OATAO

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 9292

To cite this document: Hugues, Jérdme A programming language view to model-driven
engineering. (2013) In: Séminaire DTIM - ONERA, 03 June 2013 - 03 June 2013
(Toulouse, France). (Unpublished)

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@inp-toulouse.fr

http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

Institut Superieur de I'Aéronautique et de 'Espace

A programming language view to
model-driven engineering

Jerome Hugues, ISAE/DMIA
jerome.hugues@isae.fr

> Model-Based System/Software Engineering vs. the real world
> AADL, an overview
> MBSE as an extension to programming in the large

> Model-Based System/Software Engineering vs. the real world

- Engineering cycles

> Now typical in SW engineering
» Various refinements
+ traceability across layers
+ split across teams (HW, SW, ..
and consolidation

)

Qngoing
Suppy

i Review/Test
Requirements | Tt ; >

Analysis

Operational
Testing

y 4

Integration

High Level | -
Design Testing

N\ V4

Detailed > Linit
Specifications Testing

Coding

Question: where are the difficulties?
One could simply apply V-cycle, pick tools and voila!

ol

Supported by AADL
» Scheduling, safety analysis

» Model checking, Code generation, ..

» Single architectural model

lllllllllllllll

uuuuuuuuuuuuuuuuuuuu
m = Top-L | | - Fault-tolerance Al P
Eng g Verific ltems Te:
System | = High-Level System
Design AADL Model Test
Software .)
i Detailed - Integration
Architectural = 4> A A Model Test
Design .
Component Spect ;
Software <«> Model-Cod _ Unit
Design Inter: Test

Why is analysis in a V-ca/cle so difficult?

stem Engineers 1 - 0 Software Enqgineers

~
SECURITY Increased confidentiality
requirement

Intrusion

Lesson#l: Iterative V-cycle is ineffective: any design choice |~
a could jeopardize previous results. bhanges \

. . . eS
Need to reconcile many domains, many approaches with pre-

2?:[existent different tool supports (or lack of — Excel/Visio ..) o
PoV " "
Also, SW is a minor part of the model compared to blexity | %
properties, behavior, interactions, etc. fj
* increases CPU utilization S
* increases power consumption E)
PERFORMANCE * may increase latency / E)
Deadlock/Starvation . by
Latency //Conﬂdenoe M

Execution Time/Deadline <€—

~ Why is model-based so difficult?

> Order of complexity (gratuitous comparison)
» Mathematics: axioms + proof, no interpretation

—1 L ; 1 ; L 1 L1 1 . 1 L

) e .
Lesson: Under-specified MDE process incurs 4 out of 7 « wastes »

y depicted in Lean Management

1. Waiting: some analysis are time-consuming, e.g. model checking
> N 2. Over-processing: when to trigger analysis?

3. Over-production: model too verbose/detailed

4. Defects: late discovery of model inaccuracies

y| = Common root: analysis is a button in the GUI, not part of the model

”

> 4 Need to reflect on analysis process: prog. language can help!

DIFICS

Fation”

» E.g. scheduling analysis: true/false
» Safety: error rate, stop when below threshold

» Also, Analysis part of the GUI space, not the modeling space!

> AADL, an overview

AADL: Architecture Analysis & Design Language AADL

International standard promoted by SAE International,
AS-2C committee, released as AS-5506A

Version 1.0 published in 2004, version 2 in 2009

» Committee driven by inputs from the avionics and space industry
» Academics drive analysis capability, to ensure they match with modeling patterns

http://aadl.info list all resources around AADL

» Public wiki with lot of resources: https://wiki.sei.cmu.edu/aadl/index.php/Main Page
» Include link to most research activities around AADL

AADL is dedicated to real-time embedded domain

* Modeling software and hardware resources for V&V

« Extension & refinements concept to iterate down to generation

Different representations

» Graphical: high-level view of the system
» Textual: to view all details

» XML: to ease processing by 3rd party tool

Some interactions with SysML (higher-level design)

