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ABSTRACT

We propose to analyze the effectiveness of various non-preemptive Load Balancing 

Policies that are available in Distributed Computing Systems. The result of the analysis 

demonstrates the usage of various policies and determining a policy that is effective in 

the given set of problems. It is not about proposing a new distributed algorithm or 

distributed system policy. However, it has implemented a prototype software lab 

comprising various policies to determine the effectiveness of existing load balancing 

policies. There are several programs implemented to test the lab and to generate data to 

analyze the effectiveness of the distributed policies.

The prototype software lab (EPLAB) that has been developed, as a part of this thesis is 

configurable to employ any kind of load balancing policies discussed in this 

documentation. Any program written in any language (in Linux operating system) can be 

tested in this lab and the resultant data can be collected to observe the effectiveness of the 

policies selected in the configuration file. So, this lab can be used as a pedagogical tool to 

show students how different program respond using different load balancing policies. 

Two programming solutions used EPLAB to generate data to analyze the effectiveness of 

the load balancing policies. Many other load balancing policies can be implemented and 

integrated into EPLAB system and the results of the programs that ran using EPLAB can 

be analyzed for identifying the efficiency of the policies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Determination o f  Effective Non-preemptive Load Balancing Policies

LIST OF FIGURES

Figure 1,2:  Single & Double Threshold Policies................................................................13

Figure 2 : EPLAB System...................................................................................................... 20

Figure 3 : EPLAB System Design & Implementation.........................................................22

Figure 4 : Job Submission Process....................................................................................... 24

-5  -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Determination o f  Effective Non-preemptive Load Balancing Policies

LIST OF GRAPHS

Graph 1.1 Static, Single Threshold Test 1.1.......................................................................32

Graph 2 : Static, Double Threshold Test 1 .2 .................................................................... 34

Graph 3 : Dynamic, Single Threshold Test 1 .3 ................................................................36

Graph 4 : Dynamic, Double Threshold Test 1.4................................................................38

Graph 5 : Static, Single Threshold Test 2.1...................................................................... 42

Graph 6 : Static, Double Threshold Test 2 .2 ..................................................................... 44

Graph 7 ; Dynamic, Single Threshold Test 2 .3 ................................................................. 46

Graph 8 : Dynamic, Double Threshold Test 2.4................................................................ 48

- 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Determination o f  Effective Non-preemptive Load Balancing Policies

1. INTRODUCTION

Traditionally, computing problems were solved using single computers. Then multi

processor systems were developed which allowed a problem to be subdivided and solved 

in parallel. However, the problem remained of contention of resources. The next 

proposition was developing distributed systems.

A distributed system is a collection of hosts interconnected by a communication network 

in which each host has its own processor, memory, and other peripherals.

Over the past decade, dynamic load sharing and balancing algorithms in distributed 

computing systems have been an active area of research Dynamic load balancing 

algorithms have been based on the following observation; in a network, it is likely to find 

idle hosts while there are jobs queuing for execution in other hosts. Hence, it would be 

advantageous to move jobs from heavily loaded hosts to idle or lightly loaded hosts. An 

early study by Livny and Melman confirmed this hypothesis Their work has shown 

that there is indeed a high probability of finding within a distributed system some hosts 

idle while others have jobs queuing for execution. Subsequently, these findings suggested 

that load balancing is likely to benefit job response times.

When solving a distributed problem using a distributed system a big problem is ensuring 

that work is divided evenly between all the hosts. In the worst case, given n hosts all the 

work will be assigned to 1 host while n-1 hosts remained idle. This situation is no better 

than a non-distributed approach. Every time a process is started, the completion time of

- 7 -
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every other process on the host is negatively affected (i.e., it will take a longer time to 

complete each process). This is due to the fact that processes are contending for resources 

like CPU, memory, disks, etc. Therefore, one major goal of distributed systems is evenly 

dividing work between available hosts.

A resource manager is responsible for scheduling processes on available hosts in a 

distributed system, similar to the way an operating system schedules processes on a 

single processor. However, a distributed resource manager is responsible for scheduling 

processes across multiple processors. Like an operating system scheduler, the resource 

manager attempts to ensure that the processes finish in the quickest possible time. 

However, a resource manager must contend with factors that a traditional operating 

system does not. This factor includes resource usage, response time, network congestion 

and scheduling overhead.

