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Abstract 

 

Metaproteomics allows the qualitative and quantitative evaluation of the protein 

complement of an environment at a given time. Given the youth of this research 

field, significant efforts are needed to optimize sample preparation and data 

analysis workflows for metaproteome analysis. 

A major task is aimed at developing novel, rapid and efficient workflows for 

shotgun metaproteomic analysis. 

In the present PhD Thesis the investigation of a number of experimental methods 

have been developed to optimize sample preparation and its MS analysis. 

Methods were assessed on mock and real gut microbiome samples, combining 

bead-beating/freeze-thawing for protein extraction, FASP for clean-up and 

digestion, and single-run LC-MS/MS for peptide separation and identification. 

The impact of different sequence databases on data analysis was evaluated using 

mock microbial mixtures. Upon comparison of experimental metagenomic-

derived and publicly deposited databases, complementary results suggested the 

use of iterative searches and suitable taxonomy filters to improve metaproteomic 

analysis. According to data obtained, the workflow enables protein identification 

also from fungi, showing high reproducibility (>99%), sensitivity (<10
4
 bacterial 

CFUs) and dynamic range (>10
4
). 

Finally, this workflow was successfully applied to investigate the sheep fecal 

metaproteome, obtaining the identification of more than 35,000 proteins 

belonging to more than 700 microbial species (10 % of which fungi). 
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Chapter 1 

Introduction 
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1.1 Microbiome 

1.1.1 What is it? 

 

The word “microbiome” was coined by Joshua Lederberg and Alexa McCray in 

2001 to indicate “the ecological community of commensal, symbiotic, and 

pathogenic microorganisms that literally share our body space and have been all 

but ignored as determinants of health and disease” (Lederberg and Mccray, 

2001). Numerous studies have estimated that microbial cells in an animal body 

could exceed tenfold the number of host cells (approximately up to 100 trillion 

microbial cells against 10 trillion host cells), and that the total number of genes 

associated with the microbial organisms could be more than hundredfold superior 

than the total number of human genes (Bäckhed et al., 2005; Ley et al., 2006a). 

Some of these microorganisms can cause illnesses, and are thus to be considered 

as pathogens, but many other are not only harmless, but often absolutely 

necessary for host healthy.  

For this reason, immediately after the conclusion of human genome sequencing, 

Relman and Falkow have highlighted the importance of the microbial component 

in the host life, asserting that “it is time to embark on a comprehensive genomic 

inventory of the large portion of cellular life within the human body that has been 

ignored so far, the endogenous microflora” (Relman and Falkow, 2001). In 2007, 

almost in response to this appeal, the National Institute of Health (NIH) of the 

United States of America launched the Human Microbiome Project (HMP), 

whose focal point was the description of the microbial diversity associated with 

health and disease (Peterson et al., 2009; Turnbaugh et al., 2007).  

This project, beyond the shadow of a doubt, marked the beginning of the era of 

microbiome studies. 
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1.1.2 The Human Microbiome Project 

 

The HMP has been immediately and universally considered as an extraordinarily 

ambitious project with a great deal of skepticism about the chances of success, 

but good results have immediately arrived. To give an example, one of the 

principal objectives of HMP was the production of reference genome sequences 

for at least 900 bacteria from several human body sites, and, just a couple of 

years later, 356 genomes were produced by the NIH HMP Jumpstart Consortium 

(formed by: the Human Genome Sequencing Center, Baylor College of 

Medicine, Houston; the Broad Sequencing Platform, Broad Institute of the 

Massachusetts Institute of Technology/Harvard, Cambridge, Massachusetts; The 

J. Craig Venter Institute, Rockville, Maryland; the Washington University 

Genome Sequencing Center, Washington University School of Medicine, St. 

Louis), including 178 genomes that have been completely annotated. These 

sequences, representing two kingdoms (Bacteria and Archaea), nine phyla, 18 

classes, and 24 orders, were distributed among the gastrointestinal tract, the 

urogenital/vaginal tract, the skin, the oral cavity, and the respiratory tract (Nelson 

et al., 2010).  

One interesting finding described in this initial report was the distribution of the 

new species obtained by HMP researchers around the tree of life, as depicted in 

Figure 1-1. This picture shows the phylogenetic tree of 16S rDNA sequences 

with every specific phylum marked with a different color, and the organisms 

sequenced as part of the HMP project in blue. Despite a lack of detail in the 

branching structure (and several minor artifacts as acknowledged by the authors), 

it can be clearly seen an overall distribution of the HMP organisms around the 

whole tree of life, suggesting that there are microbial species still unknown in 

every phylum (Nelson et al., 2010). 
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Figure 1 - 1. Overall distribution of the organism sequenced as part of the Human Microbiome 

Project (HMP) around the tree of life. The tree was created using 16S rDNAs representing single 

species. Organisms sequenced as part of the HMP are highlighted in blue. This image shows the 

phylogenetic tree of 16S rDNA sequences with any specific phylum marked with a different color: 
Actinobacteria in yellow, Bacteroidetes in dark green, Cyanobacteria in light green, Firmicutes in red, 

Fusobacteria in cyan, Planctomycetes in dark red, Proteobacteria in gray, Spirochaetes in magenta, TM7 

in light pink, Tenericutes in tan. 

 

In addition, the researchers compared 16.8 million microbial sequences found in 

public databases (DBs) to the genome sequences in the HMP reference 

collection, discovering that 62 genomes in the reference collection showed 

similarity with 11.3 million microbial sequences in public DBs, and 6.9 million 
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of these (about 41%) corresponded with genome sequences in the reference 

collection. This analysis demonstrates that genomes sequenced as part of the 

reference collection add directly to an understanding of the human microbiome. 

Researchers also evaluated the microbial diversity present in the HMP reference 

collection, and found 29,693 previously undiscovered proteins, a number of 

protein superior to the estimated genes in the human genome 

(https://commonfund.nih.gov/hmp/) This excellent result has been followed by 

several others, allowing to achieve the objective initially fixed more rapidly than 

foreseen. For these reasons the original aim of 900 genomes (established in 2007) 

was changed, and the current (since 2012) objective of HMP is to sequence, or 

collect from publicly available sources, a total of at least 3,000 reference 

genomes isolated from human body sites (http://www.hmpdacc.org/). 

 

1.1.3 Microbiome establishment and dynamics 

 

The colonization of a specific biological niche might be more controlled by 

abiotic and biotic factors than microbial dispersal ability (Gonzalez et al., 2011). 

Due to the generally unlimited dispersal capacity of microbes, the theory 

“everything is everywhere, but the environment selects” could be appropriate to 

explain the achievement dynamics of microbiome balance (Quispel, 1998; de Wit 

and Bouvier, 2006). As depicted in Figure 1-2, the host body can be seen as an 

ecosystem exposed to ecological processes including, for example, dispersal 

(horizontal transfer between two different individuals or between two different 

sites of the same individual), invasion (sudden appearance of a new “exotic” 

microorganism in a specific site), and succession (change in the species structure 

of an ecological community over time) (Gonzalez et al., 2011). 

 

https://commonfund.nih.gov/hmp/
http://www.hmpdacc.org/
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Figure 1 - 2. Ecology of human microbiome. The human body can be visualized as an ecosystem that is 

subject to the ecological processes that structure communities, including dispersal, invasion, succession, 

and meta-community dynamics. 

 

Usually, in a first phase, the chemical and physical properties of the specific 

body site, namely pH, aerobic or anaerobic conditions, nourishment availability, 

etc., select against the microorganisms impaired to survive. Progressively such 

microorganisms contribute to modify the native environment in order to facilitate 

their self-survival, making the specific site always more selective. In this way, 

each site and its microbial composition is distinct, as it has been clearly shown by 

several studies describing the vagina, penis, intestinal tract, skin, and oral 

microbiome, as reported in Figure 1-3 (Jenkinson, 2011; Kong, 2011; Lamont et 

al., 2011; Price et al., 2010; Qin et al., 2010; Ravel et al., 2010; Turnbaugh et al., 

2009). 

The microbial balance can be altered by drug application, especially antibiotic 

treatments that could eliminate, in addition to pathogens, also the commensal 

ones, resulting in a global remodeling of microbial hierarchy (Pérez-Cobas et al., 

2012). Furthermore, differences in life style that can condition food assumption, 
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exposure to pets and livestock, and many other factors could influence how and 

where a gut microbiome is acquired (Yatsunenko et al., 2012). 

 

 

Figure 1 - 3. Genus- and phylum-level classification of Bacteria colonizing a human host. Each body 

site is characterized by specific bacterial taxonomy distribution. Districts with similar chemical and 

physical features share a greater similarity than others. 
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For this reason, the microbial composition among healthy individuals can be 

extremely different. In addition, the components of the human microbiome 

change over time, affected, for instance, by the patient disease state and 

medication. However, the microbiome eventually returns to a state of 

equilibrium, even if the composition of bacterial types has changed. Several 

studies have also shown that the microbiota of a specific site within the same 

individual is dynamic, varying naturally in correlation with age (Yatsunenko et 

al., 2012).  

Despite all these sources of variability, the presence of a “core microbiome”, 

defined as “those species-level phylotypes in a given body habitat that were 

observed across all sampling events”, has been demonstrated (Caporaso et al., 

2011). For example, as far as gut microbiome is concerned, in 2011 Arumugam 

et al. pointed out that human gastrointestinal microbiome can be clustered in 

three distinct groups, identifiable by the levels of one of the three bacterial 

genera Bacteroides, Prevotella, and Ruminococcus, and named enterotypes 1, 2, 

and 3, respectively. These enterotypes, each of which rich in genes involved in 

specific and alternative pathways exploited to generate energy from complex 

carbohydrates, seem to have correlation with none of the host properties 

evaluated, namely gender, age, or nationality (Arumugam et al., 2011). 

Nevertheless, just a year later another group begun to query whether this 

classification could simplify to an extreme degree the situation, suggesting, in 

turn, a continuum of species rather than discontinuous variation with segregated 

types (Jeffery et al., 2012). Nonetheless, understanding which microbial taxa 

constitutes a “core microbiome” is of pivotal importance to enhance knowledge 

concerning microbial ecology, to determine their influence upon metabolic 

functions, as well as to use taxonomic profiles as possible diagnostic markers 

(Figure 1-4) (Li et al., 2013). 
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Figure 1 - 4. The concept of a core human microbiome. The core human microbiome (red) is the set of 

genes present in a given habitat in all or the vast majority of humans. The variable human microbiome 

(blue) is the set of genes present in a given habitat in a smaller subset of humans. This variation could 

result from a combination of factors. 

 

Moreover, it is also important to note that Bacteria are the most abundant 

inhabitants inside microbiome, but not the only residents. Other organisms, as 

Fungi (forming “mycobiome”), Virus (forming “virome”), and Archaea (forming 

what can someone begins to call “archaeome”), although less abundant than 

Bacteria (also for this reason indicated as “rare biosphere”), are more variable 

between different individuals, and are deemed to play an increasingly pivotal role 

(Huffnagle and Noverr, 2013; Minton, 2012; Sogin et al., 2006; Williams, 2013). 

In a complex microbial communities a relative small number of microbial species 

dominate, but hundreds to thousands of low abundance microorganisms also 

exist. It is also important to note that the word “rare” is used in correlation to 
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specific environment analyzed. At mucosal sites, for instance, the most abundant 

bacterial specie can reach 10
10

 microbes per gram. Consequently, 

microorganisms present at 10
4
 cells per gram can be considered “rare” since they 

count up for only the 0.0001% of the cellular content of the community. This 

“rare biosphere” may also harbor species that have an unbalanced effect (positive 

or negative) on the dominant members of the microbiome, a potential way by 

which they may support physiological or pathological effects (Huffnagle and 

Noverr, 2013). In support of this, accumulating evidence has delineated a 

correlation between species that are poorly represented within the microbiome 

and the host physiology, as depicted in Figure 1-5. For example, it has been 

shown that Methanobrevibacter (the most widespread Archaea genus in human 

gut) and Candida (the second most prevalent Fungi genus, after Saccharomyces, 

in the same human site) were positively associated with diets rich in 

carbohydrates, but negatively with diets high in amino acids, proteins, and fatty 

acids (Hoffmann et al., 2013). Moreover, even though the Prevotella/Bacteroides 

ratio was not significantly correlated with the fungal types, the same study 

demonstrated that it was significantly correlated with relative proportions of 

Fungi present. As far as Archaea are concerned, there was a significant 

correlation between archaeal genera Methanobrevibacter and Nitrososphaera 

with the bacterial genus Bacteroides, specifically negative with the former and 

positive with the latter (Hoffmann et al., 2013).  

Several other studies concerning gut virome have suggested that bacteriophages 

(Virus infecting Bacteria) are the biggest regulators of bacterial abundance 

(Hofer, 2013; Williams, 2013). All together, these findings highlight that the 

microorganisms counterbalance in a microbiome is very complex, and numerous 

factors, both internal and external to the host, could have a crucial importance. 
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Figure 1 - 5. Possible syntrophic relationships in the human gut between fungal, archaeal, and 

bacterial microorganisms. Fungi are marked in green, Bacteria in blue, and Archaea in orange. 

 

1.2 Techniques to study microbiomes 

1.2.1 Metaculturomics 

 

A microbiome can be studied for different purposes. On the one hand, some 

analyses, that could be roughed in as “descriptive”, have the main objective to 

thrash out, both at qualitative and quantitative level, the microbial composition of 

a specific environment (for instance, an anatomic site of a particular animal). On 

the other hand, in studies that could be defined “associative”, the chief aim is to 

identify a correlation between a specific physiologic or pathologic host status and 

some alteration in the microbial composition. 
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As represented in Figure 1-6, a microbiome can be characterized using different 

techniques. Traditionally, the best approach to study a microorganism has been 

culture-dependent. According to this method, two steps are crucial: plating the 

sample on a selective growth media, and recognizing the specific microorganism 

on the basis of several particular features, such as the morphological 

characteristics of colonies, the specific metabolic production, or the specific 

nutrient consumption. However, this kind of approach has huge limitations 

owing to the fact that, as it has been amply demonstrated by numerous evidences, 

more than 80% of the bacterial species present in the human body have not yet 

been cultured, or are even considered as unculturable (Bik et al., 2006; Gevers et 

al., 2012; Grice and Segre, 2012; Turnbaugh et al., 2007). Another important 

limit is that an isolated microorganism in a pure culture obtained in laboratory is 

less representative of community interactions, due to the loss of precious 

information concerning the original ecological and molecular relationships 

between different microorganisms.  

 

 

Figure 1 - 6. How to study a microbiome. Various approaches to answer important questions 

concerning a microbiome. 

 

Microbiome

What can they do?

What are they doing?

Who are they?

Cells Metaculturomics

RNA Metatranscriptomics

Proteins Metaproteomics

Metabolites Metametabolomics

DNA Metagenomics

rRNA 16S SSU rRNA analysis
rRNA 16S
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To overcome some of these limitations, in 2012 Lagier et al., in a singular study, 

used more than 200 different culture conditions to identify microorganisms 

belonging to the human gut microbiome. With this analysis, researchers obtained 

32,500 colonies belonging to 340 species (174 of which never described 

previously in the human gut) of Bacteria from seven phyla and 117 genera, 

including two species from rare phyla (Deinococcus-Thermus and Synergistetes), 

five Fungi, and a giant Virus (Senegalvirus, the largest Virus reported in the 

human gut). These results achieved with striking efforts were comparable, for the 

first (and, to date, unique) time, to those achievable with more sophisticated 

technologies. However, the extremely long time of this approach (also called 

“metaculturomics”) and the extreme complexity of the experimental design 

indubitably reduce its routinely application (Lagier et al., 2012). 

 

1.2.2 Metagenomic 

 

In the last years, along with advancements in molecular technologies, especially 

in sequencing and mass spectrometry (MS) instruments, alternative methods of 

microbial communities analysis have become available. This continuous 

improvement has led to the emergence of new branches of research, namely 

metagenomics, metaproteomics, metatranscriptomics, and metametabolomics, 

opening the door to a high-throughput analysis of microbial communities using 

culture-independent methods (Grice and Segre, 2012).  

Metagenomics is based on extraction of DNA directly from a clinical or 

environmental sample. So far, two techniques have been the most adopted. The 

first one is the 16S rDNA tag sequencing, used to typify bacterial taxonomy 

according to information concerning 16S ribosomal RNA gene. The strong point 

of this method is the use of the 16S rDNA gene, which contains both highly 

conserved sequences, that allow polymerase chain reaction (PCR) amplification 
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using broad-range primers, and specie-specific hypervariable sequences, 

available for phylogenetic characterization (Hugenholtz and Pace, 1996). The 

16S rDNA gene gathers up all characteristics to be a perfect marker to identify 

the genome that contains it, without sequencing the entire genome. It is simple 

enough to be analyzed both for its reduced dimension, approximately 1500 base 

pairs (bps) in length, and for its high number of copies in some microbial 

genomes. Moreover, it is contained in every member of a population, differing 

only between distinct individuals with specific genomes and, in addition, it varies 

proportionally to the evolutionary distance between specific microbes, 

facilitating consequently taxonomic attribution (Morgan and Huttenhower, 

2012). Actually, for all these reasons, it has reached an extremely high level of 

reliability, becoming the most popular technique to perform taxonomic 

classification (Almeida and Araujo, 2013; Carroll et al., 2012; Han et al., 2013; 

Hu et al., 2013; Maughan et al., 2012; Nava and Stappenbeck, 2011; Newton et 

al., 2011; Santamaria et al., 2012; Shahinas et al., 2012; Tringe and Hugenholtz, 

2008; Woo et al., 2008). As reported by Grice and Segre in February 2012, the 

16S rDNA sequences deposited in Ribosomal Database Project (RDP) were more 

than 2 millions shared in 35 different phyla (Cole et al., 2007; Grice and Segre, 

2012). 

The second genomic-based approach is founded on the Whole-Genome 

Sequencing (WGS) technology, that allows the identification of all genetic 

material from the different organisms making up a community in a specific 

ecosystem, by extracting and analyzing their DNA globally. The first studies 

have been focused on environmental and ecological communities, for example 

acid mine drainage (AMD), because of their lower complexity. The results of 

such analyses have been useful to pinpoint the presence of uncultivable 

microorganisms (Bacteria, Archaea, Fungi and Viruses), some of which, as 

mentioned above, can have pivotal importance to environment safeguard or host 

health, regardless of their abundance (Denef et al., 2010). The complexity of a 
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microbial community can range from very simple (extreme environments 

inhabited by few specialists, such as the above mentioned AMD) to very 

complex (environments inhabited by a variety of species, such as the gut 

microbiome). Obviously, the depth of knowledge which can be reached by the 

WGS approach can be dramatically different depending on the community under 

study. Simple communities, with only 76 Mb sequencing effort, can result in the 

assembly and analysis of almost complete genomes of the dominant species, 

including accurate metabolic reconstruction and detection of strain-specific 

genomic variants. More complex communities, with a much larger sequencing 

effort (almost 2 Gb), can result in very fragmented assemblies even for the most 

abundant species, with most of the dataset being represented by singleton 

sequencing reads (Chistoserdova, 2010). A huge technological advancement in 

sequencing instruments has made it possible to achieve these kind of results, 

allowing the investigation of several different genomes simultaneously. Taking 

into consideration, as described in Figure 1-7, that in 2002 millions of dollars 

were needed to obtain a complete genome sequence, it is truly amazing that, 

currently, the same information can be obtained with a few thousand dollars. In 

addition, it is also important to note that what was accessible in months or years 

of work just until a few years ago, now it can be obtained in few days, if not 

hours, with a higher reliability of the results.  

A typical workflow of a WGS analysis (Figure 1-8) consists of a first 

fragmentation of genomic DNA, with the creation of a library of small segments, 

that in the next step are accurately sequenced in millions of parallel reactions.  
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Figure 1 - 7. Trend of sequencing cost during the last years. Cost per genome (red line, values on the 

left) and per Mb (black line, values on the right) from 2001 to 2013 expressed in U.S. dollars. Data 

derived from the Genome Sequencing Program of the National Human Genome Research Institute 

(http://www.genome.gov/sequencingcosts/).  

