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Abstract – Aquatic plants often encounter various redox conditions in their natural envi-
ronment. Elodea nuttallii (Planch.), a submerged aquatic macrophyte, has a flexile ability
to use different nutrient sources from various environments. In the present study, Elodea

nuttallii was subjected to various redox conditions (+400 mV to –180 mV) at both normal
(2.5 ppm) and high (10 ppm) ammonium concentrations and evaluated for macro and mi-
cro element accumulation. A reduced environment was prepared by adding glucose to
growth medium and nitrogen gas bubbling, while an oxic environment was executed by at-
mospheric air bubbling. Plants in oxygen-deprived conditions manifested heavy metal
(HM) toxicity, such as reduction of biomass and photosynthetic pigments, excess genera-
tion of reactive oxygen species (ROS), lipid peroxidation and reduction of major macro el-
ements. In reduced treatments, the bioaccumulation sequence for micro elements was
Cu>Mn>Zn>Al>Cd>Fe>Pb at both normal and high NH4-N concentrations. The com-
bined effect of low redox state and high ammonium concentration had a strong physiologi-
cal impact on the submerged macrophyte. However, macro- and micronutrient accumula-
tion was more significantly affected by reduced environment than by a high NH4-N
concentration.

Keywords: anoxia, ammonium, Elodea nuttallii, macro-micro elements, accumulation,
translocation

Introduction

Metal mobility and availability in sediments and in wetlands is governed by a number of
sediment factors and processes; e.g. adsorption/desorption reactions, precipitation/dissolu-
tion and complexation/decomplexation, salinity, organic matter content, sulphur (S) and
carbonate content, plant growth, pH and redox potential (EH) as well as microorganism ac-
tivity (DU LAING et al. 2009, MARÍA-CERVANTES et al. 2010). Oxidation and reduction pro-
cesses subsequently affect pH (YU et al. 2007), which is directly related to stability and sol-
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ubility of various metals and nutrient elements in soil and sediment, and to their availability
in plants (REDDY and PATRICK 1977). According to DEVAI and DELAUNE (1995), EH of soil or
sediment can range from –300 to + 700 mV and anaerobic soil or sediment exhibit redox po-
tentials from + 350 mV to as low as –300 mV. Sediments/soil tend to undergo a series of se-
quential redox reactions in a homogenous environment when sediment redox status changes
from aerobic (high EH) to anaerobic (low EH) conditions and vice versa. Major reactions, in
order of decreasing EH, are nitrification, denitrification, manganic manganese [Mn (IV)] re-
duction, ferric iron [Fe (III)] reduction, sulfate (SO4

2-) reduction, and methanogenesis (PAT-

RICK et al. 1996). In anoxic conditions, by reduction reactions, oxide elements such as phos-
phorus (P), molybdenum (Mo), cobalt (Co), copper (Cu), zinc (Zn) are often transformed to
a more mobile and plant-available form (FRANCIS and DODGE 1990). Lower sediment pH
under mildly oxic conditions increase the bioavailability of Al, Cu, Fe, Mn and Zn to rooted
aquatic plants (JACKSON et al. 1993). Submerged aquatic plants adapt to detoxify reduced el-
ements by releasing root oxygen to the rhizosphere, which is also governed by EH condition
and microbial oxygen demand (LASKOV et al. 2006). The concentration of metals in plants
can be more than 100,000 times greater than in the associated water (ALBERS and CAMAR-

DESE 1993). Recent studies on heavy metal (HM) toxicity revealed that these metals may
cause molecular damage to plant cells either directly or indirectly through the excessive
generation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), hydroxyl
radicals (OH·) and superoxide radicals (O2

·–). These ROS can damage membranes and inac-
tivate several enzymes by reacting very rapidly with DNA, lipids, pigments and proteins
(WECKX and CLIJSTERS 1996). Thus, variation in redox conditions exerts a substantial influ-
ence on the physiological processes of plants.

Elodea nuttallii, a submerged aquatic rooted macrophyte, can absorb nutrients either by
roots or shoots or by both together in varying proportions (BARKO et al. 1991). This species
is well known as a hyper-accumulator of various metals and elements as well as being stress
resistant to various environmental factors (MISHRAand TRIPATHI 2008). The capability of the
shoots and roots of submerged macrophytes to accumulate trace metals allows their use in
trace-element biomonitoring in lake ecosystems (BALDANTONI et al. 2004). Physical factors
that fluctuate temporarily include pH, redox potential, temperature, salinity or light and in
addition to the presence of other metal ions in the surrounding aquatic environment strongly
affect metal uptake by submerged plants (FRITIOFF et al. 2005).

