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ABSTRACT

A POSSIBLE POSITIVE FEEDBACK MODULATION OF ACETYLCHOLINE 
RELEASE THROUGH THE STIMULATION OF ALPHA-7 NICOTINIC 

ACETYLCHOLINE RECEPTORS ON BIPOLAR NEURONS IN PIG RETINA

by Viralkumar Patel

Glaucoma is associated with excitotoxicity in which increased glutamate release 
leads to apoptotic death o f retinal ganglion cells (RGCs). Acetylcholine (ACh) has shown 
neuroprotection o f RGCs through the stimulation o f RGCs’ nicotinic acetylcholine 
receptors (nAChRs). The cholinergic amacrine cells are the only cells in retina which 
synthesize and release ACh. They get excitatory inputs from bipolar cells. The presence 
o f aTnicotinic acetylcholine receptors (aTnAChRs) on the cholinergic amacrines, bipolar 
cells and RGCs is documented. Recently, stimulation o f presynaptic nAChRs o f 
cholinergic cells was shown to enhance ACh release in the rat superior cervical ganglion. 
Therefore, we hypothesized that aTnAChRs stimulation by tropisetron and PNU282987 
(a7nAChR agonists) could induce ACh release through either direct stimulation o f 
cholinergic amacrine u7nAChRs or indirect stimulation o f bipolar u7nAChRs. For ACh 
release studies, pig eyes were dissected and cholinergic amacrine cells were labeled with 
40pCi o f ^H-choline in which the retina was flashed with light (3Hz) for 30 minutes to 
maximize ^H-choline uptake. Then, the eyecup was transferred to a perfusion chamber, 
washed for 20 minutes. 1 minute output fractions were collected into vials and prepared 
for liquid scintillation counting. To assess the viability o f the preparation, light and 
kainate were applied. Light (2-3 fold increase), kainate (3-4 fold; lO-lOOpM), a7nAChR 
agonists (2-4 fold; O.Ol-lOOnM) evoked ACh release greater than the baseline in the 
absence o f DNQX (a glutamate receptor antagonist). In the presence o f DNQX, which 
blocked bipolar input to cholinergic cells, a7nAChRs stimulation did not increase ACh 
release from baseline. Hence, the possibility o f indirect input of bipolar a7nAChRs for 
ACh release was supported. Our results indicate that ACh release through a7nAChRs 
stimulation is possible and specifically the bipolar a7nAChRs release o f ACh via an 
indirect positive feedback mechanism. During excitotoxicity, ACh released by amacrine 
cells, might feedback on bipolar nAChRs to increase ACh release. The neuroprotective 
effect o f  tropisetron on u7nAChRs on isolated RGCs is documented. Our study suggests 
that tropisetron might also protect RGCs through increased ACh release by possible 
indirect modulation. This study indicates the possibility o f dual therapeutic targets o f 
a7nAChRs in the retina for neuroprotection against RGC excitotoxicity.
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CHAPTER I 

INTRODUCTION

Neurodegenerative diseases are the result o f cell death in associated organs like 

the brain, spinal cord and retina. Major causes o f neurodegenerative diseases are 

excitotoxicity, inflammation, genetics, aging, injury and free radical generation (Beal et 

al., 2005). In excitotoxicity, an excitatory neurotransmitter, such as glutamate is increased 

in an associated organ, which causes neuronal cell death (neurodegeneration) by allowing 

an excess o f calcium into the cell (in addition to other proposed mechanisms). 

Excitotoxicity is an important factor associated with many neuronal diseases in the 

central nervous system, including the retina (Choi et al., 1988; Romano et al., 1998; 

Slemmer et al., 2005). Neurodegenerative diseases caused by excitotoxicity in the brain 

include multiple sclerosis, Alzheimer’s disease, amyotrophic lateral sclerosis and 

Parkinson's disease (Kim et al., 2002; Hughes, 2009). Some o f the diseases proposed to 

be caused by excitotoxicity in the retina are diabetic retinopathy, glaucoma and retinal 

ischemia (D’Amico 1994; Brooks et al., 1997; Levin, 2001).