 

Then, these little nucleotide sequences, called reads, are reassembled either using 

a resequencing approach, that aligns the reads to a known reference genome 

employed as a scaffold, or using a de novo approach, where the alignment is 

achieved without reference information. This latter approach has the advantage to 

be useful to obtain genomic information about all microbial organisms (or, more 

in general, all organisms) independently from the preliminary level of 

information. Unfortunately, this strategy has the disadvantage to require very 

high quality data to achieve good results, i.e. an extremely high whole genome 

coverage, that is not always achievable, especially when several hundred 

different genomes are contained in the same sample. The resenquencing 

approach has reciprocal advantages and disadvantages compared to de novo 

sequencing; in fact, it is also possible to make use of data with poor coverage to 

identify a microbial organism, taking advantage of information concerning its 

reference genome. Obviously, this approach is not applicable to unknown, or not 

yet sequenced, microorganisms; in this regard, the lack of reference genome 

sequences represents the most important limitation to achieve trustworthy results 

with this technique. Therefore, further efforts to address these issues by 
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generating new reference genomes, such as the Human Microbiome Project has 

done, are highly sought after (Grice and Segre, 2012). 

 

 

Figure 1 - 8. Whole genome sequencing (WGS) workflow. 

 

To summarize, instruments with high performance in terms of both reliability 

and speed, combined with extremely reduced costs, have permitted to obtain in 

short time the sequencing of various genomes belonging to prokaryotic and 
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eukaryotic organisms, and even of whole microbial communities with very high 

microbial complexity, such as human gut (Figure 1-9).  

Another important limitation of this kind of techniques is that it is not possible to 

know if the extracted DNA originated from intact, viable cells, or not. For this 

reason, DNA is not the ideal system to evaluate functions carried out by the 

community at a specific point in time (Morgan and Huttenhower, 2012).  

 

 
Figure 1 - 9. Timeline of microbial community studies using high-throughput sequencing. Each 

circle represents a high-throughput sequence-based 16S or shotgun metagenomic bioproject in NCBI 

(May 2012), indicating the amount of sequence data produced for each project (circle area and y-

coordinate). Projects are grouped by human-associated (red), other animal (black), or environmental 

(green) communities, and shotgun metagenomic projects are marked with a grey band.  
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1.2.3 Other “omic” approaches: Metatranscriptomics 

 

Through 16S rDNA tag sequencing and WGS it is possible to answer to two 

important questions, “Who is there?” and “What can they do?”, respectively, but 

different strategies are required to address another important question, namely 

“What are they doing?”. In order to obtain this kind of information, it is thus 

necessary to look at the expression profile (metatranscriptomics), and at 

metabolite (metametabolomics) or protein (metaproteomics) production. These 

kinds of analysis are still technically demanding and have only recently begun to 

be applied for studying microbial communities. 

Metaproteomic techniques, probably the most interesting to assess the functions 

accomplished by microbes, are becoming increasingly popular. Since the main 

topic of this thesis is metaproteomics, this approach will be discussed in a 

chapter apart. 

Metatranscriptomics, that is the qualitative and quantitative description of genes 

expressed at a given time by all organisms attending an ecological niche, can be 

seen as an interesting strategy to describe functionally a microbiome. 

Unfortunately this approach is very challenging due to various features 

concerning prokaryotic mRNA. For example, bacterial mRNA completely lacks 

the 3’-end poly(A) tail that instead marks mature molecules in eukaryoric 

mRNA, making their enrichment and analysis easier. In addition, this technology 

must deal with the intrinsic biases associated with the need for subtraction of 

ribosomal RNA (rRNA) that is normally the dominant RNA species extracted, 

usually comprising over 90% of the total RNA. As Figure 1-9 suggests, this 

problem could be overcome by deep sequencing of total RNA, including rRNA, 

since current depth of coverage would still be sufficient to obtain considerable 

mRNA transcripts (Lamendella et al., 2012). In other words, whether we can 

generate about 50 Gb of sequences, 90% of which are rRNA (and so not usable 
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to our purposes), the remaining 5 Gb of other RNA, including millions of 

employable transcript reads, can be sufficient to complete a transcriptomic 

analysis. Furthermore, RNA is more difficult to prepare and preserve compared 

to DNA, owing to its chemical nature. For these reasons, initially, this type of 

studies has been mainly applied to samples from water and soil environments; 

human samples, as those originated from the human gastrointestinal tract, have 

been successfully analyzed only in the last four years (Gosalbes et al., 2011). 

 

1.2.4 Other “omic” approaches: Metametabolomics 

 

A further alternative is represented by metametabolomics (also called less 

awkwardly “community metabolomics”), that provides information concerning 

the complete spectrum of small-molecules, and their changes as a consequence of 

a particular stimulus. This approach includes various analytical technologies such 

as high-resolution nuclear magnetic resolution (NMR), GC-MS and LC-MS, in 

combination with chemometrics and bioinformatics tools (Turnbaugh and 

Gordon, 2008; Wikoff et al., 2009; Xie et al., 2013). Metabolites of microbial 

origin can be characterized by analyzing low molecular weight compounds in 

biofluids (blood and urine), intestinal contents, and tissues (especially feces), 

achieving a metabolic fingerprint profile, associable with individual phenotypes, 

in correlation with physiological and pathological statuses. Metabolomics can be 

applied to explain the molecular mechanisms of host-microorganism interactions 

during a disease, taking advantage of quantitative information about specific 

metabolite levels, such as bile acids and short-chain fatty acids (SCFAs) that are 

modulated during the pathologic process (Xie et al., 2013). 
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1.3 Metaproteomics 

1.3.1 Preliminary remarks 

 

As de Hoog and Mann pointed out in their review on proteomics in 2004, 

“biological function is not carried out by the static genome but mainly by the 

dynamic population of proteins determined by an interplay of gene and protein 

regulation with extracellular influences”(de Hoog and Mann, 2004). In other 

words, the information obtainable by the global analysis of the proteins 

expressed in a given sample is key to carry out its full characterization. 

Proteomics offers the opportunity to identify the protein repertoire collectively 

expressed by an organism, making it possible to estimate protein abundance, 

either relatively or absolutely, and thus providing important insights into 

physiology, metabolism and cellular functionality, and/or confirming the real 

expression of proteins only inferred “in silico” from genome information 

(Hettich et al., 2012; Siggins et al., 2012; VerBerkmoes et al., 2009a; Wilmes 

and Bond, 2006). This approach is able to provide details on the pathways that 

are actively functioning in a community, and on how the expression of specific 

proteins can change according to time, location, or environmental stimuli 

(Ottman et al., 2012). In particular, when analyzing a particular microbiome, it 

can be more important to know which functions are carried out by the microbial 

components present in a biological district, than which specific microbial species 

are present within. Different microorganisms can in fact perform the same 

function, thus a divergence in microbial composition between two samples is not 

always correlated to an equivalent altered microbial functionality. 

Unfortunately, several factors can seriously hamper a correct protein 

identification, and consequently a realistic proteome characterization. To give an 

example, one important issue in proteomics is the difficulty to access minor or 

under-represented proteins in a complex sample. The high dynamic range of 
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proteins, that in some samples like blood can reach 12 orders of magnitude, still 

remains a challenging task despite the huge improvement in MS sensitivity 

(Zubarev, 2013).  

In general, as illustrated in Figure 1-10, a typical shotgun proteomics workflow 

consists of few pivotal steps: protein extraction; protein digestion; MS analysis; 

computational analysis.  

 

 

Figure 1 - 10. Typical proteomic workflow. General approach used by peptide-centric MS technologies 

for the identification of proteins in complex mixtures. After proteolysis of a protein or complex mixture 

of proteins, the spectra associated with protease fragments are matched with spectra generated “in silico” 

using information obtained from protein databases. 

 

1.3.2 Protein extraction 

 

The objective of the protein extraction step is to maximize the recovering of all 

proteins included in the sample and to minimize the presence of other molecules 

that can hamper the following analysis. To achieve this result, a wide assortment 
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of methods are suitable: mechanical (French Press; bead-beating; grinding), 

physical (boiling, freeze-thawing; snap-freezing; sonication), chemical (using 

buffers containing one or more components among detergents, such as sodium 

dodecyl sulphate, SDS, CHAPS, and Triton X-100; chaotropic agents, such as 

urea and guanidine hydrochloride; reducing agents, such as dithiothreitol, DTT, 

and tributylphosphine, TBP; and other organic/inorganic compounds, such as 

phenol and sodium hydroxide) or enzymatic (deoxyribonuclease; ribonuclease) 

approaches can be used, depending on sample features (Abram et al., 2009; 

Benndorf et al., 2007; Chourey et al., 2010; Fouts et al., 2012; Kan et al., 2005; 

Keiblinger et al., 2012; Klaassens et al., 2007; Kolmeder et al., 2012; Leary et 

al., 2012; Schneider et al., 2012; Verberkmoes et al., 2009a; Wilmes and Bond, 

2004). 

Since Gram-positive bacteria, Gram-negative bacteria and yeasts have important 

structural differences, and therefore a variable susceptibility to each protein 

extraction method, the choice of a specific approach may significantly bias the 

quality and the quantity of the proteomic results in the direction of a specific 

category of microorganisms. In same conditions the application of a single 

disruption method, among those mentioned above, can be sufficient for an 

efficient protein extraction, but in other circumstances, with more resistant 

samples, a combination of two or more of them might be necessary. In this 

regard, the combination of strong buffer components and harsh treatments may 

probably help maximize extraction yields and avoid selective depletion of 

species showing a higher resistance to lysis, such as yeasts and Gram positive 

bacteria, therefore enabling a more complete representation of the microbial 

community proteome. 
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1.3.3 Protein digestion 

 

The subsequent step, protein digestion, is mainly achieved using specific 

enzymes that break peptide bonds in a process where all reaction conditions, such 

as duration, temperature, and pH, are carefully controlled. The most used enzyme 

is trypsin, that is a serine protease able to cleave peptide chains at the carboxyl 

side of the amino acids lysine or arginine, except when either ones are followed 

by proline. This process of proteolysis is also called trypsinization (Hustoft et al., 

2010). Prior to this step, it is also important to remove compounds that can limit 

enzymatic digestion and/or the following process steps, namely liquid 

chromatography (LC) separation and MS analysis. The typical way to achieve 

this result is using protein precipitation, which can be accomplished by adding, 

for instance, trichloroacetic acid, acetone, or ammonium acetate/methanol to the 

protein extract; then, the protein pellet is resuspended in a buffer compatible with 

the subsequent steps (Benndorf et al., 2007; Chourey et al., 2010; Leary et al., 

2012; Sharma et al., 2012). However, significant sample losses due to protein 

aggregation may occur (Fic et al., 2010; Jiang et al., 2004). Another effective 

opportunity is to perform 1-dimension electrophoresis (1-DE) protein separation 

followed by in-gel digestion of the extracted proteins, which allows both the 

entrapment of interfering compounds within the gel matrix and the sample 

fractionation into gel slices (Ferrer et al., 2012; Haange et al., 2012; Kolmeder et 

al., 2012). Unfortunately, although efficient, this method is labor-intensive and 

time-consuming, and reproducibility may not arrive to high values 

(Choksawangkarn et al., 2012). A recent alternative is represented by the filter-

aided sample preparation (FASP), in which sample clean-up and enzymatic 

cleavage take place in a molecular weight cut-off centrifuge filter (Wiśniewski et 

al., 2009). This procedure has been applied with success in recent times to 

environmental microbiome samples, and was demonstrated to outperform several 

competing methods principally for low protein amounts (Sharma et al., 2012). 
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1.3.4 Mass spectrometry analysis 

 

The next step, MS analysis, is key because it allows the peptide identification to 

be achieved. Mass spectrometers are commonly interfaced upstream with 

separation devices, as gas chromatographs (GC) or LC. The separated 

components are then introduced into the mass spectrometer. Currently, the most 

performing instruments are based on a tandem mass spectrometry technology 

(MS/MS) that combines two mass spectrometers (Figure 1-11). Briefly, these 

instruments work by using magnetic and electric fields to exert forces on charge 

particles (ions). Therefore, the peptide mixture must be charged (ionization) to be 

analyzed. The choice of the ionization method depends on the nature of the 

sample. In proteomic analysis, one of the most performing ionization sources is 

the electrospray ionization (ESI). This technique, that can be classified as a “soft 

ionization” method, tends to produce mass spectra with little or no fragment-ion 

content. The sample solution is sprayed across a high potential difference (a few 

kilovolts) from a needle into an orifice in the interface. Heat and gas flows are 

used to desolvate the ions existing in the sample solution. This process often 

produces multiply charged ions with the number of charges tending to increase as 

the molecular weight increases. Later, the first mass analyzer detects a spectrum 

from which a single mass ion, also called precursor or parent ion, with a 

particular mass/charge (m/z) ratio, is selected. In turn, the precursor ion produces 

its fragment ions due to a harder ionization obtained by colliding the selected 

ions with a neutral gas. This process can be named collision-induced dissociation 

(CID) or higher-energy collision-induced dissociation (HCD), depending on the 

extent of collision energy used. Finally, such fragment ions are separated into the 

second mass analyzer according to their m/z ratio. The resulting MS/MS 

spectrum consists only of product ions generated from the selected precursor ion 

(Guthals and Bandeira, 2012; Rotilio et al., 2012). 
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Figure 1 - 11. Diagram illustrating tandem mass spectrometry analyis worfklow (MS/MS). A sample 

is injected into the mass spectrometer, ionized and accelerated, and then analyzed by the first mass 

analyzer (MS1). Ions from the MS1 spectra are then selectively fragmented and analyzed by the second 

mass analyzer (MS2) to give the spectra for the ion fragments. While the diagram indicates separate mass 

analyzers (MS1 and MS2), some instruments can utilize a single mass analyzer for both rounds of MS. 

 

Prior to the MS analysis step, sample complexity generally has to be reduced in 

order to improve the amount of information achievable by shotgun MS analysis. 

This has been attained in previous metaproteomic studies by carrying out a 

separation at the protein (mainly by 1-DE and GELFrEE approaches) and/or 

peptide level (most commonly by means of 2D-LC) (Kolmeder et al., 2012; 

Pérez-Cobas et al., 2012; Ram et al., 2005; Schneider et al., 2012; Sharma et al., 

2012; Verberkmoes et al., 2009b). However, each additional fractionation step 

implies a corresponding increase in the quantity of starting material, laboratory 

effort, and/or MS measuring time required, as well as increasing challenges in 

analytical repeatability. In particular, 2D-LC-MS/MS, although reaching a very 

remarkable analysis depth, is technically challenging and, above all, requires 

extremely long times for a single sample to be analyzed (22 hours in a typical 

experimental setting) (Verberkmoes et al., 2009a). Recently, a straightforward 

approach based on single-run nanoLC-MS/MS has been described, enabling the 

identification of several thousands of proteins per run from different kinds of 

sample (Köcher et al., 2012; Nagaraj et al., 2012; Pirmoradian et al., 2013; 

Thakur et al., 2011). 
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1.3.5 Peptide and protein identification 

 

The last step concerns peptide identification, which is carried out starting from 

the m/z ratio signal obtained from MS analysis. To accomplish this result, a 

comparison is normally performed between the experimentally obtained signal 

(experimental spectrum) and the theoretical spectrum, which is obtained by 

digesting “in silico” all protein sequences contained in a sequence database (DB) 

through a dedicated software called search engine (such as SEQUEST, Mascot, 

OMSSA, and X!TANDEM) (Craig and Beavis, 2004; Geer et al., 2004; Perkins 

et al., 1999; Yates et al., 1995). The resulting collection of identified peptide 

sequences is then assembled into an inventory of proteins that can account for the 

identified peptides. Since the likelihood of matching an MS/MS spectrum to a 

given peptide increases with the amount of that peptide in the sample under 

analysis, the number of MS/MS spectra that map to a given protein provides a 

quantitative estimation of the amount of that protein within the sample. 

 

1.3.6 Quantification 

 

A crucial issue in proteomic research concerns the accurate quantification of 

proteins contained in a sample (Bantscheff et al., 2012). The most accurate 

quantitation methods consist of using heavy or light stable isotopes incorporated 

into the different proteomes to bring into comparison (Hinkson and Elias, 2011). 

On the one side these technologies provide very accurate measurements, on the 

other they require additional steps in sample preparation, reducing the 

experimental repeatability and increasing the laboratory effort.  

For this reason, alternative approaches, especially the so-called “label-free 

quantification”, characterized by more user-friendly procedure, are routinely 
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preferred. The label-free based techniques, as the name suggests, do not involve 

any kind of marking of the samples. As stated before, they are based on 

correlation between several mass spectrometric signals (for example, peak 

intensity or spectral counting), linked to a specific peptide, and the original 

amount of the same peptide, and therefore of the protein, in the sample. This 

technique reduces substantially the number of steps in the procedure, resulting in 

a lower labor time and a higher reproducibility (Figure 1-12). Unfortunately, 

however, such techniques have an important limitation concerning sensitivity. In 

fact, label-free quantification requires the abundance variation to be at least 2-

fold to be detected, whereas with metabolic labeling approach it could be 

possible to describe also protein variation of a few percent (Mann et al., 2013). 

 

1.3.7 Issues in metaproteomic analysis 

 

Several studies have shown that the description of a protein expressed from a 

microbial community is very demanding, chiefly in data analysis and 

interpretation (Muth et al., 2013; Seifert et al., 2013). In this respect, two main 

issues do severely hamper the analysis of a metaproteome: first, genome 

sequence data might be unavailable for most of the species contained in the 

particular microbial community under study, thus considerably reducing the 

possibility of a correct matching between the experimental spectra and the 

theoretical spectra; second, a typical environmental sample contains thousands of 

proteins belonging to up to thousands of different microbial species, often having 

a high level of homology, making therefore both peptide-to-protein and peptide-

to-taxon assignments a really tremendous task. 

 



Antonio Palomba 

“Development of new technologies to study gut microbiomes” 
Tesi di dottorato in Scienze Biomolecolari e Biotecnologiche; Università degli Studi di Sassari 

 

39 
 

 

Figure 1 - 12. Quantitative proteomic approaches. (A) Shotgun isotope labeling method. After labeling 

by light and heavy stable isotope, control and sample are combined and analyzed by LC-MS/MS. The 

quantification is calculated based on the intensity ratio of isotope-labeled peptide pairs. (B) Label-free 

quantitative proteomics. Control and sample are subjected to individual LC-MS/MS analysis. 

Quantification is based on the comparison of peak intensity of the same peptide or the spectral count of 

the same protein. 

 

1.3.8 Database impact 

 

The selection of proper protein DBs represents an extremely critical step, 

especially when dealing with poorly characterized microbiomes. When a novel 

microbial community is subjected to metaproteome analysis, without further 

genomic investigation, publicly available DBs have to be used for peptide/protein 

identification, almost for a preliminary analysis. Protein DBs can be generally 

distinguished into non-manually annotated with plenty of information but huge 

dimensions, and thus very high computing times, such as NCBI and 

A B
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UniProtKB/TrEMBL (TrEMBL), and manually curated sequences as 

UniProtKB/SwissProt (SwissProt), with inverse pros and cons in comparison 

with the first ones (Figure 1-13)(NCBI Resource Coordinators, 2013; The 

UniProt Consortium, 2012). 

 

 

Figure 1 - 13. Number of protein sequences in UniProtKB/TrEMBL and UniProtKB/SwissProt 

databases. 

 

Unfortunately, most uncultivable species have not yet been sequenced, in spite of 

the great efforts made in the last few years by genome scientists, and are 

therefore not present within the public resources. In this case, cross-species 

A

B



Antonio Palomba 

“Development of new technologies to study gut microbiomes” 
Tesi di dottorato in Scienze Biomolecolari e Biotecnologiche; Università degli Studi di Sassari 

 

41 
 

identification can occur when genome sequences of closely related species, with 

large sequence homology regions, are available (Wright et al., 2010). Unlike 

“classical” DNA sequence homology search, in proteomics even slight 

differences in amino acid sequences lead to significant variations in peptide 

masses, thus making the proteomic characterization of unsequenced organisms 

extremely difficult. A possible alternative is using de novo sequencing, in which 

amino acid sequences are deduced directly from fragmentation spectra, without 

the need of a protein DB, followed by BLAST (basic local alignment search tool) 

search employed to identify candidate homology proteins (Seidler et al., 2010; 

Shevchenko et al., 2001). However, manual inspection of spectra is often 

required due to the error-prone nature of de novo sequencing, and very high 

quality data are necessary for reliable results to be achieved (Pevtsov et al., 

2006). 

In the very recent past an increasing number of papers have described the 

integration of metagenomics and metaproteomics holds promising to address the 

above described issues (Cantarel et al., 2011; Delmotte et al., 2009; Denef et al., 

2009; Erickson et al., 2012; Ferrer et al., 2012; Rooijers et al., 2011; 

Verberkmoes et al., 2009b). Currently, such integration may occur at different 

levels:  

1. using 16S (and/or 18S) rDNA gene sequencing information to assemble a 

customized DB (also named “pseudo-metagenome”) restricted to the taxa 

which have been (or are expected to be) found within the microbiome 

under study, saving up analysis time and minimizing species 

misassignments (Verberkmoes et al., 2009b);  

2.  using translated and annotated metagenome sequences as protein DB, 

ideally generated from the same sample being analyzed with 

metaproteomics (a so-called “matched” metagenome), but also retrieved 

from public metagenome archives, which are expected to impressively 
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grow in the years to come (Erickson et al., 2012; Morris et al., 2010; Ram 

et al., 2005); 

3. isolating further reference strains from the microbiome under study and 

performing individual genome sequencing, on the basis of a labor-

intensive, in-depth approach, called “metaculturomics”, as mentioned 

above (Lagier et al., 2012).  

