
 

To cite this document: Hugues, Jérôme A programming language view to model-driven 

engineering. (2013) In: Séminaire DTIM - ONERA, 03 June 2013 - 03 June 2013 

(Toulouse, France). (Unpublished) 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible.  

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/  

Eprints ID: 9292 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@inp-toulouse.fr 

 

http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr


Institut Supérieur de l’Aéronautique et de l’Espace 

A programming language view to 
model-driven engineering 

Jérôme Hugues, ISAE/DMIA 

jerome.hugues@isae.fr 



>  Model-Based System/Software Engineering vs. the real world 

>  AADL, an overview 

>  MBSE as an extension to programming in the large 

Outline 

page 2 



>  Model-Based System/Software Engineering vs. the real world 

>  AADL, an overview 

>  MBSE as an extension to programming in the large 

Outline 

page 3 



>  Now typical in SW engineering 

» Various refinements 

+ traceability across layers 

+ split across teams (HW, SW, …) 

and consolidation 

 

 

>  Supported by AADL 

» Scheduling, safety analysis 

» Model checking, Code generation, … 

» Single architectural model 

Engineering cycles 

page 4 

!"#$%&'()!"#$#%&$#%'"#%()*+,-.#/0%

12#%+3,-(%/)45-6%&55-6%78+6+-#9%5)+:%'33-/9%&2(%;3)-<=%



Why is analysis in a V-cycle so difficult? 
(System Engineers 1 – 0 Software Engineers) 

Increased confidentiality 
requirement 

•  change of encryption policy

Key exchange frequency changes

Message size increases

•  increases bandwidth utilization

•  increases power consumption

Increased computational complexity 

•  increases WCET

•  increases CPU utilization

•  increases power consumption

•  may increase latency

B
y
 
F
e
i
l
e
r
 
a
n
d
 
L
e
w
i
s


*#$$&'+,(%>'#$&.;#%78+6+-#%)/%)2#?#+.;#@%&26%(#/)A2%+"3)+#%

+3,-(%B#35&$()C#%5$#;)3,/%$#/,-'/D%

%

E##(%'3%$#+32+)-#%4&26%(34&)2/9%4&26%&55$3&+"#/%!)'"%5$#8

#F)/'#2'%()?#$#2'%'33-%/,553$'/%G3$%-&+:%3H%I%JF+#-K7)/)3%DDL%

%

M-/39%NO%)/%&%-.'&/%5&$'%3H%'"#%43(#-%+345&$#(%'3%

5$35#$.#/9%P#"&;)3$9%)2'#$&+.32/9%#'+D%



>  Order of complexity (gratuitous comparison) 

» Mathematics: axioms + proof, no interpretation 

» Electronics, physics, etc. : bound by physics laws, yet empirics 

»  (Programming) language: human-defined .. Large variety 

>  Model-Based: babel tower effect 

» Easy to interconnect models, transform them 

» But how to manage analysis? 

>  Analysis: transformation to intermediate model + “evaluation” 

» E.g. scheduling analysis: true/false 

» Safety: error rate, stop when below threshold 

» Also, Analysis part of the GUI space, not the modeling space! 

Why is model-based so difficult? 

page 6 

*#$$&'(%Q2(#$8/5#+)R#(%STJ%5$3+#//%)2+,$/%U%3,'%3H%V%W%!&/'#/%X%%

(#5)+'#(%)2%Y#&2%S&2&A#4#2'%

,0   12.%'3()/34#%&2&-6/)/%&$#%.4#8+32/,4)2A9%#DAD%43(#-%+"#+:)2A%

40   56#/78/&9#$$.'3()!"#2%'3%'$)AA#$%&2&-6/)/0%

:0   56#/78/&;"9%&'()43(#-%'33%;#$P3/#K(#'&)-#(%

<0   =#>#9?$()-&'#%()/+3;#$6%3H%43(#-%)2&++,$&+)#/%

⇒  Z34432%$33'@%&2&-6/)/%)/%&%P,[32%)2%'"#%\Q>9%23'%5&$'%3H%'"#%43(#-%

%

E##(%'3%$#]#+'%32%&2&-6/)/%5$3+#//@%5$3AD%-&2A,&A#%+&2%"#-5=%



>  Model-Based System/Software Engineering vs. the real world 

>  AADL, an overview 

>  MBSE as an extension to programming in the large 

Outline 

page 7 



>  International standard promoted by SAE International, 
AS-2C committee, released as AS-5506A 