A load balancing algorithm attempts to balance system load across available nodes by 

transferring processes from heavily loaded nodes to lightly loaded nodes. The idea is that 

by moving a process to a host that is less busy it will be able to finish quicker than if it 

were left on the heavily loaded host.

For example, one node might be running a large compilation. If another compilation were 

started on that node, then compile time could be improved by moving the new 

compilation to a node that is currently doing nothing.

8 -
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A resource manager has three primary responsibilities.

1. To decide if  a node is heavily or lightly loaded.

2. To decide whether or not to migrate a process to another node.

3. To transfer a process from a heavily loaded node to a lightly loaded node.

In order to perform its tasks a resource manager must implement several policies like 

load estimation policy, process transfer policy, and state information exchange policy.

1.1 Load Estimation Policy

A Load Estimation Policy determines how the workload of nodes of the system will be 

estimated (i.e., is the node heavily or lightly loaded). Workload of a node is the 

utilization of the resources on the load such as memory, processor performance, etc. 

Many parameters have been proposed to estimate the workload of a node

1. Number of processes currently executing

Some nodes may be running many processes at one time while many other nodes may 

be only bare minimum processes such as operating system specific processes. So, a 

node A running 10 processes is considered to be busy or highly loaded compared to a 

node B that is only running 3 processes. In this case, node B is capable of running 

one more process compared to node A.

2. Maximum memory available in the system and currently available memory 

Some nodes may have more memory than other nodes in a network. For example, 

newer nodes have much larger memory as the memory hardware components became

- 9 -
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cheaper. Also, newer systems are capable of handling more memory than most of the 

older systems. Some nodes may be running processes that consume less memory 

compared to some other nodes in the network, which may be running a different 

operating system, or processes that may consume more memory. For example, due to 

various factors, it takes much lesser memory to run Microsoft Visual studio 

development environment (IDE) compared to running IBM WebSphere developer 

studio environment.

3. Processor architecture and speed

Some of the less expensive nodes may be hosting hardware whose processing speed 

may be lesser than a node that is running a better hardware. For example, nodes 

carrying Intel 16 bit processors may be running slower than nodes carrying 64 bit 

processors.

4. Processor utilization

Due the differences in the process allocation methods within operating systems, some 

nodes may be under utilizing the processor.

A resource manager uses some or all of the above parameters while estimating the load of 

a node. For example, a node having the following parameters -  64 bit processor, 512 MB 

total memory, 300 MB available memory and running 5 processes is definitely capable of 

running one more process compared to another node in the same network having the 

following set of parameters -  64 bit processor, 512 MB total memory, 50 MB available 

memory and running 8 processes.

- 10
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The workload of the node can vary from time to time. There are three ways in which the 

workload of all the nodes in the network can be monitored. This is explained in detail in 

the State Information Exchange Policy (1.3).

1.2 Process Transfer Policy

A Process Transfer Policy determines whether to transfer a process to a different node or 

leave it in the current node. Most of the load-balancing algorithms use the threshold 

policy to make this decision The threshold value of a node is the maximum desirable 

value of its workload. If a node’s load is less than the threshold, then the resource 

manager is free to move processes to that node. If a node’s load is above its threshold, the 

resource manager attempts to move processes to another node to alleviate the load.

1.2.1 Static and Dynamic Policies

Process transfer policies can be categorized into two camps

1.Static policy: Each node has a predefined threshold value defined when the node boots. 

Furthermore, the threshold does not change over the lifetime of the node.

2. Dynamic policy: A node’s threshold value is calculated as a function of the average

workload of all the nodes and a predefined constant. More importantly, the node’s 

load parameters (used to calculate the threshold value) are updated periodically by 

having the nodes exchange state information.

3. Adaptive policy: This can be considered as a combination of both the static and

11 -
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dynamic policies. When the system is started, static policy is used. As the time 

progresses, more nodes may join the network and more processes may be running in 

these nodes. At this point. Dynamic policy can be employed which can calculate the 

workload of all or part of the nodes and updated.

1.2.2 Single and Double Threshold Policies

Most load-balancing algorithms use a single threshold policy and thus have only two 

states: overloaded or under-loaded (Figure 1). With a single-threshold policy, a node 

accepts new processes only if its load is below the threshold value, and tries to offload 

processes if  its load is above the threshold value. The use of single-threshold value may 

lead to thrashing because a node’s load may be below the threshold when it decides to 

accept a process, but then the load increases above the threshold as soon as the process 

arrives. Therefore, immediately after receiving the new process, the node will again try to 

transfer one or more of its processes to some other node.

