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Abstract: 

Recognition of spatial variability is very important in precision agriculture applications. 

The use of proximal soil sensors and geostatistical techniques is highly recommended 

worldwide to detect spatial variation not only in fields but also within-field (micro-scale). 

This study involves, as a first step, the use of visible and near infrared (vis-NIR) spectroscopy 

to estimate soil key properties (6) and obtain high resolution maps that allow us to model the 

spatial variability in the soil. Different calibration models were developed using partial least 

square regression (PLSR) for different soil properties. These calibration models were 

evaluated by both cross-validation and independent validation. Results show good to excellent 

calibration models for most of soil properties under study in both cross-validation and 

independent validation. The on-line maps created using the collected on-line spectra and the 

calibration models previously estimated for each soil property were compared with three 

different maps (measured, predicted, error). The second step uses multivariate geostatistical 

analysis to develop three different geostatistical models (soil, spectral, fusion). The soil model 

includes 8 soil properties, spectral model includes 4 soil properties and the fusion model 

includes 12 soil properties. The three models were evaluated by cross-validation and the 

results show that the goodness of fitting can be considered as satisfactory for the soil model, 

whereas the performance of the spectral model was quite poor. Regarding the fusion model, it 

performed quite well, though the model generally underestimated the high values and 

overestimated the low values. 

An independent validation data set was used to evaluate the performance of the three 

models calculating three statistics: mean error (ME), as an indicator of bias; mean 

standardized squared error (MSSE), as an indicator of accuracy, and root mean squared error 

(RMSE), as an indicator of precision of estimation. Synthetically, the two, soil and fusion, 

models performed quite similarly, whereas the performance of the spectral model was much 

poorer. 

With regard to delineation of management zones (MZs), the factor cokriging analysis 

was applied using the three different models. The first factor (F1) for the soil and fusion 

models was related to soil properties that affect soil fertility, whereas for the spectral model 

was related to P (-0.88) and pH (-0.42). Based on the first factor of the soil and fusion models, 

three management zones were delineated and classified as low, medium and high fertility 

zones using isofrequency classes. 
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Spatial similarity between the yield map and delineated MZs maps based on F1 for the 

soil and fusion models was calculated. The overall accordance between the two maps was 

40.0 % for the soil model and 38.6 % for the fusion model. The two models performed quite 

similarly. These results can be interpreted as more than 50% of the yield variation was 

ascribable to more dynamic factors than soil parameters not included in this study, such as 

agro-meteorological conditions, plant diseases, nutrition stresses, etc. However, the results are 

quite promising for the application of the proposed approach in site-specific management. 

 

Keywords: vis-NIR on-line sensor, PLSR, Multi-collocated Cokriging, Factor cokriging, 

Management Zones.  
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Riassunto: 

Il riconoscimento della variabilità spaziale è molto importante nelle applicazioni di 

agricoltura di precisione. L'uso dei sensori di rilevamento prossimale di suolo e delle tecniche 

geostatistiche è attualmente raccomandato a livello globale per rilevare variazioni spaziali non 

solo a scala di campo, ma anche a livello puntuale (micro-scala). Questo studio ha richiesto, ai 

fini di una indagine preliminare finalizzata alla stima delle proprietà chiave dei suoli, un 

analisi spettroscopica nel visibile e vicino infrarosso (vis-NIR) per la realizzazione di mappe 

ad alta risoluzione spaziale. Sono stati stimati i modelli di calibrazione per le diverse proprietà 

del suolo, utilizzando la regressione parziale ai minimi quadrati (PLSR). I modelli sono stati 

valutati sia mediante cross-validation che utilizzando un data set indipendente di validazione. 

I risultati indicano per la maggior parte delle proprietà del suolo considerate un 

adattamento da buono a eccellente. Le mappe delle proprietà del suolo, ottenute dagli spettri 

registrati on-line e dai modelli di calibrazione precedentemente stimati, sono state valutate 

mediante il calcolo di varie statistiche dell’errore sperimentale.  

Successivamente è sta applicata un’analisi geostatistica multivariata per sviluppare tre 

diversi modelli geostatistici, denominati: suolo, spettrale, fusione. Il modello suolo interessa 8 

proprietà del suolo, lo spettrale 4, ed infine quello di fusione 12. I risultati dei tre modelli sono 

stati valutati mediante cross-validazione ed indicano che la bontà del fitting può essere 

considerata soddisfacente per il modello suolo e di fusione, mentre la performance del 

modello spettrale è risultata piuttosto scarsa. Il data set indipendente di validazione è stato 

utilizzato per valutare le prestazioni dei tre modelli, calcolando tre statistiche: errore medio 

(ME), come indicatore di bias; errore quadratico medio (MSE), come indicatore di precisione, 

e deviazione standard dell’errore standardizzato (RMSE), come indicatore di accuratezza 

della stima. I risultati mostrano che i modelli suolo e di fusione hanno operato in modo simile, 

mentre la performance del modello spettrale è stata decisamente inferiore. 

Per la delineazione delle zone di gestione differenziata (MZ), è stato impiegato il factor 

cokriging, utilizzando i tre modelli citati. Il primo fattore regionalizzato (F1), strutturato 

spazialmente nei modelli suolo e di fusione, è risultato correlato alle proprietà del suolo che 

ne influenzano la fertilità, mentre per il modello spettrale il primo fattore relativo alla struttura 

spaziale con range più lungo era correlato a P (-0.88) e pH (-0.42). Il primo fattore per i 

modelli suolo e di fusione è stato mappato, utilizzando tre classi di iso-frequenza, che 

individuavano tre aree a differente livello di fertilità: bassa media e alta. È stata altresì 
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calcolata la similarità spaziale tra una mappa di resa della coltura di orzo e quelle ottenute 

sulla base dei valori F1 per i modelli suolo e di fusione. La conformità generale tra le due 

mappe è pari al 40,0 % per il modello suolo e al 38,6 % per il modello di fusione. Questi 

ultimi risultati indicano come più del 50 % della variazione della resa in campo sia ascrivibile 

a fattori più dinamici dei parametri del suolo e non inclusi in questo studio, tra cui condizioni 

agro-meteorologiche, condizioni fitosanitario delle colture, stress nutrizionali e idrici, ecc.  

Benché sia stata evidenziata l’influenza sulla produttività anche di fattori diversi da 

quelli strettamente pedologici, i modelli proposti possono rappresentare un valido strumento 

per la gestione sito- specifica in ambito aziendale.  
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1. Introduction 

Soils are important natural resources for the existence of mankind. They have to be 

carefully understood to optimise productivity and agricultural production in general. 

Agricultural soils are highly complex and heterogeneous materials that vary greatly at both 

spatial and temporal scales. Spatial variation of soil properties is attributed to the complex 

interaction of many factors including climate that impacts over large distance (Jenny, 1980), 

whereas soil weathering impacts over long time periods. But both previous factors are 

modified by other processes which operate more locally (e.g. erosion and deposition of parent 

materials) or more frequently (e.g. weather). This nested nature of soil variability indicates 

that type and cause of variation depend largely on the scale and frequency of observation 

(Castrignanò, 2011). 

No two soils are exactly alike and variations occur over short distances, both vertically 

and horizontally. Given the importance of soils, there is a need for regular monitoring to 

detect changes in its status so as to implement appropriate management in the event of 

degradation. Soil surveying may be performed at national levels for the inventory of soil 

resources, or for agriculture at regional, farm or field scales. Monitoring of carbon, nutrient 

status, pH, and salinity are among soil properties that need to be quantified for agriculture 

applications (Stenberg et al., 2010). 

Precision agriculture is a site-specific management method explicitly taking within field 

variation of soil and crop into consideration. It is a system-driven technology that provides 

spatial and temporal information (where, how much, and when to apply) about the application 

of farm inputs such as tillage, irrigation, fertilizers, pesticides, etc., in a field (Corwin and 

Lesch, 2005; Gebbers and Adamchuk, 2010; Pierce and Nowak, 1999). Knowledge 

concerning within field variability is essential for the successful implementation of precision 

agriculture (Bullock and Bullock, 2000). However, recommendations on application of 

different inputs into soils were set, until recently, by considering agricultural fields as uniform 

elements, despite the evidence of within-field spatial variability. Ignoring this variability can 

result in poor land and crop management, leading to yield losses or inefficient use of inputs. 

Apart from the costs associated with excess use of chemicals, for example, fertilizers, 

pesticides, and herbicides, environmental impact may be considerable, due to the increased 

contamination of water resources. 
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In order to describe the spatial and temporal variability accurately, direct soil sampling 

and lab analyses should be carried out which are expensive and time-consuming. Therefore, 

they are being complemented with soil sensing techniques which have high spatial resolution 

and fast performance. So far, there are two approaches to collect auxiliary data to determine 

soil variability. The first one is remote sensing, which is based on contactless approach and 

does not require access to the field. But, it still suffers from inadequate spatial and temporal 

resolution (McBratney et al., 2003) and interference from clouds and crop residue cover. It is 

therefore expected that precision agriculture will have to rely on data obtained in the field at 

least in the near future. The second approach is proximal soil sensing that involves the use of 

ground-based sensors to collect soil information from close by (say within 2 m) or within, the 

soil body. Proximal soil sensors can be active or passive; they are invasive, when there is a 

direct sensor-to-soil contact, or non-invasive, measuring soil properties from above the 

surface. They can measure the soil property either directly or indirectly by finding a proxy 

that is easier and cheaper to measure and developing a pedotransfer function. Frequently the 

sensors are mounted on vehicles for on-the-go measurements (Viscarra Rossel et al., 2010). 

Several sensing techniques are being tested and explored or are already available in the 

market for commercial applications (Adamchuk et al., 2005; Kuang et al., 2012). Visible and 

near-infrared (vis-NIR) spectroscopy sensors are one of those techniques that have been 

reported to successfully measure soil properties either in laboratory or on-line. The vis-NIR 

spectrum is characterized as the region from 400 to 2500 nm of the electromagnetic spectrum 

(EMS) corresponding to 25000 to 4000 cm
-1

 (wave numbers). There are many reasons for 

researchers being interested in the implementation of vis–NIR spectroscopy. For example, 

sample preparation involves only drying and crushing; the sample is not affected by the 

analysis in any way; no (hazardous) chemicals are required; measurement takes a few 

seconds; several soil properties can be estimated from a single scan; and the technique can be 

used both in the laboratory and in situ (Viscarra Rossel et al., 2006). Although laboratory 

methods are very useful for soil and crop management, on-line methods are essential for 

precision agriculture applications, since they able to provide detailed information about soil 

parameters quickly and in a cost-effective way (Mouazen et al., 2007). 

Due to the overlapping absorption of soil constituents, diffuse reflectance spectra of soil 

in vis–NIR are largely nonspecific. This characteristic lack of specificity is compounded by 

scatter effects caused by soil structure or specific constituents such as quartz. All of these 

factors result in complex absorption patterns that need to be mathematically extracted from 
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the spectra and correlated with soil properties (Stenberg et al., 2010). Hence, the analysis of 

soil diffuse reflectance spectra require the use of multivariate calibrations (Martens and Naes, 

1989). The most common calibration methods for soil applications are based on linear 

regression, namely stepwise multiple linear regression (SMLR) (Ben-Dor and Banin, 1995; 

Dalal and Henry, 1986), principal component regression (PCR), and partial least squares 

regression (PLSR). The main reason for using SMLR is the inadequacy of more conventional 

regression techniques such as multiple linear regression (MLR) and lack of awareness among 

soil scientists of the existence of full spectrum data compression techniques such as PCR and 

PLSR. Both of these techniques can cope with data containing large numbers of predictor 

variables that are highly collinear. PCR and PLSR are related techniques and in most 

situations their prediction errors are similar. However, PLSR is often preferred by analysts 

because it relates the response and predictor variables so that the model explains more of the 

variance in the response with fewer components, it is more interpretable and the algorithm is 

computationally faster. The use of data mining techniques such as neural networks (NN) (e.g., 

Daniel et al., 2003; Fidencio et al., 2002), multivariate adaptive regression splines (MARS) 

(Shepherd and Walsh, 2002), and boosted regression trees (Brown et al., 2006) is increasing. 

Viscarra Rossel (2007) combined PLSR with bootstrap aggregation (bagging-PLSR) to 

improve the robustness of the PLSR models and produce predictions with uncertainty. MLR, 

PCR, and PLS are linear models, while the data mining techniques can handle nonlinear data. 

Viscarra Rossel and Lark (2009) used wavelets combined with polynomial regression to 

reduce the spectral data, account for non linearity and produce accurate and parsimonious 

calibrations based on selected wavelet coefficients. Mouazen et al. (2010) compared NN with 

PCR and PLS for the prediction of selected soil properties. They found combined PLSR-NN 

models to provide improved predictions as compared to PLSR and PCR. Viscarra Rossel and 

Behrens (2010) compared the use of PLSR to a number of data mining algorithms and feature 

selection techniques for the prediction of clay, organic carbon and pH. They compared 

MARS, random forests (RF), boosted trees (BT), support vector machines (SVM), NN and 

wavelets. Their results suggest that data mining algorithms produce more accurate results than 

PLSR and that some of the algorithms provide information on the importance of specific 

wavelength in the models so that they can be used to interpret them. 

Some soil properties have a direct spectral response in the NIR range such as moisture 

content, Total or organic nitrogen, clay content and organic carbon (Stenberg et al., 2010). 

The prediction of soil C and N depends upon the forms to be measured and the most 
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successful is reported for organic, and total forms (Yang et al., 2012). Other soil properties 

have indirect spectral response such as pH, Ca and Mg which can be measured through co-

variation with other soil properties having direct spectral responses (Stenberg et al., 2010). It 

was reported that the worst measurable properties with indirect spectral responses are K and 

Na (Kuang et al., 2012). Literature states the potential of Vis-NIR spectroscopy for the 

assessment of heavy metals, e.g. Fe, Ni, Cu and Zn with acceptable accuracy (Kuang et al., 

2012). 

Soil properties are continuous variables whose values at any location are expected to 

vary according to the direction and distance of separation from neighbouring samples 

(Burgess and Webster, 1980). Therefore, the classical approach for the interpolation of 

spatially dependent variables is inadequate, because it assumes random variation within units 

and no correlation between units and takes no account of relative location of samples. An 

alternative approach is to treat the soil as a random function and to describe it using the 

methods of Matheron’s regionalized variable theory (known as geostatistics) (Matheron, 

1973). The theory expresses the idea that values of a soil property at near places are likely to 

be similar, whereas those at places far from one another are not. It does so quantitatively and 

in a way that can be used for interpolation (Castrignanò, 2011). Geostatistics is one of 

statistics’ branches focusing on spatial or spatiotemporal datasets. Developed originally to 

predict probability distributions of ore grades for mining operations, it is currently applied in 

diverse disciplines including petroleum geology, soil science, hydrogeology, hydrology, 

meteorology, geochemistry, oceanography, geography, forestry, environmental control, 

landscape ecology, and agriculture especially in precision farming. 

Geostatistics provides descriptive tools such as semivariograms to characterize the 

spatial pattern of continuous and categorical soil attributes. Various interpolation ((co)kriging) 

techniques capitalize on spatial correlation between observations to predict attribute values at 

unsampled locations using information related to one or several attributes. An important 

contribution of geostatistics is the assessment of the uncertainty about unsampled values, 

which usually takes the form of a map of the probability of exceeding critical values, such as 

regulatory thresholds in soil pollution or criteria for soil quality. This uncertainty assessment 

can be combined with expert knowledge for decision making such as delineation of 

contaminated areas where remedial measures should be taken or areas of good soil quality 

where specific management plans can be developed. Last, stochastic simulation allows one to 

generate several models (images) of the spatial distribution of soil attribute values, all of 

http://en.wikipedia.org/wiki/Spacetime
http://en.wikipedia.org/wiki/Dataset
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Mining
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which are consistent with the information available. A given scenario (remediation process, 

land use policy) can be applied to the set of realizations, allowing the uncertainty of the 

response (remediation efficiency, soil productivity) to be assessed (Goovaerts, 1999). 

Geostatistics is applied in many aspects of precision agriculture (PA) including 

sampling, prediction, mapping, decision making, variable-rate applications, economics and so 

on. Contributions from experts in several fields of study illustrate how geostatistics can be 

applied  advantageously in the handling of data of different type, such as yield, soil, crops, 

pests, aerial photographs, remote and proximal imagery. Geostatistical techniques include 

variography, simple-, ordinary-, disjunctive-, indicator-, regression-, and space-time- kriging, 

factorial kriging and co-kriging, and stochastic simulation. (Oliver, 2010). 
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2. Aims  

Visible and near infrared spectroscopy (vis-NIRS) is used as one of proximal soil 

sensing technologies for laboratory and on-line measurement conditions. This is fast, cost 

effective, easy and can provide high resolution data on spatial variation in soil properties. the 

main aim of this study is the use of vis-NIR on-line sensor data and geostatistical tools to 

delineate management zones. Recognition of within-field spatial variability allows us to 

manage the soil in the best way, reduce tillage costs, decrease the environmental impact of 

fertilization and pesticide use and decide the optimal destination (cultivated or wild land), in 

order to maximize their productivity.  

3. Objectives 

In order to fulfil the general aims of the current research, the following objectives were 

achieved: 

- To develop calibration models of soil properties under consideration by linking the 

soil measured data with laboratory-based spectral information using multivariate 

statistical tools. 

- To carry out on-line measurement in one selected field using a vis-NIR on-line 

sensor. 

- To develop high resolution maps of soil properties of interest using on-line 

collected data. 

- To delineate management zones using multivariate geostatistical analysis applied 

on laboratory measured values of soil properties. 

- To delineate management zones using multivariate geostatistical analysis applied 

on key soil properties predicted from calibration models using spectral data as 

regressors. 

- To delineate management zones using multivariate geostatistical analysis applied 

on fused data of laboratory measured and on-line predicted soil properties. 

- To evaluate and compare between three different methods for management zones 

delineation through a validation test. 

- To assess the spatial association of the yield map of one year with each of the three 

maps of management zones delineation with different statistical methods.  

Figure 1 shows the overall structure of the thesis where there can be seen in an easy way all 

steps performed in this research. 
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4. Literature review 

This literature review focuses on proximal soil sensing particularly on visible and near 

infrared spectroscopy and its important role in assessing soil properties. In addition, it reviews 

previous works on the use of geostatistical tools for delineation of site-specific management 

zones using soil data as well as the fusion of soil spectra and soil data. 

4.1 Proximal soil sensing 

In precision agriculture, the use of proximal soil sensors is highly recommended, as 

these can provide high resolution data on spatial variation in soil properties (Stenberg et al., 

2010), which enables the management of land at field and sub-field scale.  

Potentially, proximal or ground-based (invasive or non-invasive) soil sensors have the 

ability to collect high-resolution data rapidly, and in certain cases even allowing real-time 

analysis and processing, by taking measurements as frequently as one per second (Viscarra 

Rossel and McBratney, 1998). Sensor-based soil analysis potentially provides several 

advantages over conventional laboratory methods such as lower cost, increased efficiency, 

more timely results, and collection of dense datasets while just traversing a field. 

The following five categories are suggested by Kuang et al., (2012) for laboratory, in 

situ non-mobile, and on-line mobile measurement conditions: 

1. Conductivity, resistivity, and permittivity based soil sensors 

2. Passive radiometric based soil sensors 

3. Strength based soil sensors 

4. Electrochemical based soil sensors 

5. Reflectance based soil sensors 
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4.1.1 Conductivity, resistivity, and permittivity based soil sensors 

It has been reported (Kuang et al., 2012) that by assessing soil electrical conductivity, 

resistivity and permittivity, soil properties can be measured directly or indirectly. There are 

different types of sensors used under this category such as electrical conductivity (EC), time 

domain reflectance (TDR), frequency domain reflectance (FDR), electrical resistivity (ER) 

and electromagnetic induction (EMI).  

4.1.1.1 EMI sensors  

Usage of EMI sensors in agriculture was first introduced in the late 1970s for assessing 

soil salinity (Corwin and Rhoades, 1982; de Jong et al., 1979; Rhoades and Corwin, 1981; 

Williams and Baker, 1982). Today EMI is used worldwide to assess within field variability. 

The EMI device involves a transmitter coil and a receiver coil installed on both ends of a 

nonconductive bar. Different EMI sensors are available in global markets for ECa 

measurement (e.g. EM31, EM34, EM38, etc), however, according to literature (Kuang et al., 

2012) the most frequently used EMI device is EM38.  

Several studies have been conducted to determine soil parameters, some of those were 

carried out in situ to assess soil salinity with R
2
 values range between 0.5 – 0.98 (McNeill, 

1992; Rhoades et al., 1999; Herrero et al., 2003; McLeod et al., 2010). Water content as well 

as soil texture were measured in situ with R
2 

values ranging between 0.37 and 0.99 and 

between 0.20 and 0.90, respectively (Williams and Hoey, 1987; Domsch and Giebel, 2004; 

Jung et al., 2005; Saey et al., 2009). Other researchers carried out on-line measurements to 

assess the three previous soil properties with R
2 

values ranging between 0.40 and 0.70 for the 

first property (Triantafilis et al., 2002; Corwin and Lesch., 2003; Arriola-Morales et al., 

2009), between 0.23 and 0.70 for the second property (Sudduth et al., 2005; Hezarjaribi and 

Sourell., 2007) and between 0.47 and 94 for the third property (Kitchen et al., 1996; Sudduth 

et al., 2005). 

4.1.1.2 Ground penetrating radar (GPR) 

Basically GPR is a geophysical technique that allows to image soil in two or three 

dimensions reaching to several meters in depth with high spatial resolution. The working 

principle of GPR is similar to reflection seismic and sonar techniques (Davis and Annan, 

1989). Electromagnetic (EM) waves are transmitted towards the soil and from the reflections 

of this wave; properties of the soil can be extracted. The theoretical aspects of radar 
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components and their working principles can be found in detail in Daniels (2007) and Jol 

(2009). GPR systems work in a frequency range of 10–5000 MHz (e.g., VHF-UHF). The 

main characteristics of a GPR system are its operating frequency (centre frequency), 

resolution, and depth of penetration. The GPR resolution is the ability of the system to 

distinguish two signals that are close to each other in time. Usually, the resolution of a GPR 

increases with increasing operating frequency (Davis and Annan, 1989; Huisman et al., 2003). 

As the penetration depth reduces with increasing frequency, the choice of an operating 

frequency is always a trade-off between resolution and penetration depth, as higher 

frequencies permit higher resolution but lower penetration depth (Davis and Annan, 1989). 

The depth range of GPR is also strongly influenced by the electrical conductivity of the soil. 

GPR is a very promising tool for imaging primarily the subsurface features (Annan, 2002; 

Van den Bosch et al., 2006). GPR can be used to measure different soil properties such as 

moisture content (e.g., Chanzy et al., 1996; Van Overmeeren et al., 1997; Weiler et al., 1998; 

Minet et al., 2010), soil salinity (e.g., Al Hagrey and Müller, 2000), soil compaction (Petersen 

et al., 2005), water table (e.g., Smith et al., 1992). 

