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SUMMARY 

 
In the forthcoming years, 1-2 million hectares of Jatropha curcas L. are expected to be 

annually planted, reaching 12.8 million hectares worldwide by 2015. This considerable 

expansion is due to its products and by-products multiple uses and its amazing 

adaptability. J. curcas oil extracted by seeds is a promising renewable feedstock for 

biodiesel production and, together with the oil extraction by-products, it can be used in 

as cooking/lighting fuel, bio-pesticide, organic fertilizer, combustible fuel, and for soap 

making, contributing to mitigate environmental problems in developing countries. 

Nevertheless, J. curcas is not a “miracle tree”. Indeed, the full potential of J. curcas is far 

from being achieved and its talents are still to be supported by scientific evidences.  

The present Ph.D. thesis aims to: (i) detail each phase of J. curcas productive chain from 

sowing to biodiesel and by-products, in order to logically organize the knowledge 

around J. curcas system, and to compare potentialities and criticalities of J. curcas; (ii) 

assess the socio-economic and environmental sustainability of smallholder local and 

decentralized J. curcas plantations, promoted by cooperation rural development 

cooperation projects in Sub-Saharan Africa; (iii) explore the effects of different pre-

sowing treatments on germination behaviour of J. curcas seeds and to assess the growth 

of the seedlings; and (iv) investigate physiological responses, in term of growth and 

photosynthesis, of J. curcas seedlings exposed to a severe soil drought stress. The 

conducted studies confirmed that community-based initiatives on J. curcas plantation 

could positively contribute to the rural livelihoods in developing countries. However, it 

is still necessary to fill some knowledge gaps and much more research is required for 

guaranteeing a full socio-economic and environmental sustainability of J. curcas used 

as a trigger of rural development in Sub-Saharan Africa. 
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INTRODUCTION 

 
Petroleum demand has risen rapidly due to the world industrialization and 

modernization. This economic development model has led to an enormous demand 

for energy, the major part of which derives from fossil sources such as petroleum, coal 

and natural gas. However, fossil fuels are limited and for this reason alternative fuels 

derived from renewable energy sources need to be found (Koh and Ghazi, 2011). 

Biodiesel has become in the recent years more attractive because of its possible 

environmental benefits (i.e. reduction of greenhouse gases emission) and it is obtained 

from renewable resources (Divakara et al., 2010; IPCC, 2012). The bio-diesel production 

from vegetable oils is foreseen to reach about 24 billion litres by 2017 worldwide 

(OECD-FAO, 2008). In the recent years, many potentialities are being associated to 

Jatropha curcas, a multipurpose tree belonging to the Euphorbiaceae family native of 

tropical America and used to produce a not edible oil (extracted from its seeds), which 

can be employed for biodiesel production (Achten et al., 2010). The not-edible 

characteristic is due to the presence of toxic components, such as phorbol esters. 

Additionally, the capability to grow on poor quality soils allows J. curcas to not directly 

compete against food crops. These reasons make J. curcas attractive to be cultivated in 

areas, such as developing countries, where edible oil are mostly cultivated for human 

consumption and not for biodiesel production (Gübitz et al., 1999; Devappa et al., 2010).  

Furthermore, J. curcas seed is very rich in oil (about 25–35%) and the derived 

biodiesel has similar properties to that one produced from petroleum (Jongschaap et 

al., 2007; Koh and Ghazi, 2011). In addition to the bio-diesel production, J. curcas oil can 

be used as cooking/lighting fuel, medicine, bio-pesticide, and for soap making (Contran 

et al., 2013). Moreover, the seed cake, an oil extraction by-product, and fruit husks can 

be used as organic fertilizer, combustible fuel, or for biogas production (IFAD-FAO, 

2010), while other products (i. e. root, bark, latex, leaves juice) have a wide variety of 

applications in the traditional medicine of developing countries rural communities 

(Brittaine and Lutaladio, 2010; Grevé et al., 2011). Along with these multiple uses, the 

expectations around J. curcas come from the amazing adaptability of this stem 

succulent, perennial, and drought avoidant tree even on low-nutrient soils and under 

arid and semi-arid conditions (Maes et al., 2009; Ye et al., 2009; Achten et al., 2010). 

Furthermore, the plant itself offers the ecological advantage to mitigate soil 

degradation and to reclaim marginal land or abandoned farmland, and it can also be 
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used as live-fencing, acting like a livestock and fire barrier to protect fields (Kumar and 

Sharma, 2008).  

For these reasons, some of the countries with highest economic growth rates, 

such as India and China, have strongly embedded the production of J. curcas biodiesel 

within their Energy policies. In 2003, a two-phase governmental project was launched 

in India for wide-spread cultivation of J. curcas on wasteland. The project aims at 

planting 12.5 million hectares on government land across the country, and then 

privatizing the production of J. curcas biodiesel. In 2006, China government decided to 

meet 15% of transportation energy needs with biofuel, leaning on the ambitious plan to 

raise 11 million hectares of J. curcas plantation on marginal lands (Fairless, 2007). In this 

context, a massive planting program of unprecedented scale encouraged millions of 

marginal farmers and landless people to plant J. curcas (Fairless, 2007; Kant and Wu, 

2011). By 2008, J. curcas had already been planted over an estimated 900,000 ha globally, 

of which an overwhelming 85% was in Asia, 13% in Africa and the rest in Latin America, 

and by 2015 J. curcas is expected to be planted on 12.8 million ha worldwide (Kant and 

Wu, 2011). 

However, J. curcas is not a “miracle tree”. J. curcas capabilities are not easily 

exploitable and applicable simultaneously. For example, since the lack of moisture and 

nutrients strictly influence plant yield, trade-offs between marginal land reclamation 

and profitable oil production have to be taken into consideration (Kant and Wu, 2011). 

For several reasons, both technical and economical, the full potential of J. curcas is far 

from being achieved, and its talents are still to be supported by scientific evidences 

(Divakara et al., 2010). J. curcas is still an un-domesticated tree and its seed and oil 

productivity is hugely variable and unknown (Parawira, 2010). Almost every step of 

cultivation is uncertain. The best agronomic management practices, the selection of 

suitable plant material, and the potential environmental risks and benefits have to be 

still investigated to lay out coherent and realistic cultivation plan (Moncaleano-

Escandon et al., 2013). Furthermore, the establishment, management and productivity 

of J. curcas under various climatic conditions are not fully documented.  

Hence, if the full potential of this species is to be realized, much more research 

is required into the whole J. curcas chain and more information is needed on the actual 

and potential markets for all its products (Openshaw, 2000). Due to this poor 

knowledge on several aspects of J. curcas, the results achieved so far are not 

encouraging and all the expectations on this crop are not being confirmed. In India, for 



Marcello Lubino, Jatropha curcas for rural development in Sub-Saharan Africa: agronomic and socio-economic sustainability 
Scuola di Dottorato di Ricerca in Scienze e Biotecnologie dei Sistemi Agrari e Forestali e delle Produzioni Alimentari - Università degli Studi di Sassari 5 

example, seed production does not reach the promises. In China, until today, the 

production of biodiesel from J. curcas oil is quite low (Fairless, 2007; Kant and Wu, 2011). 

The present doctoral dissertation has been performed in the context of the 

international cooperation project “GHAJA - Use of Jatropha plant to improve 

sustainable renewable energy development and create income-generating activities: an 

integrated approach to ensure sustainable livelihood conditions and mitigate land 

degradation effects in rural areas of Ghana”, implemented for six years (2009-2015), 

within the “Environment and sustainable management of Natural Resources, 

including energy Thematic Programme (ENRTP)” financed by the European 

Commission (EuropeAid). The main goals of the present thesis are: (i) to systematise 

the scientific knowledge on J. curcas available so far, taking into consideration all the 

steps of the whole J. curcas chain, (ii) to assess the socio-economic and environmental 

sustainability of smallholder local and decentralized J. curcas plantations and (iii) to 

investigate some aspects which are still not deeply explored in the literature, through 

the carrying out of some experimental trials.  

The thesis is structured in four chapters, each one structured as an article.  

In the first chapter, the summary of a review on J. curcas titled “State-of-the-art 

of the whole J. curcas chain, from sowing to biodiesel and by-products” is reported. The 

main aim of this review was to provide a comprehensive summary of the J. curcas 

system and to compare potentialities and criticalities of J. curcas plantation and 

productive system, highlighting, for each productive step, the agronomical, 

management, and environmental issues which should be still investigated. In order to 

achieve this goal, all the available information has been collected from peer-reviewed 

literature, conference proceedings, books, and project reports and reported. This 

review has been published in the Journal “Industrial Crops and Products” (2013, vol. 42, 

202-215). It was not possible to annex this review to this Ph.D. thesis due to Elsevier 

copyright restrictions. The review is available on the Elsevier web-site 

(http://dx.doi.org/10.1016/j.indcrop.2012.05.037). 

In the second chapter, a study on the assessment of the socio-economic and 

environmental sustainability of smallholder local and decentralized J. curcas 

plantations, carried out in the framework of the GHAJA project, is illustrated. Indeed, 

GHAJA project involved seven rural communities of the West Mamprusi District 

(Northern Region, Ghana), providing the know-how and allocating financial resources 

for the realization of smallholder J. curcas plantations on abandoned farmland and for 
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the provision of the equipment required for J. curcas oilseed and by-products 

production. Indeed, this diversification of smallholder plantations and the 

introduction of new sources of income for local populations could lead to greater 

economic and ecological resilience and strength sustainability actions (Achten et al., 

2010; Settle and Garba, 2011; Bond et al., 2012; Dyer et al., 2012). The three sustainability 

dimensions, social, economic and environmental, described in the Plan of 

Implementation of the World Summit on Sustainable Development held in 

Johannesburg in 2002, have been considered in the study (UN, 2002). A Participatory 

Rural Appraisal (PRA) was conducted in the selected communities, for a total of 402 

families provided 428 acres (1-2 acres per family) of abandoned farmland for the 

establishment of J. curcas plantations (Cornwall and Pratt, 2010). Participatory methods 

(e.g. individual interviews, focus group discussions, questionnaires, resource mapping, 

and rankings) were used to elicit data on socio-demographic and socio-economic 

characteristics, energy services, local land uses and cropping patterns, indigenous 

knowledge and skills on J. curcas cultivation and transformation processes. 

Environmental direct net gains have been calculated and described, while socio-

economic consequences have been analysed and pros and cons have been presented.  

In the third and fourth chapter, two research studies carried out during the 

Ph.D. program, are reported. These experiments aimed to investigate some J. curcas 

agronomic and eco-physiological aspects which are not still deeply explored. Out of 

about 680 articles on J. curcas published between 1974 and 2013, only 80 deal with 

agronomic and eco-physiological aspects. In particular, the two researches described in 

these chapters, focused on two important issues of J. curcas, such as the seed dormancy 

breaking and the drought resistance, which can be considered as main factors for the 

success/failure of this species, being used in community-based extensive cultivations 

promoted by cooperation projects and established in regions characterised by arid and 

semi-arid climate, such as those of Sub-Saharan Africa. 

The first study, illustrated in Chapter 3, focused on two key factors in J. curcas 

production chain which are essential for J. curcas cultivation establishment: seed 

germination and seedling early growth. J. curcas poor germination rate relies on a hard 

and water impermeable seed coat which causes a physical dormancy and only few 

studies on propagation of J. curcas have been carried out so far (Baskin and Baskin, 

1998; Islam et al., 2009; Windauer et al., 2012). Indeed, this study aimed to investigate 

the effects of different pre-sowing treatments on germination behaviour, and to assess 
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the growth and vigour of the seedlings through the measurements of growth 

parameters (Cornelissen et al., 2003), in order to identify the best treatment which 

guarantees both the highest seed germination rate and the best development and 

growth of the seedlings. Five different pre-sowing treatments were tested: (i) control; 

(ii) soaking in 30 °C water for 24 hours; (iii) hammer shell cracking; iv) warm 

stratification at 37 °C for 24 hours; (v) hammer shell cracking plus warm stratification at 

37 °C for 24 hours and obtained results have been described and discussed.  

The second study, described in Chapter 4, aimed to investigate physiological 

responses, in term of growth and photosynthesis, of J. curcas seedlings exposed to a 

severe soil drought stress. Indeed, J. curcas is believed to be drought resistant (Levitt, 

1980; Maes et al., 2009a; Achten et al., 2010). Anyway, the physiological mechanisms 

behind the high drought resistance of J. curcas are scarcely described and recent 

research has shed a new light on the water relations and water requirements of J. curcas 

(Achten et al., 2010; Kesava Rao et al., 2012; dos Santos et al., 2013; Sapeta et al., 2013). 

The effects of 26 days of water deficit on growth, water relations, leaf gas exchange, and 

chlorophyll fluorescence of J. curcas seedlings of 2 and 3 months have been 

investigated. The study has been conducted because an improved understanding is 

essential in order to adopt competitive strategies for improving J. curcas production. 

Additionally, the peculiar characteristics of J. curcas and its resistance mechanisms to 

drought stress make this plant an important object of study in the investigation of plant 

responses to abiotic factors. 

During the Ph.D. program, other experimental trials on J. curcas yield are being 

carried out both in Sassari (Italy) and Tamale (Northern Region, Ghana) on three years 

old J. curcas plantations. In particular, one experiment, carried out in the experimental 

field of the Savanna Agricultural Research Institute (Nyankpala, Northern Region of 

Ghana), has the objective both to evaluate the production of some traditional cereals 

(Zea mays and Sorghum vulgare) and legumes (Glycine max and Vigna unguiculata) 

practised in the area and cultivated in intercropping systems with J. curcas and to 

determine the yield of J. curcas when consociated with these traditional food crops. 

Another experiment is being carried out in the greenhouse facility of the experimental 

field of the Dipartimento di Agraria of Università degli Studi di Sassari, located in 

Ottava (Sassari, Italy) and aims to assess the performance, in term of growth, 

photosynthesis and yield, of J. curcas trees exposed to a different soil drought stress. 