Sediment redox status and its effect in wetland plants and crops have been vigorously
studied in the last three decades. The effect of a reduced environment on aquatic macro-
phytes is very slight (DELAUNE et al. 1999). Increased ammonium concentration and low re-
dox status (reduced condition) in the natural habitat (due to pollution or eutropication) are
two characteristics prominently associated with eutropic lakes, such as Plesne Lake in Cen-
tral Europe (KOPÁÈEK et al. 2004). Furthermore, in a reduced environment different oxi-
dized elements become available in the surrounding environment. Trace elements like Cu,
Fe, Mn and Zn are essential minerals for normal growth of aquatic macrophytes but exces-
sive concentration might have a deleterious effect by disordering physiological and bio-
chemical processes in the cells. These elements give especially grounds for concern as they
are not biodegradable (LU et al. 2007) and contribute to the food chain. The aim of the pres-
ent work was to assess the significance of reducing conditions on (i) the release of inorganic
contaminants, (ii) their concentration and translocation, and (iii) the oxidative damage
caused by these elements under normal and high NH4-N concentrations in Elodea nuttallii.
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Materials and methods

Sediment and plant collection

The sediment was collected from a pond in Oaso Park near Tokyo, in December, 2010.
The organic-rich sediment (organic matter content >5%) was derived from the top surface
(<15 cm depth) of pond sediment. Elodea nuttallii (Planch.) was collected from Moto-Ara-
kawa River, Saitama, Japan, in April, 2011. Collected plants were allowed to adapt to labo-
ratory conditions for 2 weeks in the experimental tanks, where the temperature was main-
tained at 25 °C, with a relative air humidity of 90% and a photon flux density of approxi-
mately 100 mmol m–2 s–1 was provided by fluorescent lamp in a 12h light/12h dark cycle.

Experimental set-up

Elodea nuttallii was subjected to gradient redox potentials under normal and high
NH4-N concentrations. Since it was difficult to keep a constant redox potential throughout
the experiment period, a range of potentials was maintained. Three levels of redox potential
were used, as (i) +400 mV ~ +440 mV, (Oxic; O1), (ii) –5 mV ~ +5 mV (hypoxic/moderately
reduced; O2) and (iii) –180 mV ~ –120 mV (anoxic/highly reduced; O3) (Fig. 1). In the case
of a nitrogen source, the suitable NH4-N concentration for the plant is 2.5 ppm (OZIMEK et
al. 1993). Here, two different NH4-N concentrations [2.5 (N1) and 10 (N2) ppm] were used
(Fig. 1). The experiment was conducted in microcosms (MCs), each consisting of a 6 L
(15.7 × 15.7 × 24.5 cm3) glass vessel which was hermetically sealed with an air-tight lid.
Each MC was filled with 600 g of air-dried sediment and deionized water in a 1:5 ratio.
Then, growth medium contained 5% Hoagland nutrient solution (HOAGLAND and ARNON

1950) was mixed, and ammonium sulfate was added to adjust the required NH4-N concen-
tration.

Highly reduced and moderately reduced microcosms were prepared following the
method developed by YU et al. (2007). Glucose, a simple carbon source, was used in this ex-
periment during the 22-day incubation period. At the beginning of incubation, 8.16 g glu-
cose was added to the reduced (MC 3) and highly reduced microcosms (MC 4) on days 1
and 3, and twice that amount was added on day 5. On day 14, again, 8.16 g glucose was
added to MC 4. Continuous flushing of N2 gas was carried out for the last 3 days for a
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Fig. 1. Layout of the experimental set-up (seven microcosms per treatment). NH4-N Concentration
and redox level are presented as N and O, respectively. Microcosms were randomly distrib-
uted with equal spacing in growth chamber.
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hypoxic/moderately reduced (MC3) condition and for the last 7 days for anoxic/highly re-
duced (MC4) condition to reduce the redox potential (EH) values to approximately 5 mV
and 180 mV, respectively. For oxic treatments, continuous bubbling with atmospheric air
was used. EH and pH were measured four times a day using four portable pH/ORP meters
(POT-101 M, SIBATA, Japan). For control, 5% Hoagland nutrient medium was used with-
out any further treatment. The temperature was maintained at 23 ± 2 °C in a room with fluo-
rescent lighting. No attempt was made to control the pH of the sediment suspensions. After
the incubation period (22 days), eight plants (approximately 12–14 cm in height) were
planted in each experimental tank. Then, the experiment was continued for 14 days, with
continued N2 gas flushing to maintain the required EH potential. In total, three treatments,
each with 7 microcosms, were applied.

Sediment, plant and water analysis

Sediment samples were air-dried, homogenized and sieved to < 2 mm. The particle sizes
of the sediment samples (in terms of D50) were determined using sieves according to the
American Society for Testing and Materials protocol (ASTM D422-63, 2002). Plants were
carefully washed using tap water and finally with distilled water, and were separated into
leaves, shoots and roots. Plant materials were dried using an oven drier at 60 °C until con-
stant weight. Plant materials were reweighed (for dry weight) and homogenized by grinding
into fine powder using a mortar and pestle. Powdered samples were stored in airtight vials
for subsequent analysis. Total nitrogen (TN) and total carbon (TC) of powdered plant sam-
ples were measured by CHN coder (YANACO MT-3). About 10 mg of dried plant sample
and 200 mg of dried sediment sample were digested at 200 °C with di-acid mixture (nitric
acid : perchloric acid; 1:2) until evolution of nitrous gas was stopped and the digest became
clear. The digests were diluted with distilled water to a total of 100 mL and passed through
Whatman 42 filter paper. Organic matters in the sediment were measured by the WALKLEY

and BLACK (1934) method. The concentrations of the following elements were measured in
the sediment and in the plant samples: Fe, Mn, Zn, Pb, Ca, Mg, Cu and K with atomic ab-
sorption spectrophotometer (AAS; Shimadzu AA-660 G) using the direct air-acetylene
flame method, and the concentration of Al and Cd were determined with a graphite furnace
atomizer (GFA-4B), according to the instructions and procedure. Total phosphorus (TP) and
total sulphur (TS) were measured using the ascorbic acid method and the barium chloride
method respectively. Replicate samples were analyzed separately, analyses were done in du-
plicate, and results for plant materials and sediments were calculated on a dry weight basis.
Water samples were collected at 7 day intervals and were passed through Whatman glass
microfibre filters GF/C and stored at 4 oC until analysis. The concentrations of Fe, Mn, Zn,
Pb, Ca, Mg, Cu, K, Al, Cd and TS of water sample were measured following the methods
used for sediment and plant sample analysis. Ammonium nitrogen was determined by
autoanalyzer (Technicon II TRAAC 800).