Alonso and Cova state that:

• A node should only transfer one or more of its processes to another node that is 

lightly loaded if such a transfer greatly improves the performance of the rest of its 

local processes.

• A node should accept remote processes only if its load is such that the added 

workload of processing does not significantly affect the service to the local ones.

- 12
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To reduce the instability of the single-threshold policy and to take care of these two 

notions, Alonso and Cova proposed a double-threshold policy called the high-low policy 

(Figure 2).

Figure 1, 2: Single & Double Threshold Policies

Threshold

Overloaded
High Mark

Low Mark
Underloaded

Overloaded

Normal

Underloaded

Figure 1: Single Threshold Policy Figure 2: Double Threshold Policy

The high-low policy uses two threshold values called the high mark and the low mark, 

which divide the space of possible load states into three regions:

• Overloaded -  above the high-mark and low-mark values

• Normal -  above the low-mark value and below the high-mark value

• Under-loaded -  below both the high-mark and low-mark values

A node’s load state switches dynamically from one region to another. Depending on the 

current load status of a node, the decision to transfer a local process or to accept a remote 

process is based on the following rules:

13-
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• When the load of the node is in the overloaded region, new local processes are sent to 

remote nodes that are lightly loaded and requests to accept remote processes are 

rejected.

• When the load of the node is in the normal region, new local processes run locally 

and requests to accept remote processes are rejected.

• When the load of the node is in the under-loaded region, new local processes run 

locally and requests to accept remote processes are accepted.

1.2.3 Preemptive and non-preemptive process migration policies

A very simple mechanism to achieve system-wide utilization of available resources 

within a distributed system is Initial Placement or Remote Execution. Remote execution 

creates the particular process on a remote node prior to execution. Once such a process 

has started to execute, it can or cannot be stopped and sent to another node to continue its 

execution. If the process is stopped and sent to another node to continue its execution, it 

is called Preemptive process migration.

Preemptive Process Migration dynamically relocates a running process to another node in 

a distributed system after initiating execution on the source node The amount of 

information that has to be transferred depends on the employed migration algorithm. 

Usually it is larger compared to remote execution because the information can consist of 

the entire process environment including the process’ address space. One advantage of 

preemptive process migration is that after a process has begun execution, the changes of 

the load of system can be estimated so that load balancing policies can make more

- 14
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efficient decisions. But for the sake of simplicity, this thesis paper deals only with non- 

preemptive process executions.

1.3 State Information Exchange Policy

The State Information Exchange Policy determines how often host load information is 

received by the resource manager. The resource manager on each host requires frequent 

exchange of state information. Many exchange policies have been proposed and are 

summarized below

• Periodic Transmission

State information is transmitted every n units of time

• Transmit when state changes

State information is transmitted if the state of the node changes (from normal to over

loaded or under-loaded)

• Exchange by Polling

State information of a node is transmitted only if another node polls for it

-15
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1.4 Other Distributed Systems and their load balancing policies

LSF -  Load Sharing Facility

Load Sharing Facility from Platform (http://www.platform.com') is a suite of application 

resource management products that schedule, monitor and analyze the workload for a 

network of computers.

LSF is distributed load sharing and batch queuing software that transforms the network 

into a shared computing resource by providing a transparent, single view of all hardware 

and software resources, regardless of platform differences. LSF works for both 

interactive and batch jobs, plus it contains support for parallel packages such as PVM and 

HPF. LSF version 2.0 supports all major UNIX platforms, including DEC OSF/1, 

ULTRIX, IBM AIX on RS 6000 systems, HP-UX on HP 9000 systems, SGI IRIX, 

SunOS and Solaris on Sun SPARC stations, and Convex OS on C-series supercomputers.

LSF consists of two servers running on each host, a runtime load sharing library, and load 

sharing applications built on top of the library.

Load Information Manager (LIM): the policy server of the LSF. Each LIM 

periodically exchanges load information such as CPU, memory, disk FO, the number of 

login sessions with other LIMs.

Remote Execution Server (RES): the mechanisms for transparent remote execution of 

tasks. The RES accepts remote execution requests for all load sharing applications.

- 1 6 -
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Load-sharing Library (LSLIB): provides a procedural interface between load-sharing 

applications and LIMs and RESes. Users of LSF can develop load sharing applications 

using LSLIB.

Message Library (MSGLIB): provides efficient message passing and synchronization 

for parallel applications (under development).

