets can easily be proven when Business

Processes are following a rigid structure that does not allow

deviations from the process description during the real time

execution. However, recently, it was shown that Business

Processes do not easily map to a rigid modeling structure.

Some of the activities executed in a Business Process depend

on human resources that do not necessarily respect the

rigorous definition of WorkFlow Processes, due to the fact

that tasks performed by humans are generally complex

and follow rules that cannot always be transformed into

computerized processes. As a matter of fact, in practice

inconsistencies between the process model and the real

execution of the process can easily occur.

Attempts to consider a certain level of flexibility in

process definition have already been proposed by several

authors.

In [1], the Yawl language which supports flexibility in

the process definition is proposed. The principle is based

on Worklet Services which allows for the construction of

subprocess structures in such a way that they can be added

dynamically to the whole Workflow Process during the real

time execution. The possible process deviations are designed

in an explicit way (additional routing structures in the model)

and, as such, no guarantee of soundness in the process exists.

In [3], a deviation-tolerant approach in process execution

is presented. The basic principle is based on two models

coexisting during the monitoring of the process. The first

one corresponds to the expected behavior and the second

is dynamically built, based on real human actions. The two

models are then continuously compared to detect possible

deviations. The problem in dealing with two models is that

the monitoring activity can easily be overloaded implying a

decrease in the system’s performance.

In [4], a kind of declarative implicit model, essentially

based on rules, is used in order to detect non-conformant

states. In such a methodology, the process model can only

be seen as a simple set of constraints that can not be analysed

from the point of view of the soundness property.

In [5] and [6], a process model based on temporal logic

and finite state machines to capture and tolerate deviations

in processes during execution is defined. For the authors,

a process is correct if all the constraints given by the set

of state machines are verified. In particular, two kinds of

transition are created: normal ones and exported ones which

depend on user requests to indicate abnormal behavior. In

particular, when the process execution is corrupted, the state

of the process is fixed manually. The problem with this

kind of approach is again that the model of the process is

given through a declarative form instead of a single graph

representing a whole process that could be analyzed from the

point of view of the soundness property, as is the case with

WorkFlow nets. Another problem is the necessity for explic-

itly model alternative scenarios corresponding to abnormal

behavior. The consequence is generally the increase of the



complexity in the set of constraints and on the underlying

process model.

In [7], [8] and [9], an incremental approach to check the

conformity of a process model and an event log is presented.

Initially it evaluates if all the sequences recorded in log

are possible execution sequences in regards to the process

model. Then the accuracy between the process model and

the expected behavior is verified. Following this, the analyst

is assisted in finding the areas that are in non-conformance

with the process (in the model or in the log file). In [10]

the implementation of an algorithm to calculate several

conformance metrics is proposed. The problem with this

approach is that the verification is carried out after the

process execution.

A very promising alternative to deal with non-

conformance in Business Processes seems to be approaches

based on uncertain knowledge as that presented in [11]. The

model of the process is then given through fuzzy sets and

possibilistic distributions that permit a natural representation

of uncertain and imprecise information that exists when

human type resources are involved in the activities of a

process.

One of the first studies which combines possibilistic repre-

sentation of information with the precise structure of a Petri

net when considering discrete event systems is that described

in [12] and [13]. The main feature of possibilistic/fuzzy Petri

nets is to allow one to reason about the aspects of uncertainty

and change in dynamic discrete event systems. Most of the

examples presented by the authors of possibilistic Petri net

were applied to flexible manufacturing systems.

In this paper, an approach based on WorkFlow nets

and possibilistic Petri nets is proposed to deal with non-

conformance in Business Processes. In particular, a kind

of possibilistic WorkFlow net will be defined to treat non-

conformant states.

In section II, the definition of WorkFlow nets and sound-

ness correctness criterion are provided. In section III, the

definition of the objects Petri nets is presented. In section

IV, an overview of possibilistic Petri nets is given. In section

V, the possibilistic WorkFlow net and the algorithm for

inconsistency recovery are defined and an example based

on a “Handle Complaint Process” illustrates the approach.

Finally, section VI concludes this work with a short sum-

mary, an assessment based on the approach presented and

an outlook on future work proposals.