Biomass increment

On the14th day after treatment (DAT), two plants from each tank were harvested, and
cleaned with tap water, and fresh biomass was measured after blotting with laboratory
towel. The fresh biomass increment was calculated as the percent increment of plant mass
relative to initial fresh mass at the time of transplanting, using the following equation:
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Where Bt is the increased biomass (% relative to initial fresh biomass) at the 14th DAT,
Ft is the fresh biomass at 14th DAT and Fo is the initial fresh biomass of the plant.

Chlorophyll content, carotenoid content and chlorophyll flurorescence

Photosynthetic pigments were extracted in 95% ethanol in the dark for 24 h. Afterwards,
the sample was centrifuged for 10 min at 8000 × g. Finally, supernatants were read at 665
and 649 nm for chlorophyll a and chlorophyll b, respectively, and at 470 nm for carotenoid
content using spectrophotometer (Shimadzu UV-1700, Japan). The contents of chlorophylls
and carotenoid were calculated according to LICHTENTHALER (1987). Chlorophyll a fluores-
cence measurements were performed with a handy flurocam (FC 1000-H, Photon Systems
Instruments, Czech Republic) using auto image segmentation. Maximum photochemical
efficiency of PSII (Fv/Fm), the activity of PSII (Fv/Fo) and electron transport rate (ETR)
through PSII (Fm/Fo) were determined and used as a stress indicator for plants.

H2O2 concentration and peroxidase activity

Endogenous H2O2 concentrations were analyzed following the method of CERVILLA et
al. (2007), where samples were extracted with cold acetone. Phosphate buffer (0.1 mol L–1)
at pH 6 was used to make extracts suitable for peroxidase (POD) activity measurements.
POD was determined according to the method described by GOEL et al. (2003).

Lipid peroxidation and proline concentration

The level of lipid peroxidation was measured in terms of malondialdehyde (MDA), a
product of lipid peroxidation in the plant samples estimated by thiobarbituric acid (TBA) re-
action (HEATH and PACKER 1968). The concentration of proline was measured with the
BATES et al. (1973) method. Plant material was homogenized with 10 mL of 3% (v/v) sulfo-
salicylic acid. Free proline present in the supernatant was treated with acid-ninhydrin at 80
°C for 1 h and measured spectrophotometrically at 520 nm.

Bioconcentration factor and translocation factor

The bioconcentration/bioaccumulation factor (BCF) is an index to express the ability of
a plant to accumulate metal with respect to metal concentration in substrate. BCF (for whole
plant) was calculated by the following formula:

The translocation factor (TF) is an indication of the ability of the plant to translocate
metals from the roots to the aerial parts of the plant. TF was calculated by the following for-
mula:

Translocation factors (TF) for trace elements between sediment and roots and within a
plant were expressed by the ratios of [Trace element] sediment/ [Trace element] root and [Trace
eleament] root/ [Trace element] (shoot + leaves) to show trace elements translocation properties
from sediment to roots and roots to shoots, respectively.
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Statistical analysis

The experimental set up was a completely randomized design, and average values of
three treatments were considered. Data were analyzed statistically using the SPSS 13.0 soft-
ware package, by ANOVA and by Tukey’s multiple range tests to determine differences be-
tween means. Before performing a statistical analysis, data were checked for normal distri-
bution. Pearson correlation analysis was carried out to explore the correlations.

Results

Biomass increment

Plants subjected to a high concentration of NH4-N (10 ppm) along with hypoxic/anoxic
treatments showed brown-black discoloration of the leaves and biomass increment values
were negative. Increment of ammonium even in oxic treatment considerably reduced bio-
mass (Fig. 2). When oxygen level decreased, biomass was more affected at both ammonium
levels. At 2.5 ppm, NH4-N nutrition condition by hypoxic and anoxic treatment, the fresh
biomass declined by 73.02 and 80%, respectively.

Photosynthetic pigments and chlorophyll fluorescence

Photosynthetic pigments including Chl a, Chl b and carotenoid content showed a slight
falling trend with the increment of NH4-N concentration in oxic treatments (Tab. 1). At
hypoxic and anoxic treatments both chlorophyll and carotenoid levels significantly declined
even when NH4-N concentration was at a normal level (2.5 ppm), suggesting that hypoxia
itself was sufficient to affect both chlorophyll and carotenoid content. Moreover, carotenoid
seemed to be affected more severely and found absent at high reduced treatment at 10
NH4-N concentration.