The description of these experiments are not included in the Ph.D. thesis, since they 
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are still on-going, due to the fact that fruits formation in J. curcas usually occurs at least 

three years after transplanting/sowing and it has not occurred yet. Consequently, J. 

curcas yield was not possible to be determined so far. For this reason, these 

experiments will be accomplished in the next two years and their results will be shown 

in future publications.  
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CHAPTER 1 

 

State-of-the-art of the Jatropha curcas productive chain: from sowing to 

biodiesel and by-products1 
 

ABSTRACT 

In the forthcoming years, 1-2 million hectares of Jatropha curcas L. are expected to be 

annually planted, reaching 12.8 million hectares worldwide by 2015. This considerable 

expansion is due to its products and by-products multiple uses and its amazing 

adaptability. J. curcas oil extracted by seeds is a promising renewable feedstock for 

biodiesel production and, together with the oil extraction by-products, it can be used as 

cooking/lighting fuel, bio-pesticide, organic fertilizer, combustible fuel, and for soap 

making. The capability to grow on poor quality soils not suitable for food crop makes J. 

curcas a possible solution of all the controversies related to biodiesel production. 

Furthermore, J. curcas contributes to mitigate environmental problems, such as 

marginal land or abandoned farmland reclamation. Nevertheless, J. curcas is not a 

“miracle tree”: (i) the full potential of J. curcas is far from being achieved and its talents 

are still to be supported by scientific evidences; (ii) J. curcas capabilities are not easily 

exploitable and applicable simultaneously; (iii) its use is controversial and potentially 

unsustainable due to the current knowledge gaps about the impacts and potentials of J. 

curcas plantations. The aims of this review are to detail each phase of J. curcas 

productive chain from sowing to biodiesel and by-products, in order to logically 

organize the knowledge around J. curcas system, and to compare potentialities and 

criticalities of J. curcas, highlighting the agronomical, management, and environmental 

issues which should be still investigated. 

 

Key words: physic nut, biodiesel, vegetable oil, land use, biomass 

 

 
 
 
 
 

                                                
1 This review article has been published in the Journal “Industrial Crops and Products” (2013, vol. 42, 202-215). The review is 
available on the Elsevier web-site (http://dx.doi.org/10.1016/j.indcrop.2012.05.037). 
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CHAPTER 2 

 

Potential and perspectives of Jatropha curcas smallholder plantations in 

Northern Ghana 
 

ABSTRACT 

This study analyses and assesses the socio-economic and environmental sustainability 

of smallholder local and decentralized Jatropha curcas plantations in rural communities 

of Northern Ghana. Plantations were established on abandoned farmland. The 

processing of J. crucas fruits allowed the production of fertilizer, soap, and J. curcas 

energy products (oil, husk, and seed cake) as fuel for cooking or lighting, hence 

considered as alternative energy source of the traditional fuels. The sustainability of 

this initiative has been evaluated. Results suggest that community-based J. curcas 

initiatives for local use can be seen as an opportunity for positively contributing to 

rural livelihoods in Ghana.  

 

Key words: Physic nut, biodiesel, rural development, vegetable oil, land use, 

Participatory Rural Appraisal 

 

1. INTRODUCTION 

Ghana is one of the most developed countries of the sub-Saharan area. The 

economic growth of the country has been estimated close to 8% in 2012 (IMF, 2013) and 

poverty reduction rates are the best in the Region, as reported by the United Nations 

(UN, 2011). In 2006, Ghana achieved target A of the first Millennium Development 

Goal, halving the number of people living below the poverty threshold by 2015, and 

target B, halving the number of people suffering from hunger (UN, 2011). Despite these 

successes, Ghana still faces several challenges: Ghana ranks 135 out of 187 countries on 

the Human Development Index (UNDP, 2011) and 53.6% of its population lives under 

the poverty threshold, estimated in 2 USD/day (IFAD, 2011). Due to the exponential 

economic growth during the last decade, the energy demand is high and one of the 

most difficult challenges which Ghana has to face is the energy supply. About 64% of 

the total energy supply in Ghana comes from wood-fuel (firewood and charcoal), 9% 

from electricity, and 27% from petroleum, which is becoming increasingly expensive 

(Duku et al., 2011). The Ghana government is conducting several efforts to modernise 
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the energy supply sector, but assessments indicate that about 50% of the Ghanaian 

population has no access to grid-electricity and about 90% has not access to liquefied 

petroleum gas. Traditional energy sources are therefore considered as the dominant 

source of energy supply (Kemausuor et al., 2011). Wood-fuel consumption in Ghana is 

double than other energy sources (Energy Commission Ghana, 2010).  

Jatropha curcas L., a valuable multipurpose crop, has recently gained lot of 

importance especially for the biodiesel production by oilseed. J. curcas could allow the 

production of energy products, without competing with food production and, at the 

same time, enhancing the socio-economic development, producing environmental 

benefits, and allowing the production of several economically valuable by-products 

(Contran et al., 2013). J. curcas is a drought-avoidant perennial large shrub or small tree, 

with a life expectancy of up 50 years. It grows in tropical and subtropical regions, with 

annual precipitation between 600-1,500 mm (Trabucco et al., 2010). Its high ecological 

adaptability allows its growth in an ample range of conditions from semiarid to humid 

(annual rainfall varying from 300 to 3,000 mm) (Maes et al., 2009) and in wide varieties 

of soil types, including poor quality soils (Ye et al., 2009). J. curcas seeds contain about 

30-35% of oil per seed dry weight, which can be rather easily expelled or extracted 

(Jongschaap et al., 2007). The production of oil from J. curcas seeds requires two steps: 

(i) dehusking process (with a decorticator), to separate seeds from fruit husk, and (ii) oil 

extraction process, to produce oil and seed cake by-product (Figure 1).  

 
 

Figure 1. J. curcas system. 
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J. curcas oil can be used as cooking and lighting fuel, adopting special design 

equipment, and can replace the traditional biomass sources, such as firewood, 

charcoal, kerosene or petrol. In addition, the oil is utilized for soap making and as 

medicines and bio-pesticides. Despite all its attributes and multiple uses, the economic 

interest of large-scale investments on J. curcas cultivations depends on the possibility of 

turning it into biodiesel (Achten et al., 2008). The extraction of oil from J. curcas seed 

generates also important by-products: fruit husks are the by-products of dehusking 

process, while about 50-70% of the original seed weight remains as de-oiled seed cake 

(Figure 1) (Brittaine and Lutaladio, 2010; Devappa et al., 2010). Fruits husk and seed 

cake, having high nutrient content and calorific values, have a wide variety of 

applications as fuel or organic fertilizer (Ye et al., 2009). However, J. curcas is still a 

(semi-)wild undomesticated plant and its basic agronomic properties are not 

thoroughly understood, the growing and management practices are poorly 

documented, and the environmental effects have not been investigated yet (Contran et 

al., 2013). J. curcas yield is still unknown, and a wide yield range is reported in literature: 

annual dry seed production can range from about 0.4 t to 12 t per ha (Achten et al., 

2008; Parawira, 2010).  

The properties of this energy crop and its oil have persuaded investors, policy 

makers and clean development mechanism project developers to consider J. curcas as a 

substitute for fossil fuels, and large-scale investments are trigging all over the world 

(Achten et al., 2008). Anyway, the current knowledge gaps about the impacts and 

potentials of J. curcas plantation makes large-scale J. curcas cultivation for the oil and 

biodiesel production an hazardous business, with predictable negative repercussions 

on local populations and environment, such as the plantation of J. curcas on productive 

agricultural lands rather than on marginal lands (Kant and Wu, 2011; Dyer et al., 2012). 

Due to these controversial aspects, the debate about J. curcas plantation is heated 

(Fairless, 2007). Some of the most important emerging countries, such as India and 

China, have strongly invested in the large scale production of J. curcas biodiesel, in 

order to meet the energy demand of their dynamic economies. In particular, India 

government launched a two-phase project for spreading the large scale cultivation of J. 

curcas on wasteland in 2003, aiming at planting 12.5 million hectares. On the other side, 

China government decided to raise 11 million hectares of J. curcas plantation on 

marginal lands in 2006, aiming in this way at meeting 15% of transportation energy 

needs (Fairless, 2007; Kant and Wu, 2011). Nevertheless, both in India and in China, the 
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results achieved so far are not reaching the expectations (Fairless, 2007; Kant and Wu, 

2011). Segerstedt and Bobert (2013) found that, under current biofuel prices, the yield 

scenarios (2,000–5,400 kg per ha) make the large-scale J. curcas cultivation in Tanzania 

profitable neither for domestic consumption nor trade. Anyway, the analysis of biofuel 

production is complex. As shown by Arndt and co-workers (2011), biofuel production 

could lead to a stronger trade-off between biofuels and food availability when female 

labour is used intensively. Additionally skills-shortage among female workers also 

limits the relative poverty reduction. However, the authors conclude their analysis 

suggesting that only modest improvements in women’s education and food crop yields 

are needed to address food security concerns and ensure broader-based benefits from 

biofuels investments (Arndt et al., 2011). 

Contrary to these large scale industrial J.curcas programmes, community-based 

J. curcas initiatives for local use, such as extensive J. curcas plantations on poor quality 

soils, agro-forestry systems in which J. curcas is intercropped, and agro-silvo-pastoral 

practices, can be seen as efficient opportunities to promote rural development in 

developing countries. The easily integration of J. curcas into the rural economy at a 

village level is able to facilitate access to sustainable and affordable energy, such as oil 

for cooking or lighting, increase rural income, and create employment opportunities 

(Achten et al., 2010; Dyer et al., 2012). The diversification of smallholder plantations 

and the introduction of new sources of income for local populations could lead to 

greater economic and ecological resilience and strength sustainability actions (Settle 

and Garba, 2011).  

The aim of this paper is to analyse and to asses the socio-economic and 

environmental sustainability of smallholder local and decentralized J. curcas 

plantations carried out in rural villages of Ghana. The concept of sustainability cannot 

be defined univocally (Bond et al., 2012). In this paper, the three sustainability 

dimensions, social, economic and environmental, described in the Plan of 

Implementation of the World Summit on Sustainable Development held in 

Johannesburg in 2002, have been considered (UN, 2002). In particular, sustainability 

has been assumed as the capacity of J. curcas smallholder plantations to produce 

durable net benefits both at environmental level, such as reducing deforestation and 

soil degradation, and at socio-economical level, such as creating new income 

generating activities (Bond et al., 2012). Environmental direct net gains have been 
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calculated and described, while socio-economic consequences have been analysed 

only in their immediate impacts and pros and cons have been presented.  

 

2. SURVEY METHODS  

2.1. Study area 

The study area was located in the West Mamprusi District (5,013 km²), in the 

Northern Region of Ghana, within longitudes 0°35’W and 1°45’W and latitudes 9°55’N 

and 10°35’N and with Walewale as capital (http://westmamprusi.ghanadistricts.gov.gh). 

The district is classified as a tropical savannah climate zone (Peel et al., 2007), 

characterized by a pronounced dry season (from October to March), in which 

precipitation is less than 60 mm. The average annual precipitation is 1179 mm (MOFA, 

2011). The average annual temperature is 27.8°C (min 22.3°C - max 33.4°C) 

(www.climatedata.eu). Seven rural communities were selected in the East part of the 

West Mamprusi District: Bimbini (10°19´46" N - 1°3´44" W; 258 inhabitants), Janga 

(10°0´42" N - 0°58´41" W; 2,978 inhabitants), Kparigu (10°17´54" N - 0°38´49" W; 4,000 

inhabitants), Loagri (10°15´7" N - 0°49´0" W; 1,906 inhabitants), Nasia (10°9´39" N - 

0°49´0" W; 3,000 inhabitants), Wungu (10°19´15" N - 0°50´25" W; 7,601 inhabitants), 

Yama (10°19´16" N - 1°1´11" W; 2,750 inhabitants).  

 

2.2. Participatory rural appraisal method 

A Participatory Rural Appraisal (PRA) was conducted in the selected 

communities (Cornwall and Pratt, 2010). Data were collected at the beginning of 2010. 

Participatory methods (e.g. individual interviews, focus group discussions, 

questionnaires, resource mapping, and rankings) were used to elicit data on socio-

demographic and socio-economic characteristics, energy services, local land uses and 

cropping patterns, indigenous knowledge and skills on J. curcas cultivation and 

transformation processes. PRA was carried out on small groups (max 15 interviewees 

per group). Groups were selected within the same community, for a total of 402 

interviewees. Descriptive statistics, percentage data, and weighted averages of 

categorical data (±S.D.) have been used to present the results. The percentages of 

missing data or not answered questions are not reported.  
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2.3. Agricultural practices and oil extraction activities 

In 2010, 30-90 farmers were selected in each community for a total of 402 

farmers. Each farmer made 1 or 2 acres of his land available for J. curcas plantations, for 

a total of 428 acres. Plantations were established strictly on abandoned farmland. 

Abandoned farmland were considered lands unsuitable for crop cultivation or lands 

unused for at least 2 years, due to the unproductive food production. In Table 1, all the 

required activities and, for each activity, the year of implementation and the working 

days per year, estimated for 1 acre plantation over a period of 10 years, are reported. J. 

curcas density plantation was 3m x 2m (666 plants per acre). Direct seed propagation 

method was used, consisting in sowing 2 seeds at 4-6 cm deep at the beginning of 

August. Plants were not irrigated and their cultivation was under rainy conditions.  

 

 
Table 1. J. curcas agronomic practices and oil extraction activities. For each activity, the years of 

implementation and the working days per year are reported, considering a plantation of 1 acre over a 

period of 10 years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Assessment of environmental and socio-economic sustainability 

The socio-economic and environmental sustainability assessment of J. curcas 

smallholder plantations has been performed considering a standard J. curcas plantation 

of 1 acre per household over a period of 10 years, as described in Table 2. 

Activities Plantation 
year 

Working 
days per 

year* 
Land cleaning 1° year 1 
Ploughing  1° year 1 
Sowing 1° year 1 
Refilling 1° year 1 
Thinning 1° year 1 
Weeding 1-10° years 4 
Pruning 1-10° years 1 
Harvesting 3-10° years 6 
Fertilizing 3-10° years 2 
Fruit transport 3-10° years 2 
Decorticator 3-10° years 1 
Seeds dried 3-10° years 1 
Expeller 3-10° years 1 
Oil and seed cake 
transport 3-10° years 2 

TOT (10 years)  175 
*Estimated for 1 acre plantation and an average 
distance of 6 km for transport 
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Characteristics of standard J. curcas plantation are defined considering a normal water 

supply (rainfall 700-1,220) and low-medium fertility (Achten et al., 2008; FACT, 2010). 