Furthermore, according to a proteogenomic (sensu stricto) approach, 

metagenomic and genomic sequences can also be translated in all six reading 

frames (six-frame translation, 6FT), with the purpose of minimizing the inherent 

biases derived from gene prediction methods (Armengaud et al., 2013; Renuse et 

al., 2011). However, metagenome-derived DBs may suffer from technical biases 

in DNA extraction versus species having less abundance or particular cell wall 

features, as well as from bioinformatic issues in sequence assembly and 

annotation.  

To date no reports have been described critically comparing the metaproteomic 

data which can be obtained using different types of publicly available and 

matched metagenome-derived DBs. 

Interestingly, each of the above mentioned DB types exhibits specific features, 

mainly in terms of overall size and sequence redundancy, which might in turn 

considerably affect two of the main issues in proteome bioinformatics, namely 

false discovery rate (FDR) assessment and protein inference. FDR calculation 

applies a probabilistic method that inherently takes into account the effects of 

multiple testing, by estimating the proportion of peptide-spectrum matches 

(PSMs) that are incorrect among all significantly identified PSMs (Figure 1-14). 
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Figure 1 - 14. False discover rate (FDR) estimation. The decoy proteins are randomly generated, so any 

decoy hit is supposedly a false hit. The search engine is not able to distinguish target sequences from 

decoy sequences. Consequently, false positive identification can occur in both databases with equal 

probability. Thus, the total number of false target hits can be approximated by the number of decoy hits in 

the final result, and the FDR can be estimated by the ratio between the numbers of decoy hits and the 

number of target hits. 

 

Several computational approaches have been developed to estimate the FDR at 

both peptide and protein level, usually exploiting the well-established target-

decoy approach, although alternative statistical modeling approaches have been 

also developed (Elias and Gygi, 2007; Keller et al., 2002; Renard et al., 2010). 

Advantages and limitations of the FDR approach in terms of quality, accuracy, 

and resolution have been critically discussed in various studies, but the simplicity 

and the global good efficiency of this approach make it the most often applied 

technique for the quality control of the data (Colaert et al., 2011; Granholm and 

Käll, 2011; Vaudel et al., 2011). The FDR applies globally to a set of PSMs, but 

single PSMs can also be associated with a q-value, defined as the minimal FDR 

of any PSM set that includes the given PSM (Granholm and Käll, 2011). Even 

though FDR estimation can be quite accurate and reproducible when a limited 

search space is concerned (e.g., a protein DB from a single organism), its 

resolution may significantly deteriorate when the search space complexity 

increases, as for proteogenomics and metaproteomics, with a consequent 

reduction in sensitivity (Blakeley et al., 2012; Colaert et al., 2011; Muth et al., 

Target

Decoy

Protein DBs

Search engine

Identified peptides

Decoy hitsFalse target hits

FDR=
Target hits

Decoy hits



Antonio Palomba 

“Development of new technologies to study gut microbiomes” 
Tesi di dottorato in Scienze Biomolecolari e Biotecnologiche; Università degli Studi di Sassari 

 

44 
 

2013). FDR accuracy and sensitivity are expected to be strongly influenced by 

the protein DB used, but this particular aspect has not been fully elucidated so far 

with regard to metaproteomic data (Blakeley et al., 2012). 

The second bioinformatic concern which may have a considerable impact on 

metaproteome analysis is represented by the protein inference problem, that is, 

how to assemble a list of peptides into a (reliable) list of proteins (Claassen, 

2012; Nesvizhskii and Aebersold, 2005). When analyzing a single organism’s 

proteome, ambiguities in peptide-to-protein assignment can be generally due to 

the presence of different splice variants or cleavage products. Unfortunately, 

when dealing with a metaproteome the scenario becomes terribly more 

complicated. In fact, many peptides (called degenerate peptides) can be shared 

among homologous proteins from different species, or even among recurring 

functional domains (Muth et al., 2013). Under a DB perspective, a higher 

redundancy or homology in protein sequences corresponds to a higher 

degeneracy in peptide identification, and thus to harder issues in protein 

inference. Additionally, most of the widespread software suitable for 

protein/peptide identification usually display only a subset of all possible protein 

identifications; therefore, a tedious manual inspection for protein assignment is 

required in order not to over- or under-report important functional and taxonomic 

information (Kolmeder and de Vos, 2013). 

 

1.3.9 Taxonomic Attribution 

 

As far as taxonomic attribution is concerned, a simple but quite robust strategy to 

infer taxonomic information from (DNA or protein) sequence data is the so-

called lowest common ancestor (LCA) approach (Huson et al., 2007). According 

to this algorithm, a sequence is assigned to a given species only if it does not 

match with any other species contained in the sequence DB; conversely, if the 
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sequence is shared among several species contained in the DB, all belonging to 

the same genus, the sequence is unambiguously assigned only to the genus level. 

Generally speaking, widely conserved sequences are always assigned to high-

order taxa. When analyzing metaproteomics data, the LCA approach is clearly to 

be preferred over retrieving the taxonomic information using “classical” protein 

inference algorithms, as usually these systems select arbitrarily only one among 

the diverse taxonomic possibilities, with consequent loss of information 

(Kolmeder and de Vos, 2013). The LCA algorithm can be theoretically applied 

either at peptide or protein level: in the first case, LCA analysis should provide 

the most accurate results, in view of the peptide-centric nature of shotgun mass 

spectrometry; in the second case, as discussed before, the previous application of 

a protein inference algorithm not specifically suited for metaproteomics might 

introduce significant biases. The forerunner of LCA software, MEGAN, was 

originally developed for metagenomic data, but can be extended also to 

metaproteomics (Huson and Mitra, 2012; Huson et al., 2011; Rudney et al., 

2010). Usually, in a preprocessing step protein/peptide sequences are compared 

against NCBI DB using BLAST, and MEGAN is then used to compute and 

explore the taxonomical content of the data set. A recent achievement of the 

metaproteomics community is the Unipept web application, which supports 

biodiversity analysis of metaproteome samples using tryptic peptide information 

obtained from shotgun MS/MS experiments, by retrieving all occurrences of the 

given peptides in UniProtKB records; taxon-specificity of the tryptic peptide is 

successively derived from these occurrences using a novel LCA approach 

(Mesuere et al., 2012). To date, a critical evaluation of Unipept and/or MEGAN 

for the taxonomic profiling of metaproteomic data has not yet appeared in 

literature; furthermore, a possible influence of the DB choice on LCA results has 

not been investigated so far. 
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1.4 Gut microbiome  

 

The human intestinal tract is colonized since birth by a large number of 

microorganisms that in adults can consist of around 10
14

 cells, with a complexity 

that is forecasted to include over 10
3
 microbial species, the vast majority of 

which has not yet been cultured (Zoetendal et al., 2008). Several studies have 

suggested that most of the intestinal phylotypes belong to a limited set of phyla, 

including Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and 

Verrucomicrobia (Figure 1-15 shows a preliminary overview of human gut 

microorganisms phyla) (Guarner and Malagelada, 2003; Lagier et al., 2012). In 

healthy adults the intestinal microbiota fluctuates around a stable individual core 

of phylotypes that are affected by host genetics, environmental and stochastic 

factors (Rooijers et al., 2011). 

As Figure 1-16 shows, neonates develop in a bacteria-free environment until the 

delivery. Upon this moment they are exposed for the first time to a variety of 

different bacteria, in correlation with birth modality. During vaginal birth, the 

infant is exposed to microbes present in the birth canal of the mother, an 

environment that is mostly colonized by Lactobacillus (Ravel et al., 2011). By 

contrast, babies delivered by caesarean section are not exposed to vaginal 

bacteria at birth and their bacterial communities resemble those found on skin 

(Dominguez-Bello et al., 2010). Delivery mode thus leads to differences in the 

development of the microbiota, which may in turn contribute to variation in 

normal physiology or to disease predisposition. Some evidences have 

demonstrated the host-linked co-evolution of the immune responses and 

microbiota (Chung et al., 2012; Hooper et al., 2012; Olszak et al., 2012). 

Moreover, it has been proved that early-life antibiotic exposure affects the long-

term development of adipose tissue, lean muscle and bone (Cho et al., 2012). 

Microbiota of genetically obese transgenic mice that show a particular taxonomy 
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composition with a decrease in Bacteroidetes and an increase in Firmicutes 

species, found also in obese human volunteers, leads to a slight, but statistically 

significant, body fat increase when transferring in gut free mice (Ley et al., 

2006b; Turnbaugh et al., 2006). 

 

 

Figure 1 - 15. A non exhaustive overview of human gut microorganisms among bacterial, Archaea, 

viral, and Eukaryota domains. 

 

In a study performed by Segata and coworkers in 2012, the important difference 

between composition, relative abundance, and metabolic potential of the bacteria 

population inhabitants of the adult digestive tract was clearly proved. In detail, a 

cluster of ten body habitats in four groups has been described, according to 

pattern of numerically dominant Bacteria taxa profiled using the 16S rDNA, as 

classified by the RDP (Cole et al., 2009; Segata et al., 2012). 



Antonio Palomba 

“Development of new technologies to study gut microbiomes” 
Tesi di dottorato in Scienze Biomolecolari e Biotecnologiche; Università degli Studi di Sassari 

 

48 
 

 

Figure 1 - 16. Human microbiota: onset and shaping through life stages and perturbations. The 

graph provides a global overview of the relative abundance of key phyla of the human microbiota 

composition in different stages of life, measured by either 16S RNA or metagenomic approaches.  

 

The microbiota of Group 1 (buccal mucosa, keratinized gingiva, and hard palate) 

consisted mostly of Firmicutes followed in decreasing order of relative 

abundance by Proteobacteria, Bacteroidetes and either Actinobacteria or 

Fusobacteria. In comparison, Group 2 (saliva, tongue, tonsils, and throat or more 

exactly the back wall of oropharynx) had a decreased relative abundance of 

Firmicutes and increased levels of four phyla: Bacteroidetes, Fusobacteria, 

Actinobacteria and TM7. Group 3 (sub- and supra-gingival plaque) had a further 

decrease in Firmicutes compared to Groups 1 and 2, with a marked increase in 

the relative abundance of Actinobacteria (Figure 1-17). 

The stool samples have been lonely gathered in a group (number 4) consisting 

mainly of Bacteroidetes (over 60%) followed by Firmicutes (including several 

genus-level biomarker for this group, as Roseburia and Faecalibacterium own to 

families Lachnospiraceae and Ruminococcaceae respectively), with very low 
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relative abundances of Proteobacteria and Actinobacteria, and less than 0.01% of 

Fusobacteria (Segata et al., 2012). 

 

 

Figure 1 - 17. Groups detected in the sampled digestive tract microbiome sites based on similarities 

in microbial composition. Taxonomic composition of the microbiota in the ten digestive tract body 

habitats investigated based on average relative abundance of 16S rRNA pyrosequencing reads assigned to 

phylum (upper chart) and genus (lower chart). Microbiota from the ten habitats are grouped based on the 

ratio of Firmicutes to Bacteroidetes as follows: Group 1 (G1), buccal mucosa (BM), keratinized gingiva 

(KG) and hard palate (HP); Group 2 (G2), throat (Th), palatine tonsils (PT), tongue dorsum (TD) and 

saliva (Sal); Group 3 (G3), supraginval (SupP) and subgingival plaques (SubP); and Group 4 (G4), stool 

(Stool). Labels indicate genera at average relative abundance ≥2% in at least one body site. The 

remaining genera were binned together in each phylum as 'other' along with the fraction of reads that 

could not be assigned at the genus level as 'unclassified' (uncl.).  
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Several previous studies have observed different, and in some occurrences also 

opposite, results, with a preponderance of Firmicutes in respect to Bacteroidetes 

(Eckburg et al., 2005; Turnbaugh et al., 2009). These discrepancies could be 

explained by differences in geographic location, host genetics, or sample 

treatment protocols, but surely further studies are needed to throw light on. As 

mentioned above, this study confirms that the microbial composition of any 

specific site in the adult digestive tract shows extremely specific features even in 

absence of disease, and these differences reach to the genus level. 

However, although microbial composition obtainable by analyses of stool 

samples may differ extensively from that achieved using colonic biopsies, the 

stool sample is preferable to the other because it is very easy to collect, due to the 

absolutely absence of risk to donor, and it is associated to a huge amount of 

information still obtainable. 

 

1.5 How to exploit information on gut-

microbiome? 

 

The information about our microbial component, in which we can differ 

immensely, will be key in order to obtain truly personalized medicine, based not 

on the human genome, in which we are all 99.9% the same. Primarily the 

intestinal microbiome can be an optimal candidate for therapeutic microbial 

manipulation due to the wide possibility of interference, also with simple 

procedures such as adding probiotic microorganisms in food, or using specific 

antibiotic molecules, or modulating sources of nutrition according to different 

microbial response. Certainly, more information are necessary first about healthy 

microbiome and then about correlation between microbial changing and disease. 

These information can then be used to control and eventually prevent pathology 
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or, for farm animals to improve their productivity. An example of this kind of 

intervention can be obtained by treatment of Clostridium difficile infection 

(CDI). CDI has emerged as a common complication of antibiotic usage. In the 

less severe cases of CDI, it can be sufficient the interruption of antibiotics 

assumption, but in more severe illness, with continuous diarrhea, fever, toxic 

megacolon, the final outgoing can be the death of patient (Kelly et al., 2012). 

The recommended therapies for CDI include orally somministration of antibiotic 

metronidazole or vancomycin or other antibiotics, although less used, such as 

rifaximin, nitazoxanide or fidaxomicin. Although the use of antibiotics to treat a 

condition which was originally caused by the use of antibiotics seems 

counterintuitive, such therapies produce a clinical response for more than 80% of 

patients. Unfortunately a problem encountered in the treatment of CID is its 

recurrence, that can reach frequency between 20 and 30% of total affected 

patients unable to completely clear the infection. Recurrences of CDI (RCDI) are 

generally treated successfully changing antibiotic therapy. However some 

patients develop a chronic infection. In addition, a patient that shows recurrence 

once has more probabilities to show it other times. Owing to this significant 

failure rate of conventional antibiotic treatments and the lack of alternative 

therapies that have proven to be highly successful, clinicians have resorted to 

fecal microbiota transplantation (or fecal microbiome therapy, FMT). This kind 

of treatment, involving administration of fecal material from a healthy donor, 

usually a close relative of the patient, has as the mainly objective the 

recolonization with lost components of normal intestinal flora rather than specific 

eradication of the pathogen using a conventional antibiotic (Kelly et al., 2012; 

Koenigsknecht and Young, 2013; Shahinas et al., 2012). Even though the global 

experience with FMT is still limited, there is a growing number of scientific 

reports (about 200 cases reported in the world literature) on the efficacy of FMT 

for the treatment of RCDI with cure rates as high as 100% and a mean cure rate 

of 96% (Kelly et al., 2012). 
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1.6 Non-human microbiomes 

 

Although microbiomes have been studied mainly in association with human host, 

microbial communities correlated to other animal hosts have been also 

investigated. To date, a wide variety of animals have been characterized at 

various depth of analysis, such as vertebrates and invertebrates, domestic and 

wild animals. To give some examples, the microbiomes of carnivorous sponge, 

insect herbivore, ant, giant rodent, termites, and giant panda have been studied 

(Dupont et al., 2013; Fang et al., 2012; García-Amado et al., 2012; Nakamura et 

al., 2009; Poulsen and Sapountzis, 2012; Suen et al., 2010; Warnecke et al., 

2007; Zhang et al., 2012; Zhu et al., 2011). Some of these studies were of pivotal 

importance to understand animal physiology, especially for those manifesting 

distinguishing features. For instance, the characterization of giant panda gut 

microbiome was key to explain its dietary oddities. This animal, indeed, 

consumes about 12.5 kg of bamboo each day, and, although possessing a 

gastrointestinal tract typical of carnivores, it can digest about 17% of dry matter 

consumed. Based on the panda’s gut features, digestion of cellulose and 

hemicellulose contained in bamboo is impossible; consequently, this process 

must be dependent on microorganisms presents in panda gut. In support to this 

considerations, 16S rDNA analysis have shown that various microbial species 

present into the gut microbiota are able to digest cellulose, while metagenomic 

analysis has identified laccases, regarded as lignolysis-related enzymes, which 

may have positive roles in facilitating the breakdown of lignin and bamboo 

digestion (Fang et al., 2012; Zhu et al., 2011). Obviously, this kind of analyses 

was useful also to increase our knowledge about several physiological processes 

of domestic animals. In this regard, three independent research groups reviewed 

several canine microbiomes, respectively oral, gastrointestinal, and skin 

microbiome, at various depth of analysis, whereas Suchodoski and colleagues 

and Gnanandarajah and colleagues compared intestinal canine microbiome with 
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acute diarrhea and idiopathic inflammatory bowel disease, and with calcium 

oxalate stones, respectively (Dewhirst et al., 2012; Gnanandarajah et al., 2012; 

Hooda et al., 2012; Suchodolski et al., 2012; Weese, 2013). Moreover, also farm 

animals were subjected to extensive investigations, principally to identify 

microbiome manipulation methods to increase productivity of each animal. 

In Sardinia, sheep (and, at lower extent, goat) breeding has always been an 

activity of great economic importance, both for slaughtering purposes and for the 

production of milk and dairy products. In the first case, as shown in Table 1-1, in 

2012 Sardinia was placed as second among Italian regions for ovine meat 

production, with more than 1.2 million units (about 20% of the overall Italian 

production) and over 8,500 tons of meat (about 15% of the overall Italian 

production). As far as the dairy industry is concerned, Sardinia plays a primary 

role in the Italian ovine and caprine sectors. As a matter of fact, it holds nearly 

half of sheep designed to milk production of the entire Italian territory (nearly 3 

million ewes) and of about one-fifth of the nanny-goats (over 170,000 units), 

thus being by far the region with the highest production of sheep and goat milk, 

(64% and 34% of the overall Italian production, respectively) (Figure 1-18). 

 

 

Figure 1 - 18. Comparison of ewe diffusion and milk production between Sardinia and the rest of 

Italy.  
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Table 1 - 1. Distribution of the dairy and slaughter areas among Italian regions. 

Regions 

Dairy area Slaughter area 

Units 
Milk production 

(metric ton) 
Units 

Meat 

weight 

(metric 

ton) 
Ewe Goat Ovine Caprine 

Abruzzi 190,472 17,399 36,09.3 1.4 524,284 6,443.2 

Aosta Valley 1,951 3,574 - 370.6 1650 20 

Apulia 213,797 30,700 3,912.4 583.8 790,065 7,294.8 

Basilicata 229,939 48,362 91 423.7 294,864 2556 

Calabria 229,274 105,864 4,389.5 91.5 152,368 1,179.5 

Campania 165,847 21,999 1,783.5 101.7 374,043 3,244.8 

Emilia-

Romagna 
58,819 13,368 1,351.1 127 11,559 164.5 

Friuli-Venezia 

Giulia 
8,458 2,040 - 91.3 4,450 54.2 

Latium 605,873 33,119 39,763.2 2,561 1,477,977 1,3817.6 

Liguria 16,311 13,346 - 236.9 4,112 33.1 

Lombardy 57,267 56,853 305.6 5,097.2 39,464 526.5 

Molise 65,497 6,659 - - 122,799 1,225.8 

Piedmont 77,335 58,598 1,884.1 4,308.9 45,649 404.5 

Sardinia 2,968,306 176,249 261,224.9 10,139 1,236,609 8,570.7 

Sicily 657,104 107,810 17,517.3 964.3 244,132 2,490.7 

the Marches 119,535 4,400 2,675.4 - 146,313 1,354.5 

Trentino-Alto 

Adige 
60,404 12,161 - 1376.4 24,716 240 

Tuscany 447,556 12,106 62,779.1 79.9 348,013 3,188.8 

Umbria 92,868 4,752 4,518.8 41.2 129,575 1,382.1 

Veneto 30,088 5,595 372.1 1,348 15,277 152.6 

ITALY 6,296,701 734,954 406,177.3 27,943.8 5,987,919 54,343.9 

 

Therefore, the achievement of further significant information concerning the 

physiology of these animals has a crucial economic relevance. In particular, the 

investigation on how the microbial component can correlate with variation in 
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response to different farming methods could lead to the implementation of 

strategies ensuring higher productivity levels. 