>  Version 1.0 published in 2004, version 2 in 2009 
»  Committee driven by inputs from the avionics and space industry 

»  Academics drive analysis capability, to ensure they match with modeling patterns 

>  http://aadl.info list all resources around AADL 
»  Public wiki with lot of resources: https://wiki.sei.cmu.edu/aadl/index.php/Main_Page 

»  Include link to most research activities around AADL 

>  AADL is dedicated to real-time embedded domain 
•  Modeling software and hardware resources for V&V 

•  Extension & refinements concept to iterate down to generation 

>  Different representations 
»  Graphical: high-level view of the system 

»  Textual: to view all details 

»  XML: to ease processing by 3rd party tool 

>  Some interactions with SysML (higher-level design) 

AADL: Architecture Analysis & Design Language 

    page    8 



AADL model elements 

page 9

Property sets 

. Units  

. Property type 

. Property definition 

. Constants 

 

Component type 

. Identifier 

. Extends 

. Prototypes 

. Features 

. Flows 

. Properties 

. Annex 

Component implementation 

. Identifier 

. Extends 

. Subcomponents 

. Connections 

. Call sequences 

. Modes  

. Flows 

. Properties 

. Annex 

Package 

. Public decl.. 

. Private decl. 

 

“references”

. Ports 

. Access 

. Subprogram 

. Parameter 

. Feature 

. Ports 

. Access 

. Parameter 

. Modes 

. transitions 

Category 
. Data 

. Subprogram 

. Thread (group) 

. Process 

. Memory 

. Device 

. (virtual) processor 

. (virtual) bus 

. System 

. Abstract 



page 10 

AADL in one slide (!) 
 

page 10 

page 10

1s

Send

Data_Source : out 

event data port

Data_Sink : in 

event data port

AADL Process 

as Partition

AADL Thread as 

Ada Task object
AADL Data as 

Ada Protected object

Receiver

Local

Object update

500

ms

100

ms

Update Read
Watch

Receiver_Thread Watcher_Thread

SpaceWireSpaceWire

LEON TSIM
LEON TSIM

LEON TSIM

SpaceW
ire

SpaceW
ire

Sender_Thread

read

Data_Sink : in 

event data port

SC_2

SC_1

Concurrency view

Physical view

Receiver

Local

Object update

500

ms

100

ms

Update Read
Watch

Receiver_Thread Watcher_Thread

read

SC_3

Link to code/model
Workflow with SysML, 
Executable models (SCADE, Simulink)
Code (Ada, C, lua, …)

Non-functional properties

Architectural patterns

Architecture helps you focusing on the actual system

--  Textual AADL 

 

thread Sender_Thread 
features 

  Data_Source : out event data port Record_Type.Impl; 

properties 
  Dispatch_Protocol => Periodic; 

  Period            => 1 Sec; 
annex real_specification {** 

--  Contract to be enforced 

**}; 

end Sender_Thread; 



>  AADL is meant to be extensible 

>  New property sets for specific concerns: e.g. ARINC653 

>  Additional language to extend semantics 

» Behavioral specifications: AADL-BA 

» Error modeling, propagation in a system: AADL-EMV2 

» Constraints on model (on going) 

•  Algebraic specifications for contracts, patterns, … 

» Requirement engineering (on going) 

>  Each extension has to remain compatible with core 

» Can be safely ignored if not relevant for a particular objective 

AADL Extensions   

page 11 



>  AADL as a backbone, federating multiple activities 

»  analysis through generation of intermediate models + external tools 

>  Common tool IDE: OSATE2 from SEI (FLOSS) 

»  AADL core (SEI) + Behavioral (TPT) + Error (SEI) annexes 

>  Non exhaustive list of tools, European-centric (see http://www.aadl.info) 

»  Integration to a process: with SysML, Simulink, SCADE 

»  Architectural pattern checks: MILS, ARINC, Ravenscar, Synchronous 

»  Model checking:  

