

Figure 2. Time dependent kinetics of APE1-catalyzed cleavage activity of various oligonucleotide duplexes containing either single εA or εC residue. 10nM of the 3'-[³²P]labelled (**A**) εA22•T and (**B**) εC22•G oligonucleotide duplexes were incubated with 5 nM APE1 for varying periods of time at 37°C. Lane 1, control, non-treated duplex; lanes 2-4, 6-9 and 11-15, oligonucleotide duplexes incubated with APE1 for 2 min to 4 h; lane 6, 13 mer size marker; lane 11, 14 mer size marker. The arrows and "<" symbol denote the position of the 23-mer, 13-mer and 14-mer fragments, respectively. (**C**) 10nM of the 3'-[³²P]-labelled oligonucleotide duplex was incubated with 10 nM APE1 for varying periods of time at 37°C. The formation of cleavage product was quantified and plotted against incubation time. For details see Materials and Methods.

Figure 3. Inhibition of AP site cleavage activity of APE1 by ϵ A22•T and ϵ C22•G oligonucleotide duplexes. 1nM of 3'-[³²P]-labelled THF•G oligonucleotide duplex was incubated with 0.5 nM APE1 for 2-20 min at 37°C in the presence or not of increasing amounts of nonlabelled 22 mer C•G or ϵ C22•G duplexes under NIR condition. Lane 1, control, non-treated THF•G duplex; lane 2, as 1 but APE1 for 2 min; lane 3, as 2 but 5 min; lane 4, as 2 but 10 min; lane 5, as 2 but 20 min; lane 7, THF•G duplex with APE1 for 5 min; lane 8, as 7 but 2 nM C•G; lane 9, as 7 but 5 nM C•G; lane 10, as 7 but 10 nM C•G; lane 11, as 7 but 20 nM C•G; lane 12, as 7 but 40 nM C•G; lane 13, as 7 but 2 nM ϵ C22•G; lane 14, as 7 but 5 nM ϵ C22•G; lane 15, as 7 but 10 nM ϵ C22•G; lane 16, as 7 but 20 nM ϵ C22•G; lane 17, as 7 but 40 nM ϵ C22•G. For details see Materials and Methods.

Figure 4. MALDI-TOF MS analysis of the mixture of oligonucleotides arising from the incubation of the 22 mer oligonucleotide duplexes containing single ϵ A or ϵ C residue with APE1 or DNA glycosylases. Typically, 10 pmol of the lesion containing oligonucleotide duplexes were incubated with either 10 nM APE1 under NIR condition at 37°C for 17h or 50 nM ANPG or 50 nM MUG at 37°C for 30 min and subsequently with 10 nM APE1 at 37°C for 30 min under "BER+Mg²⁺" reaction condition. (A) Treatment of ϵ A22•T duplex with APE1; (B) Treatment of ϵ C22•G duplex with APE1; (C) Treatment of ϵ A22•T duplex with ANPG and APE1; (D) Treatment of ϵ C22•G duplex with MUG and APE1. Peaks corresponding to complementary strands are indicated in grey. For details see Materials and Methods.

Figure 5. *In vitro* reconstitution of the long-patch NIR pathway using oligonucleotide duplex containing single ϵ A residue. 10 nM of non-labelled 40 mer ϵ A-PP•T oligonucleotide duplex was incubated for 3 h at 37°C in the presence of 10 nM APE1, 2 nM FEN1, 0.02 U POL β and 20 U T4 DNA ligase in the reaction buffer containing 50 mM HEPES-KOH (pH 7.2), 30 mM NaCl, 3 mM MgCl2, 2 mM ATP, 0.1 mg/ml BSA, 2 mM DTT, 5 mCi of [α -³²P]dATP and 50 μ M each of dGTP, dCTP and TTP. Lane 1, 20 mer size marker; lane 2, ϵ A-PP•T incubated with all proteins except APE1; lane 3, except FEN1; lane 4, except POL β ; lane 5, except ligase; lane 6, in the presence of all proteins; lane 7, 40 mer size marker.

(**B**) Kinetics of the full length product formation in *in vitro* reconstitution of the long-patch NIR pathway for α dA PN•T and ϵ A-PP•T and of the short-patch BER pathway for ϵ A-PP•T. For details see Materials and Methods.

Figure 6. DNA repair activities towards αdA•T, εA22•T and εC22•G oligonucleotide

duplexes in HeLa cells extracts. (**A**)10nM of 3'-[³²P]-labelled αdA•T, εA22•T and εC22•G oligonucleotide duplexes were incubated for 1 h at 37°C in the presence of 0.5 µg of cell-free extracts from siRNA-treated HeLa cells under either "BER+EDTA" or "NIR+ZnCl₂" condition. Cell-free extracts were prepared from HeLa cells treated either with 100 nM of non-specific siRNA (siControl), or with 100 nM of APE1-specific siRNA (siAPE1). Lane 1, control, non-treated αdA•T duplex; lane 2, as 1 but probed with control extract under BER+EDTA condition; lane 3, as 2 but under NIR+ZnCl₂ condition; lane 4, as 1 but probed with APE1-silenced extract under NIR+ZnCl₂ condition; lane 7, as 6 but under NIR+ZnCl₂ condition; lane 7, as 6 but under NIR+ZnCl₂ condition; lane 9, control, non-treated εA22•T duplex; lane 10, as 9 but probed with control extract under NIR+ZnCl₂ condition; lane 11, as 10 but under NIR+ZnCl₂ condition; lane 12, as 9 but probed with APE1-silenced extract under SA22•T oligonucleotide duplex; lane 10, as 9 but probed with control extract under NIR+ZnCl₂ condition; lane 11, as 10 but under NIR+ZnCl₂ condition; lane 12, as 9 but probed with APE1-silenced extract under SA22•T oligonucleotide duplexes were incubated for 3 h at 37°C in the presence of 5 µg of cell-free. Lane 1, control, non-treated εA22•T duplex; lane 2, 14

mer size marker, lane 3, as 1 but probed with control extract under NIR+ZnCl₂ condition; lane 4, 14 mer size marker; lane 5, as 1 but probed with control extract under BER+EDTA condition; lane 6 as 1 but probed with APE1-silenced extract under NIR+ZnCl₂. For details see Materials and Methods.

Figure 7. APE1-catalyzed NIR activity towards oligonucleotide duplexes containing single Tg residue. 10nM of 3'-[³²P]-labelled 30 mer Tg-RT•A and 19 mer Tg19•A oligonucleotide duplexes were incubated for 30 min or 2 h at 37°C in the presence of 20 nM Fpg or 10 nM APE1 under BER+EDTA or NIR condition. (A) Tg-RT•A and (B) Tg19•A duplexes. Lane 1, control nontreated Tg-RT•A duplex; lane 2 as 1 but treated with Fpg under BER condition for 30 min at 37°C; lane 3, as 1 but treated with APE1 under BER condition; lane 4, as 3 but under NIR condition; lane 5, control non-treated Tg19•A duplex; lane 6 as 5 but treated with Fpg under BER condition for 30 min at 37°C; lane 7, as 5 but treated with APE1 under BER condition; lane 8, as 7 but under NIR condition. For details see Materials and Methods.

Supporting Information Figure S1. Dependence of APE1-catalyzed NIR activity on reaction conditions. 10nM of 3'-[³²P]-labelled oligonucleotide duplex containing a single ε -base was incubated for 1-2 h at 37°C with 5 nM APE1 under NIR and BER conditions, unless otherwise stated. (A) ε C22•G and (B) ε A22•T duplexes. Lanes 1 and 9, control, non-treated duplex; lanes 2 and 10, duplex incubated with 20 nM MUG and ANPG for 20 min and then with 10 nM APE1 for 20 min under "BER+Mg²⁺" reaction condition; lanes 3 and 11, 13 mer size marker; lanes 4 and 12, 14 mer size marker; lanes 5 and 13, duplexes incubated with APE1 for 1 h under NIR condition; lanes 6 and 14, duplexes incubated with APE1 for 2 h under NIR condition; lanes 7 and 15, duplexes incubated with APE1 for 2 h under NIR condition; lanes 8 and 16, duplexes incubated with APE1 for 2 h under SER condition. For details see Materials and Methods.

Supporting Information Figure S2A. Action of various NIR AP endonucleases towards oligonucleotide duplex containing a single ε -base. 10nM of 22 mer 3'-[³²P]-labelled ε A22•T and ε C22•G oligonucleotide duplexes were incubated with either 10 nM Nfo, or 10 nM Apn1 or 10 nM APE1 for 30 min or 2 h at 37°C, unless otherwise stated. Lane 1, control, non-treated ε A22•T; lane 2, as 1 but 20 nM ANPG and 10 nM APE1 under BER+Mg²⁺ condition; lane 3, 13 mer size marker; lane 4, as 1 but Nfo for 30 min; lane 5, as 4 but 2 h; lane 6, as 1 but Apn1 for 30 min; lane 7, as 6 but 2 h; lane 8, as 1 but APE1 for 30 min; lane 9, 14 mer size marker; lane 10, as 8 but 2 h; lane 11, control, non-treated ε C22•G; lane 12, as 1 but 20 nM MUG and 10 nM APE1 under BER+Mg²⁺ condition; lane 14, as 13 but 2 h; lane 15, as 11 but Nfo for 30 min; lane 16, as 15 but 2 h; lane 17, as 11 but APE1 for 30 min; lane 18, as 17 but 2 h. For details see Materials and Methods.

5 9 10 12 13 14 15 16 17 2 8 11 Supporting Information Figure S2B. Action of various NIR AP endonucleases towards oligonucleotide duplex containing a single ε-base. 10nM of 22 mer 3'-[³²P]-labelled αdA-RT•T, Tg RT•A, εA22•T and εC22•G oligonucleotide duplexes were incubated with either 1 nM or 5 nM Nfo, or 1 nM or 5 nM Apn1 for 30 min or 2 h at 37°C under NIR condition. Lane 1, control, non-treated adA-RT•T; lane 2, as 1 but 1 nM Nfo for 30 min; lane 3, as 1 but 1 nM Apn1 for 30 min, lane 4, control, non-treated Tg RT•A; lane 5, as 4 but 20 nM Fpg under BER+Mg²⁺ condition; lane 6, as 4 but 1 nM Nfo for 2h, lane 7, as 4 but 5 nM Nfo for 2h; lane 8, as 4 but 1 nM Apn1 for 2h; lane 9, as 4 but 5 nM Apn1 for 2h, line 10, control, non-treated £A22•T; lane 11, 13 mer size marker; lane 12, as 10 but 1 nM Nfo for 2h; lane 13, as 10 but 1 nM Apn1 for 2h, lane 14, 14 mer size marker, line 15, control, non-treated εC22•T; line 16, as 15 but 1 nM Nfo for 2h; lane 17, as 15 but 1 nM Apn1 for 2h. For details see Materials and Methods.

Supporting Information Figure S3. Comparison of NIR and AP endonuclease activities of APE1-WT and mutant APE1-D308A proteins. 10nM of 22 mer 3'-[³²P]-labelled εA-DL10•T, THF•T and αdA•T oligonucleotide duplexes were incubated with varying amounts of the APE1 proteins under NIR condition, and products of the reaction were analyzed using denaturing PAGE. (A) EA-DL10•T duplex was incubated with varying amounts of the APE1-WT and APE1-D308A mutant proteins for 4 h at 37°C. Lane 1, control, non-treated EA-DL10•T; lane 2, 20 nM ANPG and 10 nM APE1 under BER+Mg²⁺ condition; lane 3, 5 nM of APE1-WT; lane 4, 25 nM of APE1-WT; lane 5, 100 nM of APE1-WT; lane 6, 5 nM of APE1-D308A; lane 7, 25 nM of APE1- D308A; lane 8, 100 nM of APE1- D308A. (B) THF•T and αdA•T duplexes were incubated with varying amounts of the APE1-WT and APE1-D308A mutant proteins for 5 min at 37°C. Lane 1, control, non-treated THF•T; lane 2, 0.02 nM of APE1-WT; lane 3, 0.1 nM of APE1-WT; lane 4, 0.5 nM of APE1-WT; lane 5, 0.02 nM of APE1-D308A; lane 6, 0.1 nM of APE1- D308A; lane 7, 0.5 nM of APE1-D308A; Lane 8, control, non-treated αdA•T; lane 9, 0.1 nM of APE1-WT; lane 10, 0.5 nM of APE1-WT; lane 11, 2.5 nM of APE1-WT; lane 12, 0.1 nM of APE1-D308A; lane 13, 0.5 nM of APE1-D308A; lane 14, 2.5 nM of APE1- D308A. For details see Materials and Methods.