Except for studies aimed to find a cause-effect relationship with a specific 

disease, the microbial component of sheep has been poorly analyzed so far. The 

most investigated biological site has been the rumen, as in other ruminants, for 

two important reasons. The first one is its role in environmental pollution due to 

methane production, and the second one is the possibility of obtaining ideal 

candidates for industrial applications connected to the microbial ability to break 

down lignocelluloses. 

Lignocellulosic biomass, the most abundant renewable polymer in nature, is 

made up of approximately 40% cellulose, and 20-30% both hemicelluloses and 

lignin (Khandeparker and Numan, 2008). The complex network formed by these 

two elements, hemicelluloses and lignin, allows digestibility of the cellulose only 

in ruminant mammalian animals. Rumen, in fact, represents a natural 

lignocelluloses-degrading system, where microorganisms inside have been found 

to produce enzymes able to digest lignocellulosic biomass (Facchini et al., 2012; 

Yue et al., 2013). In order to efficiently hydrolyze lignocelluloses, rumen 

microbes take advantage of the synergistic action of cellulase, hemicellulase and 

ligninolytic enzymes (Sun and Cheng, 2002). Lignocellulose can be converted to 

various energy products such as ethanol, butanol, iso-butanol, hydrogen, 

methane, and volatile fatty acids, through physicochemical approaches or by 

biological processes (Hendriks and Zeeman, 2009; Thanakoses et al., 2003). 

Although this ecosystem is one of the most interesting environments to screen for 

novel biocatalysts, 85% of its inhabiting species remain uncultured, mainly due 

to its complexity and the anaerobic nature of the environment (Gong et al., 2013; 

Krause et al., 2003). In this case, meta-omic technologies are ideally suited for 

overcome the limit of pure cultivation methods, and can therefore be used to find 

out genes with functionally relevant properties owned by uncultured natural 

microorganisms. 
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At the time of this writing, this approach has been utilized to identify several 

novel enzymes, for example a new xylanase, named Xyn10N18, extracted from 

the rumen contents of a dairy cow, a bifunctional xylanase/endoglucanase, and 

two β-glucosidase/xylosidase enzymes from yak rumen metagenome, named 

RuCelA, RuBG3A and RuBG3B respectively (Bao et al., 2012; Chang et al., 

2011; Gong et al., 2013). All these enzymes have an important value due to their 

potential application in various industrial processes, such as textile, paper, food, 

animal feed, biobleaching and biofuel production (Collins et al., 2005; Menon et 

al., 2010; Polizeli et al., 2005). 

Ruminant animals have been deeply studied above all due to their involvements 

in greenhouse gas (GHG) production. In fact, with around 81-92 million tons of 

methane (end product of rumen fermentation during digestion) excreted per year, 

ruminants have been indicated as one of the greatest sources of anthropogenic 

emissions (GHG has been estimated to range between 9% and 18% of total). 

Taking into account this considerations, reducing methane emission has, 

primarily, crucial implications for global environmental protection. In addition, 

this process represents also an important loss of carbon and energy, accounting 

for 8 to 12% of the gross energy content of the animal diet; therefore, reducing 

methane formation can be useful to increase efficient animal production (Wang 

et al., 2012). It has been amply demonstrated that methane production takes place 

in rumen with methanogenic Archaea as the master controller of the process, in 

collaboration with hydrolytic and fermentative microorganisms that, with 

degradation of organic matter, make hydrogen available. Nevertheless, the 

precise mechanisms underlying lignocellulose degradation are not yet fully 

understood. Some rumen cellulolytic bacterial species have been identified 

essentially using PCR assays. The most important are Fibrobacter succinogenes, 

Ruminococcus albus, Ruminococcus flavefaciens, (Koike and Kobayashi, 2001) 

and Cellulosilyticum ruminicola (Cai and Dong, 2010). Various strategies have 

been suggested in order to mitigate ruminant methane production, including the 
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application of nutritional supplement, the manipulation of ruminal fermentation 

by changing feed composition, the addition of methane inhibitors as unsatured 

fatty acids (Sutton et al., 1983) and the defaunation, i.e. the complete removal of 

hydrogen producers protozoa (Shibata and Terada, 2010). All these treatments 

modify rumen digestive features decreasing, or in some cases completely 

suppressing, methane production, and modulate rumen fermentation pattern 

frequently decreasing fiber digestion, that is the most commonly reported 

negative effect (Mosoni et al., 2011; Wang et al., 2012). A meta-omic approach 

(both metagenomics and metaproteomics) able to study globally rumen 

microbiome composition and response to external manipulation could enable to 

give clear insights about this issue.  

To date, most of the known information has been obtained through methods 

classified as "classical", such as PCR and culturing, while “-omic” approaches in 

sheep have been less used. As was the case for other animals, mostly horses and 

cattle, the first step in this kind of investigation consists in studying the 

microbiomes features under physiological conditions (Costa and Weese, 2012; 

O’ Donnell et al., 2013).  

Considering the great invasiveness and complexity of the technical procedures 

needed to study rumen, different approaches are to be preferred. To give same 

examples, in 2012, Khianngam and colleagues isolated from buffalo faeces a new 

cellulose-degrading bacterium species belonging to genus Cohnella, for which 

was proposed the name Cohnella cellulosilytica sp. nov. (Khianngam et al., 

2012). In 2011 Calvo-Bado et al. characterized the ovine “pedomics”, i.e. the 

bacterial microbiome of ovine interdigital skin, using 16S rDNA by 

pyrosequencing and conventional cloning with Sanger-sequencing. The study 

reported Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria as the 

most abundant phyla and underlined an association between Peptostreptococcus, 

Corynebacterium and Staphylococcus genera and healthy interdigital skin, 
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interdigital dermatitis, and virulent footrot, respectively (Calvo-Bado et al., 

2011). 
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Chapter 2 

Aim of the Project 
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In keeping with the considerations outlined in the introduction, the main 

objective of this project was the development of a workflow for in-depth 

metaproteome characterization.  

Accordingly, the following secondary aims were established: 

 to critically evaluate the applicability of a multi-step workflow based 

on bead-beating/freeze-thawing, FASP, and single-run nanoLC-

MS/MS for the metaproteomic analysis of microbial community 

samples; 

 to test efficiency, reproducibility, sensitivity and dynamic range of the 

workflow by using lab-assembled, heterogeneous microbial mixtures, 

composed by bacterial and eukaryotic species in different proportions; 

 to assess the impact of different protein databases on the 

metaproteomic investigation using mock microbial mixtures, 

specifically generating metagenomic- and genomic-derived DBs to 

compare them with publicly available DBs; 

 to validate the workflow using a murine fecal sample, by testing its 

ability to provide reliable, in-depth taxonomic and functional 

information from complex microbiomes; 

 to apply the optimized workflow to an animal sample of 

biotechnological interest, such as ovine stool, in order to characterize 

the gut metaproteome of healthy Sarda sheep. 
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Chapter 3 

Materials and Methods 
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3.1 Samples 

3.1.1 Microbial samples 

 

Identity and features of the microbial strains used in this project are described in 

detail in Table 3-1. Pasteurella multocida was kindly provided by Dr. Gavino 

Marogna (Istituto Zooprofilattico Sperimentale della Sardegna), Rhodotorula 

glutinis by Prof. Ilaria Mannazzu (Department of Agricultural Sciences, 

University of Sassari), Lactobacillus casei, Lactobacillus acidophilus, 

Pediococcus pentosaceus and Saccharomyces cerevisiae by Dr. Pasquale 

Catzeddu and Dr. Manuela Sanna (Porto Conte Ricerche, Alghero), Brevibacillus 

laterosporus by Dr. Luca Ruiu (Bioecopest Srl, Alghero), whereas Enterococcus 

faecalis and Escherichia coli were available in the bacterial collection of the 

Department of Biomedical Sciences, University of Sassari. The microorganisms 

were seven bacterial strains and two yeasts, exhibiting wide differences both in 

terms of structural features and of reference sequences availability. 

At the time when this study was performed, none of the specific microbial strains 

listed in Table 3-1 had its genome sequenced and deposited, except B. 

laterosporus.  

Microbial cultures were grown to stationary phase using the appropriate standard 

medium and the most proper conditions for each microorganism. After an 

overnight culture, colony-forming unit (CFU) counting was performed to 

estimate the amount of viable microbial cells. The microbial cultures were then 

divided into aliquots, which were pelleted, washed three times in phosphate-

buffered saline (PBS, pH 7.2) to eliminate medium residues, and stored as pellets 

at -80°C until use. 
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Table 3 - 1. Features of microorganism used in this project to assemble microbial mixtures. 

Species Cell type Source 
Genome 

size 
Abbreviation 

Brevibacillus laterosporus 
Gram-variable 

bacillus 

LMG 

15441 
5,180 Kb Blat 

Enterococcus faecalis 
Gram-positive 

coccus 

Field 

isolate 
3,218 Kb Efae 

Escherichia coli 
Gram-negative 

bacillus 

Field 

isolate 
4,600 Kb Ecol 

Lactobacillus acidophilus 
Gram-positive 

bacillus 

LMG 

9433 
1,993 Kb Laci 

Lactobacillus casei 
Gram-positive 

bacillus 

LMG 

6904 
2,900 Kb Lcas 

Pasteurella multocida 
Gram-negative 

coccobacillus 

Field 

isolate 
2,250 Kb Pmul 

Pediococcus pentosaceus 
Gram-positive 

coccus 

Field 

isolate 
1,832 Kb Ppen 

Rhodotorula glutinis Yeast 
Field 

isolate 
20,300 Kb Rglu 

Saccharomyces cerevisiae Yeast 
CBS 

1171 
12,068 Kb Scer 

 

2.1.2 Fecal samples 

 

The murine fecal sample (analyzed in Chapter 4) was kindly provided by Dr. 

Michael Silverman (Department of Microbiology and Immunobiology, Harvard 

Medical School, Boston, USA). The sample was collected from one female NOD 

mouse (38 weeks old, raised under standard condition), and stored at -80°C until 

use.  

The ovine fecal samples, kindly provided by Dr. Gavino Marogna (Istituto 

Zooprofilattico Sperimentale della Sardegna), were collected from five Sarda 

sheep belonging to the same flock. The sheep were numbered from one to five. 

The animals were lactating females, free-grazing, and without evident clinical 

symptoms. Fecal samples were collected and stored at -80°C until use. The 

results obtained analyzing such samples are illustrated in Chapter 6. 
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3.2 Microbial mixture assembling 

 

A nine-organism microbial mixture (9MM), composed of all microorganisms 

listed in Table 3-1, was assembled as follows. The first microbial pellet was 

resuspended in 500 μl of pre-heated (95°C) extraction buffer containing 2% 

sodium dodecyl sulphate (SDS), and 20 mM Tris-HCl pH 8.8. After careful 

pipetting, the microbial suspension was added to a second microbial pellet, and 

the procedure was sequentially repeated until the ninth pellet was resuspended 

and mixed. Each microbial pellet used contained 1 ml of overnight culture 

(approximately between 10
8
 and 10

10
 cells).  

Four bacteria (namely P.multocida, E. coli, L. acidophilus, and E. faecalis) were 

selected for further analyses. After overnight culture, each bacterial strain was 

subjected to accurate CFU counting, divided into 3 aliquots (corresponding to 

10
10

, 10
8
 and 10

6
 CFUs, respectively), pelleted, washed three times in PBS, dried, 

and stored at -80°C until use. A four-organism microbial mixture (4MM) was 

then assembled by merging a pellet corresponding to 10
10 

CFUs of E. faecalis, 

two pellets corresponding to 10
8
 CFUs of P.multocida and E. coli, respectively, 

and a pellet corresponding to 10
6 

CFUs of L. acidophilus. All four pellet were 

suspended using the same extraction buffer and the same procedure described 

above for 9MM. 
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3.3 Differential centrifugation 

 

Two different approaches were used in this work to treat fecal samples (Figure 3-

1). According to the first approach (called “homogenization”), used for protein 

extraction from ovine samples, feces were simply homogenized in extraction 

buffer (overall 1:2 w/v sample-to-buffer ratio) and directly subjected to protein 

extraction according to the method B detailed in the “Protein extraction” section 

in this chapter. According to the second approach, called “differential 

centrifugation” (Apajalahti et al., 1998), feces were pre-processed before murine 

protein extraction. Briefly, after thawing at 4°C, fecal samples (approximately. 

100 mg each) were resuspended in 10 ml of PBS, vortexed, shaken in a tube 

rotator for 45 minutes, and subjected to low-speed centrifugation at 500 x g for 5 

minutes to eliminate gross particulate material; the supernatants were carefully 

transferred to clean polycarbonate centrifuge bottles (Beckman Coulter, Brea, 

CA, USA) and kept at 4°C, whereas the pellets were suspended again in PBS. 

The entire procedure was repeated for a total of three rounds. Then, the three 

supernatants obtained from each sample were centrifuged at 20,000 x g for 15 

minutes, and the three derivative pellets were pooled after resuspension with the 

extraction buffer described below, and subjected to protein extraction as detailed 

in the “Protein extraction” section in this chapter. 
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Figure 3 - 1. Fecal sample pre-processing workflow. After thawing at 4°C, the fecal samples were 

treated with different protocols: “homogenization” consisting of a direct resuspension of each sample 

with extraction buffer and differential centrifugation to enrich in microbial cells (Apajalahti et al. 1998).   
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3.4 Protein extraction 

 

Proteins were extracted from single microbial pellets according to two different 

methods.  

 A first pellet of each microorganism underwent high-temperature (Method 

A) extraction by incubation in 100 µl of extraction buffer at 95°C for 20 

minutes in agitation (500 rpm) in a Thermomixer Comfort (Eppendorf, 

Hamburg, Germany), followed by centrifugation at 20,000 x g for 10 

minutes at 4°C and collection of the protein containing supernatant.  

 A second pellet of each microbe was subjected to high-temperature 

extraction followed by bead-beating (Method B). After the high 

temperature incubation described above as first step of Method A, a 

stainless steel bead (5 mm diameter, Qiagen, Hilden, Germany) was added 

to each sample. Samples were sequentially incubated at -80°C for 10 

minutes, subjected to bead beating for 10 minutes (30 cycles/s in a 

TissueLyser LT mechanical homogenizer, Qiagen), incubated at -80°C for 

10 minutes and then at 95°C for 10 minutes, and subjected to a further 10 

minutes bead beating step. Finally, sample was centrifuged at 20,000 x g 

for 10 minutes at 4°C and the whole supernatant was collected. 

The 9MM, 4MM, and fecal samples, both murine and ovine, were processed only 

according to the Method B. 

 

3.5 Proteins and peptides quantification 

 

Protein quantification was carried out by means of the 2-D Quant Kit (GE 

Healthcare, Little Chalfont, UK) following manufacturer’s instructions. 
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In addition, 4 µl of each protein extract from single microbial organisms were 

separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) using 10% 

polyacrilamide gels, which were stained with SimplyBlue SafeStain (Invitrogen, 

Carlsbad, CA, USA). Five microliters of Precision Plus Protein All Blue 

Standards (Bio-Rad, Life Science Research, Hercules, California, USA) for each 

gel was used as molecular weight marker. 

Peptide mixture concentration was estimated by measuring absorbance at 280 nm 

with a NanoDrop 2000 spectrophotometer (Thermo Scientific, San Jose, CA, 

USA), using dilutions of the MassPREP E. Coli Digest Standard (Waters, 

Milford, MA, USA) to generate a calibration curve.  

All measurements were carried out in three technical replicates.  

 

3.6 Filter-aided sample preparation (FASP) 

 

SDS protein extracts were diluted to 200 μl with UA solution (8M urea in 100 

mM Tris-HCl, pH 8.8), loaded into the Microcon Ultracel YM-30 filtration 

devices (Millipore, now Merck Millipore, Billerica, MA, USA), and then 

processed according to filter-aided sample preparation (FASP) method, more in 

detail using the “FASP II” protocol (Liebler and Ham, 2009; Wiśniewski et al., 

2009; Tanca et al., 2013), with minor modifications. Briefly, samples were 

centrifuged at 14,000 x g for 15 minutes, and the concentrates were diluted into 

the filter with 200 μl of UA solution and centrifuged again. After centrifugation, 

the concentrates were mixed with 100 μl of 10 mM dithiothreitol (DTT) in UA 

solution and incubated at 25°C for 30 minutes. After centrifugation, the 

concentrates were mixed with 100 μl of 50 mM iodacetamide (IAM) in UA 

solution and incubated at 20°C for 20 minutes. Following centrifugation, the 

concentrate was diluted with 100 μl of UA solution and concentrated again (this 
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step was repeated twice). Next, the concentrate was diluted with 100 μl of 50 

mM ammonium bicarbonate (ABC) and concentrated again. This step was 

repeated once. Subsequently, 40 μl of trypsin solution (150 ng in 50 mM ABC) 

were added to the filter, and the samples were incubated at 37°C overnight. 

Peptides were collected by centrifugation of the filter units, followed by an 

additional 50 μl wash with a solution containing 70% acetonitrile and 1% formic 

acid. Finally, the peptide mixture was brought to dryness and reconstituted in 

0.2% formic acid to a final concentration of 1 mg/ml. 

 

3.7 DNA extraction  

 

DNA of single bacterial species was extracted according to a procedure hereafter 

called method M (Mild), based on detergent lysis and lysozyme treatment 

according to the DNeasy Blood & Tissue Kit protocol (Qiagen, Hilden, 

Germany), whereas yeast DNA was extracted according to a procedure hereafter 

called method H (Harsh), comprising a strong detergent pretreatment combined 

with freeze-thawing and bead beating steps (as previously described by Harju 

and coworkers (Harju et al., 2004) followed by the Gentra Puregene kit protocol 

(Qiagen, Hilden, Germany). Furthermore, two identical replicates of the 9MM 

were assembled by merging 1 ml overnight culture cell pellets from the nine 

microorganisms mentioned above. Then, the first 9MM replicate was subjected 

to extraction according to method M, while the second according to method H, 

therefore producing two different 9MM extracts (called 9MM-M and 9MM-H 

respectively). 

The extracted DNA was quantified using the Nanodrop 2000 (Thermo Scientific, 

Waltham, MA, USA), and quality was assessed by agarose gel electrophoresis. 

All measurements were carried out in three technical replicates.  
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3.8 DNA sequencing  

 

The 11 DNA extracts (9 individual microbes, 9MM-M and 9MM-H) were then 

subjected to next generation sequencing (NGS). Libraries were generated using 

the Illumina® TruSeq™ DNA Sample Preparation Kit (San Diego, CA, USA) 

according to the manufacturer’s protocol with minor modifications. Briefly, 

genomic DNA was fragmented in an ultrasonic bath (Elmasonic S, Elma, Singen, 

Germany). After ligation to the adapters and gel purification of DNA ranging 

between 300 and 400 bps, the libraries were subjected to 15-20 polymerase chain 

reaction (PCR) cycles to enrich the DNA fragments with adapters ligated to both 

ends. The PCR products were purified and evaluated using the High Sensitivity 

DNA chip on an Agilent Technologies 2100 Bioanalyzer (Santa Clara, CA, 

USA). Normalized sample libraries were pooled and subjected to hybridization 

and cluster generation step on a v1 flow cell using the cBOT cluster generation 

station, according to the Illumina TruSeq PairedEnd Cluster Kit protocol. 

Libraries were sequenced (six samples per lane) with an expected coverage of at 

least 40X for each single microorganism except for R. glutinis (about 12X). The 

9MM extracts were sequenced with a higher coverage (only two samples per 

lane) to achieve a better sequencing depth. DNA sequencing was performed with 

the Illumina HiScanSQ sequencer, using the paired-end method and 76 runs of 

sequencing.  

After sequencing, all reads were subjected to a multiplexing step using Casava 

software version 1.8 implemented in the Illumina HiScanSQ sequencer. 
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3.9 Genome/metagenome gene finding, 

annotation and six-frame translation 

 

Reads were assembled de novo into scaffolds using Velvet 1.2 (Zerbino and 

Birney, 2008), choosing the best K-mer values for each assembly to obtain nine 

genome drafts and two metagenome drafts. As detailed in Table 3-2, all the de 

novo drafts of the single microorganisms showed a N50 length >30 kbps and a 

coverage higher than 39X, except for R. glutinis (4910 bps and 12.6X, 

respectively, probably due to its wider genome); 9MM-M metagenome reads 

showed an assembly quality equivalent to the single genome sequences, whereas 

N50 length of the 9MM-H draft was significantly lower (< 1000). 