•  Timed/Stochastic/Colored Petri Nets 

•  Timed automata et al.: UPPAAL, Versa, TASM 

»  Scheduling: MAST, Cheddar, CARTS 

»  Performance evaluation: real-time and network calculus 

»  Fault analysis: COMPASS, Stochastic Petri Nets, PRISM, FHA 

»  Simulation: ADeS, Marzhin 

»  Energy consumption of SoC: OpenPeople project 

»  Code generation: SystemC, C, Ada, RTSJ, Lustre 

»  WCET analysis: mapping to Bound-T 

Some examples of AADL tool support 

page 12



>  Model-Based System/Software Engineering vs. the real world 

>  AADL, an overview 

>  MBSE as an extension to programming in the large 

Outline 

page 13 



>  AADL has a concrete syntax 

» Concrete means also rock-solid to build foundation 

>  Scalable: AADL package system close to Ada one 

» Potential for modular processing 

» Optimizations in representation/processing of the AST 

•  OSATE2: EMF, issues with object ids and cache  

•  Ocarina: GNAT-like tree: faster, leaner 

>  Text also means potential for detailed syntactic constructs 

»  Liskov principle, multiple bindings, formal specs, etc 

» Cannot be (easily) represented graphically !  

Moving back to programming language 

page 14 



Example#1: SAVI http://www.avsi.aero 
 

page 15 

Q/#%3H%MMTY%'3%+3;#$%&%!"3-#%43(#-)2A%+6+-#9%H3+,/)2A%32%;&-)(&.32%3H%

")A"%-#;#-%P,(A#'/%G4&//9%#2#$A6L9%)2'#$H&+#%+32/)/'#2+)#/9%#'+D%

S3(#-)2A%'#&4/%/+&[#$#(%&+$3//%4,-.5-#%'#&4/%&2(%+345&2)#/%

*#$$&'(%&%'#F',&-%-&2A,&A#%"#-5/%P#)2A%/+&-&P-#9%/#5&$&.32%3H%+32+#$2/%&+$3//%

'#&4/%)2%&%2)+#%!&6@%/,553$'%H3$%5,P-)+K5$);&'#%/#+.32/%'3%#F53$'%32-6%$#^,)$#(%

#-#4#2'/9%4#$A#%3H%43(#-/%4&(#%#&/6%!)'"%'#F',&-%5&'+"#/%

%

S3(#-%();#$A#2+#%+"#+:#(%#&/)-6%P6%-&C68-3&()2A%$#^,)$#(%43(#-%&2(%5&$/)2A9%%

+&2%P#%(32#%)2%&%;#$6%-)A"'%!&6%



>  Code generation and analysis for Space-critical systems 

» Subset of AADL as input language + model transformations 

Example#2: TASTE http://assert-project.net/-TASTE- 
 

The TASTE Toolset assert-project - Dr Eric Conquet, Maxime Perrotin, Marie-Aude Esteve – European Space 
Agency page 16 

AOCS
Control law

10 Hz 

sensor data 

actuators 

to FDIR 
Mode Management

State Machine

Deadline: 3 ms
WCET: 1 ms

Simulink
LEON2

SDL
LEON2

FDIR-command ::= ENUMERATED {  

 safe-mode, 

 switch-to-redundant, 

 ... 

} 

 

AOCS-tm ::= SEQUENCE { 

 attitude Attitude-ty, 

 orbit Orbit-ty, 

 ... 

} 

process ABB1
idle
PI1
RI1

(myData)
wait_ABB2

wait_ABB2
PI2
idle

FBY
1falsestop statusstart

*#$$&'(%&%'#F',&-%-&2A,&A#9%H$##%H$34%4#'&843(#-%4&2&A#4#2'%)//,#/%)/%&%4,/'%'3%%

&;3)(%4&)2'#2&2+#%)//,#/D%

_MN_J%)/%V%6#&$/%3-(%G=L9%#&+"%-&6#$%#;3-;#/%)2(#5#2(#2'-69%+33$()2&'#(%P6%&2%3$+"#/'$&'3$%

%

⇒  J&+"%'33-%#)'"#$%$#,/#/%32#%#F)/.2A%5&$/#$%GH$34%1+&$)2&%3$%ME_Y`La%

⇒  1$%/)45-#%$#A#F5%'3%R2(%'"#%)2H3$4&.32%)'%2##(/D%

N)45-6%H3--3!%Q2)F%5")-3/35"6%'3%&(($#//%&%+345-#F%'$&2/H3$4&.32%)//,#%



>  Based on current practice for space projects at ESA 

>  Define mission criteria 

»  Max weight, orbit position, duration, etc. 

