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1 Abbreviations: CPMG, Carr – Purcell – