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Chapter 1

Introduction

Computer modeling techniques have now established as a standard method

for the study of chemical and physical phenomena in complex systems. The

origin of their success is twofold: from one side, the continuous increase in the

computational power, along with the spread of parallel architectures, has made

accessible to a wide audience the most accurate methodologies, while, on the

other side, the refinement of the techniques themselves has improved the relia-

bility of the results. As a consequence, scientists now have access to a variety

of tools useful to make predictions, to test theories, and to understand phenom-

ena experimentally unaccessible. Nevertheless, when dealing with multiscale

systems, i.e., systems whose behavior is controlled by phenomena that occur

at different space and time scales, it is not possible to effectively use just one

single simulation technique. This problem is largely due to inherent limitations

of the methods, and it depends only slightly on the finite nature of computing re-

sources. In Molecular Dynamics, for example, the highest vibrational frequency

in the system imposes an upper bound to the length of the time step. A similar

problem can be found in kinetic Monte Carlo, where the space and time scales

are tied in such a way that the extension of one, causes the shrinking of the

other. In general a highly detailed technique can be employed only to investigate

very small scales. Unfortunately, no technique is free from these kinds of issues,

thus creating a hierarchy among them.

The extension of space and time scales can be achieved through two different

approaches: one consists in connecting different levels in the hierarchy by a

coarse-graining of the information coming from highly detailed levels, and the

other consists in overcoming the intrinsic limitations of the single techniques.

In this thesis, the possibility of using both approaches for large scale simu-

lations has been investigated. The methods here developed have been applied

to the study of microporous systems, being particularly well suited for a multi-

scale approach. Nonetheless, such methods are completely general, and can be
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employed for the simulation of a wide class of materials without too much effort.

The thesis is organized as follows. In chapter 2 the theory of the main

simulation techniques employed is briefly reported. In chapter 3 the potential

of using a parallel kinetic Monte Carlo algorithm for the study of large zeolitic

systems is investigated. It is shown that it is possible to achieve very good

efficiencies, thus obtaining an extension of space and time scales. In chapter

4, starting from a Partitioning Cellular Automaton, a simplified coarse-grained

model of the hopping process of a tagged particle in a confined lattice system

has been developed, providing an accurate reproduction of the memory effects

in the self-diffusion at a minimum computational cost. In chapter 5 a new

force field for molecular dynamics simulations in flexible aluminosilicates has

been developed, choosing a functional form which can be used in a number of

MD packages, so that massively parallel architectures can be exploited, thus

extending the space and time scales accessible to classical MD simulations.

Finally in chapter 6 a new fast implementation of the force matching technique

is presented. Starting from detailed ab-initio data, it is shown that it is possible

to obtain accurate classical molecular dynamics force fields, tailored to each

specific structure.
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Chapter 2

Theoretical background

2.1 Ab-initio

The quantum mechanical formalism, developed at the beginning of the 20th

century, provides rigorous foundation for the prediction of observable physi-

cal properties from first principle. In this framework all physical systems are

described by a fundamental (mathematical) object, the wavefunction Ψ from

which it is possible to retrieve the values of physical observables e by means of

quantum mechanical operators θ:

θΨ = eΨ. (2.1)

In linear algebra representation Ψ is a N-element column vector, and is called

an eigenfunction, e is a scalar, and is called an eigenvalue, and the operator θ
is an N ×N square matrix. In the Born interpretation [1,2] |Ψ|2 is a probability

density and the wavefunction is a probability amplitude. Consequently, the

probability to find the system in some region of the multi-dimensional space is

given by integrating the density over that region, and when the whole space is

considered, the following relation

∫
|Ψ|2 dτ <∞, (2.2)

where dτ is the volume element, is true, in particular it is equal to 1 provided

that the wavefunctions are normalized.

The time evolution of the system is entirely defined by the time dependent

Schrödinger equation:

i�
∂Ψ

∂t
= HΨ. (2.3)

Andrea Gabrieli - Hierarchical Multiscale Modeling of Materials: an Application to Microporous Systems
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2.1. Ab-initio 8

In this equation H is the operator for the total system energy, the Hamiltonian,

given by the sum of the kinetic energy T and potential energy V operators:

H = T + V. (2.4)

If the potential energy is independent of time, the Equation 2.3 can be rewritten

as:

Ψ(r, t) = ψ(r)e(−iEt/�), (2.5)

where ψ(r) is the time independent Schrödinger equation:

Hψ = Eψ. (2.6)

The wavefunction, though, is a very complicated object and is in general un-

known. For molecular systems it has to be determined by solving the Schrödinger

equation 2.6 for a system consisting of interacting electrons and nuclei. Com-

monly H, contains the following terms:

H = −
∑
i

�
2

2me

∇2
i −
∑
k

�
2

2mk

∇2
k −
∑
i

∑
k

e2Zk
rik

+
∑
i<j

e2

rij
+
∑
k<l

e2ZkZl
rkl

, (2.7)

where indices i and j refer to electrons, k and l refer to nuclei, me is the electron

mass and e is the electron charge, mk is the k-th nucleus mass and Zk its

atomic number, and rab is the distance between particles a and b. Each term

represents, in order, the kinetic energy of electrons, the kinetic energy of the

nuclei, the electron-nuclei attraction, the electron-electron repulsion and the

nuclei-nuclei repulsion. Note that, depending on the system of interest, other

terms can be introduced for example to take into account the effect of external

fields.

Unfortunately, an analytical solution for this equation exists only only for

systems so simple as to be devoid of interest in real world applications. Also its

numerical solution is a difficult task, and requires several approximations. The

problems are caused by correlations in the motion of the particles.

Before discussing these approximations is appropriate to introduce the vari-

ation theorem:

〈φ |H |φ〉 ≥ E0, (2.8)

given a system described by an Hamiltonian H with lowest eigenvalue E0, and

an arbitrary trial wavefunction φ, the eigenvalue of the energy will be equal to E0

if and only if φ ≡ ψ the true ground state wavefunction of the system [1]. This

theorem is of fundamental importance because, as will be seen below, provides

a practical way to obtain the desired wavefunction.

The first approximation, which permits to overcome the difficulties related

to the motion of the nuclei, is to express the wavefunction as a product of an

Andrea Gabrieli - Hierarchical Multiscale Modeling of Materials: an Application to Microporous Systems
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2.1. Ab-initio 9

electron wavefunction ψel, which depends on the electronic coordinates qi and

only parametrically on the nuclei coordinates qk, and a nuclear wavefunction

ψnuc which depends only on qk:

ψ(qi,qk) = ψel(qi;qk)ψnuc(qk). (2.9)

This is the Born-Oppenheimer approximation and it is based on the fact that the

motion of the nuclei is orders of magnitude slower than that of the electrons, so it

is safe to assume that they respond to a change in their position instantaneously

[2]. This permits to treat the electrons as they are moving in the field generated

by the fixed nuclei (the proton mass is about 1800 times larger than that of the

electron, so the kinetic energy term of the nuclei in the Hamiltonian becomes

negligible). Moreover the electron-nuclei correlation vanishes and the nuclei-

nuclei potential energy term becomes a constant. It is then possible to solve

separately two Schrödinger equations. For our purposes we are interested only

in the electronic one:

(Hel + Vnuc)ψel(qi;qk) = Eelψel(qi;qk). (2.10)

The Born-Oppenheimer approximation is ubiquitous in quantum chemistry be-

cause it holds in the vast majority of cases and it allows a great simplification of

the calculations.

The problems caused by the electron correlation are far more difficult to solve

and, in fact, are still today object of active research. The way the fourth term of

Equation 2.7 is approximated is crucial because the accuracy of the results will

ultimately depends on it.

Hartree-Fock. The first step in approximating the electron correlation is to not

consider it at all. One idea can then be to express the N-electrons wavefunction

with a product of N one-electron wavefunctions:

ψ◦ = ψ1ψ2 · · ·ψN , (2.11)

which is called an “Hartree-product” wavefunction [2]. This approximation is

possible because in the case of non interacting electrons, only the kinetic energy

and the potential term due to the nuclei are present in the Hamiltonian, which

is then separable:

H =
N∑
i=1

hi, (2.12)

where hi is the one electron Hamiltonian:

hi = −1

2
∇2
i −

M∑
k=1

Zk
rik
, (2.13)
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2.1. Ab-initio 10

where M is the number of nuclei. Each ψi is an eigenfunction of hi (they are

solutions of the one-electron Schrödinger equation) and the energy eigenvalue

is simply the sum of the one-electron energies.

By virtue of the variational principle 2.8 the energy computed applying the

correct Hamiltonian on the Hartree-product wavefunction will be higher than

the true ground state energy. One then wish to find the set of ψi (called orbitals)

which minimizes:

E = 〈ψ◦ |H |ψ◦〉 . (2.14)

Relying again on the variational principle it is possible to show that each ψi is

an eigenfunction of the following operator:

hi = −1

2
∇2
i −

M∑
k=1

Zk
rik

+
∑
j �=i

∫
ρj
rij

dr, (2.15)

where the third term represents the interaction of the electron i with the charge

density ρj of the electron j. This means that the electrons interact with each

other in an averaged way and not instantaneously.

The problem here is that, to determine each individual ψi, the knowledge of

all the others is required, being ρj = |ψj|2. The solution to this problem has

been given by Hartree [1,2] which introduced a procedure called Self Consistent

Field (SCF). This procedure consists in guessing a wavefunction for each elec-

tron and then solve the corresponding one-electron Schrödinger equation. The

thus obtained new (hopefully improved) wavefunctions are used to compute ρ
and are then used as a starting point for a new calculation. This way, itera-

tively solving the Schrödinger equation, it is possible to systematically improve

the wavefunctions. When the change between two consecutive calculated wave-

functions is negligible the iterations will stop and the last set of ψi are accepted

as an approximation of the true wavefunction.

At this point, to be more correct, it is necessary to take into account the spin

and the fact that the electrons must obey the Pauli principle. The wavefunction

including the spin can be written as the product of a spatial part ψ with a spin

part α or β and, for example, a two electrons Hartree-product wavefunction can

be written as:

ψ◦ = ψa(1)α(1)ψb(2)α(2), (2.16)

this wavefunction still does not satisfy the Pauli principle, which requires the

function to be antisymmetric with respect to an interchange of two electrons

coordinates. To construct such a wavefunction it is possible to use the Slater

determinant:

ψ◦ = (N !)−1/2 det |χa(1)χb(2) · · ·χN(N)| , (2.17)

Andrea Gabrieli - Hierarchical Multiscale Modeling of Materials: an Application to Microporous Systems
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2.2. DFT 11

where χ is a spinorbital, a joint spin-space state of the electron (i.e., the product

of spatial and spin eigenfunction) [1]. Among the features of such a determinant

one is extremely important: the quantum mechanical exchange. It consists in

a reduction of the classical Coulomb repulsion between electrons. This is a

consequence of the Pauli principle and represents the fact that electrons with

same spin tend to avoid each other. There is a depletion in the probability

of finding an electron in the proximity of another having the same spin. This

depletion is called Fermi hole.

The use of wavefunctions obtained from Slater determinant in the Hartree

SCF procedure, was first proposed by Fock and is at the basis of the so called

Hartree-Fock method, which is a milestone in the field of ab-initio computations.

In this method the interaction of each electron with the static field of all of the

others includes exchange effects.

Post Hartree-Fock. Clearly the Hartree-Fock wavefunction is not exact. As

stated before, the coulombic interaction between electrons is considered only on

average, thus neglecting instantaneous and quantum mechanical effects [1]. In

other words it does not take into account electron correlation. To include those

effects and improve the quality of of the wavefunction, over the years, a great

effort has been made, which led to the development of many methods. Some

of them like the Configuration Interaction and the Multiconfiguration methods,

rely on the use of linear combinations of Slater determinants, while others, like

the Møller-Plesset method, rely on the Perturbation-Theory. In any case, even if

they are extremely accurate, those methods are unsuitable for studying systems

consisting in more than a few tens of atoms because of their computational

cost. For this reason, in recent years, a new method, based on totally different

assumptions, has emerged: the Density Functional Theory (DFT).

2.2 DFT

In Density Functional Theory as a central quantity, the wavefunction is re-

placed by the electron density. The electronic energy is said to be a functional
of the electron density, meaning that at each given function ρ(r) is associated

only one value for the energy:

E[ρ(r)].

Early implementations date back to the late twenties of the last century with

the work of Thomas [3] and Fermi [4]. Their model however was too approxi-

mated to be actually used, being not able to correctly bind atoms in molecules.

In subsequent years other models were developed like the one of Bloch [5] and

Andrea Gabrieli - Hierarchical Multiscale Modeling of Materials: an Application to Microporous Systems
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Dirac [6] or the Xα method of Slater [7]. But was only in the mid-sixties with

the work of Hohenberg and Kohn that a formal proof of the basic assumptions

of DFT was given [8,9].

As just mentioned, the fundamental quantity in DFT is the electronic density

ρ. In a molecule the electrons interact one with another and with an external
potential generated by the nuclei. Hohenberg and Kohn proved via reductio ad
absurdum that “the ground state density determines the external potential”. Let

us start by assuming that given a nondegenerate ground state density ρ0, can

be consistent with two different external potential va and vb. The corresponding

Hamiltonian Ha and Hb have associated a ground state wave function ψ0 and

energy eigenvalue E0. The variational principle (see equation 2.8) states that

the expectation value of a given Hamiltonian over an arbitrary wavefunction is

always higher then the ground state value. It is then possbile to write:

E0,a < 〈ψ0,b|Ha |ψ0,b〉 , (2.18)

which, after some simple algebraic manipulation, leads to:

E0,a <

∫
[va(r)− vb(r)]ρ0(r) dr+ E0,b, (2.19)

but, being a and b arbitrary also the following holds:

E0,b <

∫
[vb(r)− va(r)]ρ0(r) dr+ E0,a, (2.20)

finally, summing this two expressions it is easy to get:

E0,a + E0,b < E0,b + E0,a. (2.21)

This is clearly an impossible result which falsifies the initial assumption. The

consequence is that the external potential and thus the Hamiltonian, are de-

termined by the non-degenerate ground state density. This implies that “the

ground state energy and all other ground state electronic properties are uniquely

determined by the electron density” [1,2,10].

Having demonstrated the existence of a unique relation between ρ and the

ground state energy, what is missing is a method to obtain the electron density.

Thanks again to Hohenberg and Kohn a step towards the realization of this

method was made: they demonstrate the existence of a variational principle.

Given a guess for the density which satisfies N =
∫
ρ(r) dr, with N number

of electrons, the existence theorem asserts that the Hamiltonian Hg and the

wavefunction ψg are uniquely determined. Relying again on the variational

principle it is possible to write:

〈ψg|Hg |ψg〉 = Eg ≥ E0. (2.22)

Andrea Gabrieli - Hierarchical Multiscale Modeling of Materials: an Application to Microporous Systems
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2.2. DFT 13

The energy Eg evaluated using a trial electron density is greater or equal to

the ground state energy E0. One possible way to get the desired electron density

is, in analogy to the Hartree-Fock method, the consecutive refinement of the

trial wavefunction until a certain accuracy is reached. This approach, though,

is not useful for two reasons, one is that there is no practical way to compute

an improved electron density, and the other is that, even if such a way existed,

there would be no improvement in the computational efficiency or simplification

with respect to the Hartree-Fock method, having still to solve the Schrödinger

equation.

Was in 1965 that Kohn and Sham provided a method to solve the problem

[9]. The key point of their formulation is to work with a fictitious system of

N non-interacting electrons having the same ground state density of the real

(interacting) one. The Hamiltonian for this system is then greatly simplified

being the sum of one-electron operators. Moreover its eigenfunctions are Slater

determinants of the one-electron eigenfunctions and the eigenvalues are simply

the sum of the one-electron eigenvalues.

It is possible to rewrite the expression for the energy as a sum of several

terms, namely: the kinetic energy of of the non-interacting electrons Tni, the

nucleus-electron interaction Vne, the (classical) electron-electron interaction Vee,
the kinetic energy difference between the interacting and non-interacting elec-

trons ΔT , the non classical corrections to the electron-electron interaction ΔVee:

E[ρ(r)] = Tni[ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + ΔT [ρ(r)] + ΔVee[ρ(r)]. (2.23)

Describing the electrons in terms of orbitals (like in the Hartree-Fock theory) we

get another expression for the ground state energy:

E[ρ(r)] =
N∑
i

(〈
χi

∣∣∣∣−1

2
∇2
i

∣∣∣∣χi
〉
−
〈
χi

∣∣∣∣∣
nuclei∑
k

Zk
|ri − rk|

∣∣∣∣∣χi
〉)

(2.24)

+
N∑
i

〈
χi

∣∣∣∣ 12
∫

ρ(r′)
|ri − r′| dr

′
∣∣∣∣χi
〉
+ Exc[ρ(r)],

where in this equation χis are the so called Kohn-Sham orbitals and the ground

state electron density is:

ρ =
N∑
i=1

〈χi|χi〉 . (2.25)

The last term of Equation 2.24 Exc is called exchange-correlation energy. This

term, in addition to the effects of exchange and correlation, also includes cor-

rections for the self-interaction energy [2], and for the kinetic energy difference

between interacting and non-interacting electrons. This is the only term for
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2.2. DFT 14

which an exact analytical form is not known and for this reason must be ap-

proximated.

By solving the Kohn-Sham (KS) equations it is possible to compute the or-

bitals which minimize the energy. They have the following form:{
−1

2
∇2
i −

nuclei∑
k

Zk
|ri − rk| +

∫
ρ(r′)

|ri − r′| dr
′ + Vxc

}
χi = εiχi, (2.26)

which is a pseudoeigenvalue equation. Vxc, the exchange-correlation potential,

is the functional derivative of the exchange-correlation energy:

Vxc =
δExc
δρ

. (2.27)

The knowledge of the KS orbitals allows the computation of the electron

density ρ. The solution of the KS equations is carried out with a procedure

analogous to that used for the Hartree-Fock SCF. The first step is to compute

(solving the Equation 2.26) a set of KS orbitals using an initial guess for the

density and some fixed form for Exc. The thus obtained orbitals are used in

Equation 2.25 to compute a new improved density, which in turn becomes the

starting point for a new cycle of calculations. The procedure is repeated until

the change in some property (usually the density) between to consecutive steps

falls below a given threshold. At the end it is possible to use this optimized

set of orbitals to compute the electronic energy. It is important to note that

the orbitals thus obtained provide the exact density, being the energy under

minimization the exact one. The formulation here reported is then in principle

exact. In real applications, however, it is approximate, being unknown the

analytical form of Exc. It is then crucial for the accuracy of the computation to

have a good approximation for this term, for this reason this is still an active

field of research [11].

Introducing the energy density εxc, which is dependent on the electron den-

sity, it is common to express Exc as:

Exc[ρ(r)] =

∫
ρ(r)εxc[ρ(r)] dr, (2.28)

and it is also common to separate it in an exchange and in a correlation only

part:

Exc = Ex + Ec.

During the years a large number of such approximations have been developed.

One of the first is the local density approximation (LDA) for which an extension

to spin-polarized systems is straightforward (i.e., the local spin density LSD
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approximation [2]). Here the exchange correlation energy at a given position r
depends only on the value of the electron density at that position. Although the

definition is very general, only one formulation is used in practice and is derived

from the analysis of the homogeneous electron gas with constant density, where

εxc[ρ(r)] is the exchange correlation energy of an electron moving in a space

of infinite volume containing a uniform and continuous distribution of positive

charge [1, 12]. Despite of this simple depiction the LDA functionals are quite

good in predicting several properties, in particular the structural ones, and have

found applications in solid state [12]. This approximation fails when dealing with

molecules where the electron density is far from being uniform. For example the

binding energies are overestimated so it is not well suited for solving chemical

problems.

To overcome the limitations of the LDA approach the Generalized Gradient

Approximation (GGA) was developed. In this framework not only the exchange

correlation energy depends on the value of the electron density at a given position

but also on its gradient. The general formulation for a GGA functional is the

following:

EGGA
xc [ρ↑, ρ↓] =

∫
f(ρ↑(r), ρ↓(r),∇ρ↑,∇ρ↓) dr, (2.29)

where ρ ↑ and ρ ↓ are the spin density α and β respectively. The most common

GGA functionals are built by simply adding the gradient correction to an LDA

functional for both the exchange and correlation part (indicated by x/c):

εGGAx/c [ρ(r)] = εLSDx/c [ρ(r)] + Δεx/c

[ |∇ρ(r)|
ρ4/3(r)

]
. (2.30)

The GGA formulation largely improves the results obtained from LSD cal-

culations. Among the improved properties are worth mentioning [12,13]: total

energy, atomization energy (errors are reduced by a factor of about 5), energy

barriers and in general the description of bonds (in some cases there are over-

corrections [13]).

The number of proposed functions f (Equation 2.29) is really large, and there

is no unique recipe to choose the best one. Two remarkable examples are the

BLYP and PBE functionals. The first is composed by the exchange developed by

Becke [14] (B) and the correlation developed by Lee, Yang, and Parr [15] (LYP)

and is largely employed in molecular calculations, while the latter dominates

the field of materials, in particular when systems are large, and was developed

by Perdew, Burke, and Ernzerhof [13].

The subsequent step in the approximation of the exchange correlation energy

is obtained replacing a variable portion of the exchange part with Hartree-Fock

exchange:

Exc = EHF
x + z(EDFT

xc − EHF
x ),
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where z is a parameter to be optimized. The functionals of this class are called

hybrid. In 1993 Becke proposed a three parameter scheme [16] which, coupled

with the LYP correlation, leads to the famous B3LYP functional.

The drawback of this kind of functionals is that, having included a part from

Hartree-Fock, the computational cost is increased with respect to GGA, and

applications to large systems require supercomputers and ad hoc codes [17].

Despite the successes achieved by the DFT there are some aspects that are

particularly difficult to deal with, as they are inherent in the derivation of the

method. For the purposes of this thesis, the most relevant is the failure to

describe the dispersion interactions. In recent years, however, much efforts

have been made to solve this problem and we can expect further improvements

in the near future [11,18].

DFT computations are extensively employed for the work carried out in chap-

ter 6.

2.3 Molecular Dynamics

Molecular Dynamics (MD) is probably the most employed simulation tech-

nique when the time evolution of a many-body system is object of interest. The

origin of this technique dates back to the late fifties of the last century, with the

work of Alder and Wainwright [19,20]. From then on its adoption and its devel-

opment have been very rapid, going hand in hand with the increase in computer

performance, thus extending the space and time scales accessible. MD is suit-

able to investigate both equilibrium and transport properties for a wide range of

systems, ranging from simple liquids to proteins, even chemical reactions can

be taken into account [21–24].

The main assumption in MD is that the motion of the nuclei is governed

by the Newton laws of classical mechanics. This is a very good approximation

because quantum effects become important only when hν > kbT , with ν the

highest vibrational frequency in the system, and kb the Boltzmann constant. In

practice this is a concern only if one wants to investigate the motion of light

species like H2 [22].

The aim of an MD simulation is to compute macroscopic properties starting

from microscopic informations obtained by solving the following equations:⎧⎪⎪⎨
⎪⎪⎩

q̇i(t) =
pi(t)

mi

= vi(t)

ṗi(t) = −∇qiV (q(t))

←→ miq̈i = −∇qiV (q(t)) (2.31)

where qi is the position, pi is the momentum, vi the velocity, and mi the mass of
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the i-th particle in the system. The vector q(t) is the configuration of the system

at time t, and V is the potential ruling the particle interactions. Statistical

mechanics provides the means to perform this task [25–27].

2.3.1 Statistical Mechanics

Given a macroscopic system, its thermodynamic state is completely defined,

regardless how complex it is, by a small set of quantities, for example number

of particles N , volume V , total energy E. From the microscopic point of view,

instead, one needs to know in which of all possible quantum states is the system.

Being the number of such states, for an N-body isolated system, of the order

of 10N this is an hopeless task. This problem can be overcome thanks to the

ensemble method of Gibbs. An ensemble is a really large collection of N mental

replica of the system. All replicas are identical only from a thermodynamic

point of view (e.g., same N, V, and E fixed) while they can be in any microstate

compatible with the given conditions (which is an extremely large number). The

value of a mechanical thermodynamic property1, at a given time, will in general

be different among each replica [27]. The average value of this instantaneous

property, computed giving the same statistical weight to each replica is called

ensemble average. It is then postulated that the time average of a mechanical
variable is equal to the ensemble average, in the limit as N → ∞ [27]. To

actually compute the averages it is necessary to know the relative probability

of occurrence of different quantum state in the ensemble systems. As there is

no reason to believe otherwise, it is postulated that in an isolated system (N,
V, and E fixed) the ensemble replicas are distributed uniformly over the possible
quantum states consistent with the values of N, V, and E [27]. This is also known

as principle of equal a priori probabilities and, together with the first postulate,

implies that an isolated system, after a sufficiently long time, spends an equal

amounts of time in each available quantum state. This is the quantum ergodic
hypotesis.

Similar postulates exist even in the case of a classical system. In such case

the state of the system is fully described by 3N positions qi, and 3N conjugate

momenta pi. These are coordinates of a 6N dimensional phase space and the

time evolution of the system is described by a point moving through this space

according to the Equations 2.31.

Again it is possible to replace the time averages with the ensemble averages.