Glaucoma is one o f the major diseases causing blindness in the world. The exact 

mechanisms causing glaucoma have not been fully discovered, but glaucoma is usually 

associated with increased intraocular pressure which is believed to lead to excitotoxicity 

(Vickers et al., 1995; Brooks et al., 1997; Dkhissi et al., 1999). In this disease condition, 

an excess o f non-specific cations enter the retinal ganglion cells (RGCs) o f the retina



which trigger an intracellular signaling cascade, causing apoptotic death (Quigley et al., 

1995; Lam et al., 1999).

In a pig model for glaucoma, excess glutamate can induce blindness. Glutamate 

excites pig RGCs through both NMDA (N-methyl-D-aspartic acid) and non NMDA 

receptors (Wehrwein et al., 2004). NMDA receptors are restricted to the inner retina, and 

the influx o f calcium through NMDA receptors in RGCs is believed to trigger an 

apoptotic cascade. The loss o f RGCs interrupts the normal visual pathway o f the retina, 

eventually leading to blindness.

Visual Pathway
In the visual pathway (Brindley 1970), light entering the eye causes a series of

events and eventually passes electrical and chemical signals to the brain (Figure 1). The

vertical signal transmission is conducted by an excitatory neurotransmitter (glutamate)

from photoreceptors to bipolar cells and horizontal cells (in the outer plexiform layer)

and from bipolar cells to ganglion cells (in the inner plexiform layer) (Massey, 1990).

Horizontal cells excited by the photoreceptor neurotransmitter glutamate provide lateral

complex feedback to bipolar cells and photoreceptors in the outer plexiform layer through

the release o f the inhibitory neurotransmitter GAB A. Bipolar cells, which receive signals

from photoreceptors, pass signals to ganglion cells by making synapses in the inner

plexiform layer where amacrine cells form a much more complex lateral feedback

network. Amacrine cells make synapses with other amacrine cells, bipolar cells and

RGCs (Dowling and Boycott, 1966). The amacrine cells use mainly two inhibitory

neurotransmitters, G ABA (gamma-amino butyric acid) and glycine (Marc, 1995), and a
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subset also use the excitatory neurotransmitter acetylcholine (Famiglietti, 1983) as a co

transmitter to pass the visual signal.

Normally in the dark, rods and cones (photoreceptors) are in the depolarized state 

and release (Trifonov, 1968) glutamate as a neurotransmitter (Figure 2; Dowling, 1987 

and Massey, 1990). When light is transduced by the photoreceptors, they become 

hyperpolarized and stop releasing glutamate. Due to this effect, one group o f bipolar cells 

(known as OFF- bipolar cells) decreases conductance (Dacheux and Miller, 1976) and 

becomes hyperpolarized via metabotropic glutamate receptors, specifically mGluR6, 

which uses a G protein cascade (Slaughter and Miller, 1983; Nawy and Jahr, 1990; 

Dhingra et al. 2001). OFF bipolar cells glutamate receptors are also known as APB (2- 

amino-4-phosphonobutyrate) sensitive glutamate receptors (Slaughter and Miller, 1981). 

When light is transmitted, the other group o f bipolar cells (known as ON-bipolar cells) 

depolarizes and increases conductance (Nelson, 1973; Toyoda, 1973) through ionotropic 

glutamate receptors i.e. (2-(aminomethyl)phenylacetic acid (AMPA) and kainate 

glutamate receptors; Slaughter and Miller, 1983). Finally, ON bipolar cells (in the dark) 

and OFF bipolar cells (in the light) release glutamate within the inner plexiform layer 

(Werblin and Dowling, 1969; Werblin, 1991), which excites postsynaptic RGCs (Raviola 

and Raviola, 1982) and amacrine cells (Cunningham and Neal, 1985).
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Figure 1. Visual pathway o f the retina. Entered light excites photoreceptors to pass 

signals to bipolar cells (in the outer plexiform layer). Bipolar cells pass the signal to 

ganglion cells (in the inner plexiform layer) which send signals to brain. Horizontal cells 

and amacrine cells provide lateral feedback to the outer and inner plexiform layer 

respectively.
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Figure 2. Visual pathway: Signal transmission from photoreceptors to bipolar cells. In 

the dark, photoreceptors (in depolarized state) release glutamate which depolarizes OFF 

bipolar cells (to release glutamate) and hyperpolarizes ON bipolar cells (to stop glutamate 

release). Vice versa happens in the presence o f light.