 

Table 3 - 2. Characteristics of the drafts genomes upon individual sequencing of the nine 

microorganisms and metagenome sequencing of the 9MM. The median coverage depth was calculated 

by Velvet from the number of reads aligned against each contig. 

Species 
Number of 

contigs 

N50 length 

(bp) 
Total bps 

Median coverage 

depth 

B. laterosporus 409 119780 4862422 39.5 

E. coli 324 131689 4670100 49.5 

E. faecalis 241 178567 3006944 82.4 

L. acidophilus 104 167344 1952696 111 

L. casei 782 30833 2758628 73.4 

P. multocida 350 55083 2286223 98.4 

P. pentosaceus 168 282570 1826383 130.3 

R. glutinis 8616 4910 17404538 12.6 

S. cerevisiae 3521 59022 11464721 53.6 

9MM-M 3029 49888 8543469 9.2 

9MM-H 13811 724 5737764 7.8 

 

The putative coding sequences (CDS) were identified with Prodigal 2.60 (Hyatt 

et al., 2010). Each CDS was annotated evaluating the homology by BLAST 
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search against TrEMBL Protein Database Release 2012_10 (E-value ≤ 10-8) 

(Altschul et al., 1997).  

Furthermore, each genome draft was translated in all six frames using the 

following perl script: translateWholeGenomeMultiChromosome.pl, freely 

available at http://proteomics.ucsd.edu/Downloads/. 

 

3.10 LC-MS/MS analysis 

 

MS analysis was carried out using an LTQ-Orbitrap Velos (Thermo Scientific, 

San Jose, CA, USA) interfaced with an UltiMate 3000 RSLCnano LC system 

(Dionex, Sunnyvale, CA, USA, now part of Thermo Scientific). After loading, 4 

µg of each peptide mixtures were concentrated and desalted on a trapping pre-

column (Acclaim PepMap C18, 75 μm × 2 cm nanoViper, 3 μm, 100 Å, Dionex), 

using 0.2% formic acid at a flow rate of 5 μl/min. The peptide separation was 

carried out at 35 °C using a C18 column (Acclaim PepMap RSLC C18, 75 μm x 

15 cm nanoViper, 2 μm, 100 Å, Dionex) at a flow rate of 300 nL/min, subjecting 

the peptide mixtures to 305 or 510 minutes runs (280 or 485 minutes gradient 

from 1 to 50% eluent B in eluent A, where B is a solution 0.2% formic acid in 

95% ACN, and A is 0.2% formic acid in 5% ACN). The mass spectrometer 

LTQ-Orbitrap Velos was set up in a data dependent MS/MS mode under direct 

control of the Xcalibur software (version 1.0.2.65 SP2), where a full-scan 

spectrum (from 300 to 1,700 m/z) was followed by tandem mass spectra 

(MS/MS). The instrument was operated in positive mode with a spray voltage of 

1.2 kV, a capillary temperature of 275°C, and was calibrated before 

measurements. Full-scans were performed in the Orbitrap with resolution of 

30,000 at 400 m/z, the automatic gain control was set to 1,000,000 ions and the 

lock mass option was enabled on a protonated polydimethylcyclosiloxane 

background ion ((Si(CH3)2O)6; m/z = 445.120025) as internal recalibration for 

http://proteomics.ucsd.edu/Downloads/
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accurate mass measurements (Olsen et al., 2010). Peptide ions were selected as 

the ten most intense peaks (Top 10) of the previous scan. The signal threshold for 

triggering an MS/MS event was set to 500 counts. Higher Energy Collisional 

Dissociation (HCD), performed at the far side of the C-trap, was chosen as the 

fragmentation method, by applying a 40% value for normalized collision energy, 

an isolation width of m/z 3.0, a Q-value of 0.25, and an activation time of 0.1 ms. 

Nitrogen was used as the collision gas.  

 

3.11 Protein database construction  

 

Thirteen protein databases (DBs) were used for protein/peptide identification 

from MS data to obtain results described in Chapter 5. The first nine DBs (Table 

3-3) were assembled starting from publicly available sequences derived from 

NCBI, UniProtKB/SwissProt (hereafter simply called SwissProt), and 

UniProtKB/TrEMBL (hereafter simply called TrEMBL) records, using the 

Database Manager tool included in Mascot Server (version 2.4, Matrix Science, 

London, UK), and applying one of the three following taxonomy filters: Bacteria, 

Fungi, Viruses (BFV, corresponding to NCBI taxonomy IDs 2, 4751, and 

10239), selected genera (Brevibacillus, Escherichia, Enterococcus, 

Lactobacillus, Pasteurella, Pediococcus, Rhodotorula, and Saccharomyces, 

corresponding to NCBI taxonomy IDs 55080, 561, 1350, 1578, 745, 1253, 5533, 

and 4930), or selected species (B. laterosporus, E. coli, E. faecalis, L. 

acidophilus, L. casei group, P. multocida, P. pentosaceus, R. glutinis, S. 

cerevisiae, corresponding to NCBI taxonomy IDs 1465, 562, 1351, 1579, 

655183, 747, 1255, 5535, 4932).  
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Table 3 - 3. Public databases used for peptide identification from MS spectra. The databases were 

assembled starting from publicly available sequences derived from NCBI, UniProtKB/SwissProt, and 

UniProtKB/TrEMBL records, applying, one of the three following taxonomy filters: Bacteria, Fungi, 

Viruses (BFV), selected genera (Brevibacillus, Escherichia, Enterococcus, Lactobacillus, Pasteurella, 

Pediococcus, Rhodotorula, and Saccharomyces), or selected species (B. laterosporus, E. coli, E. faecalis, 

L. acidophilus, L. casei group, P. multocida, P. pentosaceus, R. glutinis, S. cerevisiae). 

Database 

acronym 

Original 

database 
Update Taxonomy 

Number 

of 

sequences 

Average 

computing 

time per run 

(min) 

NCBI-BFV NCBI 2012_12 BFV 16,175,389 817 

TrEMBL-

BFV 

UniProtKB/ 

TrEMBL 
2012_10 BFV 21,602,141 1002 

SP-BFV 
UniProtKB/ 

Swiss-Prot 
2012_11 BFV 375,700 28 

NCBI-G NCBI 2012_12 
8 selected 

genera 
895,743 213 

NCBI-S NCBI 2012_12 
9 selected 

species 
554,718 219 

TrEMBL-G 
UniProtKB/ 

TrEMBL 
2012_10 

8 selected 

genera 
2,622,251 269 

TrEMBL-S 
UniProtKB/ 

TrEMBL 
2012_10 

9 selected 

species 
2,198,849 247 

SP-G 
UniProtKB/ 

Swiss-Prot 
2012_11 

8 selected 

genera 
37,708 9 

SP-S 
UniProtKB/ 

Swiss-Prot 
2012_11 

9 selected 

species 
33,130 8 

 

The taxonomy L. casei group was preferred to L. casei (species) due to the very 

high level of sequence similarity and some ambiguity in taxonomic boundaries 

within the species comprised in this taxonomic group. 

The remaining four DBs were constructed from genomic and metagenomic data 

experimentally obtained in our study. Specifically, the single predicted and 

annotated (PA) genomes assembly DB (SGA-PA) was obtained by concatenating 

in a single FASTA file the protein sequences obtained from each individual 

microbe upon CDS prediction and TrEMBL annotation, while the PA 

metagenome DB (Meta-PA) was obtained by concatenating in a single FASTA 
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file the protein sequences obtained upon NGS of the two 9MM extracts, CDS 

prediction and TrEMBL annotation. Finally, the genome drafts of the nine 

sequenced microbes and the 9MM metagenome draft were also processed in an 

alternative way based on naïve six-frame translation, thus generating SGA-6FT 

and Meta-6FT DBs, respectively (Table 3-4).  

 

Table 3 - 4. Custom databases used for peptide identification from MS spectra. Databases were 

constructed from genomic and metagenomic data experimentally obtained in this study.  

Database 

acronym 

Original 

database 
Processing 

Number of 

sequences 

Average 

computing 

time per run 

(min) 

Meta-PA 
Matched 

metagenome 

CDS prediction + 

TrEMBL annotation 
24,673 10 

Meta-6FT 
Matched 

metagenome 
six-frame translation 90,306 17 

SGA-PA 
Single genomes 

assembly 

CDS prediction + 

TrEMBL annotation 
52,455 10 

SGA-6FT 
Single genomes 

assembly 
six-frame translation 54,948 28 

 

As expected, the number of amino acid residues of the 6FT DBs was almost six 

time bigger than that of the corresponding PA DBs (specifically, 4.2 million 

residues for Meta-PA versus 26.1 for Meta-6FT, and 12.9 million residues for 

SGA-PA versus 84.2 for SGA-6FT). Features and composition of the in-house 

Meta-PA and SGA-PA DBs were as follows (as reported more in detail in Table 

3-5). The percentage of annotated proteins were 71% and 54% of the overall 

protein sequences, and the number of non-redundant protein sequences within 

each DB amounted to 13270 and 27164 for Meta-PA and SGA-PA, respectively.  
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Table 3 - 5. Features of the in-house databases. Detail of the sequences (indicated as absolute and 

relative number) attributed to each species present in our microbial mixture. Specifically, SGA-PA DB 

was obtained by concatenating in a single FASTA file the protein sequences achieved from each 

individual microbe upon CDS prediction and TrEMBL annotation, while Meta-PA DB was obtained by 

concatenating in a single FASTA file the protein sequences obtained upon NGS of the two 9MM extracts, 

CDS prediction and TrEMBL annotation. 

Species 

Number of protein  

Sequenze 

Percentage of protein 

sequences 

Meta-PA SGA-PA Meta-PA SGA-PA 

B. laterosporus 4714 4286 35.52% 15.78% 

E. faecalis 142 2847 1.07% 10.48% 

E. coli 54 3337 0.41% 12.28% 

L. acidophilus 1132 2184 8.53% 8.04% 

L. casei group 2942 1827 22.17% 6.73% 

P. multocida 3567 2109 26.88% 7.76% 

P. pentosaceus 22 1527 0.17% 5.62% 

R. glutinis 69 860 0.52% 3.17% 

S. cerevisiae 1 5687 0.01% 20.94% 

Other species  301 2411 4.72% 9.20% 

 

Among these, 95% and 91% were correctly attributed to the species actually 

present in the 9MM, respectively. Concerning the species distribution of the 

protein sequences contained into the two DBs according to TrEMBL annotations, 

in the Meta-PA DB over 90% of protein sequences were from only 4 species (B. 

laterosporus, P .multocida, L. casei group, and L. acidophilus, representing 36%, 

27%, 22% and 9% of the total, respectively), with a significant depletion in yeast 

sequences (for instance, only 1 from S. cerevisiae), whereas in the SGA-PA DB 

the abundance of the 9 actually present species ranged from 3 to 21% of the 

overall protein sequences. 

Finally, a specific DB containing common contaminants (available at 

http://maxquant.org/contaminants.zip) was also used as a control for 

environmental and trypsin contamination. 

http://maxquant.org/contaminants.zip
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In the case of murine and ovine fecal samples (results treated in Chapters 4 and 

6, respectively), a slightly modified version of the “two-step” method, recently 

presented by Jagtap and coworkers, was applied (Jagtap et al., 2013). Briefly, 

MS spectra were first searched against a large database (UniProtKB) without 

establishing a FDR-based threshold. For each sample, the protein entries 

identified in the first search (in one or more replicates) were then used to create a 

smaller database (the DB composition is detailed in Table 3-6), which was 

employed to perform a second search with the FDR threshold set to 1%. 

 

Table 3 - 6. Restricted databases used to analyze murine and ovine fecal samples. MS spectra were 

first searched against a large database (UniProtKB) without establishing a false discoverer rate (FDR)-

based threshold. For each sample, the protein entries identified in the first search (in one or more 

replicates) were then used to create a smaller database according to the “two step” method presented by 

Jagtap and coworkers (Jagtap et al., 2013). 

Database 
Number of protein 

sequences 

Sheep 1 (Obtained from one instrumental replicate) 65,345 

Sheep 2 (Obtained from one instrumental replicate) 66,471 

Sheep 3 (Obtained from one instrumental replicate) 62,274 

Sheep 4 (Obtained from one instrumental replicate) 65,708 

Sheep 5 (Obtained from one instrumental replicate) 57,887 

MFM A (Obtained from two instrumental replicates) 107,842 

MFM B (Obtained from two instrumental replicates) 109,979 

 

3.12 Protein identification 

 

Protein/peptide identification was performed using the Proteome Discoverer 

platform (Thermo Scientific, version 1.3.0.339 for results described in Chapter 5 
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and version 1.4 for results described both in Chapter 4 and 6), with a workflow 

consisting of the following nodes and respective parameters:  

1) Spectrum Selector: Precursor Mass Range: 350-5,000 Da; S/N Threshold: 

1.5; 

2) Search engine:  

a) Mascot (in house server interfaced with Proteome Discoverer platform) 

for analyses reported in Chapter 5 according to the following criteria: 

(1) Enzyme: Trypsin;  

(2) Maximum Missed Cleavage Sites: 2; 

(3) Precursor Mass Tolerance: 10 ppm; 

(4) Fragment Mass Tolerance: 0.2 Da; 

(5) Static modification: Cysteine Carbamidomethylation; 

(6) Dynamic Modifications: N-terminal Glutamine conversion to 

Pyro-glutammic Acid, Methionine Oxidation and N-terminal 

Acetylation; 

b) Sequest-HT for analyses reported in Chapter 4 and 6 according to the 

following criteria: 

(1) Protein Database: UniProtKB, release 2013_07; 

(2) Enzyme: Trypsin; 

(3) Maximum Missed Cleavage Sites: 2; 

(4) Peptide Length Range: 5-50 amino acids; 

(5) Maximum Delta Cn: 0.05; 

(6) Precursor Mass Tolerance: 10 ppm; 

(7) Fragment Mass Tolerance: 0.02 Da; 

(8) Static modification: cysteine carbamidomethylation; 

(9) Dynamic modification: methionine oxidation; 

3) Percolator for peptide validation (FDR<1%, based on peptide q-value, if not 

otherwise stated). 
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Results were filtered in order to keep only rank 1 peptides, and both peptide and 

protein grouping according to Proteome Discoverer’s algorithms were allowed, 

applying strict maximum parsimony principle. 

 

3.13 Proteomic data analysis 

 

Peptides and proteins identified were subjected to the following further analyses: 

 Peptide-spectrum matched (PSMs) sequences were imported on Unipept 

(http://unipept.ugent.be/), in order to infer taxonomic information about 

the identified peptides according to the Lower Common Ancestor (LCA) 

approach, and subjected to multi-peptide analysis setting the following 

parameters: “Equate I and L” and “Filter duplicate peptides” (Mesuere et 

al., 2012).  

 Peptide sequences were also subjected to standard protein BLAST search 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) against the NCBI-nr DB using 

blastp with default parameters (included the automatic adjustment for 

short input sequences). BLAST output files (in xml format) were uploaded 

in MEGAN (MEtaGenome ANalyzer, version 4.70.4) to perform 

taxonomic analysis (Huson et al., 2011). MEGAN parameters were left as 

default, except “Min support” which was set as needed (see Chapter 5 for 

details). 

 Protein transmembrane helices were predicted using TMHMM server (v. 

2.0; http://www.cbs.dtu.dk/services/TMHMM/).  

 Protein annotation information, concerning subcellular localization, Gene 

Ontology (GO) categorization, and protein family assignment, were 

retrieved from UniProtKB (http://www.uniprot.org/). 

http://unipept.ugent.be/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.cbs.dtu.dk/services/TMHMM/
http://www.uniprot.org/
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 Proteins were mapped into metabolic pathways using the interactive 

Pathways Explorer (iPath v.2, http://pathways.embl.de/) (Yamada et al., 

2011). 

 Venn diagrams were designed by means of Venny 

(http://bioinfogp.cnb.csic.es/tools/venny/index.html) or Venn Diagram 

Plotter (http://omics.pnl.gov/software/VennDiagramPlotter.php).  

 Data elaboration was carried out using Microsoft Excel (Redmond, WA, 

USA) and in house scripts.  

 

  

http://pathways.embl.de/
http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://omics.pnl.gov/software/VennDiagramPlotter.php
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Chapter 4 

Results and Discussion: 

“Development of a rapid and efficient protocol based on 

bead-beating, FASP and single-run LC-MS/MS for in-

depth metaproteome characterization” 
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4.1 Preliminary optimization of a protein 

extraction method for structurally different 

microbial species 
 

We assessed the effect of adding bead-beating and freeze-thawing treatments 

(called method B in the “Materials and Methods” section) on protein extraction 

yield, compared to simple extraction by boiling in SDS-based buffer (called 

method A in the “Materials and Methods” section) in seven bacterial strains and 

two yeasts, exhibiting very different structural features as reported in Table 4-1 

(and, in more detail, in Table 3-1 in the “Material and Methods” section). Six cell 

pellets (corresponding to 1 ml of overnight culture) per microorganism were 

subjected to protein extraction according to both methods (triplicate analysis per 

method). 

 

Table 4 - 1. Features of microorganism used in this project to assemble microbial mixtures. 

Species Cell type Abbreviation 

Escherichia coli Gram-negative bacillus Ecol 

Pasteurella multocida Gram-negative coccobacillus Pmul 

Brevibacillus laterosporus Gram-positive bacillus Blat 

Lactobacillus acidophilus Gram-positive bacillus Laci 

Lactobacillus casei Gram-positive bacillus Lcas 

Enterococcus faecalis Gram-positive coccus Efae 

Pediococcus pentosaceus Gram-positive coccus Ppen 

Rhodotorula glutinis Yeast Rglu 

Saccharomyces cerevisiae Yeast Scer 
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The results shown in Figure 4-1 demonstrate that the combination of bead-

beating and freeze-thawing dramatically increases protein extraction yields from 

yeasts (up to 14-fold) and Gram-positive bacteria (up to 10-fold), without 

detrimental effects on Gram-negative bacteria. Method B is therefore useful to 

maximize protein extraction from microbial species which are resistant to lysis 

using mild procedures. This is in line with previous data regarding DNA (and, in 

few cases, also protein) extraction from microbial cells and microbial 

communities (Kolmeder et al., 2012; Salonen et al., 2010). 

 

 

Figure 4 - 1. Protein extraction method optimization. Protein extraction yields using method A 

(boiling in SDS-based buffer) and method B (method A combined with bead-beating/freeze-thawing 

steps). For microbes abbreviation, see Table 4-1. A) SDS-PAGE pattern. Four microliters of each protein 

extract (obtained with method A or B, respectively) were loaded. M, molecular weight marker (Precision 

Plus Protein All Blue Standards, Bio-Rad). B) Histogram showing protein quantification results (mean of 

three replicates; error bars indicate standard deviation).  
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4.2 Overview of the study design for 

metaproteome analysis 
 

The protocol for metaproteome analysis presented in this chapter (schematically 

illustrated in Figure 4-2, and detailed in the “Material and Methods” section) 

consists of the following steps: 

1. proteins extraction from microbial community samples by boiling in 

SDS-based buffer combined with bead-beating/freeze-thawing steps 

(approximately 1.5 h); 

2. clean up and digestion on-filter according to the FASP procedure of the 

protein extracts (minimum 8 h); 

3. single-run LC-MS/MS analysis of the peptide mixtures using an 8 h 

gradient. 

 

 

Figure 4 - 2. Schematic representation of the protocol workflow. 
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The protocol performance was first evaluated using lab-assembled microbial 

mixtures of known composition, in order to test its efficiency, reproducibility, 

sensitivity, dynamic range, and linearity. Then, its reliability and applicability to 

complex microbiome samples was validated by analyzing a mouse stool 

metaproteome. 

 

4.3 Protocol evaluation on lab-assembled 

microbial mixtures 

4.3.1 Nine-organism microbial mixture (9MM) 

 

A first microbial mixture, named 9MM, was assembled by mixing all the nine 

above mentioned microbes (one pellet for each microbe, corresponding to 1 ml of 

overnight culture). The 9MM was subjected to the metaproteomic protocol 

described in the previous section, and the peptide mixtures obtained were 

analyzed in duplicate by single-run LC-MS/MS. Remarkably, the protocol 

showed a very high reproducibility among runs (over 99% based on PSMs, 

Figure 4-3A, left). Moreover, as detailed in Table 4-2, a mean of over 1,900 non-

redundant proteins (of which about 1,250 identified with at least two non-

redundant peptide sequences) and over 9,000 non-redundant peptides per run 

could be identified. Merged data from two replicate runs provided 2,186 non-

redundant protein identifications. Proteins belonging to sequences from all nine 

microbial species contained within the 9MM (including Gram-positive bacteria 

and yeasts) were consistently detected (with FDR<1%), with mutual ratios 

comparable to those observed for protein extraction yields (PSM values were 

compared in Figure 4-3A, right). The percentage of transmembrane proteins 

identified was also estimated (6.2% on average per run), with 4.2% with a single 

transmembrane domain (TMD) and 1% with two or more TMDs (specifically 

over 40 multipass membrane proteins detected per run). On the other hand, 15% 
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of proteins having a localization annotation in UniProtKB were classified as 

belonging or associated to membrane. Finally, 10% of the identifications were 

low molecular weight proteins (MW<10 kDa), although a 30 kDa cut-off was 

chosen for on-filter sample preparation. 