For example one builds an ensemble of N replicas of an isolated system consis-

tent with the given values of N, V, and E fixed. Each element of this ensemble

1 Quantity which can be defined in purely mechanical terms without appealing to the concept

of temperature, e.g., pressure.
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can be represented by a point of the same phase space evolving independently

from the others. The whole ensemble, being N → ∞, can be seen as a cloud of

points with a continuous density. To compute the ensemble average, in analogy

to the second postulate of the quantum case, it is postulated that the density
of phase points is constant throughout the region of phase space between the
surface E = constant and E + δE = constant, with δE arbitrarily small [27]. This

means that all regions of phase space having points consistent with the thermo-

dynamics of the system are equally important [25]. Finally the classical ergodic
hypotesis states that an isolated system, after a sufficiently long time, spends an
equal amounts of time in equals volumes of phase space between the surface E =
constant and E + δE = constant, with δE arbitrarily small [27].

It is now possible to compute an observable A with the following integral over

the phase space:

A = 〈A〉 =
∫
A(q,p)f(q,p) dq dp, (2.32)

where 〈A〉 is the ensemble average, and A(q,p) is the value of A at a given phase

point. f(q,p) is the probability to observe a certain configuration (q,p) and, for

example, in the case of N, V, and T fixed, is given by:

Z−1e
−
H(q,p)

kbT = f(q,p),

where Z is the canonical partition function, H the energy of the given configu-

ration, kb the Boltzmann constant, and T the temperature. The problem now

is that the integral 2.32 is 6N-dimensional and is impossible to compute: for

example given a system of 106 particles in two dimensions, if one wants to use

a numerical quadrature on a grid with 10 points per dimension, will end up to

evaluate 102·10
6

times the function [28]. This problem can be overcome by using

the fact that, if ergodicity holds:

lim
t→∞

1

t

∫ t

0

A(q(θ),p(θ)) dθ =

∫
A(q,p)f(q,p) dq dp, (2.33)

the time averages are equals to the ensemble averages. Being obviously not

possible to follow the time evolution of the system forever, it is necessary to

assume that the first integral of 2.33 can be approximated with:

1

tend

∫ tend

0

A(q(θ),p(θ)) dθ � 〈A〉, (2.34)

which is true for large tend. Finally it is possible to write the discrete time version

of the 2.34:
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1

ntot

ntot∑
i=1

A(qi,pi) � 〈A〉. (2.35)

This summation can be easily computed by means of MD, where ntot is the

number of configuration snapshots and qi � q(iΔt) and pi � p(iΔt) are the

numerical approximation of q(θ) and p(θ), thus demonstrating that it is possible

to measure macroscopic properties from a MD simulation provided that a large

enough number of system configurations is generated.

To better understand the link between statistical mechanics ensembles and

MD trajectories it is more convenient to rewrite the problem in the Hamiltonian

formalism: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q̇i(t) =
∂H

∂pi(t)

ṗi(t) = − ∂H

∂qi(t)

(2.36)

These are the canonical equations of Hamilton, which are a set of 2N first

order differential equations [29] and are equivalent to the Newton equations

(second law). H is the Hamiltonian function and must be constructed based on

the problem of interest, qi are the N generalized coordinates and pi are the N
generalized (conjugate) momenta [29] and are also called canonical variables.

When only interparticle interactions are considered, the Hamiltonian takes

the form H(q(t),p(t)) =
∑ p2

i

2mi

+V (q(t)). Differentiating the previous equation

it is possible to show that H is constant:

d

dt
[H(q(t),p(t))] =

∂H

∂q

dq(t)

dt
+
∂H

∂p

dp(t)

dt
. (2.37)

Considering for simplicity the one-dimensional case, H(q(t),p(t)) =
p2

2m
+

V (q(t)) substituting in the 2.37 one gets:

V ′(q(t))
p(t)

m
+
p(t)

m
(−V ′(q(t))) = 0. (2.38)

This is also true for the N-dimensional case:

H(q(t),p(t)) = H(q(0),p(0)) ∀t ≥ 0, (2.39)

which means that the Hamiltonian does not depend explicitly on the time. More-

over if V is a conservative potential then H is equal to the total energy of the
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system [29], and then the energy is a conserved quantity. It is now clear the

connection between MD and statistical mechanics, in particular with the so

called microcanonical ensemble where N, V, and E are fixed, which represents

an isolated system. In any case, it is always possible through appropriate mod-

ifications of the formulation proposed here, to perform simulation consistent

with other ensembles [30].

2.3.2 Integrator

Hamiltonian equations have in general no analytical solution, so a numerical

method is needed. The integration methods currently adopted in MD are vari-

ants of the finite difference method which are used to find approximate solution

for the problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d

dt
q =

p

m

d

dt
p = −∇V (q)

=⇒ ẏ(t) = f(y), with y ∈ R
2, (2.40)

subject to the appropriate boundary conditions and with initial conditions y(t0).
As an example it is possible to use the Euler method where the new configuration

at discrete step n+ 1 is given by:

yn+1 = yn +Δtf(yn), (2.41)

where yn is the numerical approximation of y(nΔt). A numerical method is said

to be convergent if the difference between yn and y(nΔt) goes to zero when Δt
goes to zero:

lim
Δt→0

(
max

0≤n≤N
||yn − y(nΔt)||

)
= 0. (2.42)

This limit, in practice, is difficult to verify as it is, but it becomes possible by

means of 2 concepts: the consistency and the stability. A method which is

stable and consistent is also convergent.

Consistency. The consistency is related to the error over one time step, in

other words to the local (truncation) error of the numerical scheme starting

from an exact value. For example expanding the solution at a time t = 0 + Δt
in Taylor series one gets:

y(Δt) = y(0) + Δty′(0) +
Δt2

2
y′′(0) +O(Δt3). (2.43)
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Recognizing that y′(0) is f(y(0)) and dropping all the terms above the first order

one obtains:

y(Δt) = y(0) + Δtf(y(0)) +O(Δt2), (2.44)

where the first two terms on the right hand side are simply Equation 2.41 with

y0 ≡ y(0). Finally it is possible to define the truncation error as:

e(Δt) ≡ O(Δtp+1) = y(Δt)− y(0)−Δtf(y(0)), (2.45)

where p is called the order of consistency. A method is said to be consistent if

the following holds:

lim
Δt→0

e(Δt)

Δt
= 0, (2.46)

which means that the error vanishes removing the discretization.

Stability. The stability is related to the sensibility of the procedure to pertur-

bations. To estimate it one starts with two close different solutions y0 and z0

and then integrate them with the numerical algorithm, adding to one of the two,

say z, at each step a small perturbation δ. A method is said to be stable if there

exists a constant S > 0 such that the following relation is satisfied:

max
0<n<N

||yn − zn|| ≤ S

(
||y0 − z0||+

N∑
n=0

||δn||
)
, (2.47)

which means that the method is insensitive to small perturbations like numeri-

cal errors. It is important to note that it is not possible for a numerical algorithm

to reproduce accurately the correct trajectory for a really long time. Two trajec-

tories in fact are subject to exponential divergence in time. This, however, is

not a problem, because as long as the energy is conserved, they are statistically

equivalent [30]. The accuracy of the numerical scheme is ultimately related to

the magnitude of the time step Δt, the smaller it is the smaller is the error. On

the other hand, a small time step requires more steps to simulate the same total

real time, consequently a compromise must be reached. In practice the time

step is chosen to be a fraction of the fastest vibration period, thus defining an

upper bound to the time scales accessible.

To reproduce the Hamiltonian dynamics, energy conservation (ensured by

the convergence) is not enough. Two other requirements must be fulfilled,

namely time reversibility and symplecticity. The first, means that integrating

backward in time (i.e., reversing the velocities) the previous configurations with

p of the opposite sign, have to be reproduced2, while the second means that

2This is true only from a theoretical point of view due to the roundoff errors.
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geometric properties of the phase space like the preservation of volume are not

lost [30].

One integrator which possesses all of this features is the Verlet algorithm

[31]. It is present in almost all MD programs and owes its success to its great

stability. To integrate the equation of motion it relies on the positions q at time

t and t−Δt and on the acceleration a at time t. The positions at time t+Δt are

computed with the following equation:

q(t+Δt) = 2q(t)− q(t−Δt) + Δt2a(t). (2.48)

This originates by summing the two following Taylor expansions:

q(t+Δt) = q(t) + Δtv(t) +
1

2
Δt2a(t) +O(Δt3),

q(t−Δt) = q(t)−Δtv(t) +
1

2
Δt2a(t)−O(Δt3).

(2.49)

As it is clear from the previous equations velocities are not computed, so, being

useful in a simulation, they can be evaluated via the following relation:

v(t) =
q(t+Δt)− q(t−Δt)

2Δt
. (2.50)

The only drawback of this approach is that the error on v is of order Δt2 while

the error on Equation 2.48 is of order Δt4 [21].

Several variants of this algorithm exist but one of particular interest is the

so called velocity Verlet [21]. The equations involved are the following:

q(t+Δt) = q(t) + Δtv(t) +
1

2
Δt2a(t),

v(t+Δt) = v(t) +
1

2
Δt[a(t) + a(t+Δt)].

(2.51)

Here positions, velocities, and accelerations are evaluated at the same time t and

the round-off errors are minimized. With respect to the basic Verlet algorithm,

the velocity version works in two stages and there is a computation of the forces

in between the two. The first stage consists in the computation of the new

positions, then the velocities are computed at mid-step with:

v(t+
1

2
Δt) = v(t) +

1

2
Δta(t). (2.52)

Finally forces and accelerations at time t+Δt are computed, thus permitting to

complete the velocity move:

v(t+Δt) = v(t+
1

2
Δt) +

1

2
Δta(t+Δt). (2.53)
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This algorithm is stable, simple, and very convenient thus explaining its wide

adoption.

2.3.3 Interparticle interactions

Up to this point nothing has been said about V . This is a central quantity

in MD because it describes the way the system constituents interact. The ac-

curacy of the entire simulation will ultimately depends from the quality of the

forces computed by the algorithm, which derive from the potential. In classical

molecular dynamics V is approximated with a functional form which has to be

parametrized. The parametrization can be obtained by fit of experimental data,

ab-initio potential energy surfaces or both. This topic will be covered in great

detail in chapters 5 and 6.

Another possibility is to compute on the fly the potential by means of ab-
initio calculations. This is the core of the ab-initio Molecular Dynamics (AIMD)

technique. Also in this case there are a lot of variants [32], and for some of the

calculations carried out in chapter 6 the Born-Oppenheimer Molecular Dynam-

ics (BOMD) technique has been adopted [33]. In this variant atoms positions

are propagated in time using the classical equations of motion, which take the

following form:

miq̈i(t) = −∇iE({qi}) = −∇imin
ρ(r)

E({qi}, ρ(r)). (2.54)

The potential energy surface is given by the electronic ground state energy (last

term of the equation 2.54) [33].

The main advantage of AIMD with respect to classical MD lies in the fact

that at each MD step an full electronic structure calculation is performed on

the given configuration of atoms. In principle, then, there is no limit on the

range of phenomena that can be simulated, even if they are unexpected. In MD

instead it is not possible to predict the accuracy of the results outside the con-

ditions used for fitting the potential energy function. On the other hand, being

the approximation of the method linked to the way the Schrödinger equation is

approximated, it is possible that, to reach the desired accuracy, the computa-

tional cost will become prohibitive. This is in fact the reason why these kind of

simulations became accessible only in recent years thanks to the combination

of two factors: the increase of computational power and the rise of the DFT.

It is the main topic of chapter 6 investigating the possibility to build a bridge

between this two techniques.
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Figure 2.1: Graphical representation of a simple Monte Carlo integration scheme [21].

2.4 Stochastic methods

2.4.1 Monte Carlo

With molecular dynamics it is possible to compute macroscopic observables

by replacing phase space integrals 2.32 which is an ensemble average, with a

time average. Another way to solve multidimensional phase space integrals,

which actually is prior to MD, is the so called Monte Carlo method. This is a

stochastic method, and owes its name to the extensive use of random numbers

[34]. Its origins date back to the late forties of the last century, not by chance

coinciding with the birth of the first computer. In fact, stochastic methods have

existed for many years, but being really long and tedious to perform, it was only

with the advent of computers that they began to succeed [21,35,36].

The basic idea of the method can be explained by means of a simple example

[21], the computation of π. Looking at the Figure 2.1 and moving the attention

only to the first quadrant it is easy to see that, taking random points inside the

dashed square (for example throwing darts towards it), one will hits the circle

τhit times and the ratio τhit/τshot will approach the ratio between the shaded area

and the area of the square itself as the number of shots increase. The desired

value will be then:

π = lim
τshot→∞

4τhit
τshot

. (2.55)

The actual computation is carried out by repeatedly extracting two random num-

bers, one for the x coordinate and one for the y coordinate. These numbers are
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produced by a so called random number generator (RNG) which typically is noth-

ing more than a computer code capable to return a sequence of numbers which

resembles a real random one. For this reason the numbers thus generated are

also called pseudo random numbers. It is important to note that the overall

accuracy of a Monte Carlo procedure is heavily influenced by the quality of the

RNG.

Another example of Monte Carlo integration procedure which has found some

use in the past [37] is the sample mean method. In this case the integral:

F =

∫ b

a

f(x) dx, (2.56)

can be approximated by an average over a large number of trials. This approach

is similar to the standard quadrature, the only difference is that, instead of

evaluating the function at predetermined set of points, it is evaluated taking

τmax random points ζ in the interval (a, b) from a probability distribution ρ(x).
The problem then can be rewritten as:

F =

∫ b

a

f(x)

ρ(x)
ρ(x) dx, (2.57)

which is the average of the quantity
f(x)

ρ(x)
over the number of trials. Finally if

ρ(x) is uniform in the given interval, by means of the mean value theorem it is

possible to approximate F with:

F � (b− a)

τmax

τmax∑
τ=1

f(ζτ ). (2.58)

Although this method requires a number of function evaluations much smaller

than a standard numerical method, this number is still too large. The solution

to this problem consists in extracting the points on which the function will be

evaluated from a non-uniform distribution [21].

Importance Sampling. A Monte Carlo procedure generates a random walk

through configuration space. The aim is then to sample positions q according

to the Boltzmann distribution ρNV T = Z−1
q e−βV (q). The need of a method ca-

pable of sampling only selected regions of configuration space becomes evident

considering the integral:

〈A〉NV T =

∫
A(q)ρNV T (q) dq. (2.59)
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Comparing it with Equation 2.57 it is possible to write:

〈A〉NV T =

〈
A(ζτ )ρNV T (ζτ )

ρ(ζτ )

〉
trials

, (2.60)

where ζτ is the random configuration space point chosen at step τ . In general

ρNV T is significant in phase space region where A(ζτ ) is close to its average

value [38]. This implies that choosing ρ = ρNV T will let the method explore only

the important regions of configuration space.

Metropolis et al. in 1953 [39,40] proposed a method able to generate points

according to the equilibrium distribution of choice without ever calculating the

partition function [21].

The idea is to construct an aperiodic symmetric Markov chain [41–43] such

that it converges to the limiting distribution ρNV T [40]. A Markov chain is

a stochastic process where the outcome of each step belongs to a finite set

of states {Γ1,Γ2, . . . ,Γm,Γn}, the time is discrete, and the outcome at step τ
depends only on the outcome at step τ − 1 (this last condition is also known as

Markov property). The transition probabilities pmn to go from state m to n (to

simplify the notation a state Γm will be indicated by its identifying number m) do

not depend on n and can be used to define a transition matrix P, having entries

Pmn [41] which are all nonzero and which in columns adds up to one [42]. The

transition matrix at time τ is simply given by:

P(τ) = (P(1))τ , (2.61)

and then probability distribution ρ(τ) at step τ can be computed with:

ρ(τ) = Pτρ(0). (2.62)

This kind of matrices are called stochastic and have always an eigenvalue 1 and

a right eigenvector ρs such that Pρs = ρs, which is the limiting distribution

of the stationary process, and in general, does not depend on the initial ρ(0)
(Perron-Frobenius theorem) [42].

The difficult part is to find the correct P entries. To do so it is possible to

impose the sufficient but not necessary [44] condition of detailed balance:

Pmn
Pnm

=
ρn
ρm

= e−βΔVmn . (2.63)

Finally in the Metropolis algorithm the Pmn are obtained from:

Pmn ∝
⎧⎨
⎩

1, ρn ≥ ρm → ΔVmn ≤ 0

e−βΔVmn , ρn < ρm → ΔVmn > 0.
(2.64)
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As one can see from previous equations the computation of the partition

function is avoided being Pmn dependent on the ratio
ρn
ρm

.

The basic steps for a Metropolis Monte Carlo simulation are the following:

• generate an initial configuration q0;

• propose a new configuration qtest and compute: ΔVqcurrent,qtest and then

the probability Pmn following the prescriptions of Equation 2.64;

• accept the new configuration if Pmn > ξ with ξ uniform random number in

(0, 1);

• repeat until the final step τmax is reached.

2.4.2 Kinetic Monte Carlo

The Monte Carlo schemes previously mentioned completely lack of informa-

tion on the dynamic evolution of the system. It was only in the sixties, in order

to study the radiation damage, that began to appear the first algorithms that

were capable to provide also this kind of information. Over the next 20 years

they appeared in studies of adsorption on surfaces, diffusion and growth, stud-

ies of statistical physics and many others [45]. This technique is particularly

useful when the long time evolution of the system of interest is dominated by

rare events. An event ei is a transition from a state Γm to Γn, characterized by

a transition rate ri. Rare refers to the fact that the waiting time between events

is much larger than the time required to perform a transition.

The underlying idea in kinetic Monte Carlo (kMC) is to build a connection

between real time and Monte Carlo time (steps) by appealing to the theory of Pois-

son processes. In the case of rare event systems, this is possible by constructing

the transition matrix P in such a way that, other than fulfill the conditions for

sampling the desired limit distribution, a hierarchy among transition probabili-

ties is established, and these probabilities are based on a realistic model of the

system dynamics [46].

The master equation:

∂ρn(t)

∂t
=
∑
m

Pmnρm(t)−
∑
n

Pnmρn(t), (2.65)

gives a stochastic description of the system in terms of the time evolution of the

probability density function ρ. Here Pmn, the entries of the transition matrix

P, are probability per unit time. In the long time limit, the solutions to the
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master equation will tend in general to a stationary one, and if the detailed bal-

ance is imposed (Equation 2.63), this stationary solution will be the equilibrium

distribution consistent with the chosen thermodynamic conditions [42,46]. As

already seen in the case of the Metropolis algorithm the transition probabilities

are not uniquely defined by the above prescription, it is then possible to choose

them in such a way that both static (equilibrium) and dynamical properties are

reproduced. The main assumption of the method is that the events can not oc-

cur simultaneously so that it is possible to represent the evolution of the system

as a sequence of events separated by time interval Δt. Moreover it is safe to

assume that such a sequence is a Markov chain, which implies that the proba-

bility that an event can occur at time t is the same as that occurs at time t+Δt.
This probability depends on the rate but is independent of the previous history.

The average rate for a given event is simply the ratio between the number of suc-

cessful transitions and the observation time, and can be seen as a time density

of events [46]. If the observation time is splitted in small equals interval δ, the

average rate can be approximated by the ratio between the number of intervals

containing events nδ and the total number of intervals n per unit time δ. This

approximation becomes exact in the limit δ → 0 and n→ ∞:

r = lim
δ→0,t→∞

nδ
t
. (2.66)

Considering that each δ in this limit can contain no more than one event with

probability rδ it is possible to compute the probability that ne events occur in a

time t by means of the binomial distribution:

P (Ne,t = ne) =

(
n

ne

)
(rδ)ne(1− rδ)n−ne , (2.67)

where Ne,t is a stochastic variable containing the number of events occurred at

time t. In the limit of n → ∞ and rδ → 0 the 2.67 can be approximated by the

Poisson distribution:

P (Ne,t = ne) =
(rt)ne

ne!
e−rt. (2.68)

This distribution describes a set of objects scattered randomly in a region, which,

in this case, are events scattered over a time interval t [46].

In the framework of the Poisson processes theory it is straightforward to

obtain the probability density of inter event times te:

fte(t) = re−rt, (2.69)

and from this, the mean inter event time is:

〈te〉 = 1

r
. (2.70)
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It is then possible to generalize to the case of N independent Poisson processes

exploiting the fact that they can be represented by a single large Poisson process

whose statistical properties depend on the individual processes [46]:

P (Ne0,t = ne) =
(rtott)

ne

ne!
e−rtott, (2.71)

where Ne0,t is the stochastic variable counting the number of events occurring

in the ensemble and rtot is the sum of each individual rate:

rtot =
N∑
i=1

ri, (2.72)

and then the mean inter event time:

〈te0〉 = 1

rtot
. (2.73)

Finally the correct way to assign a time to a kMC step is to draw it from the

distribution 2.71:

τ =
− ln(u)

rtot
, with u random number ∈ (0, 1), (2.74)

so that it is independent of the specific rate of the event occurred [45,46].

It should be now clear that, being the connection between real time and

simulated time built through the rates constants r, it is extremely important for

these to be chosen so as to accurately reproduce the microscopic dynamics of the

system. Typically the rate constants are obtained from MD simulations (classical

or ab-initio) [43,45]. In principle, if the rate constants of all possible events are

accurately known, averages computed from a kMC trajectory would be identical
to those obtained form an MD trajectory, but with a lower computational cost

[45].

A general kMC algorithm is the following:

• generate an initial configuration q0;

• generate a list of events ni with corresponding rates ri and compute rtot =∑N
i=1 ri;

• select an event out of the list and realize it with a probability Pi = ri/rtot;

• assign an inter event time with the 2.74;

• repeat the last three points until final time is reached.
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This is one of the most common algorithm and belongs to a class called rejec-
tion free since a transition happens at each step, but there are many variations

and alternatives [47].

There are two main limitations to the space and time scales accessible to a

kMC scheme, both related to the fact that it is not possible to execute more than

one transition per step. Increasing the system size will increase the number of

possible events thus rising the value of rtot. One limitation is due to the relation

2.73 which causes the inter event time to decrease, while the other is related to

the computational cost for generating the event list.

A detailed analysis of these problems and a possible solution is presented in

chapter 3.

2.4.3 Cellular Automata

A cellular automaton (CA) is a discrete, both in space and time, dynamical

system consisting of finite-state variables called cells arranged on a uniform grid,

whose evolution is governed by a simple, uniform local rule [48–51]. According

to this rule, at each time step, the new state of a cell is computed from the

current state of its neighborhood, and all cells are updated simultaneously.

The idea behind a cellular automaton is to reduce the computation to a fixed

sequence of elementary operations. It can be surprising, but a great variety of

phenomena can be faithfully modeled by reducing them to bits on a lattice that

evolve according to simple local rules [49]. This is due to the fact that cellular

automata, actually, are a discrete counterpart to partial differential equations,

but unlike these, can be realized exactly by computers [48].

Cellular automata were developed in the late forties, not surprisingly as in the

case of Monte Carlo, in coinciding with the development of the first computer.

John von Neumann, who was involved in the making of the latter, was the

pioneer of the field. Its original idea was to simulate the human brain behavior,

so that it was possible to solve complex problems. To do this he wanted to build

a machine equipped with self-control and self-repair mechanisms, in which the

differences between processors and data were removed, in practice he wanted a

machine able to build itself. This machine was then realized, thanks also to the

suggestions of Stanislaw Ulam, in the framework of a fully discrete assembly of

cells evolving in discrete time step, following a rule which defines the new state of

a cell as a function only of the state of its neighboring cell, in analogy to biological

systems. The most important feature of the von Neumann automaton lies in

the fact that the evolution rule (called von Neumann rule) has the universal

computation property, meaning that the rule can simulate any computer circuit

[51].

In the following years the CA began to spread in the scientific community and,
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in 1970 they reached the notoriety even in a wider audience thanks to the John

Conway’s game of life [52]. This CA consists in a square lattice of cells whose

state can only be on or off. The updating rule is very simple, if a cell is off and

is surrounded by exactly three cell on it turns on, otherwise if a cell is on and is

surrounded by less than two or more than three cell on then it turns off. Despite

the simplicity of the rule, the automaton shows a rich and complex behavior. The

ability of CA to produce complex behavior from simple rules further stimulated

their study and, in the eighties, Stephen Wolfram [53] noticed that with CA was

possible to study also continuous systems, with the advantage with respect to

standard methods of the absence of numerical and truncation errors, thanks

to the boolean nature of the automata. Other scientists like Tommaso Toffoli

and Norman H. Margolus [54] started to investigate the possibility to produce

artificial universes and developed specific hardware to realize this task. It was

also in those years that CA started to be viewed as a tool to simulate real systems,

considering them as an alternative to the microscopic reality of which preserves

the important aspects like time reversibility and simultaneity of the motion [51].

The first step towards a wide adoption of CA for the modeling of physical systems

was the recognizing that a model developed in the seventies by Hardy, Pomeau,

and de Pazzis for the study of fundamental properties of a gas of interacting

particles was actually a cellular automaton. This is the first example of a kind

of CA known as Lattice-Gas Cellular Automata (LGCA) constituted by particles

moving across nodes of a regular lattice. Over the years many improvements

have been made to the model, but this has failed in replacing the traditional

methods for the study of problems in hydrodynamics. Nonetheless LGCA have

been successful in many areas where traditional approaches are not applicable,

like flows in porous media, immiscible flows, and reaction-diffusion processes

among the others [51].

In recent years, our group of research has developed a lattice-gas cellular

automaton for the simulation of adsorption and diffusion in zeolites [55–61]. An

application of this model, to which I have contributed, is presented in chapter 4

where details of the implementation are also reported.