PANTS Application Node Transparency System

PANTS system is developed by Mark Claypool and David n Finkel at the Department 

of Computer Science, Worchester Polyteehnie Institute, Worchester, MA USA. PANTS 

is an implementation of Cluster computing on Beowulf elusters that enables transparent 

distributed computing. PANTS employs a fault-tolerant communication architecture 

based on multicast communication that minimizes load on busy eluster nodes. Load 

balancing algorithm used in PANTS is a variation of the multi-leader load-balaneing 

algorithm proposed by Wills and Fenkel.

In this algorithm one of the nodes is required to be the leader. The leader can be any node 

in the cluster and is ehosen randomly from among other nodes. The leader has three basie 

responsibilities -  accept information from a lightly loaded node in the cluster, use that 

information to maintain a list of available nodes, and return an available node to any 

client that requests it. An available node is one that is lightly loaded as measured by CPU 

Utilization. The aetual implementation is a variation of the multi-leader policy described 

in Wills and Fenkel and implemented in Moyer

- 17
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2. POLICY COMPARISON

Each time a new kind of policy is proposed authors present evidence that their policy is 

better than the policies that existed before. However, testing a policy in isolation is not 

possible. The total effectiveness of the system depends on all the other policies in effect 

as well as their interaction.

Given the large number of policies that have been proposed, it is natural to ask which one 

is the most effective. The purpose of this thesis is to implement a lab environment to 

determine which combination of load balancing policies is most effective in balancing the 

load in a distributed system.

Testing policy effectiveness can be done in one of two ways. First is through theoretical 

analysis using graphs and queuing theory. Unfortunately, this quickly becomes 

cumbersome, when more and more factors such as operating system policies, machine 

load, network parameters, etc. are taken into account. Several factors need to be assumed 

to be ideal when dealing with theoretical analysis.

A second alternative is to do simulation. Using a simulation, load-balancing policies can 

be tested under “real world” conditions using real world problem, not abstract theoretical 

conditions using theoretical problems.

1 8 -
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3. EPLAB - EFFECTIVE POLICY LAB

3.1 Overview

The EPLAB system (Figure 3) is a modular load balancing laboratory that enables a user 

to plug-and-play load balancing policies and to monitor tbeir effectiveness. The objective 

is to provide a framework where one can experiment with combinations of new and 

existing load balancing policies in order to determine which combination is most 

effective.

Because of time contraints, the EPLAB system only considers non-preemptive load 

balancing polices. That is, policies that do not stop a running process, transfer it to 

another host, and then restart it. In the EPLAB system, a target host is chosen before new 

processes are started.

19-
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Figure 2: EPLAB System
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onstartup

CentralServer >  Log file

Load Info erred

Model Node 2 Node 3 Noden

The EPLAB system has a central server and several distributed client nodes. The central 

server is responsible for

1. determining which policies will be used during the current run of the simulation

2. sending policy information to clients

3. receiving load messages from clients and

4. making the decision where new processes should be started. This is decided 

centrally by employing a Process Transfer Policy.

When a node wants to start a new process, it sends a request to the server. The server 

calculates the load of all the participating nodes, determines the node best able to handle

2 0 -
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the new process and sends information about the process to the destination node. The 

destination node executes the process. Client nodes are responsible for accepting requests 

for starting new processes from the server and of sending their load to the server.

EPLAB server periodically writes the load information it receives from the EPLAB client 

and the process transfer information to log files. For simplicity, the server and all client 

nodes share a single file system.

21  -
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3.1 EPLAB System Design & Implementation
Figure 3: EPLAB System Design & Implementation
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When the central server (EPLABServer) is started, it reads a configuration file 

(EPLAB.ini) that defines which policies should be in effect. After the server is initialized 

it looks at a well-known port for incoming messages from other nodes.

After the client nodes (EBLABClient) are loaded and initialized, they send their load 

information to the server based on current the State Information Exchange Policy.

The server accepts two kinds of messages ft-om clients: “DATA” messages containing 

load information from a node and “JOB” messages containing the pathname of the 

process to be executed in one of the client nodes. Then the server scans the list of node

- 2 2 -
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State information and applies the transfer policy to identify which node is relatively free 

to execute the process. Finally, the server transmits the JOB message to the selected 

node. Upon receiving a job message a client will execute the process specified in the 

pathname.