Only cholinergic amacrine cells synthesize acetylcholine and release it as a 

neurotransmitter (Masland and Mills, 1979). Hence, cholinergic amacrine cells stimulated 

by bipolar glutamate input release ACh (Famiglietti, 1983; Masland 1988) and pass the 

signal to amacrine cells, bipolar cells and RGCs (Brandon, 1987; Ehinger et al., 1988; 

Marc et al., 1989). When excited, RGCs process and pass the signal received from 

amacrine and bipolar cells through the optic nerve to the brain.

ACh has shown neuroprotective effects on RGCs against excitotoxicity. ACh 

induced neuroprotection o f various central nervous system cells (including RGCs) against 

excitotoxicity has been widely documented (Kaneko et al., 1997; Dajas-Bailador et al., 

2000; O’Neil et al., 2002; Nakamizo et al., 2005; Thompson et al., 2006; Wehrwein et al., 

2004). As described above, in the normal state o f retinal function, glutamate released by 

bipolar cells excites cholinergic amacrine cells which in turn release ACh, an excitatory 

neurotransmitter. ACh release is believed to increase during excess glutamate release as a 

natural defense mechanism against excitotoxicity (Wehrwein et al., 2004). ACh induces 

neuroprotection through activation o f nAChRs. Various studies have shown nAChRs 

induced neuroprotection against excitotoxicity in the brain and retina (Marin et al., 1994; 

Dineley et al., 2001; Lafuente et al., 2001; Laudenbach et al., 2002; Wehrwein et al., 

2004; Thompson et al., 2006). The nAChRs o f the subtype a7 are suggested to be 

involved in the neuroprotection o f the brain (Kaneko et al., 1997 and Dajas-Bailador et 

al., 2000). ACh neuroprotection against glutamate induced excitotoxicity was found to be 

partially mediated through activation o f a7nAChRs (Wehrwein et al., 2004) and 

a4nAChRs (Thompson et al., 2006) in cultured pig RGCs. Furthermore, activation o f



aVnAChRs through tropisetron (a partial aVnAChRs agonist) was found to be 

neuroprotective in pig cultured RGCs (Linn and Linn, 2003 and 2005).

Recently, aVnAChRs have been found on presynaptic neurons o f bipolar cells and 

cholinergic amacrine cells (Dmitrieva NA et al., 200V). Moreover, the stimulation o f 

presynaptic nicotinic acetylcholine receptors o f cholinergic cells has shown to enhance 

ACh release in rat superior cervical ganglion (Liang et al., 199V). In that study, Liang et 

al. demonstrated that positive feedback o f released ACh modulates ACh release through 

nAChRs at the presynaptic level o f cholinergic cells in rat superior cervical ganglion.

Cholinergic and bipolar aVnAChRs might have physiological significant 

functional role in the retina which can be stated based on three results; the 

neuroprotective effect of aVnAChRs on RGCs against glutamate toxicity, the presynaptic 

presence o f aVnAChRs on bipolar and amacrine cells, and a positive modulation o f 

cholinergic cells through nAChRs in rat cervical ganglion.

Objectives

We hypothesized that the stimulation o f cholinergic amarine aVnAChRs and/or 

bipolar aVnAChRs should affect the normal release o f ACh. We predict that there might 

be the presence o f a positive feedback modulation o f ACh release via cholinergic amarine 

and/or bipolar aVnAChRs activation. If  positive feedback modulation o f ACh release 

occurs, there are at least two possible ways o f positive feedback modulation. First, 

cholinergic aVnAChRs activation might directly modulate ACh release from thmselves to 

increase ACh release (direct feedback modulation). Second, if bipolar aVnAChRs are



activated, an increase in the release o f the glutamate neurotransmitter would modulate 

glutamate receptors o f the cholinergic amacrine cells in order to increase release o f  ACh 

(indirect feedback modulation). In the present study, we have stimulated the a7nAChR 

with the partial agonist tropisetron and specific agonist PNU282987.



CHAPTER II 

MATERIALS AND METHODS

The approach in the study is same as previously used by Masland and Livingstone 

(1976) and Linn et al. (1991). Only a subset o f the amacrine cells use ACh as a 

neurotransmitter and are commonly known as the ‘starburst’ amacrine cells based on 

their unique morphology. Only cholinergic amacrine cells synthesize and release ACh as 

a neurotransmitter when excited; because o f this, the cholinergic amacrine cells o f the 

retina can be selectively labeled with radio-labeled choline. ^H-choline take up (via the 

choline transport system) is synthesized to ^H-ACh by cholinergic amacrine cells (via 

choline acetyItranslerase). Released labeled ACh is measured by scintillation counting. 