Maximum photochemical efficiency of PSII (Fv/Fm), the activity of PSII (Fv/F0) and
electron transport rate (ETR) through PSII (Fm/F0) are presented in table 1. Their values
were not significantly affected by high NH4-N concentration in oxic treatment but were
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Fig. 2. Effect of NH4-N concentrations under various redox conditions on biomass of Elodea

nuttallii. The data are presented as the mean ± SD.
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significantly decreased in plants grown in hypoxic and anoxic treatments. Increment of
NH4-N concentration in hypoxic and anoxic treatments more significantly affected their
values (Tab. 1).

Lipid peroxidation rate and proline content

Lipid peroxidation rate was determined by measuring MDA content. This parameter
was significantly increased (Fig. 3a) in plants that were exposed to reduced treatments (P <
0.01). Moreover, increment of NH4-N concentration in reduced treatments accelerated the
increment of MDA level, and hence, maximum MDA content was observed in plant under
highly reduced treatment at 10 ppm NH4-N concentration.

Proline level declined slightly in plants under oxic treatments with high NH4-N concen-
trations (Fig. 3b), suggesting high ammonium concentration has a weak effect on the proline
content of the plant. In reduced and highly reduced treatments, the proline content was con-
siderably reduced (Fig. 3b). Plants in oxic treatment with 2.5 ppm NH4-N concentration
showed the highest proline content (1.21 mg g–1 FW), whereas plants in anoxic treatment
with 10 ppm NH4-N concentration showed the lowest proline content (0.22 mg g–1 FW).

Endogenous H2O2 generation and POD activities

A significantly higher H2O2 concentration (p < 0.05) was found throughout the experi-
mental period in reduced and highly reduced treatments (Figs. 4a). Similar up-regulation
was also observed for POD activity (Fig. 4b). In oxic treatments, increment of NH4-N con-
centration exhibited a slight increasing trend in both H2O2 level and POD activity (Figs. 4a,
4b). H2O2 concentration and POD activity were positively correlated in all treatments and
conditions (oxic, r = 0.847, n = 16, p < 0.01; reduced, r = 0.948, n = 16, p < 0.001 and highly
reduced r = 0.929, n = 16, p < 0.001).

Element bioaccumulation and translocation in plant

BCF and TF were calculated to study the accumulation characteristics of different essen-
tial and non-essential elements in different body parts (leaf, shoot and root) of the plant. Sig-
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Tab. 1. Photosynthetic pigments and chlorophyll fluorescence parameters (Mean ± SD) of Elodea

nuttallii under different conditions (NH4-N concentrations) and treatments (oxic to highly re-
duce).

Parameters Control
2.5 ppm NH4-N 10 ppm NH4-N

Oxic Reduced
Highly
reduced

Oxic Reduced
Highly
reduced

Chla 2.9 ± 0.1 3.2 ± 0.2 1.7 ± 0.2* 1.4 ± 0.2** 2.7 ± 0.1 1.2 ± 0.1** 1.0 ± 0.0***

Chlb 1.4 ± 0.1 1.7 ± 0.2 1.1 ± 0.2* 1.0 ± 0.0** 1.3 ± 0.2 1.0 ± 0.1** 0.9 ± 0.1**

Carotenoid 1.1 ± 0.0 1.3 ± 0.2 0.9 ± 0.0* 0.5 ± 0.1** 0.9 ± 0.1* 0.3 ± 0.0** 0.0 ± 0.0***

Fv/Fm 0.7 ± 0.0 0.8 ± 0.0 0.6 ± 0.0 0.5 ± 0.0* 0.7 ± 0.0 0.5 ± 0.0* 0.4 ± 0.0*

Fv/F0 4.3 ± 0.1 4.7 ± 0.1 2.5 ± 0.2** 1.8 ± 0.2** 3.9 ± 0.3* 2.0 ± 0.0** 1.3 ± 0.2***

Fm/ F0 5.6 ± 0.2 5.9 ± 0.1 3.7 ± 0.1** 3.1 ± 0.3*** 5.2 ± 0.2 3.4 ± 0.2** 2.9 ± 0.2***

Significance at: p < 0.05*; p < 0.01**; p < 0.001***.
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Fig. 3. Effects of NH4-N concentrations under various redox conditions on MDA content and pro-
line concentration of Elodea nuttallii; (a) MDA content and (b) proline concentration. The
data are presented as the mean ± SD. One-way ANOVA followed by Tukey’s test was used to
determine the significance of difference between treatments (p < 0.05).

Tab. 2. Bioaccumulation factor of elements in Elodea nuttallii (Mean ± SD) under different conditions
(NH4-N concentrations) and treatments (oxic to highly reduce).