3.1.1 Process Creation

The programs (or jobs) can be submitted using EPLABSubmit program that sends a JOB 

message to the EPLABServer (Figure 5). JOB messages can have either the name of the 

process to be executed or the name of a text file that has all the processes to be executed 

sequentially.

For example, a job text file will look like

#comment: This job file solves distributed matrix multiplication

JDisMatMul Results.out 100 200

./DisMatMul Results, out 200 300

./DisMatMul Results.out 400 500

./DisMatMul Results.out 600 700

In the above examples, “DisMatMul” represents the name of the program, “Results.out” 

is the name of the output file and the next two numbers are the command line arguments 

that are passed to the program when it starts executing. Each of the line in this JOB text 

file represents an instance of a program (process).

-23 -
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If the message submitted to EPLABServer is a JOB message with a Job text file, then it 

reads the content of the job file and allocates each process in the text file to a client node 

based on the threshold value. Then the process name is sent to EPLABClient on the 

selected node and it gets executed.

Figure 4: Job Submission Process

EPLABSubmit

Step 1; Send a job file 
or a process name

EPLABServer

Step 2: Apply Process 
Transfer Policy and Identify 
node to send the job file or 
tfie process

Step 3: Send the job file 
name or the process name 
to execute

EPLABClient

Step 4: Execute tfie process 
or read Job file contents and 
execute every process

File

If jobs are submitted as job text files, then the job arrival rate at the EPLAB system is 

Poisson. Single instances of programs can also be requested to run the EPLAB system. 

So in that case, the job arrival is more interactive by nature.
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3.1.2 Process Logging

The purpose of load balancing is improving performance by reducing the completion 

time of the jobs. Such an algorithm that completes the assigned job in least time is 

considered to be highly effective.

EPLAB Server and Client programs write information to the log file every action they 

take to process the submitted jobs like starting and stopping a job. Each of these message 

in the log file is timestamped.

Log file example :

06/22/2003 07:00:10 SERVER: Received node 2 state information 

06/22/2003 07:00:11 SERVER: Received node 3 State information 

06/22/2003 07:00:12 NODE 2: Started job ./DisMatMul Results.out 100 200

06/22/2003 07:00:13 NODE 3: Started job ./DisMatMul Results.out 300 400

06/22/2003 07:00:15 NODE 4: Started job ./DisMatMul Results.out 500 700

06/22/2003 07:00:16 SERVER: Received node 5 state information

06/22/2003 07:00:18 NODE 2: Started job ./DisMatMul Results.out 800 900

: : : : : log file contents continued :::: 

06/22/2003 07:02:05 NODE 2: Completed job ./DisMatMul Results.out 100 200

06/22/2003 07:02:15 NODE 3: Completed job ./DisMatMul Results.out 300 400
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Analysis of the log files will indicate the effectiveness of the policies being used in the 

EPLAB system. If the log files has information that only one client is involved in solving 

all the submitted process then it may indicate that either the processes completed quickly 

or the Process Transfer Policy is not effective to solve the kind of problem at hand.

3.1.3 System Implementation

EPLAB system is developed using C programming language on Linux operating system. 

The communication between the EPLAB server and the clients are done using TCP/IP 

sockets. The functional behaviour of the system can be explained in the following steps.

Step 1 ; Start the EPLAB server

When the server is started, it reads the initialization file that contains the system 

parameters. These parameters will guide the entire system.

Example of an initialization file:

[CENTRAL SERVER]

[Load Estimation Policy]

CPU

TotalMemory 

Avai1ableMemory

[State Information Exchange Policy]

- 2 6 -
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Periodic=120

[Process Transfer Policy]

SingleThreshold

Dynamic

Step 2: Start the EPLAB clients

The client hosts get the system parameters from the central server and initialize their 

properties.

Step 3: Submit job to execute at the hosts

When a process is submitted at a client node, it requests the central server for the best 

available node to transfer the process. The central node applies Process Transfer Policy 

and decides the best node to transfer the process to and sends the destination node 

address to the requesting node. If the destination node is not the requesting node, then the 

process is transferred to the destination node.

27
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4. POLICY EXPERIMENTS & RESULTS

In order to analyze the effectiveness of the policies defined in the EPLAB system, a 

programmatic solution to several problems were developed and executed several times by 

changing the policies and the parameters of the EPLAB system.