2.5 Microporous materials

Zeolites are crystalline microporous aluminosilicates that have found a large

number of uses in the chemical industry [62,63]. Their crystal structure consists

of a definite channel and cage network extending in one, two or three dimen-

sions. The presence of regular micro-pores provides an environment where the

adsorbed molecules no longer move freely, but are restricted to reduced spatial

dimensions where peculiar many-body effects make zeolites behave as solid sol-
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vents [64]. The diverse physical phenomena occurring in these systems embrace

heterogeneous catalysis, percolation, and even a dramatic change of the phase

diagram [65].

A lot of efforts have been made to improve such materials, in particular trying

to incorporate transition metal ions and organic units as an integral part of the

crystal structure, but for the most part have been unsuccessful [66]. Recently,

however, an alternative class of materials called Zeolitic Imidazolate Frame-

works (ZIFs) has been synthesized. Such materials have a three-dimensional

structure consisting of tetrahedral metal ions (M) bridged by imidazolate (Im).

Being the angle M−Im−M similar to the Si−O−Si angle in zeolites it is possible

to synthesize ZIFs with the same framework topology of zeolites [66,67], with the

advantage of a great flexibility in the choice of organic substituents. ZIFs have

shown very good chemical and thermal stability, and are already of industrial

interest being among the best materials for CO2 capture [67].

All peculiar properties of those materials are ruled by the dimensionality

resulting from the specific network of channels and cages that largely deter-

mines the nature of the local interactions and of the long-range order. Moreover

the molecular mobility is strongly influenced by the topology of the surround-

ing medium, which provides the energy landscape through the multifarious

interplay between adsorbent-adsorbate and adsorbate-adsorbate interactions.

Ranging from electronic transitions to slow molecular migration, a hierarchy

of timescales and distances are involved in the many processes happening in

the interior of the crystal, whose consequences are at the same time essential

and difficult to quantify. These phenomena are still far from being understood,

and despite a great deal of effort in theory and computation [68], a fundamen-

tal description of the confinement effect is not yet available. In recent years a

growing research in multiscale modeling/simulation schemes simple enough to

be analyzed and able to capture the essential features of the real physical sys-

tems has been reported [61,69]. The advance of microporous materials science

is dependent on the development of an effective and efficient multiscale model-

ing approach, able to bridge the gap between molecular level interactions and

macroscopic properties [70].

In each chapter a detailed description of the investigated structures is re-

ported.
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Chapter 3

Speeding up simulation of diffusion
in zeolites by a parallel
synchronous kMC

Adapted with permission from Andrea Gabrieli, Pierfranco Demontis, Federico G. Pazzona,

and Giuseppe B. Suffritti; Physical Review E; 83, 056705 (2011). “Copyright 2011 by the Amer-

ican Physical Society.”

http://dx.doi.org/10.1103/PhysRevE.83.056705

Understanding the behaviors of molecules in tight confinement is a challeng-

ing task. Standard simulation tools like kinetic Monte Carlo have proven to be

very effective in the study of adsorption and diffusion phenomena in microp-

orous materials, but they turn out to be very inefficient when simulation time

and length scales are extended. The present study investigates the efficacy and

potential of using a parallel kinetic Monte Carlo (kMC) algorithm for multiscale

zeolites modeling, and addresses some of the challenges involved in designing

competent algorithms that solve hard problems quickly, reliably, and accurately.

This chapter is organized as follows. Section 3.1 shortly summarizes the

standard kMC method, and outlines the most significant challenges in improv-

ing its performance. In Sections 3.2 and 3.3 we introduce the basis of the archi-

tecture and the design limits of a parallel version of the algorithm on a discrete

system, and in Section 3.4 we discuss an application to a selected system.

3.1 The model

In a kMC simulation [46,71] a state of the system is represented by a con-

figuration of molecules in a discrete network of sites, and a random walk is

Andrea Gabrieli - Hierarchical Multiscale Modeling of Materials: an Application to Microporous Systems
Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari



3.1. The model 34

performed from state to state [45]. The most widely adopted kMC algorithm

is rejection-free, meaning that at every step the system makes a transition from

one state to another and the time t is advanced by extracting an interevent time

from an exponential distribution, that is, t = − ln(u)/Rtot where u is a uniform

(pseudo) random number in (0, 1) and Rtot =
∑n

i ri is the sum of the rates ri
of all possible events n. The standard kMC method scales badly with the size

of the system (i.e., with the number of events) because of two factors, namely

(i) the time spent in generating, searching, and updating the list of events, and

(ii) the proportionality of the interevent time to 1/Rtot which implies that, given

the same number of iterations, the trajectory length decreases with increasing

system size.

In a large system it is a fair hypothesis to assume that distant regions do not

interact significantly with each other. This is the ground for a parallel kinetic

Monte Carlo algorithm able to improve the standard method by overcoming its

limitations. The underlying idea in parallelizing kMC is the partitioning of the

system in domains, where it is possible to execute a sequential algorithm. The

domains are independent of each other, consequently by assigning each domain

to a different processor the number of events will be reduced, along with the

value of Rtot. This in turn will raise the efficiency and lengthen the trajectory.

The major problem in parallelizing kMC is the complete asynchronicity of

the algorithm. In the rejection-free kMC, at every time step an event is selected

and realized. The corresponding time depends on the rates of all the possible

events. This implies that a parallel approach consisting only of executing serial

kMC algorithms independently of each other is correct only if the noninteraction

condition between domains is rigorously respected. In real systems this is un-

achievable since interactions or transfers of matter at the boundaries between

domains cannot be avoided. Moreover, each domain has its own timeline and in

order to avoid causality errors it is necessary to synchronize and correct them.

Despite that, many methods were developed to rigorously treat these problems

(see, for example, [72,73]) thus permitting us to have a parallel kMC procedure

able to solve the same master equation of a sequential one. The major drawback

of these methods is that they can be highly expensive and complicated to be im-

plemented. The work of Martínez et al. [74] shows that ignoring the interaction

between domains introduces an error that can be controlled through a careful

choice of the domain size. This leads to a great simplification of the algorithm

and improves the efficiency. Moreover, this method avoids causality errors by

synchronizing the time across domains through the introduction of a null event.
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3.2 Parallel algorithm

Our parallel algorithm is a manipulation of the continuous synchronous kMC

introduced by Martínez et al. [74], adapted to a discrete lattice. The first step is

the spatial decomposition of the lattice in K domains (where K is equal to the

number of processors) named Ωk, k = 1, . . . , K. The domain shape is arbitrary

and the optimal choice, aimed to minimize the communication between domains,

is strictly problem dependent. In principle, domains do not necessarily have to

be equivalent. They can be assigned heterogeneous sizes and shapes to attain

the best optimization possible. In the present case the domains are chosen

to be (all equivalent) parallelepiped-shaped (see Section 3.4.2). The simulation

proceeds as follows.

• In each domain, say Ωk, a list of the possible events nk and relative rates

rik (i = 1, . . . , nk) is generated. Rates can be summed to give a total rate

Rk for each of the K domains:

Rk =

nk∑
i

rik. (3.1)

It is worth noting that if the system was not subdivided into domains, the

value of Rk would be simply equal to the sum of the rates of all the events

as in the sequential case. This implies that the subdivision does not alter

the set of states the system can reach.

• The synchronicity of time horizon between domains is ensured by selecting

the greatest among all values of Rk:

Rmax = max
k=1,...,K

{Rk}, (3.2)

and introducing in each domain for which Rk < Rmax the possibility of a

null event, that is an event in which no particle moves. The rate of the null

event in the k-th domain is defined as

rk0 = Rmax −Rk. (3.3)

As a consequence, the domain having the greatest relative total rate equal

to Rmax will have no null event. Introducing null events is necessary to

align the interevent time for the entire system on the time of the fastest
evolving domain: this way, the same interevent time can be chosen for all

the domains as a function of only the maximum rate Rmax, and a random

number. Despite the presence of null events in every of the K−1 domains
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having Rk < Rmax, globally the algorithm is still rejection-free since inside

the domain with Rk = Rmax there is no null event, so that at each time

step at least one molecule movement is realized.

• In each domain an event is selected out of the list of nk events available to

the k-th domain, and realized with probability pik = rik/Rmax.

• If the outcoming configurations of two or more domains conflict with each

other at their shared boundary, they are subjected to a correction proce-

dure. Section 3.3 is devoted to this topic.

• Interevent time is extracted from an exponential distribution:

τ =
− ln(u)

Rmax

with u random number ∈ (0, 1). (3.4)

• The entire procedure is iterated until final time is reached.

3.3 Conflicting situations at the domain boundaries
in discrete systems

In a continuous system a boundary conflict can arise if at a given time step

the global outcoming configuration contains at least a pair of particles extremely

close to each other. In discrete systems where a strict exclusion principle holds

this translates to the much more likely situation where two or more particles

are attempting to occupy the same lattice site.

There are basically two possible strategies for solving such a conflict: (i) the

synchronous sublattice method [75] and (ii) a rollback procedure (see, for exam-

ple, [73]). In the former every domain is further divided into sublattices having

a size larger than the range of interactions. Conflicts are avoided by executing

moves only in a randomly selected sublattice. In the latter instead conflicts are

treated only when they occur. Indeed, rollbacks have a high computational cost.

To speed up the simulation, Martínez et al. [74] avoided rollbacks by simply ig-

noring the conflicts. We have instead chosen to implement them anyway to avoid

loss of synchronicity, and then to minimize their number by properly choosing

the domains shape, thus compensating for the consequent slowing down of the

simulation. The full time-horizon synchronicity of the domains allows the use of

that procedure only when a violation of the exclusion principle occurs. In that

case one proceeds as follows:

• Check for conflicting events across boundaries.
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• For each conflicting pair of domains, the move to be undone is chosen

through random selection of one of the two domains.

• Undo the chosen move, that is, restore the previous state of the list of

rates.

• By using the same random number we have used for the realization of the

conflicting event, a new move is performed [76] and the simulations goes

on.

In other synchronous methods [73,77] each domain has its own history and

time. At a fixed time interval one has to check the boundary events in order to

verify if the generated timeline is consistent, then correct possible problems and

eventually assign the proper time to obtain synchronicity. This procedure can

lead to a certain number of moves to be undone, and its implementation is rather

complicated. On the contrary, the method presented in this work looks very

simple since the time horizon has been set up to be flat. This permits boundary

events to be communicated immediately, and the maximum number of moves

to be undone at each time step to be just one. Moreover, no causality error can

arise. The main drawback is the increased communication cost, but this can be

minimized by properly choosing the shape and the dimension of the domains.

Even though the best domain choice is problem dependent, in general the ideal

shape is the one that minimizes the number of communicating domains, and the

ideal size is the largest possible in order to reduce the probability of a boundary

event while still benefiting from the use of multiple processors in parallel, as we

will show in Section 3.4.2.

The method is not rigorous for interacting particles, where when a move

happens to change the configuration at the boundaries then performing a roll-

back may not lead back to the starting configuration. This changes the value of

Rmax due to the addition of a particle in the selected domain, thus introducing

an error. Nevertheless, the range of values the change in Rmax might fall in is

limited, and independent of the size of the domains. Therefore a domain size

can be found that minimizes such a range (e.g., enlarging the domain reduces

the overall effect of the change). Moreover, such situations will happen with a

relatively low frequency during the simulation if the domain size is chosen large

enough so that the number of nonboundary sites is much greater than number

of sites at the boundaries, thus making the effect of conflicts negligible.

As its major strength and main advantage with respect to more complicated

procedures, the nonrigorous approach presented here enables the error to be

easily controlled thus allowing the same results of a rigorous method to be

obtained [74], but with a simpler implementation and a faster execution.
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3.4 Application to a selected system: benzene in
Na X

Aromatic hydrocarbons are among the crucial ingredients of many plastic

and allied materials. With the increase in the prices of crude oil, there is an

urgent need to reduce the processing costs of aromatics while increasing the

efficiency. This makes it necessary to bring about new technologies. The pro-

posed [78] high activity for alkylation reactions of benzene with ethylene of Fau-

jasite (FAU)-type zeolites to make styrene, one of the most relevant industrial

monomers, offers the advantage of a high selectivity toward the desired product

due to the shape-selective properties of their microcrystalline pore structures.

In these applications the diffusive molecular transport through zeolites needs to

be described accurately for a predictive design of the processes. However, the

number of fundamental studies that investigate aromatics diffusion and adsorp-

tion in porous solids is limited due to the complexity of the system, the sluggish

motion of aromatics in zeolites caused by the strong interactions between π elec-

trons and extraframework cations, and the large size of the aromatic species.

Adsorption properties of aromatics in zeolites and other porous solids have been

relatively less investigated, as compared to alkanes in zeolites. This is partic-

ularly true if we consider only theoretical or computational studies. Demontis

et al. were the first who investigated diffusion of benzene in Na Y, belonging

to the FAU-type zeolites (Figure 3.1a). Their simulations suggest that benzene

is frequently localized near the sodium cation and the 12-ring windows [79],

in excellent agreement with the neutron diffraction study of Fitch et al. [80].

Auerbach et al. [81–85] studied the jump motion of the guest benzene molecules

in a lattice site model of Na Y, proving that cost-effective modeling techniques

to simulate diffusive phenomena across multiple space and time scales lead to

a significant gain, even if the price is loosing information at the intermediate

scales. As a consequence, a multiscale modeling approach seems to be the

proper choice to deal with this problem. It is our purpose in this work to test

the parallel synchronous kMC method, with the aim of extending the modeling

to the micro-millisecond time (and corresponding length-) scales.

3.4.1 Sequential algorithm

We applied our method to the study of benzene diffusion in Na X, belonging

to the FAU-type zeolites.

The diffusion of benzene in this type of system can be represented in the

framework of the rare events dynamics, since residence times are much longer

than travel times between adsorption sites. This implies that kMC is best suited
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Figure 3.1: Molecular structure of FAU-type zeolites (a). The three-dimensional framework of

zeolites is constitued by a network of cages (b) connected by windows. The cages can accommo-

date a number of guest molecules adsorbed in well-defined binding sites. In Na X zeolite there

are two types of these sites: four SII (yellow/light gray spheres) inside the cage and four SIII′

located in the window W connecting two cages (red/dark gray rings). In kMC simulations these

sites are mapped on a detailed lattice (c) but it is possible to coarse grain the inner sites by

stacking it on the center of the cage (d). Each particle can move from there to one of the four

W sites (red/dark gray spheres). W to W moves are also possible. A move from SII to SII is

possible but it produces no position change. (e) Schematic representation of zeolite FAU frame-

work. Spheres represents coarse-grained SII sites, while sticks represents W sites (for details

refer to Section 3.4). Distances are proportional to the real distances among cages. Different

colors correspond to different domains.

to study it.

To test the parallel algorithm we first developed a model based on a previous

work on this subject [86]. The zeolite framework is represented by a three-

dimensional lattice of binding sites in bi-univocal correspondence with real ad-

sites. In the case of Na X and Na Y there are two types of sites, SII located

over the Na+ cation inside the cage (Figure 3.1b) and W located on each window

connecting two adjacent cages. Na Y and Na X zeolites differ in the Na content,

but the same lattice can be used for both zeolites [86]. Although it is difficult

to determine the exact distribution of cations in Na X, experiments show that

benzene is adsorbed at the SII and SIII′ sites [87] (Figure 3.1b). The latter is very

close to the 12-term oxygen ring, thus permitting this site to be viewed like the
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W site of zeolite Y. Assuming an Arrhenius behavior the dynamics of benzene is

represented by jumps from site to site, with the rate constant calculated through

considerations about the difference in energetic and geometric features of the

two types of sites (see Table 3.1).

Table 3.1: Activation energies and preexponential factor at infinite dilution for benzene in Na

X [86].

Jump Activation Energy (eV) Preexp. factor (s−1)

SII → SII 0.15 0.8× 1013

SII → W 0.25 0.8× 1013

W → SII 0.10 1.1× 1012

W → W 0.10 2.4× 1011

Table 3.2: Adsorption energies and entropies [86].

εW (eV) εSII
(eV) s̃W (eV/K) s̃SII

(eV/K)

-0.63 -0.78 1.7 ·10−4 0

The Hamiltonian for this lattice is [86]:

H(s,σ) =

MW∑
i=1

sifW +
1

2

MW∑
i,j

siJ
WW
i,j sj

+

MW∑
i=1

MSII∑
j=1

siJ
WSII
i,j σj +

1

2

MSII∑
i,j=1

σiJ
SIISII
i,j σj

+

MSII∑
i=1

σifSII
. (3.5)

In this equation s and σ are the number of particles adsorbed inW and SII sites,

respectively (occupation numbers), fi = εi − T s̃i (Table 3.2) is the free energy

associated with the site i (εi is the adsorption energy and s̃i the entropy), J is

the interaction energy between nearest neighbor particles, and MW = 2MSII

are the number of W and SII adsorption sites, respectively. It is a common

choice to ignore attractive interactions between particles leading to a simple site

blocking model, but in the present case this cannot be done due to the critical

temperature of benzene being 560 K [88]. To account for these interactions

a parabolic jump model is adopted [86, 89] where the change in the activation
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energy caused by the interactions is calculated as a function of the configuration

in the neighboring sites. It assumes the transition state for a jump being located

at the intersection of two parabolas, which is chosen to represent the minimum

energy path among each pair of sites. The new value for the activation energy is

obtained by [86]:

Ea(i, j) = E(0)
a (i, j) + ΔEi,j

(
1

2
+
δE

(0)
ij

kija2ij

)

+ΔE2
ij

(
1

2kija2ij

)
. (3.6)

E
(0)
a (i, j) is the activation energy at the limit of infinite dilution. ΔEij represents

the variation in adsorption energy between sites i and j due to interactions:

ΔEij = δEij − δE
(0)
ij = (Ej −Ei)− (εj − εi). In this equation Ek = εk+

∑M
l=1 Jklnl

for a given configuration n. Finally aij is the distance between two sites and kij
is the harmonic force constant [86]:

kij =

(
2

aij

)2 [
1

2

(
E(0)
a (i, j) + E(0)

a (j, i)
)

+

√
E

(0)
a (i, j)E

(0)
a (j, i)

]
. (3.7)

Previous works of our group with cellular automata models applied to the

study of zeolites [55–57] have shown that it is possible to coarse-grain space

and time scales by treating adsorption sites inside a cage as one single site.

This leads for large systems to improving the efficiency without losses of physi-

cal information. Application of this coarse-graining paradigm to the model pre-

sented here leads to a lattice where all the SII sites competing to each cage are

grouped into a multiple-occupancy site placed at the cage center. The correct

time evolution is guaranteed through the use of kMC rates for all the possible

jumps between the various sites making up the central multiple-occupancy site,

which is the scenario for all the intra-cage motions, while every intercage move

requires the passage through a W site (Figure 3.1).

Our sequential kMC was validated first by running several simulations to ob-

tain self-diffusion coefficients to be compared with the experimental results [90].

We stress that the purpose of this comparison is to verify the correctness of the

sequential algorithm and not to get new insight on the physical behavior of the

system. The accomplishment of this task is postponed to a future work through

the application of the parallel kMC method presented here and validated.

The simulations were carried out in a system containing 256 SII-type sites

and 128 W -type sites, corresponding to eight unit cells of Na X. As one can see
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Figure 3.2: Diffusion coefficient as a function of coverage. Interaction parameter: J = −0.03
eV. Experimental values (red solid lines, taken from Germanus et al. [90]) are multiplied by a

factor of 10 and are shown only for a qualitative comparison with the simulation data (black

dashed lines).

in Figure 3.2 (where the self diffusivity Dself is plotted vs the coverage θ which is

the number of molecules divided by the number of sites) the diffusion isotherms

are in good qualitative agreement with the experimental data. The difference

in the shape between the model and the experiments are expected, due to the

coarse-graining of the SII sites.

After that, other simulations were carried out to check the correctness of the

parallel algorithm implementation. All calculation were executed on a cluster

with Intel Xeon E5420 2.50 GHz processors and Infiniband communication link.

For communications we made use of the MPI libraries. In Figure 3.3 diffusion
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Figure 3.3: Diffusion isotherm for various number of processors on the same system size.

Differences between sequential and parallel simulations are always small even for a relatively

large number of processors (relative to the size of the system), and tend to converge for small

numbers of processors.

isotherms obtained by simulating a system of 4096 cages with an increasing
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number of processors are reported. As one can see from the plot, reducing

the dimension of domains causes a slight shift in the value of the diffusion

coefficient. The origin of this behavior is the error introduced with the parallel

algorithm that can be easily controlled by choosing appropriate dimension for

the domains. The choice is strictly problem dependent and must be assessed in

each case.

3.4.2 Efficiency

To determine the efficiency of the method we made use of two definitions in

order to better quantify the factors involved. In the first one η̃ each processing

unit involved in the parallel runs simulates a portion of the system having the

same size as the system simulated in the single-processor runs. This way the

definition quantifies the efficiency on the basis of the cost of communications

between processing elements, holding fixed the size factor [74,77]:

η̃ =
tS,n
tK,nK

· 100%, (3.8)

where tS,n and tK,nK are, respectively, the time spent in executing the serial algo-

rithm with n particles and the time spent in executing the parallel version with

K processors on a system containing nK particles. Clearly, the ideal efficiency

of 100% is obtained when the time required to run the parallel code is the same

as that required to execute the sequential one. This cannot be achieved in a real

simulation because of the additional time required by the processors to commu-

nicate. In this particular implementation of the algorithm the major limitation

is the need of global communications for updating the value of Rmax. It is impor-

tant to note that despite this limitation, the impact of communication time over

the global efficiency can be minimized by tuning the communication/calculation

ratio. This is an easy task since almost every kMC algorithm scales with the size

of the simulated system [47,91], so that it can be achieved by just finding the

optimal value for the size of each domain.

The second definition is the speedup [77]:

S =
tS
tK
, (3.9)

where tS is the time required to execute the serial code and tK the time required

to execute the parallel code on K processors. Here the simulated system is

assumed to be exactly the same (i.e., same size and same number of iterations)

for both the serial and the parallel simulation. With this definition, the speedup

plot depends essentially on the scaling law the algorithm obeys [77] (in the

Andrea Gabrieli - Hierarchical Multiscale Modeling of Materials: an Application to Microporous Systems
Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari



3.4. Application to a selected system: benzene in Na X 44

Table 3.3: The simulation sets considered in this work to estimate the importance of the

communication/calculation ratio on the efficiency. Every subset spans several simulations at

the same system size but different loadings starting from 1 (θ = 0.17) up to 5.5 (θ = 0.92)

molecules per cage. The average number of sites per cage is six.

Set A

subset 1 subset 2 subset 3 subset 4 subset 5

N. cages 64 128 512 1024 2048

N. processors 1 2 8 16 32

Set B

subset 1 subset 2 subset 3 subset 4 subset 5 subset 6

N. cages 512 1024 4096 8192 16384 32768

N. processors 1 2 8 16 32 64

present case the algorithm scales with the total number of particles) when the

number of processors is low, and on the communication cost for higher numbers

of processors.

Two sets of simulations were performed (see Table 3.3) to study system-

atically the behavior of the parallel algorithm, starting with executing the se-

quential algorithm (used as a reference), and then increasing both the domain

size and the number of processors (e.g., when using two processors the system

consists of two identical replicas of the reference system and so on).

All the simulations have been carried out at a temperature of 468 K and a

value of −0.02 eV for J (the nearest neighbor interaction energy). As one can

expect the effect of increasing the size of the domains is an improved efficiency.

This is because the communication/calculation ratio decreases. The possibility

of modifying the system size to change this ratio is limited by the efficiency of

the sequential algorithm adopted, that is the maximum system size that one

can simulate with the parallel algorithm without reducing the length of the

trajectory can be estimated as K times the maximum size attainable with a

standard simulation (we recall that K is the number of processors).

A determining factor of the efficiency is the domain shape. The domains must

be chosen carefully on the basis of the system topology rather than the geometry.

In the present case the node-to-node connections of the diamond-lattice topology

of the FAU zeolite can be easily mapped onto a cubic grid. At this point, it is

straightforward to notice that such a grid can be better partitioned into slices
rather than cubes [73], so that every domain (i.e., every slice) does communicate

with two neighboring domains instead of six (see Figure 3.4). Anyway, since

the main reason of efficiency loss is the global communication caused by the

need of synchronizing the domains, the choice of a cubic or a parallelepiped
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Figure 3.4: A comparison between (a) cubic domains and (b) slices. Each slice is a

parallelepiped-shaped portion of the system spanning its whole extension in the y direction.

This way, since with periodic boundary conditions each slice has no domain boundaries in the y
direction, it does communicate with two domains only against the six of the cubic domain case.

decomposition does not significantly affect the overall value of the efficiency η̃,

but the cubic shape presents as one can expect a greater number of conflicting

events.

The behavior of the efficiency is similar to that of the original method [74]

and some others given in the literature [77] with a fit of the form

η̃ =
1

1 + a(lnK)b
, (3.10)

where a and b are two constants. For the first set of simulations a ranges from

0.020 to 0.268 and b ranges from 2.177 to 4.472, while for the second set the val-

ues range from 0.038 to 0.152 and from 1.889 to 2.743 for a and b, respectively.

