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In this paper a novel Optimal Type-2 Fuzzy Proportional-Integral-Derivative Controller (OT2FPIDC) is designed
for controlling the air supply pressure of Heating, Ventilation and Air-Conditioning (HVAC) system. The param-
eters of input and output membership functions, and PID controller coefficients are optimized simultaneously by
random inertia weight Particle Swarm Optimization (RNW-PSO). Simulation results show the superiority of the
proposed controller than similar non-optimal fuzzy controller.
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Random inertia weight particle swarm optimization (RNW-PSO)

Optimalni neizraziti reglutor tipa 2 za sustave za grijanje, ventilaciju i klimatizaciju. U radu je pred-
ložena nova upravljačka shema optimalnog neizrazitog PID regulatora tipa 2 za upravljanje sustavima za grijajne,
ventilaciju i klimatizaciju. Predložena je shema zasnovana na neizrazitom regulatoru (FLC) učestalo korištenom
za upravljajne nelinearnim procesima. Kako bi se premostio problem neizrazitih regulatora, neodstatak metode
dizajnirajna, parametri ulazno-izlaznih funkcija pripadanja, kao i parametri PID regulatora se optimiraju metodom
roja čestica sa slučajnim parametrima inercije (RNW-PSO). Simulacijski rezultati pokazuju izvedivost predloženog
pristupa.

Ključne riječi: HVAC sustavi, neizrazitog PID regulatora tipa 2 za upravljanje sustavima (OT2FPIDC), algoritam
roja čestica sa slučajnim parametrima inercije (RNW-PSO)

1 INTRODUCTION

Heating, Ventilation and Air-Conditioning (HVAC)
mechanisms are needed for setting environmental vari-
ables including, temperature, moisture, and pressure. As
with other industrial usages, most of the processes asso-
ciated with HVAC are controlled by PID controllers. The
prevalent PID controllers are extensively applied because
of their easy calculations, easy application, appropriate ro-
bustness, high dependability, stabilizing and zero persis-
tent state error. However HVAC mechanism is a non-
linear and time variant mechanism. It is hard to access
favorable tracking control efficiency, because tuning and
self-adapting adjustment of parameters automatically are
a perennial issue of PID controller. During the recent
decades various methods for identifying PID controller pa-
rameters have been presented. In some techniques the open
loop response information of system is used, for instance
Cohen-Coon reaction curve procedure [1].

In recent years, researchers have extensively used the
fuzzy logic for modeling, identification, and control of
highly nonlinear dynamic systems [2,3]. In [4-8], different

combination of control methods are suggested to improve
the efficiency of fuzzy PI or PID controllers. Adjustment
process of PID controller coefficients can take a long time,
and can be hard and costly work [8,9]. Usually a proficient
gainer attempts to control the process by adjusting the co-
efficients of controller according to error and change rate
of error in order to achieve the optimal response. In this
paper the optimal adjustment is obtained by random iner-
tia weight Particle Swarm Optimization (RNW-PSO).

In the HVAC mechanism the supply air pressure is
tuned by changing the speed of a supply air fan. The rela-
tionship between fan speed and pressure of air source can
be expressed by a delayed second order transfer function
as is described by Bi and Cai [11]. Since in various operat-
ing conditions both fans and dampers show non-linear be-
haviour from themselves, even a well-regulated controller
is unable to meet design requirements due to the existing
uncertainties in parameters of system.

Motivated by the aforementioned researches, the
purpose of this paper is to present a novel Optimal
Type-2 Fuzzy Proportional Integral Derivative Controller
(OT2FPIDC) for regulating the air supply pressure of
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Fig. 1. An IT2 FLS

Heating, Ventilation and Air-Conditioning (HVAC) sys-
tem. The parameters of input and output membership func-
tions, and PID controller coefficients are optimized simul-
taneously by random inertia weight Particle Swarm Opti-
mization (RNW-PSO). Simulation results indicate that the
proposed controller has faster response, smaller overshoot
and higher accuracy than Proportional Integral Deriva-
tive PID, Adaptive Neuro Fuzzy (ANF), and Self-Tuning
Fuzzy PI Controlle (STFPIC) under normal condition and
under existing uncertainties in parameters of model.