 

 

Figure 4 - 3. Results obtained with lab-assembled microbial mixtures. A) 9MM sample: correlation of 

PSM values among runs to estimate reproducibility (left), and distribution of the identified PSMs among 

microbial species (right). B) 4MM sample: correlation of PSM values among runs to estimate 

reproducibility (left), and correlation between the number of bacterial CFUs and the corresponding 

number of identified PSMs (right). 
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4.3.2 Four-organism unbalanced microbial mixture (4MM) 

 

Four bacterial strains were then selected to assemble a simpler mock mixture, 

named 4MM. In this case, the amount of bacterial cells was accurately measured, 

and bacteria were mixed in unbalanced proportions (specifically, 10
10

 CFUs of E. 

faecalis, 10
8
 CFUs of E. coli and P. multocida, respectively, and 10

6
 CFUs of L. 

acidophilus), with the purpose of testing sensitivity and linearity of the method in 

relation to the bacterial cell amount. As a result, a mean of 11 proteins and 27 

unique peptides per run were assigned to the less abundant species (L. 

acidophilus). Considering that the total amount of protein extracted from the 

4MM was nearly 350 µg, and the amount of peptide mixture actually loaded per 

run was 4 µg (therefore about the ninetieth part of the initial 10
6
 L. acidophilus 

CFUs), the sensitivity of the protocol can be estimated as equal to (or lower than) 

10
4
 CFUs. On the whole, the protocol exhibited a dynamic range of four orders 

of magnitude, slightly wider than previously observed (VerBerkmoes et al. 

2009b). Interestingly, the number of PSMs assigned to each bacterial species was 

strictly correlated (r
2
≥ 0.98) to the bacterial cell amount (expressed as log10 

CFUs; Figure 4-3B, right). Concerning standard identification statistics, 

reproducibility was confirmed as higher than 99% (based on PSMs; Figure 4-3B, 

left), whereas, as detailed in Table 4-2, a mean of 2,600 non-redundant proteins 

(of which 1,900 identified with at least two non-redundant peptide sequences) 

and over 14,000 non-redundant peptides were identified per run; cumulative 

identifications along two runs were even higher (nearly 3,000 and 17,000 non-

redundant protein and peptide identifications, respectively). Furthermore, 11% of 

the identified proteins contained at least one TMD (of which 6.2% with two or 

more TMDs, corresponding to almost 170 multipass membrane proteins found 

per run). Based on UniProtKB localization annotation, 20% of proteins were 

classified as belonging or associated to membrane. Moreover, 9% of the 
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identifications were low molecular weight proteins (MW<10 kDa), in spite of the 

putatively higher cut-off used for FASP. 

On the whole, the data achieved with 9MM and 4MM samples are largely 

comparable, in qualitative and quantitative terms, to the results obtained using 

LC gradients of similar length in previous works, notably with less technically 

demanding samples (Nagaraj et al., 2012; Pirmoradian et al., 2013; Thakur et al., 

2011). Furthermore, the microbial mixtures used in this study were mainly 

composed by environmentally isolated (and not reference) strains; this implies 

that a slight, but not negligible, portion of the spectra may not have been 

correctly matched with the in silico peptide sequences due to differences between 

database reference sequences and experimental sequences (for instance, for the 

poorly characterized R. glutinis). This phenomenon, as well as the influence of 

protein sequence database selection on metaproteome characterization, will be 

specifically analyzed and discussed in the following chapter. 

 

4.4 Protocol validation on murine fecal samples 

 

The murine fecal microbiome (MFM) was chosen to validate the reliability and 

suitability of the protocol to complex metaproteome samples. Stool was 

preliminary subjected to differential centrifugation in order to enrich for 

microbial cells, and then subjected to the protocol previously evaluated on the 

lab-assembled microbial mixtures. Specifically, two technical replicates were 

processed in parallel (from differential centrifugation to FASP), and for each 

replicate two separate LC-MS/MS analyses were run (instrumental replicates, 

four replicates in total). An iterative strategy was adopted for protein 

identification, based on the recently published “two-step” database search 

method (Jagtap et al., 2013). 
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Technical and instrumental reproducibility values were rather high (97% and 

95% based on PSMs, respectively, as illustrated in Figure 4-4A). Table 4-2 

shows the number of proteins, peptides and PSMs identified in each run (with 

FDR<1%), as well as the cumulative results (per technical replicate and overall). 

Up to 8,000 non-redundant proteins (of which 5,600 of microbial origin, and 

2,400 identified with at least two non-redundant peptide sequences) and 11,500 

non-redundant peptides could be identified per run, reaching 12,000 and over 

18,000 protein identifications per technical replicate and in total, respectively. 

Concerning taxonomic distribution, 81% of proteins and 76% of PSMs were of 

microbial origin (specifically assigned to Bacteria, Archaea, Fungi or Viruses). 

 

Table 4 - 2. Number of proteins, peptides and PSMs identified in each sample, replicate and run. 

Sample 

type 
Replicate Run 

Number of 

non-

redundant 

proteins 

Number of 

non-

redundant 

proteins 

(≥ 2 pept) 

Number of 

non-

redundant 

peptides 

Number of 

PSMs 

 

4MM 

 

 1  2,598   1,903   14,746   38,903  

 2  2,611   1,910   14,595   39,787  

  1+2  2,952   2,129   16,996   78,690  

 

9MM 

 

 1  1,973   1,266   9,173   27,015  

 2  1,880   1,227   9,004   26,767  

  1+2  2,186   1,362   10,285   53,782  

MFM 

 

a 1  7,429   1,664   10,381   19,033  

 2  7,719   1,738   10,964   19,651  

 1+2  11,538   2,762   15,585   38,684  

b 1  8,034   2,396   11,526   20,950  

 2  6,994   2,049   10,097   19,146  

 1+2  11,999   3,000   16,153   40,096  

a+b 1+2  18,428   3,612   23,795   78,780  

 

Figure 4-4B depicts the taxonomic distribution according to lowest common 

ancestor (LCA) analysis carried out on PSM data using the Unipept web 

application. The distribution obtained by analyzing the two technical replicates 

was almost identical, as shown in Figure 4-4. According to LCA results, an 
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outstanding microbial diversity could be observed in the MFM sample. In fact, 

peptide sequences were unambiguously classified as belonging to the following 

different microbial taxa: 41 phyla, 77 classes, 169 orders, 365 families, 1048 

genera, and 1997 species. 

 

 

Figure 4 - 4. Evaluation of reproducibility in the analysis of the MFM sample. A) Correlation of 

PSM values among technical replicates (left) or among runs (center and right). B) Taxonomic distribution 

of the identified PSMs (first technical replicate, left; second technical replicate, right). 

 

Notably, a considerable percentage of the identifications (specifically, 9%) was 

represented by fungal sequences, thus confirming the ability to properly extract 

and detect proteins from cells usually refractory to lysis. This is a significant 

result, because of the increasing importance recognized to the eukaryotic 

components of microbial communities, especially associated to human tissues 

and organs (Huffnagle and Noverr 2013; Minton 2012). Moreover, a significant 

part of the sequences were assigned to “exotic” fecal components, such as 

Nematoda (phylum, 0.6%) and Insecta (class, 1.4%), classified in the pie charts 
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as “Other Metazoa”. Concerning protein topology and localization, 14% of 

protein identifications contained at least one TMD (of which 7.6% with two or 

more TMDs, corresponding to a total of 1,637 multipass membrane proteins 

detected in the MFM sample); 24% of proteins with UniProtKB localization 

annotation were classified as belonging or associated to membrane. 

Mouse fecal metaproteome results were further analyzed to carry out a functional 

characterization of the microbiome. Specifically, according to UniProtKB protein 

family classification, 698 different protein families were identified in the MFM 

sample; among them, 603 were of microbial origin. The top 25 microbial protein 

families, based on the number of family member identified, are listed in Table 4-

3; interestingly, they cover a wide range of enzymatic, transport and signaling 

functions. Furthermore, microbial protein identities were uploaded into iPATH 

web application with the aim of mapping proteins into metabolic pathways. As 

shown in Figure 4-5, the metaproteome data achieved using our protocol could 

be mapped to a high number of different metabolic pathways, and the specific 

contribution of the main bacterial phyla and of the fungal part (marked with 

different colors in the Figure 4-5) to the whole metabolic activity of the 

microbiome could be recognized. 

The MFM data presented here represent the largest fecal metaproteome dataset 

published to date. Quantitatively comparable results per run (when considering 

proteins with at least two unique peptides) could be obtained only by applying 

2D-LC approaches, but with higher FDR values compared to the stringent 

threshold used here (Erickson et al., 2012; Verberkmoes et al., 2009b).  

More interestingly, the two main strategies so far successfully employed to 

unravel the stool metaproteome, the above mentioned 2D-LC-MS/MS preceded 

by in-solution digestion, and the extensive 1-DE fractionation before in-gel 

digestion and LC-MS/MS, are considerably more time-consuming and 

technically demanding compared to the protocol described here (Kolmeder et al., 
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2012; Pérez-Cobas et al., 2012). Moreover, gel cutting and destaining, as well as 

in-gel digestion, represent extremely labor-intensive steps for a laboratory 

operator; conversely, our method is more straightforward and also suitable for 

automation. 

 

Table 4 - 3. Top 25 microbial protein families detected in the mouse stool sample. The table is 

ordered by the number of family members identified. 

UniProt protein family 
Number of family 

members identified 
Total PSMs 

ABC transporter superfamily 293 5739 

GTP-binding elongation factor family 253 29255 

TonB-dependent receptor family 108 357 

ATPase alpha/beta chains family 104 4140 

Glyceraldehyde-3-phosphate 

dehydrogenase family 
94 4053 

Chaperonin (HSP60) family 87 3521 

Heat shock protein 70 family 85 1175 

Glu/Leu/Phe/Val dehydrogenases family 84 2568 

Class-II aminoacyl-tRNA synthetase family 78 383 

NifJ family 77 4512 

RNA polymerase beta chain family 74 2808 

Phosphoglycerate kinase family 68 1941 

Class-I aminoacyl-tRNA synthetase family 60 320 

Acyl-CoA dehydrogenase family 55 939 

Short-chain dehydrogenases/reductases 

(SDR) family 
52 78 

RNA polymerase beta' chain family 49 2201 

Polyribonucleotide nucleotidyltransferase 

family 
45 650 

Binding-protein-dependent transport 

system permease family 
43 92 

Glycogen phosphorylase family 39 488 

Aldehyde dehydrogenase family 38 57 

Cation transport ATPase (P-type) family 36 223 

ClpA/clpB family 33 418 

Enolase family 33 378 

Thiolase family 32 207 

Phosphofructokinase family 26 304 
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Figure 4 - 5. Distribution of the identified proteins belonging to the main microbial taxa into 

metabolic pathways. Colors assignments: green for Proteobacteria; red for Firmicutes; dark blue for 

Bacteroidetes; yellow for Actinobacteria; light blue for Fungi; orange for Archaea. 
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In conclusion, this chapter presents a rapid and efficient protocol for 

metaproteome analysis. The overall procedure can be accomplished in a 

minimum of ~18 h, compared to the best performing method developed to date 

(in-solution digestion coupled to 2D-LC-MS/MS) which requires at least 22 h 

solely for the 2D-LC separation. Our protocol, clearly, enables the identification 

of proteins from the diverse microorganisms (included Fungi) that might be part 

of a gut microbiome, showed a sensitivity down to 10
4
 bacterial CFUs, a linear 

dynamic range of 4 orders of magnitude, and a reproducibility up to over 99%. 

When applied to fecal samples, it led to the identification of proteins belonging 

to nearly 2,000 different microbial species and mapping to over 600 functionally 

relevant protein families. In keeping with this, the protocol described here may 

be successfully used for the in-depth and time-effective characterization of 

complex microbiomes. 
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Chapter 5 

Results and Discussion: 

“Evaluating the impact of different sequence databases 

on metaproteome analysis: insights from a lab-assembled 

microbial mixture” 
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5.1 Global experimental design 

 

This study was designed as schematized in Figure 5-1.  

 As a first step, a nine organism microbial mixture (9MM) was assembled, 

by mixing seven prokaryotes and two eukaryotes microorganisms with 

heterogeneous structural characteristics, as summarized in Table 3-1 in the 

“Material and Methods” section. Differently from most of the studies 

published to date regarding the integration between metagenomics and 

metaproteomics, the 9MM used in this study contained, as mentioned, also 

eukaryotic microorganisms. This was in line with the recently growing 

awareness of the importance of Fungi within microbial communities and 

of their key functions for health and disease, which is opening the way to 

the study of the so-called “mycobiome” (Huffnagle and Noverr, 2013; 

Iliev et al., 2012; Minton, 2012). Among all microorganisms used, species 

with lack of previous genomic characterization were included (such as R. 

glutinis), together with well-known species, both reference strains and 

environmental isolates (which may be expected to extensively differ from 

publicly deposited sequences), in order to take into account the high 

variability in the level of sequence information that might be encountered 

in environmental microbiomes.  

 In the second step, the 9 microorganisms were subjected to Illumina NGS 

both as individual organism and as 9MM, in order to generate genome- 

and metagenome-derived protein DBs (see “Materials and Methods” for 

details).  

 Then, as a third step, the 9MM metaproteome was analyzed by shotgun 

LTQ-Orbitrap MS, and MS data were searched against publicly available 

and matched experimental DBs to achieve peptide identification.  
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 Finally, as the last step, the information carried out using the different 

DBs was comparatively evaluated in relation to: number and overlap of 

peptide identifications; FDR behavior and peptide degeneracy; and 

reliability of taxonomic attribution using MEGAN and Unipept software. 

 

 

Figure 5 - 1. Schematic illustration of the experimental design. 

 

In particular, four main DB classes were considered for comparison, each one 

corresponding to a different experimental approach that might be used in a 

metaproteomics study (as represented in Figure 5-2):  

1. public DBs (namely, NCBI, SwissProt and TrEMBL) with generic 

taxonomic indications (all microbial sequences, or rather those 
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belonging to Bacteria, Fungi, and Viruses, abbreviated as BFV), an 

approach needed when no precise taxonomic information and/or 

matched genome sequencing data are available for the microbiome 

under study;  

2. protein sequences selected from the above mentioned public DBs, 

based on taxonomic information (referred to as “taxonomy-restricted” 

DBs, parsed at genus, G, or species, S, level) which may derive from 

previous 16S rDNA gene sequencing or metaproteomic information;  

3. matched metagenome sequence DBs (named “Meta” DBs), 

experimentally obtained from whole metagenome sequencing of the 

same microbiome subjected to metaproteomic analysis;  

4. assembly of experimentally obtained individual genome sequences 

from the main species included in the microbiome (named “single 

genomes assembly”, SGA), an approach that requires isolation of each 

strain of the culturable microbiome (Lagier et al., 2012).  

A further distinction must be made concerning genome data processing: both the 

metagenome and the single genomes were subjected either to coding sequence 

prediction and annotation (PA) or to naïve six-frame translation (6FT), thus 

generating four different experimental DBs. In addition, the information needed 

for generating a “taxonomy-restricted” DB can be easily (and usually) gathered 

by 16S-18S characterization, but a metaproteomic iterative approach can be also 

proposed, comprising a first search using a generic DB, sequentially followed by 

the identification of the main taxa of the microbiome of interest from 

metaproteomic data (using proper filters to improve reliability), the construction 

of a customized, smaller DB, and a second search with this latter DB to improve 

metaproteome coverage. This iterative metaproteomic strategy, which differs 

from the ‘two-step method’ proposed by Jagtap and coworkers in that the former 

is taxonomy-based, might be therefore successfully implemented without the 

need for additional genomic or metagenomic surveys (Jagtap et al., 2013). 
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Figure 5 - 2. Schematic illustration of the database classes examined. 

 

5.2 Comparison of metaproteomic data obtained 

using different protein databases 
 

Figure 5-3 shows a comparison among the peptide identification data achieved 

by searching the MS spectra against the 13 DBs described above, using FDR<1% 

as a threshold. The use of SGA-PA led to the identification of the higher number 

of peptides (Figure 5-3A), while SwissProt-based DBs provided the least 

satisfactory results. Similar results were obtained according to the number of 

peptide-spectrum matches (PSMs; Figure 5-3B).  
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Figure 5 - 3. Comparison of metaproteomic data obtained with different databases. Number of 

peptide sequences (A) and peptide-spectrum matches (PSMs, B) identified in the 9MM using different 

sequence databases (FDR<1%).  
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The amount of peptide identifications achieved using the metagenome-derived 

DBs was slightly higher than those identified using SwissProt, but clearly lower 

than public non-manually annotated NCBI and TrEMBL DBs. Furthermore, 

“taxonomy-restricted” DBs from NCBI and TrEMBL performed better than the 

corresponding DBs with wider taxonomy. It has also to be noted that, as 

indicated in Table 3-3 and Table 3-4, the average computing time needed for the 

DB search differed dramatically among the DBs, proportionally to each DB size. 

On the whole, 12,911 different peptide sequences were identified by searching 

MS spectra against all DBs described above. 

Four DBs were then selected as representative of the four main DB classes 

described above. Specifically, two were TrEMBL-based DBs, and two were 

(meta)genome-based DBs annotated against TrEMBL. The intersections among 

the peptide sequences identified with each DB were calculated and illustrated by 

means of a Venn diagram (Figure 5-4A). Surprisingly, only about one-third of 

the identified peptide sequences were common to all DBs, while 22% were 

unique to a single DB (of which nearly 90% were unique to TrEMBL-BFV or 

SGA-PA). Meta-PA identifications were common to SGA-PA at 98%, whereas 

the specific increment obtained with Meta-PA compared to the public DBs 

(given by the peptide sequences found only using Meta-PA and not detected 

using any publicly-available DB) could be estimated at 6%. Furthermore, 68% of 

peptide sequences were in common between TrEMBL-BFV and TrEMBL-G. 

When comparing DBs according to the public DB of origin (Figure 5-4B, left), 

approximately half of the peptides were common to NCBI, TrEMBL and 

SwissProt; NCBI and TrEMBL shared over 90% of the identified peptides, while 

about 8% of SwissProt peptide sequences (5% of the total) were not identified in 

the other DBs. As far as different taxonomy filters are concerned (Figure 5-4B, 

right), 70% of peptide identifications were common to all DBs, but the use of 

genus/species-specific DBs led to a 17% increase in identifications compared to 

search against a general microbial taxonomy (BFV). 
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Figure 5 - 4. Comparison of metaproteomic data obtained with different databases. A) Venn 

diagram illustrating the peptide distribution among four different DB classes. B) Left, Venn diagram 

illustrating the peptide distribution among all NCBI-, TrEMBL- and SwissProt-based DBs used in this 

study. Right, Venn diagram illustrating the peptide distribution among all DBs with generic microbial 

taxonomy (BFV), genus-specific taxonomy (G), and species-specific taxonomy (S). 

 

The performance of 6FT DBs were also evaluated. A total of 5,337 peptides were 

identified by searching MS spectra against Meta-6FT, of which 117 (2%) were 

unique when compared with the corresponding annotated DB (Meta-PA); SGA-

6FT allowed the detection of 8,333 peptides, of which 757 (9%) had not been 



Antonio Palomba 

“Development of new technologies to study gut microbiomes” 
Tesi di dottorato in Scienze Biomolecolari e Biotecnologiche; Università degli Studi di Sassari 

 

103 
 

found using SGA-PA. On the whole, the employment of 6FT DBs enabled 783 

additional identifications (6% increase). 

It is worth noting that the number of peptides (for metaproteomics), as well as the 

number of reads (for metagenomics), attributed to each of the 9MM microbes 

was far from being equal, although they were theoretically present in comparable 

amounts based on CFU counting. This might be explained by the fact that the 

nine microbial species exhibited huge differences in size and cell structure, 

which may mean that similar numbers of cells contain different amounts of 

proteins, as well as by varying protein extraction yields among microorganisms. 