Differences in the value of b among different simulations can be related to the dif-

ferent values of the communication/calculation ratio. In the A set (see Table 3.3)

this ratio is greater than in the B set because domains are smaller, whereas the

information exchanged between domains is the same (with a fixed number of

processors), therefore the efficiency decays more steeply. Within each set the

efficiency is influenced also by the communication/calculation ratio, which in

this case, however, results from the combination of two opposite effects depend-

ing on the change of the total number of molecules adsorbed in the system. By

increasing that number there can be more moves between domains that require

more information exchanges and more rollbacks, thus increasing the ratio. On

the other hand, increasing the number of molecules leads the number of events

to increase as well, requiring then more computation. The balance between the

different weights of these two effects causes the value of the parameters a and b
to fluctuate. Moreover, these values differ from that obtained by Martínez and

Merrick [74,77] mainly because of technical and algorithmic differences.
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Figure 3.5: Parallel efficiency for simulation set (a) A and (b) B as a function of the number of

processors at different loadings. For the parallel runs only, the system size increases linearly

with the number of processors. On the top plot the ratio between the system size in the parallel

runs and the system size in the serial, single processor run is shown. The ideal efficiency of

100% would be obtained only if the time required by the single-processor simulation of a system

of a given size were the same as the time required by a parallel simulation on K processors

of a system K times larger. Best results are obtained in set B because of the more favorable

communication/calculation ratio. Dashed lines have been drawn to guide the eye.

In Figure 3.5a the parallel efficiency η̃ (Equation 3.10) is reported as a func-

tion of the number of processors (K) for the simulation set A. A comparison

with Figure 3.5b, where the same data are reported for the set B, makes clear
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the importance of the communication/calculation ratio which favors the B-set

simulations (where the computation is much more expensive than in the A set).

This leads to a greater efficiency of the algorithm when applied to set B in all

the cases studied here. As expected, differences in the efficiency are more pro-

nounced for numbers of processors greater than eight, since the increased cost

of communication is not compensated by an equal increase in the computation

cost. Finally, in Figure 3.6 the speedup is reported. As stated before, its value is
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Figure 3.6: Speedup S [defined in Equation (3.9)] of the parallel algorithm with respect to the

sequential one shown as a function of the number of processors. This plot refers to the B3

system (Table 3.3), other simulations show similar behavior and were not reported.

determined by a combination of two contributions, the cost of communications

and the scaling law of the algorithm implemented. If we do not take into ac-

count the communication cost we would get the same computing time for both

the serial and the parallel algorithm only if the algorithm were not scaling with

the system size. Therefore, the parallel implementation of our algorithm gives a

substantial gain in the execution time, for example, a simulation of the set B3

(Table 3.3) requires 59 h when using the serial algorithm and 8 h when using

the parallel one on eight processors.

The only factor that may reduce the speedup is the number of rollbacks,

since each roughly doubles the time spent for the current cycle. Anyway, this

does not represent a problem in the present case where the number of rollbacks

is kept relatively low (Figure 3.7) by the particular topology of the system. As

a consequence, its influence over the efficiency of the method is limited and we

obtain speedup values really close to the ideal efficiency of 100% (dashed line in

Figure 3.6, however we remark that the speedup is expected to decrease for a

very large number of processors).

The number of null events is small as well (Figure 3.7), and can be controlled
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Figure 3.7: Fraction of null events and rollbacks for parallel simulations of systems A5 and B5

(Table 3.3) on 32 processing units. The fraction of null events decreases with increasing the

system size (leading to a 90% of effective moves), whereas the fraction of rollbacks is always

negligible, even for a small system. Discrepancies among different coverages reflect the change

in the relative number of possible events. Other simulations showing analogous behavior are

not reported. The inset shows the average number of moves realized for every kMC step. The

maximum of those values equals the number of processors, which is 32 in this case.

through a proper choice of the system size. Consequently, during a simulation

of set B approximately the 90% of the possible moves are performed with no

need of redefining the domain shape. The boost in the number of events per

cycle is reported in the inset of Figure 3.7.

3.5 Conclusions

A parallel kinetic Monte Carlo algorithm, originating from the synchronous

algorithm of Martínez et al. [74], has been applied to the study of benzene dif-

fusion in zeolite Na X. We have shown that, despite the presence of a rollback

procedure in the algorithm, high efficiencies can be reached by exploiting the lo-

cal nature of the molecule-molecule interactions inside the zeolite, allowing the

need of rollbacks to be minimized through a proper spatial decomposition. In

the present form the algorithm is still approximate, but the correct tuning of the

domains size leads to obtaining results with the desired accuracy. We believe

that the algorithm outlined here is applicable in general with little modification

to other types of zeolites. Even better performances are expected to be found for

other zeolites like the Linde Type A (LTA) family, ZSM5 [92], or for zeolitic imi-

dazolate frameworks (ZIF) [67] because of the absence of shared sites between

communicating cages. Adsorbate-adsorbate interactions does not extend signif-

icantly outside the cages, thus permitting an ideal domain decomposition. As
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for other similar methods [74,77], the efficiency of the algorithm is very sensitive

to the value of the communication/calculation ratio that can be easily controlled

by changing the size or the shape of the domains.
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Chapter 4

The Central Cell Model: A
mesoscopic hopping model for the
study of the displacement
autocorrelation function

Adapted with permission from F. G. Pazzona, A. Gabrieli, A. M. Pintus, P. Demontis and G.

B. Suffritti; The Journal of Chemical Physics; Vol. 134, Page 184109 (2011). “Copyright 2011,

American Institute of Physics.”

http://dx.doi.org/10.1063/1.3587618

The diffusive motion of molecules in a generic medium is usually affected

by memory effects introduced by their interactions with each other and with

the medium itself. This is especially true when the diffusing molecules are

subjected to the confining action of a microporous material such as a zeolite [62,

93]. In particular, the narrow windows of certain microporous materials can

make the guest’s diffusion profile (i.e., diffusivity vs. concentration at constant

temperature) very different from what expected for the motion in a bulk phase

as well as in any less strongly confining material.

Although the discreteness of the network of channels and cages of regular

microporous materials suggests immediately an analogy with lattice-gas mod-

els, there is still no “definitive” coarse-grained, lattice simulation method for

molecules in zeolites which is able to play as a cheaper mesoscale version of

classical molecular dynamics (MD). Several approaches are available depending

on what specific properties of the host-guest system the simulator is interested

in. As an example, kinetic Monte Carlo simulations are suitable for all the dy-

namical properties which do not explicitly involve correlations among different
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particles [47,94,95] (e.g., the self diffusion coefficient), whereas thermodynamic

models can be successfully adopted for the study of static equilibrium properties

(e.g., adsorption isotherm and local density distribution).

Due to their intrinsically synchronous nature, the class of lattice-gas cellu-

lar automata (LGCA) can be thought of as the ideal candidate for a mesoscopic

simulation of the collective properties. On the other hand, as a drawback of

their synchronicity traditional LGCAs are much more difficult to handle than

standard Monte Carlo (MC) models are. This makes it a hard task to surely
achieve thermodynamic equilibrium, i.e., preserving both detailed balance and

synchronicity, in the presence of explicit particle-particle interactions. To solve

such a conflict, a partitioning technique has been proposed in our previous

work, aimed to couple the LGCA computational framework with local MC (bal-

anced) moves [56–61]. The idea underlying the resulting partitioning cellular

automaton (PCA), inspired by a heterogeneous model for surface diffusion by

Chvoj et al. [96], is that the peculiar cage-to-cage dynamics of molecules under

tight confinement is well-represented in a model lattice with heterogeneous ad-

sorption locations inside each cage. According to this representation, in each

zeolite cage we distinguish two types of locations: those close to the exit win-

dows, termed exit sites, and the rest of the cage pictured instead as a set of inner
sites. The exit sites in each cage are then access points to the neighboring cages,

and differ from the inner sites in their statistical weight (i.e., the probability of

being occupied). As recently confirmed by other simulation studies [97], split-

ting the single cells into differently weighted locations provides a qualitatively

correct mesoscopic representation of the problem (See Figure 4.1).

Even though more work has still to be done to make cellular automata the

“definitive” environment for meso-simulations in micropores, our PCA approach

captures many important aspects of adsorption and diffusion in zeolites, such

as realistic (i.e., closely resembling those developed in MD simulations) density

distribution, fluctuations, and time correlations. Concerning the single-particle

diffusion process (at arbitrary concentration), the backscattering effect [28], a

major source of time correlation causing the self-diffusivity to be less than what

expected, can be properly mimicked in the PCA approach since it allows the

amount of memory lost in each cell during a single time step to be tuned.

Thus, our PCA can be taken as a starting point for further developments in

many directions. The one explored in this work is the realization of a further

simplified coarse-grained simulation of the hopping process of a tagged particle

in a confined lattice system, where all the other guest particles are moving as

well but they are kept indistinguishable. Our aim is to reproduce the memory

effects affecting the particle motion in the PCA at the minimum cost possible.

The strategy is to make the tagged particle “feel” an environment very close to
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Table 4.1: A list of the basic quantities involved in a numerical simulation with the Central Cell

Model.

μ chemical potential

β inverse temperature

Kex, Kin, K exit, inner, and total site number per cell

s micro-configuration of indistinguishable

particles in a single cell

nex, nin, n exit sites, inner sites, and total occupancy

of a single cell

n = (nex, nin) meso-configuration of the cell

f oex, f
o
in exit and inner site free-energy of adsorption

in a singly-occupied cell (site deepness)

φex(n), φin(n) exit and inner site free-energy contribution

due to the mutual interaction of n particles

F (n), F (s) cell free energy

F o(n), F o(s) cell free energy (non-interacting part)

Φ(n),Φ(s) cell free energy (interacting part)

εki(n,m) kinetic barrier to intercell migration

from an n- into an m-occupied cell

Cab probability of targeting the site b from

departure site a during randomization

pjump acceptance probability for a single

randomization jump

sbκ(n,m) acceptance probability for a jump from a cell

with meso-conf. n into exit site b of a cell

with meso-conf. m

p(n) equilibrium probability of a cell to be

meso-configured as n

the one it would have experienced in the full automaton simulation. Since the

model is constructed in such a way that the host cell of the tagged particle

always results to be located exactly in the middle of the system, we called it

Central Cell Model (CCM).

The lengthy PCA simulation of a large system is thus reduced to a small

set of connected cells, a limited neighborhood of whose is simulated by the

lattice-gas evolution rule in the canonical ensemble while the border cells are

treated as mean-field cells. In any case, the CCM approach cannot be taken as
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substitutive of a full lattice-gas simulations. Collective dynamic properties, self-

organization, and long-range phenomena arising in non-equilibrium conditions

cannot be simulated directly through a CCM implementation of a lattice-gas

rule. This approach is limited to the reproduction of the correlated motion of a

single particle in a lattice-gas at arbitrary loading (i.e., concentrations of guest

particles, also known as coverage), but under conditions of thermodynamic equi-

librium, strictly local interactions, and absence of long-range correlations. When

one or more of such conditions are not fulfilled or if also the collective dynamics

produced by some evolution rule need to be investigated, then a full lattice-gas

simulation will be unavoidable to obtain reliable results. Nevertheless, the above

mentioned conditions are fulfilled in many lattice-gas simulations of short-range

interacting particles, so that for those cases the CCM will be the quickest way to

retrieve the correct self-motion properties. This is of primary interest when, for

example, one wishes to model the entity of memory effects in the single-particle

motion (e.g., to mimic the diffusive behavior of some reference system in coarse-

grained modeling) and therefore needs to check quickly how a particular setup

of the parameters will affect the resulting diffusion isotherm.

The construction of the CCM version of a lattice-gas rule is a really direct

way to uncover the basic mechanisms by means of which the tagged particle

preserves memory of its previous moves in time. In fact, it is straightforward to

pass from the numerical CCM to a mean-field representation of the tagged parti-

cle’s diffusion process at arbitrary loading, inclusive of the time correlations. In

this work, the CCM approach will be used to develop an approximated theory of

self-diffusion for a lattice-gas automaton rule, based on a mathematical formu-

lation of the displacement autocorrelation function (DACF), i.e., the key function

embedding the memory effects of a generic diffusion process on the mesoscopic

scale. The DACF plays the same role the velocity autocorrelation function (VACF)

plays in atomistic simulations, although being more easily accessible for theo-

retical analysis. Earlier studies on LGCA emphasized the central importance of

the discrete VACF in both the formulation of efficient computational schemes

for the evaluation of transport properties and the understanding of the entire

self-diffusion process [98–100]. In the present case, the analysis of the DACF

(we do not call it VACF since, differently from traditional LGCAs, in our approach

no proper velocity vector is associated with the cell-to-cell migration) will lead to

a closed mathematical formulation for the self-diffusion coefficient.

After a brief resumé of the lattice-gas model, the Central Cell Model will be

presented. Then, we will describe the probabilistic analysis of the DACF leading

to the mean-field formulation of self-diffusivity. Results of numerical tests will

be presented throughout the chapter and discussed in a separated section.
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4.1 Local randomization and propagation

Here we will briefly outline the basic operations of the original automaton

model. The interested reader can find a very detailed description in a previous

work on this subject [58,60]. The basic quantities that will be explicitly used in

a simulation with the Central Cell Model are listed in Table 4.1.

In our approach, particles move within a three-dimensional network of struc-

tured points called cells. A single cell and a small cluster of connected cells of the

automaton are sketched in Figure 4.1a and 4.1b respectively. The total num-

Figure 4.1: A three-dimensional sketch of (a) a single cell, and (b) a small cluster of connected

cells of the automaton. Every cell is representative of a single zeolite cage. When looking at the

single cell, (a), small spheres represent the exit sites, i.e., the locations closest to the cage-to-

cage connections in a real zeolite (e.g., an LTA zeolite), whereas the big sphere, named inner site,

represents the set of all the remaining locations.

ber of particles in the system, N , and the temperature, T (and so the inverse

temperature, β = (kBT )
−1 with kB the Boltzmann constant), are held fixed. The

concentration 〈n〉 of the diffusing species in the lattice, termed loading, is the

average number of particles per cell and is obtained just by dividing N by the

total number of cells. Every cell is a discrete representation of a zeolite cage. It

is made of Kex exit sites and Kin inner sites, and every site can be free or singly

occupied, thus giving a saturation occupancy of K = Kex + Kin. As can be

seen from Figure 4.1b, every pair of neighboring cages are interfaced by a pair of

connected exit sites. The system evolves in discrete time steps. Guest molecular

species are represented via point particles whose migration mechanism at each

iteration is performed in two substeps: a randomization changes the configu-

ration of guest particles on every cell according to a probabilistic scheme, and

a propagation allows the particles in the exit sites to attempt to move into the

respective neighboring cages.

The actual micro-configuration of (indistinguishable) particles in each cell
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has a primary importance and is denoted as

s = {s1, s2, . . . , sK} , (4.1)

where the first Kex and the next Kin entries are respectively the occupancies of

the exit and of the inner sites (i.e., si = 1 if the i-th site of the cell is occupied,

and 0 if empty). The cell occupancies are defined as the exit site, the inner site,

and the total cell occupancies:

nex =
Kex∑
i=1

si, nin =
K∑

i=Kex+1

si, n = nex + nin. (4.2)

Exit and inner site cell occupancies make a meso-configuration of the cell, termed

n = (nex, nin).
The static properties of each cell are determined by the adsorption (negative)

free energy associated to every site, f oex and f oin (also referred to as exit- and inner-

site deepness), the actual cell occupancy n (i.e., the total number of particles

in the cell), and an occupancy-dependent interaction term for every type of site,

φex(n), and φin(n). These parameters define the cell free energy function:

F (n) = F o(n) + Φ(n), (4.3)

with

F o(n) = nexf
o
ex + ninf

o
in, (4.4)

and

Φ(n) = nexφex(n) + ninφin(n). (4.5)

In the numerical simulation we performed as a test for the model, our choice

for the interaction parameters was φex(n) = φin(n) = φ(n), with a smoothly

increasing repulsive effect as the occupancy increases (see Figure 4.2). We set

the number of exit and inner sites as Kex = Kin = 6. Fixed adsorption free-

energy f oex and f oin take alternatively the values −50 and −40 kJ mol−1 in the

various simulations.

4.1.1 Randomization

The randomization can be performed in two ways. The memoryless random-
ization changes probabilistically the actual configuration of every cell while pre-

serving its occupancy according to the probability distribution P (nex|n) defined

as

P (nex|n) =
(
Kex

nex

)(
Kin

n− nex

)
e−βF (nex,n−nex). (4.6)
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Figure 4.2: The interaction parameter, φ(n) (in kJ mol−1, defined in Section 4.1), for 0 ≤ n ≤
K − 1, and the parameter k(n) (defined in Section 4.1.2) for the numerical tests we performed

in this work. In all the simulations, Kex = Kin = 6.

which is exactly the probability of an n-occupied cell to have nex particles in the

exit sites (and consequently nin = n − nex in the inner sites). Such a choice

causes no memory of the previous configuration(s) to be conserved (apart from

the cell occupancy n, which is conserved).

In the jump randomization scheme instead all the n particles are invoked in

a random sequence and every particle is asked to perform a jump toward a ran-

domly selected target site within the same cell. Therefore, the cell configuration

is changed here in n steps instead of one (as it was for the memoryless scheme).

To illustrate the algorithm, let us take a single cell and store the identities of the

n particles inside of it in the vector I = (I1, . . . , In). Let us then randomize the

entries of I, thus obtaining the random sequence of identities IR = (IR1 , . . . , I
R
n ).

At this point, the following chain of jump events is realized:

s(0) → s(1) → s(2) → · · · → s(n), (4.7)

where by definition s(0) := s is the first configuration of the chain, and s(k) is

the actual micro-configuration when the particle of identity IRk is invoked. Let

us consider a transition s(k) → s(k+1) where s(k) and s(k+1) are two consecutive

configurations in the chain (4.7). In this transition, the k-th particle in the

random sequence of particles jumps from its departure site, say a, to the target

site b chosen with a probability Cab. The probability of such a jump to happen
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is then

pjump(s
(k) → s(k+1)) =Cabs

(k)
b γeβf

o
a

×eβ{Φ(s(k))−max[Φ(s(k)),Φ(s(k+1))]}, (4.8)

where s
(k)
b is the non-occupancy of the target site b in the actual micro-configuration

s(k), i.e., s
(k)
b = 1− s

(k)
b , and γ is a normalization constant aimed to further con-

trol the particles’ mobility during randomization (this will affect correlations as

well). In our simulations, we put γ = exp{−βmax(f oex, f
o
in)}. Such an algo-

rithm preserves some memory of the previous configuration, since in the case

of half/high cell occupancy n, the (locally) sequential jump criterion constrains

the configuration not to vary too much in the chain shown in (4.7).

A few words about the choice for Cab. In order to preserve detailed balance,

it preferably should be symmetric, that is forward and reverse jumps should be

chosen with the same probability. It is interesting to introduce several kinds

of constraints (without violating symmetry) in the configuration path during

randomization, to study their effects on correlations, and to check to which

extent they can be predicted by a mean-field theory of diffusion. As an example

we could decide, during randomization, to allow every particle to target any site

with the same probability 1/K, this giving a C matrix with all entries such as

C ′
ab =

1

K
, a, b ∈ [1, K], (4.9)

or we could choose all targetings from an exit site toward a different exit site to

be rejected. This would force the particles to spend some time in the inner site

before changing direction of intercell migration. It would result in a C matrix

such as

C ′′
ab =

{
0, if a, b ∈ [1, Kex] and a �= b
1

K
, otherwise.

(4.10)

In the present work we will refer to the case of C = C ′ in Equation (4.9) as

“allowed ex-ex jumps”, and to the case ofC = C ′′ in Equation (4.10) as “forbidden

ex-ex jumps”.

4.1.2 Propagation

Once randomization changed the internal configuration of every cell indepen-

dently one of the other (while preserving the cell occupancies), the propagation

operation allows the cells to exchange the particles in their exit sites with their
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respective neighbors. In order to keep working with locally balanced Monte

Carlo moves the propagation must be applied to every pair of communicating

cells. Since some pairs can overlap, not all the pairs can be invoked at the

same time. This is because of local interactions among the host-molecules of

a given cell giving rise to different intercell migration barriers, depending on

the loading of both departure and target cell. Therefore, either they have to

be invoked in a random sequence, or they can be grouped into partitions, each

containing the maximum possible number of non-overlapping pairs. Such a

partitioning scheme [58], originally known as Margolus’ Neighborhood [50, 54]

allows no conflict to arise during such a substep.

At every pair, the two cells communicate through two adjacent exit sites, say

a and b. Provided a particle to be in a and site b to be empty, a jump from a to b
is accepted with a probability κ(n,m) where the departure and destination cell

are meso-configured, respectively, as n and m:

κ(n,m) =
γeβf

o
exe−βεki(n,m)

1 + eβΔΦ(n,m)
, (4.11)

where n = nex + nin and m = mex + min are the actual occupancies of the

departure and the target cell, respectively, the quantity

ΔΦ(n,m) =Φ(nex − 1, nin) + Φ(mex + 1,min)

−Φ(nex, nin)− Φ(mex,min) (4.12)

is the difference in interaction free-energy between the outcoming and the in-

coming configuration of the pair of cells and εki(n,m) is the kinetic barrier to

intercell migration, given as the intersection energy, for 0 ≤ x ≤ 1, between the

two harmonics

Edep(x) = 1
2
k(n− 1)x2 (4.13)

for the departure cell, and

Earr(x) = 1
2
k(m)(x− 1)2 (4.14)

for the arrival cell [59]. The trend assigned to the parameter k(n) in the numer-

ical simulation performed in this work is quadratically increasing at the highest

loading, as shown in Figure 4.2.

4.2 Jumps and time correlations

Numerical simulations [60] have shown that correlation effects can be mod-

eled (or excluded, if wanted) in our PCA. While every application of the memory-

less randomization described in Section 4.1 pushes each cell straightforwardly
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toward a condition of local equilibrium, via an abrupt collective move, the con-

figuration changes occurring by means of the jump randomization are much

less marked, and slow down strongly the evolution toward equilibrium. This

is because the output configurations available in the jump randomization are

much less than in the memoryless randomization, thus causing memory effects

to show up spontaneously as the system evolves in time.

Let us illustrate this in more details. The definition of configuration, s, given

in Equation (4.1) in Section 4.1 contains no information regarding the identity

of the guest particles. In other words, such a kind of identity-less configuration

will be referred to as “s-configuration”.

Particles identities will be taken into account by the following σ-configuration

instead:

σ(r) = {σiI}, i = 1, . . . , K and I = 1, . . . , N (4.15)

where N is the number of guests, and σiI has value 1 if the I-th guest of the

system is located at the i-th site of cell r, and 0 otherwise. We will consider

now a single, closed cell with configuration σ just before a randomization oper-

ation. The memoryless randomization will determine the output configuration

by choosing it out of the whole set of Ωσ = K!/(K−n)! possible arrangements of

distinguishable particles in the cell. The jump randomization instead constrains

the configuration path from σ to σR within a set of necessarily similar configu-

rations, so that the number of possible output configurations, say Ωjump
σ , results

smaller than Ωσ with a discrepancy increasing as the cell occupancy increases.

Such a discrepancy is the very origin of the memory effects in the self-diffusivity

in the automaton [60] as well as in a host-guest system in general. Ideally, one

should perform an infinite number of jump randomization cycles per time step

in order to suppress it.

An analysis of the migration mechanism in the automaton will help a deeper

understanding of the correlations introduced by the jump randomization. A low-

cost study of correlations in the motion of a tagged particle induced by the local

environment is the task of the Central Cell Model that we are about to introduce

in Section 4.3 for the case of a discrete jump model.

4.3 The Central Cell Model

In the model we present here, the lattice is constituted by (see Figure 4.3)

(i) A central cell.

(ii) A finite number, N sh, of cells surrounding the central one, organized into
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Figure 4.3: The lattice space of the Central Cell Model. The central cell (in green), hosting the

tagged particle, and the cells in the core shells (violet) are simulated through the prescribed

lattice-gas rule in the canonical ensemble. The external cells (gray), instead, are mean-field.

They maintain the whole system at thermodynamic equilibrium and work as a reservoir of

particles coming in/out of the border core cells. Broken cell-to-cell boundaries are meant as

cell-to-cell links. Figures (a), (b), and (c) differ in the number of core shells, which is Lsh = 0 in

(a), Lsh = 1 in (b), and Lsh = 2 in (c).

Lsh shells. Central cell and surrounding shells constitute the core of the

system.

(iii) A casing of Nmf border mean-field cells enclosing the core. Mean-field

cells are small grand-canonical systems, working for the core cells as a

reservoir of particles and keeping the whole system in equilibrium at the

desired value of chemical potential.

The cell-to-cell connections are established as follows: every cell in the core

is connected with all the available first-neighboring cells in the system, so that

if we consider a cubical arrangement of cells (so as to mimic the LTA zeolite

topology, as an example) every cell of the core cells is then connected to six first

neighbors. Core cells need not to be connected with each other only: cells at

the borders of the core happen to have one or more mean-field cells in their

neighboring list. Every cell of the mean-field cells instead are supposed to be

connected with one cell at the border of the core only. No connection is assumed

to exist between mean-field cells.

Since the mean-field cells exchange particles with an ideal reservoir, a chem-

ical potential, μ, has to be selected first. This gives access to the absolute

probability, p(n), of a meso-configuration n defined as

p(n) = [Ξ(μ)]−1

(
Kex

nex

)(
Kin

nin

)
eβμne−βF (n), (4.16)
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where the normalization factor Ξ(μ) is the grand-canonical partition function of

a single cell:

Ξ(μ) =
∑
n

(
Kex

nex

)(
Kin

nin

)
eβμne−βF (n). (4.17)

Occupancies nex, nin and n in Equations (4.16) and (4.17) are meant as the

occupancies of the exit sites, the inner sites, and the whole cell, respectively,

when the meso-configuration is n. Such a notation will be used throughout the

whole chapter.