4.1.2 Passive radiometric sensing 

It is commonly known that all objects above the temperature of absolute zero (-

273.15C) radiate EM waves to their surrounding environment. These emissions are of 

different types identified on the basis of wavelength, for example, ultraviolet, visible, infrared, 

radio waves, gamma rays, etc. In the following section gamma-ray spectrometers will be 

described briefing their potential use in precision agriculture and soil science. 

4.1.2.1 Gamma-ray spectrometers 

Gamma ray (γ-ray) spectrometry is a relatively new soil sensing technique that can be 

used to carry out measurements from either ground or airborne platforms. The spectrometer 

measures natural γ-emissions from emitters, such as 
40

K, the daughter radionuclides of 
238

U 

and 
232

Th, and total emissions from all elements. Association of these radionuclides with clay, 

gravels, and soil-forming materials leads to variations in the concentrations of these emitters 

that can be used to estimate soil properties such as clay, potassium, organic carbon and iron 

contents, soil depth, and soil pH (Viscarra Rossel et al., 2007; Wong and Harper, 1999; Wong 

et al., 2008, 2009). 
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The presence of radioisotopes such as K, Th, and U in soils and rocks is associated with 

certain constituents. Gamma rays emitted from the surface are related to the mineralogy and 

geochemistry of the bedrock and weathered materials, for example, soils, saprolite, alluvial, 

and colluvial sediments. Understanding the bedrock and regolith responses has proven 

invaluable not only for mapping regolith materials but also for understanding geomorphic 

processes (Wilford, 2002; Wilford et al., 1997). Wilford and Minty (2006) explained briefly 

how these radioisotopes occur in rock minerals. For instance, the concentration of K, Th, and 

U contents in soils and rocks generally increases with increasing silica content. The 

concentration of K decreases with increased weathering. This is because K is soluble under 

most weathering environments and tends to be leached from a soil/regolith profile. On 

exceptional occasions, the K is incorporated into potassic clays such as illite. Otherwise, it is 

either absorbed onto clays such as montmorillonite and kaolinite, or associated with either 

large K-feldspar phenocrysts or mica that take time to weather. In contrast, U and Th are 

associated with more stable weathering products in soil profiles. U and Th released during 

weathering are readily absorbed onto clay minerals, Fe, Al oxyhydroxides, and organic matter 

in soils. In addition, U and Th also reside in resistate minerals that persist for a long time in 

the soil. It is therefore not uncommon for relative concentrations of U and Th to increase in 

highly weathered soils, as other more soluble minerals are lost in solution (Wilford and 

Minty, 2006). Detailed information about the geological and geochemical laws governing the 

behavior of radioisotopes in radiometrics can be found in Dickson and Scott (1997) and 

Hyvӧnen et al., (2005). 

In soil science applications, portable gamma radiometers gained interest during the past 

decade for mapping individual soil properties (Pracilio et al., 2005, 2006; Wong and Harper, 

1999). These ground-based gamma spectrometers were used to estimate soil texture (Roberts 

et al., 2003; Taylor et al., 2002; Viscarra Rossel et al., 2007; Mahmood et al., 2011), plant 

available K (Wong and Harper, 1999), and other minerals (Van Egmond et al., 2010; Viscarra 

Rossel et al., 2007). To incorporate the other useful information together with region of 

interest (ROI), a full spectrum analysis is recommended and being used for minimal loss of 

information from gamma spectra (Hendriks et al., 2001; Viscarra Rossel et al., 2007). The 

ground-based gamma spectrometers are used as an on-line system to measure gamma counts. 

There are some small handheld gamma spectrometers to be used in situ as well as in the 

laboratory.  
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4.1.3 Soil strength sensors 

Soil strength changes with time under influence of climate, soil management, and plant 

growth (Koolen and Kuipers, 1983). Soil mechanical properties under external loads of tillage 

tools, and agricultural machinery are influenced by several factors including bulk density 

(BD), MC, SOM, and soil texture type (Mouazen et al., 2002). Methods for the measurement 

of soil strength include laboratory, in situ, and on-line measurement techniques. Soil shear 

strength is soil resistance to deformation by applied external shear forces, for example, during 

soil cutting process with different tillage tools. Shear failure occurs when shear forces exceed 

a maximum limit called yield strength. However, shear failure can also occur under 

compression load, for example, under tyres, which make soil as a bulk material to behave 

differently than metals under compression load (McKyes, 1989). The soil shear strength is 

represented as sum of soil cohesion (C) and internal frictional angle (j). Cohesion is, contrary 

to friction, independent of loading on soil particles. By determining the maximum shear stress 

at corresponding normal stresses, one can determine cohesion and internal friction angle. 

Some methods for measuring soil shear strength are explained below. 

4.1.3.1 Laboratory measurement methods of shear strength 

4.1.3.1.1 Direct shear box 

When carrying out a test, each sample is placed within two square rings. During each 

test, a normal pressure is applied to the upper part of the soil, while the bottom part is moved 

horizontally. The relative displacement versus shear force is recorded and the soil shear 

strength properties are estimated based on Coulomb’s criterion. 

4.1.3.1.2 Triaxial compression test  

The triaxial compression apparatus allows remolded or undisturbed soil samples to be 

tested. Remolded soil specimens are prepared in cylindrical shape after controlling the BD 

and MC. The soil cylinders are then surrounded by a rubber membrane and confined by water 

pressure in a water-filled load cell. During the tests, an axial principal stress is generated on 

the top of the cylinder. Differences between lateral and axial principal stresses generate shear 

stresses on various planes in the soil cylinder. The cylindrical sample will start to deform after 

a certain axial displacement continuing with changes in volume and shape. Using a Mohr’s 

Circle diagram C and j can be determined (Koolen and Kuipers, 1983). 
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4.1.3.2 In situ measurement methods 

4.1.3.2.1 Shear methods 

Soil shear strength can also be determined in situ by means of torsional shear box, 

annular grouser plate and shear vane. They are explained in details by Gill and Vandenberg 

(1967). These methods basically apply similar measuring principles as those of the direct 

shear box. However, soil is being sheared by means of forces applied by rotation instead of 

transitional horizontal displacement of the direct shear box. 

4.1.3.3 Draught sensors 

Draught of a soil cutting tool is commonly used to map soil resistance, incorrectly 

referred to as compaction. Draught is measured by commercially available or specifically 

designed load cells or strain gauges. Godwin (1975) used an extended octagonal ring 

transducer (EORT) to measure tillage forces. Richards (2000) used an EORT to measure 

draught of a tine and to map soil resistance. The results showed that soil texture type and 

other soil physical properties were not correlated to draught and that the soil type variability 

throughout the field could not be predicted using the draught force results. Al-Janobi (2000) 

combined an EORT with data logging system to measure and record on-line draught. The on-

line measured draught only showed soil resistance variability and no correlation with soil 

physical properties. Mouazen et al., (2003) carried out draught measurements with a soil 

sensor to measure BD as an indicator of soil compaction. They used a commercially available 

5 ton single ended shear beam load cell. Mouazen and Ramon (2006) found draught alone 

cannot be used to produce a map of within field variability of soil compaction. According to 

their findings, it is necessary to measure other influencing parameters during the on-line 

measurement of soil compaction, and they have proven the need for a model of soil BD 

indicating soil compaction as a function of draught, MC, and depth. 

Although laboratory methods for the measurement of soil strength are time-consuming, 

they provide essential information for soil and land management. In situ measurement 

methods can easily be used but their main flaw is that they were not developed to account for 

all parameters affecting soil strength measurement, namely, MC, BD, SOM, and texture. 

Therefore, when spatial variation in field soil compaction has to be assessed, any soil strength 

measurement must be accompanied with measurements of the other influencing parameters, 

unless there is proof of spatial uniformity of any of these parameters (Kuang et al., 2012). 
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4.1.4 Electrochemical based sensors 

Electrochemical sensors have been developed which can provide quick information of 

nutrient status and pH in the soil, not only for laboratory use but also for in situ or on-line 

field measurement. Among various classes of electrochemical sensing methods, ion-selective 

electrodes (ISEs) and ion-sensitive field-effect transistors (ISFETs) are the most frequently 

used potentiometric sensors. Both, ISEs and ISFETs measure a voltage difference between 

sensing and reference parts of the system, which is directly related to the concentration and 

the activity of specific ions such as H
+
, K

+
 , NO3


 , Na

+
 , etc.  

4.1.4.1 Ion-selective electrodes 

An ISE is defined as an electro-analytical sensor of the activity of a specific ion in a 

solution. This activity is converted into an electrical potential, which can be measured by a 

voltmeter. The sensing part of the electrode is usually made as an ion-specific membrane, 

along with a reference electrode. Theory, principles, and applications of ISEs are discussed in 

detail in Pungor (1998, 1999, 2001), Birrell and Hummel (2000, 2001), Adamchuk et al., 

(2005), Kim et al., (2006), and Sinfield et al., (2010). ISEs are ion specific, each needing its 

own membrane permitting the passage of certain ions only. An electrical potential is 

established between two electrodes placed in contact with a moist soil sample or liquid soil 

solution. Since nitrate ISEs are highly selective to NO3 ions in solution they were first used 

around 1967 as quick and reliable alternatives to chemical-based laboratory methods for 

nitrate measurements (Dahnke, 1971). The pH electrode is the most well-known and simplest 

type of ISE measuring the concentration of hydrogen ions [H+].  

4.1.4.2 Ion-sensitive field-effect transistors 

ISFETs are based on the same chemical principle as ISEs. The main technical difference 

between ISFETs and ISEs is that ISFETs do not contain an internal solution and the ion-

selective membrane is affixed directly on the gate surface of the ISFET (Birrell and Hummel, 

2000; Sinfield et al., 2010). Bergveld et al., (1998) have presented a review of theory of 

ISFET sensors.  

ISEs and ISFETs can be affected by two factors: first—disturbances from the 

measurement system, for example, membrane, reference electrode, amplifier, etc.; second-soil 

factors hindering the attainment of electrochemical equilibrium in the measuring cell. The role 

of second type of factors is least studied in the literature due to complexity of measuring 
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media. Electrode aging and mechanical wear of the sensitive membrane may result in 

significant changes in output. Periodic calibration in solutions with known ion activity is 

needed. 

Interference from other undesired ions is limiting the use of ion-selective electrodes. 

ISEs are not completely ion-specific but are sensitive to other ions having similar physical 

properties. The relative sensitivities of each type of ion-specific electrode to various 

interfering ions are generally known but the degree of interference depends on many factors, 

preventing precise correction of readings. For instance, the nitrate electrode has various ionic 

interferences, that is, perchlorate, iodide, chloride, and sulfate. Due to key features of ISFETs, 

their application as potentiometric sensors has great advantages over conventional ISEs. For 

instance, small size and a solid state nature, low output impedance that reduces interference 

from external EM fields, mass fabrication and low cost, the possibility of integrating 

compensation and data processing circuits in the same chip with the sensor, high signal-to-

noise ratio, low sample volume, and a short response time. ISFETs might be integrated with a 

flow injection analysis (FIA) system for real-time soil analysis. In contrast to many other 

analytical methods, ISEs are capable of determining ion activities, rather than total 

concentration. The analyte is also not consumed in the course of the measurements, and 

instruments are less expensive compared to the ones needed in other methods. 

4.1.5 Reflectance sensors 

To generate a soil spectrum, radiation containing all relevant frequencies in the 

particular range is directed to the sample. Depending on the constituents present in the soil the 

radiation will cause individual molecular bonds to vibrate, either by bending or stretching. 

These vibrations lead to absorption of light, to various degrees, with a specific energy 

quantum corresponding to the difference between two energy levels. As the energy quantum 

is directly related to frequency, the resulting absorption spectrum produces a characteristic 

shape that can be used for analytical purposes (Stenberg et al., 2010). The fundamental 

vibrations in the mid-infrared (MIR) region result in overtones and/or combinations in the 

near infrared (NIR) region. In the visible (vis) range (400–780 nm), absorption bands related 

to soil colour are due to electron excitations, which assist the measurement of soil organic 

matter content (SOM) and moisture content (MC). However, in the NIR range, the overtones 

of OH and overtones and/or combinations of C–H, C–C, OH
+
 minerals, and N–H are 
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important for the detection of SOM, MC, clay minerals, and nitrogen (Mouazen et al., 2010), 

with all having direct spectral responses in the NIR spectral range. 

4.1.5.1 Visible and near infrared spectroscopy sensors 

When NIR radiation interacts with a soil sample, it is the overtones and combinations 

(Figure 2) of fundamental vibrations in the mid-infrared (mid-IR) region that are detected. 

Molecular functional groups can absorb in the mid-IR, with a range of progressively weaker 

orders of overtones detected in both the mid-IR and NIR regions. Generally, the NIR region is 

characterized by broad, superimposed, and weak vibrational modes, giving soil NIR spectra 

few, broad absorption features. In the visible region, electronic excitations are the main 

processes as the energy of the radiation is high (Stenberg et al., 2010). 

 

Figure 2. Soil visible and near infrared (vis–NIR) 400–2500 nm spectra showing 

approximately where the combination, first, second, and third overtone (OT) 

vibrations occur, as well as the visible (vis) range (Stenberg et al., 2010). 

Due to the broad and overlapping bands, vis–NIR spectra contain fewer absorption 

bands than the mid-IR and can be more difficult to interpret. Nevertheless, this region 

contains useful information on organic and inorganic materials in the soil. Absorptions in the 

vis region (400–780 nm) are primarily associated with minerals that contain iron (e.g., 

haematite, goethite) (Mortimore et al., 2004; Sherman and Waite, 1985). SOM can also have 

broad absorption bands in the vis region that are dominated by chromophores and the 
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darkness of organic matter. Absorptions in the NIR region (780–2500 nm) result from the 

overtones of OH, SO4, and CO3 groups, as well as combinations of fundamental features of 

H2O and CO2 (e.g., Clark, 1999). Clay minerals can show absorption in the vis–NIR region 

due to metal-OH bend plus O–H stretch combinations (Viscarra Rossel et al., 2006). 

Carbonates also have weak absorption peaks in the near infrared (Hunt and Salisbury, 1970). 

Water has a strong influence on vis–NIR spectra of soils (Mouazen et al., 2005). The 

dominant absorption bands of water around 1450 and 1950 nm are characteristic of soil 

spectra, although there are weaker bands in other parts of the vis–NIR range (Liu et al., 2002), 

e.g. at 950 nm. 

4.1.5.1.1 Past and current role of vis-NIR in soil science  

Over the last few decades a large number of attempts have been made to predict soil 

properties with vis–NIR spectroscopy. Calibrations for total and organic carbon are probably 

most frequent, followed by clay content. According to a review published by Viscarra Rossel 

et al., (2006), these two properties, together with total soil N, are also those with the best 

chance of success. This makes sense because both clay minerals and SOM are the 

fundamental constituents of the soil and have well-recognized absorption features in the vis–

NIR region. Some other frequently reported properties include pH, extractable P, K, Fe, Ca, 

Na, Mg, and CEC, as well as properties that are dependent on combinations of other soil 

properties, such as lime requirement and mineralisable N (Stenberg et al., 2010). Results for 

these properties with indirect spectral responses in the NIR range are typically moderate and 

often highly variable. This makes sense as the covariations to constituents that are spectrally 

active cannot be expected to be globally stable. 

Literature proves moisture content to be the most accurately measured property with 

NIR with excellent accuracy (Chang et al., 2001; Mouazen et al., 2006a) which can be 

attributed to the presence of the clear water absorption band in the second overtone region at 

1450 nm, which resulted in a large correlation around 1450 nm. Clay content was also 

reported to be accurately measured with NIR, which is attributed to the direct spectral 

response of clay minerals around 2300 nm (Viscarra Rossel et al., 2006). 

4.1.5.1.1.1 Soil heavy metals 

Pure metals do not absorb in the vis–NIR region (Stenberg et al., 2010). However, they 

can be detected because of covariation with spectrally active components. For example, they 
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can form complexes with organic matter, associated with hydroxides, sulfides, carbonates, or 

oxides that are detectable in the vis–NIR, or adsorbed to clay minerals. Malley and Williams 

(1997) first attempted predictions of heavy metals in freshwater sediments using vis–NIR 

(1100–2500 nm). They reported R
2
 values between vis–NIR-predicted and chemically-

analyzed metal concentrations of 0.63 for Cd; 0.91 for Cu; 0.93 for Zn; 0.81 for Pb; 0.88 for 

Ni; 0.93 for Mn; and 0.86 for Fe. The authors attributed most of the variance in heavy metal 

concentrations to organic matter content. Kooistra et al., (2001) researched the use of vis–NIR 

spectroscopy for the assessment of soil Cd and Zn contamination in river floodplains and 

reported good predictions, with R
2
 of 0.94 for Cd and 0.95 for Zn. They attributed these good 

results to the associations of the metals with SOM and clay content, which are spectrally 

active in vis–NIR. Although there are other studies on the use of vis-NIR spectroscopy for the 

detection of metals in soils, they are not referred in detail since they are not of core 

importance for the current work. 

4.1.5.1.1.2 Soil mineralogy 

Soil minerals generally account for half of the soil volume (Schulze, 2002). Their type, 

proportions and concentrations ultimately determine important properties such as texture, 

structure, and CEC. These properties may in turn have a significant effect on many other soil 

properties. For example, potassium availability for plant uptake is dependent on its release 

from the weathering of primary soil minerals. Soil minerals absorb light in the UV, vis, NIR, 

and mid-IR portions of the electromagnetic spectrum. Iron oxides absorb strongly in the UV 

and absorb weakly in the vis–NIR region, while clay minerals such as phyllosilicates have 

distinct spectral signatures in the vis–NIR region. Comprehensive accounts of the processes 

that produce these absorptions can be found in Hunt (1977), and Clark (1999). Figure 3 shows 

the continuum-removed reflectance spectra of these minerals.  

The reflectivity of goethite (α-FeOOH) is relatively high at longer wavelengths in the 

vis–NIR region from the absorption band that occurs near 930 nm. Three other absorption 

bands for goethite are discernible in the vis–NIR region, one near 660 nm, another near 480 

nm and one near 420 nm. The spectrum of goethite also shows weak absorption near 1700 

nm, which is due to the first overtone of a stretching vibration of OH that is present in the 

crystal structure of goethite (Morris et al., 1985). The spectrum of haematite (α-Fe2O3) is 

characterized by high and nearly constant reflectivity at longer wavelengths in the vis–NIR, a 
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reflectivity minimum near 880 nm, a shoulder centred near 620 nm and a band with very low 

reflectivity near 510 nm. 

 

Figure 3. Continuum-removed spectra of common soil minerals offset by 1 unit for each 

spectrum (Stenberg et al., 2010). 

In both goethite and haematite the absorptions near 930 and 880 nm, respectively, may 

be assigned to ligand field transitions that involve excitations from a ground state to the first 

higher energy state (Sherman and Waite, 1985). Their absorptions near 660 nm and the 

shoulder near 620 nm may also be assigned to charge transfer absorptions producing 

transitions from a ground state to a higher energy state. Assignment of bands near 480 nm and 

420 nm in goethite and near 510 nm in haematite are generally attributed to the absorption 

edges (or wings) of intense charge transfer absorptions that occur in the UV (Sherman and 

Waite, 1985). Absorption in the vis range causes the vivid colours of iron oxides, for 

example, red haematite and yellow goethite. 

Combination vibrations involving O–H stretch and metal–OH bend occur in the 2200–

2500 nm region. It is generally understood that absorptions near 2200 nm are due to Al–OH, 

as in kaolinite, montmorillonite, and illite. But if the absorption is near 2290 nm it is due to 

Fe–OH and if near 2300 nm it is due to Mg–OH in, e.g., illites and montmorillonites (Clark et 

al., 1990; Post and Noble, 1993). There are exceptions to this, e.g. in gibbsite (AlOH3) the 

combination absorption occurs near 2268 nm instead of 2200 nm. 
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Clay mineral absorptions are mostly due to OH, H2O, and CO3 overtones and 

combination vibrations of fundamentals that occur at longer wavelengths in the mid-IR 

region. Kaolin has characteristic absorption doublets near 2200 nm and 1400 nm. The 

absorption wavelengths near 1400 nm (1395 and 1415 nm) are due to overtones of the O–H 

stretch vibration near 2778 nm (3600 cm 
-1

), while those near 2200 nm (2165 and 2207 nm) 

are due to Al–OH bend plus O–H stretch combinations. 

Smectite has strong characteristic absorptions near 1400, 1900, and 2200 nm. The band 

near 1400 nm can to one part be attributed to the first overtone of structural O–H stretching 

mode in its octahedral layer. The 1400 nm and 1900 nm bands are also due to combination 

vibrations of water bound in the interlayer lattices as hydrated cations and water adsorbed on 

particle surfaces (Bishop et al., 1994). Such water is not present in kaoline supporting a 

diagnostic feature for dry kaolinitic soils that will absorb very weakly near 1900 nm. The 

combination bands that are due to vibrations of bound water occur at slightly shorter 

wavelengths near 1400 nm and 1900 nm, while those of adsorbed water appear as shoulders 

near 1468 nm and 1970 nm. By remoistening, these shoulders will dominate (Bishop et al., 

1994). Illite has absorptions near 1400, 1900, and 2200 nm too, but generally weaker than 

smectite. Illite also has additional absorptions near 2340 nm and 2445 nm (Post and Noble, 

1993). These bands may diagnostically distinguish between illite and smectite. They are, 

however, weak and especially the former may be confused with organic matter absorption. 

The previous review about soil mineralogy indicates the importance of vis-NIR spectroscopy 

to detect the type of clay minerals, as their assessing is time-consuming, expensive and need 

expert operators to carry it out. 

4.1.5.1.1.3 Soil moisture content  

Apart from the obvious point of water being a dominant regulator of plant growth and 

soil biology as a whole, more specifically it regulates important soil processes such as 

nitrification/denitrification and hydrological processes such as leaching and erosion. Various 

forms of water absorb strongly in the near infrared region. This is due to overtones and 

fundamentals of the three fundamental vibration frequencies of H2O; symmetric and 

asymmetric O–H stretching and O–H bending (Hunt, 1977). Water incorporated into the 

lattice of some clay minerals absorbs strongly near 1400 and 1900 nm and is obviously 

directly related to the mineralogy of the sample (Stenberg et al., 2010). Water adsorbed as a 

thin layer onto exposed surfaces and free liquid water filling pore spaces has the general effect 
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of decreasing the albedo. This effect can be largely attributed to a change in the real refractive 

index of the medium surrounding the soil particles from that of air to that of water, which is 

higher and closer to soil particles. Mouazen et al., (2005) measured the soil moisture content 

using a NIR on-line sensor. They used partial least squares analysis in order to establish a 

statistical model relating soil light spectra with gravimetric moisture content in the 0.005–0.26 

kg kg
−1

 range. This model was validated with the full cross-validation method resulting in a 

small root mean square error of cross validation (RMSECV) of 0.0175 kg kg
−1

 and a high 

validation correlation (r) of 0.978. Further validation of the model developed in the laboratory 

under stationary state showed also a small root mean square error of prediction (RMSEP) of 

0.0165 kg kg
−1

 and a prediction correlation of 0.982. When the NIR sensor-model system was 

used to determine moisture content, based on on-line field measurement, a relatively larger 

RMSEP of 0.025 kg kg
−1

 and lower prediction correlation of 0.75 were found. However, a 

reasonably similar spatial distribution of moisture content was found between the on-line NIR 

measurement and oven drying methods. In another study, Mouazen et al., (2007) using a vis-

NIR on-line sensor reported a good results (RPD=3, RMSEP= 0.024 kg kg
-1

) of the developed 

PLSR model coupled with cross-validation. Also, they obtained a small average error of 

0.374% between the on-line and oven dry methods which is a good indication of the accuracy 

obtained. This indicates the potential of the on-line measurement system h to provide accurate 

detailed data about soil moisture content, needed not only for on-line detection of soil 

compaction but for variable seeding and irrigation rates in the arid and semi-arid areas. 

