
                             Elsevier Editorial System(tm) for Plasmid 
                                  Manuscript Draft 
 
 
Manuscript Number:  
 
Title: Global transcriptional regulator KorC coordinates expression of three backbone modules in the 
broad-host-range RA3 plasmid of IncU incompatibility group  
 
Article Type: Special Issue: ISPB 2012 
 
Keywords: RA3, broad-host-range IncU plasmid, KorC repressor, global regulation 
 
Corresponding Author: Dr. Grazyna Jagura-Burdzy, PhD 
 
Corresponding Author's Institution: Institute of Biochemistry and Biophysics, Polish Academy of 
Sciences 
 
First Author: Marta Ludwiczak 
 
Order of Authors: Marta Ludwiczak; Patrycja  Dolowy, PhD; Aleksandra Markowska; Jolanta  Szarlak; 
Anna Kulinska, PhD; Grazyna Jagura-Burdzy, PhD 
 
Abstract: Broad-host-range conjugative RA3 plasmid of IncU incompatibility group has been isolated 
from fish pathogen Aeromonas hydrophila. DNA sequencing revealed mosaic modular structure of RA3 
with stabilization module showing some degree of similarity to IncP-1 genes whereas conjugative 
transfer module being highly similar to PromA plasmids. The integrity of mosaic plasmid genome 
seems to be specified by its regulatory network. In this paper the transcriptional regulator KorC has 
been analyzed. The KorCRA3 (98 amino acids) is encoded in the stabilization region and it represses 
five strong promoters by binding to the conserved palindrome sequence, designated OC on the basis of 
homology to KorC operator sequences in IncP-1 plasmids. Two of KorCRA3 regulated promoters 
precede the first two cistrons in the stabilization module, and one fires towards replication module. 
Among two other divergently oriented back-to-back promoters, one is upstream of the long 
transcriptional unit of 19 orfs, products of which are predicted to be involved in the conjugative 
transfer process and another controls tricistronic operon encoding proteins of unknown functions. 
Despite the similarity between binding sites in IncU and IncP-1 plasmids no cross-reactivity between 
KorC proteins has been detected. The KorC emerges as the global regulator in RA3 coordinating all 
plasmid backbone functions: replication, stable maintenance and conjugative transfer. 
 
Suggested Reviewers: Daniela Barilla 
daniela.barilla@york.ac.uk 
 
Igor Konieczny 
igor@biotech.ug.edu.pl 
 
Dhruba Chattoraj 
chattoraj@nih.gov 
 
 
Opposed Reviewers:  
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IBB PAS Repository

https://core.ac.uk/display/19978369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

 

 

  

To 

Editor of Plasmid 

  

 

Dear Dr Rood,  

 

  Please find attached the manuscript: “Global transcriptional regulator KorC 

coordinates expression of three backbone modules in the broad-host-range RA3 plasmid 

of IncU incompatibility group” by Ludwiczak, M., Dolowy, P., Markowska, A., Szarlak, J., 

Kulinska, A. and Jagura-Burdzy, G. I am hoping you will consider the manuscript appropriate 

for publication in Plasmid. 

  

       Yours sincerely 

       Grazyna Jagura-Burdzy 

  

   

 

Cover Letter



 

KorC of RA3 regulates expression of replication, stability and transfer functions 

KorC operators from different incompatibility groups of plasmids are highly conserved 

Specificity determinants in OC have been established 

KorC mutant analysis led to the identification of HTH motif and dimerization domain 

*Highlights (for review)



 

1 
 

Global transcriptional regulator KorC coordinates expression of three backbone modules 1 

in the broad-host-range RA3 plasmid of IncU incompatibility group 2 

Ludwiczak, M., Dolowy, P., Markowska, A., Szarlak, J., Kulinska, A., Jagura-Burdzy, G. * 3 

  4 

Institute of Biochemistry and Biophysics, PAS, Department of Microbial Biochemistry, 5 

Warsaw, Poland 6 

 7 

 8 

*Author for correspondence: The Institute of Biochemistry and Biophysics, PAS,  9 

02-106 Warsaw, Pawinskiego 5A, Poland.  10 

Tel: +48 22 823 71 92; Fax: +48 22 658 46 36;  11 

Email: gjburdzy@ibb.waw.pl 12 

 13 

Running title: KorC regulon of RA3 plasmid 14 

 15 

Keywords: RA3, broad-host-range IncU plasmid, KorC repressor, global regulation 16 

 17 

18 

*Manuscript
Click here to view linked References

http://ees.elsevier.com/plasmid/viewRCResults.aspx?pdf=1&docID=952&rev=0&fileID=26544&msid={292DF935-F976-4441-8C9F-9028E26012D4}


 

2 
 

ABSTRACT 19 

Broad-host-range conjugative RA3 plasmid of IncU incompatibility group has been isolated 20 

from fish pathogen Aeromonas hydrophila. DNA sequencing revealed mosaic modular 21 

structure of RA3 with stabilization module showing some degree of similarity to IncP-1 genes 22 

whereas conjugative transfer module being highly similar to PromA plasmids. The integrity of 23 

mosaic plasmid genome seems to be specified by its regulatory network. In this paper the 24 

transcriptional regulator KorC has been analyzed. The KorCRA3 (98 amino acids) is encoded in 25 

the stabilization region and it represses five strong promoters by binding to the conserved 26 

palindrome sequence, designated OC on the basis of homology to KorC operator sequences in 27 

IncP-1 plasmids. Two of KorCRA3 regulated promoters precede the first two cistrons in the 28 

stabilization module, and one fires towards replication module. Among two other divergently 29 

oriented back-to-back promoters, one is upstream of the long transcriptional unit of 19 orfs, 30 

products of which are predicted to be involved in the conjugative transfer process and another 31 

controls tricistronic operon encoding proteins of unknown functions. Despite the similarity 32 

between binding sites in IncU and IncP-1 plasmids no cross-reactivity between KorC proteins 33 

has been detected. The KorC emerges as the global regulator in RA3 coordinating all plasmid 34 

backbone functions: replication, stable maintenance and conjugative transfer. 35 

36 
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1. INTRODUCTION 37 

Conjugative RA3 plasmid (GenBank accession no. DQ401103), representative of IncU 38 

incompatibility group, demonstrates very broad-host-range since it self- transfers, replicates 39 

and is stably maintained in the representatives of alpha- beta- and gamma-proteobacteria 40 

(Kulinska et al., 2008). The factors determining promiscuity of RA3 are under investigation. 41 

The sequencing of plasmid DNA revealed its modular-mosaic structure with long blocks of 42 

genes putatively engaged in distinct plasmid functions showing similarities to the functional 43 

modules of plasmids from different incompatibility groups e.g. stability region of IncP-1 44 

(Pansegrau et al., 1994; Thorsted et al., 1998) or conjugative transfer region of PromA 45 

plasmids (van der Auwera et al., 2009).  46 

The stabilization module of RA3 encompasses 10 orfs transcribed in the same direction 47 

(Fig. 1A). The seven of them encode homologues of IncP-1 products with 30% to 65% 48 

similarity at amino acids sequence level, three orfs (orf02, orf04 and orf11) have no 49 

homologues in the database (Kulinska et al., 2008). The klcARA3 codes for probable 50 

antirestriction protein that shares 55% homology with KlcAR751, recently shown to act at Type 51 

I DNA restriction and modification systems (Serfiotis-Mitsa et al., 2010). The korCRA3 codes 52 

for the putative transcriptional repressor, 49% and 41% similar to equivalents of RK2 (IncP-53 

1) and R751 (IncP-1) plasmids, respectively. The homologues of two putative accessory 54 

partition proteins, KfrC and KfrA (69% and 30% similarity to RK2 equivalents, respectively), 55 

are encoded upstream of the last part of the stabilization module, the partitioning operon 56 

korAincCkorBorf11 (Kulinska et al., 2011). With the exception of the partition operon, the 57 

transcriptional organization of stability regions in representatives of IncU and IncP-1 groups 58 

of plasmids differs significantly (Kulinska et al., 2008, Fig. 1A).  59 

The homologues of four putative DNA binding proteins encoded in the stability module 60 

of RA3 (KorA, KorB, KorC and KfrA) have defined regulatory roles in the RK2 and R751 61 

biology ranging from autoregulatory to the global repressor functions (Adamczyk et al., 2006; 62 

Balzer et al., 1992; Bechhofer et al., 1986; Jagura-Burdzy et al., 1991; 1999b; Jagura-Burdzy 63 

and Thomas, 1992; 1994; 1995; Kornacki et al., 1990; Larsen and Figurski, 1994; Macartney et 64 

al., 1997; Motallebi-Veshareh et al., 1992; Shingler and Thomas, 1984; Theophilus et al., 65 

1985; Thomas et al., 1988; 1990).  66 

The study initiated on RA3 putative regulatory network demonstrated that KorARA3 has 67 

a strong repressor activity as the autoregulator of the korAincCkorBorf11 partition operon. 68 

Since in the RA3 genome the KorA operator occurs only once at korAp, it implies that KorA 69 

repressor has a very limited role in regulation of gene expression in RA3 plasmid. Another 70 
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DNA binding protein, KfrA, plays only the role of a self-repressor of the monocistronic kfrA 71 

operon (Kulinska and GJB unpublished). The KorB of RA3 acts as the partition protein (B-72 

component of type IA partition system) (Kulinska et al., 2011) and also as the transcriptional 73 

repressor for two promoters (Dolowy and GJB unpublished). This work, devoted to KorC of 74 

RA3, provides strong evidence that KorC is the most important transcriptional regulator of 75 

IncU plasmid backbone gene expression.   76 

77 
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2. MATERIALS AND METHODS 78 

2.1 Bacterial strains and growth conditions  79 

Escherichia coli strains used were: DH5 [F
-
(80dlacZM15) recA1 endA1 gyrA96 80 

thi-1 hsdR17(rk
-
mk

+
) supE44 relA1 deoR (lacZYA-argF)U196]; BL21[ F

-
 ompT hsdSB (rB

-
mB

-
) 81 

gal dcm (DE3)] (Novagen, 2003); BTH101 [F
-
 cya-99 araD139 galE15 galK16 rpsL1 (Sm

R
) 82 

hsdR2 mcrA1 mcrB1] (Karimova et al., 1998). Bacteria generally were grown in L broth (Kahn 83 

et al., 1979) at 37°C or on L agar (L broth with 1.5% w/v agar) supplemented with appropriate 84 

antibiotics: benzylpenicillin, sodium salt (150 g ml
-1

 in liquid media and 300 g ml
-1

 in agar 85 

plates) for penicillin resistance, kanamycin 50 g ml
-1 

for kanamycin resistance, tetracycline 10 86 

g ml
-1 

for tetracycline resistance and chloramphenicol 10 g ml
-1 

for chloramphenicol 87 

resistance. MacConkey Agar Base (Difco) supplemented with 1 % maltose was used for 88 

BACTH system. L agar used for blue/white screening contained IPTG (0.1 mM) and Xgal (40 89 

g ml
-1

). Protein synthesis was induced with the use of IPTG (0.5 mM for BL21 and DH5α  90 

strains; 0.15 mM and 0.5 mM for BTH101 strain grown in liquid media and agar plates, 91 

respectively). 92 

2.2 Plasmid DNA isolation, analysis, cloning and manipulation  93 

Plasmid DNA was isolated and manipulated by standard procedures (Sambrook et al., 94 

1989). The list of plasmids used and constructed in this study is presented in Table 1. Standard 95 

PCR reactions (Mullis et al., 1986) were performed with pairs of primers listed in Table 2. All 96 

PCR-derived clones were analyzed by DNA sequencing to check their fidelity.  97 

2.3 Site-directed mutagenesis in vitro  98 

To create mutations in korC an in vitro site-directed mutagenesis method (Stratagene, 99 

2006) was used with the high fidelity PfuTurbo DNA polymerase. The primers 19 to 22, 28 100 

and 29 (Table 2) were designed to insert nucleotide substitutions in the particular region 101 

accompanied by restriction cleavage site to facilitate screening. PCR reactions to introduce 102 

mutations were performed with an initial denaturation step (96°C for 5 minutes) and 18 cycles 103 

of denaturation at 96°C for 30 seconds, annealing at 55°C for 30 seconds and elongation at 104 

68°C for 14 minutes. Reactions ended with a final elongation step (68°C for 25 minutes). The 105 

PCR product was treated with DpnI endonuclease to remove template DNA and used for 106 

transformations. The plasmid DNA of putative mutant was tested for the presence of restriction 107 

site introduced in the mutagenic primers and the effect of mutagenesis was verified by 108 

sequencing. 109 

2.4 Bacterial transformation 110 
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Competent cells of E. coli were prepared by standard CaCl2 method (Sambrook et al., 1989). 111 

2.5 Determination of catechol 2, 3-oxygenase activity (XylE)  112 

XylE activity (the product of xylE) was assayed in logarithmically growing strains 113 

(Zukowski et al., 1983). One unit of catechol 2, 3-oxygenase is defined as the amount needed 114 

to convert 1 mol of catechol in 1 minute under standard conditions. Protein concentration was 115 

determined using the Bradford method (Bradford, 1976). 116 

2.6 Purification of His6-tailed KorC derivatives  117 

For protein over-production and purification, E. coli BL21(DE3) was transformed with 118 

one of the constructs: pMWB10.7, pMWB10.24 or pMWB10.25 encoding N-terminally His6-119 

tagged KorCs. The purification procedure was performed as described previously (Jagura-120 

Burdzy and Thomas, 1995) with the use of sonication buffer (50 mM sodium phosphate pH 121 

8.0; 300 mM NaCl). Protein fractions were analyzed by SDS-PAGE using a Pharmacia 122 

PHAST system with 20% homogeneous gels. 123 

2.7 Analysis of protein-DNA interactions by electrophoretic mobility shift assay (EMSA)  124 

The PCR-amplified DNA fragments were excised from agarose gels and purified by 125 

Gel-Out kit (A&A Biotechnology). Concentration of the isolated DNA fragments was 126 

determined with NanoDrop 2000. The protein-DNA binding reactions were performed in the 127 

binding buffer (50 mM Tris-HCl pH 8.0; 10 mM MgCl2; 50 mM NaCl; 0.2 mg ml
-1

 BSA) with 128 

increasing amounts of His6-KorC added in a final volume of 20 l. Binding reactions were 129 

analyzed on 1.2% agarose gels in 0.5xTBE buffer (89 mM Tris-borate and 2 mM EDTA, pH 130 

8.3). The gels were stained with ethidium bromide and DNA was visualized under UV light.  131 

2.8 Cross-linking with glutaraldehyde  132 

His6-tagged KorC purified on Ni
2+

-agarose column was cross-linked by the use of 133 

glutaraldehyde (Jagura-Burdzy and Thomas, 1995) and separated on 20% (w/v) SDS-PAGE 134 

gels. The proteins were transferred onto nitrocellulose membrane and Western blot analysis 135 

with anti-His6-Tag antibodies was performed as described previously (Bartosik et al., 2004). 136 

2.9 Conjugation procedure 137 

E. coli DH5α strain with RA3 plasmid, transformed either with pGBT30 (as a control) 138 

or pJSB5.7 (for KorC over-expression), was used as a donor and DH5 Rif
R
 strain was used as 139 

the recipient. 100l of overnight cultures of donor and recipient strains were mixed (1:1) and 140 

incubated on L agar plates for 2 hours at 37°C. Cells were scrapped, re-suspended in L-broth 141 

and aliquots of serial 10-fold dilutions were plated onto L agar plates with 100 μg ml
-1

 142 

rifampicin and 10 g ml
-1

chloramphenicol to estimate the number of transconjugants. In 143 
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parallel 100 l of donor strain overnight culture was incubated on L agar plate for 2 hours at 144 

37°C, cells were scrapped, diluted and plated on L agar or L agar with antibiotics selective for 145 

donor strain. The transfer frequency was calculated as the number of transconjugants per donor 146 

cell.  147 

2.10 Bacterial Adenylate Cyclase Two-Hybrid System (BACTH system)  148 

The dimerization of KorC in vivo was analyzed using bacterial adenylate cyclase two-149 

hybrid system in E. coli (Karimova et al., 1998). KorC protein was translationally fused to C- 150 

terminal parts of CyaT18 and CyaT25 fragments encoded on compatible vectors pUT18C and 151 

pKT25. E. coli BTH101, an adenylate cyclase deficient strain (cya), was co-transformed with 152 

a mixture of appropriate pairs of BACTH system plasmids and plated on MacConkey medium 153 

supplemented with 1 % (w/v) maltose, 0.5 mM IPTG and selective antibiotics. The plates 154 

were incubated for 48 h at 27°C. The ability to ferment maltose that manifested in changing 155 

color of the medium from pale pink into violet indicated the Cya reconstitution through the 156 

interactions between fused polypeptides. Interactions were also verified by determination of 157 

β-galactosidase activity in the liquid cultures (Miller, 1972). Double transformants of 158 

BTH101 strain were grown overnight in L broth at 27°C with addition of penicillin, 159 

kanamycin and 0.15 mM IPTG and 0.2 ml of each culture was taken for the assay. One unit of 160 