Elements Control
2.5 ppm 10.0 ppm

Oxic Reduced
Highly
reduced

Oxic Reduced
Highly
reduced

Ca 3.6 ± 0.6cd 3.3 ± 0.3cd 0.4 ± 0.1e 0.2 ± 0.1ef 2.9 ± 0.2cd 0.3 ± 0.1e 0.3 ± 0.1e

Mg 9.6 ± 3.3b 10.9 ± 3.8b 4.9 ± 1.1c 3.8 ± 0.8c 10.1 ± 3.1b 4.2 ± 0.5c 3.1 ± 0.2cd

K 14.3 ± 4.6a 13.9 ± 4.1a 4.9 ± 1.6c 4.2 ± 1.1 c 12.6 ± 4.8a 4.2 ± 1.0 c 3.6 ± 0.8 cd

S 2.3 ± 1.1c 2.6 ± 0.8c 3.9 ± 1.2bc 4.0 ± 1.2bc 2.7 ± 1.0c 3.3 ± 0.8c 3.5 ± 0.6c

Cu 0.6 ± 0.1cd 0.7 ± 0.2cd 4.6 ± 0.5ac 5.9 ± 0.6 ac 0.7 ± 0.2cd 5.5 ± 0.4 ac 6.3 ± 0.8ad

Mn 0.5 ± 0.2c 0.5 ± 0.1c 2.8 ± 0.2b 2.9 ± 0.4b 0.5 ± 0.1c 3.4 ± 0.1a 3.1 ± 0.0ab

Zn 0.8 ± 0.1de 0.9 ± 0.1de 1.1 ± 0.1de 1.2 ± 0.0cd 0.9 ± 0.1de 1.3 ± 0.1cd 1.5 ± 0.2c

Fe 0.3 ± 0.0c 0.3 ± 0.0c 0.7 ± 0.1b 0.8 ± 0.1b 0.3 ± 0.0c 0.9 ± 0.1b 1.0 ± 0.0a

Al 0.7 ± 0.2de 0.7 ± 0.1de 1.1 ± 0.2cd 1.1 ± 0.2cd 0.7 ± 0.1de 1.1 ± 0.1cd 1.1 ± 0.1cd

Pb 0.1 ± 0.0e 0.1 ± 0.0e 0.5 ± 0.1c 0.6 ± 0.0c 0.1 ± 0.0e 0.6 ± 0.1c 0.6 ± 0.0c

Cd 0.1 ± 0.0e 0.0 ± 0.0e 0.9 ± 0.1c 1.1 ± 0.1b 0.0 ± 0.0e 0.8 ± 0.1c 0.9 ± 0.2c

Different letter superscripts indicate significant differences between treatments, and same super-
script letter as control indicate no significant difference.
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nificant BCF differences (p < 0.001) were found between different redox treatments at both
NH4-N conditions for both macro and micro elements (Tab. 2). In both NH4-N concentra-
tions with hypoxia/anoxia, BCF was downregulated for Ca, Mg and K, but upregulated for
S, Fe, Cu, Mn, Zn, Cd, Pb and Al. In an oxic treatment, the highest bioaccumulation was
found for K, but in a highly reduced treatment Cu showed the highest value.

Translocation of elements from sediment to roots seems more significantly affected by
redox treatments than by NH4-N conditions (Tab. 3). In reduced (hypoxic and anoxic) treat-
ments, the translocation factor from sediment to root was increased for Ca, Mg and K,
whereas, downregulated TF was observed for Fe, Cu, Mn, Cd, Pb and Al (Tab. 3). More-
over, in a highly reduced treatment, the TF of Ca was mostly increased, while the TF of Cd
mostly declined (Tab. 3). However, translocations of S and Zn were not significantly af-
fected by redox treatments and NH4-N conditions (Tab. 3). On the other hand, translocation
of elements from roots to shoot and leaf was not affected by NH4-N conditions but was af-
fected by redox treatments (Tab. 4). Translocation of Ca, Fe, Cu and Mn was decreased by
reduced treatment; however, translocation of Cd was decreased in oxic treatment under both
NH4-N conditions (Tab. 4).
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Fig. 4. Variations in H2O2 concentration and POD activity of Elodea nuttallii, grown at different
NH4-N concentrations under various redox statuses; (a) H2O2 concentration and (b) POD ac-
tivity. The data are presented as the mean ± SD.
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Discussion

Reducing sediment conditions comprehend sediment oxygen deprivation, at the same
time producing various compounds in sediment, many of which are considered highly
phytotoxic (PEZESHKI and DELAUNE 2012). However, concentration of elements as well as
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Tab. 3. Translocation factor (sediment/root) of elements in Elodea nuttallii under different conditions
(NH4-N concentrations) and treatments (oxic to highly reduce).

Elements Control
2.5 ppm 10.0 ppm

Oxic Reduced
Highly
reduced

Oxic Reduced
Highly
reduced

Ca 2.9 ± 0.9d 3.0 ± 0.8d 13.6 ± 9.0b 30.2 ± 3.0a 3.0 ± 0.6d 13.6 ± 9.0b 39.2 ± 9.8a

Mg 0.5 ± 0.2d 0.6 ± 0.1d 1.4 ± 0.2c 1.4 ± 0.2c 0.6 ± 0.1d 1.6 ± 0.3b 1.6 ± 0.1b

K 0.3 ± 0.0d 0.3 ± 0.0d 0.9 ± 0.2c 0.9 ± 0.1c 0.3 ± 0.0d 0.9 ± 0.0c 1.0 ± 0.2c

S 1.4 ± 0.5c 1.1 ± 0.1c 1.0 ± 0.2d 1.0 ± 0.2d 1.2 ± 0.3c 1.2 ± 0.3c 1.3 ± 0.2c

Fe 9.3 ± 1.6c 7.9 ± 0.9c 6.9 ± 0.2d 6.6 ± 0.1d 7.0 ± 0.0d 5.8 ± 1.3de 5.9 ± 2.1de