4.1.5.1.1.4 Soil organic matter (SOM) and soil total nitrogen 

SOM, often approximated to 1.72 times soil organic carbon (SOC), is the property most 

frequently estimated by vis–NIR spectroscopy. Overtones and combination bands in vis–NIR 

due to organic matter result from the stretching and bending of NH, CH, and CO groups (Ben-

Dor et al., 1999; Bokobza, 1998; Goddu and Delker, 1960). Bands around 1100, 1600, 1700 

to1800, 2000, and 2200 to 2400 nm have been identified as being particularly important for 

SOC and total N calibration (Ben-Dor and Banin, 1995; Dalal and Henry, 1986; Henderson et 

al., 1992; Krishnan et al., 1980; Malley et al., 2000; Martin et al., 2002; Morra et al., 1991; 

Stenberg, 2010). Mouazen et al., (2007) used a vis-NIR on-line sensor to predict soil organic 

and total carbon and obtained a good calibration model with RPD values of 1.97 and 1.92 for 

soil organic carbon and total carbon respectively. Values of the root mean square error of 

prediction were of 0.480 % and 0.268 % for both forms of soil carbon mentioned above. Both 
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carbon and nitrogen have direct spectral responses in the NIR region, which can be attributed 

to overtones and combinations of N–H, C–H + C–H and C–H + C–C. Therefore, successful 

measurement of these two properties with NIR is expected. However, C and N have different 

forms in the soil, such as, mineral, organic, and inorganic, which have an influence on the 

accuracy. Chang et al., (2001) reported successful estimation of TC, TN, and MC with R
2
 > 

0.84 and RPD more than 2.47. Reeves and McCarty (2001) also stated successful estimation 

of TC and TN with R
2
 of 0.92, 0.90 and root mean square error (RMSE) of 0.15% and 

0.0132%, respectively. Nevertheless, mineral forms of nitrogen as ammonia and nitrate are 

very difficult to be measured by NIR (Stenberg et al., 2010). 

4.1.5.1.1.5 Plant nutrients  

Due to their often direct relationship to plant nutrition, plant nutrients such as N, P, K, 

Fe, Ca, Na, Mg, and methods for their measurement attract much interest in agriculture 

(Stenberg et al., 2010). In PA practices such as variable rate fertilization, data on plant-

available P and K, which are fairly stable parameters over time, are important for high 

resolution soil mapping. Nitrogen is by far the most important nutrient in most agricultural 

systems. Plant N uptake occurs mainly in the form of nitrate or ammonium, but as these 

sources are very dynamic, estimates of their concentrations are very variable. Plant nutrients 

are not expected to have direct spectral absorption features in the vis–NIR region. 

Correlations found to vis–NIR spectra are often weak, but there are exceptions, for example, 

Chang et al., (2001); Ehsani et al. (1999); Groenigen et al., (2003); Krischenko et al., (1992); 

Moron and Cozzolino (2003); Mouazen et al., (2006; 2007); Pereira et al., (2004); Shibusawa 

et al., (2001); Udelhoven et al., (2003). These authors report highly variable coefficients of 

determination (R
2
; in parentheses) for mineral N (0.20–0.99), available K (0.56–0.83), 

exchangeable K (0.11–0.55), Ca (0.75–0.89), Fe (0.64–0.91), Na (0.09–0.44), Mg (0.53–

0.82), and P (0.23–0.92). The occasionally successful calibrations may be attributed to locally 

present covariation to spectrally active constituents. Such covariations may of course vary 

between data sets. The potential for vis–NIR to predict extractable P in soil has been 

relatively well studied as P is the second most important plant nutrient after N and is as well a 

limited natural resource. Results reported for P are, as indicated above, among the most 

variable. Some authors report successful calibrations and others absolute failure. Udelhoven et 

al., (2003) failed to predict CAL-extractable P (Schuller, 1969) at the regional scale, but at the 

field scale it was fairly well predicted. Mouazen et al. (2009) conducted on-line measurement 
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of available P with remarkable accuracy (RPD = 1.42; R
2
 = 0.62). Shaddad et al., (2013) 

reported good on-line prediction of extractable P with RPD and R
2
 values of 1.72 and 0.64.  

4.1.5.1.2 Nonmobile (in situ) field visible and near infrared spectroscopy 

Although the application of vis–NIR spectroscopy has reduced considerably the labour 

and time for the analysis, soil sample preparation for laboratory analysis including drying, 

grinding, and sieving is still tedious. For in situ and on-line measurement with vis–NIR, 

calibration models developed from dried, ground, and sieved samples cannot be utilized, since 

measurement is performed with fresh soil samples. As early as more than two decades ago, 

using an integrating cylinder and two narrow band interference filters, Barrett (2002) 

developed a spectrophotometric colour measurement for in situ well-drained sandy soils, 

reporting a moderately strong correlation. Fystro (2002) confirmed the ability of vis–NIR 

spectroscopy for measurement of OC, TN, and their potential mineralization in grassland soil 

samples, arriving at moderate accuracy (R
2
 > 0.7 and RPD > 1.5). Udelhoven et al., (2003) 

evaluated the ability of NIR spectroscopy to estimate soil Fe, Mn, Ca, Mg, and K, and they 

found that only Ca and Mg (R
2
 = 0.67 and 0.69, respectively) were predictable under in situ 

conditions. Chang et al., (2005) attempted to predict TC, OC, TN, CEC, pH, texture, MC, and 

potential mineralizable N and indicated that NIR was able to measure these soil attributes 

with reasonable accuracy using fresh soils (R
2
 > 0.74). Maleki et al., (2006) developed a 

calibration model of available P (Pavl) with acceptable prediction accuracy (R
2
 > 0.73) based 

on fresh soil samples with the intention to be used for on-line variable rate P2O5 application 

system. Combining vis–NIR spectroscopy and laser induced breakdown spectroscopy (LIBS), 

Bricklemyer et al., (2005) reported moderate prediction accuracy (R
2
 = 0.70) of TC and Cinorg 

under in situ conditions. Melendez- Pastor et al., (2008) identified optimal spectral bands to 

assess soil properties with vis–NIR radiometry in a semi-arid area and estimated SOM with 

worse accuracy (R
2
 = 0.73, RPD = 1.92, and RMSEP = 0.52%) than generally reported under 

laboratory condition. Literature proves that laboratory vis–NIR methods provide better 

accuracy than in situ field measurement (Fystro (2002), Udelhoven et al., 2003; Mouazen et 

al., 2010; Kuang and Mouazen., 2011; Zornoza et al., 2008; Wetterlind et al., 2010), which 

can be attributed to the influence of MC and structure that were eliminated under laboratory 

conditions by drying, grinding, and sieving. 

Successful measurements of soil properties without direct spectral response in the NIR 

range is due to co-variation through other properties that have direct spectral responses in the 



24 
Sameh Mohammed Shaddad, Proximal Soil Sensors and Geostatistical Tools in Precision Agriculture Applications, Tesi di dottorato in Scienze e Biotecnologie dei 

Sistemi Agrari e Forestali e delle Produzioni Alimentari, Indirizzo: Agrometeorologia ed Ecofisiologia dei Sistemi Agrari e Forestali, Università degli Studi di Sassari. 

NIR, for example, carbon, nitrogen, and clay (Stenberg et al., 2010). Literature shows that 

only few successful reports on phosphorous (P) determination by vis–NIR spectroscopy are 

available. Up to now, the most significant reports on successful measurement of P are those of 

Bogrekci and Lee (2005, 2005a). Bogrekci and Lee (2005) obtained probably the best R
2
 

value of 0.92 between P concentrations and spectral absorbance using a vis–NIR 

spectroscopy. Literature (e.g., Chang et al., 2001; Mouazen et al., 2006) proves that the worst 

properties to be measured with NIR are K and Na. Measurement of pH, Ca, and Mg were 

reported to be more successful as compared to K and Na (Kuang et al., 2012). Therefore, 

further research is recommended to understand and probably improve the calibration accuracy 

of soil properties without direct spectral responses in the NIR range. 

4.1.5.1.3 Mobile (on-line) field vis–NIR sensors 

So far there are only three on-line vis-NIR systems in the world. They are of Christy, 

(2008), Mouazen et al., (2005) and Shibusawa et al., (2001). The beginning of these systems 

dates back to 1991, when Shonk et al. (1991) developed a system to measure SOM and MC, 

which utilized a single wavelength (660 nm) of light. Shibusawa et al., (2001) developed an 

on-line vis–NIR (400–1700 nm) sensor to predict MC, pH, SOM, and NO3–N. Although this 

system is highly technically instrumented, it is rather expensive. Christy (2008) developed a 

prototype soil reflectance mapping unit equipped with a vis–NIR spectrophotometer, which is 

commercially available in the market. The sapphire glass of the optical probe makes direct 

contact with soil and stones. A simpler design to the one of Shibusawa et al., (2001) without 

sapphire window optical configuration was developed by Mouazen et al., (2005). The system 

was successfully calibrated for MC, TN, TC, pH, and available P in different soils in Belgium 

and northern France (Mouazen et al., 2005, 2007, 2009). 

Literature proves that both the laboratory and in situ non-mobile vis–NIR methods 

provide better accuracy than the on-line method (Shibusawa et al., 2001; Mouazen et al., 

2007; Bricklemyer and Brown., 2010), which is attributed to other factors influencing the 

latter methods. These factors include among others noise associated with tractor vibration, 

sensor-to-soil distance variation (Mouazen et al., 2009) stones and plant roots and difficulties 

of matching the position of soil samples collected for validation with corresponding spectra 

collected from the same position. This point needs to be borne in mind throughout the 

manuscript, when evaluating accuracy achieved for different soil properties under 

consideration. 
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4.1.6 Geostatistics 

Soil properties are continuous variables whose values at any location are expected to 

vary according to the direction and distance of separation from neighbouring samples 

(Burgess and Webster,1980). Therefore, the classic approach is inadequate for interpolation of 

spatially dependent variables, because it assumes random variation within units and no 

correlation between units and takes no account of relative location of samples. An alternative 

approach is to treat soil as a random function and to describe it using the methods of 

Matheron’s regionalized variable theory (known as geostatistics) (Matheron, 1973). In this 

view there is no underlying mathematical relation between soil properties and their position 

on the ground. Even if there is, it is likely to remain unknown and in any case knowledge of it 

is unnecessary; relationships are instead expressed in terms of separation regardless of 

absolute position (Castrignanò, 2011). Geostatistics became quite well established in 

precision agriculture (PA) and the PA community has embraced geostatistics to explore the 

many kinds of data that farmers work with, mainly because the data are suitable for 

geostatistical analyses (Oliver, 2010). 

Geostastistics is a wide-reaching field of spatial statistics, offering powerful tools for 

geo-spatial analysis. Most often it is used to interpolate estimates at locations where 

measurements have not or could not have been taken. As well as an interpolator, geostatistics 

provides a way of understanding spatial structure and can support the process of designing 

sample surveys. 

There are different definitions of geostatistics. According to Deutsch, (2002), 

geostatistics is the study of phenomena that vary in space and/or time. Geostatistics can be 

regarded as a collection of numerical techniques that deal with the characterization of spatial 

attributes, employing primarily random models in a manner similar to the way in which time 

series analysis characterizes temporal data. (Olea, 1999). Geostatistics offers a way of 

describing spatial continuity of natural phenomena and provides adaptations of classical 

regression techniques to take advantage of this continuity (Isaaks and Srivastava, 1989). 

Geostatistics deals with spatially autocorrelated data. 

Autocorrelation means correlation between elements of a series and others from the 

same series separated from them by a given interval (Oxford American Dictionary). 

In order to understand and process data geostatistically, the following fundamental 

elements should be well known:  
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1- Spatial dependency (or spatial autocorrelation) 

2- Semi-variograms (which are used to assess ‘spatial dependency’) 

3- The three components of spatial variation: 

 Structural or deterministic variation 

 Stochastic and spatially correlated variation 

 Spatially uncorrelated ‘noise’ or random variation 

4- Anisotropic variation (occurrence of directional spatial structures) 

5- (co)kriging and its various alternative approaches 

4.1.6.1 Spatial dependency 

Spatial dependency describes the phenomenon where things that are close to one 

another are more likely to have similar values or properties than things that are further apart. 

The theory of regionalized variables forms the basis of procedures for analysis and 

estimation of spatially dependent variables, known collectively as geostatistics. Geostatistics 

assumes that a spatial variation of any variable can be expressed as the sum of three major 

components. These are:  

1) a deterministic component associated with a constant mean value or a long-range 

trend; 

2) a spatially correlated random component; 

3) a white noise or residual error term that is spatially uncorrelated.  

A regionalized variable is a random variable varying in space. A regionalized variable 

z(x) can be considered as a particular realization of a random variable Z(x) for a fixed 

position x within the area. If all values of Z(x) are considered at all locations within the area, 

Z(x) becomes a member of an infinite set of random variables, called a random function Z(x). 

All the random variables have the same probability distribution function F(z), independent of 

x.  

4.1.6.2 Semivariogram 

The Semivariogram is the pillar of geostatistics and is a way to assess spatial correlation 

in observations measured at sample locations. It is commonly represented as a graph that 

shows the semi-variance of all observation pairs sampled at a distance. Such a graph is helpful 

for building a mathematical model that describes the variability of the observations as a 
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function of separation distance. Modelling of such a relationship is called semivariogram 

modeling. It is used in applications involving estimating the value of a property at a new 

location. Semivariogram modeling is also referred to as variogram modeling.  

 

 

Figure 4. Theoretical semivariogram (Castrignanò, 2011) 

There are three important features of an upper bounded semivariogram (Figure 4): 

Range: describes the spatial limits of spatial dependency, or the distance beyond which points 

are spatially uncorrelated. If the distance between two adjacent observations exceeds this 

distance, then traditional (regressive) techniques of interpolation can be used. 

Sill: describes the part of the variogram where it levels off at a distance equal to or greater 

than range. 

Nugget: represents the spatially uncorrelated noise (including the variance of measurement 

error and micro- variation at a scale smaller than sampling scale). 
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4.1.6.3 Isotropic and anisotropic variation 

Often there are directional effects in the spatial structure of observed measurements. 

 

Figure 5. Isotropic and anisotropic variation 

 

In Figure 5 a soil surveyor may go out and measure the sulphur content of the soil in the 

adjacent fields to the power station. Because of the emissions of sulphur from the chimney 

and the directional effect of the wind, the soil will comprise additional elements of sulphur 

that are likely to increase with distance from the power station, but only in the direction of the 

predominant wind direction. 

This kind of variation is said to be anisotropic. If directional effects do not occur, the 

variogram is said to be isotropic. It is of importance to the surveyor to consider the use of 

directional variograms and explore spatial structure in a range of directions. An obvious 

starting point would be to consider the direction of the prevailing wind (in this case) and the 

perpendicular direction. The figure illustrates two different variogram structures. 

The range of the north-south spatial dependency is over twice than in the east-west 

direction but the sills are approximately the same. This is a case of geometrical anisotropy. 

When the sill varies as a function of direction, the anisotropy is said to be of zonal type. 

4.1.6.4 Kriging 

Kriging is a type of interpolation technique. The procedure is similar to averaging 

techniques of interpolation but the weights are derived from the spatial arrangement as well as 
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from the distance between nearby points, i.e. from the variogram. The fitted variogram, or the 

directional variograms (for anisotropic variation) is/are used to determine the weights λi 

needed for local interpolation. 

The weights are chosen so that the estimate is unbiased, and that the estimation variance 

is less than for any other linear combination of the observed values.  

Mapping the spatial distribution of a soil property involves interpolation or spatial 

prediction. Geostatistical interpolation uses the variogram to optimize prediction by kriging. 

The most basic form of kriging is ordinary punctual kriging in which the unknown value z(x0) 

of a given realization of Z(x0) in an unsampled point x0 is predicted from the known values 

z(xi) i= 1, 2, . . ., N, at the support points xi of the same realization using a so-called “best 

linear unbiased estimator” (BLUE). The best linear unbiased predictor z
*
(x0) of Z(x0) is given 

by a linear combination of the observations: 

   



N

1i

ii0

* zλz xx  

Where i are weights. The weights are chosen in such a way that the estimator is unbiased:  
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and the estimation is minimized.  

Using a Lagrangian multiplier µ, minimization of the estimation variance under the constraint 

of unbiasedness yields a set of N+1 linear equations:  
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from which the j and µ can be calculated. The estimation variance is then given by:  
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Or equivalently:  
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and represents the uncertainty in the prediction in: (xi, xj) and (xi, x0) are the semi-variances 

between the observed locations xi and xj and between the observed location xi and the 

interpolated location x0, respectively. In the case of spatial dependence, semi-variance tends 

to increase with the distance between observations, therefore errors decrease with the density 

of data and not just with their total number, as is the case with traditional statistical models. It 

needs to be pointed out that kriging is optimal and unbiased only on the condition that the 

model is correct. However, predictions are only slightly affected by the choice of the model, 

provided it is reasonable of course. This is one of the strengths of kriging that is robust 

enough in this sense; however, error variances can be seriously affected by the model. 

Kriging has many useful properties: 

- The interpolated value is the most precise in terms of mean squared error 

- The interpolated value can be used with a degree of confidence, because an error term 

is calculated together with the estimation  

- The estimation variance depends only on the semi-variogram model and on the 

configuration of the data locations in relation to the interpolated point and not on the 

observed values themselves 

- The conditions of unbiasedness ensure that kriging is an exact interpolator, because 

the estimated values are identical to the observed values when a kriged location 

coincides with a sample location. In this case the weights within the neighbourhood 

are all zero and the estimation variance equals the observation. 

- Generally only the nearest few samples are spatially correlated to the kriged location 

and therefore they are the most weighted. Two important advantages become clear: 

firstly, the variogram needs to be accurate only in the first few lags; secondly whatever 

is gained from introducing distant points is limited also because sample locations 

interposed between the kriged point and more distant samples screen the distant ones 

by reducing their weights. 

-  
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4.1.6.5 Geostatistics and precision agriculture  

The principle of precision agriculture (PA) has an even longer history than geostatistics. 

It has been carried out by farmers since the early days of agriculture. They divided their 

landholdings into smaller areas, fields, to grow crops where the conditions were most suitable 

(Oliver, 2010). 

Modern PA appears to have its origins in the mid 1970s to early 1980s; farmers were 

becoming more aware of the potential benefits of better farm record keeping and 

understanding of soil and crop input requirements (Robert, 1999). There was a better 

awareness of within-field variation in the properties of soil and crop, and of the potential 

benefits of within field management by zones. Associated with this there was a mushrooming 

of technology and services in response to the needs of this approach to agriculture, e.g. yield 

monitors and variable-rate spreaders. The concept of modern precision agriculture has also 

been driven forward and is underpinned by technological changes based on information 

technology (Schueller, 1997). One of the most significant steps was the introduction of a yield 

meter by Massey Ferguson in 1982. This device was mounted on a clean grain elevator of one 

of their combine harvesters. It meant that yield could be recorded continuously for the first 

time, but at that time without the benefit of GPS. In the 1990s with the advent of GPS, yield 

mapping became commonplace. The first GPS devices were available on tractors in 1991, but 

they had an accuracy of only about 100 m which was not good enough for mapping. By the 

mid-1990s differential GPS (DGPS) accuracy improved to 5–10 m, and this has improved 

further since 2000 when the US Department of Defence turned off selective availability. Now 

it is a few centimetres only. By the mid-1980s microprocessors made possible the 

development of computers for farm equipment and controllers.  

 The term precision agriculture appears to have been used first in 1990 as the title of a 

workshop held in Great Falls, Montana, sponsored by Montana State University. The focus 

was on more precise local management, i.e. site-specific management (SSM), and 

consequently the unit of management became the field and its intrinsic variation was of 

interest. This reflects a change in the scale of operation from the farm to the field, but there is 

more to it than this. With the increase in size of machinery being used in agriculture in the 

developed countries, farmers removed field boundaries and merged fields into increasingly 

larger units. The original fields, which had probably been created because of a particular set 

of soil or landscape conditions, were now parts of larger fields and their inherent variation 
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was added together. The increase in field size was accompanied, therefore, by an increase in 

within-field variability.  

Before the 1990s, maps other than of the soil and possibly landscape played little part in 

agricultural management. Schafer et al., (1984) said at this time that maps of soil type and 

topography could be used to control fertilizer and pesticide applications and tillage operations. 

A major stumbling block to the wider spread and adoption of PA is the sparsity of soil and 

crop information, although there have been examples of on-the-go measurement of pH 

(Viscarra Rossel and McBratney, 1997). The National Research Council (1997) also made the 

point that “current mapping techniques are limited by a lack of understanding of geostatistics 

necessary for displaying spatial variability of crops and soils”, and “An increased knowledge 

base in geostatistical methods should improve interpretation of precision agriculture data”.  

It is clear from the quotations given above that the value of geostatistics had already 

been established in PA. In fact, the early applications came from scientists already conversant 

with geostatistical methods. The marriage of geostatistics and PA was an easy one because 

geostatistics requires enough data at an interval that resolves the variation adequately to 

compute reliable variograms. These demands can be satisfied by the kinds of data widely 

available in PA, apart from some soil and crop data (Oliver, 2010). 

4.1.6.6 Site-specific management zones 

Geostatistical techniques have been adopted with some enthusiasm in PA because of 

their suitability for quantifying and predicting the spatial variation of soil, crop and landscape 

properties. Natural systems in the environment usually show structured or periodic variation 

in time or space (i.e. spatial or temporal dependence). This is particularly true for soil systems 

where patterns develop as a result of variation in topography, parent material, climate and 

biology. The consequence of spatial dependence is that samples separated by small distances 

tend to be more similar than those further apart. Classical statistical procedures on the other 

hand assume that data are spatially independent. Geostatistics is a collection of statistical 

methods that have been used for some time in the geosciences. The basis of the methods is to 

describe and model spatial dependence or autocorrelation among sample data, and to use this 

information for various types of spatial prediction. There is some overlap with GIS 

(geographic information systems) and spatial statistics more generally. There are two major 

components of a geostatistical analysis: modelling spatial dependence in the form of a 

correlogram or variogram, and predicting variable values at unsampled locations with 



33 
Sameh Mohammed Shaddad, Proximal Soil Sensors and Geostatistical Tools in Precision Agriculture Applications, Tesi di dottorato in Scienze e Biotecnologie dei 

Sistemi Agrari e Forestali e delle Produzioni Alimentari, Indirizzo: Agrometeorologia ed Ecofisiologia dei Sistemi Agrari e Forestali, Università degli Studi di Sassari. 

techniques such as kriging or cokriging. Geostatistics can provide accurate maps for the 

successful implementation of variable-rate prescription for site-specific nutrient management 

and other applications in precision agriculture, such as irrigation. If the objective is to 

quantify the spatial variation in a given field, the sample design used to obtain data is 

important. Geostatistics places a different emphasis on the approach to sampling from that 

used in conventional statistics. Classical methods of sampling based on randomization of the 

sampling positions aim to avoid spatial correlation because of the assumptions that underpin 

many conventional statistical techniques. In geostatistics, the aim of sampling is to ensure that 

the data will be spatially correlated and randomization is no longer a requirement. 