β-galactosidase is defined as the amount of enzyme needed to convert 1 mol of ONPG (o-161 

nitrophenyl-β-galactoside) to o-nitrophenol and D-galactose in 1 minute under standard 162 

conditions. 163 

2.11 Stability assay 164 

To check the effect of KorC over-expression on RA3 stability E. coli DH5α strain with 165 

RA3 plasmid was transformed either with pGBT30 (as a control) or pJSB5.7 (for KorC over-166 

expression). Overnight cultures of transformants grown on L broth supplemented with 10 g 167 

ml
-1

chloramphenicol and 150 g ml
-1 

penicillin were 10
5 

fold diluted into fresh medium 168 

supplemented with 150 g ml
-1 

penicillin and 0.5 mM IPTG. The cultures were diluted 169 

repeatedly every 24 hours and simultaneously the diluted cultures were plated on L agar with 170 

300 g ml
-1 

penicillin. The plates were incubated overnight at 37°C and 100 colonies were re-171 

streaked on L agar supplemented with either 300 g ml
-1 

penicillin and 0.5 mM IPTG or 300 172 

g ml
-1 

penicillin, 10 g ml
-1

chloramphenicol and 0.5 mM IPTG to estimate a plasmid 173 

retention rate.  174 

  175 
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3. RESULTS 176 

3.1 KorC regulates three promoters in the stability module 177 

The korC locates in the stable maintenance module between short orf04 of unknown 178 

function and homologue of kfrC from IncP-1 (Fig. 1A). KorC is a relatively small protein (98 179 

amino acids) with two putative -Helix-turn--Helix motifs predicted by I-TASSER server 180 

(Fig. 1B; Zhang, 2008). The alignment of amino acids sequences of KorCRA3 and its 181 

homologues from RK2 (IncP-1), R751(IncP-1) and pQKH54 (IncP-1) reveals that the least 182 

conserved region is around HTH motif previously suggested for KorCRK2 (Kornacki et al., 183 

1990) (Fig. 1C). The helices in this motif are separated by long linker in RA3; the linker is 184 

conserved in the closest homologue KorCpQKH54 and absent in other KorCs. 185 

Promoter search in the 7.7 kb stability region had predicted promoter sequences 186 

upstream of orf02, klcA, korC, kfrA and korA genes (Kulinska et al., 2008). Five DNA 187 

fragments with putative promoter sequences have been amplified and cloned into promoter-188 

probe pPT01 vector upstream of the promoter-less xylE cassette encoding catechol 2,3-189 

oxygenase (Macartney et al., 1997). All cloned inserts showed high transcriptional activity in 190 

the reporter system (1.5 to 6 U of XylE) confirming the presence of strong transcription 191 

initiation signals in these regions of RA3 (Fig. 2A). Cloning of the inserts in the opposite 192 

direction indicated that the region upstream orf02 contains two divergently oriented promoter 193 

sequences, one firing towards orf02 (orf02p) and another one firing into the repetitive region 194 

adjacent to the repB gene, designated orf02prev and undetected by computer analysis. The 195 

close inspection of DNA sequence in this region revealed a few putative promoter motifs. To 196 

discriminate between them, the originally cloned fragment was split into two shorter ones by 197 

PCR amplification with pairs of primers 08 and 30 or 06 and 31 (Table 2, Fig. 3A) and cloned 198 

in the same orientation (for orf02prev activity) into the promoter-probe vector to obtain 199 

pMWB6.27 and pMWB6.28, respectively. Whereas pMWB6.27 showed no promoter activity 200 

firing towards replication module, pMWB6.28 contained orf02prev promoter. We arbitrary 201 

identified motives recognized by RNAP in this fragment (Fig. 3A) which form divergent face-202 

to- face configuration of promoter sequences for orf02prev and orf02p. 203 

To check which promoters (if any) are under presumable control of KorC, the korC has 204 

been cloned under tacp into the expression vector pGBT30 compatible with pPT01 (Jagura-205 

Burdzy et al., 1991) to construct pJSB5.7. DH5 strains with resident plasmids carrying 206 

analyzed promoter regions in transcriptional fusions with xylE were transformed with pGBT30 207 

(vector) and pJSB5.7. The catechol 2,3- oxygenase activity assays in the logarithmic cultures 208 
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of double transformants revealed that KorC represses both divergently oriented promoters from 209 

the region upstream of orf02 and the one upstream of klcA (Fig. 2A). The level of KorC 210 

repression was more than 100-fold even without induction of tacp by IPTG. None of other 211 

three promoters, korCp, kfrAp and korAp was sensitive to the presence of KorC in the cells 212 

(data not shown). 213 

3.2 Identification of KorC binding sites in the stability module 214 

The promoter regions upstream of orf02 and klcA arose seemingly by duplication 215 

(Kulinska et al., 2008). The inspection of these promoter sequences showed the inverted 216 

repeat TAGGCCATTTTGGCCTA between putative -35 and -10 motifs of orf02 promoter 217 

(overlapping -10 motif by 2 nt) and complementary version of the palindrome 218 

TAGGCCAAAATGGCCTA in the same position for klcAp. Interestingly, klcA promoter is 219 

also preceded by additional mutated version of the inverted repeat 220 

TAGGCCgATTTGGCCTA (Fig. 3A and B). The comparison of this putative KorCRA3 221 

binding site with previously identified operators for KorCRK2 and KorCR751 (Larsen and 222 

Figurski, 1994; Thomas et al., 1988; Thorsted et al., 1998) as well as other sequenced IncP-1 223 

representatives indicated the high degree of similarity (Table 3). 224 

3.3 KorC regulates expression of the conjugative transfer functions 225 

Screening of RA3 genome with such IR sequence revealed an extra copy occurring in 226 

the divergent promoter region between orf33 and orf34 in the conjugative transfer module 227 

(Fig. 3C). Cloning of this divergent promoter region in both orientations upstream of xylE into 228 

pPT01 (pMWB6.11r for orf33p-xylE and pMWB6.11 for orf34p-xylE) confirmed that both 229 

tested promoters were highly active (1.5 U of XylE) (Fig. 2A). Whereas orf34p was repressed 230 

by KorC present in trans (10-fold repression by KorC at low repressor concentration), orf33p 231 

repeatedly showed 2-3 fold induction by KorC produced from pJSB5.7. Plasmid DNA 232 

isolation from double transformants cultures used for the enzymatic assays revealed unusual 233 

profile for pMWB6.11r. The copy number of pPT01 derivative carrying the transcriptional 234 

fusion orf33p-xylE increased more than 6-fold in the presence of pJSB5.7 in comparison to 235 

the cultures with pGBT30 in trans (data not shown). Although the rationale behind this 236 

transient copy-up phenotype is unclear, we may assume that KorC also represses orf33p, 237 

possibly not as strongly as other regulated promoters. 238 

The genetic data has been gathered to support this conclusion. The attempts to clone 239 

the conjugative transfer module into the high copy number plasmid pBGS18 were 240 

unsuccessful leading to rise of minute colonies, unable to grow after passage. However, when 241 

the recipient strain DH5 expressed also korC from tacp-korC transcriptional fusion 242 
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(pJSB5.7) the transformants grew normally. The loss of this helper plasmid caused massive 243 

rearrangements in the insert, the long operon of 19 orfs transcribed from orf33p. Presumably 244 

unregulated expression of multicistronic conjugative transfer operon exerts too much 245 

metabolic burden on the cells. To obtain stable plasmid with the functional conjugative 246 

transfer module it was decided to incorporate the korC gene preceded by its own promoter 247 

into the vector before cloning the conjugative transfer module. Such construct, pJSB1.24, was 248 

stable and proficient in the conjugative transfer with the frequency comparable to the parental 249 

RA3 (Bartosik et al., 2012).  250 

We checked whether excess of KorC may disturb the RA3 ability to spread. The donor 251 

strain DH5 (RA3) (pJSB5.7) was grown overnight on selective antibiotics and 0.5 mM 252 

IPTG. No effect of KorC over-production was observed on conjugation frequency of RA3 253 

plasmid (Fig. 4A) indicating that the complete system is highly balanced and not easily 254 

disturbed, at least for approximately 20 generations.  255 

3.4 KorC controls the replication functions of RA3. 256 

The divergent promoters orf02p-orf02prev are located in the region between two 257 

functional modules: replication and maintenance. The repression of both promoters by KorC 258 

implicated the role of KorC not only in the expression of the operon in the stability module 259 

but also in the functioning of the replication module. The overnight culture of DH5 (RA3) 260 