II. WORKFLOW NETS

A Petri net that models a Workflow Process is called

a WorkFlow net [2], [14]. A WorkFlow net satisfies the

following properties [14]:

• It has only one source place, named Start and only one

sink place, named End. These are special places such

that the place Start has only outgoing arcs and the place

End has only incoming arcs.

• A token in Start represents a case that needs to be

handled and a token in End represents a case that has

been handled.

• Every task t (transition) and condition p (place) should

be on a path from place Start to place End.

Soundness is a correctness criterion defined for WorkFlow

nets. A WorkFlow net is sound if, and only if, the following

three requirements are satisfied [2]:

• For each token put in the place Start, one and only one

token appears in the place End.

• When the token appears in the place End, all the other

places are empty for this case.

• For each transition (task), it is possible to move from

the initial state to a state in which that transition is

enabled, i.e. there are not any dead transitions.

A method for the qualitative analysis of WorkFlow nets

(soundness verification) based on the proof trees of linear

logic is presented in [15].

A. Process

A process defines which tasks need to be executed and

in which order [14]. Modeling a Workflow Process in terms

of a WorkFlow net is rather straightforward: transitions are

active components and model the tasks, places are passive

components and model conditions (pre and post), and tokens

model cases [2], [14].

To illustrate the mapping of a process into a WorkFlow

net, the process for handling complaints that is shown in

[2] can be considered as follows: an incoming complaint

is first recorded. Then the client who has complained and

the department affected by the complaint are contacted. The

client is approached for more information. The department

is informed of the complaint and may be asked for its initial

reaction. These two tasks may be performed in parallel,

i.e. simultaneously or in any order. After this, the data

is gathered and a decision is made. Depending upon the

decision, either a compensation payment is made or a letter

is sent. Finally, the complaint is filed. Fig. 1(a) shows a

WorkFlow net that correctly models this process.

B. Routing constructs

Tasks can be optional, i.e. there are tasks that just need

to be executed for some cases, and the order in which tasks

will be executed can vary from case to case [2]. Four basic

constructions for routing are presented in [2] and [14]:

• Sequential: tasks are executed one after another sequen-

tially, clearly demonstrating dependence among these

tasks: one needs to finish for the other to start;

• Parallel: if more than one task can be executed simul-

taneously or in any order. In this case, both tasks can

be executed without the result of one interfering in the

result of the other;

• Conditional (or selective routing): when there is a

choice between two or more tasks;



(a) (b)

Figure 1. Handle Complaint Process: (a)Tasks are associated directly to
simple transitions. (b)Tasks are associated directly to places.

• Iterative: when it is necessary to execute the same task

multiple times.

Some variations of these four basic constructions can be

found in [2] and [14].

Considering the “Handle Complaint Process” shown in

Fig. 1(a), tasks “Contact Client” and “Contact Department”

are an example of parallel routing. Tasks “Collect” and

“Assess” are an example of sequential routing. And tasks

“Pay” and “Send Letter” are an example of conditional

routing.

(a) (b) (c)

Figure 2. (a) Traditional WorkFlow net; (b) WorkFlow net with explicit
task execution; and (c) WorkFlow net with cancellation event.

C. Process Monitoring

In [1], WorkFlow nets were revisited in terms of their

suitability for monitoring Business Processes. The authors

showed that some patterns were not easily captured, in

particular patterns dealing with cancellation and multiple

concurrently executing instances of the same task.

The principal reason of limitation existing in WorkFlow

nets for monitoring Business Processes is the fact that

tasks are associated directly with simple transitions. As a

consequence, once initiated, a task cannot be interrupted

because it corresponds to the firing of a transition. If during

the execution of a task, an event occurs in the system whose

purpose is to interrupt the whole process, in traditional

WorkFlow nets the current tasks of the process have to be

completed first to be able to accept the cancellation. Of

course, a proper model of the process should be able to

accept interruption events in an asynchronous way in order

to monitor the process in an efficient way.

The solution proposed in this work to consider a more

realistic monitoring model of a Business Process is to trans-

form the transitions of WorkFlow net into a structure based

on the following pattern: a block corresponding to a task of

a transition ti is composed of a place Pti which represents

the task ti, an input transition t
ini which represents the

beginning of the task execution, and an output transition

t
outi which represents the end of the task execution.