2 TYPE-2 FUZZY SETS AND SYSTEMS

Type-2 fuzzy sets and systems generalize (type-1)
fuzzy sets and systems so that more uncertainty can be
handled. From the very beginning of fuzzy sets, criticism
was made about the fact that the membership function of
a type-1 fuzzy set has no uncertainty associated with it,
something that seems to contradict the word fuzzy, since
that word has the connotation of lots of uncertainty.

2.1 Interval Type 2 Fuzzy Sets (IT2 FSs)

In spite of having a name which carries the concept of
uncertainty, studies has demonstrated that there are restric-
tions in the ability of T1 FSs to model and minimize the
effect of uncertainties [12-15]. This is because a T1 FS
is fixed this means that its membership degrees are crisp
amounts. Lately, type-2 FSs [16], specified by MFs that
are themselves fuzzy, have been attracting interests. Inter-
val type-2 (IT2) FSs [14], a special case of type-2 FSs, are
currently the most widely used for their reduced computa-
tional cost.

2.2 Interval Type-2 Fuzzy Logic System (IT2 FLS)

Fig. 1 indicates the schematic diagram of an IT2 FLS.
It is similar to its T1 equivalent, the main difference being
that at least one of the FSs in the rule base is an IT2 FS.
Hence, the outputs of the inference engine are IT2 FSs,
and a type-reducer is required to convert them into a T1 FS
before defuzzification can be performed.

Actually the calculations in an IT2 FLS can be con-
siderably simplified. Consider the rulebase of an IT2 FLS

consisting of N rules, supposing the following form:

Rn : IF x1 is X̃
n
1 ...and x1 is X̃

n
1 . THENy is Y

n,n=1,2,...,N,

where X̃n
i (i = 1, . . ., I) are IT2 FSs, and Yn = [yn, yn]

is an interval, which can be understood as the centroid [13,
16] of a consequent IT2 FS, or the simplest TSK model,
for its simplicity. In many applications we use yn = yn ,
i.e., each rule consequent is a crisp number. Suppose the
input vector is x′ = (x′1, x

′
2, . . . , x

′
I). Typical calculations

in an IT2 FLS include the following steps:

1. Calculate the membership of x′i on each Xn
i ,

[µXn
i (x′i), µX

n

i (x′i)], i = 1, 2, . . . , I, n = 1, 2, . . . ,N.
(1)

2. Calculate the firing interval of the nth rule, Fn(x):

Fn(x′) = [µXn
1 (x′1)× ... × µXn

1 (x′1), µX̄n
1 (x′1)×

... × µX̄n
1 (x′1)] ≡ [fn, f̄n], n = 1, ... , N

(2)

3. Apply type-reduction to combine Fn(x′) and the re-
lated rule consequents. There are many such meth-
ods. The most commonly used one is the center-of-
sets type-reducer [13]:

Ycos(x
′) =

⋃

fn ∈ Fn(x′)
yn ∈ Y n

∑N
n=1 f

nyn
∑N
n f

n
= [yl, yr]

(3)

It has been demonstrated that [14,18,19]:

yl = min
k∈[1,N−1]

∑k
n=1 f̄

nyn +
∑N
n=k+1 f

nyn

∑k
n=1 f̄

n +
∑N
n=k+1 f

n

=

∑L
n=1 f̄

nyn +
∑N
n=L+1 f

nyn

∑L
n=1 f̄

n +
∑N
n=L+1 f

n

yl = max
k∈[1,N−1]

∑k
n=1 f̄

nyn +
∑N
n=k+1 f

nyn

∑k
n=1 f̄

n +
∑N
n=k+1 f

n
(4)

=

∑R
n=1 f̄

nyn +
∑N
n=R+1 f

nyn

∑R
n=1 f̄

n +
∑N
n=R+1 f

n
(5)

, where the switch points L and R are specified by

yL ≤ yl ≤ yL+1 (6)
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ȳR ≤ yr ≤ ȳR+1 (7)

and yn and yn have been sorted in ascending order, re-
spectively. yl and yr can be calculated using the Karnik-
Mendel (KM) algorithms [14].