(pJSB5.7) strain grown in the presence of chloramphenicol and penicillin was diluted 261 

repeatedly into the medium with penicillin and 0.5 mM IPTG and every 25 generations 262 

checked for RA3 retention. Over-expression of KorC in trans to the intact RA3 destabilized 263 

the parental plasmid (Fig. 4B). After approximately 75 generations 30% of cells lost RA3 264 

whereas no loss was observed even after 100 generations without KorC excess.  265 

The minireplicon of RA3 (pJSB18) encompassing the replication module and the 266 

divergent promoter region orf02p/orf02prev was constructed (RA3 coordinates 43327-45909, 267 

1-2300). We used E. coli DH5 (pJSB18) as the recipient in transformation with two 268 

derivatives of the broad-host-range vector pBBR1MCS: pAMB9.37 (pBBR1MCS-lacI
Q
 tacp) 269 

and pJSB4.7 (pBBR1MCS lacI
Q
 tacp-korC). Whereas numerous well grown colonies of 270 

DH5 (pJSB18) (pAMB9.37) appeared on plates selective for resident and incoming 271 

plasmids, only scarce transformants of DH5 (pJSB18) (pJSB4.7) grown as minute colonies 272 

appeared on double selection plates (Fig. 4C). The frequencies of transformations of the same 273 

recipient strain but with selection for incoming plasmids were very similar for both 274 

pAMB9.37 and pJSB4.7 (>10
4
 colonies per ml of transformation mixture) indicating that the 275 
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presence of KorC was detrimental for ability of RA3 minireplicon to be established. The role 276 

of transcription from orf02prev in the functioning of replication module e.g. initiation of 277 

replication or copy number control is under investigation (Markowska A. and GJB 278 

unpublished). 279 

3.5 KorC exists as a dimer in solution  280 

The korC was cloned into pET28 derivative under T7p to facilitate purification. 281 

Purified His6-tagged KorC migrated on SDS-PAGE gels as polypeptide of MW 14 kDa. Cross-282 

linking of KorC with increasing concentration of glutaraldehyde demonstrated ability of the 283 

protein to form dimers and higher order complexes in solution as shown on Fig. 5A. 284 

The ability of KorC to self-interact was also confirmed in vivo in bacterial two hybrid system 285 

BACTH (Karimova et al., 1998) by translationally linking cyaA domains with korC. 286 

Dimerization of KorC manifested in the deep purple color of colonies plated and re-streaked on 287 

MacConkey agar supplemented with maltose, IPTG, kanamycin and penicillin (data not 288 

shown). Self-interaction of KorC was highly effective since it was giving 7000 U of LacZ 289 

activity in the liquid cultures, comparable to the activity of LacZ in the BTH101 strain 290 

transformed with BACTH plasmids with cya domains linked to GCN4 leucine zipper 291 

fragments, used as the positive control for strong interactions (Fig. 5B). 292 

3.6 KorC binds to all KorC-regulated promoters with similar affinity in vitro 293 

Putative KorC binding sites were numbered sequentially according to their position in 294 

RA3 genome: OC1 maps in the divergent promoter region orf02p/orf02prev, OC2 and OC3 are 295 

localized in klcAp and OC4 occurs in the divergent promoter region orf33p/orf34p. 296 

DNA fragments of 150 to 300 bp in size containing OC1, OC2-OC3 and OC4 were PCR-297 

amplified and used in EMSA experiments with the purified His6-KorC. KorC shifted all three 298 

fragments with similar Kapp of about 120 nM (Kapp is defined as the protein concentration at 299 

which 50% of probe is shifted), however in the case of klcAp fragment with two KorC binding 300 

sites (OC2-OC3), two distinct retarded species were seen. The first retarded species appeared at 301 

low KorC concentration and the second at least at a 5-fold higher concentration of KorC (Fig. 302 

6A). The short fragments with the separated OC2 and OC3 were amplified by PCR with the use 303 

of pairs of primers 03 and 11 or 04 and 12, respectively (Table 2). Analysis of KorC binding 304 

confirmed the same affinity of KorC to fragment with OC3 as seen for other “perfect” 305 

palindromes and lower affinity to the fragment with OC2 with the mismatch in one of the arms 306 

(Fig. 6B). These experiments indicated that there was no co-operativity between KorC 307 

molecules bound to two adjacent OCs (OC2-OC3 fragment). 308 

 309 
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3.7 Regulation of klcAp by KorC 310 

KorC recognizes and binds to two sites in the klcAp region, OC3 overlaps the promoter 311 

(between putative -35 and -10 motifs) and the imperfect OC2 precedes -35 motif by 26 nt (44 nt 312 

between the centers of two regulatory palindromes). Whereas OC3 is bound by KorC in vitro 313 

with similar affinity as OC1 and OC4, OC2 is recognized and bound at several fold higher 314 

concentration of the regulatory protein. To understand the possible role of tandem operators, 315 

the klcA promoter region was amplified without upstream sequences containing OC2 and 316 

cloned upstream of the promoter-less xylE cassette into pPT01 (pMWB6.10). The comparison 317 

of transcriptional activities of both versions of klcA promoter regions (pMWB6.9 and 318 

pMWB6.10) showed that the deletion of upstream sequences had only slight effect on 319 

promoter activity. Both versions of klcAp were strongly repressed when production of KorC in 320 

trans was induced by IPTG (>100 fold repression), however, there was a clear difference in the 321 

level of repression at low concentration of repressor (Fig. 2B). The short version of klcA 322 

promoter region deprived of imperfect OC2 was 7-fold repressed by KorC whereas the longer 323 

version with both OC2 and OC3 was almost completely shut off under such conditions (more 324 

than 100-fold regulation ). The presence of low affinity binding site modulates the sensitivity 325 

of the klcA promoter in vivo towards the fluctuations in the repressor concentration.    326 

3.8 KorC mutant analysis 327 

 The structural predictions did not univocally determine the location of HTH motif in the 328 

KorC moiety (Fig. 1B). It was decided to substitute the glycine residues occurring in two 329 

potential DNA binding motifs by negatively charged residues to impair the proper folding (Fig. 330 

1C). Mutant alleles korC G34G41 and korC G88G90 were constructed by site-specific 331 

mutagenesis of korC and inserted into the expression vector pGBT30 under tacp (to obtain 332 

pMWB7.25 and pMWB7.24, respectively). Subsequently the ability of two forms of KorC was 333 

analyzed in trans to orf02prev-xylE transcriptional fusion (pMWB6.6) in the regulatory two 334 

plasmids assay. There was no difference between two KorC derivatives. Both were impaired in 335 

the ability to strongly repress orf02prev since no regulatory effect was seen in uninduced 336 

cultures carrying pMWB7.25 or pMWB7.24 in trans to pMWB6.6 in contrary to WT KorC 337 

(Fig. 2C and 2A). The korC alleles were also cloned under T7p into pET28mod and His6-338 

tagged derivatives were purified. Binding to DNA in vitro was also impaired in both forms of 339 

the protein (data not shown). Since WT KorC exists as a dimer in solution it was necessary to 340 

demonstrate whether any modifications affected the ability to dimerize. In vitro assay with 341 

glutaraldehyde cross-linking of purified proteins KorC G34DG41D and KorC G88EG90E did 342 

not distinguish between two KorC derivatives. Both proteins seemed to be able to form dimers 343 
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and higher order complexes in vitro similarly to WT KorC (Fig. 5A). The mutated korC alleles 344 

were also cloned into BACTH system to check their abilities for self-interactions in vivo. KorC 345 

G34DG41D was fully capable of self-interactions and interactions with WT KorC what was 346 

demonstrated by deep purple colonies of appropriate BACTH transformants of BTH101 strain. 347 

However, KorC G88EG90E interacted neither with itself nor WT KorC (pale pink colonies of 348 

double transformants). The -galactosidase activity assays in the liquid cultures of these 349 

transformants confirmed the plate tests (despite the in vitro test) (Fig. 5B). It implicated that 350 

dimerization domain is located in the C-terminus of KorC and that altered dimerization 351 

properties may result in the impairments of DNA binding activity of KorC as observed in the 352 

regulatory studies. 353 

 The short deletion was introduced into the korC allele removing 15 amino acids 354 

from C-end (Fig. 1C). The deletion allele was tested in the BACTH system (Fig. 5B) and 355 

clearly confirmed the vital role of this part of KorC in forming dimers. 356 

3.9 Lack of cross-reactivity between KorC repressors from IncP-1 and RA3 plasmids 357 

KorCRK2 controls three operons klcA, kleA and kleC, whose products have the auxiliary 358 

roles in the stable maintenance (Thomas et al., 1988; Larsen and Figurski, 1994). R751 has lost 359 

kleC operon hence KorCR751 putatively controls only klcA and kleA (Thorsted et al., 1998). 360 

