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Abstract: This study revealed the influence of crystallization processes on the homogeneity
of the sol-gel PbZr0.52Ti0.48O3 thin films, allowing identification and further optimization of
thin film performance. Crystallization processes determine the optical gradient appearance,
irrespective of the chemical solvents used in this work. XRD analysis shown that a refractive
index gradient was apparent in the samples which had dominant (001)/(100) orientation and
significant change of lattice parameters with thickness.
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1. Introduction
The growing interest in compositionally graded ferroelectric (FE) films for improved
piezoelectric properties [1], the dielectric analogue based on polarisation-graded FE for the
transistor (i.e., trans-capacitive (transpactitive) devises and structures) [2], and adaptive FE
memories for space applications [3] make it imperative to study the depth profile of thin films
throughout a single layer and an entire coating. Pb(ZrxTi1-x)O3 (PZT) films have formed an
integral part of the microelectromechanical systems (MEMS) in various applications, which
requires a different thickness of the functional film and homogeneity control, leading to the
challenge of manufacturing the film of the required thickness and quality. Among many
methods for the PZT thin film fabrication, chemical solution deposition (CSD) methods offer
low-capital costs and relatively easy control of chemical composition and homogeneity [4].
Nevertheless, information on the homogeneity of the films and the physical properties
resulting from CSD processing methods represents crucial knowledge, especially since
gradients in optical properties and chemical composition have been reported previously for
CSD-fabricated PZT films [1, 5-8], but its origin has not been elucidated. It is not clear if the
chemical route or the crystallization process is responsible for the chemical concentration
gradients.

Variation of chemical composition throughout the film thickness results in variation of
physical properties of the films and lowers [4, 5] or improves [1] the performance of
electromechanical systems. Due to the proportionality of the refractive index to the square of
the spontaneous polarization, the inhomogeneity of the film can be detected as a variation of
refractive index within the depth of the film (optical depth profile) [10, 11]. It is known that
with the increase of Zr/Ti ratio refractive index n decreases [4, 9]. The presence of excess Pb
also leads to the change of n. Fig. 1 illustrates, in a simplified way, the relation of
compositional and optical depth. On the other hand, any change in FE material structure will
affect the polarization and thus optical properties of the material, irrespective of whether it is
a result of the stoichiometry, compositional gradient, internal stresses, etc.

A challenging aspect of studying compositional homogeneity in PZT thin filmslies in
the identification of compositional gradients within a film. The compositional gradients can
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be detected using Z contrast transmission electron microscope (TEM) with energy dispersive
x-ray spectroscopy (EDX), but it requires specific sample preparation. Investigation using
other methods such as Rutherford back-scattering (RBS) results in sample modification or
even destruction after analysis. Furthermore, such methods suffer from being ‘‘local’’,
intrusive, and destructive. On the other hand, contactless optical methods such as
spectroscopic ellipsometry (SE) allow one estimating the film homogeneity (for example,
optical depth profile [10-17]) without specific sample preparation requirements.

In this study, we present results on optical depth profile of sol-gel PbZr0.52Ti0.48O3

(PZT 52/48) thin films made with two widely used sol-gel routes and using two different
approaches of crystallisation, which in turn would allow conclusions about chemical
composition gradients. The overview of how the film orientation changes when more layers
are added has been obtained, giving more understanding on crystallisation processes in sol-gel
PZT.

2. Experimental
Sol-gel PbZr0.52T0.48O3 (PZT 52/48) thin films were made by using two different solvent
systems: a mixture of acetic acid and methanol (AcOH/MeOH) or 2-Methoxyethanol (2-
MEO). Details of route preparation can be found in Ref. [18, 19]. Two different thermal
profiles were applied to crystallize the films: (i) all layers crystallized together at the same
time (LCT), and (ii) each layer crystallized individually (LCI). The first profile employed the
deposition of one layer followed by drying at 300°C for 1 min. When the final layer was
deposited, the sample was placed on a hotplate at 550°C for 35 min to crystallize. The second
thermal profile involved individual crystallization of each layer by holding the sample at
300°C for 1 min followed by 550°C for 5 min before the next layer was coated. For each
possible combination of thermal profile and sol, a series of 4 sample groups was made, with
each film having between 1 and 5 layers. The list of samples is summarized in Table 1.