KM Algorithm for Computing yl [20]:

1. Sort y
n

(n = 1, 2, . . . , N ) in increasing order and
call the sorted y

n
by the same name, but now y

1
=

y
2
· · · = y

N
. Match the weights Fn(x′) with their

respective y
n

and renumber them so that their index
corresponds to the renumbered y

n
.

2. Initialize fn by setting

fn =
fn + f̄n

2
n = 1, 2, ..., N (8)

and then compute

y =

∑N
n=1 f

nyn

∑N
n f

n
(9)

3. Find switch point k (1 k N – 1) such that

yk ≤ y ≤ yK+1 (10)

4. Set
fn = {f̄

n, n≤k
fn , n�k (11)

And calculate

y′ =

∑N
n=1 f

nyn

∑N
n f

n
(12)

5. Check if y′ = y. If yes, stop and set yr = y and
L = k. If no, go to Step 6.

6. Set y′ = y and go to Step 3.

KM Algorithm for Computing yr [20]:

1. Sort yn(n = 1, 2, . . . , N) in increasing order and
call the sorted yn by the same name, but now y1 =
y2 . . . yN . Match the weights Fn(x′) with their re-
spective yn and renumber them so that their index cor-
responds to the renumbered yn.

2. Initialize fn by setting

fn =
fn + f̄n

2
n = 1, 2, ..., N

and then calculate

y =

∑N
n=1 f

nȳn
∑N
n f

n
(13)

3. Find switch point k (1 k N – 1) such that

ȳk ≤ y ≤ ȳK+1 (14)

4. Set

fn = {f
n, n≤k
f̄n , n�k (15)

and calculate

y′ =

∑N
n=1 f

nȳn
∑N
n f

n
(16)

5. Check if y′ = y. If yes, stop and set yr = y and R =
k. If no, go to Step 6.

6. Set y′ = y and go to Step 3.

The main idea of the KM algorithm is to find the
switch points for yl and yr.

7. Compute the defuzzified output as:

y =
yl + yr

2
(17)

3 PARTICLE SWARM OPTIMIZATION
The PSO algorithm is a partly new population-

based heuristic optimization method which is based on a
metaphor of social interaction, specifically bird flocking.
The main benefits of PSO are: 1) The cost function’s gra-
dient is not needed, 2) PSO is more compatible and robust
compared with other classical optimization techniques, 3)
PSO guarantees the convergence to the optimum solution,
and 4) In comparison with GA, PSO lasts fewer time for
each function evaluation as it does not apply many of GA
operators such as mutation, crossover and selection opera-
tor.

In PSO, any nominee solution is named “Particle”.
Each particle in the swarm demonstrates a nominee so-
lution to the optimization problem, and if the solution is
composed of a series of variables, the particle can be a vec-
tor of variables. In PSO, each particle is flown through the
multidimensional search space, regulating its position in
search space based on their momentum and both personal
and global histories. Then the particle uses the best posi-
tion faced by itself and that of its neighborhood to position
itself toward an optimal solution. The appropriateness of
each particle can be assessed based on the cost function
of optimization problem. At each repetition, the speed of
every particle will be computed as follows:

vi(t+1) = ωvi(t)+c1rq(Pid−xi(t))+c2r2 (Pgd − xi(t)) ,
(18)
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where xi(t) is the present position of the particle, pid is one
of the finest solutions this particle has achieved and pgd is
one of the finest solutions all the particles have achieved.
After computing the speed, the new position of each parti-
cle will be computed as follows

xi(t+ 1) = xi(t) + vi(t+ 1). (19)

The PSO algorithm is replicated using Eqs. 18 and 19
which are updated at each repetition, up to pre-defined
number of generations is achieved.