Supporting Information Figure S4. Electrophoretic Mobility Shift Assay (EMSA) of APE1 endonuclease with oligonucleotide duplexes containing a single ϵ -base. The standard binding reaction mixture (20 µl) contained 20 mM Hepes-KOH, pH 7.6, 50 mM KCI, 10 µM or 100 µM MgCl₂, 10 nM of 22 mer 3'-[³²P]-labelled ϵ A22•T, ϵ C22•G, A22•T and C22•G and 250 nM or 500 nM APE1. The mixture was incubated for 10 min on ice, after which an aliquot was analyzed by electrophoresis on a 8% non-denaturing polyacrylamide gel (19:1 acrylamide/bisacrylamide) at 160 V for 14 h at +4 °C. Lane 1, control, ϵ A22•T in 10 µM MgCl₂ buffer without APE1, lane 2, as 1 but 250 nM APE1; lane 3, as 1 but 500 nM APE1; lane 4, control, ϵ A22•T in 100 µM MgCl₂ buffer without APE1, lane 5, as 4 but 250 nM APE1; lane 6, as 4 but 500 nM APE1; lane 7, control, ϵ C22•T in 100 µM MgCl₂ buffer without APE1, lane 8, as 7 but 500 nM APE1; lane 9, control, ϵ C22•T in 10 µM MgCl₂ buffer without APE1, lane 10, as 9 but 250 nM APE1; lane 11, as 9 but 500 nM APE1; lane 12, control, ϵ C22•T in 100 µM MgCl₂ buffer without APE1, lane 13, as 12 but 250 nM APE1; lane 14. as 12 but 500 nM APE1; lane 15, control, C22•G in 100 µM MgCl₂ buffer without APE1, lane 16, as 15 but 500 nM APE1. For details see Materials and Methods.

Supporting Information Figure S5. Time kinetics of *in vitro* reconstitution of the longpatch NIR pathway and of the short-patch BER pathway using oligonucleotide duplex containing single αdA or εA residue. 10 nM of non-labelled (A) 34 mer αdA-PN•T and (B) 40 mer εA-PP•T oligonucleotide duplex was incubated for varied time ranging from 0.5 to 120 min at 37°C in the presence of 10 nM APE1, 2 nM FEN1, 0.01 U POLβ and 4 U T4 DNA ligase in the reaction buffer containing 50 mM HEPES-KOH (pH 7.2), 30 mM NaCl, 3 mM MgCl2, 2 mM ATP, 0.1 mg/ml BSA, 2 mM DTT, 5 mCi of $[\alpha^{-32}P]$ dATP and 50 μ M each of dGTP, dCTP and TTP. (A)Lane 1, 34 mer size marker; lane 2, product formation after 0 min, lane 3, after 10 min; lane 4, after 30 min; lane 5, after 60 min, lane 6, after 120 min; (B) Lane 1, product formation after 0 min, lane 2, after 10 min; lane 3, after 30 min; lane 4, after 60 min, lane 5, after 120 min; lane 6, 20 mer size marker; lane 7, 40 mer size marker. (C) 10 nM of non-labelled 40 mer EA-PP•T oligonucleotide duplex was incubated for varied time ranging from 0.5 to 120 min at 37°C in the presence of 40 nM ANPG, 5 nM APE1, 2 nM FEN1, 0.01 U POLB and 4 U T4 DNA ligase in the reaction buffer containing 20 mM HEPES-KOH (pH 7.6), 50 mM KCl, 5 mM MgCl₂, 2 mM ATP, 0.1 mg/ml BSA, 1 mM DTT and 5 mCi of $[\alpha^{-32}P]$ dATP. Lane 1, 40 mer size marker; lane 2, product formation after 0.5 min, lane 3, after 10 min; lane 4, after 30 min; lane 5, after 60 min, lane 6, after 120 min; lane 7, 20 mer size marker. For details see Materials and Methods.

Supporting Information Figure S6. *In vitro* reconstitution of the long-patch NIR pathway using oligonucleotide duplex containing single α dA residue. 10 nM of non-labelled 34 mer α A-PN•T oligonucleotide duplex was incubated for 3 h at 37°C in the presence of 10 nM APE1, 2 nM FEN1, 0.02 U POL β and 20 U T4 DNA ligase in the reaction buffer containing 50 mM HEPES-KOH (pH 7.2), 30 mM NaCl, 3 mM MgCl₂, 2 mM ATP, 0.1 mg/ml BSA, 2 mM DTT, 5 mCi of [α -³²P]dATP and 50 μ M each of dGTP, dCTP and TTP. Lane 1, α A-PN•T incubated with all proteins except APE1; lane 2, except FEN1; lane 3, except POL β ; lane 4, except ligase; lane 5, in the presence of all proteins. The arrows denote the position of the 16 mer cleavage product and 34 mer full-length product. For details see Materials and Methods.