The crystallographic structure and out-of-plane orientation of each film was
determined by the standard θ-2θ X-ray diffraction (XRD) method using a Siemens D5005 
diffractometer with CuKα radiation and a Goebel mirror. Variable angle spectroscopic 
ellipsometry (VASE) was performed using a J. A. Woollam Co VASE spectroscopic
ellipsometer. Optical depth profile was modelled using exponential and polynomial variation
of refractive index at 700 nm [19]. Thin film structures were characterized by a TEM (JEM
2010F FEG-AEM), operated at 200 kV accelerating voltage. The chemical composition was
investigated using a LINK ISIS 300 EDX spectrometer and a Si–Li detector.

3. Results and discussion

3.1. Optical depth profile
Among all analyzed samples, the change of the refractive index n with the film thickness d
was found only in the films made by crystallizing each individual layer (LCI). No optical
gradient was found in the films in which all layers were crystallised together (LCT). The films
made by using AcOH/MeOH sol (Fig. 2a) have more complex optical gradient comparing
with the films made by using 2-MEO sol (Fig. 2b). For all films made by using AcOH/MeOH
sol, the first layer has the gradient at the interface to the next layer. n(d) decreases throughout
the second layer for two layer films. The third layer shows a slight increase in n(d), but after
adding the fourth and fifth layer, the second and third layer converge. Such differences in n(d)
from one film to another is most likely due to recurrent annealing of already crystallized
layers, causing the diffusion of Pb, Ti and Zr ions in the film. For all films made by using 2-
MEO sol, n increases towards the film surface. The reasons for the n(d) change may be: (i)
residual stress in the film, (ii) concentration gradients of Ti, Zr or Pb with the layer.
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It is demonstrated that n increases with decreasing Zr/Ti ratio [9]. If we extrapolate
this relation (Fig. 1) to the optical depth profile, e.g., given in Fig. 2b, it can be speculated that
Zr/Ti ratio decreases directionally from the substrate to the surface. However, it is known that
sol-gel thin films may have higher concentrations of Pb at the surface [1, 6, 20]. The
experiments of Watts et al [20] and Impey et al [6] suggest that the diffusion of lead to the
surface in PZT films results from oxidation of the Pb or from kinetic demixing, both of which
would be favoured by incomplete oxidation of the film during deposition. Pb2+ diffusion may
also lead to self-polarization, which causes the polarization inhomogeneity [21].

3.2. X-ray diffraction
The AcOH/MeOH and 2-MEO LCI samples (Fig. 3ac) show a dominant (001)/(100)
orientation. (111) peaks were observed in AcOH/MeOH samples having three or more layers
(Fig. 3a), however, the intensity of these peaks is rather small compared to (100) peaks. For
all these samples a pronounced optical depth profile was found (Fig. 2).

The XRD results for the AcOH/MeOH and 2-MEO LCT samples show more mixed
orientation (Fig. 3bd). AcOH/MeOH samples have dominant (111) peak and additional (110)
and (001)/(100) peaks (Fig. 3b). The films made with 2-MEO sol also have the (111) peak,
but it appears only in the samples with three or more layers (Fig. 3d): the first two samples
(with 1 and 2 layers) were strongly (001)/(100) oriented. Interestingly, no optical gradient is
found for LCT samples. For these films the nucleation and crystallization are strongly dictated
by the substrate, due to the lattice match between PZT(111) and Pt(111).

It must be noted that since LCT films were crystallized only when the last layer was
deposited, the samples do not represent a sequential change in orientation with increasing
number of layers, but rather, each sample stands on its own, showing the influence of the total
film thickness on film crystallization. The situation is different for LCI samples: based on
these XRD results, we obtain a picture of how the orientation of the film changes when more
layers are added, assuming a reproducible orientation. Thus, when processing the films using
the LCI method, only the first layer crystallizes directly on the Pt substrate and all
subsequently deposited layers crystallize on top of the former layer. Since the thermal profile
used assures (100) orientation of the film, we would expect the first layer to be (100) oriented,
as well as all subsequently deposited layers, since the last layer also is crystallize on (100)
PZT. Nevertheless, both groups of PZT 52/48 films processed with the LCI method exhibit
some (111) orientation for films having more than three layers.