 

5.3 Evaluation of FDR behavior and peptide 

degeneracy across different databases 
 

Another aim of this study was to investigate how FDR behavior and peptide 

degeneracy are influenced by the particular DB used for metaproteome analysis. 

To evaluate FDR behavior, the number of peptides (Figure 5-5, left) and PSMs 

(Figure 5-5, right) identified with each DB were plotted as a function of FDR 

thresholds based on the Percolator q-values, as previously described by Spivak 

and colleagues (Spivak et al., 2009). As a result, DBs could be distinguished into 

two groups based on the typical trend of their q-value curves: the first comprising 

all publicly available DBs with generic taxonomy (NCBI-BFV, TrEMBL-BFV 

and SP-BFV), whose curve kept on rising much longer compared to the 

remaining DBs, that tended considerably more rapidly to a plateau. Interestingly, 

the FDR evolution was quite different if either peptide sequences or PSMs were 

considered. For instance, SGA-PA achieved the higher number of peptide 

identified at any FDR, whereas in terms of PSMs the same DB passed from 

giving the best results at 1% FDR to being only the fourth best DB at 5% FDR. 
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Figure 5 - 5. Evaluation of FDR behavior using different databases. Diagram plotting the number of 

peptides (left) and PSMs (right) identified with each database as a function of FDR thresholds based on 

the Percolator q-values.  

 

The increment in peptide/PSM identifications when increasing the FDR threshold 

from 1 to 5% was also evaluated (Figure 5-6), and it was observed that the public 

DBs with generic taxonomy consistently yielded the highest percentage of 

additional hits when increasing the FDR threshold both for peptide sequences 

(Figure 5-6, left) and PSMs (Figure 5-6, right). Another significant observation 

could be made concerning 6FT DBs, which showed a two-fold percentage 

increase compared to the corresponding PA DBs when the FDR threshold was 

raised to 5%. 

Furthermore, the degree of peptide degeneracy related to each DB was estimated 

by calculating the percentage of shared (or degenerate) peptides/PSMs. 

According to Proteome Discoverer’s algorithms, after protein identities are 

deduced from a set of identified peptides, proteins are grouped according to the 

peptide sequences identified for the proteins (in this case allowing the “Strict 

Maximum Parsimony Principle” option), and a master protein is reported for 

each protein group, which has been identified by a set of peptides that are not 

included (all together) in any other protein group. Each identified peptide can be 
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therefore matched either with a single protein group (called “unique peptide”) or 

with multiple protein groups (called “shared peptide”). 

In this context, the percentage of shared peptides out of the overall identifications 

gives an indication of the degeneracy associated to a particular DB. As shown in 

Figure 5-7, in general the percentage of shared PSMs (Figure 5-7, right) was 

higher compared to the percentage of shared peptides (Figure 5-7, left) measured 

for the same DB (with FDR<1%).  

 

 

Figure 5 - 6. Evaluation of peptide degeneracy using different databases. Bar graph showing the 

percentage increment in peptide (left) and PSM (right) identifications achieved with each database when 

increasing the FDR threshold from 1 to 5%. 

 

Moreover, experimental DBs exhibited significantly lower percentages of shared 

peptides (and even lower for PSMs) when compared with publicly available 

DBs, whose peptide degeneracy decreased, as expected, according to the 

following order: NCBI>TrEMBL>SwissProt and BFV>G>S. 

 



Antonio Palomba 

“Development of new technologies to study gut microbiomes” 
Tesi di dottorato in Scienze Biomolecolari e Biotecnologiche; Università degli Studi di Sassari 

 

106 
 

 

Figure 5 - 7. Evaluation of shared peptide and PSMs using different databases. Bar graph illustrating 

the percentage of shared peptides (left) and PSMs (right) identified with each database at FDR<1%. 

 

The results presented here further highlight that the use of large and complex 

DBs required for multispecies samples (such as microbial communities) poses 

significant challenges in the implementation and optimization of search-decoy 

approaches for FDR calculation, and suggest that peptide/PSM identification 

significance thresholds are strongly influenced by DB size and redundancy, even 

when a post-search algorithm using semi-supervised machine learning (such as 

Percolator) is used. In fact, the use of “taxonomy-restricted” DBs led to a higher 

number of peptide identifications in comparison with those obtained with the 

same DBs with wider taxonomy (and thus larger size). This may seem quite 

surprising, given that “taxonomy-restricted” DBs were just a subset of the 

corresponding “general” DBs, containing no additional sequences when 

compared to the latter. Specifically, most of the peptide sequences uniquely 

detected with “taxonomy-restricted” DBs were not identified using the 

corresponding “general” DB, since those were discarded being below the 1% 

FDR threshold. Also the poorer performance of 6FT DBs when compared to the 

corresponding PA DBs may be explained in a similar way, since the former are 

almost six time bigger than the latter. In this respect, the use of alternative 

search-decoy strategies as those described by Blakeley et al. and, even more 
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recently, by Jagtap et al. might partially address this problem and lead to an 

increase of peptide identifications, and may be the target of future studies 

(Blakeley et al., 2012; Jagtap et al., 2013). The same phenomenon could be 

observed for SwissProt when compared to TrEMBL (Figure 5-4): TrEMBL 

provided a much higher absolute number of identifications (mostly due to the 

lack of less characterized species within SwissProt), but the parallel use of 

SwissProt gave additional, unique information. Manually curated DBs offer also 

further advantages, including a higher level and quality of annotation concerning 

protein functions, processes, and localizations, which can be extremely useful in 

the functional perspective allowed by metaproteomics. 

 

5.4 Reliability of taxonomic attribution by 

Unipept and MEGAN analysis of metaproteomic 

data 
 

The metaproteomic data generated in this work were then used to evaluate the 

reliability of the taxonomic attribution of peptide identifications, with the aim of 

assessing the influence exerted by the DB choice in this type of investigations. 

Such evaluation was possible due to the a priori knowledge of the taxonomic 

composition of the lab-assembled 9MM. Specifically, the peptide sequences 

identified using the different DBs were parsed by means of two software 

enabling taxonomic analysis according to the LCA approach, namely Unipept 

and MEGAN (Huson et al., 2011; Mesuere et al., 2012). It is worth noting that 

MEGAN requires a preliminary BLAST search of the identified peptide (or 

protein) sequences to be performed, since a BLAST file is needed as input. 

Furthermore, MEGAN “Min Support” filter (that is, the number of reads/peptides 

that must be assigned to a taxon so that it appears in the results) was initially set 

to 1, according to Rudney et al. (Rudney et al., 2010). 
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Figure 5-8 and Figure 5-9 illustrate the number of peptides detected as specific to 

family (top), genus (middle) or species (bottom) level upon, respectively, 

Unipept or MEGAN analysis, identified with five different DBs. Peptide 

distribution among the prokaryotic (blue) and eukaryotic (green) strains included 

in the 9MM was also taken into account, as well as the incorrect attributions 

(denominated “misassignments”, in red). Genus/species-specific DBs were 

excluded from this comparison because it would have been superfluous to assess 

taxonomy attribution reliability when a specific “taxonomy filter” had been 

already set a priori, and therefore the number of misassignments had been 

“forced” to be zero. In general, the number of taxon-specific identifications 

decreased proportionally to the degree of taxonomic detail (for instance, nearly 

4,500, 3,500, and 2,000 peptides could be found with family, genus, and species 

specificity with NCBI-BFV, respectively). Moreover, a higher amount of taxon-

specific peptides could be yielded with Unipept analysis compared to MEGAN 

(for example up to over 4,500 family-specific peptides with Unipept versus less 

than 1,800 with MEGAN). 

The impact of taxonomic “misassignments” was also evaluated. As a result, 

Unipept demonstrated a higher reliability, since the average percentage of 

incorrect attributions was 3%, 5% and 9% (at the family, genus and species level) 

compared to respective percentages of 7%, 17% and 32% with MEGAN. Among 

DBs, Meta-PA provided the most specific results, due to the lowest rate of 

“misassignments”, whereas NCBI-BFV and TrEMBL-BFV performed worse in 

this respect. To the best of our knowledge, the data shown here represent the first 

comparative evaluation of tools enabling biodiversity analysis of metaproteome 

samples. In general, Unipept appeared to be more straightforward for this 

purpose (in terms of user-friendliness, analysis time, and reliability of the 

output), even though MEGAN can also provide functional and pathway 

information which are key for metaproteomic studies. In particular, two parallel 

MEGAN analyses were carried out as suggested by MEGAN developers (Huson 
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et al., 2011): the first using peptide sequences as BLASTP input, and the second 

using the inferred protein sequences to avoid issues due to the extreme shortness 

of peptide sequences. The second analysis produced a higher amount of 

information, but reliability of taxonomic attributions was rather poor, 

consistently to the protein inference issues which have to be expected in a 

metaproteomic experiment; therefore, we chose to use only the data obtained 

using peptide sequences for comparison with Unipept data, also taking into 

account the peptide-centric nature of shotgun proteomics. However, it has also to 

be mentioned that modifying the MEGAN parameter “Min Score” (which was 

not changed from the default settings in this study) may have led to different 

results, especially when dealing with peptide sequences. 

With regard to the distribution of the taxon-specific peptides among the different 

microbial strains, no yeast-specific peptides could be identified using Meta-PA, 

because of the total lack of eukaryotic sequences in this DB. Bacterial family 

distribution was instead comparable among all DBs. Going down to the species 

level, the best coverage was achieved by SGA-PA, followed by NCBI-BFV and 

TrEMBL-BFV which provided similar results. Conversely, SP-BFV failed to 

detect peptides belonging to the species with lower level of genomic 

characterization (such as B. laterosporus and R. glutinis, since no protein 

sequences from these species were included within SwissProt records at the time 

of this study). E. faecalis and E. coli were significantly underrepresented with all 

DBs. 
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Figure 5 - 8. Reliability of taxonomic attribution using Unipept. Bar graphs showing taxonomic 

distribution of family (top), genus (middle) and species (bottom) specific peptides identified with 

different DBs, according to Unipept LCA analysis. Red rectangles illustrate misassignments (i.e. 

attributions to taxa not actually present in the 9MM), with indication of their percentage for each DB. 

Bacterial taxa are represented by various shades of blue, whereas yeast taxa by shades of green. 
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Figure 5 - 9. Reliability of taxonomic attribution using MEGAN. Bar graphs showing taxonomic 

distribution of family (top), genus (middle) and species (bottom) specific peptides identified with 

different DBs, according MEGAN LCA analysis. Red rectangles illustrate misassignments (i.e. 

attributions to taxa not actually present in the 9MM), with indication of their percentage for each DB. 

Bacterial taxa are represented by various shades of blue, whereas yeast taxa by shades of green. 
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In addition, when considering the overall number of families, genera, and species 

found with the different DBs, results were very far from the expected value. As 

an example, Unipept analysis of peptides identified using TrEMBL-BFV 

revealed the (purported) presence of 124 different families, 215 different genera, 

and 249 different species within the 9MM (in this case, MEGAN provided 

generally a lower number of false positives compared to Unipept). This, together 

with the non-negligible percentage of “misassignments” described above, 

demonstrates that taxonomic information gathered without adequate filtering can 

provide confounding information, dramatically decreasing the reliability of 

metaproteomic data. In keeping with this, an empirical filter was devised with the 

aim of eliminating false positive attributions and making the final result as 

similar as possible to the actual 9MM composition. Upon iterative analyses, a 

threshold corresponding to 0.5% of the total number of taxon-specific peptides 

was set, thus defining the taxa exhibiting a number of peptides below such value 

as false positives. As shown in Figure 5-10 (“u” indicates unfiltered data, 

whereas “f” indicates filtered data), in most cases the application of this filter 

allowed the elimination of all incorrect taxa (in red) without (or with only slight) 

loss of information about the actually present strains (in green). 

The establishment of an empirical threshold to filter taxonomic classification, in 

order to discard false positive attributions, has been possible by analyzing a 

simple microbial community of known composition, and then searching for an 

optimized filter allowing the maximization of the real positive attributions and 

the minimization of the false positive ones. Specifically, the current version of 

Unipept does not allow the user to set a threshold (it should be done manually by 

parsing the csv output file); conversely, MEGAN includes a “Min Support” filter 

that can be easily modified according to the user’s need. In particular, only two 

interesting reports (from the same research group) described the use of MEGAN 

for metaproteomic data analysis, and the first clearly stated that “because the 

number of reads in this proteomic dataset was considerably smaller than the 
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thousands usual in a metagenomic dataset, the number of reads required for a 

taxon assignment was set to one” (Jagtap et al., 2012; Rudney et al., 2010). Here, 

we demonstrate that using such a low threshold can give rise to a significant 

percentage of misassignments. Clearly, the particular threshold adopted in this 

study might not be adequate for more complex environmental samples; however, 

our results underline that the raw taxonomic data may contain a significant share 

of false positives, and therefore strongly suggest a critical examination of the 

results. These incorrect species attributions might be generally due to the 

incompleteness of the genomic characterization of the species contained in a 

given microbial community. For instance, several strains of species “A” has been 

sequenced, and therefore different sequence variants are available in a DB. 

Conversely, species “B” has been less studied, and a single strain has been 

sequenced. As a consequence, an unknown sequence polymorphism (or even an 

inaccuracy in the deposited genome sequences) for species “B”, which is shared 

with a species “A” strain, causes the erroneous attribution of its peptides to 

species “A”, just for differences in the degree of information available for the 

two related species. 

We also sought to investigate the taxonomic features of 6FT-unique peptide 

sequences. In fact, 783 peptides were identified only using 6FT DBs (Meta-6FT 

or SGA-6FT), since their sequence was absent from the corresponding predicted 

and annotated DBs. To this aim, the 6FT-unique sequences were classified based 

on the individual genome of origin (this information was available only for SGA-

6FT), as well as subjected to BLAST sequence similarity analysis (both Meta-

6FT and SGA-6FT). As a result, among 675 6FT-specific peptides detected using 

SGA-6FT, 77% matched with sequences belonging to R. glutinis genome, 

followed by 12% from S. cerevisiae (thus nearly 90% were from yeast 

sequences), about 4% each from P. multocida and L. casei, and an additional 4% 

from the remaining microbes.  
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Figure 5 - 10. Improvement of the reliability of taxonomic attribution upon data filtering. 

Histograms showing the number of families (top), genera (middle) and species (bottom) detected upon 

Unipept (left) or MEGAN (right) LCA analysis using different DBs, before and after the application of a 

filter based on the number of taxon-specific peptides (u, unfiltered; f, filtered). The threshold was set to 

0.5% of the overall number of peptides unambiguously assigned to a taxon at a particular taxonomic rank 

level (family, genus or species). Correct and incorrect attributions are represented in green and red, 

respectively. The light blue lines and numbers correspond to the number of families, genera or species 

actually present in the 9MM. 
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This result was confirmed by BLAST analysis, since 72% of the aligned 

sequences were found as significantly homologous to yeast sequences (21 to R. 

glutinis, 10 to S. cerevisiae and 34 to other Fungi). 

The data presented here highlight that further efforts are needed to optimize 

characterization of fungal species, and in particular to enable an efficient 

extraction of yeast DNA together with the most accessible bacterial DNA. As 

above mentioned, the metagenome-derived DB was almost totally lacking 

eukaryotic sequences, thus impairing the identification of the corresponding 

peptides upon shotgun MS analysis. When considering only bacterial data, 

results attained using Meta-PA were comparable to those obtained with the 

remaining DBs (for example, 3,729 bacterial peptide identified with Meta-PA 

versus 4,698 with SGA-PA and 4,601 with TrEMBL-BFV). On the contrary, the 

exploitation of a proteogenomic approach can be useful mostly to increase yeast 

metaproteome coverage (rather than for the bacterial counterpart), most likely in 

view of the presence of alternative or non-conventional splicing forms in 

eukaryotes (Prasad et al., 2012). It has also to be recognized that alternative 

bioinformatic strategies might have been used for genome sequence assembly, 

CDS finding, and gene annotation, especially to improve the quality of the 9MM-

H metagenome draft which was not satisfactory (maybe due to the extreme 

harshness of the extraction conditions used to improve yeast DNA yield). 

Therefore, we cannot exclude that the application of data analysis approaches 

different from the ones chosen in this study might have led to a higher 

metagenome, and thus metaproteome, coverage. 

In conclusion, a real effort is currently being made by proteome researchers to 

develop new bioinformatic strategies able to tackle data analysis issues typical of 

the metaproteomic field (Cantarel et al., 2011; Jagtap et al., 2013; Muth et al., 

2013; Rooijers et al., 2011; Seifert et al., 2013). In this context the results of this 

study confirm that DB selection is not a trivial issue in metaproteomics: data 

quality and quantity can in fact dramatically vary depending on this factor.  
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Based on our data, the following critical consideration and suggestion can be 

made:  

1. when possible, the parallel use of multiple DBs has to be encouraged, 

as different DB types can lead to highly complementary results;  

2. the use of iterative metaproteomic searches with DBs of decreasing 

size, based on protein identification data obtained with relaxed FDR 

thresholds or on taxonomic information obtained using generic DBs 

(as proposed in this study), can be key to achieve a wider 

metaproteome coverage (Jagtap et al., 2013);  

3. especially when dealing with poorly characterized microbial 

community samples, metagenomics (and, in some cases, sequencing of 

individual genomes) can help investigate less characterized species; 

however, special care needs to be taken in metagenomic data 

processing to ensure an adequate quality of the derived DBs (Cantarel 

et al., 2011);  

4. software enabling LCA analysis of metaproteome data (namely, 

Unipept and MEGAN) can provide reliable results even at the species 

level, but proper filters with specific thresholds (e.g. based on the total 

number of taxon-specific peptides, such as the one proposed above) 

have to be set to reduce false positive attributions. 

On the whole, these data may be useful for all researchers dealing with 

microbiome characterization, and provide critical and concrete suggestions to 

improve reliability and analysis depth of metaproteomic results. 

Obviously it has also to be noted that the results presented here were obtained 

using Percolator’s and Proteome Discoverer’s algorithms for FDR calculation 

and protein grouping, respectively. Several alternative, more sophisticated 

approaches are available to perform these post-processing operations (and 

metaproteomics-targeted software will be hopefully developed in the near 
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future), which might deliver significantly different data (Claassen, 2012; 

Hoopmann and Moritz, 2013; Huang et al., 2012; Nesvizhskii, 2010). 

Furthermore, the complexity of the lab-assembled microbial mixture used in this 

study was far from that of a typical “real-world” microbiome. This suggests that 

caution is required before extending the conclusions described here to the most 

heterogeneous environmental samples, and that further validation studies are 

needed to define an optimized pipeline for metaproteomic data analysis. 
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Chapter 6 

Results and Discussion: 

“Ovine gut microbiome characterization” 
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6.1 Proteomics analysis of ovine fecal samples 

 

Fecal samples from five Sarda sheep (identified with numbers from 1 to 5) were 

analyzed with the proteomic pipeline developed within this project, and detailed 

in the “Material and Methods” section. Briefly, proteins were directly extracted 

from ovine stool samples using a combination of bead-beating/freeze-thawing, 

and subjected to FASP for clean-up and digestion, and single-run LC-MS/MS for 

peptide separation and identification. Then, an iterative strategy was adopted for 

protein identification, based on the recently published “two-step” database search 

method, consisting of a first unfiltered search against a large sequence database 

(DB), followed by a second step based on a search against a second, smaller 

DBs, comprising in turn all the sequences from the protein entries identified in 

the primary search (Jagtap et al., 2013). The Table 6-1 shows the number of 

protein sequences, peptides, and peptide spectrum matches (PSMs) identified 

both overall and per sample using a FDR lower than 1%. In addition, the table 

also reports the number of proteins identified with at least 2 non-redundant 

peptide sequences. 

 

Table 6 - 1. Number of proteins, peptides and PSMs identified in each sample, replicate and run. 

Sample 

Number of 

non-redundant 

proteins 

Number of 

non-redundant 

Peptides 

Number of 

PSMs 

Number of 

non-redundant 

proteins 

(≥2 peptides) 

Sheep 1 6,304 9,391 17,489 2,164 

Sheep 2 9,591 13,380 22,436 2,887 

Sheep 3 12,468 16,515 26,662 2,591 

Sheep 4 8,537 12,435 21,780 2,764 

Sheep 5 13,945 17,620 28,878 2,405 

Total 35,971 44,204 117,245 5,852 

Average 10,169 13,868.2 23,449 2,562 

SD 3,061 3,295 4,448 287 
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The ovine fecal metaproteomes obtained were then analyzed to achieve a 

functional characterization of the microbiome. Specifically, according to 

UniProtKB protein family classification, 911 different protein families were 

identified among the five animals, 772 of which were of microbial origin (i.e. 

from Archaea, Bacteria, Fungi, or Viruses, ABFV; Table 6-2).  