Cu 4.8 ± 0.9b 3.2 ± 0.4c 1.4 ± 0.3cd 1.2 ± 0.1cd 3.9 ± 1.4bc 1.3 ± 0.3cd 1.4 ± 0.4cd

Mn 4.9 ± 1.7b 4.9 ± 0.3b 1.2 ± 0.1c 1.1 ± 0.1c 4.6 ± 0.4b 1.2 ± 0.1c 1.0 ± 0.1cd

Zn 0.7 ± 0.0a 0.7 ± 0.0a 0.6 ± 0.0a 0.8 ± 0.1a 0.7 ± 0.0a 0.7 ± 0.1a 0.8 ± 0.1a

Cd 18.6 ± 7.6b 23.8 ± 4.2ab 1.9 ± 0.7d 1.5 ± 0.3d 28.7 ± 5.2a 1.9 ± 0.4d 1.7 ± 0.1d

Pb 34.2 ± 4.0b 32.2 ± 5.7b 24.2 ± 2.4ab 22.4 ± 2.3ab 31.9 ± 6.1b 19.8 ± 1.1a 23.5 ± 2.0ab

Al 4.0 ± 0.0c 4.1 ± 0.1c 2.8 ± 0.0cd 2.8 ± 0.0cd 4.1 ± 0.0c 3.0 ± 0.0cd 2.9 ± 0.0cd

Different letter superscripts indicate significant differences between treatments, and same super-
script letter as control indicate no significant difference.

Tab. 4. Translocation factor (root/(shoot+leaf) of elements in Elodea nuttallii under different condi-
tions (NH4-N concentrations) and treatments (oxic to highly reduce).

Elements Control
2.5 ppm 10 ppm

Oxic Reduced
Highly
reduced

Oxic Reduced
Highly
reduced

Ca 0.5 ± 0.1c 0.5 ± 0.1c 0.3 ± 0.1cd 0.2 ± 0.0d 0.5 ± 0.0c 0.3 ± 0.1cd 0.1 ± 0.0d

Mg 0.3 ± 0.1c 0.2 ± 0.0cd 0.2 ± 0.0cd 0.2 ± 0.0cd 0.2 ± 0.0cd 0.2 ± 0.0cd 0.3 ± 0.0c

K 0.4 ± 0.1c 0.4 ± 0.1c 0.3 ± 0.0cd 0.3 ± 0.1cd 0.3 ± 0.0cd 0.3 ± 0.0cd 0.3 ± 0.1cd

S 0.5 ± 0.3c 0.5 ± 0.2c 0.4 ± 0.1c 0.3 ± 0.0cd 0.5 ± 0.2c 0.3 ± 0.1cd 0.3 ± 0.0cd

Fe 0.7 ± 0.2c 0.6 ± 0.0c 0.3 ± 0.1d 0.3 ± 0.0d 0.7 ± 0.1c 0.3 ± 0.0d 0.2 ± 0.0d

Cu 0.5 ± 0.1c 0.7 ± 0.2bc 0.2 ± 0.1d 0.2 ± 0.0d 0.6 ± 0.1c 0.2 ± 0.0d 0.1 ± 0.0de

Mn 0.8 ± 0.2b 0.6 ± 0.0bc 0.4 ± 0.0c 0.4 ± 0.0c 0.6 ± 0.0bc 0.4 ± 0.0c 0.4 ± 0.0c

Zn 0.3 ± 0.0d 0.5 ± 0.0cd 0.4 ± 0.0d 0.3 ± 0.1de 0.5 ± 0.0cd 0.3 ± 0.0d 0.3 ± 0.0d

Cd 1.8 ± 1.0c 0.9 ± 0.5d 2.3 ± 0.8bc 1.9 ± 0.2c 0.8 ± 0.3d 1.9 ± 0.3c 1.7 ± 0.0c

Pb 0.3 ± 0.0b 0.4 ± 0.1ab 0.1 ± 0.0d 0.1 ± 0.0d 0.4 ± 0.1ab 0.1 ± 0.0d 0.1 ± 0.0d

Al 0.5 ± 0.0c 0.5 ± 0.0c 0.4 ± 0.0cd 0.4 ± 0.0cd 0.5 ± 0.0c 0.4 ± 0.0cd 0.4 ± 0.0cd

Different letter superscripts indicate significant differences between treatments, and same super-
script letter as control indicate no significant difference.
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their speciation (physiochemical form and associations with sediment constituents) also af-
fects their mobility and toxicity (KABATA-PENDIAS and PENDIAS 1992). The results of the
present study revealed the combined effects of low redox condition and high ammonium
concentration on macro-micro nutrient accumulation in the plant. Fe, Mn, Cu, Zn, Cd, Pb
and Al were soluble at low pH, and alteration in redox conditions affects their speciation as
well as solubility (TAKENO 2005, DU LAING et al. 2009, MILLER et al. 2010). In oxic treat-
ments, low concentrations of Fe and Mn were found, which might be the result of the forma-
tion of Fe and Mn (hydrate) oxides at high EH (YU et al. 2007), and these oxides are very
slightly soluble (GAMBRELL 1994).