The materials and methods modified from Masland and Livingstone (1976) and Linn et 

al. (1991) are briefly described below.

Eyecup preparation

Porcine eyes were obtained from local abattoir (DeVries Meats). Eyes were 

obtained from freshly slaughtered animals and were kept on ice until used (usually within 

3 hours). One eye was used for each experiment.

The eyeball was diagonally cut (hemi-sected) into two equal halves in such a way 

that the top portion o f the eyeball, including the lens, was removed and the second half o f 

the eye ball (posterior eyecup), including the optic nerve disc, remained intact. From the 

posterior eyecup, the vitreous humor was removed in order to empty the eyecup.



Dissection was conducted under a red dim light and the remainder o f the study was 

conducted in the dark. Light affects ACh release (see introduction) and we used light as a 

stimulator; hence, the experiment was conducted in the dark or under red dim light 

whenever visual tasks needed to be performed.

Once the eyecup was dissected, it was labeled with ^H-choline Ames solution 

using the steps shown in Figure 3. The eyecup was filled with ^H-choline solution and the 

retina was stimulated with 3 Hz flashing bright white light (light Emitting Diode [LED],

1100 mcd) for 30 minutes (Masland and Livingstone, 1976). According to Masland, 

amacrine cells are thought to release maximum amounts of ACh under light stimulation 

at 3Hz. The application o f light for 30 minutes causes amacrine cells to deplete all the 

unlabelled ACh stores with subsequent uptake o f  ̂ H-Choline. During the labeling, the 

eyecup was kept on the small petri-dish containing Ames medium, which was in contact 

with 55°C water to keep the inner temperature o f the eyecup at 37°C. After the labeling, 

the eyecup was transferred to the perfusion chamber.

Preparation o f  ̂ H-choline solution

40^1 o f ̂ H-choline (tritiated-choline, ^H-Ch; 80 ;/Ci/mmol; New England 

Nuclear) in ethanol was taken into a tube and evaporated to dryness by placing the tube in 

a beaker containing water at 100°C. ^H-choline was redissolved in 1 ml o f Ames media 

(Sigma; Ames and Nesbett, 1981) and held at 37°C until used for labeling.
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Eyecup mounting and perfusion system 

After labeling, the eyecup was tilted upside down and mounted on an eyecup 

support as shown in Figure 4. The eyecup was then held to the eyecup support with a 

ring. The perfiision solution (Ames media) was pumped using variable flow peristaltic 

pump (VWR International) over the eyecup at 37°C at 1.5 ml/minutes. Inflow 

temperature was maintained at 37”C by putting a long loop o f tubing in water maintained 

at 40”C before the perfiision solution flowed over the retina (eyecup). The eyecup was 

washed for 20 minutes so that background activity o f ACh reaches to steady state level. 

The output was collected in a waste beaker.

Ames media 
(37»C)

Small pelri dish ■ 

Water (55*^0 '

Petri dish ■

^H-Choiine 
ames solution

Figure 3. The eyecup set-up used during labeling. The eyecup, which was filled with H- 

choline Ames solution and stimulated with 3Hz o f bright flashing light, was kept in a 

small petri dish containing Ames media. The temperature o f Ames media was maintained 

at approximately 45°C by keeping the small petri dish containing the eyecup in a large 

petri dish heated to 55°C.
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media Input

retina (inverted 
eye cup)

Ring for eyecup 
support

media
output

Eyecup
support

Figure 4. Perfusion system. The eyecup (inverted) was mounted on a cylindrical shaped 

eyecup support. A plastic ring was used to hold the eyecup to the eyecup support. Input 

media flow was over the top o f the eyecup while output media flow was at the bottom of 

the petri dish.

After a 20 minute washing period, the experiment was started and output was 

collected into vials via a fraction collector. One minute outflow fractions were collected. 

The study was conducted using two types o f stimuli, i.e., light and drugs.