Randomization in geostatistics is a feature of the model rather than a property of the 

phenomenon of interest. Furthermore, geostatistics changes the emphasis from the estimation 

of regional averages in classical statistics to the local estimation of spatially distributed 

variables using techniques such as kriging and cokriging (Khosla et al., 2010). 

4.1.6.7 Delineation of site specific management zones 

The delineation of management zones (MZ) is a cost-effective tool for site specific 

applications of inputs. The traditional methods to delineate management zones don’t consider 

the spatial relationships between the observations. Geostatistics treats multivariate indices of 

spatial variation as continua in a joint attribute-geographical space.  

Castrignanò et al., (2009) reported that one of the major advantages of geostatistics over 

simpler spatialization methods is that sparse observations of the primary attribute can be 

complemented by secondary attributes that are more densely sampled. They applied two 

methods to incorporate dense secondary information: multicollocated cokriging, which 

restricts the neighbourhood to the only secondary data, collocated with the target location and 

with the available data of the primary variable and simple cokriging with varying local means 

related to crisp classes. Their objective was to find the method that best improves the 

estimation of primary attributes through dense secondary information for the study area 

(province of Siena in central Italy), of about 3820 km
2
. After the two methods were compared 

in terms of precision, through cross-validation, and accuracy, through a validation test, using 

an independent data set of 170 soil depth measurements. The results did not show clear 

differences among the methods. 

Castrignanò et al., (2010) proposed a quantitative approach to unambiguously locate, 

characterise and visualise agro-ecozones and their boundaries which can be associated to 
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different environmental conditions. They used environmental parameters, including climatic 

and soil characteristics, hypothesized to be generally relevant to many crops in Capitanata-

Foggia (South Italy). Cokriged environmental estimates at 500 m scale were used in a 

clustering algorithm based on non-parametric multivariate density estimation. The proposed 

approach produced the delineation of the study area in five compact classes in the space of 

environmental attributes that were also contiguous in geographic space. The resulting agro-

ecozones may provide a framework for useful application in land use decision making. 

De Benedetto et al., (2012) stated that proximal sensing (Electromagnetic Induction 

(EMI), Ground Penetrating Radar (GPR), hyperspectral spectroscopy (HS)) and remote 

sensing (RS) can complement direct sampling. However, sensor data fusion techniques, 

jointly analysing data from different sources, are still being developed. They performed a 

work with the intention to define a multivariate and multi-sensor approach by combining 

EMI, GPR, RS and HS data, without any previous weighing, in order to differentiate an 1.5 ha 

arable field into homogenous zones. The multi-sensor data were split into four groups: 1) bulk 

electrical conductivity (EC) from EMI data, 2) amplitude of GPR signal data, 3) the first 

principal components relating to five bands (green, yellow, red, red edge, near-infrared (NIR) 

PCs) of hyperspectral reflectance data and 4) the vegetation indices (NDVI, NDRE and 

NIR/Green) calculated from the remote sensing images. The data of each group were 

separately analysed and interpolated at the nodes of the same grid by using cokriging or 

kriging. To obtain spatially contiguous clusters, a combined approach was used, based on 

multivariate geostatistics and a non‐parametric density function algorithm of clustering, 

applied to the overall multi-sensor data set of the estimates. The full approach allowed 

identifying three homogenous areas. In particular cluster 1, in the NW part of the field, with 

the lowest values of bulk electrical conductivity and GPR amplitude, and the highest red PC 

values. The other two clusters were delineated in the SE part of the field, with the highest 

values of green, yellow, red edge and NIR PCs for cluster 2, and the highest values of bulk 

electrical conductivity and vegetation indices for cluster 3. The delineation might be related to 

the intrinsic spatial variability of soil and the health status of plants and be used to produce a 

prescription map for site-specific management. 

Yan et al., (2007) studied five soil and landscape attributes, including a NDVI image, 

soil electrical conductivity, total nitrogen, organic matter and cation exchange capacity 

acquired for a coastal saline land, and their spatial variability and spatial distribution maps 

were constructed with geostatistics techniques. Principal component analysis and fuzzy c-
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means clustering algorithm were then performed to delineate the management zones, fuzzy 

performance index (FPI) and normalized classification entropy (NCE)was used to determine 

the optimal cluster number. To assess whether the defined three management zones can be 

used to characterize spatial variability of soil chemical properties and crop productivity, 139 

georeferenced soil and yield sampling points across the field were examined by using 

variance analysis. It was found that the optimal number of management zones for the study 

area was three and there existed significantly statistical differences in the chemical properties 

of soil samples and yield data between the management zones. Management zone 3 presented 

the highest nutrient level and potential crop productivity, whereas management zone 1 the 

lowest. The results revealed that the given five variables could be aggregated into 

management zones that characterize spatial variability in soil chemical properties and crop 

productivity. The defined management zones not only can direct soil sampling design, but 

also provide valuable information for site-specific management in precision agriculture.  

Aggelopooulou et al., (2013) studied several factors for the MZ delineation including 

crop and soil characteristics. They applied multivariate analysis to delineate MZs. Soil and 

crop data, collected over 3 years from a Precision Agriculture project in an apple orchard in 

Greece, were used. The collected data were categorized in three groups, namely soil 

properties, yield and fruit quality. All data were analyzed for descriptive statistics and their 

distribution. Maps of the spatial variability for the 3 years were presented. Data were jointly 

analyzed for management zone delineation using a combination of multivariate geostatistics 

with a non-parametric clustering approach, and the orchard was divided in four zones which 

could be differently managed. However, further research and experimentation are needed 

before precision horticulture being confidently adopted in Greece.  

Diacono et al., (2013) proposed a combined approach of multivariate geostatistics and 

non-parametric clustering to delineate homogeneous zones that could be potentially managed 

with the same strategy. In a durum wheat field of Southern Italy, in organic farming, some 

soil physical and chemical properties (electrical conductivity; pH; exchangeable bases; total 

nitrogen; total organic carbon; available phosphorous), elevation and the Normalized 

Difference Vegetation Index were determined and interpolated by using geostatistics. The 

clustering approach, applied to the (co)kriged estimates of the variables, produced the 

delineation into four sub-field zones. A significant relation between soil fertility and yield was 

not found in such zones. Despite this, the proposed approach has the potential to be used in 
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future applications of precision agriculture. Further work could focus on site-specific nitrogen 

fertilization with suitable machinery. 

4.1.6.8 Data fusion  

According to Durrant-Whyte (2001) data fusion is the process of combing information 

from a number of different sources to provide a robust and complete description of an 

environment or process of interest. Data fusion is of special significance in any application 

where large amounts of data must be combined, fused and distilled to obtain information of 

appropriate quality and integrity on which decisions can be made. Data fusion finds 

application in many military systems, in civilian surveillance and monitoring tasks, in process 

control and in information systems. Data fusion methods are particularly important in the 

drive toward autonomous systems in all these applications. In principle, automated data fusion 

processes allow essential measurements and information to be combined to provide 

knowledge of sufficient richness and integrity that decisions may be formulated and executed 

autonomously. Definitely, having an additional data set must help, particularly if it is 

measuring the same thing. If not, it will still help if the second measurement is correlated with 

the first. 

Piikki et al., (2012) studied proximal sensor data fusion for topsoil clay mapping on a 

22 hectare agricultural field in southwest Sweden. Eight different predictor sets and two 

different prediction methods were tested in an orthogonal design. The predictor sets were 

different combinations of proximally measured gamma (γ) ray spectrometry and apparent 

electrical conductivity (ECa), four terrain attributes (elevation, slope and the cosine and the 

sine of aspect) and the digital numbers (DNs) of an aerial photo. The two prediction methods 

were partial least squares regression (PLS-R) and k nearest neighbour prediction (kNN). It 

was found that the γ ray spectrometry variables (
232

Th, 
40

K and total count of decays) were 

good predictors of topsoil clay content (mean absolute error of about 1.5% clay) and 

predictions were neither much improved nor deteriorated by addition of any of the other 

predictors. The ECa measurements, which are affected also by the subsoil, did not perform as 

well. Predictions were improved when the ECa data were integrated with the aerial photo DN 

but were deteriorated by addition of elevation data. The kNN method yielded slightly better 

predictions than the PLS-R method but overall it was more important which input data were 

used than how the predictions were made. It was observed that even though dense soil 
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sampling was used for calibration (three samples per hectare), use of proximal soil sensor data 

was almost always better than mere interpolation of the calibration samples. 

Geo-electrical sensors are often used as auxiliary variables with sparse direct 

measurements to estimate soil properties. Using a single sensor is not ideal in some 

circumstances. For example, sandy, sandy gravelly, sandy salt-affected and clayey soils are 

poorly identified using an EMI or gamma-ray sensor singularly. The complementary use of 

these sensors should improve interpretation in landscapes containing these soils. Analysis of 

multi-sensor data is however problematic. Several methods have been developed to integrate 

multi-sensor data but there is currently no unequivocally accepted methodology (Castrignanò 

et al., 2012).  

Castrignanò et al., (2012) used EMI, gamma-ray emission and GPS height as multi-

sensor auxiliary data for soil characterisation. Their objectives were: 1) to define a combined 

approach of geostatistics and sensor data fusion to integrate field data from electromagnetic 

induction (EMI) measured with EM38 and EM31, gamma (γ)-ray and RTK GPS sensors with 

soil sample data for delineating areas of homogeneous soil; 2) to show the potential of gamma 

radiometric sensor by estimating a relationship for crop available soil potassium (K) from the 

γ-ray signal. The geophysical survey was carried out on an 80-ha cropping field in Corrigin, 

Western Australia. Seventy-seven soil samples were collected at the nodes of a 100×100m-

mesh grid and analysed for different properties. The EM38 and EM31 data were strongly 

correlated with each other and so were γ-radiometric counts from thorium (Th), uranium (U) 

and all elements (TC). The multi-sensor data were split into 4 subgroups, based on their 

similarities: 1) EMI data; 2) γ-radiometric counts from potassium (emitted from all forms of 

K including readily plant available, non-exchangeable and structural K); 3) γ-radiometric 

counts from Th, U and TC and 4) RTK GPS height. Each group of data was separately 

analysed using different geostatistical techniques. The soil samples and geophysical data were 

jointly interpolated using multi collocated cokriging. The EMI data showed anisotropy and an 

anisotropic Linear Model of Coregionalization was fitted before cokriging. The EM31 and 

EM38 maps looked quite similar. The maps of γ-U, Th and TC were also similar, suggesting 

that they reflected the same soil properties, but were somewhat different from the γ-K maps. 

High values of EMI coincided with both low γ- radiometric values at the valley bottom, due to 

moist sandy salinity-prone soil of varying depth to texture contrast, and high γ-radiometric 

values at the elevated areas of the field due to emission from finer textured soil. High γ-

radiometric values coincided also with low values of EMI over gravelly sands. Only the use 
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of a multi-sensor platform could discriminate soils that gave similar outputs to one sensor. 

The first two principal components of the geophysical data were used to partition the field 

into homogeneous areas.  

So far, no published work on the use of vis-NIR spectroscopy coupled with multivariate 

geostatistics and then this study may be the first work on the marriage between vis-NIR on-

line sensing and multivariate geostatistical techniques. 
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5. Materials and Methods 

5.1 Experimental site 

This study was conducted in a 18 ha field (52° 05’ 51’’ N, 0° 26’ 50’’ W), named as 

Cotton End field located in Duck End farm, Wilstead, Bedfordshire, United Kingdom. The 

soil texture over the field down to 0.20 m is non-homogeneous, including three textures 

(Table 1) of sandy loam, loam and sandy clay loam according to the United State Department 

of Agriculture texture classification system. Directly after harvesting the previous wheat crop, 

on-line soil vis-NIR spectral measurements were carried out.  

 

 

 
 

Figure 6. Location of the Cotton End field, where on-line visible and near infrared (vis-NIR) 

measurement was carried out in summer 2012 

 



40 
Sameh Mohammed Shaddad, Proximal Soil Sensors and Geostatistical Tools in Precision Agriculture Applications, Tesi di dottorato in Scienze e Biotecnologie dei 

Sistemi Agrari e Forestali e delle Produzioni Alimentari, Indirizzo: Agrometeorologia ed Ecofisiologia dei Sistemi Agrari e Forestali, Università degli Studi di Sassari. 

5.2 On-line visible and near infrared sensor 

The on-line vis-NIR sensor designed and developed by Mouazen (2006) was used 

(Figure 7) to carry out the field measurement. It consisted of a subsoiler that penetrates the 

soil to the required depth, making a trench, whose bottom is smoothened due to the 

downwards forces acting on the subsoiler (Mouazen et al., 2005). The optical probe, housed 

in a steel lens holder, was attached to the back side of the subsoiler chisel to acquire soil 

spectra in diffuse reflectance mode from the smooth bottom of the trench. The subsoiler, 

retrofitted with the optical unit, was attached to a frame that was mounted onto the three point 

linkage of the tractor (Mouazen et al., 2005). An AgroSpec mobile, fibre type, vis-NIR 

spectrophotometer (tec5 Technology for Spectroscopy, Germany) with a measurement range 

of 305-2200 nm was used. The spectrophotometer was IP66 (ingress protection) protected for 

harsh working environments. Although this spectrophotometer does not cover the entire 

wavelength range in the NIR region, it was selected in this study as it uses diode array 

detectors, which have been proven to be stable under on-line measurement conditions 

(Mouazen et al., 2009). A 20 W halogen lamp was used as a light source. A 100% white 

reference was used before scanning, and this was repeated every 30 min. A differential global 

positioning system (DGPS) (EZ-Guide 250, Trimble, USA) was used to record the position of 

the on-line measured spectra with sub-metre accuracy. A Panasonic semi-rugged laptop was 

used for data logging and communication. The spectrometer system, laptop and DGPS were 

powered by the tractor battery. A New Holland T5000 tractor with 100 Ah battery was used. 

The total power consumption for all electrical parts of the on-line vis-NIR sensor was around 

60 W. The on-line sensor was used to measure the Cotton End field in the UK (Figure 6) in 

summer 2012.  

Table 1. Soil texture defined according USDA soil classification. 

Soil texture 

class 

 

Number of 

Samples 

Sand (> 50 µm) 

range (%) 

Silt (50- 2 µm) 

range (%) 

Clay (< 2 µm) 

range (%) 

Sandy loam 42 52.10-61.25 24.02-31.64 12.74-18.96 

Loam 28 42.52-52.00 28.89-34.25 15.11-24.74 

Sandy clay 

loam 
2 51.10-52.06 26.95-26.98 20.99-21.91 
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Figure 7. The on-line visible and near infrared (vis-NIR) soil sensor (Mouazen, 2006) 

5.2.1 On-line measurement and soil sampling 

The Cotton end field, which was of a rectangular shape of 260 m by 700 m (Figure 8), 

covering 18 ha of land was measured by the on-line system. Each measured line was 700 m 

long with 15 m intervals between adjacent transects. The forward speed of the tractor was 

around 1.5 km h
-1

 and the measurement depth was set at 20 cm. During each line 

measurement, twenty three soil samples were collected from the bottom of the trench and the 

sampling positions were carefully recorded. 
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Figure 8. On-the-go field survey and locations of soil samples 

A total of 183 soil samples based on 30 m x 30 m grid (Figure 8) were collected. 

Around 700 g soil was taken for each soil sample and placed into a tightly sealed plastic bag 

to hold field moisture. The soil samples were then transported to the soil laboratory in 

Cranfield University, where they were stored deep frozen (-18 °C) until analysis. After 

defrosting and thorough mixing, each soil sample was divided into two parts. A quantity of 

the first part (fresh soil) was used for MC measurement by oven drying at 105 °C for 48 h. 

The rest of fresh soil was scanned with a vis-NIR spectrophotometer. This scanning was 

designated as laboratory scanning of fresh soil samples. The other part of the soil was dried at 

40 °C, grinded and sieved with a 2mm sieve. This part was subjected to physical and chemical 

soil analysis at soil laboratory in Department of Agriculture, Sassari University, Italy. 

 

700 m 
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5.2.2 Laboratory optical measurement  

The optical scanning under laboratory measurement conditions was carried out using 

the same mobile, fibre type, vis-NIR spectrophotometer (AgroSpec from tec5 Technology for 

Spectroscopy, Germany), as that used for on-line scanning. A 100 % white reference was used 

before scanning. Small stones and plant debris were first removed from the fresh soils. Each 

soil sample was replicated three times in three cups. Soil in cups was levelled by spatula. This 

resulted in a smooth soil surface that assures a maximum reflection and thus a good signal-to-

noise ratio (Mouazen et al., 2005). A total of 10 scans were collected from each cup, and these 

were averaged in one spectrum.  

5.2.3 Laboratory analysis 

Procedures used for determining the physical and chemical properties of soil samples 

were as follows: 

- Soil texture fractions were determined according to the international pipette method; 

sodium hexametaphosphate was used as a dispersing agent (Piper, 1950). Soil texture 

classes were identified according to USDA classification  

- Phosphorus was extracted by 0.5 N in sodium hydrogen carbonate solution as 

described by Olsen et al., (1954), then the extracted P was measured calorimetrically 

using a UV-VIS-NIR spectrophotometer according to the method of Murphy and 

Riley (1962) 

- Total nitrogen and total carbon were analysed with CHN 628 analyzer based on dry 

combustion of sample with helium and oxygen gases (LECO, USA). 

- Cation exchange capacity was measured according to barium chloride (pH 8.2) 

method 

- Exchangeable cations were extracted by 1N ammonium acetate solution at pH 7 

(Piper, 1950), then the exchangeable calcium, magnesium, potassium and sodium 

were determined using Atomic absorption spectrometer AA analyst 200 Perkin Elmer 

Instruments. 

- pH was measured using a glass electrode in a 1:5 (volume fraction) of soil in distilled 

water. After shaking for 2 h and equilibration, pH was measured in the supernatant. 
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5.2.4 Model development 

The first step in developing calibration models is the pre-treatment of the spectral data. 

Soil spectra were first reduced to 371 – 1662 or 2150 nm to eliminate noise at both sides of 

spectra. Spectra were further reduced by averaging three successive points in the vis range, 

and 6 or 15 points in the NIR range to reduce the number of wavebands and smooth the 

spectra. The Savitzky-Golay (S–G) smoothing, maximum normalisation and first derivation 

were successively implemented. Normalisation is typically used to get all data to 

approximately the same scale, or to get a more even distribution of the variances and the 

average values. The maximum normalisation method adopted in this study is a normalisation 

that “polarises” the spectra. Details of spectra pre-processing of soil elements are listed in 

Table 2. 

Several pre-treatments were considered and the best performing pre-treatment was 

withheld for each parameter. The selection criteria of any pre-treatment were the largest 

coefficient of multiple determination (R
2
) and residual prediction deviation (RPD) (the ratio 

of standard deviation (S.D.) of the measured data set to root mean square error of prediction 

(RMSEP) and the smallest RMSEP.  

The chemical and spectral data were used to develop calibration models of soil 

properties under study using partial least squares regression (PLSR), with full-cross 

validation. The PLS is a bilinear modelling method where information in the original x data is 

projected onto a small number of underlying (“latent”) variables called PLS components. The 

y data are actively used in estimating the “latent” variables to ensure that the first components 

are those that are most relevant for predicting the y variables. Interpretation of the relationship 

between x data and y data is then simplified as this relationship is concentrated on the 

smallest possible number of components. More detailed information about the PLS can be 

found in Martens and Naes (1989). The Unscrambler® software Version 7.88 (Camo A/S, 

Oslo, Norway) was used for spectra pre-treatment and model development. 
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Table 2. Spectral pre-processing of different soil elements 

Soil constitute  Spectral pre-processing  

pH - delete spectra 305-370 and 2151-2200 

- reduce by 3 spectra 371-1000 

- reduce by 6 spectra 1001-2150 

- normalise maximum 

- s.golay derivative using left hand side 2,2,2 

- s.golay smooth using left hand side 2,2,2 

- delete spectra 371-421 and 1746-2150 

Extractable phosphorus  

(P mg.kg
-1

) 

- delete spectra 305-400 and 1664-2200 

- reduce by 3 spectra 401-1000 

- reduce by 6 spectra 1001-1663 

- normalise maximum 

- s.golay derivative using left hand side 2,2,2 

- s.golay smooth using left hand side 2,3,3 

Total nitrogen (TN%) - noise cut at 305-370 nm and 2151-2200 nm 

- wavelength reduction by 3 at 371-1000 nm 

- wavelength reduction by 15 at 1001-2150 nm 

- Maximum normalisation 

- S-G derivative using left hand side 2,2,2 

- S-G smooth using left hand side 2,2,2 

- wavelength cut at 371-419 nm and 1744-2150 nm 

Total carbon (TC%) - noise cut at 305-370 nm and 2151-2200 nm 

- wavelength reduction by 3 wavelengths at 371-1000 nm 

- wavelength reduction by 15 wavelength 1001-2150 nm 

- maximum normalisation 

- S-G derivative using left hand side 2,2,2 

- S-G smooth using left hand side 2,2,2 

Moisture content 

(MC%) 

- noise cut at 305-370 nm and 2151-2200 nm 

- wavelength reduction by 3 at 371-1000 nm 

- wavelength reduction by 15 at 1001-2150 nm 

- maximum normalisation 

- S-G derivative using left hand side 2,2,2 

- S-G smooth using left hand side 2,2,2 

- spectra cut at 371-422 nm and 1744-2150 nm 

Exchangeable 

potassium 

 (K cmol+.kg
-1

) 

- noise cut at 305-400 nm and 1662-2200 nm 

- wavelength reduction by 3 at 401-1000 nm 

- wavelength reduction by 6 at 1001-1661 nm 

- maximum normalisation S-G derivative using left hand side 

2,2,2 

- S-G smooth using left hand side 2,2,2 
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Samples used for calibration with cross-validation of pH, P, TN, TC, MC and K were 

125, 62, 133, 108, 127 and 43, respectively, whereas samples used for the independent 

validation were, 48, 23, 22, 24, 45 and 24, respectively. Details of soil elements statistics are 

listed in Table 3. 

Table 3. Sample statistics of calibration dataset for partial least square regression (PLSR) 

coupled with cross-validation and of independent validation dataset. 