The phyotoxicity due to different elements depends on metal type, metal concentration
and duration of exposure (ODJEGBA and FASIDI 2007). The metal uptake and distribution in
submerged plant species vary according to the relative concentration of the elements in the
environment, the growth of the plant, type of absorption mechanism, metal speciation,
metal stability and constants with ligands, redox potential and pH at water-sediment inter-
face, light, and microbial activity (NAGAJYOTI et al. 2010). According to MARKERT and
WTOROVA (1992), the presence of a high concentration of heavy metals (micro elements or
trace metals) seems to be directly associated with the exclusion of nutritional elements. In
our study, plants in reduced treatment were observed for exclusion phenomenon for macro
elements (K, Ca and Mg), and consequently, their concentration declined below critical
level in the plant (Tab. 2), and increased in water sample (Tab. 5). Among K, Ca and Mg, the
most significant decrease was observed in Ca (0.3 ppm) (Tab. 2). The BCF sequence for
bioaacumulated micro elements was Cu>Mn>Zn>Al>Cd>Fe>Pb in both NH4-N conditions
under reduced treatments (Tab. 2). Trace metal concentrations in aquatic plants vary consid-
erably according to the part of the plant as well as chemical characteristics of the elements.
BALDANTONI et al. (2004) concluded that a submerged macrophyte takes up the elements in
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Tab. 5. Concentration (mg L–1, mean ± SD) of elements in water of experimental tank under different
conditions (NH4-N concentrations) and treatments (oxic to highly reduce).

Elements Control
2.5 ppm NH4-N 10 ppm NH4-N

Oxic Reduced
Highly
reduced

Oxic Reduced
Highly
reduced

Ca 11.3 ± 1.1c 10.6 ± 2.8c 16.6 ± 3.2b 18.7 ± 1.9a 11.9 ± 2.8c 17.6 ± 3.8b 20.4 ± 2.6a

Mg 9.1 ± 1.3c 10.7 ± 1.1c 12.9 ± 1.7ab 15.2 ± 1.5a 11.1 ± 1.0c 13.3 ± 1.4b 17.0 ± 0.8a

K 12.7 ± 2.1d 12.6 ± 1.6c 19.7 ± 3.4b 23.3 ± 1.7a 12.5 ± 2.3c 21.0 ± 3.0b 25.5 ± 4.1a

S 15.7 ± 3.2d 15.4 ± 1.8d 19.2 ± 2.0cd 22.1 ± 3.9b 16.3 ± 3.2d 23.8 ± 2.2b 28.7 ± 3.6a

Cu 0.0 ± 0.0b 0.0 ± 0.0b 0.9 ± 0.2a 1.3 ± 0.3a 0.0 ± 0.0b 1.1 ± 0.2a 1.4 ± 0.3a

Mn 1.3 ± 0.1c 1.2 ± 0.2c 7.2 ± 0.7b 10.0 ± 1.4a 1.4 ± 0.1c 9.1 ± 2.4b 14.6 ± 0.9a

Zn 2.5 ± 0.4c 2.6 ± 0.3c 5.2 ± 1.5b 8.4 ± 1.9a 2.7 ± 0.3b 10.7 ± 1.1a 11.8 ± 1.2a

Fe 4.1 ± 1.7d 4.4 ± 1.2d 41.4 ± 3.7a 57.8 ± 7.2a 4.6 ± 2.1d 50.9 ± 5.4a 72.7 ± 8.2a

Al 0.0 ± 0.0c 0.0 ± 0.0c 3.2 ± 0.1b 4.3 ± 0.7a 0.0 ± 0.0c 4.0 ± 0.2b 5.1 ± 0.5a

Pb 0.0 ± 0.0b 0.0 ± 0.0b 0.2 ± 0.0a 0.3 ± 0.0a 0.0 ± 0.0b 0.3 ± 0.0a 0.4 ± 0.0a

Cd(mg/L) 0.0 ± 0.0b 0.0 ± 0.0b 0.1 ± 0.0a 0.2 ± 0.0a 0.0 ± 0.0b 0.2 ± 0.0a 0.3 ± 0.0a

Different letter superscripts indicate significant differences between treatments, and same super-
script letter as control indicate no significant difference.
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the shoots from water by the roots. In reduced treatments, trace metal contents of water sam-
ple have also been increased, which is probably due to EH and pH effects, because at low EH

and pH such elements were solubilized in water from sediment (Tabs. 5, 6). Plant uptake of
metal is mainly dependent on metal mobility and availability in sediment. Uptake of differ-
ent metals also depends on protein transporters (FOULKES 2000). Pb, Zn, Cd, Fe, Cu are
taken up at the cell surface through the cation channel (WELCH and NORVELL 1999, COSIO et
al. 2004), so they compete with each other and exclude Ca ion. In our experiment, inreduced
treatments, Cu+2 was more considerably bioaccumulated than Fe+2, which might be due to
Fe+2 and Cu+2 competing with each other for binding sites on the cell wall and being taken
into the cell walls of plants (FOX and GUERINOT 1998). The accumulation of Zn by the plant
was also low though this element was bioavailable in the surrounding environment. The up-
take of metals was also found to be pH dependent (WANG et al. 2006) although in certain
cases no pH effect was seen. The elements Al and Pb were found to be less accumulated in
plants, which might be due to the above reason. In reduced treatments, metal accumulation
in shoot and leaf was found to be higher than that in root, which might be due to the direct
uptake by the shoot and leaves or from root to shoot by acropetal transport. Since roots de-
generate and are greatly reduced in size due to metal toxicity (BASIOUNY et al. 1977), their
potential for metal uptake might be limited.