- AADL model elements

Component type : . Subprogram
. Identifier — . Thread (group)
i . Process
. Extends \ $
T I 1" (=11 010 :
Package . Prototypes : Ports i i Device
. Public decl.. ¢------""7"7] [Features . { . Access . i (virtual) processor ;
. Private decl. /" |- Flows i . Subprogram ;i . (virtual) bus
X . Properties i . Parameter i i.System
AN . Annex i . Feature : i .Abstract _

“refererices”

,// \\ Component implementation g E........................_
% \ et : . Ports
\ . Identifier E Necs
Property sets N Extend P
) | - EXtends : . Parameter
. Units \\\ [Subcomponents ere——— :
. Property type <---__\] |Connections |—
. Property definition . Call sequences i . Modes
- Constants “Modes . transitions
“Flows .
. Properties
AADL

-~ AADL in one slide (!)

Architecture helps you focusing on the actual system

AADL Process
as Partition

AAJ Architectural patterns

Ad

OOTC OISOt

AADL Data as
Ada Protected object

O Aanciivvnness vricniar

Link to code/model

Workflow with SysML,
Executable models (SCADE, Simulink)

Code (Ada, C, lua, ...)

eveTTOaET

Data_Sink :in
eventdata port

.:;;
o
5 —tt

pdate K

SR

Watcher_Thread

\0000000000 2

Data Gink :in
event®ara port

|\
ReceiveLThread
7
!

Local
Object

I—|
<update]

]

-- Textual AADL

thread Sender Thread

features

Data Source : out event data port Record Type.Impl;
properties

Dispatch_ Protocol => Periodic;

Period => 1 Sec;

annex real specification {**
-- Contract to be enforced
*x};

end Sender Thread;

4&0« YLXEEA AN

SpaceWire

A

LEON TSIM

LEON TSIM

o~

Non-functional properties

rrysicar view

- AADL Extensions

> AADL is meant to be extensible
> New property sets for specific concerns: e.g. ARINC653
> Additional language to extend semantics

» Behavioral specifications: AADL-BA

» Error modeling, propagation in a system: AADL-EMV2

» Constraints on model (on going)
« Algebraic specifications for contracts, patterns, ...

» Requirement engineering (on going)
> Each extension has to remain compatible with core
» Can be safely ignored if not relevant for a particular objective

Some examples of AADL tool support

> AADL as a backbone, federating multiple activities

» analysis through generation of intermediate models + external tools
> Common tool IDE: OSATE2 from SEI (FLOSS)

» AADL core (SEI) + Behavioral (TPT) + Error (SEl) annexes

> Non exhaustive list of tools, European-centric (see http://www.aadl.info)
Integration to a process: with SysML, Simulink, SCADE
Architectural pattern checks: MILS, ARINC, Ravenscar, Synchronous
Model checking:
» Timed/Stochastic/Colored Petri Nets
 Timed automata et al.: UPPAAL, Versa, TASM
» Scheduling: MAST, Cheddar, CARTS
» Performance evaluation: real-time and network calculus
» Fault analysis: COMPASS, Stochastic Petri Nets, PRISM, FHA
» Simulation: ADeS, Marzhin
» Energy consumption of SoC: OpenPeople project
» Code generation: SystemC, C, Ada, RTSJ, Lustre
» WOCET analysis: mapping to Bound-T

>

v

>

v

>

v

> MBSE as an extension to programming in the large

- Moving back to programming language

> AADL has a concrete syntax
» Concrete means also rock-solid to build foundation
> Scalable: AADL package system close to Ada one
» Potential for modular processing

» Optimizations in representation/processing of the AST
» OSATEZ2: EMF, issues with object ids and cache
 Ocarina: GNAT-like tree: faster, leaner

> Text also means potential for detailed syntactic constructs
» Liskov principle, multiple bindings, formal specs, etc
» Cannot be (easily) represented graphically !