 
Calibration Independent validation 

Statistics pH P TN TC MC K pH P TN TC MC K 

Sample no 125 62 133 108 127 43 48 23 22 24 45 24 

Min 5.39 6.80 0.091 1.207 13.41 0.12 5.16 4.80 0.112 1.304 13.41 0.12 

Max 8.21 40.00 0.198 2.351 24.74 0.37 8.17 50.00 0.201 2.455 24.28 0.40 

Mean 6.59 17.97 0.141 1.806 17.96 0.21 6.46 22.50 0.151 1.790 18.03 0.23 

SD 0.682 8.237 0.020 0.221 2.015 0.073 0.895 15.231 0.024 0.275 2.164 0.078 

P: Phosphorus (mg.kg
-1

), TN: Total nitrogen (%), TC: Total carbon (%), MC: Moisture content (%), K: 

Exchangeable potassium (cmol+. kg
-1

) 

SD: Standard deviation 

5.2.5 Statistical evaluation of PLS model performance 

Root mean square error of calibration (RMSEC) and prediction (RMSEP) are measures 

of average differences between predicted and measured response values at calibration and 

validation stages, respectively (Yitagesu et al., 2009). For the evaluation of the model 

performance, RMSEP was used (Williams and Norris, 2001). The RMSEP can be expressed 

as follows: 

 

      
 

 
          

 
                

 

where    is the predicted value and    is the observed value. 

 

RPD, designated as rate of prediction deviation, which is the ratio of standard deviation (SD) 

of the measured values to RMSEP, was used to compare different models. The third 

parameter considered was the coefficients of determination (R
2
). In fact, R

2
 indicates the 

percentage of the variance in the Y variable that is accounted for by the X variable. A value 
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for R
2
 between 0.50 and 0.65 indicates that more than 50% of the variance in Y is accounted 

for variance X, so that discrimination between high and low concentrations can be made. A 

value for R
2
 between 0.66 and 0.81 indicates approximate quantitative predictions, whereas, a 

value for R
2
 between 0.82 and 0.90 reveals good prediction. Calibration models having a 

value for R
2
 above 0.91 are considered to be excellent (Williams, 2003). In the successful 

analysis of agricultural commodities, it is desirable to have R
2
 >0.50, RPD>5. Nevertheless, 

for samples of complex material, Williams and Norris (2001) classified values as follows: 

RPD<1.0 indicates very poor model/predictions and their use is not recommended, RPD 

between 2.4 and 3.0 indicates poor model/predictions where only high and low values are 

distinguishable, RPD between 3.1 and 4.9 indicates fair model/predictions which may be used 

for assessment and correlation, RPD values between 5.0 and 6.4 indicate good 

model/predictions where quantitative predictions are possible, RPD between 6.5 and 8.0 

indicates very good, quantitative model/predictions, and RPD>8.1+ indicates excellent 

model/predictions. However, for complex agricultural material such as soil, another RPD 

standard was reported by researchers (Saeys et al., 2005; Viscarra Rossel et al., 2006). 

Viscarra Rossel et al., (2006) classified RPD values as follows: RPD<1.0 indicates very poor 

model/predictions and their use is not recommended; RPD between 1.0 and 1.4 indicates poor 

model/predictions where only high and low values are distinguishable; RPD between 1.4 and 

1.8 indicates fair model/predictions which may be used for assessment and correlation; RPD 

values between 1.8 and 2.0 indicates good model/predictions where quantitative predictions 

are possible; RPD between 2.0 and 2.5 indicates very good, quantitative model/predictions, 

and RPD>2.5 indicates excellent model/predictions. Chang et al., (2001) classified RPD 

values into three classes as follows: class A: RPD>2.0; class B: RPD=1.4–2.0; class C: 

RPD<1.4). The RPD values obtained in this study were classified according to the latter 

proposed limits, and were used to evaluate the accuracy of PLS models for the prediction of 

soil properties under study. 

5.2.6 Mapping 

All maps for studied soil properties were developed by the inverse distance weighting 

(IDW) method using ArcGIS 10.1 (ESRI, USA) mapping software. Two types of maps were 

developed for each property, namely full-point and comparison maps (measured, predicted, 

error). The full point maps consisted of all on-line predicted points of the studied soil 

properties. The comparison maps compare on-line predicted values and laboratory measured 
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data using the validation sets. To have useful comparison among the produced maps, the same 

number of classes (6 classes) was considered for all maps.  

With regards to maps produced by geostatistical analysis, there were two types of maps; 

the first type was for thematic spatial maps of the studied soil properties interpolated using 

three different geostatistical models (soil, spectral and fusion). Thematic spatial maps were 

classified into 6 isofrequency classes in order to better disclose spatial patterns. The second 

type included the maps produced with factor cokriging, in particular the maps of the 

significant regionalised factors used to delineate management zones (MZs). The MZs maps 

were classified into 3 main classes of such a size that they can be managed by farmers. All 

geostatistical analyses were performed with the software package ISATIS (Geovariances, 

2013). 
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5.3 Geostatistical analysis 

The complex geostatistical analysis was divided into 2 parts: 

1- Part A: aimed at delineation of homogenous zones using separately either soil 

measured data (soil variables) or estimated data from the spectral variables (Figure 9). 

2- Part B: aimed at showing the potential of the fusion between on-line measurements 

and soil data to improve the delineation of homogenous zones (Figure 10).  

Intrinsic stationarity was assumed for all variables. All maps produced using the geostatistical 

analysis were interpolated on 1m x 1m square grid. 
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Figure 9. Flow chart of part A represents geostatistical analysis applied on soil and spectral 

variables data sets 
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Figure 10. Flow chart of the second part B represents the fusion data set analysis 
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5.3.1 Data acquisition 

Two different types of data were acquired: 

1) Spectral variables data (predicted values using the on-line vis-NIR spectra and 

PLSR models). These spectral variables were soil pH, extractable phosphorus, 

moisture content and exchangeable potassium. The latter variable was used as 

secondary attribute in the multi-collocated cokriging analysis. 

2) Soil variables data of collected soil samples based on 30 m x 30 m grid. These soil 

variables were soil pH, moisture content, extractable phosphorus, particle size 

distribution (Sand, Silt and Clay), exchangeable cations (Ca, Mg, K and Na), 

cation exchange capacity, total nitrogen and total carbon. 

Three Linear models of coregionalization (LMC) were developed: the first is for soil 

variables, the second is for spectral variables and the third is for the fusion between soil and 

spectral variables. The multivariate spatial data set was analysed by: multi-collocated co-

Kriging to produce the thematic maps of the study variables and Factor cokriging to 

determine scale-dependent regionalised factors.  

Part A: 

Geostatistical methods were applied to the whole data sets. The assumption of 

stationarity was tested. If the variables can be assumed as intrinsically stationary, a 

multigaussian approach was applied if some variables show departure from normal 

distribution. It consists of the following steps: 

1. Transform the initial variables into Gaussian-shaped variables with zero mean and 

unit variance through an approach using Hermite polynomials, called Gaussian 

anamorphosis (Chiles and Delfiner, 1999; Wakernagel, 2003). 

Gaussian Anamorphosis Modelling 

A difficulty in the practical application of a multivariate approach occurs when 

the variables are of widely differing sizes. A solution is to standardize the individual 

variables to give each an average of zero and a variance of unity. Variogram 

modelling is further complicated by the presence of outliers in highly skewed data 

distributions. In this case it is better to perform a normalization of data through 

Gaussian anamorphosis modelling. Gaussian anamorphosis is a mathematical 

function which transforms a variable Y with a Gaussian standardized distribution in a 
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new variable Z with any distribution: Z = Φ(Y). As this function needs to be known 

for any Gaussian value, a model is required. This is made by fitting a polynomial 

expansion (Chiles and Delfiner, 1999): 

)Y(HY(
ii) 

 

where Hi (Y) are called Hermite Polynomials. In practice the polynomial expansion 

is truncated at a generally high order (30-100) and tends to be bijective within the 

interval defined by the minimum and the maximum of the sample values 

(Wakernagel, 2003). Model fitting then consists of calculating the Ψi coefficients of 

the expansion and, in order to transform the raw variable into a Gaussian one, the 

anamorphosis function has to be inverted: Y = Φ
-1

(Z). 

This inversion, outside the interval where the function is not strictly increasing for all 

the values of Y, is performed using a linear interpolation (Wakernagel, 2003). 

2.  Adopting a Gaussian model, a LMC was fitted to all experimental variograms, both 

direct and cross-variograms, of the transformed data, and then ordinary cokriging 

(Goovaerts, 1997) was applied as conditional expectation estimator. Finally, the 

estimates were back-transformed to the raw values of the variables through the 

anamorphosis functions previously calculated. 

Linear Model of Coregionalization 

The LMC, developed by Journel and Huijbregts (1978), considers all the n 

studied variables as the result of the same independent physical processes, acting over 

different spatial scales u. The n(n+1)/2 simple and cross semivariograms of the 

variables are modelled by a linear combination of NS standardized semivariograms of 

unit sill, g
u
(h). Using the matrix notation, the LMC can be written as: 

   



SN

u

uu g
1

B hhΓ

 

where Γ(h)=[γij(h)] is a symmetric matrix of order n  n, whose diagonal and out-of-

diagonal elements represent simple and cross semivariograms, respectively; B
u
=[b

u
ij] 

is called coregionalization matrix and it is a symmetric positive semi-definite matrix of 

order n  n with real elements b
u

ij at a specific spatial scale u. The model is authorized 

if the functions g
u
(h) are authorized semivariograms models (Castrignanò et al., 2000). 

3. Spatial interpolation of Gaussian transformed variables using ordinary (co) kriging.  



54 
Sameh Mohammed Shaddad, Proximal Soil Sensors and Geostatistical Tools in Precision Agriculture Applications, Tesi di dottorato in Scienze e Biotecnologie dei 

Sistemi Agrari e Forestali e delle Produzioni Alimentari, Indirizzo: Agrometeorologia ed Ecofisiologia dei Sistemi Agrari e Forestali, Università degli Studi di Sassari. 

4. Back transformation to the raw data through a mathematical model calculated in 

Gaussian anamorphorsis. 

PART B: 

With geostatistics sparse observations of the primary attribute can be complemented by 

secondary attributes that are more densely sampled (Castrignanò et al., 2009). The spectral 

variable of exchangeable potassium was used as secondary attribute to create the fusion 

model.  

To produce the coregionalization (Fusion) data set, the spectral variables were estimated 

at the sample locations using the previously fitted LMC. The fusion data set of soil and 

spectral variables was interpolated using multicollocated cokriging.  

Multi-collocated cokriging 

Ordinary cokriging (OCK) is one of the most basic cokriging methods, which assumes 

the local mean to be constant but of unknown value. A way of integrating secondary finer-

resolution information in primary sparse variable modelling is collocated cokriging, where the 

contribution of a secondary variable to the cokriging estimate relies only on the cross-

correlation between the two variables (Goovaerts, 1997). The approach is quite similar to 

ordinary cokriging with the only difference occurring in the neighbourhood search. As using 

all secondary exhaustive information contained within the neighbourhood may lead to an 

intractable solution, due to too much information, the initial solution of collocated cokriging 

was to use the single secondary value co-located at the target grid node. In ordinary cokriging 

the weights attached to the secondary variable must add up to zero, therefore, if only one data 

value is used, its single weight is zero. The original technique was then extended so that the 

secondary variable is used at the target location and also at all the locations where the primary 

variable is defined within the neighbourhood. This solution has generally produced more 

reliable and stable results (Castrignanò et al., 2009; Castrignanò et al., 2012). The modified 

version, also referred to as “Multi-Collocated Cokriging” (MCCO) in literature (Rivoirard, 

2001), is less precise than full cokriging, not using all the auxiliary information contained 

within the neighbourhood, but it is much less computer time demanding. However, because 

the co-located secondary datum tends to screen the influence of more distant secondary data, 

there is actually little loss of information. Differently than the original technique of collocated 

cokriging, in this new version the influence of the secondary variable on the primary variable 
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is explicitly taken into account through the estimation of both direct secondary variable 

variogram and cross-variogram. 

Regionalized Principal Component Analysis 

Regionalized Principal Component Analysis breaks down each co-regionalization 

matrix B
u
 into the eigenvalues and eigenvector matrices (Wackernagel, 2003): 

   uTu
T

uuuuuTuuu AAQQQQ B  

where Q
u
 is the matrix of eigenvectors, i.e. the regionalised factors 

 xY u

v , and 
u
 is the 

diagonal matrix of eigenvalues for each spatial scale u; 
uuu ΛQA  is the matrix of order n 

x n of the transformation coefficients 
u

iva
. The transformation coefficients 

u

iva
 in the matrix A

u
 

correspond to the covariances between the original variables 
 xZ i  and the regionalized 

factors 
 xY u

v . 

The approach breaks down the set of original second-order random variables Zi(x); i =1,...,n 

into a set of reciprocally orthogonal factors   xY u

v ; v =1,...,n; u =1,…,NS with 

transformation coefficients 
u

iva
. Therefore, combining the spatial with the multivariate 

decomposition, it results:: 
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Factor cokriging  

Mapping the regionalized factors 
 xY u

v  provides a way to show the behaviour and 

relationships among variables over different spatial scales. The estimation of the factors is 

performed by a modified co-kriging system, as described by Wackernagel (1988), 

(Castrignanò et al., 2000). 

It is important to acknowledge that the underlying assumptions of Factor Co-Kriging Analysis 

(FCKA) are linearity and independence of factors. Moreover, factorial co-kriging depends on 

variogram modelling, i.e. on a somewhat arbitrary choice of the number/type of nested 

structures and range of variogram models; hence, when modelling variograms, any physical 

knowledge of the phenomena acting in the study area should be taken into account. 
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5.3.2 Prediction comparison:  

5.3.2.1 Cross-validation 

The performances of the three models for MZ delineation were individually 

assessed using cross validation (Isaaks and Srivastava, 1989), whereby one 

observation (z) at a time is temporally removed from the data set and re-estimated 

(z*) from the remaining data. To assess which method gives the most precise 

estimation of the soil properties, two statistical criteria were considered: mean error 

(ME), as an indicator of bias, and mean standardized squared error (MSSE) (scaled 

by the predicted standard deviation of estimation), as an accuracy measure:  

   
 

 
          

 

   

 

 

     
 

 
   

     

 
  

 

   

 

  

where N is the number of active observations and σ the cokriging standard deviation. 

If the estimation is unbiased and accurate, the first statistic should be close to zero, 

whereas the second one should be close to one, because the latter corresponds to the 

ratio between an experimental variance and a theoretical one. 

The appropriateness of the chosen LMC models was tested by cross-validation. This 

involves deleting each sample in turn and then kriging it (z*) independently from all 

other points in the estimation neighbourhood (Castrignanò, 2011). The outcomes of 

the cross-validation procedure can be shown in a graphic which involves the 

following plots:  

a) The histogram of the standardised estimation errors, which should symmetrical, 

centred on 0 and without long tails. 

b) The scatter diagram of the true data versus the estimated values, which should be 

close to the first bisector. 

c) The scatter diagram of the standardised estimation errors versus the estimated values, 

which should look like a round cloud, symmetrical to horizontal axis. 
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5.3.2.2 Validation Test 

In geostatistical practice, the usual method of testing is cross-validation. However, its 

results are actually biased and somewhat too optimistic (Creutin and Obled, 1982), because it 

retains the same variogram, whereas the variogram should be recomputed and fitted every 

time that an observation is removed (Laslett et al., 1987). Moreover, cross-validation is not 

true validation, because the same sample data set is used for both estimation and validation. 

All these shortcomings can be avoided by using a separate independent set of data for 

validation.  

The validation procedure used an independent data set consisting of 63 soil samples. To 

check the null hypothesis that the experimental error (prediction - observation) is zero for 

each surveyed variable, a t-test was performed with unequal variances. This test assumes that 

the means of the two data sets are normally distributed and the means are equal. By the 

central limit theorem, mean of samples from a population with finite variance approaches a 

normal distribution regardless of the distribution of the population. Estimate distributions 

were also compared with the distributions of the validation data through quantile–quantile 

plots. This proves to be a good visual tool for comparing two different distributions. 

Differences between true and estimated values were also shown through boxplots of the 

experimental errors.  

The three (soil, spectral, fusion) models were compared by calculating the following 

three statistics: mean error (ME), root mean squared error (RMSE) and mean squared error of 

error standardised by cokriging standard deviation (MSSE). The optimal values should be 

close to 0 for the first two statistics and 1 for the third one. 

5.3.3 Spatial association of yield map with MZs  

A yield map of barley (winter) was produced by using inverse distance weighting 

(IDW) method. The yield map was classified into 3 isofrequency classes (low, medium, high). 

The degree of similarity between the classes of yield and the ones of MZ delineation was 

calculated by applying the tool of “extract by mask” of ArcGIS mapping software, for the 

two, soil and fusion, models. Also, the mean and standard deviation of yield were calculated 

for each management zones of the delineations produced by the two models.  
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6. Results and discussion 

Results and discussion section of the whole research can be divided into two parts: part 

A addresses the vis-NIR experiment which includes the on-line measurement, development of 

calibration models for different soil properties, evaluating the accuracy of the calibration 

models by using cross-validation and independent validation data sets and finally prediction 

of the studied soil properties using the spectra collected from the on-line sensor and 

calibration models. Part B consists of developing three different models, one for soil 

variables, one for spectral variables and one for the fusion between both types of variables. It 

also, includes delineation of management zones (MZ) according to the three developed 

models and finally comparing the estimated MZ map with the yield map of barley (winter) 

harvested on August 2013 in order to investigate the similarity between the two types of maps 

and then assess the productivity potential in MZ delineation.  

6.1 Part A: vis-NIR experiment  

All steps performed in this study regarding vis-NIR experiment are illustrated in the 

flow diagram shown in Figure 11, from the collection of both soil spectra and soil samples to 

the development of different maps. This diagram made it clear that the vis–NIR calibration 

models were developed using soil spectra measured under non-mobile laboratory 

environment. The applicability of these laboratory calibration models for on-line predictions 

of soil properties was validated using spectra measured on-line with the vis–NIR on-line soil 

sensor. 
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Figure 11. A flow diagram explaining different steps performed from data collection to 

development of soil maps 

6.1.1 Accuracy of calibration models and on-line validation 

The PLSR with full cross-validation technique resulted in calibration models for the 

different soil properties considered in this study. The adequacy of each calibration model was 

evaluated based on the values of R
2
 for predicted versus measured compositions in cross-

validation and prediction, and the RPD. 

Table 4 shows the calibration models performance in cross-validation. Results illustrate 

excellent to good relationships between soil properties and soil spectra with R
2
 of 0.90, 0.97, 
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0.74, 0.96, 0.77 and 0.83 for pH, P, TN, TC, MC and K, respectively. In the current study, the 

results for pH, P and TC are better than those obtained by Kodaira and Shibusawa (2012), 

whereas the results for TN and MC are worse than those obtained in their study. Root mean 

square error of calibration (RMSEC) were 0.206, 1.334 (mg.kg
-1

), 0.010 (%), 0.042 (%), 

0.956 (%) and 0.031(cmol+.kg
-1

) for pH, P, TN, TC, MC and K, respectively. The RPD 

values of the PLSR cross-validation (Table 4) for pH and P were 1.90 and 2.08, respectively. 

RMSEP values were 0.358 and 3.96 mg/kg for pH and P, respectively, which is in line with 

results obtained by others (Shepherd and Walsh, 2002, Cohen et al., 2005, Mouazen et al., 

2006). As pH and P do not have direct spectral responses in the NIR range, this successful 

result can be attributed to covariation with other properties that have direct spectral responses 

such as N, C and clay (Stenberg et al., 2010). 

Table 4. Partial least squares regression (PLSR) – results for calibration datasets. 

 
 

Soil properties 

 

 

Calibration  

Statistics pH P TN TC MC K 

Sample no 125 62 133 108 127 43 

Min 5.39 6.80 0.091 1.207 13.41 0.12 

 Max 8.21 40.00 0.198 2.351 24.74 0.37 

Mean 6.59 17.97 0.141 1.806 17.96 0.21 

SD 0.680 8.237 0.020 0.221 2.015 0.073 

 RMSEC 0.206 1.334 0.010 0.042 0.956 0.031 

R2 0.90 0.97 0.74 0.96 0.77 0.83 

LV 7 8 6 13 6 4 

 

Cross-

validation 

RMSEP 0.358 3.96 0.013 0.101 1.211 0.049 

R2 0.72 0.77 0.57 0.79 0.64 0.55 

RPD 1.90 2.08 1.53 2.18 1.66 1.48 

Model quality* B A B A B B 

P: Phosphorus (mg/kg), TN: Total nitrogen (%), TC: Total carbon (%), MC: Moisture content (%), K: Exchangeable potassium (cmol+. kg-1) 

SD: Standard deviation 

RMSEC: Root mean square error of calibration 
RPD: Ratio of prediction to deviation or residual prediction deviation 

R2: Coefficient of determination  

LV: Number of latent variables 
RMSEP: Root mean square error of prediction 

* Model quality is categorized according to Chang et al., 2001.( A: RPD>2.0; B: RPD=1.4–2.0; C: RPD<1.4). 

 

The independent validation of the PLSR calibration models using on-line spectra of the 

prediction sets (Table 5) provided RPD values of 2.06 and 1.77, and RMSEP values of 0.434 

and 8.611 mg/kg for pH and P, respectively, which is better than the result of Mouazen et al., 

(2009) and Mouazen et al., (2007). RPD values of TN, TC and MC for cross-validation and 

independent validation were 1.53, 2.18 and 1.66 and 1.77, 1.85 and 1.50 respectively, 

illustrating good to excellent calibration models. RPD values of K were 1.48 and 1.31 for 

cross-validation and independent validation, respectively, indicating a poor calibration model 
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for this property. Literature proves that potassium is the most difficult soil property to be 

estimated by using vis-NIR spectroscopy (Chang et al., 2001; Mouazen et al., 2006; 

Cozzolino and Moron, 2003). 

Table 5. Validation of partial least squares regression (PLSR) with on-line measured 

independent validation dataset. 

 
Independent validation 

Statistics pH P TN TC MC K 

Sample no 48 23 22 24 45 24 

Min 5.16 4.80 0.112 1.304 13.41 0.12 

Max 8.17 50.00 0.201 2.455 24.28 0.40 

Mean 6.46 22.50 0.151 1.790 18.03 0.23 

SD 0.895 15.231 0.024 0.275 2.164 0.078 

RMSEP 0.434 8.611 0.013 0.183 1.449 0.060 

R
2
 0.73 0.69 0.72 0.57 0.56 0.44 

RPD 2.06 1.77 1.85 1.50 1.49 1.31 

Model quality* A B B B B C 

P: Phosphorus (mg/kg), TN: Total nitrogen (%), TC: Total carbon (%), MC: Moisture content (%), K: Exchangeable 

potassium (cmol +. kg-1) 

RMSEP: Root mean square error of prediction 

* Model quality is categorized according to Chang et al., 2001.( A: RPD>2.0; B: RPD=1.4–2.0; C: RPD<1.4). 
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6.1.2 Regression coefficients 

Regression coefficients summarize the relationships between all predictors 

(wavelengths in soil spectra) and a given response (each soil variable). The regression 

coefficients plots for pH and extractable phosphorus show either positive or negative bands in 

the vis and NIR ranges (Figures 12-13). Most significant bands are in the visible 400-600 nm, 

associated with colour and in the NIR range > 1450 nm, associated with water and carbon 

absorption bands. Although the absorption bands of SOM in the vis–NIR are often weak and 

not readily apparent to the naked eye, the overall absorption due to SOM in the visible region 

is broad but clear (Baumgardner et al., 1985; Bowers and Hanks, 1965; Krishnan et al., 1980). 