The WorkFlow net of Fig. 2(a) will then be transformed

into the Workflow Process given by the acyclic Petri net

model of Fig. 2(b). As the new block (corresponding to the

task in execution) can be substituted by a simple transition

preserving the good properties of the initial model [16], the

new process model will continue sound in most cases and

will be adapted for monitoring activities, in particular if

some events of cancellation need to be specified as shown

in Fig. 2(c).

Finally, the Petri net model of Fig 1(b), corresponding to

the WorkFlow net of Fig. 1(a), will then be produced.



III. OBJECTS PETRI NETS

Ordinary Petri nets do not allow for the modeling of com-

plex data structures. Many extensions have been proposed

to model this specific aspect through high-level Petri net

definitions.

The object Petri nets defined by Sibertin-Blanc [17] are

based on the integration of predicate/transition Petri nets and

the concept of an object oriented paradigm. The tokens are

considered as n-tuples of instances for a class of objects

and carries data structures defined as sets of attributes for

specific classes. Pre-conditions and actions are associated

with transitions, which respectively act on the attributes

(eventually modifying their values) of the data structures

transported by the tokens of the net. The object Petri nets

can be formally defined as:

A marked Object Petri net can be defined by the 9-tuple:

N0 =< P, T,Class, V, Pre, Post, Atc, Ata,M0 > (1)

where:

• Class is a finite set of classes of objects: for each class

a set of attributes is also defined;

• P is a finite set of places whose types are given by

Class;

• T is a finite set of transitions;

• V is a set of variables whose types are given by Class;

• Pre is the function precedent place (an arc between a

place and a transition which considers a formal sum of

elements of V );

• Post is the next function place (an arc between a

transition and a place which considers a formal sum

of elements of V );

• Atc is an application which associates to each transition

a condition that involves the attributes of the formal

variables associated with the input arcs of the transi-

tions;

• Ata is an application which associated to each transition

an action that involves the formal attributes of the vari-

ables associated with the input arcs of the transition and

updates the attributes of the formal variables associated

with the transitions’ output arcs;

• M0 is the initial marking which associates a formal

sum of objects to each place (n-tuples of instances of

classes that belong to Class);

An example of object Petri net is presented in Fig. 3. The

set of classes is defined as:

Class = {Product, Request}

The Product class has the attributes:






name = identifier;
code = integer;
cost = float;

Figure 3. Specification of a Sale Transaction.

The Request class has the attributes:






code : integer;
cost : float;
type : identifier;

The variable pr belongs to the class Product and

the variable pd belongs to the Request class. The place

Products Stock belongs to the Product class, the place

Buffer Request belongs to the Request class and the

place Processed Requests belongs to the Request class.

The initial marking M0 is given by the objects that are in

the places Products Stock and Buffer Request and is

given by:

M0 =





< pr1 > + < pr2 > + < pr3 >,

< pd1 > + < pd2 >,

0





For example, the attributes of the object (token) pr1 can

be given by:

Product pr1







name : hometheater;
code : 567544;
cost : 278, 50;

and the attributes of the object (token) pd2 can be given by:

Request pd2







code : 123440;
cost : 00, 00;
type : hometheater;

The detailed definition of the dynamic behavior (firing

rules) of the object Petri Net can be found in [17]. In

Fig. 3, the transition t is enabled by the initial marking.

The attributes of the variable pr associated with the arc

connecting the place Products Stock to the transition t can

be replaced by the attributes of the objects pr1 for example.

Similarly, the attributes of the variable pd associated with

the arc connecting the place Buffer Request to transition

t can be replaced by the attributed of the objects pd2 for



Figure 4. Execution of a Sale Transaction Simulation.

example. Considering that the attributes of the pair of objects

(pr1, pd2) check the condition associated with the transition

t, the transition can be fired. The action associated with the

transition is then executed and a new object pd2 can be

produced in the place Processed Requests, as shown in Fig.

4, with the following attributes:

Request pd2







code : 123440;
cost : 278, 50;
type : hometheater;

In particular, when considering this new object pd2, the

attribute cost has been modified after the firing of t.