The average occupancy (often referred to as the loading) is then 〈n〉 =∑
n np(n).

The probability distribution in Equation (4.16) will be used to update the state

of the mean-field cells at each time iteration.

Generating the initial configuration. The initial configuration is constructed

by randomly assigning each cell a meso-configuration according to the distribu-

tion p(n) (see Equation (4.16)). Such a meso-configuration is then converted into

a micro-configuration s of indistinguishable particles, randomly chosen out of

those satisfying the meso-configuration itself. Whereas not needed by the other

cells, the central cell must contain at least one particle, that will be “tagged”

thus allowing us to follow its dynamical path.

Time evolution

Once the initial configuration of the system is ready, the system evolves

in discrete time steps, t0, t0 + τ, t0 + 2τ, . . . , each of physical duration τ (see

Appendix A.1 and our previous work [58] for a discussion about the time step).

At each time step (say, t):

(i) A jump randomization is performed at each cell.

(ii) The pairs of connected cells are chosen in a random sequence, and a

propagation operation is performed at every pair. Until now, the whole

lattice has preserved its total number of particles.

(iii) The move performed by the tagged particle is stored. If it has left the central

cell, then the system has to be re-centered so that the newly occupied

cell becomes the central cell. Such an operation is performed by simply

transforming the coordinates of all the cells. If the tagged particle made
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a cell-to-cell jump, then the coordinates of the cells are transformed as

follows:

r(t+ τ) = r(t)− δr(t), (4.18)

where δr(t) is the distance vector between the arrival and the departure

cell. Due to this operation, the mean-field cells happening to fall outside

of the lattice space are destroyed, whereas those resulting not configured

at all will be assigned a new configuration in the next operation.

(iv) The mean-field cells are randomly assigned a new micro-configuration ac-

cording to the same procedure of generation of the initial one (applied to

the mean-field cells only though).

The update strategy described above is sketched in Figure 4.4. In Figure 4.5 we

compare the self-diffusivity resulting from a simulation of the canonical 9×9×9
lattice-gas with the one computed from a CCM simulation on an increasing

number Lsh of shells around the central cell. We can clearly see that increasing

Lsh improves the matching between the two types of simulations, and that two

shells are enough to obtain a reasonable agreement.

4.4 Analysis of the self-diffusion process: the dis-
placement autocorrelation function

The mean-field analysis is carried on in terms of the possible jump sequences

a tagged guest can perform during the diffusion process, treated as a Markov

chain, where jumps are meant as site-to-site migrations and can be categorized

into (i) jumps within the same cell and (ii) jumps between neighboring cells.

Each jump category has a certain probability to occur which is dependent on

the actual position of the guest itself and of the surrounding particles. Due to

the complexity of such a multi-body problem, a mean-field approach must be

used to derive readable equations linking correlations in the self-motion to some

macroscopic quantities (e.g., densities, total transfer rates, etc.).

A dynamical quantity of major importance in the analysis of the diffusion

process in a mesoscopic lattice is the instantaneous cell-to-cell displacement,
δr(t), of the tagged guest at time t, introduced in Equation (4.18). The instan-

taneous displacement can take values in the set of lattice vectors {ej}, with

j = 0, . . . , Kex, listed in Table 4.2 for the case (considered in this work) of a

cubic lattice.

The displacement autocorrelation function (DACF), given by 〈δr(zτ) · δr(0)〉
(where z ≥ 0 is an integer and τ is the duration of a time step), correlates in
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Figure 4.4: A schematic representation of the update strategy when the particle leaves the

central cell to move in the right neighboring cell (a,b). In (c) the mean-field cells at the very left

are destroyed. Then (d) the core cells at the very left become mean-field, whereas the mean-

field cells at the right retain their actual configurations and enter the new core. Finally (e) new

mean-field cells are created from scratch at the very right to complete the mean-field casing, the

proper cell-to-cell connections are established (f), and the system is ready to undergo the next

randomization-propagation cycle (g).
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Figure 4.5: The self-diffusivity, Ds, resulting from numerical simulations (in the canonical

ensemble) of the traditional lattice-gas automaton model for a closed test system of 9 × 9 × 9
cells, in comparison with the results of (grand-canonical) simulations of the Central Cell Model

with increasing number of shells Lsh. In the first row, the inner sites have been set as deeper

than the exit sites, and vice-versa in the second row. Ex-ex jumps are allowed.

Table 4.2: The set of direction vectors (cubic lattice).

e0 = (0, 0, 0)
e1 = (λ, 0, 0) e2 = (0, λ, 0) e3 = (0, 0, λ)
e4 = (−λ, 0, 0) e5 = (0,−λ, 0) e6 = (0, 0,−λ)

time the cell-to-cell displacements. It is related to the self-diffusivity via the

Green-Kubo formula [60]:

Ds =
1

2dτ

[
〈δr(0) · δr(0)〉+ 2

∞∑
z=1

〈δr(zτ) · δr(0)〉
]
, (4.19)

where d = 3 is the number of dimensions of a cubic lattice. Details about the

derivation of Equation (4.19) can be found in Appendix A.2. The peculiarity of

the DACF in a regular lattice is that it is strictly connected to the jump proba-

bility. It is the aim of this section to reconstruct the terms appearing in Equa-

tion (4.19) starting from the list of the possible movements of the tagged particle.
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Contribution at the initial time

First of all the contribution at t = 0,

Dmf
0 =

1

2dτ
〈δr(0) · δr(0)〉 , (4.20)

that is the uncorrelated diffusivity, proportional to the DACF at time zero, turns

out to be also proportional to the escape probability of the guest from the host

cell. The escape event will be indicated with the symbol ♦. In terms of the

randomization-propagation dynamics, such an event can be rewritten as:

♦ The guest reaches any of the Kex exit sites of the current cell during ran-

domization, and then the propagation step lets it migrate to the corre-

sponding neighboring cell during propagation.

Since at the initial time δr(0) · δr(0) equals λ2 if the guest migrates to a neigh-

boring cell and 0 otherwise, then Equation (4.20) can be rewritten as

Dmf
0 =

1

2d

λ2

τ
p(♦), (4.21)

where p(♦) = λ−2 〈δr(0) · δr(0)〉 is the escape probability.

Contribution after one iteration: a probabilistic interpretation of the nor-
malized DACF

Now, let us suppose that at time zero the particle escaped its host cell along

a generic non-null direction ej picked out of the set of direction vectors, listed

in Table 4.2 for a cubic lattice. This is the starting point for the listing of all

the subsequent events along with their respective probabilities, represented as

a Markov Chain. In this approach the choice of a (hyper)cubic topology turns

out to be the most convenient, since δr(t′) · δr(t) is non-zero if and only if the

displacements at the times t and t′ are parallel and non-null. More specifically, it

is positive if the displacement direction are the same, and it is negative if they are

equal but opposite. Therefore the normalized DACF, 〈δr(zτ)·δr(0)〉/〈δr(0)·δr(0)〉,
represents the conditional probability of a guest to migrate at time zτ in the

same direction of displacement at time 0, given that at time 0 the displacement

was not null, minus the conditional probability of a migration in the opposite

direction.

We will proceed now with the listing of the basic in-cage and cage-to-cage

jump events at the time t = τ , given a successful propagation at the previous

time. Every event will be associated a symbol, ς, taking values in the following

set:

S = {⇒,→,⇐,←,�, �,©} , (4.22)
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meaning respectively, for a given direction of motion (say the x axis), (⇒) suc-

cessful and (→) unsuccessful step forward, (⇐) successful and (←) unsuccessful

step backwards, (�) successful and (�) unsuccessful step out of the direction of

motion, © no attempt of leaving the cell.

The main approximation in the mean-field analysis is a factorization of the

joint probability, p(♦, ς), of an escape event (♦) followed by the event ς at the

next time step:

p(♦, ς) = p(♦)p(ς|♦) (4.23)

For the sake of clarity, in the list that follows we will give a short description

of the events mentioned in Equation (4.22). Those events are also sketched in

Figure 4.6.

⇒ A step forward. The randomization moves the particle from the exit site

into the opposite one. After this, the propagation is successful and the

particle migrates in the corresponding neighboring cell. This happens

with conditional probability p(⇒ |♦).
⇐ A backscattering event. At the end of randomization the particle finds

itself in the same exit site it entered by the event ♦. The propagation

is successful and the particle jumps back into the cell it occupied before

event ♦. (Conditional probability: p(⇐ |♦)).
� A change of direction. The particle performs a migration jump whose

direction is not parallel to the direction of the jump performed during the

event ♦. (Conditional probability: p(� |♦)).
© The guest reaches an inner site of the current cell during randomization.

(Conditional probability: p(©|♦)).
Single arrows, i.e., →, ←, and �, differ from ⇒, ⇐, and � respectively in the fact

that the propagation event is unsuccessful.

Let us now introduce the quantity χ(ς|♦), returning a value 1 if the cell-to-

cell displacement at time t (represented by the symbol ς) has equal sign of the

displacement at time 0, a value −1 if the sign is opposite, and 0 in all other

cases:

χ(ς|♦) =
⎧⎨
⎩

1, if ς =⇒
−1, if ς =⇐
0, otherwise .

(4.24)

Therefore, since the process is Markovian one can define

〈δr(τ) · δr(0)〉 = λ2p(♦)
∑
ς∈S

χ(ς|♦)p(ς|♦), (4.25)
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t = 0

event ♦:

−−−−−−−−−−−−−−
t = τ

event ⇒:

event →:

event ⇐:

event ←:

event �:

event �:

event ©:

Figure 4.6: A graphical 2-d representation of the main events contributing to the diffusive

motion of a single particle in the automaton. The events pictured here for times t = τ are

assumed to echange their role in time with the event for t = 0 according to a Markov chain.

For each event, the black 3-d sphere represent the actual position of a tagged particle (other

guest particles eventually present are omitted), while the empty circles represent its possible(s)

position(s) at the immediately preceding time step. Red and blue arrows represent respectively

the possible randomization and propagation outcomes.
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where the set S has been defined in Equation (4.22), which returns

〈δr(τ) · δr(0)〉 =λ2p(♦) [p(⇒ |♦)− p(⇐ |♦)] . (4.26)

Contribution after several iterations

Since we are assuming the migration process to be Markovian, the condi-

tional migration probabilities for t = 2τ will depend only on the outcome at time

t′ = τ . Relations between the conditional probabilities after two steps and those

after one step are listed in Table 4.3. It should be noted that a guest starting

from an inner site or from an exit site not pointing toward the direction ej nor

−ej will have equal probability to reach those sites during randomization. This

means that when the starting position is ©, or �, or �, the net average displace-

ment is null. Therefore, only the moves ⇒,→,⇐,← do contribute in the general

formula for the mean-field DACF:

〈δr(zτ) · δr(0)〉 =λ2p(♦)
∑
ς1∈S

· · ·
∑
ςz∈S

χ(ςz|♦)p(ς1|♦)

×
z−1∏
j=1

p(ςj+1|ςj), z ≥ 1. (4.27)

Therefore, general mean-field expressions can be formulated for both the DACF

and the self-diffusivity, Equation (4.19):

〈δr(zτ) · δr(0)〉 = λ2p(♦)
[
p(⇒ |♦)− p(⇐ |♦)

]
{
p(⇒ |♦)− p(⇐ |♦)−

[
p(→ |♦)− p(← |♦)

]}z−1

. (4.28)

Dmf
s =

λ2

dτ
p(♦)

⎧⎨
⎩1

2
+

p(⇒ |♦)− p(⇐ |♦)
1 + p(→ |♦)− p(← |♦)−

[
p(⇒ |♦)− p(⇐ |♦)

]
⎫⎬
⎭ . (4.29)

Equation (4.29) is a quite general approximated equation. The terms in it can

be obtained straight from a numerical simulation of the Central Cell Model. One

can proceed as follows: for evaluating p(♦) it is enough to store the number of

cell-to-cell jumps, N♦, of the tagged particle, and then dividing it by the number

of time iterations (say, Nτ ):

pnum(♦) =
N♦
Nτ

, (4.30)
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Table 4.3: Possible guest jumps after two time steps for the case where during the jump

randomization each guest can select any of the K sites in the cell as target sites.

p(ς| ⇒)

p(⇒ | ⇒) = p(⇒ |♦) p(→ | ⇒) = p(→ |♦)
p(⇐ | ⇒) = p(⇐ |♦) p(← | ⇒) = p(← |♦)
p(� | ⇒) = p(� |♦) p(� | ⇒) = p(� |♦)
p(©| ⇒) = p(©|♦)

p(ς| →)

p(⇒ | →) = p(⇐ |♦) p(→ | →) = p(← |♦)
p(⇐ | →) = p(⇒ |♦) p(← | →) = p(→ |♦)
p(� | →) = p(� |♦) p(� | →) = p(� |♦)
p(©| →) = p(©|♦)

p(ς| ⇐)

p(⇒ | ⇐) = p(⇐ |♦) p(→ | ⇐) = p(← |♦)
p(⇐ | ⇐) = p(⇒ |♦) p(← | ⇐) = p(→ |♦)
p(� | ⇐) = p(� |♦) p(� | ⇐) = p(� |♦)
p(©| ⇐) = p(©|♦)

p(ς| ←)

p(⇒ | ←) = p(⇒ |♦) p(→ | ←) = p(→ |♦)
p(⇐ | ←) = p(⇐ |♦) p(← | ←) = p(← |♦)
p(� | ←) = p(� |♦) p(� | ←) = p(� |♦)
p(©| ←) = p(©|♦)

p(ς| �)
p(⇒ | �) = p(⇒ | �) p(→ | �) = p(→ | �)
p(⇐ | �) = p(⇐ | �) p(← | �) = p(← | �)
p(� | �) = p(� | �) p(� | �) = p(� | �)
p(©| �) = p(©| �)

p(ς| �)
p(⇒ | �) = p(⇐ | �) p(→ | �) = p(← | �)

p(ς|©)

p(⇒ |©) = p(⇐ |©) p(→ |©) = p(← |©)
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where the subscript “num” denotes that the quantity has been evaluated from a

numerical simulation.

For evaluating the conditional probability, it will be enough to store the jump

direction every time the tagged particle performs a cell-to-cell jump. At the next

time

(i) if the particle performs another jump in the same direction as before, the

quantity N⇒ is increased by one,

(ii) if the particle fails a jump attempt toward the same direction as before,

the quantity N→ is increased by one,

(iii) if the particle performs a jump toward the opposite direction, then the

quantity N⇐ is increased by one,

(iv) if the particle fails a jump attempt towards the opposite direction, then the

quantity N← is increased by one.

Then the conditional probabilities are obtained as

pnum(ς|♦) = Nς

N♦
, ς ∈ {⇒,→,⇐,←} . (4.31)

Results of the numerical mean-field evaluation of Equation (4.29) will be com-

pared with the self-diffusivity obtained by explicit calculation of the DACF from

the output of the simulations in the Results and Discussion section.

4.5 Mean-field DACF: theoretical prediction of self-
diffusivity

In this Section we derive an approximate mean-field expression for the DACF.

We will first apply the general mean-field DACF formula in Equation (4.28) to the

limiting case of infinite dilution. Then, we will propose further approximations

to apply Equations (4.28) and (4.29) to the case of diffusion at arbitrary loading.

4.5.1 Exact DACF in the limit of infinite dilution

When the motion of a lone particle in an empty system is considered, corre-

lations with the motion of other particles are absent and an exact mathematical

formula for the DACF can be written. In this limit the migration probability

during propagation if the particle stays in an exit site is

Jprop =
1

2
γeβ[f

o
ex−εki(1,0)] (4.32)
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Table 4.4: Probability values for events of jump starting from initial condition ♦ at time 0 for the

case of jump randomization with allowed (upper part) and forbidden (lower part) ex-ex jumps,

where γex = [(Kex−1)/K]Jex−ex is the probability of the guest to jump into an exit site different

from the departure one, and γin = (Kin/K)Jex−in is the probability to jump to an inner site.

Allowed ex-ex jumps

p(⇒ |♦) = (1/K)Jex−exJprop
p(→ |♦) = (1/K)Jex−ex (1− Jprop)
p(⇐ |♦) = (1− γex − γin) Jprop
p(← |♦) = (1− γex − γin) (1− Jprop)

Forbidden ex-ex jumps

p(⇐ |♦) = [1− γin] Jprop
p(← |♦) = [1− γin] (1− Jprop)

and p(♦) is given by

p(♦) = pexJprop, (4.33)

where

pex =
Kexe

−βfoex

Kexe−βf
o
ex +Kine−βf

o
in

(4.34)

is the equilibrium probability of the lone particle to occupy an exit site. The other

terms in Equation (4.28) can be determined by properly weighting every possible

randomization jump. They are listed in Table 4.4 for both the case of allowed

and forbidden ex-ex jumps [i.e., use of {C ′
ab} or {C ′′

ab} matrix, Equations (4.9)

and (4.10), during the randomization procedure]. In the infinite dilution limit

the quantities Jex−ex and Jex−in mentioned in the formulas of Table 4.4 have the

same value:

Jex−ex = Jex−in = Jex := γeβf
o
ex . (4.35)

Since its value depends only on the departure (exit) site, we simply called it Jex.

lim
〈n〉→0

〈δr(zτ) · δr(0)〉 =− λ2pexJ
2
prop (1− 2Jprop)

z−1

× (1− Jex)
z , (4.36)

for the case of allowed ex-ex jumps, and

lim
〈n〉→0

〈δr(zτ) · δr(0)〉 =− λ2pexJ
2
prop (1− 2Jprop)

z−1

×
(
1− Kin

K
Jex

)z
, (4.37)
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for the case of forbidden ex-ex jumps We remark that Equation (4.36) is in-

dependent of the number of exit/inner sites in the cell, while Equation (4.37),

where jumps between different exit sites are forbidden, shows an explicit depen-

dence on the number of sites constituting the cell. Therefore the accessibility

of the adsorption sites plays a fundamental role in determining the entity of

correlations.

4.5.2 Approximated mean-field DACF and self-diffusivity at
arbitrary loading

At arbitrary loadings the tagged particle is likely to share its host and neigh-

boring cells with other particles. This means that, during randomization, the

variety of sequences in which the particles can be invoked to attempt a jump

have an effect on the probability of the tagged particle to reach an exit site, as well

as they affect the tendency of the cell to keep memory of its previous configura-

tions from time to time. Since we are interested in improving our understanding

of the self-diffusion process by obtaining a readable equation,

(i) we will treat as a mean-field the other guests sharing the cell with the

tagged particle. That is, we assume that when the tagged guest is invoked

to attempt a jump during the randomization process, the other guests in

the cell are distributed according to the equilibrium distribution. This

is equivalent to approximating the jump randomization scheme with a

different local operation where, just before the tagged guest is invoked,

all the other guests in the cell undergo a memoryless randomization (see

Section 4.1.1). Such an approximation will become less accurate the more

binding are the sites and the more restricted the dynamics is, since given

these conditions the cell reaches local equilibrium more slowly,

(ii) we will treat mean-field randomization and propagation separately. In

other words, the probability of jumping toward some direction will be fac-

torized into probability of reaching some exit site during randomization and

probability of performing a successful propagation, treated as independent

one of the other.

The DACF at t = 0 is not affected by time correlations and can be well

approximated with

〈δr(0) · δr(0)〉 =λ2 1

〈n〉
∑
n

∑
m

nex

(
1− mex

Kex

)

×p(n) p(m)κ(n,m), (4.38)
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where λ is the lattice spacing, and 〈n〉 is the loading (average number of occupied

sites in a cell). The relations among Dmf
0 , 〈δr(0) · δr(0)〉 and p(♦) are given in

Equations (4.20) and (4.21).

As we can see in Equations (4.28) and (4.29), the probabilities of interest refer

to jumps starting from an exit site position. Thus, when evaluating the DACF

terms for z ≥ 1, one has to consider the conditional probability of the tagged

guest already located in an exit site to stay in a cell with meso-configuration n,

rather than the absolute probability of n itself. Therefore we introduce gex(n),
that can be re-interpreted as the conditional probability of a cell with an occupied

exit site to be meso-configured such as n, i.e., to have nex − 1 of the remaining

Kex − 1 exit site and nin of the Kin inner sites filled,

gex(n) =
nexp(n)∑

n′
n′
exp(n

′)
, (4.39)

where the quantity

nex

Kex

p(n) = [Ξ(μ)]−1

(
Kex − 1

nex − 1

)(
Kin

nin

)
eβμne−βF (n) (4.40)

is the total probability of one particular exit site, nex − 1 of the remaining exit

sites, and nin inner sites to be occupied in a cell.

Mean-field jump randomization

Once defined the probability distribution gex in Equation (4.39), it is straight-

forward to derive mean-field expressions for the probability that, once the tagged

particle has targeted another exit site, it reaches

Jex−ex =γe
βfoex
∑
n

(
1− nex − 1

Kex − 1

)
gex(n), (4.41)

This is the average acceptance of an exit-to-exit jump during randomization.

Similarly, the average acceptance of an exit-to-inner jump is

Jex−in =γeβf
o
ex

∑
n

(
1− nin

Kin

)
gex(n)e

βΦ(n)

× e−βmax[Φ(nα−1,nν+1),Φ(n)] (4.42)

where γ has been defined when illustrating Equation (4.8).
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Mean-field propagation

The mean-field propagation probability, that is the probability that during

propagation a guest located in an exit site effectively migrates into the corre-

sponding neighboring cell (this is sometimes referred to as transmission coeffi-
cient), can be formulated as

Jprop =
∑
n

∑
m

(
1− mex

Kex

)
gex(n)p(m)κ(n,m). (4.43)

Mean-field jump probabilities

We are now ready to write down mean-field expressions for the conditional

probabilities included in Equations (4.28) and (4.29), for both the case of allowed

and forbidden ex-ex jumps. These are listed in Table 4.4. Including them into

Equations (4.28) and (4.29) gives:

〈δr(zτ) · δr(0)〉 = −2dτDmf
0 Jprop (1− 2Jprop)

z−1
(4.44)[

1− Kex

K
Jex−ex − Kin

K
Jex−in

]z
allowed ex-ex jumps,

Dmf
s = Dmf

0

⎧⎪⎪⎨
⎪⎪⎩1− 2Jprop

1− Kex

K
Jex−ex − Kin

K
Jex−in

1− (1− 2Jprop)

[
1− Kex

K
Jex−ex − Kin

K
Jex−in

]
⎫⎪⎪⎬
⎪⎪⎭ ,

allowed ex-ex jumps (4.45)

〈δr(zτ) · δr(0)〉 = −2dτDmf
0 Jprop (1− 2Jprop)

z−1

[
1− Kin

K
Jex−in

]z
,

forbidden ex-ex jumps, (4.46)

Dmf
s = Dmf

0

⎧⎪⎪⎨
⎪⎪⎩1− 2Jprop

1− Kin

K
Jex−in

1− (1− 2Jprop)

[
1− Kin

K
Jex−in

]
⎫⎪⎪⎬
⎪⎪⎭ ,

forbidden ex-ex jumps, (4.47)

Where the series

∞∑
z=1

AzBz−1 =
A

1− AB
(4.48)

Andrea Gabrieli - Hierarchical Multiscale Modeling of Materials: an Application to Microporous Systems
Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari



4.6. Discussion of the mean-field results 76

has been used to perform the summation of the correlated part.

Unlike the more general mean-field formulas in Equations (4.28) and (4.29),

the various quantities in Equations (4.44) to (4.47) do not depend on whether

the ex-ex jumps are allowed or forbidden in the randomization algorithm. As

can be seen, forbidding the ex-ex jumps has the only effect of dropping the term

−Kex

K
Jex−ex out of the mean-field formulas.

Although the formulas above lead to a qualitatively correct representation of

correlations, they do not always match quantitatively with the results of numer-

ical simulations. Nevertheless, the obtained discrepancies are of great help in

understanding the correlation mechanism, as we will discuss in Section 4.6.

4.6 Discussion of the mean-field results

In Figure 4.7 we plot the results of numerical simulations of the Central Cell
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Figure 4.7: Comparison between diffusivity obtained from numerical simulations of the Central

Cell Model and from the mean-field theory. Black squares are obtained from the trajectory

data outcoming from numerical simulations through the Green-Kubo formula, Equation (4.19).

Blue circles are obtained by applying on the same trajectory data the more general mean-field

approximation, Equation (4.29). Solid lines are theoretical prediction values obtained from

the more specific mean-field approximations in Equations (4.45) and (4.47). In the first row,

Figures (a), (b), (c), and (d) the inner sites are 10 kJ mol−1 deeper than the exit sites, and vice-

versa for the second row, Figures (e), (f), (g), and (h). In the first column, Figures (a) and (e), the

zero-time diffusivity, Equation (4.20) is shown. In the second column, Figures (b) and (f), the

trends of the macroscopic quantities Jex−ex, Jex−in, and Jprop constituting the theoretical mean-

field approximation are shown. In the third and the fourth columns, respectively, Figures (c),

(g) and (d), (h) the case of allowed and forbidden ex-ex jumps are considered.

Model applied in the cases where the deepest sites are the inner or exit ones re-

spectively, each studied with two different levels of time correlation entity. The
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values calculated explicitly from the numerical simulations through the Green-

Kubo formula, Equation (4.19), are reported as black squares, whereas general

mean-field values and mean-field theoretical predictions are reported as blue

circles and solid lines, respectively.