A total o f  four different kinds o f stimuli were used. Except for flashing light, each 

drug was applied for 1 minute through the input o f perfusion solution. 1) 2 to 4 minutes 

o f light stimulation (3 Hz o f bright white light 1100 mcd LED) were applied to assess 

viability o f  the system and physiological input o f the system. 2) Kainate (glutamate 

receptor agonist), which acts specifically on bipolar cells, was applied to validate direct 

selective pharmacological input and as a positive control (Linn et al., 1991). 3) Potassium 

chloride (KCl) was applied to check ACh release through direct depolarization o f  the 

membrane (direct, non selective stimulation; Friedman and Redburn, 1990). 4)

12



Tropisetron (partial a7nAChR agonist) and PNU282987 (a7nAChR agonist) were 

applied with or without DNQX (glutamate receptor antagonist) as an experimental 

variable to determine the presence o f a7nAChRs stimulated ACh release.

Even after a prolonged wash (20 minutes), the baseline (background radiation) 

declined steadily throughout the experiment. And so, 5 minutes o f ft-actions were 

collected as the basal efflux before the application o f each stimulus. Tropisetron abruptly 

increased the basal efflux, so 10 to 15 minute washings were taken after its application.

Preparing vials for counting

1 minute fi-actions were subjected to scintillation counting. 2 ml o f EconoScint 

(Packard Fisher) solution was added to each collected ft-action vial. Vials were then 

counted in a standard scintillation counter (Packard CA2200).

Data analysis

Released labeled ACh was detected as Count per Minute (CPMs). The readings o f 

CPM were plotted against the fi-action number o f vials. Each fraction number represents 

either baseline efflux or stimulation induced efflux. The peaks o f agonist induced ACh 

release (labeled) were compared with baseline efflux o f ACh. The average fold increase 

(response /  preceding basal efflux) o f  the stimuli was plotted against respective stimuli. 

Statistical analysis was done using One way ANOVA followed by student-Newman- 

Keuls test o f post-hoc analysis. P-values less than 0.05 were considered as significant.

13



CHAPTER III

RESULTS

Physiological and Pharmacological stimuli 

We calibrated the responses o f the pig retina in vitro system using physiological 

and pharmacological stimuli. After 20 minutes o f washing, background radioactivity 

reached a steady state level. Light was used as a stimulus to release ACh (^H labeled), to 

ensure that the physiological responsiveness o f the retina was intact through 

photoreceptor activation. 3 Hz flashing light was applied for 2 to 4 minutes giving a 2 to 

3 fold increase in ACh release (Figure 5 or 6). This is comparable to what Masland 

(1976) demonstrated and was used to indicate a functional retina.

We presumed that the released radioactivity by stimuli was in the form o f ACh 

rather than another metabolite or choline. Previous work has indicated that essentially all 

the radioactivity released due to light was in the form o f ACh (Masland and Livingstone, 

1976; Massey and Neal, 1979; Massey and Redbum, 1982). Moreover, the analysis of 

released ACh by stimuli like kainate (KA), quisqualate (QQ) and NMDA has shown that 

more than 90% of radioactivity was ACh as opposed to choline (Linn et al., 1991).

Kainate (KA) is a selective KA receptor agonist, since KA receptors have been 

demonstrated to be the physiologically activated receptor on cholinergic amacrine cells 

(Linn et al., 1991) and bipolar cells. We used kainite as a selective pharmacological input 

to kainite receptors o f bipolar and cholinergic amacrine cells. Our results showed that the

14



average fold increase o f ACh release compared to respective basal efflux was 2.06 fold 

by light, 1.81 by 10 pM kainate and 2.45 by 100 pM kainate (Figure 6).

We used KCl to insure that ACb release was working through direct chemical 

stimulation. Elevated KCl is often used as a, non-selective input to depolarize the plasma 

membrane o f cholinergic amacrine cells (Friedman & Redburn, 1990). Our results 

indicated that elevated potassium (100 mM KCl) caused up to a 7 fold increase in basal 

efflux (Figures 5 and 6).

In this study, direct pharmacological (kainate) and physiological (light) input had 

increased ACh release compared to base line, and essentially functioned as our positive 

controls to validate the system.