IV. POSSIBILISTIC PETRI NETS

Possibilistic Petri nets are derived from Object Petri nets

[18]. In particular, in the approach presented in [12], a

possibilistic Petri net is a model where a marked place

corresponds to a possible partial state, a transition to a

possible state change, and a firing sequence to a possible

behavior. The main advantage in working with possibilistic

Petri nets is that it allows for the updating of a system state

at a supervisory level with ill-known information without

necessarily reaching inconsistent states.

A possibilistic Petri net model associates a possibility

distribution Πo(p) to the location of an object o, p being

a place of the net, thus allowing a possibilistic distribution

to then model:

• A precise marking: each token is located in only one

place (well-known state).

• An imprecise marking: each token location has a pos-

sibility distribution over a set of places. It cannot be

asserted that a token is in a given place, but only that

it is in a place among a given set of places.

Πo(p) = 1 represents the fact that p is a possible location

of o, and Πo(p) = 0 expresses the certainty that o is not

present in place p. Formally, a marking in a possibilistic

Petri net is then a mapping:

M : O × P −→ {0, 1} (2)

where O is a set of objects and P a set of places. If

M(o, p) = 1, there exists a possibility of having the object

o in place p. On the contrary, if M(o, p) = 0, there exists

no possibility of having o in p. A marking M of the net

allows one to represent:

• A precise marking: M(o, p) = 1 and ∀pi 6=
p,M(o, pi) = 0.

• An imprecise marking: for example, if there exists a

possibility at a certain time to have the same object o

in two different places, p1 and p2, them M(o, p1) =
M(o, p2) = 1.

A possibilistic marking will correspond in practice to

knowledge concerning a situation at a given time.

In a possibilistic Petri net, the firing (certain or uncertain)

of a transition t is decomposed into two steps:

• Beginning of a firing: objects are put into output places

of t but are not removed from its input places.

• End of a firing: that can be a firing cancellation (tokens

are removed from the output places of t) or a firing

achievement (tokens are removed from the input places

of t).

A certain firing consists of a beginning of a firing and

an immediate firing achievement. A pseudo-firing that will

increase the uncertainty of the marking can be considered

only as the beginning of a firing (there is no information

to be sure whether the normal event associated with the

transition has actually occurred or not). To a certain extent,

pseudo-firing is a way of realizing forward deduction.

The interpretation of a possibilistic Petri net is defined

by attaching to each transition an authorization function

ηx1,...,xn
defined as followed:

ηx1,...,xn
: T −→ {False, Uncertain, True} (3)

where x1, ..., xn are the variables associated to the incoming

arcs of transition t (when considering the underlying Object

Petri net).

If o1, ..., on is a possible substitution to x1, ..., xn for

firing t, then several situations can be considered:

• t is not enabled by the marking but the associated

interpretation is true; an inconsistent situation occurs

and a special treatment of the net is activated;

• t is enabled by a precise marking and the interpretation

is true; then a classical firing (with certainty) of an

object Petri net occurs;

• t is enabled by a precise marking and the interpretation

is uncertain; then the transition is pseudo-fired and the

imprecision is increased;

• t is enabled by an uncertain marking; if the interpreta-

tion is uncertain, t is pseudo-fired;



(a) (b)

Figure 5. Marking (a) Before firing; and (b) After pseudo-firing.

• t is enabled by an uncertain marking and the inter-

pretation is true: a recovery algorithm, presented in

[19], is called and a new computation of the possibility

distribution of the objects involved in the uncertain

marking is realized in order to go back to a certain

marking.

The pseudo-firing (or uncertain marking) is detailed

through the example illustrated in Fig. 5. The place p1 be-

longs to Class1, p2 to Class2 and p3 to the composite class

(Class1, Class2). The object instances of Class1 have

an attribute date. The interpretation, given by possibilistic

distributions ηxy is:

∀y







uncertain if(τ < x.date) ∧ (signal(x))
true if(τ ≥ x.date) ∧ (signal(x))
false otherwise

where signal(x) is true when the associated sensor is active

on a specific shop floor.

This function has the following semantics. Before the time

date, the arrival of a message from the shop floor signaling

that the object < x > was involved in the event associated

with the transition t, is possible but does not correspond to

a normal behavior. Either the message is erroneous, or the

representation of the shop floor state (the Petri net marking)

is not consistent with the actual state. The imprecision

concerning object < x > will increase and the transition

t associated with the corresponding event will be pseudo-

fired.