3.1 Random inertia weight PSO
Although Standard PSO (SPSO) includes some signif-

icant improvements by providing high rate of convergence
in particular problems, it does demonstrate some deficien-
cies. It is shown that SPSO has a weak capability to look
for a fine particle due to the lack of speed control mecha-
nism. Most of the procedures are tried to ameliorate the ef-
ficiency of SPSO by changeable inertia weight. The inertia
weight is essential for the efficiency of PSO, which equili-
brates global exploration and local exploitation capabilities
of the swarm. A large inertia weight simplifies exploration,
but it prolongs the convergence of particle. Unlike, a small
inertia weight leads to rapid convergence, but it sometimes
results local optimum. Therefore different inertia weight
conformity algorithms have been recommended in the lit-
eratures [21]. In 2003 Zhang [22] studied the effect of ran-
dom inertia weight in PSO (RNW-PSO), reporting empir-
ical results that show its superior efficiency to LDW-PSO
[23]. Eberhart and Shi [24] have recommended a random
inertia weight factor for tracking dynamic systems. The
new version of PSO namely RNW-PSO can be obtained
by changing Eq. ((18)) as below

vi(t+1) = r0vi(t)+c1r1(Pid−xi(t))+c2r2 (Pgd − xi(t)) ,
(20)

where r0 is a uniformly distributed random number inside
the interval [0, 1], and other parameters are same as be-
fore. The RNW can overcome two bugs of LDW. First,
decreasing the affiliation of inertial weight on the maxi-
mum repetition that is hardly predicted before tests. Sec-
ond, abstaining from the lacks of local search capability
in the beginning of run and global search capability at the
end of run. Before starting the optimization procedure, a
performance benchmark should be first presented.

3.2 Empirical Studies
In order to examine the effect of inertia weight on the

PSO efficiency, three non-linear benchmark functions pre-
sented in literature [25, 26] were used because they are fa-
mous problems. The first function is the Rosenbrok func-
tion:

Table 1. Vmax and Xmax values used for tests
Function Xmax Vmax

f1 100 100
f2 10 10
f3 600 600

f1(x) =

n∑

i=1

(100(xi+1 − x2
i )

2 + (xi − 1)2), (21)

where x = [x1, x2, . . . , xn] is an n-dimensional real-
valued vector.

The second is the generalized Rastrigrin function:

f2(x) =

n∑

i=1

(x2
i − 10 cos(2πxi) + 10). (22)

The third is the generalized Griewank function:

f3(x) =
1

4000

n∑

i=1

x2
i −

n∏

i=1

cos(
xi√
i
) + 1. (23)

Three various amounts dimensions were tested: 10, 20
and 30. The maximum numbers of repetition were set as
1000, 1500 and 2000 in accordance with the dimentions
10, 20 and 30, respectively. For evaluation the scalabil-
ity of PSO algorithm, three population sizes 20, 40 and 80
were used for each function according to various dimen-
sions. Acceleration constants took the values c1 = c2 = 2.
Constriction factor C = 1. To perform comparison, all
the Vmax and Xmax were assigned by same parameter set-
tings as in literature [26] and mentioned in Table 1. 500
trial runs were taken for each case

4 THE PROPOSED CONTROL METHOD

General scheme of proposed controller is shown in
Fig. 2. The two inputs of the controller are the error e and
the change rate of error ė , respectively and the output of
controller is U. The main shortage of the optimal Type-2
fuzzy-PID controller is the lack of systematic approaches
to define fuzzy rules and fuzzy membership functions. As
we know, most fuzzy rules are based on human knowledge
and differ among persons despite the same system perfor-
mance. Because of this, it is complex to assume that the
given expert’s knowledge captured in the form of the fuzzy
controller leads to optimal control. Therefore, the efficient
approaches for tuning the membership function and control
rules without a trial and error method are significantly re-
quired. Because of this, the idea of employing RNW-PSO
algorithm to achieve best rising time (tr), settling time (ts),
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Table 2. The used parameters of RNW-PSO
Size of the Swarm 50
Dimension of Problem 20
Maximum Number of iterations 100
Cognitive Parameter C1 1
Social Parameter C2 1
Construction Factor C 1

Fig. 2. Optimal Type-2 Fuzzy-PID controller

% peak overshoot (Mp), steady-state error (Ess) is repre-
sented [28]. Generally, the heuristic algorithm like PSO
only requires to check the cost function for guidance of its
search and no longer requiring informations about the sys-
tem. So, in this paper, the Least Mean Square (LMS) of
error is considered. The parameters of RNW-PSO are also
listed in Table 2.