Heavy metals could lead to oxidative damage to aquatic plants through ROS generation
(MITTLER 2002). This was particularly crucial for photosynthetic organisms which generate
ROS constantly during normal photosynthesis. Chlorophyll concentration was higher in
plants in oxic treatments with a normal NH4-N concentration (2.5 ppm), whereas at higher
NH4-N concentrations, the chlorophyll level declined significantly. Conversely, low redox
potential affects chlorophyll synthesis at normal to high NH4-N concentrations. The loss of
chlorophyll contents consequently disrupts the photosynthetic machinery, thus the electron
transport rates of PSI and PSII are disturbed, which leads to the generation of ROS. In the
present study, decrease of chlorophyll content was probably achieved both by reaction with
biosynthetic enzymes as well as peroxidase mediated degradation (ASADA 1994). In addi-
tion, carotenoid represents the other group of photosynthetic pigments that are highly effec-
tive in quenching chlorophyll triplet states and singlet oxygen (LICHTENTHALER 1987). The
degree of anoxia damage to the photosynthetic apparatus in different oxygen-deprived con-
ditions was determined by chlorophyll fluorescence of PSII in dark-adapted leaf, where the
Fv/Fm values were decreased with increased oxygen deprivation (<0.4). Pronounced fluo-
rescence decay in plants was observed under reduced environments, which might be due to
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Tab. 6. Redox potential and pH (mean ± SD) values of growth medium under different conditions
(NH4-N concentrations) and treatments (oxic to highly reduce).

Para-
meters

Control
2.5 ppm NH4-N 10 ppm NH4-N

Oxic Reduced
Highly
reduced

Oxic Reduced
Highly
reduced

EH 288 ± 16.4b 440 ± 11.3a –4 ± 1.1d –150 ± 17.4f 432 ± 14.1a –2 ± 3.8d –157 ± 18.3f

pH 6.9 ± 0.5b 7.4 ± 1.0ab 4.5 ± 0.3c 4.1 ± 0.1c 7.1 ± 0.8ab 4.2 ± 0.4c 4.1 ± 0.6c

Different letter superscripts indicate significant differences between treatments, and same super-
script letter as control indicate no significant difference.
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the substitution of Mg by other metals (such as Cu, Pb, Cd). The Fv/Fm ratio, the maximum
quantum yield of PSII photochemistry, is frequently used as an indicator of photoinhibition
or of other kinds of stress to photosystem II (CALATAYUD and BARRENO 2004).

Membrane lipids and proteins are especially prone to attack by free radicals. Proline ac-
cumulation is considered to be involved in stress resistance mechanisms (LUTTS et al. 1999).
Decrease in proline content in the plant under reduced treatments might be due to the dys-
function of sulphydryl groups during heavy metal transportation into the plants (NAGOOR

1999), which affects protein synthesis. The increased activity of protease or other catabolic
enzymes that are activated by heavy metals might be another reason (GUPTAet al. 1996). The
results of the present study indicate that plants under reduced treatments seemed to be more
vulnerable to metal toxicity as more than one metal was present at a toxic level in reduced
treatments. Lipid peroxidation profoundly alters the structure of membranes and modifies
their enzymatic and transport activities (RAI 1995). Increased MDA levels in plant tissue in-
dicate an increased lipid peroxidation in cell membrane. The high concentration of cellular
H2O2 and elevated POD activity in our experimental plants suggested that the ROS scav-
enging system was activated under such stressed conditions. Reduced biomass increment
observed in our experiment suggested the plant growth was inhibited. Noticeable declines
of E. nuttallii populations in Japan (NAGASAKA 2004) and Elodea canadensis in Europe
(SCULTHORPE 1967) were reported, and scientists have suggested different stress (biotic and
abiotic) factors regarding this decline (HAMABATA 1991, KADONO et al. 1997). Our results
also supported by BRIX and SORRELL (1996), who reported that wetland plants grown in re-
ducing treatments stopped growing, some of them losing mass.

Conclusions

By subjecting Elodea nuttallii to high ammonium concentration in hypoxic/anoxic envi-
ronments we experienced a number of symptoms, such as suppression of growth, chlorosis
of leaves, increased shoot : root ratio, increased lipid peroxidation, decreased proline level,
decreased concentrations of mineral cations (such as K, Ca and Mg in the tissues), increased
micro elements and decreased photosynthetic pigments etc. Most of these symptoms were
reported for ammonium toxicity (BRITTO and KRONZUCKER 2002, CAO et al. 2004) as well as
for metal toxicity in a reduced environment (MITTLER 2002, NAGAJYOTI et al. 2010, MON-

FERRÁN et al. 2012). However, it is difficult to distinguish between high ammonium concen-
tration effect and metal toxicity in a reduced environment. Overall, the combined effect of a
low redox state and high ammonium concentration has stronger physiological impact on
submerged macrophytes than high ammonium concentration (10 ppm NH4-N in oxic treat-
ments) acting alone. At the same time the balance of macro-micro nutrients was found more
significantly affected by low redox status than by the applied high ammonium concentration
in oxic treatment.
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