Multiple KorC binding sites are highly conserved in the same plasmid genome, however they 361 

slightly differ between RK2 and R751 having transitions G→A at position 5 and C→T at 362 

position 13 (Table 3). The comparison of OC sites from RA3 and IncP-1 plasmids showed 363 

transversions in these positions of the palindrome: C occurred at position 5 and G at position 364 

13. It was decided to check if such subtle DNA changes may affect ability of KorCRA3 to bind 365 

to the operators from IncP-1 plasmids. The klcAp fragments from RK2 and R751 were 366 

amplified by PCR (pairs of primers 13 and 14, 15 and 16, respectively) and used in EMSA 367 

experiments with KorCRA3. Since all primary binding sites in RA3 demonstrate similar affinity 368 

for KorC for clarity not klcAp with two OCs but or0f2p with single OC1was used as the control. 369 

KorCRA3 binding to the heterologous OCs from RK2 and R751 was much weaker than to the 370 

cognate operator and in the range of protein concentrations where unspecific DNA binding 371 

appeared, observed also for mobCRA3 promoter region which does not contain OC (Fig. 6C).  372 

The klcA promoter fragments from RK2 and R751 were also cloned into the promoter-373 

probe vector to verify the cross-reactivity in vivo (plasmids pMWB6.22 and pMWB6.23, 374 

respectively). The presence of pJSB5.7 (tacp-korC) in trans affected neither klcApRK2-xylE nor 375 

klcAR751-xylE expression when non induced (no IPTG added). Slight decrease in XylE activity 376 

for klcApRK2-xylE was only observed after full induction of tacp –korC transcriptional fusion 377 
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by the presence of IPTG (Fig. 2D). Both in vitro and in vivo assays indicated that there is no 378 

cross-reactivity between the regulatory protein from IncU and the corresponding binding sites 379 

from IncP-1 plasmids (Fig. 2D).   380 

381 
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4. DISCUSSION 382 

The broad-host-range conjugative plasmids play an important role in bacterial 383 

genomes evolution. The ability to successfully invade and establish themselves in various 384 

unrelated hosts is of particular interest. It requires not only “promiscuous” transfer system but 385 

also replication system that functions independently of specific host proteins at least to some 386 

degree. BHR plasmids use the strong transcriptional signals to provide the sufficient level of 387 

gene expression in different hosts. To limit unnecessary metabolic burden on the host they 388 

evolved the regulatory networks negatively controlling the transcription events after 389 

establishment (Thomas, 2000).  390 

The best studied broad-host-range conjugative IncP-1 plasmids exemplify the most 391 

complex multivalent regulatory network, the combination of local autoregulatory circuits and 392 

overlapping regulons controlled by five global regulators, KorA, KorB, KorC, TrbA, IncC 393 

(Adamczyk and Jagura-Burdzy, 2003). Some of these regulons are limited to certain plasmid 394 

function e.g. KorC regulon encompasses two (in R751) or three operons (in RK2) 395 

participating in the stable maintenance (Kornacki et al., 1990; Larsen and Figurski 1994; 396 

Thomas et al., 1988), whereas others interlink different plasmid functions. TrbA is the 397 

repressor of all four conjugative transfer operons in RK2 as well as the trfA operon involved 398 

in the vegetative replication (Jagura-Burdzy et al., 1992; Zatyka et al., 1994). KorA 399 

coordinates replication and stability functions and provides the switch between vertical and 400 

horizontal mode of spreading (Jagura-Burdzy and Thomas, 1994; 1995; Thorsted et al., 1996). 401 

KorB is accompanied in the repressor functions by IncC (both proteins are also responsible 402 

for plasmid partition) and coordinates all plasmid functions: replication, stability and 403 

conjugative transfer (Jagura-Burdzy et al., 1999a; 1999b; Kostelidou and Thomas, 2000; 404 

Pansegrau et al., 1994; Thorsted et al., 1998). The global regulators KorB and TrbA evolved 405 

the ability of repression at the distance, controlling expression of promoters not necessarily 406 

adjacent to the binding sites (Jagura-Burdzy et al., 1999b; Jagura-Burdzy et al., 1992; Bingle 407 

et al., 2005). The intertwined regulons and self-regulatory circuits provide each promoter with 408 

at least two transcriptional regulators. The sensitivity of regulation is potentiated by co-409 

operativity between the regulatory proteins (Bingle et al., 2003, 2008; Jagura-Burdzy et al., 410 

1999a; Kostelidou et al., 1999; Shingler and Thomas, 1984).  411 

The genomic era confirmed that the co-existence of plasmids from different 412 

incompatibility groups in the same host facilitated the frequent DNA exchange leading to 413 

transfer of short DNA fragments, whole genes, operons and also functional modules. Whereas 414 

self-regulated modules (partition operons, toxin-antitoxin units) easily adapt to the new 415 
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genetic surroundings, the modules which run away from the regulatory circuit may create the 416 

obstacle for plasmid maintenance. RA3 of IncU group is the example of the mosaic modular 417 

BHR conjugative plasmid which putatively acquired bits and pieces of the stability functions 418 

from IncP-1 plasmids (Fig. 1A) together with the genes encoding homologues of the 419 

regulatory proteins: KorA, KorB and KorC. Whereas KorARA3 and KorBRA3 have lost their 420 

global regulatory character (Kulinska et al., 2008, 2011), KorCRA3 emerged as the main 421 

transcriptional regulator in RA3 genome. By controlling five promoters it coordinates the 422 

expression of all backbone functions. Two of the KorC-dependent promoters drive 423 

transcription of operons in the stability module (orf02p and klcAp), two of them are putatively 424 

responsible for expression of conjugative transfer genes (orf33p and orf34p), fifth (orf02prev) 425 

fires towards the replication module probably facilitating the replication process. KorCRA3 as 426 

the single repressor protein not only co-regulates all backbone functions, but also 427 

differentiates the level of their expression.  428 

The extent of KorC repression differs from a few fold in tra region to more than 100 429 

fold in stability and replication modules (Fig. 2A). It has been demonstrated that KorC binds 430 

to the three primary OCs (highly conserved sequences with perfect palindromic arms) with 431 

similarly high affinity in vitro (Fig. 6A and B). The differences in the regulatory effects in 432 

vivo are most likely the result of localization of the OC relatively to RNAP recognition sites 433 

(Fig. 3). The most potent regulatory effect is achieved by KorC bound between -35 and -10 434 

motifs (orf02p and klcAp) and also downstream of -10 sequence (orf02prev). In the least 435 

affected promoters OC is either far upstream of -35 motif like for orf33p or partly overlapping 436 

-35 motif like for orf34p. So the architecture of the divergent promoter regions and “flexible” 437 

localization of repressor binding sites of the same affinity for regulator result in the tightly 438 

controlled maintenance systems versus transfer operons permanently expressed at low level.  439 

The role of KlcA, homologue of antirestriction KlcAR751 protein (Serfiotis-Mitsa et al., 440 

2010) seems to be important in the process of plasmid establishment in the new hosts, 441 

however after this initial phase KlcA probably becomes detrimental to the cells so its 442 

synthesis must be shut off. The additional lower affinity “secondary” binding site OC2 443 

evolved in tandem with the primary OC3 in the klcAp. Although there is no co-operativity in 444 

vitro between KorC molecules bound at OC2 and OC3, the duplicated OCs increase the 445 

sensitivity of klcAp response in vivo to low concentrations of the repressor.  446 

The homology search for KorCRA3 pulled out the identical proteins encoded by other 447 

representatives of IncU group supporting previously observed high level of conservation in 448 

the backbone functions of these plasmids (Kulinska et al., 2008; Rhodes et al., 2000; 2004; 449 
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Sorum et al., 2003). The homology between KorCRA3 and tens of homologues from IncP-1 450 

group and a few from IncL/M group varied between 37-49%, with the highest score for KorC 451 

encoded by pQKH54 of IncP-1. Comparison of KorCs revealed that the most variable region 452 

corresponds to the HTH motif previously identified for KorCRK2 (Fig. 1C). The long flexible 453 

linker between putative regulatory helices is only present in KorCRA3 and KorCpQKH54. The 454 

modifications of glycine residues in this linker (KorCG34DG41D) had no effect on the 455 

dimerization ability but destroyed the capacity of KorCRA3 to bind and regulate KorC-456 

dependent promoters, confirming that helices 2 and 3 may form atypical HTH motif. Cross-457 

linking of KorCRA3 revealed the existence of various oligomeric forms in the solution. Our 458 

data clearly shows that  the C-terminus of KorC is involved in the self-interactions.  459 

Since evolution of regulatory proteins goes in hand with the evolution of its binding 460 

sites, we have searched the database with the short sequences corresponding to RA3 OCs. The 461 