>  Specify functional aspects 

»  What will be provided by the platform 

»  Specify requirements & constraints 

>  Refine the architecture 

»  Replace functions by implementation 

»  Reuse existing components 

>  Validate planned implementation 

»  Implementation properties vs. Function requirements 

»  Automate system integration verification 

Example#3: ARAM (joint project with ESA, 2011) 

17 

L
e

v
e

l 
o

f 
d

e
ta

il
s

Functions

Planned�
implementation

Refinement

Mission
criteria



18 

ARAM Proposed approach, cont’d 

Functional architecture 
(functions and their interactions) 

Implementation 
(processor, bus to be used) 

Refinement with 
generic building blocks 

Automatic validation of 
mission requirements  

 

Mission requirements 
(duration, mass, etc.) 

Build & implement 
the system 

Criteria and/or architecture 
modification 

Validation OK 
Validation KO 

Step 1 Step 2 

Step 3 

U
p

d
a
te

 m
o

d
e
ls
 



System exploration, design, integration 

19 

Function 1 Function 2

Functional bus

Sensor

1553 bus

Architecture refinement

system implementation mission.planned  

       extends mission.i 

subcomponents 

   f1  : refined to system obc; 

   f2  : refined to device sensor; 

   bus : refined to bus1553; 

-- contracts inherited from mission.i 

end mission.i; 

system implementation mission.i 

subcomponents 

   f1 : abstract function1; 

   f2 : abstract function2; 

   b  : bus genericbus; 

connections 

   bus access f1.ba -> b; 

   bus access f2.ba -> b; 

annex Constraints {** 

 -- list of contracts to be met 

**}; 

end mission.i; 

OBC

abstract  function1 

features 

   ba : requires bus access 

        genericbus; 

end function1; 

system obc 

features 

   ba : requires bus  

        access bus1553; 

end obc; 

device sensor 

features 

   ba : requires bus  

        access bus1553; 

end sensor; 



Contract example 

20 

-- gaia::functions 

abstract fpa_data_get 

features 

  dataout     : out data port Data_Types::fpa_data; 

  ctrlout     : out data port Data_Types::fpa_ctrl; 

end fpa_data_get; 
-- blocks 

device FPA 

features 

  dataout : out data port Data_Types::FPA_data; 

  ctrlout : out data port Data_Types::FPA_ctrl; 
properties 

  ARAM_Properties::Realizes =>  

 (classifier (GAIA::Functions::FPA_data_get)); 

end FPA; 

-- gaia::validation 

system implementation Gaia.Validation 

subcomponents 

  Functional : system GAIA::Functions::Gaia.Functional; 

  Impl       : system GAIA::Implementations::Gaia.First_Architecture; 
properties 

  ARAM_Properties::Actual_Function_Binding =>  

    (reference (Functional.get1)) applies to Impl.fpa1.datapart; 

 

« Interface » of a function 

One implementation 

Function/implementation 
mapping 



>  Problem: ensure that all abstract functions are implemented 
to real hardware block 

>  Solution: extract relevant information from the validation 
model dedicated analysis plug-in that generate the 
connection table (500 SLOCs !) 

Function coverage 

21 

*#$$&'(%,/#%&%+34432%-&2A,&A#%'3%43(#-%'"#%&$+")'#+',$#9%$@2/#;))

P6%/6/'#4%#2A)2##$%&2(%/3b!&$#K"&$(!&$#%#2A)2##$/%

%

cd%J&+"%W%$3-#%X%+&2%43(#-%)'/%H&+#'%3H%'"#%43(#-%

N62'&F%&2(%/#4&2.+/%3H%MMTY%'3%P)2(%'"#4%&--9%G-):#%&%5$3A$&44)2A%-&2A,&A#%=L%

JF'#$2&-%43(#-%P3,2(%'3%&$+")'#+',$#%GN6/SY9%N)4,-)2:9%T11`N9%eL%H3$%(#'&)-#(%)2H3%

%

cd%J&+"%-#;#-%)/%&[&+"#(%)'/%3!2%/#'%3H%;#$)R+&.32%G+32/'$&)2'/9%+"#+:/9%+345,'&.329%DDL%