15



100 mM KCl800

700
600

500
400

300

200
100

0

100 |iM 
Kainate

3 Hz 
Light

1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 161718 19

Fraction Number

Figure 5. ACh release (CPMs) changes in the presence o f light, kainate and KCl (control 

stimulators). Release o f ACh from pig retina {in vitro) in response to stimulation by light, 

100 |iM kainate and 100 mM KCl. Release data in CPMs were plotted against the 

fraction number. One-minute fractions were collected, and kainate (glutamate receptor 

agonist) and KCl (non selective input, membrane depolarizer) were applied for 1 minute. 

Light stimulation at 3 Hz for 2 minutes.
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9

8

7

6
Fold Increase 
com pared to  ^ 

respective 4 
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Light (n=7) 10 pM Kainate 100 pM Kainate 100 mM KCI
(n=3) (n=8) (n=2)

Physiological Pharmacological

Stimulators

Membrane
depolarizer

Figure 6. Average fold increase o f ACh release due to light, kainate and KCI (control 

stimulators). The summary o f data (ACh release in pig retina in vitro) collected for 

different positive controls used in the study to validate the system, light (flashing white -3 

Hz) functions as a physiological stimuli, kainate as pharmacological stimuli and 

potassium (KCI) as membrane cell depolarizer. The average fold increase in ACh release 

compared to the respective baseline verses control stimulators was plotted in the graph.
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Partial agonist o f a7nAChRs -  Tropisetron 

Tropisetron ((3-endo)-8-methyl-8-azabicyclo[3.2.1]oct-3-yl 1H-indole-3- 

carboxylic acid ester monohydrochloride) has potent 5 -HT3 (serotonin, 5- 

hydroxytryptamine) receptor antagonistic & anti-emetic activity (Seynaeve et al., 1991; 

Middlemiss and Tricklebank, 1992; Mhatre et al., 2004). It has partial aVnAChRs activity 

(Papke et al., 2005) and has shown neuroprotection o f  RGCs against glutamate toxicity in 

RGCs culture (Linn and Linn, 2003 and 2005). Moreover, it has passed clinical trials and 

is used as an antiemetic (anti-vomiting) outside o f the US. Hence, its effect on 

aVnAChRs mediated ACh release might be valuable.

Tropisetron increased ACh release compared to basal efflux from 1.13 fold to 

2.79 fold in a dose dependent manner. Figure 7 shows the result o f one experiment. Peaks 

o f increased ACh release are seen with three different tropisetron concentrations. The 

data suggests concentration o f tropisetron in 0.01-100 nM tropisetron had 1.13 fold-2.79 

fold increases in ACh release compared to basal efflux.

Figure 8 shows summary o f  tropisetron experiments. ACh release induced by 1 

nM and 100 nM tropisetron concentrations is significantly different from the ACh release 

induced by 0.01 nM tropisetron concentration (P<0.05). However, ACh release induced 

by 1 nM and 100 nM tropisetron is not significantly different from each other (Figure 8).
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Figure 7. ACh release (CPMs) changes in the presence o f different concentrations of 

tropisetron. Release data in CPMs were plotted against the fraction number. One-minute 

fractions were collected, and different concentrations o f tropisetron were applied for 1 

minute. The washtime between two applications o f tropisetron were more than 10 

minutes. Normally a steady decline in radioactivity is observed, due to the finite pool of 

releasable ACh.
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0.01 nM tropisetron (One way ANOVA, Student-Newman-Keuls test o f post-hoc 

analysis).
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Specific agonist o f aTnAChRs -  PNU 282987 
(N-(3R)-l-Azabicyclo[2.2.2]oct-3-yl-4-chlorobenzamide; Tocris Bioscience)

PNU has shown neuroprotective activity on RGCs against glutamate toxicity.

Here it was used as a selective agonist for aTnAChRs stimulation. We observed increased

efflux after tropisetron application and PNU 282987 also increased ACh release

compared to a basal efflux (Figure 9).
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Figure 9. Release o f ACh from pig retina {in vitro) in response to stimulation by light, 

kainate, PNU282987 and tropisetron. Release data in CPMs were plotted against the 

fraction number. One-minute fractions were collected, and different concentrations of 

tropisetron were applied for 1 minute. Washing timings between the application o f 

PNU282987 and tropisetron were kept more than 10 minutes. Light stimulation at 3 Hz 

for 2 minutes.
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KA antagonist - DNQX and a7nAChR agonist PNU-282987 