OC sites from RA3, RK2 and R751, other annotated IncP-1 plasmids and a few IncL/M 462 

representatives demonstrate high degree of conservation (Table 3). The differences between 463 

these mainly hypothetical KorC binding sites are limited to the position 5 and 13 opposite to 464 

each other in the palindromic arms (several OC sites with single mismatches have also been 465 

found). In IncU plasmids these positions are occupied by C and G respectively, whereas in 466 

IncP-1 (and IncL/M) plasmids the transversions occurred, either G appeared at position 5 and 467 

C at position 13 or A appeared at position 5 and T at position 13. We tested both of these 468 

IncP-1 versions of OCs for KorCRA3 binding and none have been effective, clearly proving 469 

that these two nucleotides in the binding site are main specificity determinants. It was 470 

assumed that the 69% level of homology between KorC proteins of R751 and RK2 and 471 

binding sites differing only in one pair of nucleotides are sufficient for cross-reactivity 472 

(Thorsted et al., 1998), however it would be important to confirm experimentally their 473 

exchangeability.  474 

The modular broad-host-range RA3 plasmid of IncU falls into the category of 475 

promiscuous plasmids relying on the coordinate expression of all backbone functions despite 476 

its mosaicity. Whereas IncP-1 plasmids mastered the complexity of their regulatory networks 477 

to be successful, RA3 uses the simplified but highly effective version of once inherited 478 

network. The single global regulatory protein KorC binds only to the three regions in the 479 

genome. However the combination of localization of the operator sites in the vital promoters 480 

and the arrangements of transcriptional signals (divergent promoters regions) facilitates 481 

modulation of the expression of particular backbone functions according to the needs of the 482 

broad-host range of this conjugative plasmid.   483 
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Figure legends 639 

Figure 1. Stability module of RA3. Predicted structure of KorCRA3. 640 

A/ Comparison of stability modules from RA3 of IncU, and two representatives of IncP-1 641 

plasmids: R751 (IncP-1) and RK2 (IncP-1). Homologous genes are indicated. Small 642 

arrows correspond to the promoter sequences. The sites of insertions are marked with black 643 

triangles. B/ 3D structure of KorCRA3 predicted by I-TASSER online server (Zhang, 2008). 644 

The helices are numbered for clarity. The putative HTH motives are marked black (helices 2 645 

and 3) and grey (helices 5 and 6). C/ Alignment of KorC amino acids sequences from 646 

plasmids RA3 (IncU), pQKH54 (IncP-1), R751 (IncP-1) and RK2 (IncP-1). Similar 647 

residues in at least 3 proteins are shadowed black, similar residues in two sequences are 648 

shadowed grey. Grey boxes above KorCRA3 sequence mark -helices as presented on Fig. 1B. 649 

HTH motif identified in KorCRK2 sequence (Kornacki et al., 1990) is underlined. Two pairs of 650 

glycine residues modified in KorC G34DG41D and KorC G88EG90E are indicated by black 651 

and grey circles, respectively.   652 

Figure 2. KorCRA3 as the global transcriptional regulator 653 

DH5 strains with various promoter regions cloned into the promoter–probe vector pPT01 654 

were transformed with empty expression vector pGBT30 and its derivatives producing either 655 

WT KorCRA3 or mutant KorCs. The catechol 2,3,-oxygenase activity assays were performed 656 

on the logarithmically growing cultures in the absence and presence of IPTG. The mean 657 

values with standard deviation for at least three assays are shown. A/ Transcriptional activities 658 

of promoters preceded by identified OC sites in RA3 genome: orf02p (pPDB11.19), orf02prev 659 

(pMWB6.6), klcAp (pMWB6.9), orf33p (pMWB6.11r) and orf34p (pMWB6.11) were 660 

measured by XylE activities. Enzymatic assays were performed on extracts from the cultures 661 

of double transformants grown without IPTG. Dark grey bars correspond to the strains 662 

transformed with pGBT30 (KorC-) and light grey bars to the same strains transformed with 663 

pJSB5.7 (KorC+). B/ Activity of XylE expressed from klcAp promoter fragments with both 664 

OC2 and OC3 sites (pMWB6.9) and only OC3 site (pMWB6.10) assayed in the extracts of 665 

double transformants grown without IPTG. Dark grey bars correspond to the strains 666 

transformed with pGBT30 (KorC-) and light grey bars to the same strains transformed with 667 

pJSB5.7 (KorC+). C/ KorCRA3 mutant derivatives ability to act as the transcriptional 668 

regulators. DH5 (pMWB6.6 orf02prev-xylE) strain was transformed with appropriate 669 

plasmids. KorC G34DG41D and KorC G88EG90E were produced in trans to pMWB6.6 from 670 

tacp of pMWB7.25 and pMWB7.24, respectively. Double transformants were grown without 671 
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(“-“) and with 0.5 mM IPTG (“+”). The XylE activities were expressed relatively to the 672 

activity of the control strain DH5α (pMWB6.6)(pGBT30), black bar labeled “Vector”.         673 

D/ Cross-reactivity between KorCRA3 and klcApRK2 and klcApR751. DH5 (pMWB6.22 674 

klcApRK2-xylE) and DH5α (pMWB6.23 klcApR751-xylE) strains were transformed with 675 

pGBT30 (vector) or pJSB5.7 (tacp-korC) and grown in the presence or absence of IPTG. No 676 

differences in XylE activities were observed for double transformants carrying pGBT30 677 

(induced and uninduced) and uninduced cultures of double transformants carrying pJSB5.7. 678 

The XylE activity from induced cultures of transformants with pJSB5.7 (light grey bars) is 679 

shown relatively to uninduced one (dark grey bars).  680 

Figure 3. Localization of KorC operators relatively to the putative promoter sequences. 681 

Identified KorC binding sites are boxed with palindromic arms underlined. The predicted 682 

promoters’ motives are in grey and directions of transcription are indicated by black arrows. 683 

A/ DNA sequence of the divergent orf02p/ orf02prev region (RA3 coordinates from 2103 nt 684 

to 2236 nt). The grey arrows labeled # 30 and # 31 correspond to the positions of primers used 685 

in pairs with # 6 and # 8, respectively to amplify shorter DNA fragments in this region to map 686 

position of orf02prev. B/ DNA sequence of the klcAp with two KorC operators (RA3 687 

coordinates from 2494 nt to 2627 nt). C/ DNA sequence of the divergent orf33p/ orf34p 688 

region (RA3 coordinates from 31052 nt to 31185 nt).  689 

Figure 4. The effect of KorC over-production on RA3 conjugation frequency and stable 690 

maintenance  691 

A/ Frequency of conjugation. DH5 (RA3) strain was transformed with pJSB5.7(tacp-korC) 692 

or with the empty pGBT30 as a control. Double transformants were used as donors in 693 

conjugation with DH5 Rif
R
 strain as the recipient. The frequency of conjugation is indicated 694 

on semi-logarithmic scale as the number of transconjugants/ donor cells. The mean values 695 

with standard deviation for at least three experiments are shown. B/ RA3 plasmid stability 696 

assay. DH5 (RA3)(pGBT30) and DH5 (RA3)(pJSB5.7) strains were grown overnight on 697 

chloramphenicol and penicillin and then diluted to L broth with penicillin and 0.5 mM IPTG. 698 

Approximately every 25 generations the cultures were diluted into the fresh medium and 699 

analyzed for RA3 retention. Black line demonstrates RA3 retention in the presence of control 700 

pGBT30; grey line indicates RA3 retention in the presence of pJSB5.7 (KorC over-701 

production). The mean values with standard deviation for at least three experiments are 702 

shown. C/ DH5 strain with RA3 minireplicon (pJSB18) was transformed with the 703 

pBBR1MCS derivatives: empty expression vector pAMB9.37 (tacp) and KorC over-704 
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expressing pJSB4.7 (tacp-korC). The transformation mixtures were plated on L agar with 705 

selection for incoming plasmid (chloramphenicol) and with selection for both resident and 706 

incoming plasmids (chloramphenicol and tetracycline). The photographs demonstrate 707 

incompatibility between RA3 minireplicon and pJSB4.7. 708 

Figure 5. KorCRA3 dimerization ability.  709 

A/ His6-tagged WT KorC and its mutant derivatives KorC G34DG41D and KorC G88EG90E 710 

were incubated at concentration of 0.05 mg ml
-1

 with increasing amounts of glutaraldehyde. 711 

The cross-linked species were separated by SDS-PAGE and transferred onto nitrocellulose 712 

filters. Western blotting with anti-His antibodies was used to visualize products. Lane 1 - no 713 

glutaraldehyde added; lanes 2 - 5: 0.001%, 0.002%, 0.005% and 0.01% glutaraldehyde, 714 

respectively). Roman numbers indicate (I) monomers, (II) dimers, (III) trimers, (IV) tetramers 715 

and (V) pentamers. M – molecular weight marker (from the bottom: 15 kDa, 25 kDa, 35 kDa, 716 