On the other hand, receiving the message after a time date

corresponds to normal behavior. So the firing of t should be

a normal firing and the update of the shop floor state should

be realized with certainty.

Let us consider the initial marking of Fig. 5(a); two

substitution are possible for t: S1 =< o1, o3 > and

S2 =< o2, o3 >. Let us assume that o1.date = 20 and

o2.date = 40.

At time τ1 = 25 let us suppose that signal(o2) = true

and at time τ2 = 35, signal(o1) = true. Fig. 6 depicts

the possibility distributions of instances o1, o2 and o3 as a

function of time (the black lines represent a possibility equal

to 1 and the bright lines a possibility equal to 0):

• at time τ = 10, the firing of transition t is possible in

Figure 6. Possibility distribution of locations of o1, o2 and o3.

the future for y = o3 and for either x = o1 or x = o2
(transition is enabled and can be fired normally since

signal(oi) is received);

• at time τ = 25, signal(o2) = true is received but it

does not correspond to a normal behavior (o2.date >

25); ηo2o3(t) = uncertain, and t is pseudo-fired with

substitution S2 (Fig. 5(b));

• after date τ > 25 the marking is imprecise and cover

two alternatives:

– the event corresponding to the firing of t for tuple

< o2, o3 > has actually occurred; the information

given by signal(o2) was right;

– the event corresponding to the firing of t for

tuple < o2, o3 > has not actually occurred. This

transition can still be fired, either by < o2, o3 >

or by < o1, o3 >;

• at time τ = 35 the receipt of signal(o1) = true

corresponds to a normal behavior (o1.date ≤ 35)

and ηo1o3(t) = true. As explained before, this case

corresponds to the one in which the recovery algorithm

is called. The application of the algorithm cancels the

pseudo-firing of t for < o2, o3 >. As the marking is

now precise and ηo1o3(t) = true, transition t is fired

(with certainty) with the tuple < o1, o3 >. It assume

that signal(o2) = true was due to noise.

V. POSSIBILISTIC WORKFLOW NETS

If a Petri net is used as a model for Business Processes in

a Workflow Management System, transitions will represent

the state changes of the process. In particular, each event

occurring during the execution of the process (beginning and

ending of activities) will be associated with a transition as

a boolean variable. Such a variable will be essentially seen

as an external value corresponding to a message received

from an activity (or send to an activity). Possibly, internal

values depending on certain token attributes will enable

some transitions too.



Figure 7. Token player of Petri net.

Petri net models can be directly executed using a special-

ized inference mechanism called “token player algorithm”

that allows for a simplified monitoring of the represented

processes. As pointed out in the introduction, the interaction

of human behavior in Processes Management can introduce

some uncertainty and should be taken into account in order

to turn the model of the process more robust to human be-

havior. A classical token player algorithm, as the one in Fig

7, is only based on normal expected events. If an unexpected

event occurs, an immediate inconsistency between the model

of the process and the real process execution will happen (an

external event received by a transition which is not enabled

by the marking of the net) or, if some expected event never

occurs, the model will reach a deadlock situation (an external

event never received by an enabled transition).

A model of the process based on the routing structure

of WorkFlow nets and on uncertain marking and firing

of possibilistic Petri nets will then produce a kind of

possibilistic WorkFlow net that will be able to deal with

non-conformance in Business Processes monitoring. The

“Handle Complaint Process” represented in Fig. 1(b) will

be used to illustrate the approach.

The possibilistic WorkFlow net with objects in Fig. 8

represents the new model of the “Handle Complaint Pro-

cess” where < c1 > is an object belonging to the class

“Complaint”, x, y and z are variables of the same class

“Complaint” and all places of the model belong to the class

“Complaint” too.

After the firing of t1 and the calling of the method

x.record() to the corresponding actor (here the human actor

that corresponds to the secretary responsible in recording the

complaint), an object < c1 > is produced in place Record

and is expecting for the end of the complaint recording that

will happen when the corresponding condition x.endRecord

associated with the transition t2 will become true.

If the secretary has a certain level of autonomy in making

Figure 8. Handle Complaint Process: Possibilistic WorkFlow net.



Figure 9. Token player of Possibilistic Petri net.

decisions in function of her own expert knowledge, she

can decide that the complaint was not properly submitted

for example and send directly a letter to the owner of

the complaint without really following the complete set of

activities specified by the model of the process. In this case,

after sending a letter, instead of having the interpretation

associated with the transition t2 (x.endRecord) becoming

true, it is the interpretation associated with the transition

t14 (x.endSL) that will become true. Because no object

will exist in the place Send Letter at this moment, neither

transition t14 will be enable nor transition t2, the global state

of the process resulting then in a deadlock situation. If the

token player of Fig. 7 is applied to such a situation then

an alarm will be activated and a kind of state recovery will

have to be realized manually after diagnosing the motive of

the corresponding process inconsistency.

If instead of applying a classic token player, the token

player given by the activity diagram of Fig. 9 is considered,

then, it will be possible to reach through a sequence of

pseudo firings of a possibilistic Petri net a global state

consistent with certain external events than can turn true the

condition associated with transitions not necessarily enabled

by the current marking.

The first step will be to verify through the fundamental

equation of the Petri net theory [16] that there exists a non

ordered sequence of transitions that permits the reaching of

a marking such that the transition that received the external

event will be enabled.

Considering the object WorkFlow net in Fig. 10(a) with

an object < c1 > in P2, if an external event is received

by transition t14, the corresponding equation that has to be

solved is the following:

M ′ = M +W × S (4)

with M ′T = [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0] the final marking

to be reached, MT = [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] the

current marking, W the incidence matrix of the WorkFlow

net of Fig. 10(a), and S a non ordered sequence of transition

firings. The solution is then given by the firing sequence

vector ST = [0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0] that corresponds to

the non ordered sequence t2, t3, t4, t5, t6, t7, t8, t9, t10, t12.

For any Petri net, the result produced by S is only a

necessary condition in the reachability problem of the Petri

net theory. In the WorkFlow net case that respects the

soundness property, S will constitute a sufficient condition

too because there does not exist any dead part in the

corresponding net.

Once a solution for S is found, it is then necessary to pro-

duce at least one ordered sequence of transitions that reaches

M ′ from M . The second step of the recovery procedure

will be then to make the interpretations associated to all the

transitions that occur in the solution S uncertain and make

all the other transitions of the object WorkFlow net false.

Then, only during the recovery procedure, the interpretation

of the transitions will be ηvar(ti) = uncertain for the

transitions ti that belongs to the non zero solutions of S,

and ηvar(tj) = false for the transitions tj that belongs to

the zero solutions of S, less transition t14 that corresponds

to the transition with the true interpretation because of the

received external event. In doing so, the following ordered

sequence of pseudo firings will be produced (remembering

that for a pseudo firing of a possibilistic Petri net, the actions

associated with the fired transitions are not executed):

• for the marking M corresponding to an object < c1 >

in P2 (Fig. 10(a)), the transition t2 is pseudo enabled

and can be pseudo fired producing new objects in P3

and P4 without removing the object in P2. The resulting

uncertain marking Mint1 is given by copies of the

object < c1 > in P2, P3 and P4.

• for the marking Mint1 , the transitions t3 and t4 are

pseudo enabled and one of them can be pseudo fired.

If t3 is the chosen transition, a new copy of the object

< c1 > is produced in P5. The resulting uncertain

marking Mint2 is given by copies of the object < c1 >

in P2, P3, P4 and P5.

• for the marking Mint2 , the transitions t4 and t5 are

pseudo enabled and one of them can be pseudo fired.

If t4 is the chosen transition, a new copy of the object

< c1 > is produced in P6. The resulting uncertain

marking Mint3 is given by copies of the object < c1 >

in P2, P3, P4, P5 and P6.



(a) (b) (c)

Figure 10. Simulation results: (a)Initial marking. (b)Pseudo-firing. (c)Final
marking.

• for the marking Mint3 , the transitions t5 and t6 are

pseudo enabled and one of them can be pseudo fired.

If t5 is the chosen transition, a new copy of the object

< c1 > is produced in P7. The resulting uncertain

marking Mint4 is given by copies of the object < c1 >

in P2, P3, P4, P5, P6 and P7.