Regression coefficients for TC (Figure 15) show that the most significant bands are found in 

the vis range (480, 579 and 699 nm) and at other wavelengths in the NIR range (747, 792, 984 

and 1308 nm). Other studies reported different bands in the vis range (439, 490 and 661 nm) 

and in the NIR region (1109, 1232, 1414 and 1522 nm) (Mouazen et al., 2007), as compared 

to the current work. This might be attributed to soil complexity including soil type, parent 

material and soil physico-chemical characteristics. 

The most significant bands (Figure 12) for pH are found in the vis range (444, 498 and 

576 nm) and in the NIR range (915, 1105, 1489, 1537 and 1591 nm). Figure 13 shows that the 

most significant bands for P are found in the vis range (417,459 and 513 nm) and in the NIR 

range (1045,1225 and 1615 nm). For TN, the most significant bands (Figure 4) are found in 

the vis range (432 and 555 nm) and in the NIR range (783, 1053 and 1578 nm). Figure 15 

shows that the most significant peaks for TC are in the vis range (447, 474, 579 and 696 nm) 

and in the NIR range at 792, 855, 984, 1158 and 1308 nm. The most significant peaks for MC 

(Figure 16) are in the vis range (444, 567nm) and in the NIR range (951, 1086 and 1623 nm). 

For K, regression coefficients (Figure 17) show that the most significant peaks are found in 

the vis range (414 nm) and in NIR range at 996, 1435, 1609 and 1633 nm.  
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Figure 12. Regression coefficients for soil pH 

 

 

 

 

 

Figure 13. Regression coefficients for extractable phosphorus 
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Figure 14. Regression coefficients for total nitrogen 

 

 

 

 

 

Figure 15. Regression coefficients for total carbon 
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Figure 16. Regression coefficients for moisture content 

 

 

 

 

 

Figure 17. Regression coefficients for exchangeable potassium 
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6.1.3 Measured versus predicted values in cross-validation and in independent 

validation data sets 

Figures 18-23 show the linear correlation between measured and cross-validation 

predicted values of each one of the six soil properties. The data points were closely grouped in 

the cross-validation data set with the exception of exchangeable potassium and slightly more 

scattered in the independent validation data set (Figures 24-29). Soil samples used in cross-

validation were 125, 62, 133,108, 127 and 43 for pH, P, TN, TC, MC, K respectively, 

whereas samples used in the independent validation data set were 48, 23, 22, 24, 45 and 24 

respectively for the same properties motioned above.   
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Figure 18. Scatter plot of measured values versus cross-validation predicted pH 

 

 

 

 

 

Figure 19. Scatter plot of measured values versus cross-validation predicted extractable 

phosphorus  
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Figure 20. Scatter plot of measured values versus cross-validation predicted total nitrogen 

 

 

 

 

 

Figure 21. Scatter plot of measured values versus cross-validation predicted total carbon 
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Figure 22. Scatter plot of measured values versus cross-validation predicted moisture content 

 

 

 

 

Figure 23. Scatter plot of measured values versus cross-validation predicted exchangeable 

potassium 
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Figure 24. Scatter plot of measured versus predicted pH using the independent validation 

dataset 

 

 

 

Figure 25. Scatter plot of measured versus predicted extractable phosphorus using the 

independent validation dataset 
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Figure 26. Scatter plot of measured versus predicted total nitrogen using the independent 

validation dataset 

 

 

 

 

Figure 27. Scatter plot of measured versus predicted total carbon using an independent 

validation dataset 
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Figure 28. Scatter plot of measured versus predicted moisture content using the independent 

validation dataset 

 

 

 

 

Figure 29. Scatter plot of measured versus predicted exchangeable potassium using the 

independent validation dataset 
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6.1.4 Residual variance 

The total residual and explained variances show how well the model fits to the data. 

Models with small total residual variance (close to 0) or large total explained variance (close 

to 100%) explain most of the variation in the data. Figures 30-35 show small residual 

variances of the studied properties. Those figures show also the number of latent variables 

that minimize the residual variances of each of soil properties. Latent variables can be ordered 

as follow: K (4LV), MC and TN (6LV), pH (7LV), P (8LV) and TC (13LV). The different 

number of latent variables illustrates the degree of complexity of variation of each soil 

property. 
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Figure 30. Residual variance for pH in cross-validation 

 

 

 

 

Figure 31. Residual variance for extractable phosphorus in cross-validation 
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Figure 32. Residual variance for total nitrogen in cross-validation 

 

 

 

 

 

  

Figure 33. Residual variance for total carbon in cross-validation 
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Figure 34. Residual variance for moisture content in cross-validation 

 

 

 

 

 

  

Figure 35. Residual variance for exchangeable potassium in cross-validation 
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6.1.5 Mapping 

The PLS calibration models of pH, extractable phosphorus, total nitrogen, total carbon, 

moisture content and exchangeable potassium were utilised to transfer the on-line measured 

soil spectra into quantitative values. 

Maps for pH, extractable phosphorus, total nitrogen, total carbon, moisture content and 

exchangeable potassium developed using the on-line measured VIS-NIR spectra were 

compared to the corresponding maps developed using the laboratory reference methods. 

Figure 36 shows a moderate spatial similarity between the measured and predicted values of 

pH at most areas over the field. Visually the on-line map of soil pH showed a partial 

similarity compared to the map of reference values. This is due to the large number of points 

(>11000 points) used to create the on-line map, whereas only few points were used to develop 

the latter map. Error map of pH shows that the maximum error occurred in few areas in the 

studied field. The mean error between the on-line and reference measurement methods was 3 

%. This confirms a good prediction of soil pH that can help the application of site-specific 

fertiliser management. Thus, the on-line measurement system can be used to provide detailed 

data about the spatial variation of soil pH that can be useful information to adjust soil acidity 

by lime.  

Maps for extractable phosphorus (Figure 37) show a good spatial similarity between 

measured and predicted values at most areas over the field. The spatial similarity between the 

on-line and measured maps is poor in this case. The average calculated error between the two 

measurement methods of P was quite large (38 %), which can be attributed to the small 

number (62) of samples used to establish the calibration model of P (Table 4). Therefore, a 

larger sample set might improve the accuracy of the on-line measurement of P. Mouazen et 

al., (2007) used 175 samples to develop the calibration model and obtained an average error 

of 27.5 % between on-line and reference measurement methods.  

Map of measured values of total nitrogen shows a good spatial similarity, as compared 

to the corresponding map of predicted values (Figure 38). The spatial distribution of total 

nitrogen measured by the on-line and by reference methods shows partial similarity. The 

mean error between the on-line and reference measurement method was very small (8 %), 

which is a good indicator that the on-line sensor performance provides appreciable accuracy.  

For total carbon, there is a spatial similarity between reference and predicted values 

(Figure 39). Also, there is a partial similarity between the on-line and reference measurement 
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methods. The mean error between the two measurement methods was small (9 %). Mouazen 

et al., (2007), reported a smaller average error of 6 % between on-line and reference 

measurement methods.  

Maps for soil moisture content (Figure 40) show a partial spatial similarity between 

reference and predicted values. The calculated mean error between the on-line and reference 

was 23 %, which is very high. The spatial similarity between the two measurement methods is 

poor, which might be attributed to the small range of soil moisture content (13 % - 24 %) used 

to create the calibration model. An average error of 0.37 % was obtained by Mouazen et al., 

(2007) with a wider range of soil moisture content (2.2 % - 36 %). 

Figure 41 shows a moderate spatial similarity between the reference and predicted maps 

of exchangeable potassium. The mean error between the on-line and reference measurement 

methods was small (8 %). The spatial similarity between the on-line and reference methods is 

good.  
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Figure 36. pH measured, predicted, error and full points maps 

 

 

 



80 
Sameh Mohammed Shaddad, Proximal Soil Sensors and Geostatistical Tools in Precision Agriculture Applications, Tesi di dottorato in Scienze e Biotecnologie dei 

Sistemi Agrari e Forestali e delle Produzioni Alimentari, Indirizzo: Agrometeorologia ed Ecofisiologia dei Sistemi Agrari e Forestali, Università degli Studi di Sassari. 

 

Figure 37. Extractable phosphorus measured, predicted, error and full points maps 
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Figure 38. Total nitrogen measured, predicted, error and full points maps 
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Figure 39. Total carbon measured, predicted, error and full points maps 
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Figure 40. Moisture content measured, predicted, error and full points maps 
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Figure 41. Exchangeable potassium measured, predicted, error and full points maps 
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6.2 Part B: Geostatistical analysis 

The descriptive statistics of soil calibration data set are summarized in Table 6. Most 

soil properties are markedly skewed except silt, total carbon and sand. For this reason data 

transformation by Gaussian anamorphosis was carried out. 

Table 6. Statistics of raw data of soil calibration data set 

VARIABLE Count Minimum Maximum Mean Std. Dev Skewness Kurtosis 

Sand (%) 45 42.93 61.25 52.93 4.52 -0.50 2.41 

Silt (%) 45 24.02 34.25 29.91 2.42 -0.10 2.29 

TC (%) 120 1.08 2.50 1.78 0.23 0.39 4.07 

TN (%) 120 0.11 0.24 0.15 0.02 0.89 4.45 

CEC (cmol+.kg
-1

) 61 7.12 11.80 8.94 1.04 0.67 3.17 

K (cmol+.kg
-1

) 61 0.05 0.27 0.13 0.06 0.78 2.58 

P (mg.kg
-1

) 61 6.80 65.60 23.38 14.10 1.07 3.40 

pH 120 5.12 8.15 6.49 0.73 0.72 2.82 

  

Table 7 lists the Pearson correlation coefficients of all soil properties used in 

calibration. Sand was negatively correlated with silt, CEC and positively with P and K. TC 

was positively correlated with TN, pH and CEC. P was positively correlated with K and 

negatively with silt. It is commonly known that soil organic matter and clay are colloidal 

materials with large surface area that increase the exchange capacity of the soil and this 

explains the positive correlation between TC and CEC and the negative correlation between 

sand and CEC. 

Table 7. Correlation matrix of soil calibration data set  

Variables CEC pH K P TN TC Sand Silt 

CEC 1.00 0.17 -0.16 -0.23 0.40 0.46 -0.74 0.41 

pH 
 

1.00 -0.33 -0.12 0.46 0.55 -0.06 -0.28 

K 
  

1.00 0.70 -0.05 0.16 0.36 -0.38 

P  
   

1.00 0.21 0.19 0.44 -0.56 

TN 

    
1.00 0.70 -0.15 -0.18 

TC 

     

1.00 -0.09 -0.29 

Sand 

      
1.00 -0.83 

Silt 

       

1.00 

Values in bold are different from 0 with a significance level alpha=0.05 
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Table 8 shows the correlation matrix of the spectral variables. The correlations were 

generally quite low or not significant. The significant correlations of MC with the other 

spectral variables might be due to the fact that the absorption peaks of water (e.g. at 1950 nm) 

can mask the wavebands associated with the absorption by other soil attributes and thus 

deteriorate model performance and accuracy of prediction of these properties (e.g. OC, clay, 

etc) (Mouazen et al., 2005). This negative effect of MC explains why the calibration of the 

spectral model did not work properly.  

Table 8. Experimental correlation matrix of spectral model  

Variables K spec MC spec P spec pH spec 

K spec 1.00 -0.04 0.02 -0.17 

MC spec  1.00 -0.34 0.04 

P spec   1.00 0.12 

pH spec    1.00 

Values in bold are different from 0 with a significance level alpha=0.05 
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Table 9 shows the correlation matrix of the Gaussian transformed soil and spectral 

variables used to develop the fusion model. Exchangeable K (spectral variable) was positively 

correlated with sand content, silt content and soil K, and to a less extent with P (soil variable) 

and pH (spectral variable). Moisture content was positively correlated with TC, TN and pH 

(soil variable). P (spectral variable) was negatively correlated with TC, TN and pH (soil 

variable). pH (spectral variable) was positively correlated with pH (soil variable), whereas 

negatively with K (soil variable).  

It is clear from the previous results, that K (spectral variable) is the most correlated 

spectral variable with soil variables and that is why it was used as auxiliary variable in the 

multi-collocated cokriging analysis. 

 

Table 9. Experimental correlation matrix of fusion model 

Variables 1gKspec  gMC spec gP spec gpH spec gP gTC gTN gCEC gK gpH gSand gSilt 

gK spec  1.00 0.22 0.05 0.38 0.37 0.17 0.08 0.19 0.51 0.02 0.60 0.53 

gMC spec 

 
1.00 -0.21 0.23 0.01 0.54 0.48 0.32 -0.01 0.44 -0.06 -0.24 

gP spec 

  
1.00 0.28 0.07 -0.41 -0.18 -0.17 0.12 -0.34 0.17 0.10 

gpH spec 

   
1.00 -0.02 0.18 0.27 0.11 -0.26 0.50 -0.14 -0.10 

gP 

    
1.00 0.14 0.24 -0.29 0.58 -0.14 0.53 -0.58 

gTC 

     
1.00 0.70 0.53 0.10 0.56 -0.10 -0.32 

gTN 

      
1.00 0.39 -0.07 0.40 -0.11 -0.22 

gCEC 

       
1.00 -0.14 0.19 -0.62 0.34 

gK 

        
1.00 -0.34 0.36 -0.34 

gpH 

         
1.00 -0.08 -0.34 

gSand 

          
1.00 -0.80 

gSilt 

           
1.00 

Values in bold are different from 0 with a significance level alpha=0.05 
1
 g means gaussian 
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Table 10 shows the LMC of soil model. LMC of soil model includes two basic spatial 

structures: a nugget effect; an isotropic spherical model with range of 343.96 m.  

 

Table 10. Linear model of coregionalization of the transformed Gaussian soil variables. There 

are reported the coregionalization matrices (sills of variograms)  

Nugget effect                 

  gP gTC gTN gCEC gK gpH gSand gSilt 

 gP    0.3452 0.1294 0.1899 0.0214 0.1278 -0.1062 -0.113 0.0245 

 gTC     0.4162 0.363 0.1602 0.0789 0.1697 -0.1097 -0.019 

 gTN      0.6381 0.146 0.0124 0.1534 -0.1324 -0.0898 

 gCEC      0.1416 0.0421 0.1297 -0.034 -0.0048 

 gK         0.2547 0.0081 -0.1186 0.0888 

 gpH           0.3655 -0.0853 -0.0394 

 gSand          0.1163 -0.0088 

 gSilt           0.057 

                  

Spherical model - Range = 343.96 m 

   

 gP       0.5064 0.1251 0.1872 -0.0271 0.2293 0.0545 0.4009 -0.4407 

 gTC       0.8258 0.4643 0.5272 0.0425 0.5825 0.0251 -0.5208 

 gTN        0.5583 0.4076 -0.1614 0.3715 -0.0458 -0.1676 

 gCEC        0.7918 -0.0084 0.1558 -0.3041 0.0048 

 gK          0.6983 -0.4314 0.2573 -0.2148 

 gpH           0.9678 -0.0254 -0.4339 

 gSand          0.5858 -0.5773 

 gSilt           0.9204 
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The LMC of spectral model (Table 11) involves three spatial structures: a nugget effect and a 

spherical model at shorter range (50 m); a spherical model at longer range (210 m). The 

coregionalization matrices are reported (sills of variograms)  

 

Table 11. Linear model of coregionalization of the transformed Gaussian spectral variables 

Nugget effect  

  gK spec gMC spec gP spec gpH spec 

gK spec
1
 0.7778 -0.0509 -0.0074 -0.0261 

gMC spec  0.7864 -0.2707 -0.0014 

gP spec   0.4997 0.0064 

gpH spec    0.5947 

  

    Spherical model - Range = 50.00 m 

    gK spec 0.1212 0.0117 0.0475 -0.1084 

gMC spec  0.2017 -0.0079 0.0521 

gP spec   0.1509 -0.0238 

gpH spec    0.3194 

  

    Spherical model - Range = 210.00 m 

    gK spec 0.0654 0.0246 -0.059 -0.0273 

gMC spec  0.0127 -0.0296 -0.0008 

gP spec   0.3274 0.1388 

gpH spec    0.1066 
1
 spec means spectral variable 

 

The LMC of fusion model (Table 12) involves two spatial structures: a nugget effect; an 

isotropic spherical model with range of 181.70 m. The coregionalization matrices are reported 

(sills of variograms)  
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Table 12. Linear model of coregionalization of the transformed Gaussian fusion variables (soil and spectral variables). The coregionalization 

matrices are reported (sills of variograms)  

Nugget effect 

            gK spec gMC spec gP spec gpH spec gP gTC gTN gCEC gK gpH gSand gSilt 

gK spec
1
 0.0389 0.0106 -0.0121 -0.0266 -0.0564 -0.0163 0.0121 -0.0038 -0.0437 0.0359 0.0243 0.0209 

gMC spec  0.0758 0.0418 0.0369 -0.0009 0.0238 0.0358 0.0307 0.0445 0.0257 -0.011 0.0039 

gP spec   0.1024 0.0463 0.0111 0.0911 0.0629 0.0817 0.0583 0.0638 -0.0092 -0.027 

gpH spec    0.1134 -0.0394 0.058 0.0173 0.0141 0.0263 0.0602 -0.0316 -0.0478 

 gP         0.2296 0.0478 0.0926 0.0096 0.1144 -0.1602 -0.0323 -0.0195 

 gTC           0.2877 0.221 0.0651 0.0573 0.0268 -0.0138 -0.0525 

 gTN            0.4729 0.0513 0.0475 0.0063 0.0022 -0.1093 

 gCEC            0.107 0.0723 0.0209 0.0106 0.003 

 gK              0.1993 -0.0511 -0.065 0.0051 

 gpH               0.1979 -0.0005 -0.0243 

 gSand              0.0458 0.0125 

 gSilt               0.0674 

             Spherical model - Range = 181.70m 

          gK  spec 0.1145 0.0335 -0.0139 -0.0662 0.09 0.1008 0.0055 0.0267 0.1204 -0.0312 0.0948 -0.1108 

gMC spec  0.1133 -0.0922 0.0325 0.0182 0.1843 0.1695 0.0789 -0.0802 0.1861 -0.0184 -0.0871 

gP spec   0.2973 0.0298 -0.1138 -0.3308 -0.2043 -0.1013 -0.0259 -0.2746 0.0107 0.164 

gpH spec    0.1913 0.0129 0.0886 0.1739 0.1264 -0.1461 0.2551 -0.1055 -0.0081 

 gP           0.4941 0.1936 0.2559 0.0054 0.1546 0.098 0.0892 -0.1663 

 gTC           0.7226 0.5025 0.4624 0.0556 0.5897 -0.1425 -0.2624 

 gTN            0.6306 0.3778 -0.165 0.4778 -0.2619 -0.0498 

 gCEC            0.5393 -0.047 0.2944 -0.2371 -0.0381 

 gK              0.4791 -0.1639 0.0383 0.0356 

 gpH               0.8627 -0.163 -0.2733 

 gSand              0.4362 -0.3482 

 gSilt               0.5309 
1
 spec means spectral variable 
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Figure 42. Matrix of the experimental (fine-line) and soil model (bold-line) variograms of the variables (P, TC, TN, CEC, K, pH, Sand and Silt), 

with the hull of perfect correlation (dash-line) 
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Figure 43. Matrix of the experimental (fine-line) and spectral model (bold-line) variograms of the variables (P spec, MC spec, K spec and pH 

spec), with the hull of perfect correlation (dash-line) 
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Most of variograms of soil properties look bounded (Figure 42) with the exception of 

TC, TN and pH, which probably show variability at a scale greater than the size of the field. 

TN has a nugget effect greater than pH, K, TC, and P, and those have nugget effects greater 

than silt, sand and CEC. The spatial correlations of P with CEC and pH are null as well as for 

TC with K and sand. Also, the spatial correlations of CEC with K and silt are null as well as 

between TN and K, and between pH and sand. Silt was negatively correlated with P, pH, TN, 

TC and sand whereas P was positively correlated with TN, TC and K. Positive correlations 

occurred between TC and TN, CEC and pH as well as between TN and CEC and pH. 

The graph of the direct and cross variograms (Figure 43) for the spectral variables 

reveals these variables to be highly noisy and not significantly correlated between them. 

All variograms of the fusion model look bounded (Figure 44) with low to moderate 

nugget effects except for TN which has high nugget effect. With regards to the spatial 

correlations among the variables, there are null spatial correlations of P with MC spec, pH 

spec and CEC as well as for K with TN, TC and silt. Null spatial correlations are found also 

between P spec and sand, and between CEC and silt.  
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Figure 44. Matrix of the experimental (fine-line) and fusion model (bold-line) variograms of the variables (P, TC, TN, CEC, K, pH, Sand, Silt, P 

spec, MC spec, K spec and pH spec), with the hull of perfect correlation (dash-line)
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6.2.1 Cross-validation of geostatistical models 

The appropriateness of the chosen LMC models was tested by cross-validation. This 

involves deleting each sample in turn and then kriging it (z*) independently from all other 

points in the estimation neighbourhood (Castrignanò, 2011). The outcomes of the cross-

validation procedure can be shown in a graphic which involves the following plots:  

a) The histogram of the standardised estimation errors, which should symmetrical, 

centred on 0 and without long tails (Lower left plot) 

b) The scatter diagram of the true data versus the estimated values, which should be close 

to the first bisector (Upper left plot) 

c) The scatter diagram of the standardised estimation errors versus the estimated values, 

which should look like a round cloud, symmetrical to horizontal axis (Lower right 

plot). 

6.2.1.1 Soil model 

The cross-validation results for CEC (Figure 45) show strong correlation between the 

true and estimated values with correlation coefficient (r) of 0.881. The scatter diagram of the 

standardised estimation errors versus the estimated values looks like a round cloud with r 

value of 0.145. The histogram of the standardised estimation errors is symmetrical but with 

some points found outside the range (-2.5 – 2.5) , these points are known as outliers. The 

mean standardized error is close to 0 (0.023) which means that the model is unbiased and the 

standard deviation of standardized error is close to 1 (1.17) which means that the estimation 

resulting from the model is accurate. 
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Figure 45. Outcomes of the cross-validation of CEC interpolated by soil model. 
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Cross-validation results of exchangeable potassium (Figure 46) shows strong correlation 

between true and estimated values with correlation coefficient (r) of 0.814. The scatter 

diagram of the standardised estimation errors versus the estimated values looks like a round 

cloud with r value of 0.130 and symmetrical to the horizontal axis. The histogram of the 

standardised estimation errors is symmetrical but with few points found outside the range (-

2.5 – 2.5), these points have values smaller than –2.5. The mean standardized error is close to 

0 (-0.003) which means that the model is unbiased and the standard deviation of standardized 

error is close to 1 (1.11) which means that the model estimation is accurate. 