Considering that J. curcas yield is not still well-kown and annual dry seed production 

can range from 0.4 to 12 t ha-1 (Achten et al., 2008; FACT, 2010), on the basis on direct 

experience and literature data, a realistic yield of 1000 kg of dry seeds per ha (400 kg 

per acre) has been considered. The scenario analysed in this evaluation includes three 

activities: (i) the production of soap from J. curcas oilseeds, (ii) the fertilization of the 

plantations with high nutrient content J. curcas by-products, such as seed-cake, in order 

to promote abandoned farmland reclamation, and (iii) the use of J. curcas energy 

products (oil, husk, and seed cake) as fuel for cooking or lighting, hence considered as 

alternative energy sources compared to those currently daily used by the interviewees 

(firewood, charcoal, or kerosene). 

 
Table 2. J. curcas standard plantation characteristics and estimated production per acre. 

Plant and plantation characteristics  
Fruit weighta 3 g per fruit  
Husk weighta 1 g per fruit  
Seed weighta 0.65 g per seed 
Seed oila 35 % of seed dry weight 
Number of plantsa 666 plants per acre 
Yielda 405 kg dry seed per acre 

  
 
 

J. curcas  
products 

Estimated 
production 

kg acre-1  

Estimated 
production  

kg acre-1  
year-1 10 years-1 

Fruitsb 623 4,984 
Husk 218 1,744 
Oilc 85 680 
Seed cake  200 1,600 
a Characteristics are defined considering a normal water 
supply (rainfall 700-1220) and low-medium fertility (Achten 
et al., 2008; FACT, 2010). 
b The total production over a period of 10 years was 
estimated multiplying 1 year data by factor 8, since J. curcas 
trees are productive starting from the third year of the 
plantation. 
c  Equivalent to 90 l (Oil density 920 kg m-3) 
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The total energy (quantity per calorific value) of oil, husk, and seed cake 

produced by the standard J. curcas plantation was compared to the total energy of 

firewood, charcoal, and kerosene consumed for cooking and lighting respectively. 

Calorific values of the energy sources are reported in Table 3.  

The time spent in both J. curcas plantation management practices and oil, husk, 

and seed cake production (Table 1) was compared with the time required to harvest or 

purchase the proportionate quantity of firewood or charcoal. The quantity (kg) of 

energy sources and the time spent in collecting the traditional energy sources used by 

the interviewees, were estimated according to the PRA results.  

 

 
Table 3. Calorific values of energy sources used by the interviewees and J. curcas energy products. In 

order to avoid overestimated evaluation, the calorific values of J. curcas energy products were the lowest 

values reported in literature, while the calorific values of the energy sources were the highest values 

reported in literature. 

 

Energy 
source 

Calorific value 
(MJ kg-1) Reference 

Firewood 20 Lamera et al. (1994) 
Charcoal 32 Rosillo-Calle et al. (2007) 
Kerosene 46 Kalyan and Ishwar (2007) 

Husk 11 
Jongschaap et al. (2007),  

Acthen et al. (2008) Oil 37 
Seed cake 18 

 

 

The total cost of oil, husk, and seed cake production from the standard J. curcas 

plantation was compared to the total cost of the proportionate quantity of firewood or 

charcoal used in 10 years. The data related to the costs had been collected during a 

survey carried out in Ghana in 2010. Prices and costs were expressed in Ghanaian New 

Cedi (GHS). In 2010, the official exchange rate GHS/Euro was 0.52 (http://ec.europa.eu). 

According to the hourly working wage agreed by the local stakeholders, the unit cost 

per person was equals to 0.6 GHS per hour. With reference to firewood and charcoal, 

the total cost was calculated considering both the cost of the combustible (replaced by 

J. curcas energy products) and the cost of one person in charge of the energy source 

collection, estimated according to the PRA results.  
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3. SOCIO-ECONOMIC PROFILE OF FARMERS 

The majority of interviewees involved in the study were men and illiterate and 

more than half of them were under 50 years old (Figure 2). Households were mainly 

composed by 6-15 people and about half of interviewees were land owners (Figure 2). 

Their main activity was farming, from which derived the majority of income. Farm 

equipment, food, energy, education, and clothing were the main expenses. Details of 

the socio-economic profile are showed in the Figure 2. 

 

 
Figure 2. Socio-economic profile of the interviewees involved in the study (N=402). Data are expressed as 

percentage. 

 

 

The community chief is the custodian of the lands, but each family could retain 

the usufruct of lands for personal agricultural practices. More than half of the 

interviewees owns between 11-30 acres of lands and about 26% of total lands were 

considered poor quality soils or agriculture unproductive soils (Figure 3).  
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On fertile soils, the main cultivated crops were cereal and leguminous crops. 

The yield was quite variable due to the dependence on agronomic inputs, management 

practices, and climatic annual conditions. The total yield for cereal and leguminous 

crops was around 4,118 kg (±2,660) per year. The household consumption was about 

65% (±30) of the own production.  

 
Figure 3. Percentages of acres per each interviewees (left) and percentages of land types (right) in the 

study area (Fe = fertile soils, Pq = poor quality soils, Fa = fallow soils, Tr = tree planted areas). 

Firewood, charcoal, fuel and electricity were the energy sources commonly 

used in the communities. The uses of various energy sources changed among the 

communities, due to the differences in availability and accessibility. Most of the 

interviewees would choose firewood as first energy source, because it is accessible, 

appreciably cheap, and it is one of the best energy source for cooking purpose (Figure 

4a). Each interviewee family used about 104 kg (±55) of firewood per month with an 

average price around 15-25 GHS. Firewood is generally purchased or harvested by 

women through the pruning of their own trees (Figure 4b and Figure 5). The main 

problems in accessing firewood were lack of transport and accidents. Charcoal was 

generally the second source of energy, utilised to cook and heat water, because it is 

smokeless than firewood and it is easily accessible (Figure 4a). Each interviewee family 

used about 56 kg (±39) of charcoal per month, with an average price of around 15-20 

GHS. Charcoal was generally purchased by women from their own village or from the 

nearby market (Figure 4b and Figure 5). The main problems in accessing charcoal were 

its high price and lack of transport. More than one third of the interviewees would 

have choose electricity as second source of energy for its efficiency. Electricity was 

utilized to provide energy for household use or to power grinding mills (Figure 4a). 



Marcello Lubino, Jatropha curcas for rural development in Sub-Saharan Africa: agronomic and socio-economic sustainability 
Scuola di Dottorato di Ricerca in Scienze e Biotecnologie dei Sistemi Agrari e Forestali e delle Produzioni Alimentari - Università degli Studi di Sassari 25 

The interviewees spent around 15-25 GHS per month. Interviewees accessed electricity 

from their own village and the responsibility to buy electricity or pay the electricity 

bills was mainly in charge of men (Figure 4b and Figure 5). The main problem in 

accessing electricity was its high price. Kerosene was the main oil fuel source, because 

it is easy to use and it is the best energy source for lighting purpose (Figure 4a). Each 

interviewee family used about 5.2 l (±2.5) of kerosene per month, equivalent to 4.1 kg 

per month (±2), with an average price of around 15-24 GHS. Fuel was generally 

purchased by men from their own village or from the nearby market (Figure 4b and 

Figure 5). The main problems in accessing kerosene were its high price and lack of 

transport. On average, interviewees spent approximately 2-3 hours per week for 

collecting or purchasing energy sources, except for firewood harvest, which took about 

12 hours a week (Figure 4c).  

 

 
Figure 4. a) Additive percentages of energy source potential uses. b) Additive percentages of energy 

sources collection types. c) Average (±S.D.) monthly time spent to the source per month. (Fw = firewood, 

Fwa = harvested firewood, Fwb = purchased firewood Ch = charcoal, Ke = Kerosene, El = Electricity). 
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Figure 5. Percentages of responsibility to collect or buy the different energy sources. 

 

As emerged from the PRA analysis, J. curcas, called Baanyemaasim or Flower, 

was already known among local communities in Ghana. Anyway, since the benefits of 

J. curcas were not well known, only 9% of the interviewees cultivated it and used J. 

curcas to provide shade for animals (44%), to protect the fowl from hawks (39%), as a 

live-fencing (13%), for medical proposes and as snake repellent. With respect to the 

agronomic practices already applied to J. curcas cultivation, around half of the farmers 

who cultivated J. curcas weeded the land before planting and applied fertilizer, 40% 

carried out regular weeding during the rainy season, 80% carried out regular pruning, 

and none of the farmers performed activities against pest and diseases. The yield was 

very low and absolutely non-competitive. Fruits were harvested manually with rubber 

gloves, and seeds were stored in rubber bags after chemical applications. There were 

not prejudices for its cultivation, and local farmers expressed the willingness to be 

engaged in J. curcas system, although they did not present a wide and complete 

knowledge about its by-products. Eighty-eight percent of the interviewees knew that it 

is possible to obtain biodiesel from J. curcas seeds and 12% knew that it is possible to 

obtain soap, but none of them used these products. On the contrary, 16% of the 

interviewees used regular J. curcas leaves, roots, and stem, powdered or water boiled, to 

treat fever, stomach pains, headache, ringworm, or toothache. Additionally, J. curcas 

sap was used by children to mend books. The availability of lands was not a limiting 

factor for a family, which potentially could extend the cultivation for the total 

replacement of traditional fuels with J. curcas energy products. On the contrary, the 

main hurdle for the J. curcas diffusion and sustainability was represented by the lack of 

a complete knowledge about its uses and potentialities (Pretty et al., 2011). 
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4. SUSTAINABILITY OF J. CURCAS SYSTEM 

The assessment of socio-economic and environmental sustainability of J. curcas 

plantations presented in this study allows delineating some benefits and controversial 

aspects that J. curcas can lead to rural Ghanaian communities. This study has been 

performed in the context of the project “Use of Jatropha plant to improve sustainable 

renewable energy development and create income-generating activities: an integrated 

approach to ensure sustainable livelihood conditions and mitigate land degradation 

effects in rural areas of Ghana (GHAJA)”, implemented for six years (2009-2015), within 

the European Commission (EC) “Environment and sustainable management of natural 

resources, including energy” programme (EuropeAid). In 2010, the project involved 

seven rural communities of the West Mamprusi District (Northern Region, Ghana), 

providing the know-how and allocating financial resources for the realization of 

smallholder J. curcas plantations on abandoned farmland and for the provision of the 

equipment required for J. curcas oilseed and by-products production. According to the 

key requirements for sustainable intensification in African agriculture proposed by 

Pretty et al. (2011), this project is being able to: (i) provide scientific input practices 

combined with appropriate agro-ecological and agronomic management, (ii) improve 

farmer knowledge and know-how, (iii) enhance farmers’ capacity to add value through 

their own business development, and (iv) focus on women’s educational and 

agricultural technology needs.  

 

4.1. Environmental sustainability 

Low soil fertility is widely recognized as a major obstacle to improve 

agricultural productivity in sub-Saharan Africa (Oluyede et al., 2011). From the 

environmental sustainability point of view, the cultivation of J. curcas can lead 

environmental benefits, including the reduction of deforestation and soil degradation. 

J. curcas ability to grow on poor quality soils, combined with its capacity to improve soil 

physical conditions and reduced soil erosion, makes this tree an excellent biological 

system for the reclamation of degraded soils, such as abandoned farmland (Openshaw, 

2000). The development of a deep taproot, functioning as an efficient nutrient 

circulation pump, permits to extracts mineral and nutrients leached down and releases 

them to the surface through the leaf or fruit shed, forming mulch nearby the base of 

the tree (Kumar and Sharma, 2008). In this context, the fertilization of J. curcas 

plantations with the by-products obtained from oil extraction, such as seed cake, 
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should be an essential action in order to allow an effective soil reclamation. Practically, 

the nutrient net removal from the soil due to the fruit production and harvesting 

should be compensated by fertilizing J. curcas plantations with 100 kg of seed cake per 

year. This value is calculated considering: (i) seed cake composition (nitrogen (N) 3.82-

6.40 % per dry matter weight, phosphorus (P) 0.9-2.9 % per dry matter weight, and 

potassium (P) 0.95-1.75 % per dry matter weight) and (ii) nutrient net removal 

(estimated from the fruit nutrient composition and equals to 14.3-34.3 kg N, 0.7-7.0 kg P 

and 14.3-31.6 kg K per ha, considering a seed yield of 1,000 kg per ha) (Jongschaap et al., 

2007). Over a long period, intercropping or agro-forestry systems can be considered 

additional benefits for the local populations.  

J. curcas oil (604 kg), husk (1,744 kg), and seed cake (800 kg), excluding soap 

production and fertilization, when used as combustible fuel for cooking or lighting, 

could replace 23% of firewood, 23.5% of the charcoals, or 100% kerosene used by the 

interviewees (Table 2 and Figure 6).  

 
Figure 6. Average (±S.D.) of the total energy of firewood (Fw, black), charcoal (Ch, grey), and kerosene 

(Ke, dark grey) consumed for cooking and lighting over a period of 10 years and estimated average of the 

total energy of J. curcas energy products (Jc, white - oil, husk, and seed cake) produced from 1 acre 

plantation over a period of 10 years. 

Over a period of 10 years, the replacement of 23 % of firewood avoids the use of 

2,863 kg of firewood (of a total of 12,421 kg) per family. The replacement of 23.5% of 

charcoal avoids the use of 1,590 kg of charcoal (of a total of 6,757 kg) per family. The 492 

kg of kerosene used by interviewees in 10 year can be easily replaced with the J. curcas 
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products. For the replacement of the total consumption of traditional fuels, a family, 

mostly composed by 6-15 people, should cultivate about 9 acres. Generally, the 

harvesting of firewood takes place through an intensive tree pruning (20-33 kg per tree). 

Unfortunately, it has not been possible to find in literature the value of annual 

productivity of the most common tree species present in the Ghanaian savannah. In 

order to calculate the actual reduction of deforestation due to the GHAJA project, 

further investigations are needed. 

 

4.2. Socio-economic sustainability 

The introduction of community-based J. curcas plantations could be able to 

modify the tasks and activities within the household, changing the responsibilities and 

labour divisions between men and women. Abandoned farmlands are, in fact, 

frequently owned by women, and they often represent the sole lands that women can 

have access to (Rossi and Lambrou, 2008). Furthermore, the responsibility to collect or 

buy firewood and charcoal is mostly in charge of women (Figure 4), while the 

agricultural works are mainly performed by men. As a consequence, J. curcas 

plantations and energy products could increase the value of women land properties 

and reduce their labour activities, generating socio-economic impacts not predictable, 

and analysable only in the long-term.  