• for the marking Mint4 , the transition t6 is pseudo

enabled and can be pseudo fired producing a new copy

of the object < c1 > in P8. The resulting uncertain

marking Mint5 is given by copies of the object < c1 >

in P2, P3, P4, P5, P6, P7 and P8.

• for the marking Mint5 , the transition t7 is pseudo

enabled and can be pseudo fired producing a new copy

of the object < c1 > in P9. The resulting uncertain

marking Mint6 is given by copies of the object < c1 >

in P2, P3, P4, P5, P6, P7, P8 and P9.

• for the marking Mint6 , the transition t8 is pseudo

enabled and can be pseudo fired producing a new copy

of the object < c1 > in P10. The resulting uncertain

marking Mint7 is given by copies of the object < c1 >

in P2, P3, P4, P5, P6, P7, P8, P9 and P10.

• for the marking Mint7 , the transition t9 is pseudo

enabled and can be pseudo fired producing a new copy

of the object < c1 > in P11. The resulting uncertain

marking Mint8 is given by copies of the object < c1 >

in P2, P3, P4, P5, P6, P7, P8, P9, P10 and P11.

• for the marking Mint8 , the transition t10 is pseudo

enabled and can be pseudo fired producing a new copy

of the object < c1 > in P12. The resulting uncertain

marking Mint9 is given by copies of the object < c1 >

in P2, P3, P4, P5, P6, P7, P8, P9, P10, P11 and P12.

• for the marking Mint9 , only the transition t12 is pseudo

enabled because the interpretation of transition t11 is

false. It can be pseudo fired producing a new copy

of the object < c1 > in P14. The resulting uncertain

marking Mint10 is given by copies of the object < c1 >

in P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12 and

P14.

Finally, the final marking M ′ corresponding to the object

WorkFlow net of Fig. 10(b) is obtained. For this imprecise

marking, the possibility of having a copy of the same object

< c1 > in places P2, P3, P4, P5, P6, P7, P8, P9, P10,

P11, P12 and P14 is 1. Due to the fact that the uncertain

marking of the object < c1 > in P14 enables the transition

t14(where the external event was detected), the recovery

algorithm of possibilistic Petri nets presented in [19] allows

for the marking of the WorkFlow net of Fig. 10(c) to became

certain through the firing achievement of transition t2, t3, t4,

t5, t6, t7, t8, t9, t10 and t12 (in fact, a new computation of

the possibility distribution of the copies of object < c1 > is

carried out in order to go back to certainty). Traditionally

in possibilistic Petri nets, the recovery algorithm has the

function of defuzzification of uncertain knowledge of the

state of a Petri net when some certain events occur.

As a final result, the global marking of the WorkFlow net

in Fig. 10(c) becomes consistent with the current situation

of the process and the recorded pseudo firing sequences t2,

t3, t4, t5, t6, t7, t8, t9, t10 and t12 informs the activities that

were not correctly executed when considering the model of

the process.

To take into account the kind of incident presented in

this example with an ordinary Petri net based on the token

player in Fig. 7, the process should be restarted manually

or several new transitions should be created to consider all



possible abnormal scenarios. As a consequence, the global

state of the process would go into a deadlock situation or

the corresponding graph would rapidly become completely

unreadable.

VI. CONCLUSION

In this article, a possibilistic WorkFlow net model was

presented with the purpose of dealing with non-conformance

in Business Processes. Combining the routing structure of

WorkFlow net with the uncertain reasoning of possibilistic

Petri nets, it was possible to recover from certain kind

of inconsistencies that can happen during the real time

execution of the process when human actors are involved

in the process activities. Such an approach was applied to a

“Handle Complaint Process”.

Comparing this approach with other works dealing with

the problem of non-conformance, the main advantage is

the fact that a formal process model allowing for the

proving of some good properties, like the soundness property

for example, was combined with a possibilistic approach

which is very well adapted to the concept of flexibility and

robustness in processes.

As a future work proposal, it will be interesting to present

an inconsistency recovery approach that will be applied to

a process not necessarily sound, knowing that in practice,

the inherent flexibility of legacy systems does not always

allow for the production of a process model that respects

the soundness property.