 

 

Figure 46. Outcomes of the cross-validation of K interpolated by soil model.  
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For extractable phosphorus, there is a strong correlation (Figure 47) between the true 

and estimated values of P with an r value of 0.820. The scatter diagram of the standardised 

estimation errors versus the estimated values looks like a round cloud with r value of 0.165 

and symmetrical to the horizontal axis. The histogram of the standardised estimation errors is 

symmetrical but with few points found outside the range (-2.5 – 2.5) , these points have 

values less than –2.5 and greater than 2.5. The mean standardized error is close to 0 (-0.005) 

which means that the model is unbiased and the standard deviation of standardized error is 

close to 1 (1.14) which means that the model is good for theoretical estimates. 

 

 

Figure 47. Outcomes of the cross-validation of P interpolated by soil model.  
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Figure 48 shows a strong correlation between the true and estimated values of pH with r 

value of 0.764. The scatter diagram of the standardised estimation errors versus the estimated 

values looks like a round cloud with r value of 0.070 and symmetrical to the horizontal axis. 

The histogram of the standardised estimation errors is symmetrical with few points found 

outside the range (-2.5 – 2.5), these points have values greater than 2.5. The mean 

standardized error is close to 0 (0.007) which means that the model is unbiased and the 

standard deviation of standardized error is close to 1 (1.09) which means that the model 

estimation is accurate. 

 

 

Figure 48. Outcomes of the cross-validation of pH interpolated by soil model. 
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Cross-validation results (Figure 49) shows a very strong correlation between true and 

estimated values of sand with r value of 0.929. The scatter diagram of the standardised 

estimation errors versus the estimated values looks like a round cloud with r value of 0.180 

and symmetrical to the horizontal axis. The histogram of the standardised estimation errors is 

not symmetrical, as it results from the mean value of standardised error different from 0 

(0.11), and with some points found outside the range (-2.5 – 2.5), these points have values 

less than –2.5 and greater than 2.5. The mean standardized error is somewhat close to 0 (0.10) 

which means that the model can be assumed unbiased and the standard deviation of 

standardized error is somewhat far from 1 (1.32) but within the tolerance interval (±3√2/N, N 

is number of observations) (Chiles and Delfiner, 1999), which means that the model is 

accurate 

 

 

Figure 49. Outcomes of the cross-validation of sand interpolated by soil model.  
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A very strong correlation between the true and estimated values of silt with r value of 

0.923 is shown in Figure 50. The scatter diagram of the standardised estimation errors versus 

the estimated values looks like a round cloud with r value of 0.141 and symmetrical to the 

horizontal axis. The mean value of the standardised error is a little different from 0 (=0.10) 

and some points fall outside the range (-2.5 – 2.5); these points have values less than –2.5 and 

greater than 2.5. The mean standardized error is somewhat close to 0 (0.10) which means that 

the model is unbiased and the standard deviation of standardized error is (1.39), within the 

tolerance interval, which means that the model estimation is accurate. 

 

 

Figure 50. Outcomes of the cross-validation of silt interpolated by soil model. 
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Figure 51 shows a strong correlation between true and estimated values of TC with r 

value of 0.865. The scatter diagram of the standardised estimation errors versus the estimated 

values looks like a round cloud with r value of 0.048 and symmetrical to the horizontal axis. 

The histogram of the standardised estimation errors is symmetrical with some points found 

outside the range (-2.5 – 2.5) , these points have values less than –2.5 and greater than 2.5. 

The mean standardized error is close to 0 (0.024) which means that the model is unbiased and 

the standard deviation of standardized error is close to 1 (1.08) which means that the model 

estimation is accurate. 

 

 

Figure 51. Outcomes of the cross-validation of TC interpolated by soil model. 
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A strong correlation between true and estimated values of TN is shown in Figure 52 

with r value of 0.761. The scatter diagram of the standardised estimation errors versus the 

estimated values looks like a round cloud with r value of 0.041 and symmetrical to the 

horizontal axis. The histogram of the standardised estimation errors is symmetrical with some 

points found outside the range (-2.5 – 2.5) , these points have values less than –2.5 and greater 

than 2.5. The mean standardized error is close to 0 (-0.019) which means that the model is 

unbiased and the standard deviation of standardized error is close to 1 (1.12) which means 

that the model estimation is accurate. 

 

Figure 52. Outcomes of the cross-validation of TN interpolated by soil model. 

 

Summing up the results of cross-validation, the goodness of fitting of the soil model can be 

considered as satisfactory. 
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6.2.1.2 Spectral model 

A weak correlation between the true and estimated values of exchangeable potassium 

(Figure 53) using the spectral model is found with a low r value of 0.448, due to the strong 

smoothing of the model. The histogram of the standardised estimation errors is symmetrical. 

The scatter diagram of the standardised estimation errors versus the estimated values looks 

like a round cloud with r value of -0.024 and symmetrical to the horizontal axe. The mean 

standardized error is quite close to 0 (-0.002) which means that the model is unbiased and the 

standard deviation of standardized error is close to 1 (0.99) which means that the model 

estimation is accurate. 

 

Figure 53. Outcomes of the cross-validation of exchangeable potassium interpolated by 

spectral model. 
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Figure 54 shows intermediate slight higher correlation between true and estimated 

values of soil moisture content with r value of 0.585. The histogram of the standardised 

estimation errors is symmetrical with some points outside the range. The scatter diagram of 

the standardised estimation errors versus the estimated values looks like a round cloud with r 

value of -0.038 and symmetrical to the horizontal axis. The mean standardized error is close 

to 0 (0.0007) which means that the model is unbiased and the standard deviation of 

standardized error is close to 1 (0.97) which means that the model estimation is accurate. 

 

 

Figure 54. Outcomes of the cross-validation of moisture content interpolated by spectral 

model.  
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Unlike with the previous two soil properties Figure 55 shows a strong correlation 

between true and estimated values of extractable phosphorus with r value of 0.750. The 

histogram of the standardised estimation errors is symmetrical with some points outside the 

range. The scatter diagram of the standardised estimation errors versus the estimated values 

looks like a round cloud with r value of -0.027 and symmetrical to the horizontal axe. The 

mean standardized error is close to 0 (-0.004) which means that the model is unbiased and the 

standard deviation of standardized error is close to 1 (0.98) which means that the model 

estimation is accurate. 

 

 

Figure 55. Outcomes of the cross-validation of extractable phosphorus interpolated by 

spectral model.  
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The correlation coefficient between true and estimated values of soil pH (0.582) shows 

some smoothing of the model (Figure 56). The histogram of the standardised estimation errors 

is symmetrical with some points outside the range. The scatter diagram of the standardised 

estimation errors versus the estimated values looks like a round cloud with r value of -0.004 

and symmetrical to the horizontal axe. The mean standardized error is close to 0 (-0.006) 

which means that the model is unbiased and the standard deviation of standardized error is 

close to 1 (1.01) which means that the model estimation is accurate. 

 

Figure 56. Outcomes of the cross-validation of soil pH interpolated by spectral model. 

Summing up the results, the spectral model was unbiased and accurate but the range of 

variability of the estimates was much shorter than the one of observations, revealing a strong 

effect of smoothing. 
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6.2.1.3 Fusion model  

A stronger correlation between true and estimated values of CEC using the fusion 

model (Figure 57) is found with r value of 0.911 as compared with r value of CEC (0.881) 

estimated by soil model. The scatter diagram of the standardised estimation errors versus the 

estimated values looks like a round cloud with r value of 0.042 and symmetrical to the 

horizontal axis. The histogram of the standardised estimation errors is symmetrical with mean 

error quite close to 0 and some points outside the range (-2.5 – 2.5) , these points have values 

greater than 2.5. The mean standardized error is close to 0 (0.006) which means that the 

model is unbiased and the standard deviation of standardized error is close to 1 (0.98) which 

means that the model estimation is accurate. 

 

 

Figure 57. Outcomes of the cross-validation of CEC interpolated by fusion model.  
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A weaker correlation between true and estimated values of K using the fusion model 

(Figure 58) is found with r value of 0.793 as compared with r value of K (0.814) estimated by 

soil model. The scatter diagram of the standardised estimation errors versus the estimated 

values looks like a round cloud with r value of 0.271 and symmetrical to the horizontal axis. 

The histogram of the standardised estimation errors is symmetrical with some points found 

outside the range (-2.5 – 2.5) , these points have values less than –2.5 and greater than 2.5. 

The mean standardized error is close to 0 (-0.025) which means that the model is unbiased 

and the standard deviation of standardized error is somewhat close to 1 (1.40), however 

within the tolerance interval, therefore the model estimation can be assumed as accurate. 

 

 

Figure 58. Outcomes of the cross-validation of exchangeable potassium interpolated by fusion 

model.  
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A stronger correlation between true and estimated values of extractable phosphorus 

using the fusion model (Figure 59) is found with r value of 0.834 as compared with r value of 

P (0.820) estimated by soil model. The scatter diagram of the standardised estimation errors 

versus the estimated values looks like a round cloud with r value of 0.165 and symmetrical to 

the horizontal axis. The histogram of the standardised estimation errors is symmetrical but 

with two large outliers less than -2.5. The mean standardized error is close to 0 (-0.037) which 

means that the model is unbiased and the standard deviation of standardized error is close to 1 

(1.24) which means that the model estimation is accurate. 

 

 

Figure 59. Outcomes of the cross-validation of extractable phosphorus interpolated by fusion 

model.  



111 
Sameh Mohammed Shaddad, Proximal Soil Sensors and Geostatistical Tools in Precision Agriculture Applications, Tesi di dottorato in Scienze e Biotecnologie dei 

Sistemi Agrari e Forestali e delle Produzioni Alimentari, Indirizzo: Agrometeorologia ed Ecofisiologia dei Sistemi Agrari e Forestali, Università degli Studi di Sassari. 

A stronger correlation between true and estimated values of soil pH using the fusion 

model (Figure 60) is found with r value of 0.837 as compared with r value of pH (0.764) 

estimated by soil model. The scatter diagram of the standardised estimation errors versus the 

estimated values looks like a round cloud with r value of 0.087 and symmetrical to the 

horizontal axis. The histogram of the standardised estimation errors is symmetrical with three 

outliers less than -2.5. The mean standardized error is close to 0 (-0.021) which means that the 

model is unbiased and the standard deviation of standardized error is close to 1 (1.17) which 

means that the model estimation is accurate. 

 

 

Figure 60. Outcomes of the cross-validation of soil pH interpolated by fusion model.  
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A very high correlation between the true and estimated values of sand was found using 

the fusion model (Figure 61) with r value of 0.918. The scatter diagram of the standardised 

estimation errors versus the estimated values looks like a round cloud with r value of 0.291 

and symmetrical to the horizontal axis. The histogram of the standardised estimation errors is 

symmetrical however there are several large outliers, which causes the standard deviation of 

standardised errors to differ significantly from 1 (1.90) (outside the tolerance interval). The 

mean standardized error is close to 0 (0.024) which means that the model is unbiased, but the 

sample variance was sensibly underestimated by the model. 

 

 

Figure 61. Outcomes of the cross-validation of sand content interpolated by fusion model. 
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A slightly weaker correlation between true and estimated values of silt using the fusion 

model (Figure 62) is found with r value of 0.898 as compared with r value of silt (0.923) 

estimated by soil model. The scatter diagram of the standardised estimation errors versus the 

estimated values looks like a round cloud with r value of 0.299 and symmetrical to the 

horizontal axis. The histogram of the standardised estimation errors is symmetrical but with 

some points found outside the range (-2.5 – 2.5) , which causes standard deviation to 

significantly differ from 1 (1.74). The mean standardized error is close to 0 (0.048) which 

means that the model is unbiased, but sample variance was underestimated. 

 

 

Figure 62. Outcomes of the cross-validation of silt content interpolated by fusion model. 
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A good correlation between the true and estimated values of TC using the fusion model 

(Figure 63) was found with r value of 0.868. The scatter diagram of the standardised 

estimation errors versus the estimated values looks like a round cloud with r value of 0.044 

and symmetrical to the horizontal axis. The histogram of the standardised estimation errors is 

symmetrical with only one outlier less than -2.5. The mean standardized error is close to 0 

(0.024) which means that the model is unbiased and the standard deviation of standardized 

error is close to 1 (1.05) which means that the model estimation is accurate. 

 

 

Figure 63. Outcomes of the cross-validation of total carbon interpolated by fusion model. 
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A slightly weaker correlation between true and estimated values of TN using the fusion 

model (Figure 64) is found with r value of 0.730 as compared with r value of silt (0.761) 

estimated by soil model. The scatter diagram of the standardised estimation errors versus the 

estimated values looks like a round cloud with r value of 0.299 and symmetrical to the 

horizontal axis. The histogram of the standardised estimation errors is symmetrical but with 

some points found outside the range (-2.5 – 2.5), most of them less than -2.5. The mean 

standardized error is close to 0 (-0.012) which means that the model is unbiased and the 

standard deviation of standardized error is close to 1 (1.22) which means that the model 

estimation is accurate. 

 

Figure 64. Outcomes of the cross-validation of total nitrogen interpolated by the fusion 

model. 
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Summing up the results of cross-validation, we can state that the fitting of the fusion 

model was satisfactory for all variables, though the model generally underestimates high 

values and overestimates low values.  
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6.2.2 Thematic spatial maps of the studied soil properties 

6.2.2.1 Soil model 

The following maps are interpolated maps using the soil model. CEC spatial map (Figure 65) 

shows that the CEC values increase from S to N along a direction parallel to the longer axis of 

the field. 

 

Figure 65. Spatial map of CEC interpolated by the soil model 

 

Exchangeable potassium map (Figure 66) shows that the higher values of potassium occur in 

the southern part of the field, and vary conversely to what was observed for CEC. 

 

Figure 66. Spatial map of exchangeable potassium interpolated by the soil model 
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The extractable phosphorus map (Figure 67) shows a distinct increasing gradient, quite 

similar to the one observed for K.  

 

 

Figure 67. Spatial map of extractable phosphorus interpolated by the soil model 

 

pH spatial map (Figure 68) shows a large spatial heterogeneity. The higher values of pH are 

found along the western and eastern sides of the field, whereas the central zone has pH values 

which vary from 6 to 6.8.  

 

Figure 68. Spatial map of soil pH interpolated by the soil model 
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Sand spatial map (Figure 69) shows a distinct spatial gradient, increasing from NE to SW, so 

it appears sensible to split the field into three areas with different sand content. 

  

Figure 69. Spatial map of sand content interpolated by the soil model 

 

Unlike the sand map, the silt map (Figure 70) shows a trend of increasing values from S to N 

content in the SW to NE direction. The highest values are found in the NE part of the field 

and in a small area centered at X= 674700 m and Y= 5774950 m. Sand spatial map shows a 

smaller area at the same coordinates that has low content of sand.  

 

Figure 70. Spatial map of silt content interpolated by the soil model 
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The spatial map of total carbon (Figure 71) shows that there exists a trend of increasing values 

of TC from SW to NE with a wide area of the lowest values in the south western part of the 

field. 

 

Figure 71. Spatial map of total carbon interpolated by the soil model 

 

The spatial map of total nitrogen (Figure 72) shows quite similar to the previous one with a 

wide central zone of the field characterized by low contents. A trend of increasing values can 

be seen from outside to the inside of the field. 

 

Figure 72. Spatial map of total nitrogen interpolated by the soil model 
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6.2.2.2 Spectral model 

Figures 73-76 show the maps of the soil properties estimated from the spectra and 

interpolated using the spectral model. By the naked eye, they look much noisier compared to 

previous maps. This can be attributed to two main types of error: the first one is the error of 

the calibration model developed to predict the spectral variable; the second one is the error of 

the spectral model developed for spatial prediction.  

 

Figure 73. Spatial map of exchangeable potassium interpolated by the spectral model 

 

Figure 74. Spatial map of moisture content interpolated by the spectral model 
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Figure 75. Spatial map of extractable phosphorus interpolated by the spectral model 

 

 

Figure 76. Spatial map of soil pH interpolated by the spectral model 

However, the K map shows a decreasing trend from SW to NE similarly to the map of 

K obtained from soil sample analysis. Based on the MC map it is quite difficult to extract 

some clear structure of spatial dependence. The P and pH maps are the ones that differ most 

from the corresponding maps obtained from the soil model. Moreover, in the last four maps 

some artefacts along the main direction of driving are evident. 



123 
Sameh Mohammed Shaddad, Proximal Soil Sensors and Geostatistical Tools in Precision Agriculture Applications, Tesi di dottorato in Scienze e Biotecnologie dei 

Sistemi Agrari e Forestali e delle Produzioni Alimentari, Indirizzo: Agrometeorologia ed Ecofisiologia dei Sistemi Agrari e Forestali, Università degli Studi di Sassari. 

6.2.2.3 Fusion model 

The following spatial maps were developed using the fusion model. 

 

Figure 77. Spatial map of CEC interpolated by the fusion model 

 

Figure 78. Spatial map of exchangeable potassium interpolated by the fusion model 
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Figure 79. Spatial map of extractable phosphorus interpolated by the fusion model 

 

 

 

 

Figure 80. Spatial map of soil pH interpolated by the fusion model 
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Figure 81. Spatial map of sand content interpolated by the fusion model 

 

 

 

 

Figure 82. Spatial map of silt content interpolated by the fusion model 
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Figure 83. Spatial map of total carbon interpolated by the fusion model 

 

 

Figure 84. Spatial map of total nitrogen interpolated by the fusion model 

 

The soil property maps (Figures 77-84) obtained with the fusion model look quite similar to 

the ones calculated from the soil model, with an increased variability at short scale due to the 

introduction of the fine-surveyed spectral variables. 
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6.2.3 Validation 

Table 13 summarizes the basic statistics of the validation data set. K and P are the 

variables that show the largest variability. The validation data set includes different numbers 

of samples for each variable because not all soil samples (183) were subjected to all analyses 

reported in this study, i.e. 183 soil samples were analyzed for pH, TC, TN and MC, whereas 

95 soil samples were analyzed for extractable P, CEC and exchangeable cations. 72 soil 

samples were analyzed for particle size distribution (sand, silt, clay). Then the whole data set 

of soil analysis was divided randomly into two subsets: the calibration data set containing 2/3 

of soil samples and the validation data set containing 1/3 of soil samples for each variable 

analysed. 

Table 13. Statistics of validation data set 

Variable Count Minimum Maximum Mean Std. Dev Variance CV % 

Sand (%)   27 42.52 59 51.46 3.87 14.95 7.52 

Silt (%)   27 26.5 33.79 30.16 1.82 3.3 6.03 

 TC (%)  63 1.03 2.37 1.76 0.28 0.08 15.91 

 TN (%)   63 0.09 0.2 0.14 0.02 0 14.29 

 CEC (cmol+.kg
-1

)    34 7.46 11.5 9.11 1.02 1.05 11.20 

 K (cmol+.kg
-1

)   34 0.06 0.36 0.11 0.05 0 45.45 

 P (mg.kg
-1

) 34 4.8 47.6 16.45 9.8 96.02 59.57 

 pH     63 5.16 8.21 6.63 0.82 0.66 12.37 

 

For the validation data set being representative of the calibration data set, the means and 

the variances of the corresponding variables should not be statistically different. So, firstly a 

Bartlett’s test was performed to verify the homogeneity of variance. The results reported in 

Table 15 show that only for K and P the assumption of homogeneity of variance cannot be 

accepted. Therefore, a t test with unequal variances was carried out for these two variables, 

whereas for the remaining variables the variances were assumed equal, in order to test the 

equality of means. Table 14 shows the results of the t test, where it results that K and P differ 

in the two data sets also in terms of means. These results show the necessity to extract another 

data set, independent of the calibration data set to validate the three models for P and K. 
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Table 14. T-test between the means of the variables of calibration and validation data sets 

Variables 

Calibration   Validation 
p-values α Interpretation 

Mean  Variance 
 

Mean  Variance 

CEC 8.94 1.10 
 

9.11 1.08 0.466 0.05 Means are the same 

pH 6.49 0.54 
 

6.63 0.68 0.274 0.05 Means are the same 

P  23.38 202.16 
 

16.45 98.93 0.007 0.05 Means are different 

TC 1.78 0.05 
 

1.76 0.08 0.745 0.05 Means are the same 

TN 0.15 0.00 
 

0.14 0.00 0.564 0.05 Means are the same 

Sand 52.93 20.91 
 

51.46 15.53 0.153 0.05 Means are the same 

Silt 29.91 5.98 
 

30.16 3.43 0.624 0.05 Means are the same 

K 0.23 0.01   0.11 0.00 0.000 0.05 Means are different 

 

 

 

Table 15. Bartlett's test / Two-tailed test between variables of calibration and validation data 

sets 

  CEC pH TC TN Sand Silt P K 

Chi-square (Observed value) 0.003 1.002 3.285 0.000 0.691 2.348 4.933 5.082 

Chi-square (Critical value) 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 

DF 1 1 1 1 1 1 1 1 

p-value (one-tailed) 0.954 0.317 0.070 0.986 0.406 0.125 0.026 0.024 

alpha 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
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As regards mean error (ME) of the three geostatistical models, the fusion model was 

better than the soil model for CEC, TC, silt and pH (Table 16). Conversely, the soil model 

was better than the fusion model for sand, TN and P. For K, both soil and fusion models show 

similar mean errors. The soil model produces the minimum deviation from 0 of mean error for 

TN, whereas the fusion model produces the minimum deviation from 0 of mean error for 

CEC. The minimum deviation from 1 of MSSE was obtained by the soil model for P (0.7), 

whereas the minimum deviation from 1 of MSSE was obtained by the fusion model for silt 

content (0.66). For spectral variables, the results show that ME, MSSE are not satisfactory 

because of the high deviation from 0 and 1 for ME and MSSE respectively with the exception 

of K that produces the minimum deviation from 0 of ME in the spectral model. Concerning 

RMSE, the fusion model was better than the soil model for CEC, pH, P and K because it 

shows the minimum deviation from 0 of RMSE. In the other hand, the soil model was better 

than the fusion for silt and sand. Both soil and fusion models show the same values of RMSE 

for TN and TC. 

Table 16. Mean error (ME), mean standardized squared error (MSSE), and root mean squared 

error (RMSE) obtained from the validation data set for variables under study. 

  Soil model   Fusion model   Spectral model 

 

ME MSSE RMSE 

 

ME MSSE RMSE 

 

ME MSSE RMSE 

CEC -0.014 0.285 0.503 

 

0.001 0.271 0.501 

 
   

TC -0.013 2.296 0.195 

 

0.002 1.832 0.195 

 
   

Silt -0.534 0.496 1.169 

 

-0.519 0.663 1.371 

 
   

Sand -0.005 0.254 2.017 

 

-0.152 0.333 2.334 

 
   

TN  0.001 1.795 0.018 

 

0.002 1.790 0.018 

 
   

pH 0.197 2.825 0.678 

 

0.183 1.436 0.651 

 

0.443 2.532 0.712 

P  0.019 0.692 6.922 

 

0.600 0.595 6.116 

 

-22.865 11.972 7.516 

K 0.000 2.079 0.047 

 

0.000 1.599 0.044 

 

-0.138 42.248 0.055 

MC         4.568 69.530 1.491 

 

Summing up, the two soil and fusion models show similar behavior, whereas one needs to 

underline the very poor performance of the spectral model which largely underestimates P and 

overestimates MC.  
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6.2.3.1 Quantile-Quntile (Q-Q) plots 

6.2.3.1.1 Soil model 

Q-Q plot of CEC estimates (Figure 85) shows that they are normal distributed (left Q-Q plot) 

with the exception of the lowest values. The right Q-Q plot compares the distribution of 

estimates with the one of observations. The two distributions are quite comparable, however 

the samples having CEC values less than 8 cmol+.kg
-1

 are overestimated by the soil model 

whereas those having CEC values greater than 10.5 cmol+.kg
-1 

are underestimated.  