Stimulation of a7nAChRs by tropisetron and PNU 282987 increased ACh release 

compared to basal efflux. 6,7-dinitroquinoxaline-2,3-dione (DNQX) is a glutamate 

receptor antagonist (a selective KA receptor antagonist, Linn et al. 1991). It is used to 

differentiate between a direct (cholinergic a7nAChRS mediated) or indirect (bipolar 

a7nAChRS mediated) effect o f ACh release (Linn & Massey, 1992). lOpM DNQX 

blocks the effect o f KA and physiological stimuli (light) on cholinergic amacrine cells 

completely (Linn et al., 1991). We blocked KA receptors with DNQX with alO minute 

pre-treatment before PNU 282987 application. Light, 100 pM Kainate and 100 pM PNU 

282987 were applied with and without DNQX application. There was an increase in ACh 

release compared to basal efflux with application o f light, kainate and PNU 282987 in the 

absence o f DNQX; while there was no change in ACh release compared to baseline in the 

presence o f DNQX in response to stimulation (Figure 10).
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Figure 10. Release o f  ACh from pig retina (in vitro) in response to stimulation by light, 

kainate, PNU282987 in the presence and absence o f DNQX. Release data in CPMs were 

plotted against the fraction number. One-minute fractions were collected, and different 

concentrations o f tropisetron were applied for 1 minute.
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CHAPTER IV

DISCUSSION

Stimulation o f a7nAChRs by agonists (e.g. tropisetron or PNU282987) increased 

the ACh release compared to basal efflux suggesting possible involvement o f either 

cholinergic a7nAChRs and/or bipolar a7nAChRs (Figures 7, 8, and 9). Our results 

indicated that in the presence o f DNQX (glutamate receptor blocker), the blockade o f 

light and kainate induced ACh release is observed; which is consistent with the previous 

findings by Linn et al., 1991 (Figure 10). To find out which a7nAChRs (either 

cholinergic or bipolar a7nAChRs) mediated ACh modulation, we used DNQX. In the 

presence o f DNQX, the KA receptors o f cholinergic amacrine cells are blocked. lOpM 

DNQX blocks all the inputs from kainate and light. Hence, DNQX blocks glutamate 

input from bipolar cells to cholinergic amacrine cells (Linn et al., 1991). Basically, if the 

modulation is through direct effects on the cholinergic amacrine cell, this modulation 

should not be affected.

There are two possibilities for positive feedback modulation: I) amacrine cell 

a7nAChRs mediated (direct positive feedback modulation) and 2) bipolar a7nAChR 

mediated (indirect positive feedback modulation). In the presence o f DNQX, bipolar cell 

mediated ACh release should be blocked and not induce ACh release above baseline. 

This is based on the hypothesis that glutamate (released by bipolar a7nAChR activation) 

input to amacrine cells will be blocked in the presence o f  DNQX. Moreover, if ACh

25



release is mediated by a7nAChRs in the cholinergic amacrine cells, ACh release should 

increase compared to baseline even in the presence o f DNQX.

Our study showed an increase in ACh release when a7nAChRs agonists 

(tropisetron and PNU282987) were applied (Figures 7, 8, and 9) in the absence of 

DNQX. However, in the presence o f  DNQX, there was no increase in ACh release 

compared to baseline (Figure 10). This does not support the possibility o f  a significant 

role o f a7nAChRs in the cholinergic amacrine cells in the modulation o f ACh release. 

Hence, bipolar a7nAChRs induced ACh release might be a possible mechanism (indirect 

positive feedback modulation). See figure 11 for a model explaining positive feedback 

modulation based on our results.
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Figure 11. Model explaining positive feedback modulation. The figure shows 

neurotransmitter network o f  glutamate and ACh among bipolar cells, cholinergic cells 

and RGCs. Photoreceptors passes glutamate neurotransmitter signal to bipolar cells and 

horizontal cells. Bipolar cells passes glutamate neurotransmitter signal to cholinergic 

amacrine cells and RGCs. Cholinergic amacrine cells might feedback ACh to bipolar 

aVnAChRs as an indirect positive feedback modulation o f ACh release.
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This study supported the possibility o f  ACh release mediated by indirect positive 

feedback through the activation o f bipolar aTnAChRs. As shown in figure in 7, ACh 

release through the stimulation o f aTnAChRs is possible. Amacrine cells might get 

indirect positive feedback from ACh, inducing them to release more ACh (Figures 8 and 

11). During excitotoxicity, ACh released by amacrine cells, might feedback on bipolar 

nAChRs to increase ACh release. This finding is significant. Normally, it would not be 

expected to see any increase if aTnAChRs were only physiologically important on RGCs. 