Collecting the load information of a node does not consume much time, and also it was 

necessary to collect all the information to compute Process Transfer Policy. So, the Load 

Estimation Policy remained the same throughout the testing and analysis phase of the 

implementation. Every node would collect its total memory, free memory and the number 

of processs running as a part of Load Estimation Policy.

Algorithm To Calculate Single Threshold;

For Each Client
Balance_Memory = Total_Memory - Free_Memory 
Average_Per_Process_Memory = Balance_Memory / 

Total_Processes
Client_Threshold = Total_Memory / 

Average_Per_Process_Memory
If Client_Threshold < ALLOWED_THRESHOLD Then 

Use This Client 
End If 

Next client

- 2 8 -
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Double Threshold Calculation:

For Each Client
Balance_Memory = Total_Memory - Free_Memory 
Average_Per_Process_Memory = Balance_Memory

/ Total_Processes
Client_Threshold = Total_Memory /

Average_Per_Process_iyiemory

If Client_Threshold < LOW_VALUE Then
Add Client and Client_Threshold To

LOW_VALUE_LIST 
Else If Client_Threshold < HIGH_VALUE Then 

Add Client and Client_Threshold To 
HIGH_VALUE_L1ST

End If 
Next Client

If there are clients in LOW_VALUE_LIST then.
Lowest Client_Threshold in the LOW_VALUE_LIST 
and use the Client 

Else If there are clients in HIGH_VALUE_LIST then,
Lowest Client_Threshold in the HIGH_VALUE_LIST 
and use the Client 

End If

Also, to implement the policy of transmitting the state information when the load 

changes, we need to implement the threshold calculations in the EPLABClient code also. 

For this implementation, EPLAB considers only Periodic transmission of state 

information. According to some of the studies, there is a very little impact of using 

various State Information Exchange Policies on the performance of the distributed 

problems

-29
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4.1 Problem 1: Finding average, maximum and minimum value of every
row in a large matrix

Problem Definition: Write a program to calculate the average, maximum and minimum 

of all the elements of every row of a large matrix.

Program Implementation: The program is designed to read all the columns of one row 

of a matrix and calculate the average, maximum and minimum of the elements and write 

the results to a text file. The program assumes that the input matrix is represented as a 

text file of rows delimited by linefeeds and columns delimited by spaces. The name of the 

matrix file and the output file and row to operate on are passed as command line 

parameters.

For example: The command ProcessMatrixRow Matrix in Results.out 25

will read the 25th row of Matrix.in file, calculate the average, maximum and the 

minimum and write the results to Results.out file.

After programming this solution, a JOB file called JOB.Matrix was generated. This job 

file contained sequence of calls to the program to get the results of various rows of the 

matrix. Then, the ESPSubmit program was used to send JOB.Matrix to ESPServer which 

then read the contents of the JOB file one line at a time and found out the best possible 

node (applying Process Transfer Policy) to execute the process and sent the processes to 

the nodes to execute it. A log file was generated as processes were dispatched to nodes.
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These jobs are homogeneous in nature and they are located in a shared file system. So the 

time to create these jobs are constant. There were no contention for the job files or the 

data files.

The following figures contain the summary of the log files after each run of the program.
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Test: 1.1

State Information Transfer Policy: Periodic (5 seconds) 

Process Transfer Policy: Static, Single Threshold 

EPLAB Client Nodes: 2, 3, 4, 5, 6, 7, 8, 9, and 10 

EPLAB Server running at Node 1.

Graph 1.1 Static, Single Threshold Test 1.1

Test 1.1 : Static, Single Threshold
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Analysis:

From the graph (1.1), it is obvious that the system did not make use of all the available 

nodes. This is due to the fact that the threshold of nodes 2 and 3 were always less than the 

maximum threshold. Every time the threshold of all the nodes was calculated, nodes 2 

and 3 was completing the jobs in a faster rate and thereby posting a value lesser than the 

threshold value. The running time of all the processes is approximately 8 minutes. When 

the system started, the first 13 processes used node 2 and once the threshold limit was 

then the next node was used the next 7 processes at which point node 2’s load went 

below the threshold and now processes were created at node 2 again. This pattern 

continued throughout the running time of the system. The system never tried to use the 

other nodes. This clearly shows the drawback to a static single threshold policy.
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Test: 1.2

State Information Transfer Policy: Periodic (5 seconds) 

Process Transfer Policy: Static, Double Threshold 

EPLAB Client Nodes: 2, 3 ,4, 5, 6, 7, 8, 9 and 10 

EPLAB Server running at Node 1.