 

Figure 85. Q-Q plot of CEC interpolated by the soil model 

 

 

Concerning exchangeable potassium, Q-Q plot (Figure 86) show that its distribution doesn’t 

follow normal distribution (left Q-Q plot). The values of K are quite well estimated (right Q-

Q plot) until values smaller than 0.20. Larger values, and more specific, greater than 0.35, is 

sensibly underestimated.  

 

Figure 86. Q-Q plot of K interpolated by the soil model 



131 
Sameh Mohammed Shaddad, Proximal Soil Sensors and Geostatistical Tools in Precision Agriculture Applications, Tesi di dottorato in Scienze e Biotecnologie dei 

Sistemi Agrari e Forestali e delle Produzioni Alimentari, Indirizzo: Agrometeorologia ed Ecofisiologia dei Sistemi Agrari e Forestali, Università degli Studi di Sassari. 

Figure 87 shows a Q-Q plot of extractable phosphorus where there can be seen a large 

departure from normal distribution (left Q-Q plot). Samples having values less than 15 mg.kg
-1
 

are slightly overestimated, whereas those having P content between 15 and 50 mg.kg
-1

 are well 

estimated (right Q-Q plot).  

 

Figure 87. Q-Q plot of P interpolated by the soil model 

 

 

Soil pH is normally distributed as shown in Figure 88 (left Q-Q plot). Samples that have pH 

values from 5 to 6 are overestimated, those varying between 6 and 7 are well estimated, 

whereas pH values greater than 7 are largely underestimated (right Q-Q plot). 

 

 

 

Figure 88. Q-Q plot of pH interpolated by the soil model 
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Figure 89 shows Q-Q plot of sand content where there can be seen that this property follows 

normal distribution (left Q-Q plot). The right Q-Q plot shows that sand content is well 

estimated over the whole range of sand content (45 - 60 %).  

 

 

Figure 89. Q-Q plot of sand interpolated by the soil model 

 

 

 

Q-Q plot of silt content (Figure 90) shows that it is normally distributed (left Q-Q plot). The 

estimated values of silt are well estimated over the whole range of silt content (26 -34 %).  

 

 

Figure 90. Q-Q plot of silt interpolated by the soil model  
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For total carbon, Q-Q plot (Figure 91) shows that TC follows normal distribution (left Q-Q 

plot). However, the TC values between 1 and 1.7 % are overestimated, whereas values 

approximately between 1.7 and 2 % are well estimated and values between 2 and 2.5 % are 

underestimated (right Q-Q plot).  

 

 

Figure 91. Q-Q plot of TC interpolated by the soil model 

 

Figure 92 shows that total nitrogen is normally distributed (left Q-Q plot). In the right Q-Q 

plot, there can be seen three types of estimation. The first one is for values between 0.100 and 

0.135 % that are overestimated, the second one is for values between 0.135 and 0.160 % that 

are well estimated and the third one is for values between 0.160 to 2 % that are 

underestimated.  

 

Figure 92. Q-Q plot of TN interpolated by the soil model 
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6.2.3.1.2 Spectral model 

The left Q-Q plot (Figure 93) shows that exchangeable potassium follows normal distribution 

except for values less than 0.225. The right Q-Q plot shows that all values of exchangeable 

potassium are overestimated except for the largest value. This bad matching between 

estimates and observations may be due to different types of errors: one is the error of the 

calibration model used to predict extractable K from the spectra and the second is the error of 

the spectral model used for spatial prediction. 

 

Figure 93. Q-Q plot of K interpolated by the spectral model 

 

Although the estimated values of moisture content follow normal distribution (left Q-Q plot), 

the MC values (Figure 94) are severely underestimated (right Q-Q plot). This may be 

attributed to the causes of error reported above. 

 

Figure 94. Q-Q plot of MC interpolated by the spectral model 
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The left Q-Q plot (Figure 95) shows that extractable phosphorus is normally distributed. 

However, also for P the severe mismatching between estimates and observations, which were 

largely overestimated, may be due to the approximations of the models used. 

 

Figure 95. Q-Q plot of P interpolated by the spectral model 

 

 

The Q-Q plot (Figure 96) shows that pH is normally distributed except for values greater than 

7 (left Q-Q plot). The right Q-Q plot shows that pH values between 5 and 6.5 are well 

estimated but pH values between 7 and 8.5 are sensibly under estimated.  

 

Figure 96. Q-Q plot of pH interpolated by the spectral model 

 

Summing up we can state that the spectral model performs worse than the soil model. 
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6.2.3.1.3 Fusion model  

 The left Q-Q plot of Figure 97 shows that CEC follows normal distribution and CEC is also 

well estimated (right Q-Q plot) 

 

Figure 97. Q-Q plots of CEC interpolated by the fusion model 

 

 

 

The left Q-Q plot (Figure 98) shows that exchangeable potassium is normally distributed 

except for values less than 0.10. Values of K are well estimated except for the larger values 

(>0.35) (right Q-Q plot).  

 

Figure 98. Q-Q plot of K interpolated by the fusion model 
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Q-Q plot of extractable phosphorus (Figure 99) shows that there is some departure from 

normal distribution (left Q-Q plot) for P values less than 0.10 or greater than 40. Moreover, P 

is slightly underestimated for values between 30 and 40 and overestimated for values greater 

than 40 (right Q-Q plot).  

 

Figure 99. Q-Q plot of P interpolated by the fusion model 

 

 

For pH, Figure 100 shows that its distribution can be assumed as normal (left Q-Q plot). The 

right Q-Q plot shows that pH values less than 5.7 are overestimated, whereas values greater 

than 7 are underestimated.  

 

Figure 100. Q-Q plot of pH interpolated by the fusion model 
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For sand content, Figure 101 shows that the distribution can be assumed as normal (left Q-Q 

plot). The matching between estimation and observation is quite good (right Q-Q plot).  

 

Figure 101. Q-Q plot of sand interpolated by the fusion model 

 

 

 

 

Also for silt (Figure 102) the above considerations for sand hold. 

 

Figure 102. Q-Q plot of silt interpolated by the fusion model 
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For total carbon, the left Q-Q plot (Figure 103) shows that TC follows normal distribution. 

However, also for the fusion model there is the same mismatching between estimates and 

observations noticed in the spectral model (right Q-Q plot).  

 

 

Figure 103. Q-Q plot of TC interpolated by the fusion model 

 

 

The same considerations as the above hold also for TN (Figure 104). 

 

Figure 104. Q-Q plot of TN interpolated by the fusion model 

 

Summing up, the soil and fusion models show similar performance and both perform better 

than the spectral model.  
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6.2.3.2 Box plots of differences 

6.2.3.2.1 Soil model  

All box plots for all soil properties estimated by the soil model show that the mean difference 

between true and estimated values is close to zero (Figure 105) but there is no evidence if 

mean differences between true and estimated values are statistically different from zero, so a t 

test of means with unequal variances is reported following the box plots section. 

 

 

 

Figure 105. Box plots of differences between true and estimated values of the eight soil 

variables interpolated by the soil model 
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6.2.3.2.2 Spectral model  

The mean differences between true and estimated values of soil properties using the spectral 

model are far from zero (Figure 106), which means that the spectral model was biased.  

 

 

Figure 106. Box plots of differences between true and estimated values of the four soil 

variables interpolated by the spectral model 
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6.2.3.2.3 Fusion model  

Box plots (Figure 107) of differences between true and estimated values of soil properties 

using the fusion model show that mean difference is close to zero for all the soil properties.  

 

 

Figure 107. Box plots of differences between true and estimated values of the eight soil 

variables interpolated by the fusion model
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6.2.3.3 t-test  

A t-test assuming unequal variances was applied to check if the mean differences between 

true (validation data set) and estimated values are significantly different from zero.  

The results of the t test with confidence level (α) equal to 0.05 for soil properties estimated by 

the soil model are shown in Table 17. For CEC, pH, exchangeable potassium, extractable 

phosphorus, sand content and silt content, the means are different, whereas means are the 

same for total carbon and total nitrogen.  

 

Table 17. t-test results assuming unequal variances for testing mean equality of observations 

and estimates for soil model. 

Variables 
  Soil model   

Interpretation  

 
T value 

 

P value  
 

α 
 

TC 
 

1.45 
 

0.153 
 

0.05 
 

Means are the same  

TN 
 

0.80 
 

0.428 
 

0.05 
 

Means are the same  

CEC 
 

4.29 
 

0.000 
 

0.05 
 

Means are different  

Sand 
 

-6.32 
 

0.000 
 

0.05 
 

Means are different  

Silt 
 

3.68 
 

0.001 
 

0.05 
 

Means are different  

pH 
 

3.63 
 

0.001 
 

0.05 
 

Means are different  

P  
 

-9.41 
 

0.000 
 

0.05 
 

Means are different  

K   -5.59   0.000   0.05   Means are different  

 

Results of t test for soil properties estimated by the spectral model (Table 18) show that the 

means of the four soil spectral variables differ significantly from observations, which proves, 

as above, the poor performance of the spectral model. 

 

Table 18. t-test results assuming unequal variances for testing mean equality of observations 

and estimates for the spectral model. 

Variables 
  Spectral model   

Interpretation  

 
T value 

 

P value  
 

α 
 

pH 

 

3.04 

 

0.003 
 

0.05 
 

Means are different  

P  

 

-16.74 

 

0.000 
 

0.05 
 

Means are different  

K 

 

-17.05 

 

0.000 
 

0.05 
 

Means are different  

MC   21.43   0.000   0.05   Means are different  

 

Similarly to the t test results for the soil model, only for TC and TN there are no significant 

differences between observation and estimation for the fusion model (Table 19). 
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Table 19. t-test results assuming unequal variances testing mean equality of observations and 

estimates for the fusion model 

 

Variables 
  Fusion model   

Interpretation  

 
T value   P value  

 
α 

 
TC 

 
1.35 

 

0.183 
 

0.05 
 

Means are the same  

TN 
 

0.38 
 

0.703 
 

0.05 
 

Means are the same  

CEC 
 

4.18 
 

0.000 
 

0.05 
 

Means are different  

Sand 
 

-6.4 
 

0.000 
 

0.05 
 

Means are different  

Silt 
 

3.87 
 

0.001 
 

0.05 
 

Means are different  

pH 
 

3.57 
 

0.001 
 

0.05 
 

Means are different  

P  
 

-9.29 
 

0.000 
 

0.05 
 

Means are different  

K   -5.28   0.000   0.05   Means are different  

 

6.2.4 Delineation of management zones  

To synthesise the complex multivariate variation of the field in a restricted number of 

zones to be submitted to differential management, factor kriging analysis was applied to the 

estimate data sets of the three different models. In the following analysis we retained only the 

eigenvectors corresponding to eigenvalues greater than one and omitted the ones 

corresponding to nugget effect, because the latter are mostly affected by measurement errors.  

Table 20 shows the decomposition of the soil model into regionalized factors. The 

loading values for the first factor indicate that TC, pH and TN weigh positively whereas silt 

weighs negatively, whereas sand content is the most influencing variable for the second 

factor. This means that the first factor is mostly related to soil fertility, whereas the second 

factor to soil texture. Figure 108 shows the F1 map split into three isofrequency classes (high, 

medium and low) that can be interpreted as MZs related to soil fertility. Figure 109 shows the 

F2 map split into three isofrequency classes (low, medium and high) related to soil texture 

and sand content in particular. The expected high fertility zones according to the first factor 

are found in the southern part and along the sides of the field. Low fertility zones are found in 

the central part of the field and in the northern part.  
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Table 20. Decomposition into regionalized factors of the soil model 

 

g
1
P gTC gTN gCEC gK gpH gSand gSilt Eigen Val. Perc. Var. 

Factor 1 0.21 0.54 0.35 0.28 -0.04 0.48 0.13 -0.47 2.44 41.59 

Factor 2 0.36 -0.11 -0.19 -0.36 0.41 -0.22 0.53 -0.44 1.76 30.06 
1
 g means gaussian  

 

 

 

 

 

 

 

  

Figure 108. Maps of three management zones (MZ) according to the first factor of the soil 

model 
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Figure 109. Maps of three management zones (MZ) according to the second factor of the soil 

model 

Table 21 shows the decomposition into regionalized factors at longer scale (210 m) for the 

spectral model. No factor has an eigenvalue greater than 1, however we restricted our 

discussion only to the first factor which explains about 80% of the spatial variation at longer 

scale. The loading values indicate that the first factor is affected negatively by extractable 

phosphorus. Figure 110 Shows the MZ map for the first factor, where low values correspond 

to high values of P. However the map shows artefacts along the main direction of driving and 

the homogeneous areas are too narrow to actually be differentially managed by the farmer. 

 

Table 21. Decomposition into regionalized factors of spectral model at longer range (210 m) 

 

gK spec
1
 gMC spec gP spec gpH spec Eigen Val Var. Perc. 

Factor 1 0.19 0.08 -0.88 -0.42 0.41 79.89 

Factor 2 0.86 0.39 0.07 0.31 0.06 12.03 

Factor 3 -0.33 0.16 -0.45 0.82 0.04 8.08 

Factor 4 0.33 -0.91 -0.12 0.24 0.00 0.00 
1
 spec means spectral variable 
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Figure 110. Maps of three management zones (MZ) according to the first factor of the spectral 

model 
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Table 22. Decomposition into regionalized factors of the fusion model 

  gK spec gMC spec gP spec gpH spec gP gTC gTN gCEC gk gpH gSand gSilt Eigen Val. Var. Perc. 

Factor 1 0.02 0.15 -0.22 0.14 0.15 0.51 0.44 0.34 -0.08 0.51 -0.15 -0.17 2.48 45.81 

Factor 2 0.21 0.02 -0.17 -0.17 0.35 0.13 -0.16 -0.21 0.25 0.00 0.55 -0.57 1.07 19.82 
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Table 22 shows the decomposition into regionalized factors of the fusion model. The same 

considerations made for the soil model hold here for the first two factors of the fusion model. 

The maps of the two factors (Figures 111-112) look quite similar to Figure 108 and Figure 

109 with a slight increase of variability. 

Summing up all the results, we can say that the fusion model, though including more 

variables, performs as well as the soil model. 

 

Figure 111. Maps of three management zones (MZ) according to the first factor of the fusion 

model 

 

 

Figure 112. Maps of three management zones (MZ) according to the second factor of the 

fusion model 



150 
Sameh Mohammed Shaddad, Proximal Soil Sensors and Geostatistical Tools in Precision Agriculture Applications, Tesi di dottorato in Scienze e Biotecnologie dei 

Sistemi Agrari e Forestali e delle Produzioni Alimentari, Indirizzo: Agrometeorologia ed Ecofisiologia dei Sistemi Agrari e Forestali, Università degli Studi di Sassari. 

6.2.5 Comparison of the management zone with the yield map of barley  

A yield map of barley (Figure 113) was produced by using the inverse distance 

weighting (IDW) method including 3 isofrequency classes of yield production. The first class 

represents the area of low production (2.59 – 5.73 t/ha), the second class represents the area of 

medium yield production (5.73 – 7.26 t/ha) and the third class represents the area of high 

production (7.26 – 8.00 t/ha).  

 

Figure 113. Barley yield map 2013 
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Table 23. Percentages of similarity between delineated management zones according to F1 of 

soil and fusion models and yield production of barley winter 2013 

 

Yield t/ha 

F1_Soil F1_Fus 

Low Medium High Low Medium High 

Low yield (2.59 - 5.73) 39% 15% 5% 33% 19% 6% 

Medium yield (5.73 -7.26) 49% 49% 64% 55% 48% 59% 

High yield (7.26 - 8.00) 13% 36% 32% 12% 33% 35% 

 

The spatial association between the yield map and the delineation map for the soil and fusion 

models is reported in  

Table 23. As F1 was interpreted as an indicator of soil fertility, we wanted to evaluate the 

production potential expressed by the field delineation obtained from the factor. The overall 

accordance between the two maps was 40.0 % for the soil model and 38.6 % for the fusion 

model. Again the two models perform quite similarly. The above percentages of similarity 

mean that the field delineation for the two models can explain only about 40% of the yield 

variability, whereas more than 50% is ascribable to more dynamic factors not included in this 

study. These dynamic factors include monitoring of agro-meteorological conditions, plant 

diseases and nutrition stresses which affect the yield as well as soil productivity. Such 

monitoring of the previous factors will help to better detect the variation in yield. 

 

Table 24. Mean yield of each management zone for F1 of soil and fusion models 

Mean yield
1
 t/ha 

Classes  F1_Soil   F1_Fus  

Low  6.12   6.19  

Medium   6.77   6.65  

High   6.93   6.97  
1
 Low (2.59 – 5.73), Medium (5.73 -7.26), High (7.26 – 8.00) 

 

In table 24 the yield mean per each class of F1 for the soil and fusion models was reported. As 

it can be seen from table 24, the delineation shows a clear trend in yield variation which is 

consistent with the level of soil fertility. This results stress the utility of the proposed 

approach for field delineation in precision agriculture and VRT fertilization in particular. 
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7. Conclusion and future work  

Research in precision agriculture needs to have all facilities such as proximal soil 

sensors that provide us with high spatial resolution information regarding physical, chemical 

and biological soil properties. Statistical tools are also necessary to investigate the variation 

nature of soil parameters, as geostatistics which studies spatial dependence of soil variables.  

The ultimate goal of this study was to use vis-NIR spectroscopy and geostatistics to 

develop high spatial resolution maps of the soil properties under study and to delineate the 

management zones in a field in United Kingdom. To fulfil this goal, several steps have been 

planned. These included: 

1. carrying out an on-the-go survey by a vis-NIR online sensor; 

2. sampling the field for physical and chemical analyses; 

3. carrying out a laboratory scanning of soil samples by the same vis-NIR sensor  

4. developing different calibration models of some soil parameters using partial least 

square regression (PLSR) applied on the lab based spectra 

5. predicting soil properties by using the on-line collected spectra (point 1) and the 

calibration models (point 4) and then create high resolution interpolated maps of the 

studied soil properties 

6. developing three different geostatistical models: the model for the soil properties, the 

one for the spectral variables estimated through vis-NIR calibration models and the 

model for all variables obtained from fusion of soil variables with spectral variables) 

7. spatially interpolating the soil variables of each model 

8. applying factor cokriging analysis for the three geostatistical models to delineate the 

management zones (MZ) 

9. performing a validation test for the three models and comparing them 

10. assessing the potential of productivity prediction expressed by MZ delineation for 

each model through comparison of MZ map with the yield map of barley harvested 

after the soil survey. 
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7.1 Vis-NIR experiment 

7.1.1 Cross-validation 

The accuracy of the calibration models was tested by cross-validation and independent 

validation. Results of cross-validation showed that the quality of calibration models can be 

categorized according to RPD values as class A for extractable phosphorus and total carbon, 

and class B for pH, total nitrogen, moisture content, exchangeable potassium indicating good 

to excellent calibration models.  

7.1.2 Independent validation 

The independent validation of PLSR calibration models provided RPD and RMSEP 

values illustrating good to excellent calibration models with the exception of K.  

The above results encourage us to use on-line vis-NIR sensor as one of the proximal soil 

sensors, because it can provide a lot of information about soil properties in a non- destructive, 

cost effective and easier way than the traditional methods. 

7.2 Geostatistical analysis 

Three different geostatistical models were developed based on measured soil variables 

(soil model), spectral variables (spectral model) and a fusion model (combining soil and 

spectral variables). They were developed through: Gaussian anamorphosis, fitting of linear 

model of coregionalization (LMC), ordinary cokriging to produce thematic spatial maps, and 

factor cokriging to delineate management zones. For the fusion model, multi-collocated 

cokriging and factor cokriging were performed using spectral k variable as auxiliary variable 

because it showed the strongest correlation with the soil variables.  

7.2.1 Cross- validation 

The goodness of geostatistical models was tested by cross-validation. Summing up the 

results of cross-validation for the soil model, the goodness of fitting can be considered as 

satisfactory, whereas the performance of the spectral model was quite poor. As regards the 

fusion model, it performed quite well, though the model generally underestimated the high 

values and overestimated the low values.  
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7.2.2 Independent validation 

The performance of the three different models was also evaluated and the models were 

compared through an independent validation set. Three statistics were calculated: mean error 

(ME), as an indicator of bias; mean standardized squared error (MSSE), as an indicator of 

accuracy, and root mean squared error (RMSE), as an indicator of precision of estimation.  

Synthetically, the two, soil and fusion, models performed quite similarly, whereas the 

performance of the spectral model was much poorer. 

7.2.3 Thematic spatial maps 

With regard to the spatial maps interpolated with the spectral model, they showed some 

artefacts along the main direction of driving, that were not evident in the maps obtained with 

the other two models. The soil property maps from the fusion model looked quite similar to 

the ones from the soil model, with an increased variability at short scale due to the 

introduction of the fine-surveyed spectral variables. 

7.2.4 Delineation of management zones 

To synthesise the complex multivariate variation of the field in a restricted number of 

zones to be submitted to differential management, the factor cokriging analysis was applied to 

the estimate data sets of the three different models. The first factor was related to soil 

properties that affect soil fertility. Based on the first factor, three management zones were 

delineated and assumed as low, medium and high fertility zones for the soil and fusion model.  

7.2.5 Spatial similarity between MZs and yield map 

A yield map of barley was interpolated by using the inverse distance weighting (IDW) 

method and  was then classified into 3 isofrequency classes (low, medium, high) as for the 

MZ maps for the soil and fusion models produced by the first regionalised factor, which was 

interpreted as an indicator of soil fertility. The overall accordance between the two maps was 

40.0 % for the soil model and 38.6 % for the fusion model. Again the two models performed 

quite similarly. These results can be interpreted as more than 50% of the yield variation was 

ascribable to more dynamic factors than soil parameters, such as agro-meteorological 

conditions, plant diseases, nutrition stresses, etc. 
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7.2.6 Future work 

Though the above results are quite satisfactory and are encouraging regarding the use of 

the proposed approach in site-specific management, nevertheless the following improvements 

in methodology are suggested: 

 Calibration of soil variables using vis-NIR spectra should take into account the 

influence of water content that is generally variable on the field; 

 To avoid the error introduced by calibration with spectra, a way could be to use 

directly the significant latent variables in PLSR as auxiliary variables in the fusion 

model; 

 For a more effective site-specific management, the static field delineation in MZ 

should be integrated by on-time information about soil or plant status through remote 

or proximal imaging. 
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