ACKNOWLEDGMENT

The authors would like to thank FAPEMIG, CAPES and

CNPq for financial support.

REFERENCES

[1] A. Hofstede, W. van der Aalst, M. Adams, and N. Russell,
Modern Business Process Automation: YAWL and its Support
Environment. Springer Publishing Company, Incorporated,
2009.

[2] W. v. d. Aalst and K. v. Hee, Workflow Management: Models,
Methods, and Systems, 1st ed., ser. MIT Press Books. The
MIT Press, 2004, vol. 1.

[3] K. Mohammed, L. Redouane, and C. Bernard, “A deviation-
tolerant approach to software process evolution,” in Ninth
international workshop on Principles of software evolution:
in conjunction with the 6th ESEC/FSE joint meeting, 2007,
pp. 75 – 78.

[4] S. Thompson and T. Torabi, “An observational approach to
practical process non-conformance detection,” in Applica-
tions of Digital Information and Web Technologies, 2009.
ICADIWT ’09. Second International Conference on the, 2009,
pp. 62 –67.

[5] G. Cugola, E. Di Nitto, C. Ghezzi, and M. Mantione, “How
to deal with deviations during process model enactment,” in
Proceedings of the 17th international conference on Software
engineering, ser. ICSE ’95. New York, NY, USA: ACM,
1995, pp. 265–273.

[6] G. Cugola, E. Di Nitto, A. Fuggetta, and C. Ghezzi, “A
framework for formalizing inconsistencies and deviations in
human-centered systems,” ACM Trans. Softw. Eng. Methodol.,
vol. 5, no. 3, pp. 191–230, jul 1996.

[7] A. Rozinat and W. M. P. van der Aalst, “Conformance
checking of processes based on monitoring real behavior,”
Information Systems, vol. 33, pp. 64 – 95, 2008.

[8] W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat,
and H. M. W. Verbeek, “Choreography conformance check-
ing: An approach based on bpel and petri nets,” December
2005.

[9] J. Munoz-Gama, “Algorithms for process conformance and
process refinement,” Master’s thesis, Universitat Politècnica
de Catalunya (UPC), sep 2010.

[10] A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst,
“Towards robust conformance checking,” in Business Process
Management Workshops’10, 2010, pp. 122 – 133.

[11] S. Cı̂mpan and F. Oquendo, “Dealing with software process
deviations using fuzzy logic based monitoring,” SIGAPP
Appl. Comput. Rev., vol. 8, pp. 3 – 13, 2000.

[12] J. Cardoso, Time Fuzzy Petri Nets, ser. Studies in Fuzziness
and Soft Computing. Physica-Verlag, 1999.

[13] J. Cardoso, R. Valette, and D. Dubois, “Possibilistic petri
nets,” Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, vol. 29, no. 5, pp. 573 –582, oct 1999.

[14] W. M. P. Van Der Aalst, “The application of petri nets
to workflow management,” Journal of Circuits Systems and
Computers, vol. 8, pp. 21 – 66, 1998.

[15] L. Soares Passos and S. Julia, “Qualitative analysis of
workflow nets using linear logic: Soundness verification,”
in Systems, Man and Cybernetics, 2009. SMC 2009. IEEE
International Conference on, 2009, pp. 2843 –2847.

[16] T. Murata, “Petri nets: Properties, analysis and applications,”
Proceedings of the IEEE, vol. 77, pp. 541 – 580, 1989.

[17] C. Sibertin-Blanc, “High level petri nets with data structure.”
in Proceedings of the 6th european Workshop on Application
and Theory of Petri Nets, Espoo, Finland, Jensen, K., Ed.,
jun 1985, pp. 141–170.

[18] ——, “Cooperative objects: Principles, use and implementa-
tion.” in Concurrent Object-Oriented Programming and Petri
Nets, ser. Lecture Notes in Computer Science, G. Agha,
F. de Cindio, and G. Rozenberg, Eds., vol. 2001. Springer,
2001, pp. 216–246.

[19] J. Cardoso, R. Valette, and D. Dubois, “Petri nets with
uncertain markings.” in Applications and Theory of Petri Nets,
ser. Lecture Notes in Computer Science, G. Rozenberg, Ed.,
vol. 483. Springer, 1989, pp. 64 – 78.