Total Running Time: 5 minutes

Graph 2: Static, Double Threshold Test 1.2

Test 1.2 : Static, Double Threshold
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Analysis:

This test (graph 1.2) is using Static, Double Threshold policy. By static, the threshold 

limit is not calculated from time to time, it stays fixed. By Double threshold policy, there 

is a High value and a Low value assigned to the nodes. When this policy is applied more 

than 2 nodes were used to execute 50 jobs. At the start, the nodes 2 and 3 were processing 

the jobs until they became busy to accept any more jobs. The initial jobs were more time 

consuming and that is the reason the nodes 4 and above started processing other jobs. 

When the job 12 completed at node 2, the next job in the queue was job 46, which was 

processed by node 2. Total time to process the 50 jobs was only 5 minutes. So, this policy 

is better than Static, Single Threshold policy.

- 3 5 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Determination o f  Effective Non-preemptive Load Balancing Policies

Test: 1.3

State Information Transfer Policy: Periodic (5 seconds) 

Process Transfer Policy: Dynamic, Single Threshold 

EPLAB Client Nodes: 2 ,3 ,4 , 5, 6, 7, 8 ,9  and 10. 

EPLAB Server running at Node 1.

Total Running Time: 7 minutes

Graph 3: Dynamic, Single Threshold Test 1.3
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Analysis:

The above graph (1.3) depicts the result of using Dynamic, Single Threshold Policy. 

When this policy was applied, only 3 nodes were used and the total time taken was about 

7 minutes. Because of the single threshold policy, there is no upper limit that has to be 

met. So the jobs were allocated freely to nodes 2, 3 and 4. There was no need for the 

system to allocate jobs to other nodes.

From tests 1.2 and 1.3, it is obvious that Single Threshold policy does not use all the 

available nodes to execute processes. This may reduce the performance of the nodes, as it 

has to work on the jobs allocated by the EPLAB system as well as to work on its other 

jobs.
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Test: 1.4

State Information Transfer Policy: Periodic (5 seconds) 

Process Transfer Policy: Dynamic, Double Threshold 

EPLAB Client Nodes: 2, 3 ,4, 5, 6, 7, 8 ,9  and 10. 

EPLAB Server running at Node 1.

Total Running Time: 4 minutes

Graph 4: Dynamic, Double Threshold Test 1.4
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Analysis:

From the above graph 1.4, using Dynamic, Double Threshold policy, the total time taken 

was about 4 minutes, but 9 nodes were used to execute 50 jobs. Because of the Dynamic 

threshold policy, the nodes quickly resisted to take up more jobs to process. That is the 

reason for using 9 nodes to complete all the jobs. This method indicates that this can be 

used for effective utilization of the available nodes. But timewise, there is not much of 

difference between the tests 1.4 and 1.2.
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4.2 Problem 2: Process Retail Data Transaction Files

Problem Definition: A Point of Sale (POS) component in a Retail System generates data 

files for every transaction. These data files are periodically transferred to a centralised 

system to be processed by a program to insert into specific tables in a relational database 

system. The efficiency of this system depends on bow quickly the data files can be 

processed.

This problem is similar to the previous problem with regard to reading and processing 

data files, but the difference lies in the amount of data read in this problem.

Program Implementation: The program to process the data files is designed to read one 

file at a time and look for specific record delimiters and record entries and generates SQL 

text file that has SQL statements which can be operated on a relational database. As there 

are several such data files being generated by the POS system, many instances of the 

program are spawned handle these data files.

The program assumes that the input data file is formatted by records with proper record 

delimiter and column delimiters. The name of the data file and the output SQL file are 

passed as command line parameters.

For example: The process command ProcessDataFile POS.OOl SQL.OOl

will read the POS.OOl data file, extract the transaction records and write the SQL 

statements to SQL.OOl file.
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After programming this solution, JOB file called JOB.POSData was generated. This job 

file contained sequence of calls to the program to process the data files. Then, the 

ESPSubmit program was used to send JOB.POSData file to ESPServer which then read 

the contents of the JOB file one line at a time and found out the best possible node 

(applying Process Transfer Policy) to execute the process and sent the processes to the 

nodes to execute it. A log file was generated as processes were dispatched to nodes.

The following tables contain the summary of the log files after each run of the program.
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Test: 2.1

State Information Transfer Policy: Periodic (5 seconds) 

Process Transfer Policy: Static, Single Threshold 

EPLAB Client Nodes: 2, 3 ,4, 5, 6, 7, 8, 9,10  

EPLAB Server running at Node 1.