Interestingly, they cover a wide range of enzymatic, transport, and signaling 

functions. 

The table shows in detail the microbial protein families reaching the cut-off value 

of 0.5% based on the number of family members or the number of PSMs 

assigned specifically to the particular protein family identified.  

 

Table 6 - 2. Microbial protein families detected in the mouse stool sample above 0.5% threshold. 

The table is ordered by the number of family members identified. 

Microbial Protein Families 

(Archaea-Bacteria-Fungi-

Viruses) 

Number of 

family 

members 

identified 

Total 

PSMs 

Percentage 

of family 

members 

identified 

Members 

Percentage 

of  

PSMs 

GTP-binding elongation factor  359 24,566 5.56% 41.81% 

TonB-dependent receptor  341 1,309 5.28% 2.23% 

ABC transporter  315 838 4.88% 1.43% 

ELFV dehydrogenases  202 5,082 3.13% 8.65% 

GAPDH  117 5,258 1.81% 8.95% 

HSP70  114 1,078 1.77% 1.83% 

NifJ  105 2,621 1.63% 4.46% 

Class-II aa-tRNA synthetase  99 193 1.53% 0.33% 

Class-I aa-tRNA synthetase  96 130 1.49% 0.22% 

SDR 82 138 1.27% 0.23% 

HSP60 77 657 1.19% 1.12% 

Aldehyde dehydrogenase  73 92 1.13% 0.16% 

Phosphoglycerate kinase  71 631 1.10% 1.07% 

Ribosomal protein L7/L12P  70 589 1.08% 1.00% 

Acyl-CoA dehydrogenase  66 182 1.02% 0.31% 

ATPase α/β chains  64 694 0.99% 1.18% 

Cation transport ATPase (P-

type)  
63 114 0.98% 0.19% 
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Microbial Protein Families 

(Archaea-Bacteria-Fungi-

Viruses) 

Number of 

family 

members 

identified 

Total 

PSMs 

Percentage 

of family 

members 

identified 

Members 

Percentage 

of  

PSMs 

RNA polymerase β chain  59 594 0.91% 1.01% 

Binding-protein-dependent 

transport system permease  
57 80 0.88% 0.14% 

RNA polymerase β' chain  49 615 0.76% 1.05% 

PEPCK [ATP]  46 1,294 0.71% 2.20% 

Ribosomal protein L5P  45 697 0.70% 1.19% 

Ribosomal protein S2P  39 798 0.60% 1.36% 

Ribosomal protein S7P  39 305 0.60% 0.52% 

Phosphohexose mutase  35 206 0.54% 0.35% 

Ribosomal protein S4P  35 231 0.54% 0.39% 

Thiolase  33 48 0.51% 0.08% 

Actin  10 586 0.15% 1.00% 

Other ABF families (744) 3,694 9,136 57.23% 15.55% 

Total 6,455 58,762 100% 100% 

 

6.2 Taxonomic distribution 

 

It is also important to highlight that through the use of a metaproteomic approach 

we can achieve significant information about all organisms within the sample. 

According to this, Figure 6-1 illustrates the taxonomic distribution based to 

lowest common ancestor (LCA) analysis carried out on PSMs data using the 

Unipept web application (as described in the “Material and Methods” section) for 

all the five animals. The pie-chart reports all phyla reaching an average cut-off 

value of 0.5% of total PSMs identified among all the animals analyzed,. This 

threshold was selected according to the indications suggested by the analysis of a 

mock microbial mixture (this specific cut-off value allowed, in fact, the lowest 

number of taxonomic misassignments, for more details see Chapter 5), which 

might require adjustments depending on the particular microbial community 

under analysis; further studies are thus still necessary to evaluate this aspect. In 

total, 15 phyla overcoming this threshold were identified in the ovine fecal 
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samples. All these phyla could have a key value according to the different kind of 

information researched on the basis of our experimental plan: 

 the phylum Chordata (on average more than 32% of PSMs identified 

among all five animals), mainly represented from Bos Bovis species, 

corresponds to the “host” proteome; 

 the phyla Streptophyta (11.6%) and Chlorophyta (0.75%), belonging to 

the Viridiplantae kingdom, represent the “nourishment” of the animals 

analyzed; 

 

 

Figure 6 - 1. Distribution of phyla identified in the ovine gut reaching the 0.5% threshold. 

Taxonomy attribution was perfomed according to lowest common ancestor (LCA) analysis carried out on 

PSMs data using the Unipept web application. 

 

 the various phyla forming the “true” ovine microbiome, namely: 

Phyla >0.5%

Chordata Proteobacteria Firmicutes Streptophyta

Bacteroidetes Actinobacteria Ascomycota Arthropoda

Euryarchaeota Basidiomycota Cyanobacteria Spirochaetes

Chlorophyta Nematoda Apicomplexa Other Phyla
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o Actinobacteria (4.4%), Bacteroidetes (8.2%), Cyanobacteria 

(1.1%), Firmicutes (13%), Proteobacteria (13%), and Spirochetes 

(0.8%), belonging to the kingdom Bacteria, that are generally the 

most abundant microorganisms in the gut microbiome, extensively 

investigated in numerous studies; 

o Ascomycota (4.3%), belonging to the kingdom Fungi, that can be 

important decomposers, breaking down organic materials, such as 

dead leaves. The components of this phylum, along with other 

Fungi, are able to degrade large molecules such as cellulose or 

lignin, and thus have important roles in host nutrient cycling and in 

industrial process; 

o Euryarchaeota (1.6%), belonging to the kingdom Archaea, the most 

important greenhouse gas (GHG) producers in the ruminant 

animals (Wang et al., 2012); 

 “exotic” phyla such as: 

o Arthropoda (2.2%), including the class Insecta, that can be a 

contaminant of the nourishment; 

o Apicomplexa (0.5%), a large group of parasitic protists belonging 

to the kingdom Chromalveolata, some of which indicated, for 

example, as abort agents in sheep such as Toxoplasma gondii, 

Sarcocystis ovicanis and Sarcocystis arieticanis that seem to be 

widespread in sheep flocks of Sardinia (Natale et al., 2007; 

Porqueddu et al., 2006); 

o Nematoda (0.7%), an heterogeneous group of organisms often 

involved in different pathologies of veterinary interest such as, for 

example, the Haemonchus contortus that is one of the most 

abundant infectious agents in sheep around the world, causing great 

economic damage to ovine breeding (Akkari et al., 2013; Santos et 

al., 2012); 
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 the “Other Phyla” group, comprising all phyla identified with an average 

abundance lower than 0.5%, include 49 different phyla, 37 of which found 

in all five animals. 

Consequently, according to the specific aim of the project it is possible to focus 

the analysis on proteins belonging to one (or more than one) of the groups 

mentioned above. 

As illustrated in Table 6-3, the host gut proteome characterization host is easily 

achievable thanks to more than three thousand proteins belonging to phylum 

Chordata. Specifically, according to UniProtKB protein family classification, 180 

different protein families attributable to the host were identified among the five 

animals (43 of which reaching the 0.5% abundance cut-off).  

 

Table 6 - 3. Host protein families. Protein families attributable to the host (Phylum chordata) identified 

according to UniProtKB classification, reaching the cut-off value of 0.5% based on the number of family 

members or the number of PSMs assigned. 

Host Protein Families 

Number of 

family 

members 

identified  

Total 

PSMs 

Percentage 

of family 

members 

identified 

Members 

Percentage 

of  

PSMs 

Intermediate filament  193 18,518 22.13% 57.96% 

Peptidase S1  53 2,164 6.08% 6.77% 

Serpin  26 707 2.98% 2.21% 

G-protein coupled 

receptor 1  
25 34 2.87% 0.11% 

MHC class I  25 245 2.87% 0.77% 

Actin  24 1,943 2.75% 6.08% 

HSP70 18 422 2.06% 1.32% 

Annexin  15 915 1.72% 2.86% 

SDR 13 40 1.49% 0.13% 

Mitochondrial carrier  12 200 1.38% 0.63% 

Small GTPase  12 64 1.38% 0.20% 

AB hydrolase  10 760 1.15% 2.38% 

Cation transport ATPase 

(P-type)  
10 219 1.15% 0.69% 
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Host Protein Families 

Number of 

family 

members 

identified  

Total 

PSMs 

Percentage 

of family 

members 

identified 

Members 

Percentage 

of  

PSMs 

Aldehyde dehydrogenase  9 93 1.03% 0.29% 

ATPase α/β chains 9 874 1.03% 2.74% 

GTP-binding elongation 

factor  
9 260 1.03% 0.81% 

Kinesin-like protein  9 23 1.03% 0.07% 

Peptidase M16  9 178 1.03% 0.56% 

Protein kinase  9 13 1.03% 0.04% 

Acyl-CoA dehydrogenase  8 37 0.92% 0.12% 

LDH/MDH  8 64 0.92% 0.20% 

Peptidase T1B  8 18 0.92% 0.06% 

14-3-3 7 110 0.80% 0.34% 

GAPDH 7 268 0.80% 0.84% 

Glycosyl hydrolase 13  7 164 0.80% 0.51% 

Glycosyl hydrolase 22  7 229 0.80% 0.72% 

Peptidase C14A  7 37 0.80% 0.12% 

Alkaline phosphatase  6 110 0.69% 0.34% 

Calycin  6 31 0.69% 0.10% 

Cytochrome P450  6 9 0.69% 0.03% 

Peptidase C19  6 13 0.69% 0.04% 

Peptidase T1A  6 34 0.69% 0.11% 

Protein disulfide isomerase  6 98 0.69% 0.31% 

Tubulin  6 237 0.69% 0.74% 

UDP-glycosyltransferase  6 46 0.69% 0.14% 

WD repeat coronin  6 11 0.69% 0.03% 

ATP:guanido 

phosphotransferase  
5 499 0.57% 1.56% 

Class-I PNDR  5 17 0.57% 0.05% 

Complex I subunit 5  5 5 0.57% 0.02% 

Integrin α chain  5 20 0.57% 0.06% 

Phospholipase A2  5 103 0.57% 0.32% 

Globin  4 362 0.46% 1.13% 

Other Host Protein 

Families (137) 
235 1,755 27.52% 5.49% 

Total 872 31,949 100% 100% 
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It is also interesting to note that the abundance of members belonging to a 

specific protein family and the abundance of the specific protein family in the 

sample (based on PSMs) are not always correlated. For this reason, the protein 

families with the highest abundance account for around the 95% of total PSMs, 

but only for the 75% of the family members. These results suggest that the less 

abundant protein families can be represented by a significant number of 

members, although each identified with a very low number of PSMs, thus 

significantly limiting the frequency of their identification. 

Focusing on the microbial organisms, the taxonomic distribution of PSMs 

assigned to Bacteria, Archaea, Fungi or Viruses was found to be almost identical 

among the five animals; specifically, Archaea, Bacteria, Fungi, and Viruses 

accounted for about 3%, 85%, 10%, and 1% of total PSMs of microbial origin, 

respectively. According to LCA results, the following number of different 

microbial taxa were unambiguously identified: 41 phyla, 80 classes, 176 orders, 

387 families, 1,123 genera, and 2,304 species among all five animals (Figure 6-

2). 

 

6.3 Investigation of the ovine “core” microbiome 

 

The “core” microbiome of these animals was also defined, by examining the taxa 

reaching the cut-off value of 0.5% in all five animals. This core microbiome 

consisted of the following different taxa: 11 phyla, 26 classes, 43 orders, 50 

families, 23 genera, and (only) 3 species (Table 6-5, at the end of this chapter, 

reports the complete list of microbial taxa reaching the selected cut-off value of 

0.5% in at least one sheep). Figure 6-3 gives an overall representation of the huge 

microbial biodiversity identified in these animals. 
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Figure 6 - 2. Archaea, Bacteria, Fungi, and Viruses distribution among each analyzed animals. 

Taxonomy attribution was perfomed according to lowest common ancestor (LCA) analysis carried out on 

PSMs data using the Unipept web application. 

 

Concerning bacterial phyla, the following average distribution was observed: 

Firmicutes 25.8%, Proteobacteria 25.8%, Bacteroidetes 16.4%, Actinobacteria 

8.6%, Cyanobacteria 2.2%, Spirochaetes 1.6%, Verrucomicrobia 0.5%.  Among 

fungal phyla, Ascomycota and Basidiomycota amounted to 8.3% and 2.3%, 

respectively. The Euryarchaeota phylum (from Archaea) was 3.2%. Microbes 
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belonging to Firmicutes and Proteobacteria were the most represented in all 

animals, amounting to more than 50% of microbial peptide sequences. 

It is worth noting that, on the whole, about 90% of total microbial peptide 

sequences belonged to only six phyla (namely Proteobacteria, Firmicutes, 

Bacteroidetes, Actinobacteria, Ascomycota, and Euryarchaeota). 

 

 

Figure 6 - 3. Overall representation of the huge microbial biodiversity identified in sheep. 

Taxonomy attribution was perfomed according to lowest common ancestor (LCA) analysis carried out on 

PSMs data using the Unipept web application. 
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This data give a further confirmation that fungal and archaeal organisms are 

significantly represented within the gut community. In this regard, interesting 

information is provided by archaeal proteins according to their Gene Ontology 

(GO) categories. In fact, as Table 6-4 shows, the fourth most represented GO 

category was “Methanogenesis”, supporting the crucial role of these 

microorganisms in such processes.  

 

Table 6 - 4. Archaeal protein gene ontology. Gene ontology categories attributable to the Archaea 

microorganisms identified according to UniProtKB classification, reaching the cut-off value of 0.5% 

based on the number of family members or the number of PSMs assigned. 

Archaeal  

Gene ontology categories 

Number of 

family 

members 

identified  

Percentage of 

family members 

identified 

ATP binding 115 6.253% 

Cytoplasm 60 3.263% 

DNA binding 41 2.229% 

Methanogenesis 35 1.903% 

Metal ion binding 35 1.903% 

Catalytic activity 32 1.740% 

Oxidoreductase activity 31 1.686% 

Metabolic process 30 1.631% 

Iron-sulfur cluster binding 28 1.523% 

Integral to membrane 26 1.414% 

Flavin adenine dinucleotide binding 24 1.305% 

Membrane 21 1.142% 

One-carbon metabolic process 19 1.033% 

4 iron, 4 sulfur cluster binding 19 1.033% 

Hydrolase activity 18 0.979% 

Structural constituent of ribosoma 17 0.924% 

Zinc ion binding 17 0.924% 

DNA replication 17 0.924% 

Translation 16 0.870% 

Magnesium ion binding 16 0.870% 

nucleic acid binding 15 0.816% 

sequence-specific DNA binding 

transcription factor activity 
14 0.761% 

Ribosoma 14 0.761% 
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Archaeal  

Gene ontology categories 

Number of 

family 

members 

identified  

Percentage of 

family members 

identified 

coenzyme-B sulfoethylthiotransferase 

activity 
14 0.761% 

electron carrier activity 14 0.761% 

regulation of transcription, DNA-

dependent 
13 0.707% 

signal transduction by 

phosphorylation 
12 0.653% 

Proteolysis 12 0.653% 

phosphorelay sensor kinase activity 12 0.653% 

DNA repair 12 0.653% 

 

Along with the above mentioned phyla, also Acidobacteria, Actinobacteria, 

Aquificae, Chlamydiae, Chlorobi, Chloroflexi, Chytridiomycota, Crenarchaeota, 

Deferribacteres, Deinococcus-Thermus, Elusimicrobia, Fibrobacters, 

Fusobacteria, Gemmatimonadetes, Ignavibacteriae, Lentisphaerae, 

Microsporidia, Nitrospirae, Poribacteria, Synergistetes, Tenericutes, 

Thaumarchaeota, Thermodesulfobacteria, Thermotogae, and Verrucomicrobia 

were identified in all animals, even though at lower abundance, and may 

therefore be considered as the main components of the ovine core microbiome.  

 

6.4 Conclusion 

 

Further data are clearly needed to validate the results presented here, mainly 

because of the low number of samples analyzed; furthermore, considerable 

differences in the core microbiome composition may be expected when varying, 

for instance, diet, breed or farming conditions. Anyhow, these results represent 

the first description of the ovine fecal metaproteome, and demonstrate its 

outstanding biological diversity. Based on these data, large-scale studies could be 
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carried out to correlate changes in sheep gut microbiota to zootechnical and 

production variables, with the final aim of optimizing livestock animals 

productivity or of protecting them from several disease types. 
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Table 6 - 5. Complete listo f microbial taxa reaching the cut off value of 0.5% in at leat on sheep. 
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Chapter 7 

Conclusions and  

Future Perspectives 

 

  



Antonio Palomba 

“Development of new technologies to study gut microbiomes” 
Tesi di dottorato in Scienze Biomolecolari e Biotecnologiche; Università degli Studi di Sassari 

 

146 
 

To summarize, during my PhD I have worked at the development of a new, rapid 

and efficient protocol combining bead-beating/freeze-thawing, FASP, and single-

run LC-MS/MS (respectively for protein extraction, for clean-up and digestion, 

and for peptide separation and identification) to enhance metaproteome 

characterization.  

The first important advantage of this pipeline is that the whole procedure can be 

accomplished in a minimum of ~18 h, that is 4 h less than the best performing 

method developed to date, which required at least 22 h solely for the 2D-LC 

separation. Moreover, the results obtained analyzing mock microbial mixture 

highlighted that the workflow can be successfully applied to the identification of 

proteins belonging to different microorganisms, included Fungi, usually 

extremely resistant to lysis. Importantly, the method showed a sensitivity down 

to 10
4
 bacterial CFUs, a linear dynamic range of 4 orders of magnitude, and a 

reproducibility up to over 99%. Furthermore, using the same lab-assembled 

microbial mixture, the impact of different sequence DBs on metaproteome 

analysis was investigated. These results confirmed that DB selection can 

dramatically modify the quality and quantity of achievable data, and that, 

consequently, the choice of the protein DB must be carefully evaluated. Our data 

suggest that, when possible, the parallel use of multiple DBs has to be 

encouraged, because different DB types can lead to highly complementary 

results. An alternative/complementary method involves the use of iterative 

metaproteomic searches with DBs of decreasing size, based on protein 

identification data obtained with relaxed FDR thresholds or on taxonomic 

information obtained using generic DBs, as proposed in this study, allowing to 

achieve a wider metaproteome coverage. Metagenomics and, in some cases, 

sequencing of individual genomes can help investigate less characterized species.  

This study also demonstrated that software enabling LCA analysis of 

metaproteome data can provide reliable results even at the species level, but 

proper filters with specific thresholds have to be set to increase coverage and 

trustworthiness of metaproteomic data. As a final point, the complete 
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metaproteomic analysis workflow was successfully applied to investigate the 

metaproteome of Sarda sheep, an animal of significant veterinary interest 

although little studied, obtaining the identification of more than 35,000 proteins 

belonging to more than 700 different microbial species (10 % of which of fungal 

origin). In keeping with these results, the workflow described here may be 

successfully used for the in-depth characterization of complex microbiomes. 

In the next future, the results described in Chapter 5 might be further validated, 

evaluating the impact of different sequence databases on metaproteome analysis 

using “real-world” and more complex microbial community samples. This is in 

order to find an optimized bioinformatic pipeline that permits to maximize the 

information achievable from each sample. In this regard, it will be interesting to 

carefully investigate advantages and drawbacks, above all in terms of 

information increase/sequencing effort ratio, of the complementary use of several 

metagenomics approaches. 

This information will be of pivotal importance to reliably describe the microbial 

community of various animals of biotechnological, veterinary, and sanitary 

interest. To achieve these results, the first mandatory step is the improvement of 

our knowledge concerning animal microbiomes in physiological condition (Costa 

and Weese, 2012; Dewhirst et al., 2012; Hooda et al., 2012). The next step builds 

on the need to correlate the modification of a microbial community with a given 

pathological status, as already illustrated in numerous studies on humans or other 

animals (Erickson et al., 2012; Gnanandarajah et al., 2012; Hwang et al., 2012; 

Suchodolski et al., 2012). The findings achieved through these steps could be 

applied with the aim of modulating the microbiota members to improve host life 

conditions; for instance, this can be useful to increase livestock animal 

productivity or to limit human (or more in general host) susceptibility to disease 

(Cani and Delzenne, 2011; O’ Donnell et al., 2013; Zimmer et al., 2012).  
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Surely, microbiomes represent an amazing treasure of information concerning 

physiological and pathological processes, that only now we begin to investigate 

and understand. Without doubts, a more in-depth understanding of such 

microbial communities can lead to get responses to important biological 

questions still unanswered. 
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