The comparison between the firewood or charcoal system and J. curcas energy 

product system has been carried out considering both the time spent and the total costs 

incurred for the provision of these different energy sources. In order to properly 

compare the production of J. curcas energy products and firewood collection, it is 

important to independently analyse the interviewees (31%) who harvested firewood 

from those (67%) who purchased it. Considering the time spent by interviewees over a 

period of ten years, the time requested for carrying out both all the agricultural 

practices on the standard J. curcas plantation and the oil extraction activities has been 

calculated and amounts to 1,400 h (175 days/8 h per day, as shown in Table 1). This 

figure is comparable to time spent to harvest 2,863 kg of firewood (1,435 h±358). On the 

other hand, the time requested for J. curcas energy products (1,400 h) is higher than the 

time spent to purchase 2,863 kg of firewood (315 h ±138) or to collect 1,590 kg of charcoal 

(254 h ±129), implying an additional working time of 13-15 days per year for the 

production of J. curcas energy products. However, this result does not consider the 

following: (i) in the first and second years, when J. curcas plants are not productive yet, 
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the total time spent for the plantation management is equals to 10 and 5 days per year 

respectively (Table 1), (ii) the more efficient work organization, mostly concentrated at 

the end of the rainy season or during the drought season, and (iii) the time saved by the 

farmers, when J. curcas trees are intercropped with food crops, for the carrying out of 

the common agricultural practices. In an economy of scale, the spent time to carry out 

certain agronomical activities for J. curcas, such as weeding and fertilising (6 days per 

year), could be taken up by the standard agronomical food crops practices. Although 

the availability of lands is not a limiting factor, if the overall consumption of traditional 

fuels (12,421 kg of firewood; 6,757 kg of charcoal; 492 kg of kerosene) would be totally 

replaced with J. curcas energy products, 9 acres per family would be necessary. This 

hypothesis will entail an additional time equals to more than 3 months per year per 

family for carrying out both J. curcas agricultural practices and oil extraction activities.  

As regards J. curcas energy products, costs were spitted into costs in charge of 

project and of the interviewees. The project costs covered all the machinery and 

infrastructures and they have been completed funded by EuropeAid program (Table 

4).  
 

 

Table 4. Project cost for J. curcas machinery, facility, and seeds. 

  Unit price (GHS) Number TOT (GHS) 
Decorticator + engine 4,350 7 30,450 

Expeller + engine 5,350 7 37,450 
House facility 9,000 7 63,000 
Cooking stove 60 402 24,120 
Seed 2 (per kg) 185 (kg) 370 
TOT   155,390 

 

 

The interviewees costs were the cost of one person employed both in the J. 

curcas plantation management and in oil, husk, and seed cake production over a period 

of 10 years. Soap was made using 5 kg of J. curcas oil and a solution of sodium 

hydroxide (approximately 150 g of sodium hydroxide with 0.750 l of water for 1 l of oil). 

In order to produce 50 bars of soap of 100 g each, the interviewees would need to work 

for 2 days and spend around 20 GHS (10 GHS for 1 kg of sodium hydroxide, 5 GHS for 

soap mould, and 5 GHS for wrapping paper). Since in Ghana the average price of one 

bar of soap is 1-2 GHS, the 50 bars of soap could be sold, with a net profit of 30-80 GHS. 
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The cost of one person employed in the J. curcas plantation and production of its 

energy products, calculated in 844 GHS per 10 years, is in line with the range of 

expenditures made by each family for firewood (harvested 646-1,075, purchased 519-

823) or charcoal supply (497-935), if the saving or the potential profit (30-80 GHS) 

associated with the J. curcas soap production are considered (Table 5).  

 

 
Table 5. Range of cost for firewood (harvested or purchased), charcoal, and J. curcas energy products. For 

firewood and charcoal, both the cost of the combustible (replaced by J. curcas energy products) and the 

labour cost of one person in charge of the energy source collection over a period of 10 year are 

considered. For J. curcas energy products, the cost of one person employed in the J. curcas plantation 

management and in the oil, husk, and seed cake production over a 10 year period are considered. 

 

Energy source Material cost per 
10 year 

Person cost per 
10 year* TOT GHS 

Harvested Firewood** - 646-1,075 646-1,075 

Purchased Firewood** 414-552 105-271 519-823 

Charcoal*** 423-705 74-230 497-935 

J. curcas - 840 840 

*0.6 GHS per hour    
**Considering the cost of the 23% of used firewood  
***Considering the cost of the 23.5% od used charcoal   

 

 

It is worth mentioning that the real cost of purchased firewood and charcoal 

includes both material and labour costs, while the real cost of J. curcas energy products 

includes only the labour costs. For this reason, this J. curcas system does not need to 

have an actual capital, but only the availability of labour force. In conclusion, if all the 

costs related to J. curcas productive chain are considered (around 22,200 GHS per 

community), the implementation of the above mentioned activities results 

economically sustainable for a Ghanaian rural community only if the costs for the J. 

curcas plantation setting and for the oil production equipment are in charge of external 

aid, such as the EuropeAid cooperation project (Table 4). Moreover it is difficult to 

achieve a J. curcas energy system without inputs in term of know-how, organisation and 

equipment. 
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5. CONCLUSIONS  

Sustainability potentialities and criticalities of the considered J. curcas system 

have been illustrated, highlighting some of its socio-economic and environmental 

benefits for rural communities. Nevertheless, the gains achieved with J. curcas 

plantations totally depend on the cultivation system, with high differences between 

community-based vs large-scale plantations, leading the system from sustainable to 

unsustainable.  

Results suggest that community-based J. curcas initiatives for local use, such as 

smallholder and decentralized J. curcas plantations on poor quality soils, can be seen as 

an opportunity for positively contributing to rural livelihoods in Ghana. The 

considered J. curcas scenario includes the production of 5 kg of soap per year, the 

fertilization of J. curcas plantations with 100 kg of seed cake per year, and the possible 

replacement of the traditional energy sources (firewood, charcoal, or kerosene) 

generally used by the interviewees with oil, husk, and seed cake. The cultivation of 1-2 

acres per family is able to ensure access to sustainable and affordable energy sources, 

considerably reducing the collection of firewood, and partially modifying the tasks and 

activities of the household members.  

Large-scale monoculture J. curcas plantations for biodiesel production might 

distort local economy and social system, even exacerbating gender inequalities: men 

and women might have different employment opportunities and conditions on 

plantations and might be exposed to different work-related health risks, possibly 

contributing to the socio-economic marginalization of women (Rossi and Lambrou, 

2008). Additionally, if J. curcas competes for fertile lands with food crops, as generally 

happens in large-scale plantation for biodiesel production, it would lose its 

environmental sustainability and advantages (Achten et al., 2010).  
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CHAPTER 3 

 

Effects of pre-sowing treatments on Jatropha curcas seed germination 

and seedling growth 
 

ABSTRACT  

In the last decades, Jatropha curcas has become popular thanks to its wide capabilities 

and plethora of uses, including biodiesel production. Two key factors in J. curcas 

production chain are seed germination and seedling early growth. This study aimed to 

investigate the effects of different pre-sowing treatments on germination behaviour 

and to assess the growth and vigour of the seedlings through the measurements of 

growth parameters, in order to identify the best treatment which guarantees both the 

highest seed germination rate and the best development and growth of the seedlings. J. 

curcas seeds of the 'Indian' cultivar were collected in Ghana and subjected to five 

different pre-sowing treatments: (i) control; (ii) soaking in 30 °C water for 24 hours; (iii) 

hammer shell cracking; (iv) warm stratification at 37 °C for 24 hours; (v) hammer shell 

cracking plus warm stratification at 37 °C for 24 hours. Amongst the seventeen indices 

considered in the experiment (six germination indices and eleven growth rate indices), 

results revealed that the tested pre-sowing treatments influenced much more seed 

germination than seedling growth. Warm stratification treatment enhanced seed 

germination and promoted seedling growth as compared to the other tested 

treatments. Further research is needed to both test other different J. curcas pre-sowing 

treatments and investigate the interaction between seed storage methods and pre-

sowing treatments, with the aim at finding the optimal factor combination to increase 

both seed germination and seedling growth. 

 

Key words: Physic nut, biodiesel, rural development, vegetable oil, land use 

 

1. INTRODUCTION 

Jatropha curcas L., a drought avoidant perennial small tree, is autochthonous of 

Mexico and tropical America, and was then largely spread out in India, Africa and 

South East Asia (Achten et al., 2010). Nowadays, J. curcas grows in tropical and 

subtropical regions in a wide range of climatic conditions from semiarid to humid 
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(Achten et al., 2010). In the last decades, J. curcas has become popular thanks to its wide 

capabilities and plethora of uses, including biodiesel production, which are the cause 

of an increasing of 1-2 million hectares of J. curcas yearly planted at global level 

(Contran et al., 2013). J. curcas seeds contain about 25-35% of oil, which can be extracted 

and used as lighting and cooking fuel, to manufacture soap, medicine or bio-pesticide 

and, after further chemical treatments, to produce biodiesel, a renewable energy 

source alternative to conventional petrodiesel (Contran et al., 2013).  

Besides the economic value derived from J. curcas oil and its derived products, J. 

curcas strength as a crop derives from its adaptability to grow on low-nutrient soils and 

under arid and semi-arid conditions, avoiding J. curcas competition against food crops. 

Furthermore, the plant itself offers the ecological advantage to mitigate soil 

degradation and to reclaim marginal land or abandoned farmland  (Contran et al., 

2013). 

Nevertheless the positive impacts that could be generated by the use of J. curcas 

in arid and semi-arid areas of developing countries, the high potential of this tree has 

not been reached so far, since the scarcity of scientific researches. J. curcas is still a 

(semi-)wild undomesticated plant. Its basic agronomic needs are not thoroughly 

understood, the growing and management practices are poorly documented, and the 

environmental effects have not been investigated yet (Moncaleano-Escandon et al., 

2013). Only few studies on propagation of J. curcas, representing a critical stage in the 

plant life cycle, have been carried out so far (Islam et al., 2009; Windauer et al., 2012). J. 

curcas can be propagated by vegetative (cuttings) and generative (seeds) methods. 

Seeds can be used either to raise seedlings in nursery or to be sown directly in the field. 

These practices favour the development of trees with a deep taproot, more drought 

resistant and with more longevity as compared to those obtained by cuttings (Contran 

et al., 2013).  

One of the major issues of J. curcas seed germination relies on its poor 

germination rate, which is mainly due to the presence of a hard and water 

impermeable seed coat, which impedes water absorption and causes a physical 

dormancy (Baskin and Baskin, 1998). Despite the seed dormancy is a strategy to assure 

the survival of the species, it is also a factor limiting propagation. In order to enhance 

germination percentage, seeds can be subjected to pre-germination treatments before 

sowing, with the aim to break the seed coat, favour the embryo hydration and 

consequently increase the germination percentage as compared to untreated seeds. 
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There are only few studies on the effects of pre-sowing treatments of J. curcas seeds on 

different germination parameters. Islam et al. (2009) demonstrated that J. curcas seeds 

kept under stone sand and moistened with water for 72 hours before sowing, showed a 

significantly higher germination percentage than control in all the different genotypes 

tested in the experiment. Windauer et al. (2012) tested the effects of different 

temperatures (from 15 °C to 35 °C) on J. curcas seed germination percentage. This study 

revealed that an incubation of seeds at 25 °C before sowing caused the highest final 

germination percentage, even if at 30 °C seeds germinated faster than any other 

temperature. Furthermore, positive results were reached for seed of various tropical 

tree species, previously treated with hot water, which is considered one of the cheapest, 

easiest and replicable technique to induce seed dormancy-breaking (Wang and 

Hanson, 2008). No study was found in literature on the effects of other pre-sowing 

treatments on the growth of J. curcas seedlings.  

The aim of this study was to investigate the effects of different pre-sowing 

treatments on germination behaviour and to assess the growth and vigour of the 

seedlings through the measurements of growth parameters (Cornelissen et al., 2003), in 

order to identify the best pre-sowing treatment which guarantees both the highest seed 

germination rate and the best development and growth of the seedlings.  

 

2. MATERIALS AND METHODS 

2.1. Experimental set up  

The experiment was performed in a growth chamber of the Agricultural 

Department of the University of Sassari (Italy) and carried out on J. curcas seeds of the 

'Indian' cultivar. This cultivar has been chosen in the study, since it is one of the most 

common cultivar used in Ghana and India and largely adopted in both small-scale 

extensive plantations, promoted by cooperation projects, and large-scale intensive 

plantations, operated by multinational companies. J. curcas seeds were collected in 

October 2011 in Tamale (Ghana Yendi road Farm, Northern Region of Ghana) and 

stored at 18 (±2) °C for six months until the start of the experiment (April 2012).  

J. curcas seeds were subjected to five different pre-sowing treatments as follows: 

(i) untreated control, in which seeds were directly sown in pot in a depth of 1 cm; (ii) 

seed soaking in 30 °C water for 24 hours; (iii) hammer shell cracking, in which seeds 

were mechanically scarified by cracking with a hammer to weaken the shell; (iv) warm 

stratification at 37 °C for 24 hours, in which seeds were mixed with an equal volume of 
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a moist medium (peat) in a close container and maintained at 37 °C for 24 hours; (v) 

hammer shell cracking plus warm stratification at 37 °C for 24 hours, in which seeds 

were mechanically scarified by cracking with a hammer to weaken the shell and then 

mixed with an equal volume of a moist medium (peat) in a close container and 

maintained at 37 °C for 24 hours. Germination test was carried out in a growth chamber 

at 28 °C, under a 8/16 light/dark regime at 400 μmol m-2 s-1. A completely randomised 

design with four replications of ten seeds per replication was used. Ten seeds per 

treatment were tested for each replication. Seeds were sown in pot (15 cm diameter, 10 

cm height) filled with potting mix medium (dry matter 30%, organic matter 20%, 

fertilizer NPK 12:14:24 1 kg/m3) and fully irrigated with a total of 55 ml of distilled water 

during the first two weeks of the experiment.  