In the use of Gaussian membership functions we will
face with three different cases. 1) Gaussian membership
functions with the same means and variances, 2) Gaussian
membership functions with the same means and variable
variances, and 3) Gaussian membership functions with
variable means and the same variances. In [28] an optimal
fuzzy-PI controller is designed for a nonlinear delay differ-
ential model of glucose-insulin regulation system, and it is
shown that Gaussian membership functions with variable
means and the same variances have better performance in
controlling this system, therefore we applied this idea in
design process with the difference that the variances are
selected interval.

The specifications of the input and output variables are
given in Tables 3 and 4, respectively.

The rulebase has the following nine rules:

• R1 : IF e is E-Ñ and ė is CE-Ñ , THEN U is ÑL.

• R2 : IF e is E-Ñ and ė is CE-Z̃, THEN U is ÑS.

• R3 : IF e is E-Ñ and ė is CE-P̃ , THEN U is Z̃.

• R4 : IF e is E-Z̃ and ė is CE-Ñ , THEN U is ÑS.

Table 3. The Parameters of Input Gaussian Membership
Functions

Input
Variables

Membership
Functions

Mean Variance
Interval

Negative
(E − Ñ)

−0.0751 [0.0791
0.1881]

Eror (E) Zero
(E − Z̃)

0.0527 [0.0791
0.1881]

Positive
(E − P̃ )

7.7634× 10−4 [0.0791
0.1881]

Negative
(CE − Ñ)

−0.1612 [0.0070
0.0231]

Change of
Error (CE)

Zero
(CE − Z̃)

0.0311 [0.0070
0.0231]

Positive
(CE − P̃ )

0.0215 [0.0070
0.0231]

Table 4. The Parameters of Output Gaussian Membership
Functions

Output
Variables

Membership
Functions

Mean Variance
Interval

Negative Large
(ÑL)

−0.0141 [0.0122
0.0486]

Negative Small
(ÑS)

−0.1051 [0.0122
0.0486]

Control
Input (U)

Zero (Z̃) −0.1681 [0.0122
0.0486]

Positive Small
(PS)

0.0549 [0.0122
0.0486]

Positive Large
(PL)

0.3496 [0.0122
0.0486]

• R5 : IF e is E-Z̃ and ė is CE-Z̃, THEN U is Z̃.

• R6: IF e is E-Z̃ and ė is CE-P̃ , THEN U is P̃S.

• R7 : IF e is E-P̃ and ė is CE-Ñ , THEN U is Z̃.

• R8 : IF e is E-P̃ and ė is CE-Z̃, THEN U is P̃S.

• R9 : IF e is E-P̃ and ė is CE-P̃ , THEN U is P̃L.

The firing intervals and consequents of the nine rules
given in Table 5.

From the KM algorithms,yl and yr can be computed as
follow:

yl =
f

1
ÑL

1
+ f 2̃NS

2
+ f3Z̃

3
+ f 4̃NS

4

f
1

+ f2 + f3 + f4+f5 + f6 + f7 +f8 + f9

+
f5Z̃

5
+ f 6̃PS

6
+ f7Z̃

7
+ f 8̃PS

8
+ f 9̃PL

9

f
1

+ f2 + f3 + f4+f5 + f6 + f7 +f8 + f9
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Table 5. Firing intervals of the nine rules
Rule
No.:

Firing Interval Consequent

R1 [f1, f1] = [µE−Ñ (e)× µCE−Ñ (ė)

, µE−Ñ (e)× µE−Ñ (ė)]

[ÑL1, ÑL1]

R2 [f2, f2] = [µE−Ñ (e) × µCE−Z̃(ė)

, µE−Ñ (e)× µCE−Z̃(ė)]