- Example#1: SAVI -

Incremental Multi-Fidelity Multi-dimensional
Multi-Layered Architecture Modeling & Analysis

Lesson: a textual language helps being scalable, separation of concerns across
teams in a nice way: support for public/private sections to export only required
elements, merge of models made easy with textual patches

Model divergence checked easily by lazy-loading required model and parsing,
can be done in a very light way
ll Generated executables

'-l- gl | T T e
] S —— I
a
‘_ T
i

OEM & Subcontractor
Subsystem proposal validation

Pt B s el o el s
C gt SdlELY & SECUITY analysis
runctional integration consistency e . -

F ault modeiing & impact analysis
vwhat-if trade studies

ARINC 429 protocol mappings

Use of AADL to cover a whole modeling cycle, focusing on validation of
high level budgets (mass, energy), interface consistencies, etc.
Modeling teams scattered across multiple teams and companies

- Example#2: TASTE

> Code generation and analysis for Space-critical systems
» Subset of AADL as input language + model transformations

Lesson: a textual language, free from meta-model management issues is a must to
avoid maintenance issues.

TASTE is 7 years old (!), each layer evolves independently, coordinated by an orchestrator

=> Each tool either reuses one existing parser (from Ocarina or ANTLR);
=> Or simple regexp to find the information it needs.

Simply follow Unix philosophy to address a complex transformation issue

safe-mode,
switch-to-redundant,

}

AOCS-tm ::= SEQUENCE {
attitude Attitude-ty,
orbit Orbit-ty,

}

/7
7’
/I
’
/7
//’
The TASTE Toolset

- Example#3: ARAM (oint project with ESA, 2011)

> Based on current practice for space projects at ESA
> Define mission criteria

» Max weight, orbit position, duration, etc.
> Specify functional aspects

» \What will be provided by the platform

»
»

Planned
implementation

P 4

ot
“eﬁt\ef‘}% -

Level of details

» Specify requirements & constraints

Functions

> Refine the architecture

Mission
criteria

» Replace functions by implementation
» Reuse existing components

> Validate planned implementation
» Implementation properties vs. Function requirements
» Automate system integration verification

- ARAM Proposed approach, cont’d

Step 1

Functional architecture
(functions and their interactions)

Refinement with ;
generic building blocks :

Mission requirements
(duration, mass, etc.)

Update models

Implementation
(processor, bus to be used)

e — Step 3
| Automatic validation of |
| mission requirements ;
validation KO .-~ e
Validation OK
‘/’/ tea
Criteria and/or architecture Build & implement
modification the system

System exploration, design, integration

abstract functionl
features

ba : requires bus access
genericbus; system obc device sensor
end functionl; features features
ba : requires bus ba : requires bus
system implementation mission.i access busl553; access busl553;
subcomponents end obc; end sensor;
fl : abstract functionl;
f2 : abstract function2;
b : bus genericbus; system implementation mission.planned
connections extends mission.i
bus access fl.ba -> b; subcomponents
bus access f2.ba -> b; f1 : refined to system obc;
annex Constraints {** f2 : refined to device sensor;
-- list of contracts to be met bus : refined to busl553;
*%), -- contracts inherited from mission.1
end mission.i; end mission.i;

4 N N

Function 1 Function 2
] i

S |
\< Functional bus >/

Sensor

- Contract example

-—- gaila::functions —
abstract fpa data get « Interface » of a function
features
dataout : out data port Data Types::fpa data;
ctrlout : out data port Data Types::fpa ctrl;
end fpa data get;
-— blocks —
device FPA —
features
dataout : out data port Data Types::FPA data; One implementation
ctrlout : out data port Data Types::FPA ctrl;
properties

ARAM Properties::Realizes =>
(classifier (GAIA::Functions::FPA data get));

end FPA;
-—- gala::validation — —
system implementation Gaia.Validation Function/implementation
subcomponents mapping
Functional : system GAIA::Functions::Gaia.Functional;
Impl : system GAIA::Implementations::Gaila.First Architecture;
properties