 

2.2. Measurements 

Number of emerged seeds and first true leaf expansion were recorded by 

everyday monitoring from the sown for 35 days. The seed emergence criterion was 

visible protrusion on the surface of soil (AOSA, 1983). Emerged seed was considered 

germinated (Ranal and De Santana, 2006). According to Cornelissen et al. (2003), after 

35 days from sown, seedlings of germinated seeds were separated into cotyledons, 

leaves, stem, and (washed) roots and the following destructive measurements were 

carried out: (i) cotyledons (fresh and dry weight and total cotyledons area), (ii) leaf 

(fresh and dry weight and total leaf area), (iii) stem (length, basal diameter, fresh and 

dry weight, and transversal area), and (iv) root (length, diameter, fresh and dry weight, 

and transversal section area). Dry weight was measured when samples at 100 °C 

reached a constant weight (around 48 hours). Total and transversal section areas were 

measured by an Area Meter (LI-3100C Area meter, Licor).  

Measured data allowed calculation of several parameters related to germination 

process and seedling growth, as reported in Table 1. 

 

2.3. Statistical analyses 

Data were checked for normal distribution (Shapiro-Wilk W test) and 

homogeneity of variance (Levene’s test). Percent values were arcsine-square root 

transformed prior to analysis. Analysis of variance (ANOVA) was applied to test the 

effect of Treatments. For the ANOVA of seedling growth parameters, the statistical 

unit was the single seedling. A Tukey HSD test was applied to compare the above 
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effects between homogeneous groups. Tests of significance were made at a 95% 

confidence level. Analyses were processed using STATISTICA 6.0 Package for 

Windows (StatSoft 2001, Tulsa, OK). 

 

 
Table 1. Germination process and seedling growth parameters. 

  Variable Formula References 
Germination process    
 Germinability (G) [%] G = (Ng / N) * 100  -  
 True leaf expansion (Tl) [%] Tl = (Nl / G ) *100  -  
 Emergence rate (Er) [day-1] Er = [ΣNd / (Σ D * Nd)] *100 Kotowski (1926) 
 Emergence index (EI) [day-1] EI = Σ (Nd / D)   AOSA (1983) 
 Mean emergence time (MET) [day] MET = (Σ D * Nd) / ΣNd Ellis and Roberts (1981) 
 Seedling vigour index (SVI) [cm %] SVI = [(Ls+Lr) * G] / 100  Abdul-Baki and Anderson (1973) 
Seedling functional traits   
 Cotyledon size (Cs) [mm2] Cs = Ac Cornelissen et al. (2003) 
 Specific cotyledon area (SCA) [mm2 mg-1] SCA = Ac /DWc Cornelissen et al. (2003) 
 Cotyledon dry matter content (CDMC) [mg g-1] CDMC = DWc / FWc Cornelissen et al. (2003) 
 Leaf size (Ls) [mm2] Ls = Al Cornelissen et al. (2003) 
 Specific leaf area (SLA) [mm2 mg-1] SLA = Al /DWl  Cornelissen et al. (2003) 
 Leaf dry matter content (LDMC) [mg g-1] LDCM = DWl / FWl Cornelissen et al. (2003) 
 Stem specific density (SSD) [mg cm-3] SSD = DWs / Vs Cornelissen et al. (2003) 
 Stem dry matter content (SDMC) [mg g-1] SDCM = DWs / FWs Cornelissen et al. (2003) 
 Specific root area (SRA) [mm2 mg-1] SRA = Ar /DWr  - 
 Specific root length (SRL) [cm mg-1] SRL = Lr /DWr Cornelissen et al. (2003) 
  Root:shoot ratio (RSr) RSr = DWr / DWc+l+s  - 
 
LEGEND: D =  number of days counted from the beginning of germination [day]; N = total number of seed; Ng = 
total number of germinated seeds; Nd = number of seeds germinated on day D after sowing; Nl = number of 
expanded true leaf when seed is germintaed; N5 = number of seeds germinated on day 5 after sowing; N15 = 
number of seeds germinated on day 15 after sowing; Ls = average stem lenght (cm); Lr = average root lenght (cm); 
Ac = cotyledon area [mm2]; DWc = cotyledon dry weight [mg]; FWc = cotyledon fresh weight [g]; Al = leaf area 
[mm2]; DWl = leaf dry weight [mg]; FWl = leaf fresh weight [g]; DWs = stem dry weight [mg]; FWs = stem fresh 
weight [g]; Ar = root area [mm2]; DWr = root dry weight [mg]; DWc+l+s = cotyledons plus stem plus leaf dry weight 
[g]. 

 

 

3. RESULTS 

The statistical analysis revealed that the tested pre-sowing treatments have 

various effects on different germination parameters of J. curcas seeds. In particular, 

germinability, emergence rate, emergence index, and mean emergence time were 

different between treatments and control, while true leaf expansion and seedling 

vigour index did not revealed any difference (Table 2).  
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Table 2. F values of one-way analysis of variance for the effects of treatment on germination process. 

  

 

 

 

 

 

 

 

 

 

More in detail, water soaking treated seeds showed the lowest percentage of 

germinability (7.5%) (p ≤ 0.05, Figure 1). Seeds exposed to shell cracking, warm 

stratification and the combination of these two pre-sowing treatments (shell cracking 

plus warm stratification) had higher emergence rate and, consequently, lower mean 

emergence time compared to control untreated seeds (p ≤ 0.05, Figure 1). Furthermore, 

the highest value in emergence rate (24 day-1) was found in warm stratification treated 

seeds, which showed higher emergence rate compared also to shell cracking treated 

seeds (Figure 1). Both seeds treated with the sole shell cracking and with the 

combination of shell cracking plus warm stratification showed statistically higher 

emergency index than untreated control seeds, while warm stratification treated seeds 

did not showed a significant difference from control, shell cracking, and shell cracking 

plus warm stratification treated seeds (Figure 1). The effect of water soaking treatment 

on emergence rate, emergence index and mean emergence time was not possible to be 

calculated, due to a very low germination rate of seeds (Figure 1). 

 
 

 

 

 

 

 

 

Treatment  
d.f. 4 

Germinability 6.7** 

True leaf expansion  1.2ns 
    

d.f. 3 
Emergence rate 22.6*** 

Emergence index 7.7* 

Mean emergence time 10.9*** 

Seedling vigour index 1.9ns 
d.f. = * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, ns =p > 
0.05 (not significant).  
d.f. represents the degrees of freedom.                     
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Figure 1. Germinability, true leaf expansion, emergence rate, emergence index, mean emergence time, 

and seedling vigour index of J. curcas seeds subjected to different pre-sowing treatments: untreated 

control, soaking in 30 °C water for 24 hours, shell cracking, warm stratification at 37 °C for 24 hours, and 

shell cracking plus warm stratification at 37 °C for 24 hours. Values represent means ±S.E (N=4). When 

Treatment factor is significant, different letters show significant differences among treatments (Tukey 

HDS test, p ≤ 0.05).  

 

 

After 35 days from the sown, amongst the eleven growth parameters, only 

cotyledon size, leaf size, and specific root length showed significant differences among 

treatments (Table 3).  
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Table 3. F values of one-way analysis of variance for the effects of treatment on J. curcas seedling growth. 

 

Treatment   
d.f. 4 

Cotyledon size 6.2*** 

Specific cotyledon area 0.5ns 

Cot. dry matter content  1.7ns 

Leaf size 6.6*** 

Specific leaf area  1.9ns 

Leaf dry matter content 0.9ns 

Stem specific density  0.4ns 

Stem dry matter content 1.6ns 

Specific root area 1.6ns 

Specific root length 3.6* 

Root:shoot ratio 2.1ns 
d.f. = * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, ns =p > 
0.05 (not significant).  
d.f. represents the degrees of freedom.                     

 

Water soaking and warm stratification treated seedlings showed the highest 

cotyledon size, which is statistically significantly higher than in shell cracking plus 

warm stratification treated seedlings (Figure 2). Maximum leaf size was observed in 

warm stratification treated seedlings, which also revealed a significant difference as 

compared with control, shell cracking and shell cracking plus warm stratification 

treated seedlings (Figure 2). Shell cracking plus warm stratification treated seedlings 

showed the highest specific root length values amongst the five tested pre-sowing 

treatments, and also highlighted a statistically significant difference when compared to 

water soaking treated seedlings (Figure 2).  
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Figure 2. Cotyledon size, specific cotyledon area, cotyledon dry matter content, leaf size, specific leaf 

area, leaf dry matter content, stem specific density, stem dry matter content, specific root area, specific 

root length, and root:shoot ratio of J. curcas seeds subjected to different pre-sowing treatments: untreated 

control, soaking in 30 °C water for 24 hours, shell cracking, warm stratification at 37 °C for 24 hours, and 

shell cracking plus warm stratification at 37 °C for 24 hours. Values represent means ±S.E (N=4). When 

Treatment factor is significant, different letters show significant differences among treatments (Tukey 

HDS test, p ≤ 0.05). 

 

 

4. CONCLUSIONS 

J. curcas is a plant with several both economical and ecological potentialities, 

which are still far from being achieved, due to a poor knowledge on agronomical, 

management and environmental aspects of this species (Contran et al., 2013). Amongst 

these different issues, which need to be deeply investigated, seed storage and aging and 

seed physical dormancy represent the main critical factors influencing J. curcas seeds 

germination and seedlings early growth for this species (Moncaleano-Escandon et al., 
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2013; Duong et al., 2013; Islam et al., 2009). J. curcas seeds have a viability period less 

than six months and an increasing of storage temperature quickens seed germination 

potential loss (Moncaleano-Escandon et al., 2013). Additionally, J. curcas seed 

germination potential rapidly decreases with unfavourable climatic and edaphic 

conditions and improper seed storage techniques (Duong et al., 2013). Negussie et al. 

(2013) showed that no spontaneous regeneration was observed in land adjacent to J. 

curcas plantations and primary seed dispersal was limited, predominantly under the 

canopy of the mother plant. The highest germination success occurs when seeds were 

buried artificially at 1–2 cm depth, even if this does not occur under natural conditions. 

For this reason J. curcas can be considered as a non aggressive invader plant species 

when grown under natural conditions. (Negussie et al., 2013).  

Currently, there is a lack of knowledge on the effects of pre-sowing J. curcas seed 

treatments on seed germination and growth of seedlings. This study focused on J. 

curcas seed germination and seedlings early growth, which are considered one of the 

main important factors in J. curcas production chain (Islam et al., 2009). The effects of 

five different seed pre-sowing treatments on germination and growth of J. curcas 

seedlings have been investigated, in order to understand which treatment could better 

increase seeds germination rate and at the same time guarantee the best performance 

in term of growth and development of the seedlings. In effect, a vigorous and well-

established seedling is able to bear periods of drought, which often occur in arid and 

semi-arid areas, guaranteeing the future survival and development of the plant. 

Results indicated that the considered treatments influenced much more seed 

germination than seedling growth, the latter characterised by having high variability 

and no significant differences from the control. With the exception of water soaking, 

treatments had a positive effect on the early growth and extension of J. curcas tissues, as 

demonstrated by a significant increasing of the emergence rate and the emergence 

index, and a significantly reduction of the emergence time. We were expecting a much 

higher performance of soaking seeds in water at 30 °C for 24 hours, since Islam et al. 

(2009) demonstrated that J. curcas seeds soaked in water had a significantly higher 

germination than control due to the rupture of seed coat. Anyway, water soaking 

treatment caused a significant seed germinability reduction as compared to all the 

other treatments. Dry matter and nutrient allocation and plant structural strength 

seem to be not affected by treatments (Figure 2). On the contrary, warm stratification at 

37 °C induced an increase in aboveground seedling growth since, after 35 days from the 
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sown, seedlings showed a significant expansion of both cotyledon and primary leaf 

size. Furthermore, in shell cracking plus water stratification treated seedlings, an 

antagonistic effect on the aboveground part of the seedlings between mechanical 

scarification treatment and warm stratification treatment was observed, while an 

additive effect on root system growth was found (Figure 2). 

Amongst the tasted treatments, warm stratification treatment should be 

preferred to the other treatments since it expressed the best performance on seed 

germination and promotes the seedling growth. However, this treatment requires a 

certain degree of investment, due to the fact that a growth chamber is needed to 

maintain a constant temperature for a certain period. For this reason, warm 

stratification treatment could be difficult to be applied on J. curcas seeds collected and 

processed by farmers in remote areas of developing countries, in which J. curcas is 

generally cultivated. As a consequence, scarification treatment, allowing a higher root 

growth, could be a replicable and economic solution to be promoted. Further research 

is needed to both test other different J. curcas low-cost pre-sowing treatments which 

can be easily practiced in rural areas of developing countries, and monitor the seedling 

growth for a longer period (> 35 days), in order to collect more data and better evaluate 

their development. Another aspect to be investigated could be the interaction between 

seed storage methods and pre-sowing treatments, with the aim at finding the optimal 

combination of these two factors, which could increase both seed germination and 

seedlings growth parameters. In fact, J. curcas seed has a very short period of viability 

and high seed storage temperatures, which are common in tropical areas where J. 

curcas is planted, strongly speed up the loss of seed germination (Moncaleano-

Escandon et al., 2013). 
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CHAPTER 4 

 

Physiological responses of Jatropha curcas seedlings to severe soil 

drought stress 
 

ABSTRACT 

The rising demand of water and land resources for food production, the growing 

energy request, and the uncertain impacts of the climate change on drought and flood 

occurrence make biofuel production a key issue for development, particularly in arid 

and semi-arid regions. A possible winning strategy could be to encourage the 

production of biofuel without competing for land and water resources needed for food 

production. The use of drought-tolerant Jatropha curcas has been proposed for the 

economic exploitation of non-cultivated and marginal areas. However, there are still 

knowledge gaps on the evaluation of the agronomic performance of J. curcas in 

response to environmental stresses, especially in terms of growth and seed yield traits.  

In general, drought adaptation depends on the severity of the water deficit, and two 

different water use strategies may be employed by wood plants: strategies of drought 

avoidance or drought tolerance. The aim of this study is to investigate physiological 

responses, in term of growth and photosynthesis, of J. curcas seedlings exposed to a 

severe soil drought stress. The effects of 26 days of water deficit on growth, water 

relations, leaf gas exchange, and chlorophyll fluorescence of 2 (YO) and 3 (OL) months 

old J. curcas seedlings have been investigated. Results suggested that in J. curcas 

seedlings drought avoidance and drought tolerance are not mutually exclusive. 

Furthermore, the work demonstrated that YO and OL seedlings implemented different 

stress responses.  