[ÑS2, ÑS2]

R3 [f3, f3] = [µE−Ñ (e) µCE−P̃ (ė) ,

µE−Ñ (e)× µCE−P̃ (ė)]

[Z̃3, Z̃3]

R4 [f4, f4] = [µE−Z̃(e) × µCE−Ñ (ė)

, µE−Z̃(e)× µCE−Ñ (ė)]

[ÑS4, ÑS4]

R5 [f5, f5] = [µE−Z̃(e)× µCE−Z̃(ė) ,

µE−Z̃(e)× µCE−Z̃(ė)]

[Z̃5, Z̃5]

R6 [f6, f6] = [µE−Z̃(e) × µCE−P̃ (ė)

, µE−Z̃(e)× µCE−P̃ (ė)]

[P̃S6, P̃S6]

R7 [f7, f7] = [µE−P̃ (e) × µCE−Ñ (ė)

, µE−P̃ (e)× µCE−Ñ (ė)]

[Z̃7, Z̃7]

R8 [f8, f8] = [µE−P̃ (e) × µCE−Z̃(ė)

, µE−P̃ (e)× µCE−Z̃(ė)]

[P̃S8, P̃S8]

R9 [f9, f9] = [µE−P̃ (e) × µCE−P̃ (ė)

, µE−P̃ (e)× µCE−P̃ (ė)]

[P̃L9, P̃L9]

yr =
f1ÑL

1

+ f2ÑS
2

+ f3Z̃
3

+ f4ÑS
4

f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f
9

+
f5Z̃

5
+ f6P̃S

6

+ f7Z̃
7

+ f8P̃S
8

+ f
9
P̃L

9

f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f
9

Finally, the crisp output of the IT2 FLS, y, can be cal-
culated as follow:

y =
yl + yr

2
. (24)

5 SIMULATIONS AND RESULTS

In order to simulate the proposed controller, MATLAB
software is applied. The simulation is run on a personal
computer Core 2 Due, 2.8 GHz, 4 Gbytes RAM, under
Windows 7. The RNW-PSO optimizes the controller’s
parameters dynamically. To minimize fitness function,
in each iteration, the parameters are randomly chosen by
RNW-PSO algorithm. These parameters consist of mean
and variance of Gaussian membership functions and PID
controller’s coefficients. Then the program will be run. In
the end of run, the fitness function’s value is calculated
and is compared with the value calculated in previous it-
erations. If the new value be better than previous values,
the new estimated values for parameters are stored. After
completion of iteration loop, RNW-PSO algorithm offers
the best answer as an optimal answer. The optimal param-
eters of PID controller are given in Table 6. The transfer

Table 6. Optimal parameters of PID controller
Proportional Gain - Kp 1.1814
Derivative Gain - Kd 0.0473

Integral Gain - Ki 1.5056

Fig. 3. Obtained membership functions of input 1

function of the supply air pressure loop under normal cir-
cumstances is as follows:

G(s) =
0.81e−2s

(0.97s+ 1)(0.1s+ 1)
, (25)

where gain K = 0.81, τ1 = 0.97, τ2 = 0.1 and dead
time δ = 2 sec. For this process weighting parameters are
defined Ne = 0.9, Nė = 5 and Nu = 2.5. Input and
output membership functions of designed optimal type-2
fuzzy-PID controller namely error (Input 1), change of er-
ror (Input 2), and control input are shown in Figs. 3, 4, and
5 respectively. It can be observed from these Figs that the
RNW-PSO has improved the logical sequence of member-
ship functions. For instance, about input 2 the membership
function CE-P comes before CE-Z.

In order to evaluate controller performance against
the existing uncertainties in parameters of nominal model
three different transfer function has been introduced. To
investigate this issue the applied transfer functions in [29]
is used.

1. when gain K = 0.81, τ1 = 0.2, τ2 = 2 and dead time

Fig. 4. Obtained membership functions of input 2
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Fig. 5. Obtained membership functions of Output

δ = 2 sec., then the transfer function of the supply air
pressure loop is as follow

G(s) =
0.81e−2s

(0.97s+ 1)(0.1s+ 1)
(26)

For this process weighting parameters are defined
Ne = 0.9, Nė = 15 and Nu = 0.3.