The growth of PZT 52/48 films with (100) orientation when pyrolysed at 300°C was
reported earlier by Marshall et al [22] using an AcOH/MeOH sol and the LCI method. The
(100) nucleation on the Pt(111) substrate is likely to take place in the presence of high lead
excess and in the pyrolysis temperature range between 300°C and 350°C. The competing
nucleation of PZT(111) is hindered due to high PbO content and is only enabled at higher
temperatures where PbO volatility is increased. Thus, once the PbO is removed from the film,
the formation of the intermetallic phase Pb3Pt that facilitates the (111) nucleation is enabled,
as observed on PZT 30/70 films [23].

The appearance of (111) orientation was also observed in the work of Brennecka et al
[8]: after crystallization the excess of PbO was found near the surface. Indeed, some
pyrochlore was found for all LCI films made with AcOH/MeOH sol (Fig. 3a, Tab.1). It is thus
possible that after the deposition of the next layer, the residual pyrochlore induced nucleation
and growth in the (111) direction, consuming the uncrystallized matrix and accounting for the
appearance of the (111) orientation at later stages within the first layer. Considering the work
of Brennecka et al, the uncrystallized pyrochlore phase was most likely the lead deficient
fluorite phase, which was also accompanied by a compositional gradient of Pb/Zr through the
layer thickness in their work.
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The presence of compositional gradient can be seen as the significant change of
refractive index within the film (Fig. 2). It was especially pronounced at the interfaces
between the layers for the AcOH/MeOH sol samples from 2 up to 5 layers (Fig. 2a). For these
samples the (111) peak is also present in XRD spectra (Fig. 3a). Thick interface layers
between Pt and PZT (~ 610 nm), and significant surface roughness (~ 710 nm) were
detected using SE for all LCI samples what can be related to the existence of the intermetallic
phase Pb3Pt and the lead deficient fluorite phase.

The reduction of initially high tensile stress with increasing thickness correlates to the
observed peak shift toward smaller 2 in the XRD (see magnified (002)/(200) peaks in Fig.
3ac, and (002) and (022) peak position in Fig. 4). The peak shift indicates the increase of
lattice spacing in the out-of-plane direction, which is likely to be accompanied by the decrease
of lattice spacing in-plane. However, our data is rather limited and does not allow conclusions
as to whether initially high tensile stress (in plane) decreased, or whether it further increased
upon the deposition of more layers. It was observed earlier that the presence of pyrochlore is
accompanied by large tensile stress. The presence of stress and the variation of stress with
film thickness are reflected in the variation of lattice parameters for each film. In the first
layer of AcOH/MeOH LCI samples, the lattice spacing was 0.4052Å and 0.4037Å for (002)
and (200), respectively. This parameter was found to increase with increasing number of
layers up to 0.408Å and 0.4047Å, respectively. This is equivalent to an elongation of 0.7%.
Initial high tensile stress in thin films, which decreases upon further layer deposition, was
observed previously for PZT 52/48 films [24].

Besides that all films made with LCI processing showed pronounced (001)/(100)
orientation, there were differences between AcOH/MeOH and 2-MEO samples based on the
shift of (002)/(200) peaks. For 2-MEO films, the (002) peak shifts to smaller 2 angles,
whereas the (200) peak shifts to higher 2 angles; in other words, the peaks drift apart from
each other (see Fig. 4). This indicates that the tetragonal split (002)/(200) increases with
increasing film thickness and is hence more pronounced. It suggests that with increasing
numbers of layers, and thus heat treatments, stress relaxation, defect healing and improvement
of crystallographic structure can occur in each underlying and already crystallized layer. The
c/a ratio for these films is 1.008, which is the highest between all films. The 2-MEO films
were also all completely crystallized. For these films no pyrochlore phase was found, which
would induce nucleation and growth in the (111) direction. The change of n within the film
can be related to the variation of Zr/Ti and/or tensile stresses.

3.3 TEM analysis
The cross-section of 3 layer film made by using AcOH/MeOH sol and LCI, for which a strong
optical gradient was found (Fig. 2a), is presented in Fig. 5a. It shows fine grains of pyrochlore
phase between perovskite crystallites throughout the film thickness, and a pyrochlore layer
about 50 nm thick at the surface of the film. These results are in accordance with the XRD
analysis (Fig. 3a). Close to the surface where the pyrochlore layer was observed, a strong
reduction in Pb concentration and an increase in Zr concentration were detected by EDX. The
Ti concentration was not much affected by the phase separation. The reduction of Pb
concentration is present in the optical depth profile of the films as decrease of refractive index
in the second layer of the film (Fig. 2a). Due to the similarities in the sol composition and
processing between our work and the work of Brennecka et al, we can conclude that this
sample shows the same two-phase structure reported by Brennecka et al within each layer,
whereby the lead-deficient in upper layers causes a compositional gradient.