40 kDa, 55 kDa and 70 kDa). B/ β-galactosidase activity assay in BTH101 strain of BACTH 717 

system. The korC alleles were introduced into BACTH vectors indicated under the diagram. 718 

Reconstitution of CyaA activity due to the dimerization ability of the analyzed proteins was 719 

assayed by - galactosidase activity (Miller, 1972) in double transformants cultures. As the 720 

negative control BTH101 with empty vectors (pUT18C and pKT25) was used, as the positive 721 

control BTH101 with plasmids having CyaA fragments linked to CGN4 leucine zippers was 722 

used (zip-zip). The results of interactions between WT KorC (allele linked to T18 in pUT18C 723 

in pMWB13.7) and either WT KorC or its mutant derivatives (alleles linked to T25 in pKT25) 724 

are presented. The mean values with standard deviation for at least three assays are shown. 725 

Figure 6. KorC binding ability to DNA fragments in vitro (Electrophoretic Mobility 726 

Shift Assay). 727 

A/ KorCRA3 binding to the PCR-amplified promoter sequences of RA3 containing OC 728 

operators. Panel I – orf02p/orf02prev with OC1 (primers 05 and 06 used for PCR; RA3 729 

coordinates 2063-2348 nt); II – klcAp with OC2 and OC3 (primers 03 and 04; RA3 coordinates 730 

2336-2704 nt); III – orf33p/orf34p with OC4 (primers 09 and 10; RA3 coordinates 30977-731 

31326 nt). 0.3 pmoles of DNA was added to each binding reaction. Lane 1 - no protein added, 732 

lanes 2 - 8: 1 pmole; 2.5 pmoles; 5 pmoles; 7.5 pmoles; 10 pmoles; 12.5 pmoles and 15 733 

pmoles of KorC, respectively. B/ KorCRA3 binding to separated OC2 and OC3. Panel I – 734 

orf02p/orf02prev with OC1 (primers as above), II – fragment with OC2 (primers 03 and 11; 735 

RA3 coordinates 2336-2569 nt), III – fragment with OC3 (primers 04 and 12; RA3 736 

coordinates 2550-2704 nt). 0.3 pmoles of DNA was added to each binding reaction. Lane 1 - 737 

no protein added, lanes 2-6 - 1 pmole; 2.5 pmoles; 5 pmoles; 7.5 pmoles; 10 pmoles of KorC, 738 
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respectively. C/ KorCRA3 binding ability to heterologous OC sites from RK2 and R751 of 739 

IncP-1 group. Panel I – orf02p/orf02prev with OC1RA3 (primers as above), II – klcApRK2 with 740 

OC1RK2 (primers 13 and 14; RK2 coordinates 11775-11502 nt), III – klcApR751 with OC1R751 741 

(primers 15 and 16; R751 coordinates 8410-8626 nt) and IV – mobCpRA3 (primers 25 and 26, 742 

RA3 coordinates 9435-9852 nt), run as a negative control. 0.3 pmoles of DNA was added to 743 

each binding reaction. Lane 1 - no protein added; lanes 2 - 5: 2.5 pmoles; 5 pmoles; 7.5 744 

pmoles and 10 pmoles, respectively. 745 

  746 
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Table 1. Plasmids used in this study 747 

Plasmids provided by others 

Designation Relevant features or description Copy no. Reference or 

source 

pABB1.0 pBBR1MCS devoid of EcoRI site in 

Cm casette 

Medium Aneta Bartosik  

pAKB4.10 pPT01 korApRA3-xylE    Medium Kulinska et al., 

2011  

pBBR1MCS IncA/C, Cm
R
, cloning vector Medium Kovach et al., 

1994 

pBGS18 oriMB1, Km
R
, cloning vector High Spratt et al., 

1986 

pET28 oriMB1, Km
R
, T7p, lacO, His6-tag, T7 

tag 

Medium Novagen 

pET28mod pET28 without NdeI, BamHI sites and 

T7 tag 

Medium Lukaszewicz 

et al., 2002 

pGBT30 oriMB1, Ap
R
, lacI

Q
, tacp expression 

vector 

High Jagura-Burdzy 

et al., 1992 

pGEM-T Easy oriMB1Pn
R
, cloning vector High Promega 

pJSB1.24 pBGS18 korC traRA3 (RA3 coordinates 

3391-3705 and 9437-33657)  

High Bartosik et al. 

2012 

pKT25 orip15, Km
R
, lacp-cyaT25-MCS,  Medium Karimova et 

al., 1998 

pKT25-zip pKT25 with leucine zipper of GCN4 in 

translational fusion with cyaT25 

Medium Karimova et 

al., 1998 

pLKB2 pKT25 with modified MCS  Medium Mierzejewska 

et al., 2012  

pLKB4 pUT18C with modified MCS  High Mierzejewska 

et al., 2012 

pPT01 oriSC101, Km
R
, promoterless xylE Medium Macartney et 

al., 1997 

pUC18 oriMB1, Ap
R
 High Yanisch-

Perron, 1985 

pUT18C oriColE1, Ap
R
, lacp-cyaT18-MCS High Karimova et 

al., 1998 

pUT18C-zip pUT18C with leucine zipper of GCN4 

in translational fusion with cyaT18 

High Karimova et 

al., 1998 

RA3 IncU, Cm
R
, Sm

R
, Su

R
 Low Finbarr Hayes 

Plasmids constructed during this work  

Designation Description 

pAKB4.70 pPT01 kfrApRA3-xylE (SpHI-BamHI fragment amplified by PCR with 

primers 23 and 24; RA3 coordinates 5895-6206) 

pAMB9.37 pABB1.0 lacI
Q
 tacp (EcoRI-BamHI fragment from pGBT30) 

pJSB4.7 pBBR1MCS tacp-korC  (BamHI-SalI fragment from pJSB5.7) 

pJSB5.7 pGBT30 tacp-korC  (EcoRI-SalI fragment from pJSB1.7) 

pJSB18 miniRA3Tc
R 

 (RA3 coordinates 43327-45909, 1-2300) 
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pMWB6.6 pPT01 orf02prev-xylE (BamHI-SphI fragment amplified by PCR with 

primers 7 and 8; RA3 coordinates 2063-2348) 

pMWB6.9 pPT01 klcApRA3-xylE (OC2-OC3) (BamHI-SphI fragment amplified by 

PCR with primers 3 and 4; RA3 coordinates 2336-2704) 

pMWB6.11 pPT01 orf34p-xylE (BamHI fragment amplified by PCR with primers 

9 and 10; RA3 coordinates 30977-31326) 

pMWB6.11r pPT01 orf33p-xylE (BamHI fragment amplified by PCR with primers 

9 and 10; RA3 coordinates30977-31326; reverse orientation) 

pMWB6.22 pPT01-klcApRK2-xylE (SphI-BglII fragment amplified by PCR with 

primers 13 and 14; RK2 coordinates 11775-11502) 

pMWB6.23 pPT01 -klcApR751-xylE (SphI-BglII fragment amplified by PCR with 

primers 15 and 16; R751 coordinates 8410-8626) 

pMWB6.27 pPT01orf02prev(part 1)-xylE (BamHI-SphI fragment amplified by 

PCR with primers 8 and 30; RA3 coordinates 2063-2223) 

pMWB6.28 pPT01orf02prev(part 2)-xylE (BamHI-BglII fragment amplified by 

PCR with primers 6 and 31; RA3 coordinates 2150-2348 ) 

pMWB7.24 pJSB5.7 korC G88G90 generated by PCR site-specific mutagenesis 

with primers 19 and 20 (substitutions G88E G90E in KorC) 

pMWB7.25 pJSB5.7 korC G34G41 generated by PCR site-specific mutagenesis 

with primers 21 and 22 (substitutions G34D G41D in KorC)  

pMWB7.26 pJSB5.7 korC A84H85 (NaeI site generated by PCR site- specific 

mutagenesis with primers 28 and 29)  

pMWB10.7 pET28mod T7p-korC (EcoRI-SalI fragment from pJSB5.7) 

pMWB10.24 pET28mod T7p-korC G88G90  (MunI-SalI fragment amplified by 

PCR with primers 27 and 18 from pMWB7.24) 

pMWB10.25 pET28mod T7p- korC G34G41 (EcoRI-SalI fragment from 

pMWB7.25) 

pMWB13.7 pLKB4 lacp-cyaT18-korC translational fusion (EcoRI-HincII 

fragment from pMWB10.7) 