 

Key words: Physic nut, water stress, gas exchange, chlorophyll a fluorescence, water 

content, biomass allocation 

 

1. INTRODUCTION 

Jatropha curcas L. is a deciduous large shrub or small tree, with a life expectancy 

of up 50 years (Heller, 1996). In the last decades, J. curcas has become popular thanks to 

its wide capabilities and plethora of uses. J. curcas seeds contain about 25-35% of oil, 

which can be extracted and converted in biodiesel. Oil can be used also as 
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cooking/lighting fuel, medicine, bio-pesticide, and for soap making and oil extraction 

by-products can be used as organic fertilizer, combustible fuel, or for biogas 

production (Contran et al., 2013). Furthermore, J. curcas strength as a crop derives from 

its capability to be cultivated under semi-arid and poor quality soil conditions, without 

potentially competing with food production for land use (Fairless, 2007; Ye et al., 2009).  

J. curcas grows in tropical and sub-tropical regions, with cultivation limits at 

30°N and 35°S. J. curcas requires mean annual temperatures between 18°C and 28°C 

(with optimal values around 26-27◦C), average minimum temperatures above 8-9°C, 

indicating a clear lack of tolerance to frost, and average maximum temperatures 

between 35°C and 45°C (Trabucco et al., 2010). Natural suitable climatic conditions were 

found with annual precipitation above 900 mm, with an optimum at 1500 mm 

(Trabucco et al., 2010), and more humid environmental conditions result in a higher 

productivity (Maes et al., 2009). Even though J. curcas is not naturally present in regions 

with arid and semi-arid climates, its high ecological adaptability allows J. curcas to be 

cultivated in a wide range of climatic conditions from semiarid to humid (annual 

rainfall varying from 300 mm to 3,000 mm) (Maes et al., 2009). As a result, the climatic 

conditions at the plantations are often different from those of the natural distribution 

and the major cultivation areas are characterized by high evaporative demand and low 

water availability (Maes et al., 2009). Consequently, J. curcas often faced soil drought 

stress and excessive salinity.  

Soil drought is one of the most important limitations to photosynthesis (Tezara 

et al., 1999), resulting in lower growth rates and productivity and causing serious socio-

economic and environmental losses. There is now substantial consensus that the 

increase in diffusive resistances to CO2 at stomata and/or mesophyll level under mild 

water stress (Flexas et al., 2002, 2004) or the alterations of photosynthetic metabolism 

under severe water stress, such as a decline in Rubisco activity and impairment of ATP 

synthesis (Tezara et al., 1999), directly cause down-regulation of photosynthesis 

(Lawlor and Tezara, 2009). Another biochemical limitation of photosynthesis is the  

accumulation of sugars and other osmolytes in leaves, which might exert a modulation 

on photosynthesis by a negative feedback mechanism (Drodzova et al., 2004). Drought 

impact on photosynthesis can also occur as a secondary effect, namely oxidative stress 

(Chaves et al., 2009). The accumulation of sugars suggests that soil drought affect 

plants through the formation of reactive oxygen species (ROS) (Mittler, 2006). When 

photosynthesis is limited by stomatal closure (e.g. to avoid water loss under drought), 
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plants must dissipate excess light energy by down-regulating photosynthetic electron 

transport through the down-regulation of PSII activity. This leads to an increase in 

photo-excited compounds that results in the generation of singlet oxygen (Apel and 

Hirt, 2004). Soil drought thus results in oxidative stress, which needs to be 

compensated by the antioxidant system or other defence mechanism in order to avoid 

injury (Rennenberg et al., 2006).  

Only recently, the scientific community has begun to investigate J. curcas 

responses, in term of biomass production and partitioning, plant-water relationships, 

leaf gas exchange, and osmotic adjustment, to limited water availability conditions 

(Maes et al., 2009a; Achten et al., 2010; Pompelli et al., 2010; Silva et al., 2010, 2010a; 

Krishnamurthy et al., 2012; Díaz-López et al., 2012; Kesava Rao et al., 2012; Matos et al., 

2012; Silva et al., 2012; dos Santos et al., 2013; Sapeta et al., 2013). J. curcas is believed to be 

drought resistant (Maes et al., 2009a; Silva et al., 2012); anyway the physiological 

mechanisms behind the high drought resistance of J. curcas are scarcely described, and 

recent researches have shed a new light on the water relations and water requirements 

of J. curcas (Achten et al., 2010; Kesava Rao et al., 2012; dos Santos et al., 2013; Sapeta et 

al., 2013). J. curcas is considered a species with a high water use efficiency (Maes et al., 

2009a) and water use assessment of J. curcas plantations in the semi-arid tropics 

indicated a monthly water use varying from 10 mm to 140 mm, depending on crop 

phenophase, environmental demand and water availability (Kesava Rao et al., 2012). 

Probably drought stress triggers a coordinate down-regulation in the photosynthesis 

(photochemistry and carboxylation phases), which could be modulated by 

accumulation of sugar and of osmotically active solutes (Silva et al., 2012; dos Santos et 

al., 2013; Sapeta et al., 2013). The energy excess at PSII level is dissipated by non-

photochemical mechanisms associated with enhancement in photorespiration, 

restricting photo-damages (Silva et al., 2010a; 2012). In parallel, the antioxidant 

enzymatic protection was beneficial for oxidative damage protection (Pompelli et al., 

2012; Silva et al., 2012). Additionally, J. curcas has several leaf traits in common with 

other stem succulent deciduous trees (Maes et al., 2009a), where stem water is a 

possible reserve for the fresh leaf flushing as well as for keeping these leaves active for 

several weeks after the start of the dry season (Chapotin et al., 2006). As do other stem 

succulent species with green stems, J. curcas probably has no a pure C3-metabolism, 

but rather a CAM-metabolism in the succulent stem, with leaves shifting from C3-
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metabolism to the more water-efficient CAM-metabolism under drought (Maes et al., 

2009a). Anyway, the metabolism of J. curcas deserves further attention.  

The aim of this study is to investigate physiological responses, in term of growth 

and photosynthesis, of J. curcas seedlings exposed to a severe soil drought stress. The 

effects of 26 days of water deficit on growth, water relations, leaf gas exchange, and 

chlorophyll fluorescence of 2 and 3 months old J. curcas seedlings have been 

investigated. The study has been conducted because an improved understanding is 

essential in order to adopt competitive strategies for enhancing J. curcas production. 

Additionally, the peculiar characteristics of J. curcas and its resistance mechanisms to 

drought stress make this plant an important object of study in the investigation of plant 

responses to abiotic factors. 

 

2. MATERIAL AND METHODS 

2.1. Experimental design  

The experiment was performed in the greenhouse facility located at the Campo 

Didattico-Sperimentale Mauro Deidda (Dipartimento di Agraria of Università degli 

Studi di Sassari) at Ottava (SS), Italy (40°46’47’’N; 8°28’34’’E, elevation 221 m asl). Air 

temperature and humidity inside the greenhouse were recorded automatically every 2 

hour from June to October 2011 with a thermohygrograph (Modello Siap, Bologna, 

Italy) (Figure 1). 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 1. Daily mean relative humidity (R.H.) and daily mean air temperature (Air T.) in 2011 during the 

experimental period in the greenhouse facility. Grey areas indicate daily minimum and maximum 

values of R.H. and Air T.  

R
. H

. [
%

]

0

20

40

60

80

100

2011 (day)

12
-6

  

20
-6

  

28
-6

  

06
-7

  

14
-7

  

22
-7

  

30
-7

  

07
-8

  

15
-8

  

23
-8

  

31
-8

  

08
-9

  

16
-9

  

24
-9

  

02
-1

0 
 

10
-1

0 
 

A
ir 

T.
 [∞

C
]

0

10

20

30

40



Marcello Lubino, Jatropha curcas for rural development in Sub-Saharan Africa: agronomic and socio-economic sustainability 
Scuola di Dottorato di Ricerca in Scienze e Biotecnologie dei Sistemi Agrari e Forestali e delle Produzioni Alimentari - Università degli Studi di Sassari 55 

The experiment was carried out on J. curcas seeds of the Indian cultivar. Seeds 

were collected in November 2010 in Tamale (Ghana Yendi road Farm, Northern 

Region of Ghana), previously selected on the basis of seed size and weight, and stored 

at 18°C (±2) until the start of the experiment.  

J. curcas seeds were sown in platou (5 cm diameter and 6 cm height), filled with 

peat amendment substrate. Sowing was carried out on 16th June (OL – older seedlings) 

and on 25th July (YO – younger seedlings). After 20 days from the germination, when 

the first leaf completely expanded, a total of 40 seedlings (20 OL seedlings and 20 YO 

seedlings) were transplanted in pots (40 cm diameter and 60 cm height), filled with 25 

kg of substrate (2/4 of filtered soil, 1/4 of potting compost and 1/4 of agriperlite). Until 

the beginning of the treatment, seedlings had been regularly irrigated with 1,000-1,500 

ml of water every 2 days, in order to keep up the soil water above field capacity.  

On 12th September 2011, after 2 (OL) and 1 month (YO) from transplanting 

respectively, seedlings were exposed to treatments: watered (W, control treatment) or 

unwatered (D, soil drought treatment). In control treatment, seedlings have been 

regularly irrigated with 1,000-1,500 ml of water every 2 days, in order to keep up the soil 

water above field capacity. On the contrary, soil drought treatment was imposed by 

withholding water.  

Pots were arranged in a completely randomised design. On 4th, 8th, 12th, 19th, and 

26th day from treatment beginning, leaf and soil water content, biometric, gas 

exchange, and fluorescence measurements were performed on 6 seedlings per 

treatment.  

On 26th day from treatment beginning, biometric destructive measurements 

were carried out on 5 seedlings per treatment. 

 

2.2. Soil and leaf water content  

Before transplanting, substrate field capacity weight (sFW, measured in 

saturated substrate where downward movement of water has virtually ceased) and 

substrate dry weight (sDW) were measured, and field capacity (FC) of each pot was 

calculated as FC=(sFW-sDW)/sDW*100. At each measurement date, a cylinder of 238.5 

cm3 of substrate was collected in each pot between 11:00 and 12:00. The sampling was 

always performed between seedling and pot edge, in order to avoid edge effect, and 

shifting the area of sampling. The substrate was immediately replaced, adding in each 
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pot an equal cylinder of 238.5 cm3 of substrate collected from a pot subjected to the 

same water treatment.  

Samples were weighted (fresh weight, FW) and then, after oven drying at 100°C, 

when samples reached a constant weight (around 72 h), weighted again (dry weight, 

DW). Substrate water content (SC) was calculated as: SC=(FW-DW)/DW*100. 

Substrate water potential (Ψs) was calculated through an empirical relationship 

between substrate water content (SC) vs substrate water potential (Ψs). The relation 

was determined by a water-content vs water-potential curve constructed by using a 

pressure plate device (Richard’s pressure plate apparatus).  

Measurements were performed on six randomly selected substrate samples in a 

pressure range from 0.02 to 1.5 Mpa, founding the relation Ψs = 81.607*e(-0.3118*SC) 

(R2=0.88). 

Two leaf discs of 14.5 cm2 from one mature leaf were collected between 11:00 

and l2:00 from each plant and at each measurement date. Discs were immediately 

weighted (fresh weight, FW), immersed in distilled water for 4 h at room temperature, 

blotted dry, and then weighted (water saturated weight, TW). After oven drying at 

80°C, when samples reached a constant weight (around 48 h), discs were weighted 

again (dry weight, DW). Leaf RWC was calculated as: RWC=(FW – DW)/(TW – 

DW)*100. 

 

2.3. Biometric measurements 

Seedling height (H), stem basal diameter (Ds), number of leaves (Nl), number of 

fallen leaves (Nfl), and number of secondary branches (Nb) were measured at each 

measurement date. According to Achten et al. (2010), total above dry biomass (AB) was 

calculated through the allometric relationship AB=0.029*Ds2.328, where Ds was the 

basal stem diameter. The accuracy of allometric relationship was evaluated by a linear 

regression analysis between estimated total above dry biomass and total above dry 

biomass measured by destructive method, as described below (R2 = 0.87; p<0.01; N = 

20). After 26 days from treatment beginning, seedlings were separated into leaves, stem, 

and (washed) roots, and the following destructive measurements were carried out: leaf 

fresh weight (FWl), leaf dry weight (DWl), total leaf area (Al), stem fresh weight (FWs), 

stem dry weight (DWs), stem volume (Vs), stem transversal area (As), root length (Lr), 

root diameter (Dr), root fresh (FWr), root dry weight (DWr), and root transversal area 

(Ar). Dry weights were measured when samples at 80°C reached a constant weight 
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(around 48 hours). Total and transversal area were measured by an Area Meter (LI-

3100C Area meter, Laicor). Stem volume was measured by cutting the stem into smaller 

sections and immerging it in a graduated cylinder (500 ml). The amount of displaced 

water was assumed to be equal to the volume of the stem section. From the collected 

data, according to Cornelissen et al. (2003), several parameters related to seedling 

growth were calculated: specific leaf area (SAl=Al/DWl) [mm2 mg-1], leaf dry matter 

content (DMCl=DWl/FWl) [mg g-1], stem specific density (SDs=DWs/Vs) [mg cm-3], 

stem dry matter content (DMCs=DWs/FWs) [mg g-1], specific root area (SAr=Ar/DWr) 

[mm2 mg-1], specific root length (SLr=Lr/DWr) [mm mg-1], root:shoot ratio (R:S= 

DWr/(DWl+DWs)). 

 

2.4. Gas exchange and fluorescence measurements 

Light-saturated net photosynthesis (Amax) and stomatal conductance to water 

vapor (Gw) were measured at three experimental times: in the morning (7:00-9:00), at 

midday (12:00-14:00), and in the afternoon (16:00-18:00). Measurements were performed 

with an infra-red gas-analyser (CIRAS-1 PP-Systems, Herts, UK), equipped with a 2.5-

cm2 Parkinson leaf cuvette, which controlled leaf temperature (ambient ± 1 °C), leaf-to-

air vapor pressure deficit (ambient ± 0.2 kPa), saturating light (1500 ± 20 μmol m-2 s-1) 

and carbon dioxide (CO2) concentration (380 ± 10 μmol mol-1). Preliminary light curves 

showed that light at 1,500 µmol m-2 s-1 was saturating.  

Chlorophyll a fluorescence transient was measured in vivo in the morning (7:00-

9:00), at midday (12:00-14:00), and in the afternoon (16:00-19:00) with a direct 

fluorometer (Handy PEA, Hansatech Instr., Kings Lynn, UK). Before measurement, 

leaves were dark-adapted for 40 min with leaf clips. The rising transient was induced 

by saturating red-actinic light (1,500 μmol m-2 s-1, peak at 650 nm, duration 1 s). Data 

acquisition was recorded for 1 s, starting from 10 μs after the onset of illumination.  