The cross section of 3 layer film made using AcOH/MeOH sol and LCT is shown in
Fig. 5b. Columnar grains and ~10 nm thin pyrochlore layer on the surface was found. No Py
was detected by XRD analysis due to its low amount (see Fig. 3b), but it is present in the
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selected area electron diffraction (SAED) image (Fig. 5b). No changes in Pb, Zr and Ti
concentration were detected by EDX and no optical gradient was found by SE.

4. Summery
The depth profile of the refractive index is established for PZT 52/48 thin films made with
LCI irrespective of the chemical solvent type. The analysis of the XRD results of PZT 52/48
films made with LCI has shown that these films have a preferred orientation of (001)/(100) in
contrast to the films made with LCT, which have shown a predominant (111) orientation and
no gradient in optical properties. A more refined XRD analysis presented that an optical
gradient was apparent in the samples in which lattice parameters strongly change with
thickness. For these films, EDX analysis showed significant variation in Pb and Zr.

Separate crystallization of the layers determines the gradient appearance, irrespective
of the chemical solvents used in this work. Variation in Zr/Ti ratio in PZT films originates
early in the crystallization process. These variations are caused by a mismatch in the thermal
decomposition of the individual Zr/Ti components in the PZT precursor. Once created, the
compositional gradients cannot be eradicated by prolonged heat treatments. Selection of
precursors (chemical solvents) and processing parameters (drying temperatures and time,
crystallization temperature and time, etc.) for the deposition of sol-gel films is influential in
controlling the homogeneity of the films.
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Tab. 1. Information on PZT 52/48 films: sol-gel solvent, crystallization process (LCT or LCI),
amount of the layers annealing temperature, and observed peaks of XRD.

Fig. 1. Illustrative relation between the compositional (Ti/Zr and Pb) and refractive index
variation within the film.
Fig. 2. Depth profile at the 700 nm for the samples with different number of layers made
using LCI and a) AcOH/MeOH, and b) 2-MEO sol.
Fig. 3. The XRD of a) AcOH/MeOH and LCI films, b) AcOH/MeOH and LCT films from, c)
2-MEO and LCI films, and d) 2-MEO and LCT films. The magnification of (002)/(200) peaks
(a, c).
Fig. 4. The shift of (002) and (200) peak position after adding additional layers of the LCI
films.
Fig. 5. TEM micrograph (bright field) of a cross-section of a) LCI and b) LCT film showing
pyrochlore phase (Py) on the surface (a, c) and between the grains (a) of the PZT films.
Bellow: SAED of the PZT grains of a) LCI and b) LCT samples in 0-21 zone axis. Diffused
marked ring is due to Py at the surface.
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Tab. 1
Nr Solvent

Crystallisation
process

Number of
samples

Annealing
(pyrolyses/crystallisation)

X-ray

1

AcOH/MeOH

LCT
5 samples

1  5 layers
100 nm/layer

300°C, 1 min
550°C, 35 min

1 (100), (200)

3
(100), (110), (111),

(200)

5
(100), (110), (111),

(200)

2
LCI

5 samples
1  5 layers

110 nm/layer

300°C, 1 min
550°C, 5 min

1 (100), (200)

Py3 (100), (111), (200)
5 (100), (111), (200)

3

2-MEO

LCT
5 samples

1  5 layers
68 nm/layer

300°C, 1 min
550 °C, 35 min

1 (110), (110), (200)
3 (110), (110), (111),

(200)
5 (110), (110), (111),

(200)
Py

4
LCI

5 samples
1  5 layers
65 nm/layer

300°C, 1 min
550°C, 5 min

Final: 550°C for 30 min

1 (100), (111), (200)
3 (100), (111), (200)
5 (100), (111), (200)

Fig. 1.

Fig. 2.
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Fig. 3.

Fig. 4.
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Fig. 5.