As expected, the self-diffusion coefficient when the inner sites are the deep-

est ones increases from low to intermediate loadings as a consequence of the

increasing probability of the tagged particle to occupy an exit site (thus being

able to attempt a cage-to-cage jump), and starts decreasing at higher loadings

when the exit sites tend to be saturated so that each pair of adjacent exit sites

of communicating cells is more likely to be saturated, this leading the cells to

exchange no particles. When the exit sites are the deepest ones instead, the

pairs of exit sites tend to be saturated from the beginning (i.e., at low loadings),

this leading to the expected decreasing diffusivity.

The escape probability, and thusDmf
0 , does not vary depending on whether or

not the ex-ex jumps are allowed (see Figures 4.7a and d). This is because there

are no correlations to be taken into account. As a consequence, both the general

mean-field equation (4.29) and the more specific one obtained through the DACF

value in Equation (4.38) perfectly match with the explicit numerical value ofDmf
0 .

The functions constituting the specific mean-field equations, Figures 4.7b

and f, give some insights about the migration probability of the individual pro-

cesses. The way the average jump acceptances Jex−ex, Jex−in, and Jprop behave

with respect to loading is the basis of the mean-field treatise of correlations.

They are strictly connected to the choice of the difference between the site ad-

sorption free-energies f oex and f oin. As we described above, when the inner sites

are the deepest ones the exit sites are poorly occupied. The acceptance of ex-in

jumps, Jex−in, starts to decrease from low loadings whereas the acceptance of

(allowed) ex-ex jump, Jex−ex, is almost unity and does not decrease significantly

as long as the inner sites are not close to saturation, around 〈n〉 ≈ Kin. The

behavior of Jprop is similar to Jex−ex: it remains almost constant (about 1/2)

until the loading becomes high enough so that the exit sites start being filled.

Inverting the site depths f oex and f oin exactly inverts the respective behaviors.

The average jump acceptances are combined together by Equations (4.45)

and (4.47) to give approximated values for the correlated self diffusivity Dmf
s (see

solid lines in Figures 4.7c, d, g, and h). Although the theoretical predictions

are qualitatively correct, they are close to the simulation values especially at low

loadings, while usually they fail at higher loadings. The more general (numeri-

cal) diffusivity equation (4.29) gives a better approximation than the theoretical
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prediction. This is because the numerical evaluation of Dmf
s through Equa-

tion (4.29) does not suffer from the separation of mean-field randomization and

propagation operations, which was the leading assumption when we derived the

theoretical diffusivity formulas in Section 4.5.2. However, the general diffusivity

equation becomes less accurate in situations where the memory of the previous

local configurations is lost slowly, as for the case shown in Figure 4.7d. When

discussing about the amount of memory locally lost during each randomization

step, it is interesting to find out the main sources of correlations and to identify

which of the cases above is the most memory-preserving.

Memory preserved in exit and inner sites. Since the cell-to-cell migrations

occur via the exit sites, and their connectivity from one cell to the other de-

termines the topology of the whole grid of cells, all events involving them will

introduce more correlation than the events occurring in the inner sites, which

instead are structureless so that they can be considered as the less memory-

preserving part of the cell.

Memory-preserving backscattering. When a tagged guest migrates from cell

to cell during propagation, the probabilities related to every next move do de-

pend on the configuration of both cells before the propagation occurred. In

other words, the assumption in Equation (4.23) is strong and this is especially

true when correlation effects are particularly evident, such as in the case of

forbidden ex-ex jumps shown in Figure 4.7d. In that case, (i) forbidding the ex-

ex jumps gives the backscattering contribution a major role in the production

of correlations (this is because the randomization will produce only very small

changes in the local configuration), and (ii) cage-to-cage jumps are infrequent

because f oin < f oex, so that the configuration of the exit sites tends not to change

significantly from step to step. Due to these two facts, a backscattering parti-

cle which has left the cell r at time t and backscatters into it at time t + τ is

very likely to find r just little changed or not changed at all. If the exit sites

are the deepest instead, even though ex-ex jumps are forbidden one has that

propagation events are more likely to occur at low-intermediate loadings than

what expected when the inner sites were the deepest. This causes the memory-

preserving attitude of the exit sites to be less marked when the migration events

are frequent. Therefore, as it can be seen from Figure 4.7, the d case (deepest

inner sites and forbidden ex-ex jumps) is the more affected by time correlations

in the self-diffusion process. The approximation in Equation (4.23) becomes

then less accurate, whereas in all the other cases it is acceptable.
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4.7 Conclusions

In this work, we laid down the basis of a simple computational framework,

the Central Cell Model (CCM), aimed to be specific for the study of the motion on

the mesoscopic scale of a single particle in a system of connected cavities in the

presence of other diffusants, in conditions of thermodynamic equilibrium. Our

model is local and discrete in both space and time, and in the numerical applica-

tions we have shown here it has been constructed starting from the algorithm of

a lattice-gas model for diffusion in microporous material. We have shown that,

although being not possible for the CCM to sample all the informations obtain-

able by a full lattice-gas, a CCM simulation provides an accurate reproduction

of the memory effects in the self-diffusion (and thus, of the diffusion isotherm)

at a minimum computational cost.

The way the CCM is constructed suggested how to carry on a mean-field

study of the self-diffusion process produced by the particular evolution rule

adopted. This has led to two approximated mathematical expressions for self-

diffusion. The first one, more general, can be applied with data coming straight

from the CCM simulation. The second one, more case-specific and derived

by assuming fast local equilibration, is theoretical and yelds a more accurate

approximation the weaker the correlations and the lower the loadings are. Inter-

pretation of the discrepancies between the self-diffusivity trends obtained from

the numerical simulations and their two different mean-field approximations

helped to understand how, and how strongly, memory effects can emerge de-

pending on the very general features of the model parametrization.

The obtained results suggest the CCM approach to be suitable for other the-

oretical studies, e.g., the time correlations in the local density [101, 102], as

well as for direct applications in the field of the molecular coarse-graining. For

example, the CCM approach could be further extended to the sampling of both

the adsorption and the self-diffusion isotherm through a single simulation when

the lattice-gas rule includes an explicit cell-to-cell interaction potential which

makes (in principle) impossible do derive the equilibrium probability distribu-

tion of states a priori. This could be done by performing a grand-canonical Monte

Carlo on the border cells while keeping the core evolving with the prescribed dy-

namic lattice-gas rule in the canonical ensemble. Also, an even more intriguing

extention of the CCM approach could be made in the field of hybrid MC-MD

schemes aimed to realistically mimic the bulk effects in the motion of a tagged

guest in an atomistic simulation.
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Chapter 5

Development and optimization of a
new Force Field for flexible
aluminosilicates, enabling fast
Molecular Dynamics simulations on
parallel architectures

Adapted with permission from Andrea Gabrieli, Marco Sant, Pierfranco Demontis, and

Giuseppe B. Suffritti; The Journal of Physical Chemistry C; 2013, 117 (1), pp 503-509. “Copy-

right 2012 American Chemical Society.”

http://dx.doi.org/10.1021/jp311411b

Despite the increase of computational performance, thanks to the spreading

of parallel architecture, it is still not feasible to follow the dynamical evolution of

a system including more than several hundred atoms via ab-initio methods for

more than a few picoseconds.

For this reason, classical molecular dynamics (MD) computations are not

going to disappear in the near future and are still widely adopted by the sci-

entific community. In recent years, a number of MD packages that can exploit

massively parallel architecture have been developed [103–108]; among these we

choose NAMD [103] for its open source policy joined to its high performance in

our computing facility. Among the great variety of functional forms for classical

force fields available, a widely used one is the CHARMM [109] type, on which we

will rely as well. The CHARMM force field has been originally developed to sim-

ulate biological macromolecules possessing a carbon-based backbone. Silicates
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share with tetravalent carbon a local tetrahedral symmetry, so it is reasonable

that, after a suitable parameter optimization, the CHARMM functional form will

be able to reproduce the structural and vibrational properties of silicates (e.g.,

quartz structure parameters are already available from Lopes et al. [110]).

The aim of this work is to adapt and optimize the force field previously

developed in our laboratory for MD simulations of aluminosilicates via serial

codes [111–117] in a new different functional form to enable fast MD simula-

tions in a parallel environment. In particular, we will focus our attention on the

following zeolitic structures: silicalite, zeolite Na A, Ca A, Na Y, and Na X.

5.1 Theory and models

5.1.1 Framework structures

Zeolites are microporous aluminosilicates [118, 119]. Their structure con-

sists of a regular network of channels and/or cages of molecular dimensions

(up to 1.2 nm), interconnected by windows (up to 0.8 nm in diameter). The alu-

minosilicate framework is built up by corner sharing TO4 tetrahedra (in which

the T-sites are occupied by either silicon or aluminium), giving rise to a rather

complex but precisely periodic atomic network. Cavities and channels are stud-

ded with cations (usually metallic), which compensate for the charge deficit

due to the substitution of silicon by aluminium, when present. Molecules can

be adsorbed inside these materials and manifest several unexpected behaviors

generated by the framework confinement [62–64].

The structures involved in this work vary considerably in both crystal ge-

ometry and free volume connectivity (for structure visualization, we use the

VMD [120] software). In particular, silicalite is the purely siliceous form of MFI-

type zeolite, one of the most studied crystals in the literature [119,121], thanks

to its widespread industrial employment. At low temperatures, its evacuated

structure presents a monoclinic symmetry. At high temperatures, it undergoes

a phase transition, and the symmetry becomes orthorhombic. Its free volume

has a peculiar connectivity made of straight channels along the y direction and

sinusoidal channels along the z direction, with ten-membered ring pore open-

ings of ∼0.56 nm in diameter [122,123].

At the same time, Na A and Ca A are two well-characterized cationic forms

of LTA-type zeolite. This crystal is constituted by cubooctahedral sodalite cages

arranged cubically around larger (∼1.12 nm) α−cages that are interconnected

by eight-membered ring pores with kinetic diameter of ∼0.43 nm. The small

pore size makes this zeolite suitable for separation processes thanks to its per-

meability limited to small molecules like N2, CO2, CH4 [62]. The framework of
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Table 5.1: Number of atoms per unit cell and lattice parameters for the simulated structures.

In parentheses, number of cations.

zeolite atoms a (nm) b (nm) c (nm)

Sil 288 2.0022 1.9899 1.3383

Na A 672(96) 2.4555 2.4555 2.4555

Ca A 624(48) 2.4555 2.4555 2.4555

Na Y 632(56) 2.4850 2.4850 2.4850

Na X 664(88) 2.5051 2.5051 2.4051

this zeolite contains Si and Al in a 1:1 ratio (i.e., there is a regular alternation

of the two atom kinds). The unbalance in total charge caused by the presence

of the 96 Al3+ cations in the crystallographic unit cell is compensated by the

presence of exchangeable cations: in the case of Na A, 96 Na+ are required,

while in the case of Ca A the number is halved to 48 Ca2+. Cations within zeolite

A structure occupy well-defined sites, and those in the literature have been di-

vided into three groups according to their position with respect to the pores, in a

given unit cell: 64 type I sites, eight for each sodalite cage in the six-membered

rings; 24 type II sites, one for each eight-membered ring window connecting two

adjacent α−cages; 48 type III sites, one for each four-membered ring pore [62].

In the case of Na A, most of the favorable sites are occupied, and a digital recon-

struction of this structure is relatively straightforward [124] (i.e., type I and type

II sites are fully occupied while the remaining 8 cations are distributed among

the type III sites, one in between each couple of adjacent sodalite cages). On the

other hand, crystallographic data [125] show that Ca cations prefer to stay in

the type I sites [126]. Then, one has to choose which of these 64 type I sites are

occupied by the 48 Ca. We used an ad-hoc procedure to randomly distribute six

cations per sodalite cage. Considering all the possible configurations, we iden-

tified the ones having the most occurring potential energy and randomly chose

one of these (a discussion of the full procedure used is reported in Appendix B).

Finally, to investigate the portability of our new force field, we study the

FAU-type structure, in its two variants: Na Y and Na X. This structure is very

important from an industrial point of view, in particular for petrochemical ap-

plications [62,63,78]. The cages are arranged in a tetrahedral array, with wide

pores (∼0.75 nm) made of 12-membered rings. The difference between Na Y and

Na X lies in the Si to Al ratio: this ranges from 1.0 to 1.5 for X [62] and from 1.5
to 3 for Y; in this work we use 1.18 for X [127] and 2.43 for Y [80].

In Table 5.1 the unit cell sizes for each investigated structure are reported.
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5.1.2 Theoretical background

Due to its widespread use within the main MD packages, we choose to de-

velop a CHARMM type force field, having the following functional form:

Epot =
∑
bonds

kb(b− b0)
2 +

∑
angles

kθ(θ − θ0)
2 (5.1)

+
∑
UB

ku(u− u0)
2

+
∑
vdW

ε

[(
Rminij

rij

)12

− 2

(
Rminij

rij

)6
]

+
∑
i<j

qiqj
εrij

.

Here, each term is related to a specific interaction contributing to the total

potential energy:

• the first one is an harmonic term representing the stretching, kb being the

force constant and b0 the equilibrium distance;

• the second is the harmonic potential for angles, with kθ being force con-

stant and θ0 the equilibrium angle between three bonded atoms;

• the third is the Urey-Bradley (UB) potential term which acts as a fictitious

bond between two atoms, 1 and 3, connected to a common atom 2, where

ku is the force constant and u0 the equilibrium distance;

• the last two are nonbonded terms, with a Lennard-Jones (12-6) for the van

der Waals interaction (where Rmin is the minimum location and ε is the

well depth) and a Coulomb term for the electrostatic interactions.

For completeness, here we report the force field that was formerly developed

in this laboratory [111] (implemented only in a serial code, thus not readily

usable in fast parallel computations via modern packages). Once again, the total

potential energy comes from the summation of a bonded part and a nonbonded

part (both parts are divided in two terms):

Epot = Eb1 + Eb2 + En1 + En2 (5.2)

The first bonded term accounts for the first-neighbor T−O interaction:

Eb1 =
∑

D {1− exp[−B(b− b0)]}2 (5.3)
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where D and B represent the potential well depth and width, respectively, and

b0 is the equilibrium distance.

The second bonded term is related to the interaction between two atoms, 1

and 3, connected to a common atom 2 (i.e., oxygen atoms of the same tetrahe-

dron O− (T)−O, and T atoms of adjacent tetrahedra T− (O)− T):

Eb2 =
∑⎧⎨
⎩

k
2
(u− u0)

2 + A
6
(u− u0)

3, u < (u0 − 2k
A
)

0, u ≥ (u0 − 2k
A
)

(5.4)

where k and A are the harmonic and anharmonic constants, respectively, and

u0 is the equilibrium distance.

Regarding the nonbonded part, the first term represents the vdW interaction

between the cations and the framework oxygens (i.e., Na−O or Ca−O):

En1 =
∑

A exp(−Brij)− C

r6ij
(5.5)

where A, B, and C are the Buckingham potential constants, and rij are the

interatomic distances.

The second term, instead, is related to the electrostatic interaction between

all atoms of the system:

En2 =
∑
i<j

qiqj
εrij

(5.6)

where qi and qj are the atomic charges.

The main features of this former force field are: the anharmonic form of

all the terms and the absence of direct angular dependence. This simplifies the

calculations but does not allow a correct reproduction of the frequency difference

between symmetric and asymmetric bond stretching modes [111]. In addition,

no “exclusion policy” is considered, and the strong electrostatic interactions

between nearest-neighbor atoms are compensated by suitable large constants

of interatomic interactions.

5.1.3 Force field development

As a starting point in our development we rely on former force fields for

aluminosilicates developed in both this laboratory [111] and other research

groups [128]. On the other hand, the force field available in the CHARMM

database [110] is optimized for quartz crystals; some preliminary MD simula-

tions with these parameters show that this force field is not suitable to repro-

duce properly the experimental structure of the zeolites under investigation in
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this work, most probably due to the Al/Si substitution, entailing different T−O
interactions and forcing the presence of the cations.

We aim at developing a unique force field, common to all five zeolitic struc-

tures under investigation. Moreover, we want this force field to be a basis for

further studies on other zeolites, requiring only minimal tuning to obtain reliable

results. The greatest problem in this task, then, comes from the presence of the

free cations within the framework: a good flexible force field should reproduce

correctly the position and dynamics of these cations; this task is more delicate

than just assuring a good reproduction of the overall zeolitic structure.

We start working with the Na A structure, where the crystallographic posi-

tion of the cations has a high degree of symmetry. In our first parametriza-

tion, we choose to rely only on bonds and angles to reproduce the experimental

structure. To avoid crystal collapses and distortions, we initially set the force

constants at an arbitrarily high value. With this parametrization, the starting

crystallographic structure of the Na A framework is maintained fairly well, but

the Na cations readily lose their position entering the sodalite cages, which is

unrealistic at the temperatures of interest.

Our effort, then, is to modify the parameters of the simulation to ensure

the correct dynamics for the cations. This may be achieved working on various

aspects: bonded interactions, exclusion policy, and nonbonded parameters.

Bonded interactions. We reduce the values of the force constants related

to the bonded terms (from the initially set very high value), trying to match the

potential energy interactions of our previous force field [111]( i.e., splitting the

various contributions of the former functional into two main parts: one repre-

senting the bonds and the other representing the angles). At this point we plot

the potential energy function of the two parts and compare it with the corre-

sponding one coming from our former force field. A subsequent comparison and

tuning of the new force constant with the values taken from Nicholas et al. [128]

gives us a good starting point for preliminary test runs, while an accurate op-

timization will be performed in the next section on the basis of experimental

spectroscopic data.

Exclusion policy. Modern force fields (e.g., AMBER) apply a specific exclu-
sion policy for the computation of nonbonded interactions among bonded atoms.

The standard policy scaled 1-4 implies that both the vdW and electrostatic in-

teractions between couples of bonded atoms (1-2) or between atoms bonded to

a common atom (1-3) are excluded, while for the interaction between atoms

separated by two other atoms (1-4) the vdW ε parameter for the given couple is

divided by 2.0 and the electrostatic interaction is by 1.2.

Starting the simulation with the atoms located at their crystallographic po-

sition and setting the equilibrium values for bonds and angles according to the
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experimental data, we expect that a good choice of the force field parameters

will keep the potential energy to a minimum (from an absolute value point of

view), with respect to other parametrizations that will tend to deform the crys-

tal, putting more strain on the bonds and angles springs, which counteract to

stabilize the structure.

On this basis, we use the potential energy as a discriminant in developing

our force field to choose the most suitable parametrization. Then, we perform

various test runs to study which is the exclusion policy that gives the lowest

potential energy: using no exclusion gives an unacceptable value of electrostatic

interaction energy, distorting completely the framework structure; the situation

improves slightly using a (1-2), (1-3) or (1-4) exclusion policy. Nonetheless, the

best results are achieved with the scaled 1-4 exclusion. For the latter, another

cycle of studies is performed to understand which are the best scaling factors

for the vdW and electrostatic interactions. For the structures here investigated,

we find that a good choice is to divide the electrostatic interactions of the (1-4)

couple by a factor of 2.0 and leave the vdW ε parameter unchanged (i.e., 1.0).

Nonbonded parameters. From the tests performed in the previous para-

graph, we understand that the vdW interactions have a positive role in stabiliz-

ing the crystal structure (i.e., they help to reduce the bond and angle potential

energy). From this hint, we decide to take into account in our computations

the vdW related to the Si and Al atoms (in the literature, in fact, for computa-

tional convenience the vdW interactions with these atoms are usually ignored

because they are considered to be shielded by the strongest oxygen vdW term

contribution).

At this point, we make a final adjustment modifying the values of the vdW

interaction for the Na cation. It should be noted, in fact, that the charges used

in our previous potential, have high values in comparison to those adopted in

the most popular force fields.

For the framework atoms, they are about one-half of the formal ionic charges

(2.0 e for Si, 1.5 e for Al, -1.0 e for O), whereas for the cations the full formal

charge (1.0 e for Na, 2.0 e for Ca) was adopted. As the total structure electrical

neutrality must be ensured, the actual value of the charges depends on the

Si/Al ratio and is derived by imposing that the charge of O atoms is as close as

possible to -1.0 e. This choice was made based on several reasons: it reproduces

within 20% (or less) the values estimated by quantum mechanical calculations

of zeolitic structures; it is in agreement with the raw chemical statement that

Si(Al)−O bonds are half ionic and half covalent in character and; last but

not least, it is in line with the charges derived from available X-ray diffraction

experiments [129].

After testing various possibilities, optimal results for Na are found using the

Andrea Gabrieli - Hierarchical Multiscale Modeling of Materials: an Application to Microporous Systems
Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari



5.2. Results and discussion 88

vdW ε parameter taken from Pantatosaki and Papadopoulos [130] and the Rmin

taken from the “par_all27_lipid.prm” CHARMM database [131,132] (for Ca, both

ε and Rmin parameters are taken from this database [133]). With these settings,

the correct position of the Na cations has been achieved, and there has been no

entrance of Na inside the sodalite cages for all the duration of the test simulation

(tens of nanoseconds) for temperatures up to 1000 K.

5.2 Results and discussion

5.2.1 Optimization

At this point, we start a more accurate refinement process of our force field.

The procedure used to optimize the parameters relies on the computation of the

Infra Red (IR) spectrum and its comparison with experimental data [111, 134–

136].

First, we optimize the force field for silicalite (since it needs less parameters

thanks to the absence of cations), adjusting the force constants until a good

match between experimental and simulated spectra is attained, and then we

move to the zeolite A, Y, and X structures to complete the refinement of those

parameters that are not present in the silicalite force field, namely, the Al and

cation-related terms. To obtain the simulated spectra, we perform MD runs in

the microcanonical (NVE) ensemble, with a time step of 1.0 fs, applying periodic

boundary conditions (PBC) to a eight unit cells (2 × 2 × 2) simulation box and

treating the electrostatic interactions via Particle Mesh Ewald (PME) method

[103]. Simulated IR spectra are derived squaring the Fourier transform of the

total dipole momentum [137–139], with Blackmann-Harris windowing [140],

following the Welch method [141].

All simulations follow this procedure:

• 1000 steps of structure minimization, keeping the framework atoms fixed

at their crystallographic positions to relax only the cations;

• 1.0 ns run to heat the system from 1 K up to the target value of 300 K

(first 0.4 ns) and thermalize it at the fixed temperature of 300 K (last 0.6

ns), all this via rescaling of atom velocities;

• 10.0 ns NVE production run to validate the force field parametrization and,

in particular, its ability to keep the cations in their correct position;

• 0.4 ns extra run for accumulation of detailed trajectory data (written every

4.0 fs) for subsequent spectral analysis.
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Figure 5.1: IR spectra for silicalite: experimental [111] (dots), initial unoptimized model

(dashes), final optimized model (continuous line).

For every given set of force field parameters, we also perform a test run at the

temperature of 1000 K checking that the cations keep their correct position (i.e.,

they do not enter into the sodalite cages).

In Figure 5.1 we compare the experimental spectrum for silicalite with the

one coming from our simulations before the optimization process. The greatest

differences are found: (1) in the region from 400 to 850 cm−1, where peaks are

overlapped and ill defined and (2) in region from 1000 to 1200 cm−1, where the

band is shifted toward too low wavenumbers.

To improve the agreement with the experimental spectrum, we first try to

understand the influence of every force constant term on the spectrum bands.

The most important point is that a given term may affect more than one band,

and moreover, the influence of a given force constant on the bands varies, in

a nontrivial way, according to the value of the other force constants to which

it is coupled. Nonetheless, some trends can be isolated and help us in the

optimization: the O− Si−O bending force constant affects mainly the 400 –

850 cm−1 region, while the Si−O bond term is mainly concerned with the 1000

– 1200 cm−1 region.

We adjust the parameters so that the high-frequency band is shifted toward

the experimental value of 1100 cm−1. The fact that the band is so narrow can

be explained by comparing the analytical form of our new force field with the

former one: in the new force field most terms, and in particular the Si−O bond

term, have a harmonic form, while in the former one all terms are anharmonic
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Figure 5.2: IR spectra for Na A (a), Ca A (b), Na Y (c), and Na X (d): experimental [dots, (a,b) [111],

(c) [134], (d) [135]] and optimized model (continuous line); in the inset, zoom of far-infrared

region related to cations vibrations against experimental data [dots [142] and dashes [143] in

(a,b); dots [136] in (c,d)].

Andrea Gabrieli - Hierarchical Multiscale Modeling of Materials: an Application to Microporous Systems
Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari



5.2. Results and discussion 91

(for harmonic oscillators the frequency is independent of the energy).

To enhance the separation of the bands in the 400 – 850 cm−1 region, in

accordance to the work of Nicholas et al. [128], we introduce a UB term between

T atoms of adjacent tetrahedra (fictitious T− (O)− T bond angle interaction),

see Equation 5.1. This is particularly useful when the T−O− T equilibrium

angle θ0 is large (approaching 180◦): in these cases the distance u between the

two T atoms is weakly coupled to the oscillations of the angle θ, thus needing the

addition of an extra functional term to model properly the two-atom interaction.

The final result for silicalite can be appreciated in Figure 5.1, where the

optimized spectrum (continuous line) matches closely the experimental one; the

differences in the relative intensities between high and low wavenumber bands

are in line with other computational works and are mainly due to the neglect of

quantum mechanical corrections in the spectrum computation [137,138].

In the literature, there have been many attempts to interpret the spectral

bands [144,145], but a clear-cut classification is not possible [136] due to the

complex coupling of the framework atom dynamics. A simple qualitative char-

acterization of the bands, with respect to the functional form of our force field,

is the following:

950 – 1250 cm−1, T−O bond stretching modes;

650 – 850 cm−1, T− (O)− T UB term stretching modes;

550 – 650 cm−1, coupling of T− (O)− T stretching with O− T−O bending;

400 – 500 cm−1, O− T−O angle bending.