The values of Fo, ground fluorescence yield in the dark-adapted state (when all 

reaction centres of PSII are considered open) and Fm, maximal fluorescence yield in 

the dark (when all reaction centres of PSII are considered closed), were collected. 

Maximum quantum yield for primary photochemistry (Fv/Fm) was calculated as (Fm-

Fo)/Fm (Maxwell and Johnson, 2000).  

Additionally, the quantitative analysis of the polyphasic fast fluorescence rise 

transient, called JIP-test (Strasser and Strasser, 1995), allowed to calculate several 

biophysical and phenomenological expressions which quantify the stepwise flow of 
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energy through the photosystem two (PSII): performance index per absorption flux 

(PIabx), electron transport probability (ψ0), quantum yield for electron transport (φE0), 

quantum yield for energy dissipation (φD0), effective antenna size of an active reaction 

centre (ABS/RC), maximal trapping rate of PSII (TR0/RC), electron transport in an 

active reaction centre (ET0/RC), and effective dissipation of an active reaction centre 

(DI0/RC) (see Contran et al., 2009 for parameter definitions). Analysis of the transient 

was performed with Biolyzer 3.06 software (by Ronald Maldonado-Rodriguez, 

Bioenergetics Laboratory, Geneva, CH). 

 

2.5. Statistical analyses 

Data were checked for normal distribution (Shapiro-Wilk W test) and 

homogeneity of variance (Levene’s Test). On data collected at treatment beginning 

(time 0), a t-student test was applied to compare the effect of seedling Age (OL vs YO). 

On data collected 26 days from treatment beginning, one-way ANOVA was performed 

considering four groups: OL-W, OL-D, YO-W, and YO-D. A Tukey HSD test was 

applied to compare the above effects between homogeneous groups. Tests of 

significance were made at a 95% confidence level. Percents were arcsine-square root 

transformed prior to analysis. The statistical unit is the seedling. Analyses were 

processed using STATISTICA 6.0 Package for Windows (StatSoft 2001, Tulsa, OK). 

 

3. RESULTS 

From June to October, daily mean air temperature inside the greenhouse 

facility was 24.7°C (±2.2), with minimum value of 17.8°C (±2.2) and maximum value of 

33.1°C (±3.2) and daily mean relative humidity was 77.8% (±6.2), with minimum value of 

42.0% (±9.0) and maximum value of 99.1% (±0.6) (Figure 1). Average substrate field 

capacity of pots was 28.2% (±1.13), equivalent to the substrate water potential of -0.014 

MPa (±0.004).  

In watered treatment, seedlings have been regularly irrigated and substrate 

water content was maintained above field capacity with a substrate water potential of -

0.25 MPa (±0.07) (Figure 2). On the contrary, in soil drought treatment, after 8 days 

from treatment beginning, the substrate water potential reached the value of -1.5 MPa, 

corresponding to the conventional permanent wilting point, that is the threshold 

values for water availability in the soil (Tolk 2003), and then it drastically decreased 

until the value of -14.5 MPa (±2.5), when only hygroscopically bound water remains 
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(Fig. 2). Nevertheless the drastic reduction of available water, for the whole period of 

drought stress, leaf RWC of unwatered seedlings was comparable with leaf RWC of 

watered seedlings (p>0.05, Figure 2). Additionally, no differences were observed 

between leaf RWC of OL seedlings (older, 3 months old) and YO seedlings (younger, 2 

months old) (p>0.05, Figure 2). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Substrate water potential (Ψs) and leaf relative water content (RWC) of J. curcas seedlings Old 

(OL - Circles) or Young (YO – Triangles) and exposed to Watered (W – White symbols) or soil Drought 

(D – Grey symbols) treatments (N=6). Values represent means ±S.E. The dashed line indicates the value 

of the substrate permanent wilting point (Ψs = -1.5 MPa). At treatment beginning (day zero), stars show 

significant differences between OL and YO seedlings (t-student, N=6, *≤0.05, **≤0.01, ***≤0.001, and 

ns>0.05 not significant). On 26° day, different letters show significant differences among groups (OL-W, 

OL-D, YO-W, and YO-D), if group factor is significant (Tukey HDS test, N=6, p ≤ 0.05).  

 

 

At treatment beginning (day zero), all the biophysical parameters (seedling 

height, stem basal diameter, number of leaves, number of fallen leaves, number of 

secondary branches, and total above dry biomass) were higher in OL seedlings than in 

YO seedlings (p<0.001, Figure 3). 
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Figure 3. Seedling height, stem basal diameter, number of leaves, number of fallen leaves, number of 

secondary branches, and total above dry biomass of J. curcas seedlings Old (OL - Circles) or Young (YO – 

Triangles) and exposed to Watered (W – White symbols) or soil Drought (D – Grey symbols) treatments. 

Values represent means ±S.E. (N=6). At treatment beginning (day zero), stars show significant differences 

between OL and YO seedlings (t-student, N=6, *≤0.05, **≤0.01, ***≤0.001, and ns>0.05 not significant). On 

26° day, different letters show significant differences among groups (OL-W, OL-D, YO-W, and YO-D), if 

group factor is significant (Tukey HDS test, N=6, p ≤ 0.05).  

 

 

On the contrary, gas exchange parameters (Amax and Gw) measured at the 
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Fig. 5, with the exception of midday Amax. In regard to the chlorophyll a fluorescence 

parameters measured at the beginning of the treatment, midday Fv/Fm and morning 

PIabx were higher in OL seedlings than in YO seedlings (p<0.01, Figure 5); morning ψ0 

and φE0 were higher in OL seedlings than in YO seedlings (p<0.05, data not shown); 
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while morning φD0, ABS/RC, TR0/RC and DI0/RC were lower in OL seedlings than in 

YO seedlings (p<0.05, data not shown). 

 

 
Figure 5. Light-saturated net photosynthesis (Amax), stomatal conductance to water vapor (Gw), maximum 

quantum yield for primary photochemistry (Fv/Fm), and performance index per absorption flux (PIabx), 

measured in the morning, at midday, and in the afternoon, of J. curcas seedlings Old (OL - Circles) or 

Young (YO – Triangles) and exposed to Watered (W – White symbols) or soil Drought (D – Grey 

symbols) treatments. Values represent means ±S.E. (N=6). At treatment beginning (day zero), stars show 

significant differences between OL and YO seedlings (t-student, N=6, *≤0.05, **≤0.01, ***≤0.001, and 

ns>0.05 not significant). On 26° day, different letters show significant differences among groups (OL-W, 

OL-D, YO-W, and YO-D), if group factor is significant (Tukey HDS test, N=6, p ≤ 0.05).  
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During the experiment, both in YO and OL seedlings, watered seedlings grew 

regularly, while unwatered seedlings maintained their initial level (Figure 3).  

After 26 days of soil drought stress, watered YO seedlings reached, in terms of 

growth, unwatered OL seedlings, as shown by the trend of stem diameter, number of 

leaves, number of lateral branches, and total dry biomass (Figure 3). On the contrary, 

despite of the strong intensity of soil drought stress, both in OL and YO seedlings, 

drought stress influenced only stem diameter and total dry biomass, but it did not 

influenced seedlings height, number of leaves and number of lateral branches (Figure 

3).  

The number of leaves of YO and OL watered seedlings was not significantly 

different compared with the number of leaves of YO and OL unwatered seedlings, and 

unwatered OL seedlings lost more leaves than watered OL seedlings (Figure 3). 

Anyway, both in OL and YO seedlings, total leaf area was significantly lower in 

unwatered seedlings than in watered seedlings, and leaf dry matter content was 

significantly lower in unwatered OL seedlings than in watered OL seedlings (Figure 4). 

Additionally, YO and OL unwatered seedlings had higher specific leaf area and 

root:shoot ratio, compared to the correspondent watered seedlings, and unwatered YO 

seedlings had also higher specific root area than YO watered seedlings (Figure 4). In 

regards to the parameters calculated on the basis of destructive measurements, 

between watered and unwatered seedlings were not observed other significant 

differences in both OL and YO (Figure 4). 
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Figure 4. Total leaf area, specific leaf area, leaf dry matter content, stem specific density, stem dry matter 

content, root:shoot ratio, root length, specific root area, and specific root length of J. curcas seedlings Old 

(OL – no-line patterned columns) or Young (YO – line patterned columns) and exposed to Watered (W – 

White columns) or soil drought (D – Grey columns) treatments. Values represent means ±S.E. (N=5). 

When group factor (OL-W, OL-D, YO-W, and YO-D) is significant, different letters show significant 

differences among groups (Tukey HDS test, N=6, p ≤ 0.05).  

 

 

During the experiment, morning and midday Amax and Gw of YO seedlings, both 

watered and unwatered, reached the values of morning and midday Amax and Gw of 

watered OL seedlings (Figure 5). The latter, in fact, has remained constant throughout 

the whole period (ANOVA resuts for time factor for watered OL seedlings: p>0.05, 

Figure 5). Instead, morning Amax and Gw of OL unwatered seedling were significantly 

reduced by the stress and reached Amax negative values after 2 weeks of treatment 

(Figure 5). In regards to afternoon gas exchange, only in watered YO seedlings Amax and 

Gw reached the values of Amax and Gw of watered OL seedlings (Figure 5), while 

afternoon Amax and Gw of unwatered seedling, both OL and YO, were significantly 

reduced by the stress (Figure 5). Chlorophyll a fluorescence parameters (with the 

exception of ET0/RC) were significantly influenced by soil drought only in OL 

seedlings, while in YO seedlings there were not differences between control and 
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treated seedlings (Figure 5 and Figure 6). At all hours of the day, Fv/Fm, PIabx, ψ0, and 

φE0 were lower in OL unwatered seedlings than in watered OL seedlings, while φD0, 

ABS/RC, TR0/RC and DI0/RC were higher in OL unwatered seedlings than in watered 

OL seedlings (p<0.05, Figure 5 and Figure 6). 

 
 

 

Fig. 6. Electron transport probability (ψ0), quantum yield for electron transport (φE0), quantum yield for 

energy dissipation (φD0), effective antenna size of an active reaction centre (ABS/RC), maximal trapping 

rate of PSII (TR0/RC), electron transport in an active reaction centre (ET0/RC), and effective dissipation 

of an active reaction centre (DI0/RC), measured after 26 days from treatment beginning in the morning, 

at midday, and in the afternoon, of J. curcas seedlings Old (OL - Circles) or Young (YO – Triangles) and 

exposed to Watered (W – White symbols) or soil Drought (D – Grey symbols) treatments. Values 

represent means (N=6).  

 

 

4. CONCLUSIONS 

The rising demand of water and land resources for food production, the 

growing energy request, and the uncertain impacts of the climate change on drought 

and flood occurrence make biofuel production a key issue for development, 

particularly in arid and semi-arid regions (Powell et al., 2012; Contran et al., 2013). A 

possible winning strategy could be to encourage the production of biofuel without 

competing for land and water resources needed for food production (Kesava Rao et al., 

2013). For this reason, the use of drought-tolerant crops has been proposed for the 

economic exploitation of non-cultivated and marginal areas (Behera et al., 2010). The 

biofuel production from J. curcas plantation has seen by researchers, policy makers and 

industries a possible way to implement this strategy. J. curcas is a non-edible oil crop, it 

could be grown on marginal and abandoned lands not suitable for crop production, 
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and, being drought resistant, it allows to enhance rainwater use efficiency (Ye et al., 

2009; Contran et al., 2013). However, there are some concerns regarding the cultivation 

of J. curcas for biofuel production: the climatic conditions at the plantations are often 

different from those of the J. curcas natural distribution but little is known about 

physiological traits and the adaptation capacity of J. curcas to changing and more 

adverse climate conditions (Fairless, 2007; Maes et al., 2009). These knowledge gaps 

restrict our capacity to properly evaluate and predict the agronomic performance of J. 

curcas in response to environmental stresses, especially in terms of growth and seed 

yield traits (Kheira and Atta, 2009; Sapeta et al., 2013).  

Soil drought is one of the most important environment factors affecting 

agricultural productivity around the world, and water availability affects plant growth 

and yield, especially in arid and semi-arid regions, where plants are often subjected to 

long periods of drought (Hessine et al., 2009). Therefore, the knowledge of J. curcas 

physiological mechanisms involved in responses to soil drought generates 

considerable interest. In this study, we would like to investigate physiological 

responses, in term of growth, water relations, leaf gas exchange, and chlorophyll 

fluorescence of J. curcas seedlings exposed to a severe soil drought stress. Since J. curcas 

germination percentage is very low, the best generative propagation technique is the 

transplanting of pre-cultivated seedlings. Field activities in arid or semi-arid areas have 

shown that age of seedling and time of transplantation become of crucial importance 

due to drought stress periods  (Contran et al., 2013). For this reason, in order to improve 

our knowledge on J. crucas responses to soil drought, the experiment was performed on 

2 and 3 months old seedlings. 

The results of this study evidence that J. curcas seedlings have an efficient 

adaptive mechanism to avoid a severe drought stress, by maintaining a good leaf water 

status (Figure 2). This strategy is also associated to a rapid growth reduction and an 

impairment of photosynthesis by means of an effective moderately stomatal closure 

(Figure 5). During the drought stress period, the soil water potential of unwatered pots 

remained under the conventional threshold values for water availability in the soil 

(permanent wilting point), fixed at Ψs= -1.5MPa, for 18 days (Tolk, 2003). It means that 

only hygroscopically bound water remains and seedlings have no available 

gravitational water. Anyway, the permanent wilting point is crop and climate specific 

and, to a limited extent, plants are able to actively lower their root water potential in 

order to obtain more water from soil. In general, xerophytes can lower the root water 
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potential to, at most, -6MPa (Larcher, 2003). Probably, even J. curcas seedlings have 

reduced their root water potential, since, the leaf relative water content of J. curcas 

seedlings was maintained at level of watered seedlings, even under extended severe 

stressing conditions (Figure 2).  