2. when gain K = 1.2, τ1 = 0.97, τ2 = 0.1 and dead
time δ = 3 sec., then the transfer function of the sup-
ply air pressure loop is as follow

G(s) =
1.2e−3s

(0.97s+ 1)(0.1s+ 1)
(27)

For this process weighting parameters are defined
Ne = 0.9, Nė = 3 and Nu = 1.

3. when gain K = 1.2, τ1 = 0.97, τ2 = 0.1 and dead
time δ = 4 sec., then the transfer function of the sup-
ply air pressure loop is as follow

G(s) =
1.2e−4s

(0.97s+ 1)(0.1s+ 1)
(28)

For this process weighting parameters are defined
Ne = 0.9, Nė = 3 and Nu = 1.

The Figs. 6-9 and Table 7 are indicated that the supply
air pressure loop of HVAC acts satisfactorily both under
nominal transfer function and also under existing uncer-
tainties in parameters of model. Table 8 implies that both
the rise time and settling time are highly appropriate. Peak
overshoots are also demonstrated insignificant when Opti-
mal Type-2 Fuzzy-PID Controller (OT2FPIDC) is applied.
The proposed controller in this paper is much less com-
plicated than the existing non-optimal fuzzy controller in
[30]. The designed controller in this paper has only 9 rules
whereas with these limited rules the design requirements
are satisfied. But in [30] for achieving the satisfactory re-
sults 49 rules are defined. This fact shows the superiority
of the controller in this paper than the controller proposed
in [30].

Fig. 6. Performance of the transfer function given by
Eq. (25)

Fig. 7. Performance of the transfer function given by
Eq. (26)

Fig. 8. Performance of the transfer function given by
Eq. (27)
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Fig. 9. Performance of the transfer function given by
Eq. (28)

Table 7. Performance analysis of OT2FPIDC for different
HVAC-Supply Air Pressure Loop

Transfer function tr sec ts sec Mp% Ess%
G(s)= 0.81e−2s

(0.97s+1)(0.1s+1)
2.58 4.74 0.00 0.12

G(s)= 0.81e−2s

(0.2s+1)(2s+1)
4.44 8.17 0.00 0.01

G(s)= 1.2e−3s

(0.97s+1)(0.1s+1)
2.16 5.88 0.00 0.08

G(s)= 1.2e−4s

(0.97s+1)(0.1s+1)
2.26 6.75 0.00 0.06

Table 8. Comparison between performance of PID, ANF,
STFPIC, and OT2FPIDC under normal condition and un-
der existing uncertainties in parameters of model

Transfer Function Controller
Type

Mp % ts sec

G(s)= 0.81e−2s

(0.97s+1)(0.1s+1)

PID 3.9 6.7
ANF 3.5 7.5
STFPIC 0.00 3.6
OT2FPIDC 0.00 4.74

G(s)= 0.81e−2s

(0.2s+1)(2s+1)

PID 17.9 16.2
ANF 0.9 10.6
STFPIC 0.088 8.9
OT2FPIDC 0.00 8.17

G(s)= 1.2e−3s

(0.97s+1)(0.1s+1)

PID 63 37
ANF 56 19
STFPIC 17.6 6
OT2FPIDC 0.00 5.88

G(s)= 1.2e−4s

(0.97s+1)(0.1s+1)

PID 100 ≥ 120
ANF 59 32
STFPIC 25 6.9
OT2FPIDC 0.00 6.75

6 CONCLUSION

A novel optimal type-2 fuzzy-PID controller has been
suggested for temperature regulation of HCAC system.
Simulation results indicate that the new optimal fuzzy-
PID controller has faster response, smaller overshoot and
higher accuracy than PID, ANF, and STFPIC under normal
condition and under existing uncertainties in parameters of
model. The new optimal type-2 fuzzy-PID controller can
be extensively applied in the HVAC industry.
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