Moving to the remaining structures, we determine the parameters related to

Al: the bond constant for Al−O is found to be weaker with respect to the Si−O
constant, and this can be understood based on the different bond energies of

the two couples of atoms (which slightly affects the corresponding angles as

well). The optimized spectra of these structures can be found in Figure 5.2;

an inset zoom of the far-infrared region is also presented to better appreciate

the vibrational bands related to the cations. The overall agreement with the

experimental data is fairly good.

In Table 5.2 we report all the numerical values of our new force field (vdW

parameters for Si, Al, and O, are taken from Lopes et al. [110]). Summariz-

ing, the characterizing features of our force field are: strong intratetrahedral

O− T−O angles, weaker intertetrahedral T−O− T angles, extra UB term be-

tween T atoms, and differentiation between Si−O and Al−O force constant

values. The development of this force field is a first and necessary step toward

the detailed study of diffusion phenomena for molecules sorbed within this class

of porous media. The improvement coming from a reliable flexible force field is

twofold: on one side, the flexibility plays a key role in correctly thermostating

the sorbate, thanks to the heat bath effect [146]; on the other, a good reproduc-
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tion of the lattice vibrations increases the accuracy of the simulated trajectories,

especially in case the of tight fitting of the sorbate in the pore openings [147].

Our force field, then, owning the above-mentioned characteristics, will be par-

ticularly useful for the computation of accurate diffusion coefficients. In this

context, the ability to run on massively parallel architectures (including graph-

ics processing units, GPUs [103]), will extend the MD simulation time scales.

This will ultimately allow the study of slow diffusive systems (i.e., diffusivities of

the order of 10−10 m2· s−1).

5.2.2 Validation

2.10

2.20

2.30

2.40

2.50

2.60

2.70

 0  250  500  750  1000  1250  1500

la
tti

ce
 p

ar
am

et
er

 (n
m

)

temperature (K)

2.10

2.20

2.30

2.40

2.50

2.60

2.70

10-4 10-3 10-2 10-1 100

la
tti

ce
 p

ar
am

et
er

 (n
m

)

pressure (GPa)

(a)

(b)

Figure 5.3: Evolution of simulated lattice parameters (squares) for Na A zeolite, over a wide range

of temperatures (a) and pressures (b); lines are to guide the eye. Also plotted, crystallographic

reference data (circles) [124].

We test now the ability of our model to reproduce properly the crystallo-

graphic structures. After equilibrating the system [147], we perform 1 ns NVE

Andrea Gabrieli - Hierarchical Multiscale Modeling of Materials: an Application to Microporous Systems
Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari



5.2. Results and discussion 93

Table 5.2: Force field parameters.

bonds kb(kcal ·mol−1 · Å
−2
) b0(Å)

Si-O 300.0 1.61

Al-O 222.0 1.73

angles kθ(kcal ·mol−1 · rad−2) θ0(
◦)

O-Si-O 75.0 109.5

O-Al-O 65.0 109.5

Al-O-Si 7.0 149.5

Si-O-Si 7.0 149.5

UB ku(kcal ·mol−1 · Å
−2
) u0(Å)

Al-(O)-Si 30.0 3.18

Si-(O)-Si 30.0 3.12

vdW ε(kcal ·mol−1) σ(Å) Rmin(Å)

Si -0.600 3.92 4.40

Al -0.650 3.92 4.40

O -0.152 3.15 3.54

Na -0.159 2.43 2.72

Ca -0.120 2.44 2.73

partial charges q(e) in each structure

atom Sil Na A Ca A Na Y Na X

Si 2.0 1.85 1.85 1.890 1.760

Al 1.27 1.27 1.274 1.288

O -1.0 -1.03 -1.03 -1.001 -1.001

Na 1.00 1.000 1.000

Ca 2.00
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Table 5.3: Greatest deviation, for each atom-type group, between mean computed and experi-

mental coordinates in crystallographic units (×10−2).

Structure T O Na Ca

Sil 3.74 6.12

Na A 0.10 0.45 3.32

Ca A 0.11 0.72 0.26

Na Y 0.14 0.61 2.60

Na X 0.50 0.75 3.96

simulations and post process the trajectories evaluating the atomic coordinates

by reversing the symmetry transformations. This way, we can compute the mean

crystallographic coordinates of the asymmetric unit atoms and their distribu-

tions, and also detect the discrepancy with respect to the experimental crystal

symmetry, which is revealed by multimodal or asymmetric coordinate distribu-

tions. In Table 5.3 we report the greatest deviations of crystallographic coordi-

nates for each investigated structure (rows) and for each atom type (columns).

As can be seen, our model reproduces well the experimental data.

At the same time, we analyze qualitatively the shape of the distributions of the

corresponding (i.e., symmetrically equivalent) atom positions: these are found

to be Gaussian. Note that some deviations from a symmetric shape are found

for the cations, due to the anharmonic character of the potential terms (i.e., vdW

plus electrostatic) and the existence of various energetically equivalent sorption

sites among which the cations are redistributed during the system equilibration

phase; clearly these effects arise from the use of an approximated model force

field on a size-limited system [111].

For Na A, we also check the stability of our model framework, over a wide

range of temperatures and pressures, performing various 1 ns NPT (isothermal-

isobaric ensemble) simulations with the barostat fluctuations controlled via

Nosé-Hoover Langevin piston [103]. Control parameters are: piston oscillation

period 0.2 ps, piston decay time 0.1 ps, and damping coefficient for tempera-

ture coupling set to 10.0 giving a decay time of 0.1 ps. Our model framework

ensures an excellent structural stability to the system (see Figure 5.3): in plot

(a) a slightly negative thermal expansion [148–151] can be appreciated, while in

plot (b) the shrinkage in response to external increasing pressure [152,153] is

shown. The discrepancy between our model lattice parameter at 300 K and 105

Pa is about 1%.

Finally, we give a rough estimate of the speedup attainable using our new

force field with a parallel simulation package like NAMD in a small size Beowulf

cluster. Running on 16 cores (4 Intel Xeon E5420 processors with Infiniband)
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a 1 ns simulation of a 2× 2× 4 silicalite system (4608 atoms) takes about 1 h.

On the other hand, a 1 ns simulation of the same system, computed with the

former force field on a single core, takes about 100 h. The same trend holds

also for the remaining structures.

5.3 Conclusions

In this work, a new force field has been developed enabling fast molecular

dynamics simulations in flexible aluminosilicates and, thus, extending the time

and space scales accessible to classical MD simulations. The structures here

investigated are silicalite, Na A, Ca A, Na Y, and Na X, chosen to ensure a good

degree of force field portability, allowing an extension to affine structures with

minimal effort. We adopted a CHARMM-type functional form which allows, using

the NAMD package, the simulation of a 1 ns trajectory per wall clock hour in

systems consisting of about 4000 atoms, running over 16 cores of small Beowulf

clusters.

The new force field has been optimized by carefully tuning the simulated

structures and IR spectra to experimental data. The resulting parametrization

allows correct modeling of the system dynamics, without introduction of spuri-

ous deformations. Moreover, the structural stability of model Na A over a wide

range of temperatures and pressures has been successfully tested.

This work is a starting point for future studies of sorbed molecules in zeolites,

especially for the development of more reliable coarse-grained models which will

further expand the accessible time and space simulation scales.
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Chapter 6

Optimization of Molecular
Dynamics Force Fields via Force
Matching of ab-initio data

One of the most widespread tools to investigate the dynamics of sorbed

molecules within microporous materials, keeping into account also the flexi-

bility of the framework [146], is the classical Molecular Dynamics (MD) tech-

nique [21,22]. This kind of simulations can follow the time evolution of a million

atom system up to the microseconds scale. The drawback is the need to feed

the program with a force field (FF) ruling the atoms interactions, on which will

ultimately depend the quality of the results.

At the same time, the field of ab-initio molecular dynamics computations

is rapidly growing. These give accurate results without need of an explicit FF

(requiring as input only atoms types and initial positions). The drawback of this

technique, on the other hand, is the large computational cost which becomes

prohibitive at the time and space scales accessible to classical MD.

To exploit the advantages of both techniques, we could use short but detailed

ab-initio computations to develop accurate FFs for classical MD, by means of the

force matching method [154–163].

Aim of this work is to investigate the potential of the force matching technique

and efficiently apply it to obtain the FF constants that more closely reproduce

the reference system dynamics.

Having our group of research recently published two papers dealing with the

refinement of FF parameters for classical MD simulations in both Silicalite [164]

and ZIF-8 [147], porous materials and their sorbates become good candidates

for this study. In those papers, the parameters optimization has been done with

a trial and error procedure which is tedious and time consuming (more than

one month for each structure). Moreover, this approach becomes practically
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unfeasible as the crystals complexity grows (e.g., ZIF-8 has already 46 bonded

interaction terms to be tuned). The study of such systems requires a great

amount of time even via the force matching technique, for this reason we made

a big effort in improving the overall implementation performance.

The final force fields will be based on the CHARMM [109] functional form,

tuned via an automated optimization procedure. In this work we will focus on

the bonded part of the force field, which is responsible for the vibrational spec-

trum of modeled molecules and crystals, and can thus be accurately validated

on the basis of this macroscopic property. In the CHARMM formalism, in fact,

the exclusion policy has the effect of zeroing the weight of the nonbonded in-

teractions with respect to the molecular frequencies of vibration (still, partial

charges and vdW parameters taken from the literature can be fully incorporated

on top of our bonded parametrization).

In the first part of this chapter we will illustrate the theory behind the force

matching technique and our implementation of the whole method. In the second

part we will apply the procedure to systems of increasing complexity, starting

with CH4, then CO2, Silicalite and finally ZIF-8.

6.1 Theoretical background

Force matching technique. With this procedure the interaction parameters of

a model system (e.g., a molecule or a crystal) are adjusted until they reproduce,

within the wanted degree of accuracy, the forces of a given reference system

[154]. In general, the reference is an highly detailed and thus accurate set of

data, still very expensive from a computational point of view (here, ab-initio). The

model system is in general a coarse-graining of the reference one, where some

details are averaged out to attain high computational speed (here, classical MD).

The core of the whole procedure is the minimization of the sum of the squared

residuals (merit function) between reference (F ) ab-initio forces and model (f)
MD forces:

χ =
S∑
j=1

3N∑
i=1

(Fi,j − fi,j)
2, (6.1)

where N is the number of atoms in the system, clearly each atomic force has

3 components (x, y, z), and S is the number of snapshots (system configuration

frames) taken with an arbitrary stride.

In accordance to the original work of Ercolessi and Adams [154], we evaluate

the quality of the match looking at

h =
√
χ/(3NS),
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the root mean square deviation per atomic force component, and compare it,

h/g, against

g =

√√√√ 1

3NS

S∑
j=1

3N∑
i=1

F 2
i,j,

the root mean square of the reference forces, representing their magnitude.

In applying the force matching procedure to the optimization of classical FFs,

one needs to fulfill three requirements: 1. the system dynamics should be well
reproduced, here this is realized minimizing the merit function; 2. the system
structure should be preserved, this is accomplished setting the FF equilibrium

values (distances and angles) to the ones taken from the averaging of the ab-initio
trajectory; 3. the system thermodynamics should be satisfied, this is implicit in

the usage of the CHARMM functional form.

DFT computations. Ab-initio MD simulations are more accurate than the clas-

sical ones, yet they run about 1000 times slower. For this reason they are not

suitable to follow the time evolution of some macroscopic properties like self-

diffusion. They have the big advantage of not requiring a structure dependent

force field, but just knowledge of atom types and positions. From this comes the

idea of the force matching, where the system forces are stored over a short accu-

rate trajectory, trying subsequently to obtain the same forces during a classical

MD simulation.

In this work, the reference data are obtained performing Born-Oppenheimer

Molecular Dynamics (BOMD) simulations using the CP2K open source code

[33, 165–167]. The energy of the system is evaluated via Density Functional

Theory (DFT) [8, 9] computations in the framework of the Gaussian and Plane

Waves (GPW) [168] method.

The accuracy of DFT computations is continuously improving, thanks to the

refinement of theoretical models and the growing of computational power [11].

This fact makes reasonable the expectation that DFT results will approach more

and more the experimental limit. It becomes clear, then, that the force matching

technique bridging detailed but expensive DFT computations and fast (but often

based on too approximated FF) MD simulations will become more and more

valuable.

Classical MD force field development. The FFs developed in this work rely

on the CHARMM functional form:
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Epot =
∑
bonds

kb(b− b0)
2 (6.2)

+
∑
angles

kθ(θ − θ0)
2 +
∑
UB

ku(u− u0)
2

+
∑

dihedrals

kψ(1 + cos(nψ − δ))

+
∑

impropers

kω(ω − ω0)
2

+
∑
vdW

ε

[(
Rminij

rij

)12

− 2

(
Rminij

rij

)6
]

+
∑
i<j

qiqj
εrij

.

where the first five terms refer to the bonded interactions, namely bonds, an-

gles, Urey-Bradley (UB), dihedrals, and impropers, while the last two refer to the

nonbonded ones, Lennard-Jones and Coulomb [164]. We choose this functional

form because it is suitable to model the systems here under investigation and

because it is implemented in most modern MD simulation packages, exploiting

the full power of massively parallel architectures and even GPUs [103–108].

It is important to remark that in CHARMM FFs an exclusion policy is em-

ployed. Here the van der Waals and electrostatic interactions between 1 − 2
and 1− 3 connected atoms are implicitly taken into account within the bonded

terms (without explicit computation of Lennard-Jones and coulombic terms).

For the 1−4 connected atoms, instead, the Lennard-Jones and coulombic terms

are computed and scaled with appropriate factors [147]. This exclusion policy,

then, enables a clear distinction between bonded and nonbonded interactions,

splitting them into two complementary parts: a short range and a long range

one.

In particular, the bonded interactions are much stronger than the nonbonded

ones (at least one order of magnitude). For this reason, the bonded force con-

stants can be optimized independently from the nonbonded ones, with negligible

loss of accuracy (see Section 6.2.1).

On this basis, here we focus our attention on developing an automated pro-

cedure to obtain reliable bonded parametrizations. These can be subsequently

coupled with opportune nonbonded parameters: for the time being taken from

the literature, and, in the future, directly optimized starting from independent

ab-initio data (e.g., the electric field for the coulomb interaction).
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In support to this approach, one can consider the vibrational spectra com-

puted with FFs optimized using only the bonded interactions and FFs where

also the nonbonded ones are taken into account: the frequencies of the result-

ing spectra are practically unaffected (see Figures C.5 to C.8 in Appendix C).

6.1.1 Implementation

For all cases studied in this work we followed a general strategy:

• BOMD simulation to obtain atoms positions and corresponding forces;

• force matching to obtain the classical MD force field parameters;

• validation of the classical force field against the BOMD reference.

BOMD simulation. After generating [120] the system structure starting from

experimental data, and properly thermalizing at 300 K, we follow the evolution

of the system in theNV T ensemble (weak coupling with CSVR thermostat [169])

for 5 ps (104 steps with a time step of 0.5 fs). PBE [13] functional along with

GTH pseudopotential [170–172], and GTH basis sets [33] are used throughout

this work, giving the best compromise between accuracy and computational

cost for the investigated systems. More specifically, basis sets for each atom

kind are TZV2P, except for Zn in ZIF-8 (TZVP) in accordance to previous works

[173, 174]. Dispersion interactions are taken into account as well, using the

DFT-D3 method [175]. The energy cutoff is 700 Ry. The system is fully periodic.

The accuracy for the SCF is 10−7.

Force Matching. To perform the merit function χ minimization we wrote a

Python program [176, 177] which relies on the L-BFGS-B [178, 179] algorithm

as implemented in the SciPy [180,181] minimize module.

The program requires as input an initial guess of the parameters to be

matched and the interval over which these parameters can span. Throughout

this work, the initial values are taken as the mid point of the interval.

The minimizer computes the value of the merit function for the current pa-

rameters and adjusts them until the convergence criterion is met: either the

relative change in merit function between two subsequent function evaluations,

or the greatest component of the projected merit function gradient, becomes

smaller than the dsired value (in SciPy nomenclature, factr = 102 and pgtol =

10−8, respectively).

In order to evaluate the merit function for a given set of parameters, we need

to compute the classical MD forces to be compared with the BOMD reference

ones. This is done using LAMMPS, built as a python library [105].

Andrea Gabrieli - Hierarchical Multiscale Modeling of Materials: an Application to Microporous Systems
Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari



6.1. Theoretical background 102

This approach is very general and can be applied to a wide range of problems,

the only limit being the functional forms supported by LAMMPS (which actually

are many).

Before starting the real analysis, the procedure has been tested matching

the forces of a reference trajectory generated via classical MD with a known FF.

The code has proven to be able to recover, within machine precision, the full

reference FF.

Validation. The parameters optimized during the force matching procedure

are tested performing a classical MD simulation using the NAMD [103] package

(which is faster on our hardware but less flexible than LAMMPS, allowing a cross

check of the parametrization). The time step used is 0.5 fs for a total simula-

tion time of 320 ps in the NVE ensemble, after having properly thermalized the

system at a temperature of 300 K. The thus obtained trajectory is then post pro-

cessed to compute the IR spectrum squaring the Fourier transform of the total

dipole moment [137–139], with Blackmann-Harris [140] windowing according

to the Welch method [141]. The same procedure is followed also for the BOMD

data, over a 10 ps trajectory, computing the total dipole moment from the Berry

phase [182], to compare the two resulting spectra.

Note that the classical MD trajectory is here produced using only the opti-

mized bonded interactions. In order to compute the total dipole moment, then,

one needs to associate reasonable partial charges to the atoms, which do not

affect the frequencies of the resulting IR spectrum and can thus be arbitrarily

chosen.

6.1.2 Force matching speedup

The force matching procedure presented in the previous section may be very

heavy from a computational point of view (depending on the number of param-

eters to be optimized and the size of the system). Most of the computational

time is spent calling the LAMMPS library (to compute the classical MD forces) at

every evaluation of the merit function. Things get even worse, the L-BFGS-B op-

timization algorithm we used, in fact, requires knowledge of the merit function

gradient, which has to be numerically estimated calling LAMMPS (Np+1) times

at each χ evaluation, being Np the number of working parameters. Moreover,

the gradient is computed using the same fixed delta for all parameters, Δp. This

can be a source of error, due to the different orders of magnitude of the param-

eters themselves (e.g., bonds are in the order of hundreds, while angles in the

order of tens).

To overcome these limitations and increase both speed and accuracy, we
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sacrifice some flexibility making the code functional form specific. Thanks to the

CHARMM FF additivity, in fact, the contribution to the total force deriving from

each term of Equation 6.2 can be computed independently from the others.

Envision now the vector f containing all the 3NS force elements fi,j appear-

ing in Equation 6.1 (one element for each of the N system atoms, for the 3

cartesian components, and for the S frames forming the whole reference tra-

jectory). Exploiting the FF additivity property, this vector f can be decomposed

into Np individual vectors, one for each parameter to be optimized, so that the

following holds:

f =

Np∑
m=1

fm. (6.3)

With this in mind, before starting the main matching loop, we compute and

store each of the Np vectors; here, to compute the m-th one, we call LAMMPS

(over the reference trajectory) setting to 0.0 all the FF parameters, except for the

m-th one which is set to a convenient value of 1.0.

After calling LAMMPS just Np times, then, we obtain all the individual force

vectors (associated to a unitary value of their corresponding parameter). From

here on, there will be no need to call LAMMPS anymore: at each change of the

m-th parameter performed by the matcher, we will simply multiply the corre-

sponding m-th force vector by the new parameter value. Thus, at each merit

function evaluation, we can reconstruct the model forces with:

f =

Np∑
m=1

pmfm. (6.4)

As a working example, we can envision a given molecule, and focus on the

forces arising from a specific bond type. We call LAMMPS, setting kb = 1.0 for

the first energy term in Equation 6.2, kb(b− b0)
2, and store the output forces in

a vector fb. When the minimizer will choose a new kb value, we will compute the

corresponding forces by the simple multiplication kbfb.

This procedure can be applied, with minor algebraic manipulation, also to

forces having nonlinear dependence over the working parameters (e.g., b0 in the

above example).

The approach here depicted (with just Np LAMMPS calls) allows a speed up

of the whole procedure of 1000 times or more (according to the investigated

system).
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Table 6.1: Methane equilibrium values, parameters ranges and final optimized values.

eqa rangeb finalb

bond
C−H 1.099 [50.0, 1200.0] 333.74

angle
H−C−H 109.47 [10.0, 200.0] 28.52

UB
H−(C)−H 1.793 [ 0.0, 200.0] 18.39

aBond and UB (Å), angle (◦).
bBond and UB (kcal ·mol−1 · Å−2), angle (kcal ·mol−1 · rad−2).

6.2 Results and discussions

6.2.1 Methane

We start our investigation with a molecule of great interest for the energy and

the environment, widely studied, both in computer and laboratory experiments

[183–186].

The 5 ps (104 frames) BOMD simulation, to get the reference forces, is per-

formed over a system consisting in 12 CH4 molecules, using a cubic box of side

1.69856 nm with periodic boundary conditions (PBC) applied along all the three

main coordinates directions. The choice of the box size is related to the crys-

tallographic lattice parameter of the ZIF-8 unit cell, in which methane sorption

and diffusion has been successfully probed by PFG NMR experiments [187].

Equilibrium values for the C−H bond and H−(C)−H UB term are obtained by

post processing the BOMD trajectory, while the H−C−H angle is set according

to the tetrahedron geometry. All values are reported in Table 6.1.

Moving then to the force matching, the associated working parameters are

the kb, kθ, and ku force constants (while nonbonded interactions are set to zero).

The ranges over which these parameters can be changed by the matcher and

final results are also reported in Table 6.1. We recall that the parameters val-

ues used as initial guess in the matching procedure are the mid points of the

corresponding ranges. These ranges are wide on purpose, to test the ability of

the matcher to find the right parameters without any human bias.

The matching procedure ended with h = 1.77 (kcal ·mol−1 · Å−1). Comparing

this to the magnitude of the reference forces gives h/g = 0.11 (in a gross esti-

mate this means that about 68% of all the 1.8× 106 matched force components

differs less than 11% from their reference). The wall time necessary for the force
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matching to converge over a 104 steps trajectory, is about 1 minute on a common

desktop pc.

Running a classical MD simulation with the obtained parameters we compute

the IR spectrum (using dummy charges to get the dipole moment), shown in

Figure 6.1, to be compared with the reference BOMD spectrum, also plotted.

The overall agreement is excellent.
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Figure 6.1: Methane IR spectrum from classical MD with optimized parameters (solid line),

compared with the BOMD reference one (dots).

Comparison of our reference BOMD spectra with the experimental ones is

out of the scope of this work, being related to the improvement of the DFT

computations themselves. Nonetheless, these plots are in qualitative agreement

with the experiments (see Figures C.1 to C.4 in Appendix C).

The above procedure is the result of extensive tests on the matcher capabili-

ties. The underlying assumptions are now briefly discussed.

Influence of nonbonded interactions. Here we show that the nonbonded in-

teractions have negligible influence over the bonded parameters during the op-

timization process. This is true, particularly in the context of the CHARMM

formalism, thanks to its exclusion policy.

We repeat the previously described force matching procedure, this time set-

ting the vdW and charge values to the ones taken from Nicholas and cowork-

ers [183].
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Comparing the resulting parameters to the ones obtained without nonbonded

interactions, the change in final values is less than 1%. Clearly, the IR spectra

computed with the two parametrizations are in close agreement, see Figure C.5

in Appendix C.

Equilibrium values. Several options for the choice of equilibrium b0, θ0, and

u0, exist: one is to employ the output values from a geometry optimization

procedure at the DFT level (or better), another is the use of the experimental

values, a third is to extract them averaging the BOMD trajectory. This last

option gives the lowest merit function value, χ, and this is the reason why it has

been preferred.

There is actually a fourth option, i.e., to let the matcher optimize also the

equilibrium values. The drawback of this approach is the arising of a competition

between bond and UB equilibrium distances which leads to unphysical values

(i.e., zeroing of u0 and anomalous growth of b0).

Convergence with respect to the trajectory length. At this point, the most

expensive part of the whole procedure, from a computational point of view, is

the acquisition of detailed BOMD reference data. In particular, to produce 1 ps

of trajectory for a system containing about 300 atoms, requires about 2 days

of wall time on 64 cores (Intel Xeon E5420 @ 2.5 GHz). For this reason, it is

important to know what is the minimum trajectory length needed to obtain a

well converged parametrization.

We repeat the force matching procedure, using an increasing number of

frames (i.e., 1, 10, 100, 1000) to study the parameters convergence behavior,

in comparison with the results obtained with 104 frames, taken as a reference.

As shown in Figure 6.2, the parameters mean absolute percentage deviation

(MAPD), (100/Np)
∑Np

i=1 |(prefi − pi)/p
ref
i | where prefi is the optimized value for the

i-th reference parameter, drops to less than 1% at 1000 frames. This implies

that a good parametrization can be obtained already with a BOMD trajectory of

500 fs. Clearly, for convergence, a long enough simulation time (given by the

number of frames times the sampling interval) is essential.

It is important to note that the convergence rate depends on the parameters

magnitude. As a rule of thumb, the stronger the interaction the fastest the

convergence; in general, then, bonds are the fastest, followed in order by UB,

angles, and four-body interactions.