There is no known feedback from RGCs onto the cholinergic amacrine cells. So, this 

effect has to be direct or pre-synaptic (onto a cell that synapses onto the cholinergics).

Interestingly, activation o f bipolar aTnAChRs modulated ACh release while 

cholinergic aTnAChRs did not. This raises questions regarding the physiological 

significance of the cholinergic aTnAChRs (Figure 11). We are hesitant to minimize the 

importance o f the cholinergic aTnAChRs based on the findings o f only one approach 

(ACh release), particularly since the effects o f the bipolar synapse could be amplified 

through the high-gain, ‘ribbon’ synapse (Linn & Massey, 1992). Moreover, if aTnAChRs 

are only physiological significant, one would not expect any increase in ACh release 

through the stimulation o f aTnAChRs.

Bipolar aTnAChRs in bipolar cell synaptic terminals receive GABAergic negative 

feedback from amacrine cells (Yazulla et al., 198T). At bipolar cell terminals, G ABA 

inhibits C a^  conductance by acting through metabotropic GABAb receptors. Decreased 

Ca^^ conductance inhibits glutamate neurotransmitter release from bipolar synaptic 

terminals (Heidelberger and Matthews, 1991). Our experiments indicate a possible
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enhancement o f glutamate release through the stimulation o f bipolar aTnAChRs. 

Opposing the negative GABAergic negative feedback, an increase in bipolar C a^  levels 

might be central to aTnAChR mediated glutamate release (Rogers and Dani, 1995; 

Ragozzino et al., 1998).

Though we calibrated the in-vitro system o f the pig retina, it should be kept in 

mind that the previous in-vivo studies o f rabbit retina (Linn et al. 1991) induced 

significantly higher increases in ACh release when glutamate analogues were applied. 

This suggests a limitation o f  our model. However, our results are comparable to other in- 

vitro preparations examining ACh release from the rabbit retina (Masland & Livingstone, 

1976; Friedman & Redburn, 1990) and rat nervous tissue (Liang & Vizi, 1997). This 

indicates that our results may underestimate the in vivo effect o f glutamate analogue.

Previous research indicated that RGC neuroprotection from excitotoxicity through 

the stimulation o f RGC aTnAChRs by tropisetron is possible (Linn and Linn, 2003). The 

present study indicates that the stimulation o f bipolar aTnAChRs by tropisetron also 

caused ACh release. This raises the possibility o f dual therapeutic targets for RGCs 

neuroprotection through direct action on RGC aTnAChRs & indirect action on bipolar 

aTnAChRs. Neuroprotection o f RGCs is critically important in glaucoma and our study 

suggests that the stimulation o f aTnAChRs using drugs like tropisetron, which is 

clinically approved, might be therapeutically targeted in dual way for protection o f RGCs 

against excitotoxicity. However, the presence o f aTnAChRs on bipolar cells, RGCs and 

various amacrine cells including cholinergic amacrine cells (Dmitrieva et al. 200T)
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suggests a complex and ‘layered’ control o f ACh release and requires further study to 

understand a7nAChR mediated neuroprotection.

Further exploration o f this 'layered' structure would probably involve more direct 

monitoring o f individual cells, such as with whole-cell recording. In their investigations 

o f the GABA-B receptor on bipolar cells, Maguire et al (1989) used the retinal slice 

preparation to record from bipolar cells with and without intact axons. Responses to 

GABA-B agonists were only found on bipolars with intact axons indicating their 

localization to the axon terminal. One would assume that the alpha? receptors are also 

restricted to the axon terminal since they appear to increase neurotransmitter release. The 

intracellular mechanisms o f this increase also deserve further investigation. One would 

assume that they increase the permeability o f specific calcium channels involved in 

neurotransmitter release. This mechanism would be in contrast to the neuroprotective 

mechanism invoked by alpha? activation on RGCs. The mechanism o f action o f alpha? 

receptors on amacrine (particularly the cholinergic) cells will probably be more elusive 

since currently there is not a way to selectively culture these cells (as there is with the 

RGCs) and they are more difficult to directly record from compared to bipolar cells.
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