%&2(%&//3+)&'#(%#;&-,&.32%'33-%

`#R2#(%#2..#/%4&6%W%)2"#$)'%X%+32/'$&)2'/%H$34%5&$#2'%G<8-&%Y)/:3;L%

%

⇒  7#$)R+&.32%$,-#/%,/)2A%TNY%#;&-,&'#%/5#+)R+%&$+")'#+',$#%5&[#$2/9%%

⇒  f)H%M%)/%+322#+'#(%'3%g9%'"#2%'"#%P&2(!)('"%3H%'"#%P,/%,/#(%)/%-#//%'"&2%DDh%

⇒  i&$'%3H%NMJ%MNj8Z%/'&2(&$()C&.32%#?3$'%

⇒  E)+#%/)(#8#?#+'@%+&2%P#%,/#(%'3%#2H3$+#%$#^,)$#4#2'/9%/,P/#'/9%+32'$&+'/%

⇒  Q/#(%H3$%M`>EZ9%S>YN9%`&;#2/+&$%&$+")'#+',$&-%/'6-#/%,/)2A%1+&$)2&%



AADL Constraint Language  

>  Work in progress as part of SAE AS2-C committee work 

» Defines accessors and computation rules on model elements 

>  E.g. AADLv2 and ARINC653 annex support IMA concepts 

» Needs to constraint models to respect some invariants 

page 22 

theorem scheduling_major_frame --  Check configuration of partition scheduling 
    foreach cpu in processor_set do 

    check ((float (property (cpu, "ARINC653::Module_Major_Frame")) =  

           sum (property (cpu, "ARINC653::Partition_Slots")))); 

end scheduling_major_frame; 

 

  

system IMA_System extends AADL_System – implementation/extension must respect profile 

annex real_specification {** 

    theorem check_IMA 

       foreach s in local_set do 

         requires (check_IMA_profile); -- logical conjuction of theorems 
end check_IMA; **}; 

end IMA_System; 



>  Analysis of rocket kinematics performance  

Example#4: PERSEUS supersonic rocket 

page 23 

System-level analysis done by combining atomic computations
Each defined separately

Lesson#2: verification should be driven by domain expert
Expert knows what to compute, the dependencies between parameters
Architects will attach analysis rule to model entities they apply to
⇒  use of AADL annex subclause mechanism

Lesson#2bis: notion of ordering of rules (makefile-like)
Some properties deduced from analysis, reused in another analysis
⇒  Resolution in a compiler AST
⇒  Need also caching and “semantic timestamping”



Example#5: Optimization model/code 

>  Combine code generation, scheduling, analysis 

>  Three level of evaluations, combined 

»  Binary: precise evaluation, e.g. memory footprint, WCET 

»  Model: check constraints, e.g. requirements or higher-level checks 

»  Operation: evaluate the benefits of one modification 

»  Under supervision of analysis, scheduling in this context 

>  Integrated in Ocarina (O. Gilles PhD) 

Model Code generation

Model 
evaluation

Binary 
evaluation

Transform systems

Binary

Model!

page 24 



>  Equating Model-Based Analysis and Compiling is appealing 

» Text-based allows for optimization and more precise semantics 
•  Fast evaluation for static/simple contracts, proof for complex one (BLESS) 

•  Integration of IEEE PSL (dynamic traces) for observers 

»  Links with analysis tools made easy 

>  Integrating analysis contract to models helps solving 

» Waiting, Over-processing, Over-production, Defects 

» A compiler/makefile-like approach would optimize analysis effort 
•  Run only when required (i.e. model changed “significantly”) 

>  Integrating contracts as model elements, and analysis as 

compilation steps allow for better usage of designer time, and 

split: analysis designer vs. system designer 

Wrap-up 
 (System Engineers 1 – 1 Software Engineers) 

page 25 