Annealing. The L-BFGS-B is a widely used algorithm to find local minima.

To ensure that the solution found by our code is the best one for a given set of

boundaries, we executed also a simulated annealing procedure (again relying on
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Figure 6.2: MAPD convergence as a function of frames number, with respect to 104 frames.

Each point is the mean of 3 optimizations over independent trajectory blocks, with error bars

representing the standard deviation.

the SciPy tools) decoupling the final results from the initial parameters values.

In agreement to the observations of other groups [154], the annealing is not

necessary for the problems here investigated (i.e., no change in the final results).

6.2.2 Carbon dioxide

Moving to CO2 [188–192], we repeat the procedure used for methane, keep-

ing the same box size and number of molecules. After obtaining the BOMD

reference data and computing the mean equilibrium values, except for the angle

which is set to its geometric value, we launch the force matching. The relevant

parameters are reported in Table 6.2.

In Figure 6.3 we compare the classical MD spectrum obtained using the

optimized parameters (dipole moment computed with dummy charges) with the

reference BOMD one. Also for CO2, the agreement is excellent. This is confirmed

also by the exiting h = 1.86 (kcal ·mol−1 · Å−1) and h/g = 0.096.

Peculiar in this parametrization is the inclusion of the UB term. Running the

matcher without it, in fact, gives a h = 2.38 (kcal ·mol−1 · Å−1) and h/g = 0.12,

meaning that the latter optimized model is less accurate in reproducing the

reference one. This occurs because the equilibrium angle is close to 180◦ and,

in this case, the bend term is unable to efficiently model the O−O interaction,

and the need of an UB term becomes evident (see Figure C.9 in Appendix C).
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Table 6.2: Carbon dioxide equilibrium values, parameters ranges and final optimized values.

eqa rangeb finalb

bond
C−O 1.178 [500.0, 1200.0] 979.46

angle
O−C−O 180.00 [ 10.0, 200.0] 52.75

UB
O−(C)−O 2.353 [ 50.0, 200.0] 86.77

aBond and UB (Å), angle (◦).
bBond and UB (kcal ·mol−1 · Å−2), angle (kcal ·mol−1 · rad−2).
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Figure 6.3: Carbon dioxide IR spectrum from classical MD with optimized parameters (solid

line), compared with the BOMD reference one (dots).
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Table 6.3: Silicalite equilibrium values, parameters ranges and final optimized values.

eqa rangeb finalb

bond
Si−O 1.636 [50.0, 1000.0] 274.10

angles
O−Si−O 109.43 [ 0.0, 200.0] 29.51

Si−O−Si 144.95 [ 0.0, 200.0] 24.78

UB
O−(Si)−O 2.669 [ 0.0, 200.0] 1.06

Si−(O)−Si 3.108 [ 0.0, 200.0] 29.29

aBond and UBs (Å), angles (◦).
bBond and UBs (kcal ·mol−1 · Å−2), angles (kcal ·mol−1 · rad−2).

6.2.3 Silicalite

We test now the ability of our procedure to mimic the Silicalite dynamics.

This microporous crystal is of great industrial interest [62, 111, 119, 121, 128,

183]. Its unit cell contains 288 atoms with lattice constants a = 2.0022 nm,

b = 1.9899 nm, and c = 1.3383 nm [122,123].

In Table 6.3 the parameters relevant for the matching procedure are reported.

In Figure 6.4 a comparison between spectra from optimized parameters (with

dummy charges) and from reference BOMD data is presented. The overall agree-

ment is fair: the shape of the spectrum is well caught, with a small frequency

underestimation of the midrange bands.

The exiting h = 5.73 (kcal ·mol−1 · Å−1) and h/g = 0.29 are large compared

to the other systems here investigated. This suggests that some terms may be

missing from the FF functional form, for example a term ruling the interactions

among all the atoms forming a given Silicalite window: these atoms, in fact,

are close neighbors from the spatial point of view, but far apart (much more

than 1 − 4) from the connectivity point of view. This refinement is beyond the

scope of our work, but it may be important for further modeling of other crystal

properties, apart from the vibrational spectrum.

6.2.4 ZIF-8

We finally move to a recently synthesized structure [66,67,190], called zeolitic

imidazolate framework 8 (ZIF-8), which is currently receiving great attention

from the scientific community [189,193–196]. This structure has a cubic unit
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Table 6.4: ZIF-8 initial parameters, ranges, and final optimized values.

bonds eqa rangeb finalb

C2−N 1.386 [50, 1000] 289.65

C2−H2 1.088 [50, 1000] 369.75

C3−H3 1.102 [50, 1000] 321.77

N−Zn 2.017 [50, 1000] 67.62

C2−C2 1.377 [50, 1000] 402.32

C1−N 1.355 [50, 1000] 337.26

C1−C3 1.498 [50, 1000] 225.63

angles eqa rangeb finalb UB eqa rangeb finalb

C1−N−Zn 125.721 [ 0, 200] 12.15 C1−(N)−Zn 3.014 [ 0, 200] 10.32

C2−N−Zn 127.028 [ 0, 200] 12.23 C2−(N)−Zn 3.057 [ 0, 200] 7.35

C1−N−C2 106.252 [ 0, 200] 46.33 C1−(N)−C2 2.193 [ 0, 200] 111.65

N−Zn−N 109.360 [ 0, 200] 5.24 N−(Zn)−N 3.288 [ 0, 200] 11.37

H3−C3−H3 107.741 [ 0, 200] 27.18 H3−(C3)−H3 1.779 [ 0, 200] 18.67

C2−C2−N 107.995 [ 0, 200] 33.58 C2−(C2)−N 2.235 [ 0, 200] 99.05

C2−C2−H2 130.034 [ 0, 200] 19.39 C2−(C2)−H2 2.236 [ 0, 200] 14.78

N−C1−N 111.169 [ 0, 200] 32.34 N−(C1)−N 2.236 [ 0, 200] 107.37

C3−C1−N 124.197 [ 0, 200] 39.07 C3−(C1)−N 2.522 [ 0, 200] 30.61

H2−C2−N 121.317 [ 0, 200] 31.58 H2−(C2)−N 2.160 [ 0, 200] 20.43

C1−C3−H3 110.963 [ 0, 200] 36.31 C1−(C3)−H3 2.153 [ 0, 200] 19.16

dihedrals shifta n rangeb finalb dihedrals shifta n rangeb finalb

H2−C2−C2−N 180 2 [ 0, 50] 3.55 H2−C2−N−C1 180 2 [ 0, 50] 3.65

N−C1−C3−H3 180 2 [ 0, 50] 0.27 C2−C2−N−C1 180 2 [ 0, 50] 6.64

H2−C2−N−Zn 180 2 [ 0, 50] 0.00 C3−C1−N−Zn 180 2 [ 0, 50] 0.00

C3−C1−N−C2 180 2 [ 0, 50] 3.64 N−C1−N−Zn 180 2 [ 0, 50] 1.26

N−C1−N−C2 180 2 [ 0, 50] 10.77 C1−N−Zn−N 0 3 [ 0, 50] 0.00

H2−C2−C2−H2 180 2 [ 0, 50] 0.34 impropers eqa rangeb finalb

N−C2−C2−N 180 2 [ 0, 50] 15.33 N−C2−H2−C2 180 [ 0, 50] 0.00

C2−C2−N−Zn 180 2 [ 0, 50] 0.82 N−C1−N−C3 180 [ 0, 50] 6.99

C2−N−Zn−N 180 3 [ 0, 50] 0.10 C1−C2−N−Zn 180 [ 0, 50] 0.00

aBonds and UBs (Å), angles, dihedrals, and impropers (◦).
bBonds and UBs (kcal ·mol−1 · Å−2), angles, dihedrals, and impropers (kcal ·mol−1 · rad−2).
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Figure 6.4: Silicalite IR spectrum from classical MD with optimized parameters (solid line),

compared with the BOMD reference one (dots).

cell of side 1.69856 nm, formed by 276 atoms of 4 different atomic types, namely:

H, C, N, and Zn.

A CHARMM type FF requires knowledge of 46 parameters to properly model

the system dynamics. The dihedral part of the FF requires great care: a close

inspection of the BOMD trajectory, in fact, is needed to find the correct mul-

tiplicity n and phase δ. We choose a value of n = 2 and δ = 180 ◦ for most

dihedrals. This value is particularly convenient, since the phase is the same

for all of them. Looking at the BOMD trajectory, a parametrization with n = 1
seems also feasible, but in this case the correct phase (0 ◦ or 180 ◦) should be

specified; this approach has been avoided, since it gave no improvement over

the match quality. Only for the C1−N−Zn−N and C2−N−Zn−N dihedrals, a

value of n = 3 has been used, with a phase of 0 ◦ and 180 ◦, respectively (see Fig-

ures C.11 and C.12 in Appendix C). Regarding the improper angles, we choose

the atoms order so that the first three always belong to the imidazole ring (i.e.,

N−C2−H2−C2, N−C1−N−C3, C1−C2−N−Zn).

All the parameters optimized during the force matching are reported in Ta-

ble 6.4. The final results are attained for h = 3.24 (kcal ·mol−1 · Å−1) and

h/g = 0.15, which is remarkable for such a complex system. The wall time

for convergence over 104 frames, is less than 3 hours. This can be reduced to

just 7 minutes, with negligible loss of accuracy, striding the reference trajectory

by keeping one frame every ten (practically, no change in the amount of phase

space explored).
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In Figure 6.5 we compare the model vibrational frequencies (with dipole mo-

ment computed with a reasonable set of partial charges [147, 174]) and the

reference ones. The agreement is very good.
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Figure 6.5: ZIF-8 IR spectrum from classical MD with optimized parameters (solid line), com-

pared with the BOMD reference one (dots).

Looking at Figure 6.2, we see that ZIF-8 rate of convergence is slower than

that of other systems, this is mainly due to the weaker four-body interactions,

still the mean absolute percentage deviation of the parameters drops to 3% with

1000 frames.

6.3 Conclusions

In this work, a new implementation of the force matching technique, to obtain

accurate classical force field parameters starting from detailed ab-initio data,

has been presented. Thanks to its speed, it can be applied to a wide class

of materials, of considerable complexity. In particular, this is the first time

that a force matching procedure is applied to Silicalite and ZIF-8 microporous

crystals, where the number of parameters to be optimized can be greater than

40. In spite of this large number, the task can be successfully accomplished

in just minutes on a standard desktop pc. The quality of the final results has

been assessed comparing the frequencies of the IR spectra, computed with the

optimized parameters, against the reference BOMD ones. The overall agreement

between model and reference systems is excellent.
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Until now, due to the huge cost in terms of time and computational resources

to properly parametrize a force field, the portability among various similar struc-

tures was a key feature, to be achieved even sacrificing some accuracy. In this

work, instead, we have shown that it is feasible to optimize a specific force field

for each investigated structure, in a reasonable amount of time, being the pro-

duction of the reference BOMD trajectory (a few days of simulation on a small

cluster), the most time consuming part.
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Chapter 7

Conclusions

Computer modeling of large complex chemical systems is a challenging task.

Most of the difficulties stem from the fact that phenomena governing the behavior

of such systems, happen in a wide range of spatial and temporal scales. As a

consequence, it is not possible to effectively simulate those systems with just a

single simulation technique.

This work has focused on the improvement of several simulation methods,

with the aim of both improving the accuracy, and extending the space and time

scales accessible to such techniques. The resulting methods have been applied

for the study of large size microporous systems. Nevertheless, they can be,

without too much effort, employed in the study of other systems.

At first, a parallel implementation of the kinetic Monte Carlo algorithm has

been applied to the study of Benzene diffusion in zeolites, showing that, with a

proper tuning of the simulation parameters, it is possible to reach high efficien-

cies and thus effectively extend the space and time scales. Then, starting from a

Partitioning Cellular Automaton, a simplified coarse-grained model of the hop-

ping process of a tagged particle in a confined lattice system has been developed,

providing an accurate reproduction of the memory effects in the self-diffusion at

a minimum computational cost.

Being the accuracy of this kind of methods dependent on the quality of

the parametrization, the attention was moved to a more detailed technique, the

molecular dynamics, with the development of a new force field for simulations in

flexible aluminosilicates. The functional form of such force field has been chosen

in such a way that it could be used in molecular dynamics packages which can

exploit massively parallel architectures, again extending the space and time

scales accessible. Finally a new, fast implementation of the force matching

technique has been proposed. Thanks to its speed, it has been possible to

obtain reliable classical force fields, tailored to each specific structure, also for

materials of considerable complexity.
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In this work has been laid the foundations of an automatic procedure which,

when completed, will provide a comprehensive classical parameterization of the

system, with an accuracy comparable to that of the initial ab-initio data. With

this parametrization it will be then possible to produce high quality data to be

used in coarse-grained simulations, thus permitting to perform reliable large

scale simulations.
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Appendix A

Further details on the Central Cell
Model

A.1 The time step and the scaling parameter γ

Although in principle the CCM computational approach can be used in any

diffusive lattice model (with possible extensions to atomistic simulations, as we

suggest in Section 4.7), in this work we chosen to apply it to a specific mesoscopic

model which evolves through iterations with the homogeneous time step τ . It is

related to the diffusivity of a lone particle moving from cage to cage in a reference

system (experimental or MD simulation) through

τ =
λ2 lim〈n〉→0D

int
s

lim〈n〉→0 Ds

, (A.1)

where Dint
s is the self-diffusion coefficient in internal lattice units (related to Ds

through Ds =
λ2

τ
Dint
s ), and Ds is the reference self-diffusivity, in units of m2 s−1.

τ cannot be assigned an arbitrarily large value, since the evolution algorithm

is devised in such a way that, during one time step, a particle can migrate at

most into one of the first neighbors of the leaving cell. Therefore, τ is constrained

to be not greater than the mean time required to a (real) sorbate molecule to mi-

grate from a cage to a neighboring one in an atomistic simulation.

When constructing a correspondence between this theoretical model and

some molecular reference system, e.g., an MD simulation, a proper time interval

should be found in the atomistic system which ensures that the list of possible

movements of a lone particle in the lattice model (zero loading limit) covers

the whole list of movements realized in the MD simulation within that time

interval. Apart from the energy parameters, a crucial role in the work of refining
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the resemblance between the two systems (in terms of jump probabilities and

the resulting memory effects) is played by the scaling parameter γ, introduced

in Equation (4.8). γ affects the mean residence time in the lattice sites, and

consequently the entity of correlations, since the smaller its value is, the longer

it will take for a cell to modify its current configuration. The practical effect

of lowering γ is to shorten the time step length τ . In a parametric study such

as the present one, this causes no consistency problems. Instead, in the effort

of making the lattice-gas simulation resemble an atomistic one, the lattice-gas

dynamics cannot be arbitrarily slowed down nor accelerated without interfering

with the list of possible site-to-site jumps. In other words, once the lattice-

gas system have been set up, if one wishes to slow down or to speed up the

lattice-gas dynamics, only relatively small variation of γ will be consistent with

the same list of possible site-to-site jumps. Therefore, in realistic lattice-gas

simulations γ is limited to the usage of a tuner of the memory effects and cannot

be manipulated arbitrarily as a time step controller.

A.2 Green-Kubo formulation of the self-diffusivity
in a lattice-gas with a homogeneous time step

Since the model evolves in discrete time step of equal length τ , a generic

instant of time t can be read as t = zτ , with z ∈ N as the number of time

steps needed to let the system evolve of an amount t from the time origin. From

Equation (4.18), the net displacement of the tagged particle from instant 0 to t
is

r(t)− r(0) =
z−1∑
k=0

δr(kτ). (A.2)

The mean-square displacement (MSD) after a time interval t, defined as 〈Δr2(t)〉 =
〈[r(t)− r(0)]2〉, where d is the number of dimensions of the lattice, reads

〈
Δr2(t)

〉
=

〈
z−1∑
h=0

z−1∑
k=0

δr(hτ) · δr(kτ)
〉
. (A.3)

Using the symmetry properties of time-correlation functions, we get〈
Δr2(t)

〉
= z 〈δr(0) · δr(0)〉

+ 2
z−1∑
k=0

(z − k) 〈δr(kτ) · δr(0)〉 . (A.4)
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The same procedure can be used to get the MSD after a time t+ τ which reads〈
Δr2(t+ τ)

〉
= (z + 1) 〈δr(0) · δr(0)〉

+ 2
z∑

k=0

(z − k + 1) 〈δr(kτ) · δr(0)〉 . (A.5)

For a continuous-time system where the MSD goes linearly with time in the

long-time limit, the self-diffusion coefficient, Ds, can be retrieved through the

time-derivative of the mean square displacement,

Ds =
1

2d
lim
t→∞

d 〈Δr2(t)〉
dt

, (A.6)

or, alternatively

Ds =
1

2d
lim
t→∞

〈Δr2(t)〉
t

. (A.7)

Equation (A.6) can be reformulated for the discrete-time case as

Ds =
1

2d
lim
t→∞

〈Δr2(t+ τ)〉 − 〈Δr2(t)〉
τ

, (A.8)

were we do not take the zero limit of τ , since it is a fixed parameter. Inserting

Equations (A.4) and (A.5) into Equation (A.8) and taking account of the fact that

the limit t→ ∞ corresponds to z → ∞, we get Equation(4.19). The same result

is obtained by inserting Equation (A.4) into Equation (A.7).
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Appendix B

Initial cations configuration in Ca A

Reported here is the procedure adopted in our work to determine the initial

configuration of the Ca cations within zeolite A. In this structure, experimental

studies show that Ca cations prefer to occupy the type I sites [126]. There are

64 of these sites per unit cell, located at the vertexes of an ideal cube within

each of the 8 β-cages. Since the Ca cations are only 48, one has to choose

which are the empty sites. As a first approach, we have isolated the minimum
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Figure B.1: IR spectra for Ca A, experimental (dots) [111] and minimum potential energy con-

figuration model (continuous line); in the inset, zoom of far infrared region related to cations

vibrations against experimental data (dots [142] and dashes [143]).
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potential energy configuration of the whole framework. To do this, we have

generated a large number of configurations, randomly distributing the 48 Ca

cations over the 64 type I sites. Sorting all these configurations according to

decreasing potential energy, we noticed that the minimum energy configuration

is the one having 6 cations per β-cage, arranged in such a way that the vacancies

lie along the main diagonal of each ideal cube and, moreover, all the diagonals

are parallel-oriented with respect to each other. The IR spectrum, computed

via an MD simulation starting from this minimum energy configuration, shows

very narrow and isolated bands, see Figure B.1. This spiky shape deviates

considerably from the experimental one and is probably due to the high degree

of order in the cations distribution.

From this evidence, it seems reasonable to think that in real Ca A samples the

cations are distributed in a more random way among the type I sites. This can

be understood considering that the cations distribution is driven not only by the

energetics but also by statistical factors: if there are many configurations which

are energetically equivalent to each other and their energy is slightly higher than

the minimum one, then the real crystal structure may be a combination of these

configurations. Note that these considerations, far from being exhaustive, are

aimed at giving us a plausible structure: several other factors play a key role in

determining the real cationic distribution (e.g., synthesis procedures) but this

topic goes beyond the scope of our work [197].

At this point, we considered a sample of 105 configurations, once again gen-

erated by randomly distributing the 48 Ca cations over the 64 type I sites, and

plotted the probability density distribution of finding a configuration with po-

tential energy in between the interval U and U + dU , see Figure B.2. Looking at

the plot, the most probable energy for a configuration taken from a completely

random sample is about 6500kcal · mol−1 per unit cell. Choosing arbitrarily

one configuration with this energy we compute the IR spectrum, see Figure B.3.

Clearly, the shape resembles more closely the experimental one.

As a final refinement, we looked only for configurations having 6 cations per

each β-cage. This requirement is less demanding than having the vacancies

only on the main diagonals and the diagonals parallel to each other, but as-

sures at the same time a good degree of symmetry with less distortion of the

framework structure, thanks to more evenly distributed cations among the var-

ious cages. Generating a sample of 105 configurations, randomly distributing 6

cations in each β-cage, we recompute the probability distribution and plotted it,

see Figure B.4. The most probable energy for a random configuration (given the

constraint of 6 cations per β-cage) is about 6100kcal · mol−1 per unit cell. From

the population we take one configuration having this energy and compute the

IR spectrum, see Figure B.5.
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Figure B.2: Distribution of fully random cations configurations according to total system po-

tential energy.

 0  400  800  1200

in
te

n
s
it
y
 (

a
.u

.)

wavenumber (cm-1)

 0  150  300

Figure B.3: IR spectra for Ca A, experimental (dots) [111] and fully random configuration model

(continuous line); in the inset, zoom of far infrared region related to cations vibrations against

experimental data (dots [142] and dashes [143]).

Andrea Gabrieli - Hierarchical Multiscale Modeling of Materials: an Application to Microporous Systems
Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari



124

Figure B.4: Distribution of 6-per-cage constrained, see text, cations configurations according

to total system potential energy.

 0  400  800  1200

in
te

n
s
it
y
 (

a
.u

.)

wavenumber (cm-1)

 0  150  300

Figure B.5: IR spectra for Ca A, experimental (dots) [111] and 6-per-cage constrained configura-

tion model (continuous line); in the inset, zoom of far infrared region related to cations vibrations

against experimental data (dots [142] and dashes [143]).

Andrea Gabrieli - Hierarchical Multiscale Modeling of Materials: an Application to Microporous Systems
Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari



125

As can be seen, the spectrum is very similar to the one computed in the

fully random case, Figure B.3, but the framework structure is certainly more

homogeneous and stable. This configuration is, from our point of view, the best

choice and it is the one that has been used as the starting point for all the Ca A

simulations presented in chapter 5.
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Appendix C

Additional Force Matching data

Reported here:

• comparison between BOMD and experimental IR spectra (Figures C.1 to

C.4);

• comparison of IR spectra obtained with a FF optimized only with bonded

interactions and a FF optimized including also the nonbonded interactions,

taken from the literature (Figures C.5 to C.8);

• comparison between IR spectra obtained from FFs optimized with and

without Urey-Bradley term, for both CO2 and ZIF-8 (Figures C.9 and C.10,

respectively);

• dihedral angles distributions for C1-N-Zn-N and C2-N-Zn-N obtained from

BOMD trajectory (Figures C.11 and C.12, respectively).
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Figure C.1: Methane IR spectra, BOMD (dots) vs. experimental [198] (solid line).
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Figure C.2: CO2 IR spectra, BOMD (dots) vs. experimental [198] (solid line).
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Figure C.3: Silicalite IR spectra, BOMD (dots) vs. experimental [111] (solid line).
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Figure C.4: ZIF-8 IR spectra, BOMD (dots) vs. experimental [193] (solid line).
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In the following four figures, the FF optimization including also the non-

bonded interactions has been performed holding fixed (i.e., cannot be changed

by the matcher) the latter constants to the values taken from the literature.

For each system, the nonbonded parameters are reported in the corresponding

table.
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Figure C.5: Methane IR spectra obtained from a FF optimized only with bonded interactions

(solid line) vs. a FF optimized including also the nonbonded interactions (dots).

Table C.1: Methane nonbonded parameters [183].

ε(kcal ·mol−1) σ(Å) Rmin(Å) q(e)

C -0.051 3.344 3.754 -0.572

H -0.055 2.641 2.964 0.143
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Figure C.6: CO2 IR spectra obtained from a FF optimized only with bonded interactions (solid

line) vs. a FF optimized including also the nonbonded interactions (dots).

Table C.2: Carbon dioxide nonbonded parameters [188].

ε(kcal ·mol−1) σ(Å) Rmin(Å) q(e)

C -0.0558 2.757 3.0946 0.6512

O -0.1598 3.033 3.4044 -0.3256
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Figure C.7: Silicalite IR spectra obtained from a FF optimized only with bonded interactions

(solid line) vs. a FF optimized including also the nonbonded interactions (dots).

Table C.3: Silicalite nonbonded parameters [128]. Exclusion policy 1− 4 rescaling factor is 1.0

for vdW and 0.5 for Coulomb.

ε(kcal ·mol−1) σ(Å) Rmin(Å) q(e)

Si -0.162 3.963 4.448 1.10

O -0.058 3.063 3.438 -0.55
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Figure C.8: ZIF-8 IR spectra obtained from a FF optimized only with bonded interactions (solid

line) vs. a FF optimized including also the nonbonded interactions (dots).

Table C.4: ZIF-8 nonbonded parameters [147]. Exclusion policy 1−4 rescaling factor is 0.5 for

vdW and 0.833 for Coulomb. Note the presence of two typos in Ref. 147: the sigma of H3 and

the partial charge of C3, the values here reported are the correct ones.

ε(kcal ·mol−1) σ(Å) Rmin(Å) q(e)

C1 -0.0860 3.400 3.816 0.4339

C2 -0.0860 3.400 3.816 -0.1924

C3 -0.1094 3.400 3.816 -0.6042

H2 -0.0150 2.511 2.818 0.1585

H3 -0.0157 2.471 2.774 0.1572

N -0.1700 3.250 3.648 -0.3008

Zn -0.0125 1.960 2.200 0.7362
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Figure C.9: CO2 IR spectra obtained from a FF optimized including the UB term (solid line) vs.

a FF optimized excluding it (dots).
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Figure C.10: ZIF-8 IR spectra obtained from a FF optimized including the UB term (solid line)

vs. a FF optimized excluding it (dots).
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Figure C.11: C1-N-Zn-N dihedral angles distribution (phase δ = 0 ◦).

Figure C.12: C2-N-Zn-N dihedral angles distribution (phase δ = 180 ◦).
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