Total Running Time: 4 minutes

Graph 5: Static, Single Threshold Test 2.1

T est 2.1 : Static, Single Threshold

Node

P rocess
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Analysis:
From the graph (2.1), we can observe that the system is using up to 8 nodes to process the 

data files. The running time of all the processes is approximately 4 minutes. When the 

system started, the first 5 processes used node 2. Initially the data files were very big. 

That is the reason that the node 2 was tied up for much more time to process those data 

files. Once the threshold limit exceeded, the system started using other nodes. This policy 

efficiently uses almost all the nodes to process.
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Test: 2.2

State Information Transfer Policy: Periodic (5 seconds) 

Process Transfer Policy: Static, Double Threshold 

EPLAB Client Nodes: 2 ,3, 4, 5, 6, 7, 8, 9,10  

EPLAB Server running at Node 1.

Total Running Time: 6 minutes

Graph 6: Static, Double Threshold Test 2.2
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Analysis:
From the graph (2.2), we can observe that the system is only using up to 5 nodes to 

process the data files. The running time of all the processes is approximately 6 minutes. 

This policy can be used if we have limited nodes to process. This test proves that this 

cannot be an effective set of policies as this test did not complete in less time and did not 

use more nodes than test 1.
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Test: 2.3

State Information Transfer Policy: Periodic (5 seconds) 

Process Transfer Policy: Dynamic, Single Threshold 

EPLAB Client Nodes: 2, 3, 4, 5, 6, 7, 8, 9,10  

EPLAB Server running at Node 1.

Total Running Time: 11 minutes

Graph 7: Dynamic, Single Threshold Test 2.3
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Analysis:
From the above graph (2.3), we observe that the system is only using up to 4 nodes to 

process the data files. The running time of all the processes is approximately 11 minutes. 

Though this policy uses much less nodes, it may not be efficient as it took more than 10 

minutes to process the data files that was processed much quicker using the other 

policies.
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Test: 2.4

State Information Transfer Policy: Periodic (5 seconds) 

Process Transfer Policy: Dynamic, Double Threshold 

EPLAB Client Nodes: 2 ,3 ,4 , 5, 6, 7, 8, 9,10  

EPLAB Server running at Node 1.

Total Running Time: 5 minutes

Graph 8: Dynamic, Double Threshold Test 2.4

T est 2.4 : Dynamic, Double Threshold
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Analysis:
From the above graph (2.4), we observe that the system uses all the available nodes and 

the total time to process all the data files is only 5 minutes. This policy is the most 

efficient of all the policies to process the program both in terms of using the available 

nodes and also completing the task faster.
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5. CONCLUSION

In the course of this thesis several books and research papers relating to the concept of 

load balancing in distributed operating systems were studied and analyzed. There are 

several policies available for state information exchange, process transfer and load 

estimation of a node. But not many talk about the combination of these policies or try to 

deduce the effective combination to solve distributed computing problems.

By running these programs several times and observing the results, the combination of 

Dynamic and Double Threshold Policies is very effective in using all the available nodes 

to solve a distributed problem. But using Static and Single Threshold policies used many 

nodes available but completed the distributed problem in the least time.

EPLAB is a non-preemptive system where the running jobs are never revoked to run on 

another system. Also, the system assumes the existence of a shared file system where the 

jobs exist as executable programs.

As an extension to the thesis, many more distributed system policies could be 

implemented and several problems can be solved using EPLAB system to find out the 

effectiveness in solving different categories of problems like database programs, message 

queuing systems etc. to name a few.
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A dynamic load-balancing policy is one that uses run-time state information in making 

scheduling decisions. There are two kinds of dynamic policies; adaptive and non- 

adaptive. The latter always use the same (fixed, load-dependent) policy; the former 

may adjust policy parameters in order to gradually improve their performance.

The key point is that while non-adaptive policies use only the information about the run

time state ( load'), adaptive policies use that plus information about current performance 

('speed-up'). In adaptive policies, the rules for adjusting policy parameters may be 

static or dynamic. An example of the former will be: "shift to a conservative migration 

rule when system-wide load patterns are varying too rapidly." An example of the latter 

will be: "increase sender-side threshold when migrated jobs cause slowdown rather than 

speed-up." Some researchers refer to the performance-driven adaptation exhibited by the 

second policy as "learning."
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