ARAM Properties::Actual Function Binding =>
(reference (Functional.getl)) applies to Impl.fpal.datapart;

20

- Function coverage

Lesson: use a common language to model the architecture, shared
by system engineer and software/hardware engineers

=> Each « role » can model its facet of the model
Syntax and semantics of AADL to bind them all, (like a programming language !)
External model bound to architecture (SysML, Simulink, DOORS, ...) for detailed info

=> Each level is attached its own set of verification (constraints, checks, computation, ..)
and associated evaluation tool
Refined entities may « inherit » constraints from parent (a-la Liskov)

=> Verification rules using DSL evaluate specific architecture patterns,
= “if A is connected to B, then the bandwidth of the bus used is less than ..”
=> Part of SAE AS2-C standardization effort

=> Nice side-effect: can be used to enforce requirements, subsets, contracts
=> Used for ARINC, MILS, Ravenscar architectural styles using Ocarina

— il i il . . i i i e

ImplUS_ T.runtime [0 WY I3 [ESNCI] G [N (KU DN o IS I IS MG [SN e © [
Impl.transportlayer X X X X X X X X X X X x x x x X X X

- AADL Constraint Language

> Work in progress as part of SAE AS2-C committee work
» Defines accessors and computation rules on model elements
> E.g. AADLv2 and ARINC653 annex support IMA concepts

» Needs to constraint models to respect some invariants

theorem scheduling major frame -- Check configuration of partition scheduling
foreach cpu in processor set do

check ((float (property (cpu, "ARINC653::Module Major Frame")) =

sum (property (cpu, "ARINC653::Partition Slots"))));
end scheduling major frame;

system IMA System extends AADL System - implementation/extension must respect profile
annex real specification {**

theorem check IMA
foreach s in local set do

requires (check IMA profile); -- logical conjuction of theorems
end check IMA; **};

end IMA System;

- Example#4: PERSEUS supersonic rocket

> Analysis of rocket kinematics performance

all |

System-level analysis done by combining atomic computations A
| Each defined separately |

\
r ‘ Cridits Photo : Juien Franc / Planste Science
A

True {or not..)
y

Lesson# 2: verification should be driven by domain expert
Expert knows what to compute, the dependencies between parameters
Architects will attach analysis rule to model entities they apply to }

= use of AADL annex subclause mechanism

vael Lesson# 2bis: notion of ordering of rules (makefile-like)
®em Some properties deduced from analysis, reused in another analysis }

= Resolution in a compiler AST
= Need also caching and “semantic timestamping”

Constraints Performances Data from

Aerodynamics a? / . .
y P+ Drag coefficient theorems theorems implementation

areas

- Example#5: Optimization model/code

> Combine code generation, scheduling, analysis

> Three level of evaluations, combined
» Binary: precise evaluation, e.g. memory footprint, WCET
Model: check constraints, e.g. requirements or higher-level checks
» Operation: evaluate the benefits of one modification
» Under supervision of analysis, scheduling in this context

> Integrated in Ocarina (O. Gilles PhD)

>

v

Model]

r evaluation

y

Model)~ Code generation Binary
evaluation

A
Transform systems

Wrap-up

System Engineers 1 - 1 Software Engineers

> Equating Model-Based Analysis and Compiling is appealing

» Text-based allows for optimization and more precise semantics

« Fast evaluation for static/simple contracts, proof for complex one (BLESS)
* Integration of IEEE PSL (dynamic traces) for observers

» Links with analysis tools made easy
> Integrating analysis contract to models helps solving
» Waiting, Over-processing, Over-production, Defects

» A compiler/makefile-like approach would optimize analysis effort
 Run only when required (i.e. model changed “significantly”)

> Integrating contracts as model elements, and analysis as
compilation steps allow for better usage of designer time, and
split: analysis designer vs. system designer