pMWB13.25 pLKB4 lacp-cyaT18- korC G34G41 translational fusion (EcoRI-

HincII fragment from pMWB10.25) 

pMWB13.26 pLKB4 lacp-cyaT18-korC1-83 translational fusion (EcoRI-NaeI 

fragment from pMWB7.26) 

pMWB14.7 pLKB2 lacp-cyaT25-korC translational fusion (EcoRI-HincII 

fragment from pJSB5.7) 

pMWB14.24 pLKB2 lacp-cyaT25-korC G88G90 translational fusion (MunI-SalI 

fragment amplified by PCR with primers 27 and 18 from pMWB7.24)  

pMWB14.25 pLKB2 lacp-cyaT25-korC G34G41 translational fusion (EcoRI-HincII 

fragment from pMWB7.25) 

pMWB14. 26 pLKB2 lacp-cyaT25-korC1-83 translational fusion (EcoRI-NaeI 

fragment from pMWB7.26) 

pPDB1.18 pGEM-T Easy korCp (fragment amplified by PCR with primers 1 and 

2; RA3 coordinates 3093-3431) 

pPDB1.19 pGEM-T Easy orf02p (fragment amplified by PCR with primers 5 and 

6; RA3 coordinates 2063-2348) 

pPDB11.18 pPT01 korCp-xylE (BamHI-SphI fragment from pPDB1.18) 

pPDB11.19 pPT01 orf02p-xylE (BamHI-SphI fragment from pPDB1.19)  

  748 
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Table 2. The list of oligonucleotides used in this work 749 

No Designation Sequence 

01 korCpRA3L 5’ gcgcatgcCTTAAAGGAGGTGCATAGGT 3’ 

02 korCpRA3R   5’ gcggatccCAATCTTCAGCAAACGGCCT 3’ 

03 klcApRA3L 5’ gcgcatgcGGGAGCGTGATCGTTACGGT 3’ 

04 klcApRA3R 5’ gcggatccATTGCAGCCATACGGCGAGG 3’ 

05 orf02pRA3L 5’ gcgcatgcCCAGGTGGCCCATTTCGTAC 3’ 

06 orf02pRA3R   5’ cgggatccCGATCACGCTCCCAGGTCAA 3’ 

07 SnaB2rRA3L   5’ gcgcatgcCGATCACGCTCCCAGGTCAA 3’ 

08 SnaB2rRA3R 5’ cgggatccCCAGGTGGCCCATTTCGTAC 3’ 

09 OC4RA3L 5’ cgggatccATCAGAACCACGGCCTTTGCT 3’ 

10 OC4RA3R 5’ cgggatccgcatgcCTGCCTCACCGCTAATTGAA 3’ 

11 LeftOcR 5’ gcgtcgacCTATTGTGTCAAGCGGGTAC 3’ 

12 RightOcL 5’ gcgcatgcGTACCCGCTTGACACAATAG 3’ 

13 OcRK2F 5’ gcgcatgcACCGAGCTGTAACCGCAGAA 3’ 

14 OcRK2R 5’ gcagatctATCCAGCCGAATACCAGGGC 3’ 

15 OcR751F 5’ gcgcatgcACGGGTTGGTCTTGGGTGTT 3’ 

16 OcR751R 5’ gcagatctATGCTCAGTTGCTGGGTGGT 3’ 

17 korCRA3L   5’ gcgaattcATGATTAGACCTGAAACGCT 3’ 

18 korCRA3R   5’ cggtcgacTTATGTTCGGTCATGGTTTC 3’ 

19 G8890EF 5’ GGCCCACCTGGCAGAATTCGAGGCTATATGGGACGC 3’ 

20 G8890ER 5’ GCGTCCCATATAGCCTCGAATTCTGCCAGGTGGGCC 3’ 

21 G3441DF 5’ GCAACGAAAAGATCTTAGTAAGCCGCTCAGTGATGTTGATGTTG 3’ 

22 G3441DR 5’ CAACATCAACATCACTGAGCGGCTTACTAAGATCTTTTCGTTGC 3’ 

23 prkfrA1 5’ gcggatccgcatgcCTCGCTGATAACCTGGCCCT 3’ 

24 prkfrA2 5’ gcggatccCTCGCGCACCTGCTCATTG 3’ 

25 inc230P 5’ gcggatccGATAGCTCTTTGCCATTAAC 3’ 

26 Sphmob 5’ gcgcatgcTTTTCTCGTTGGAGGGTGAT 3’ 

27 korCLMun 5’ gccaattgATGATTAGACCTGAAACGCT 3’ 

28 84AHCDF 5’ GTCTATCTTGTGCGACCTGGCGGCTTCGGGGCTA 3’ 

29 84AHCDR 5’ TAGCCCCGAAGCCGCCAGGTCGCACAAGATAGAC 3’ 

30 O2pRvinF 5’ cggcatgcGCGGGTGCCCGGTCTTCTTG 3’ 

31 O2pRvinR 5’ gcagatctCGTAGAGCGCGCTTTTTATTGCC 3’ 

   

Sequences in capital letters correspond to the RA3 DNA sequence, restriction sites added are 750 
underlined, start codons are in bold, nucleotide substitutions in the primers used for site-751 

directed PCR mutagenesis are in italics 752 
  753 
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Table 3. Comparison of the putative KorC binding sites 754 

IncU 

RA3 OC1
1
 TAGGCCA  TTT   TGGCCTA

2
 

 OC2 TAGGCCG  ATT   TGGCCTA 

 OC3, OC4 TAGGCCA  AAA  TGGCCTA 

pFBAOT OC1  TAGGCCA  TTT   TGGCCTA 

 OC2 TAGGCCG  ATT   TGGCCTA 

 OC3, OC4 TAGGCCA  AAA  TGGCCTA 

pKP048
3
 OC1  TAGGCCA  TTT   TGGCCTA 

 OC2 TAGGCCG  ATT   TGGCCTA 

 OC3 TAGGCCA  AAA  TGGCCTA 

IncP-1
4
   (subgroup) 

pQKH54 (gamma) OC1, OC2, OC3 TAGGACA  AAA  TGTCCTA 

RK2        (alpha) OC1, OC2, OC3 TAGGGCA  TAA  TGCCCTA 

pYS1       (beta) OC1, OC2 TAGGGCA  AAA  TGCCCTA 

pA1         (beta) OC1 TAGGGCA  AAA  TGCCCTA  

 OC2, OC3 TAGGGCA  AAA  TGTCCTA  

pJAM7 OC1 TAGGGCA  AAA  TGCCCTA 

 OC2 TAGGGCA  ATT   TGCCCTA 

pB10       (beta) OC1 TAGGGCA  AAA  TGCCCTA 

 OC2 TAGGGCA  AAA  TGTCCTA 

pB12      (beta) OC1, OC2 TAGGGCA  AAA  TGTCCTA 

pB3        (beta) OC1, OC2 TAGGACA  AAA  TGTCCTA 

pHP-42 OC1  TAGGGCA  AAA  TGCCCTA 

 OC2, OC* TAGGGCA  ATT   TGCCCTA 

 OC** TAGGGCA  TTT    TGCCCTA 

p9014 OC1 TAGGGCA  ATT   TGCCCTA 

R751      (beta) OC1, OC2 TAGGACA  AAA  TGTCCTA 

pIJB1     (delta) OC1, OC2, OC3 TAGGGCA  AAA  TGCCCTA 

pKJK5   (epsilon) OC1, OC2 TAGGGCA  ATT   TGCCCTA 

IncL/M 

pCTX-M3 OC1 TAGGACA  AAT   TGTCCTA 

pEL60 OC1 TAGGACA  AAA   TGTCCTA 
 755 
1
 For IncU plasmids OC1 overlaps orf02p/ orf02prev, OC2 and OC3 are located in klcAp and OC4 is in 756 

the transfer region orf33p/ orf34p. For IncP-1 OC1 is located in klcAp, OC2 in kleAp and OC3 in kleCp 757 
(Oc* and Oc** in pHP-42 precede short orfs of unknown functions upstream of klcA operon). In 758 
IncL/M plasmids the single OC is located in the putative korCp. 759 
2
 The comparison of palindromic arms revealed three main classes of OC site labeled in light grey for 760 

IncU subgroup, dark grey for RK2 and black for R751 subgroup. The three nucleotides in the centers 761 
of the palindromes are AT pairs. Nucleotides in the palindromic arms different from consensus for 762 
KorC IncU are indicated in bold and underlined. 763 
3
 pKP048 carries a part of the RA3 replication module and orf02-klcA-orf04-korC region (coordinates 764 

763-3809 nt) 765 
4
 Non IncU plasmids are ordered accordingly to the descending similarities between their KorC 766 

proteins and KorC of RA3 767 
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