On the contrary, the growth of unwatered seedlings was drastically stopped by 

soil drought, without any differences between OL and YO seedlings, so that in 26 days, 

watered YO seedlings reached the development of unwatered OL seedlings, in terms of 

stem diameter, total dry biomass, leaf area, and leaf dry matter content (Figure 3 and 

Figure 4). Although drought treatment did not influenced the total number of leaves, 

independently of seedling age, results indicated that, under drought conditions, 

seedlings reduced their leaf size, with important consequences for the leaf energy and 

water balance (Figure 4).  

Even though species in resource-rich environments tend to have larger specific 

leaf area than those in environments with resource stress, the increase of unwatered J. 

curcas specific leaf area indicated that seedlings reduced their investment in structural 

leaf defences and short leaf lifespan, but maximized the photosynthetic rate. Actually, 

specific leaf area is, in many cases, a good positive correlate of its potential relative 

growth rate or mass-based maximum photosynthetic rate (Cornelissen et al., 2003). 

Both in YO and OL seedlings, soil drought stress increased the ratio between root and 

shoot (Figure 4). 

Anyway, results suggest that YO and OL seedlings implemented different stress 

responses. In OL seedlings the increase of root:shoot ratio was due more to a reduction 

of leaf dry matter content and to an higher leaf abscission than to a greater allocation 

of resources in the roots (Figure 4). On the contrary, in YO seedlings, the increase of 

root:shoot ratio was due both to a decrease in leaf weight and to an higher root size 

(Figure 4). The highest specific root area and length of unwatered J. curcas seedlings 

suggest that YO seedlings were able to build more roots for a given dry mass 

investment, and this was achieved by constructing roots of thin diameter or low tissue 

density (Cornelissen et al., 2003). Even though this strategy allows a faster root 

elongation rate, which results in higher nutrient and water uptake, the production of 

thinner root reduces the penetration force on soil, the withstand of low soil moisture, 

and the water transport rate within the root. The latter three are key characteristics for 

seedlings that should grow on marginal soils in arid and semi-arid regions.  
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After 26 days of treatment, soil drought induced an afternoon down-regulation 

of photosynthesis by an increase in diffusive resistances to CO2 at stomata level in both 

YO and OL J. curcas seedlings. Anyway, YO and OL seedlings differed even in the 

photosynthetic response to soil drought, since prolonged soil drought stress resulted 

more damaging in OL seedlings. We hypothesise that this difference depends on the 

initial condition of photosynthetic activity. At the beginning of the experiment, the 

photosynthetic apparatus of OL seedlings is more efficient than that one of YO 

seedlings, even though OL seedlings had lower net photosynthesis (with the exception 

of midday), caused by a higher stomatal closure (Figure 5). Actually, OL seedlings were 

able to better balance water loss and photosynthetic activity by reducing stomata 

conductance and maximizing the yield for primary photochemistry, especially in the 

early hours of the day. This is due to a more efficient electron transport (high ψ0, φE0, 

data not shown), which leads to a reduced need to dissipate excess of energy (low φD0, 

TR0/RC and DI0/RC, data not shown) (Contran et al., 2009). In order to promote their 

development, YO seedlings probably tried to maximize net photosynthesis, keeping 

the stomata open, at the expense of a less efficient photochemistry system, and 

favouring problems related to the dissipation of excess energy and production of ROS 

(Mittler, 2006). In this situation, the already low values of gas exchange and the lack of 

preparation in dealing with problems, such as excess energy dissipation and ROS 

production, have made OL seedlings more sensitive to soil drought. The further 

reduction of stomatal conductance, even in the early hours of the day, caused by soil 

drought and the consequently considerable reduction of net photosynthesis led to a 

strong alteration of photosynthetic metabolism in OL seedlings (Figure 5). This 

resulted in a down-regulating photosynthetic electron transport through the down-

regulation of photosystem II activity (Figure 6), possibly caused by integrity loss, and in 

a subsequently reduction of the maximum quantum yield for primary photochemistry 

at all hours of the day (Figure 5) (Apel and Hirt, 2004; Rossini et al., 2013). 

Morphological and physiological responses to drought stress may vary 

considerably among plant species, and the mechanisms which allow a species to 

tolerate prolonged periods of water deficit can involve numerous attributes. In general, 

drought adaptation depends on the severity of the water deficit, and two different 

water use strategies may be employed by wood plants: strategies of drought avoidance 

or drought tolerance (Passioura, 1982). Both strategies involve diverse physiological and 

biochemical mechanisms which enable a plant to grow and survive under drought 
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conditions. Nevertheless, these strategies are not mutually exclusive and, in practise, 

plants may combine a range of response type (Levitt, 1980).  

Despite the recent studies on the J. curcas responses to limited water availability, 

the physiological mechanisms behind the high drought resistance of this species are 

still scarcely understood. Although all researchers confirm the high J. curcas drought 

resistance, there is no clear agreement on the mechanisms involved in the resistance. 

Maes et al. (2009a), Achten et al. (2010), and Sapeta et al. (2013) found that J. curcas is a 

species with a clear drought avoidance strategy in its leaves and several plant-water 

relations in common with deciduous stem succulent trees. Generally, the main 

mechanisms carried out by drought avoidant trees involve stomatal regulation, 

extensive root system, high capacity for water transport from roots and leaves, high 

leaf mass area ratio (Levitt, 1980; Larcher, 2003). J. curcas has an embolism avoidance 

strategy and the stem water is reserved for the fresh leaf flushing as well as for keeping 

these leaves active for several weeks after the start of the dry season (Maes et al., 2009a; 

Achten et al., 2010). The stem water was also found not to play a role in maximizing 

stomatal conductance, which is generally low and decreases during the day 

(Krishnamurthy et al., 2012). J. curcas root architecture facilitates the exploration of 

deeper soil horizons, allowing a better water access in semiarid environments 

(Reubens et al., 2011). On the contrary, the mechanisms triggered in response to 

drought, as described by Silva et al. (2010a; 2012), Pompelli et al. (2010), and dos Santos 

et al. (2013), suggest that J. curcas tree activates drought tolerance strategy. Generally, 

the main mechanisms carried out by drought tolerant trees involve osmotic 

adjustment, antioxidant system, compatible solutes and high resistance to xylem 

cavitation (Levitt, 1980; Larcher, 2003). J. curcas tolerance to drought is associated to the 

ability to maintain water in leaf and root tissues, combining effectively osmotic 

adjustment with stomatal control mechanisms, in order to allow a continuous growth 

(Silva et al., 2010a; 2012). Drought stress probably triggers a coordinate down-

regulation in the photosynthesis (photochemistry and carboxylation phases), which 

could be modulated by accumulation of both sugar and osmotically active solutes 

(Silva et al., 2012; dos Santos et al., 2013; Sapeta et al., 2013). In parallel, the antioxidant 

enzymatic protection was beneficial for oxidative damage protection (Pompelli et al., 

2012; Silva et al., 2012).  

The present work suggests that in J. curcas seedlings these two water use 

strategies are not mutually exclusive. Drought significantly reduced leaf area, 
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aboveground biomass and relative growth rate, increased specific leaf area and ratio 

between root and shoot, but had no effect on leaf water content. Our results confirm 

that J. curcas is a low stem density species and stem functions as a water reservoir, 

probably activated by osmotic adjustment. Leaves were not immediately shed after the 

seedlings were confronted with drought. Net photosynthesis was partially affected by 

drought stress, due to reduced stomatal conductance. However, our results highlight 

that mechanisms of drought response are highly influenced by seedling age. OL 

seedlings, probably less acclimated to excess energy, did not present an efficient 

mechanism for protection against drought-induced oxidative stress, as suggested by 

photosystem II integrity loss (Strasser and Strasser, 1995). On the contrary, YO 

seedlings implemented mechanisms of tolerance, through the activation of excess 

energy dissipation mechanisms or, probably, antioxidant system. Results support the 

hypothesis that J. curcas is appropriate for cultivation in areas with limited water 

availability or period of soil drought.  

Anyway, before promoting J. curcas use as a source of biofuel, particularly in 

developing countries, it is necessary to fill some knowledge gaps on the best agronomic 

conditions for an economically and socially sustainable yield. In addition to a deeper 

understanding of response mechanisms to soil drought, the mechanisms of J. curcas 

drought resistance should be investigated in combination with other co-occurring 

constraints, such as heat stress and salinity, in order to promote its cultivation. 
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CONCLUSIONS 

 
J. curcas is a tree with several both economical and ecological potentialities, 

which are still far from being achieved, due to a poor knowledge on agronomical, 

management and environmental aspects of this species (Contran et al., 2013). The 

review (Chapter 1) traced and summarized each phase of J. curcas productive chain, 

from sowing to bio-diesel production, in order to logically organize the knowledge 

around J. curcas system and to assess its weaknesses and potentialities, highlighting the 

knowledge gaps which need still to be deeply explored. Amongst these knowledge 

gaps, the thesis focused basically on three main issues, which are considered the most 

critical factors for the promotion of J. curcas in international cooperation projects 

implemented in arid and semi-arid areas of developing countries. The examined 

aspects have been the following:  

(i) socio-economic and environmental sustainability of community-based J. 

curcas initiatives for local use, such as smallholder and decentralized J. curcas 

plantations, such as those promoted by GHAJA international cooperation project 

(Chapter 2); 

(ii) effects of different pre-sowing treatments on germination behaviour and 

growth of  the seedlings (Chapter 3); 

(iii) physiological responses, in term of growth and photosynthesis, of J. curcas 

seedlings exposed to a severe soil drought stress (Chapter 4). 

 

With reference to Chapter 2, the sustainability potentialities and criticalities of 

the J. curcas system set up in the framework of the European Union GHAJA project was 

assessed. This study carried out in the project implementation area (West Mamprusi 

District, Northern Region of Ghana) demonstrated that the gains achieved with J. 

curcas plantations totally depend on the cultivation system, with high differences 

between community-based vs large-scale plantations, leading the system from 

sustainable to unsustainable. The obtained results confirmed that community-based J. 

curcas initiatives for local use, such as smallholder and decentralized J. curcas 

plantations, based on small plantations in marginal lands or on intercropped agro-

forestry systems, can be seen as an opportunity for positively contributing to rural 

livelihoods of the seven rural communities involved in GHAJA project. The study, 

carried out through participatory methods (e.g. individual interviews, focus group 
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discussions, questionnaires, resource mapping, and rankings), stated that the 

cultivation of 1 acre per family with J. curcas could be able to ensure access to 

sustainable and affordable energy sources, considerably reducing the collection of 

firewood, and partially modifying the tasks of the household members, thus reducing 

rural women heavy-labour activities. More in detail, the J. curcas scenario considered in 

the study included the production of 5 kg of soap per year, the fertilization of J. curcas 

plantations with 100 kg of seed cake per year, and the possible replacement of 23% of 

firewood (main energy source used by rural communities of Ghana) with 604 kg of oil, 

1,744 kg of husk, and 800 kg of seed cake obtained over a period of 10 years and used as 

combustible fuel for cooking or lighting. In this sense, the integration of J. curcas in 

different agro-forestry systems proved to be a powerful mean of sustainable 

development in rural areas of Ghana, guaranteeing both socio-economic and 

environmental sustainability in the long-term. 

As far Chapter 3 is concerned, the described experiment tasted the effects of five 

different seed pre-sowing treatments on germination and growth of J. curcas seedlings, 

in order to understand which treatment could better increase seeds germination rate 

and at the same time guarantee the best performance in term of growth and 

development of the seedlings. In effect, a vigorous and well-established seedling is able 

to bear periods of drought, which often occur in arid and semi-arid areas, guaranteeing 

the future survival and development of the plant. 

Results indicated that the considered treatments influenced much more seed 

germination than seedling growth, the latter characterised by having high variability 

and no significant differences from the control. Amongst the tasted treatments, warm 

stratification treatment should be preferred to the other treatments since it expressed 

the best performance on seed germination and promoted the seedling growth. 

However, this treatment requires a certain degree of investment, due to the fact that a 

growth chamber is needed to maintain a constant temperature for a certain period. For 

this reason, warm stratification treatment could be difficult to be applied on J. curcas 

seeds collected and processed by farmers in remote areas of developing countries, in 

which J. curcas is generally cultivated. As a consequence, scarification treatment, 

allowing a higher root growth, could be a replicable and economic solution to be 

promoted. Further research is needed to both test other different J. curcas low-cost pre-

sowing treatments which can be easily practiced in rural areas of developing countries. 

Another aspect to be investigated could be the interaction between seed storage 
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methods and pre-sowing treatments, with the aim at finding the optimal combination 

of these two factors which could increase both seed germination and seedlings growth 

parameters. In fact, J. curcas seed has a very short period of viability and high seed 

storage temperatures, which are common in tropical areas where J. curcas is planted, 

strongly speed up the loss of seed germination.  

Regarding the experiment described in Chapter 4, it aimed to investigate 

physiological responses, in term of growth, water relations, leaf gas exchange, and 

chlorophyll fluorescence of J. curcas seedlings exposed to a severe soil drought stress. 

The experiment was performed on 2 and 3 months old J. curcas seedlings since field 

activities in arid or semi-arid areas have shown that age of seedling and time of 

transplantation become of crucial importance due to drought stress periods. The 

results of this study evidenced that J. curcas seedlings have an efficient adaptive 

mechanism in response to a severe drought stress, by maintaining a good leaf water 

status and partially reducing the seedling growth. Anyway, results suggested that 

younger and older seedlings implemented different stress responses, and older 

seedlings resulted more sensitive to soil drought. Furthermore, the study suggested 

that J. curcas seedlings adopt both strategies of drought avoidance and of drought 

tolerance when exposed to prolonged periods of water deficit and these strategies are 

not mutually exclusive. However, our results highlight that mechanisms of drought 

response are highly influenced by seedling age. Results supported the hypothesis that 

J. curcas is appropriate for cultivation in areas with limited water availability or period 

of soil drought. In addition to a deeper understanding of response mechanisms to soil 

drought, the mechanisms of J. curcas drought resistance should be investigated in 

combination with other co-occurring constraints, such as heat stress and salinity, in 

order to promote its cultivation. 

In conclusion, the studies undertaken within the present doctoral dissertation 

confirmed that community-based initiatives on J. curcas plantation could positively 

contribute to the livelihoods of rural communities living in arid and semi-arid areas of 

developing countries, if based on small plantations in marginal lands or on 

intercropped agro-forestry systems. However, it is still necessary to fill some 

knowledge gaps and much more research is required for guaranteeing a full socio-

economic and environmental sustainability of J. curcas used as a trigger of rural 

development in Sub-Saharan Africa. 
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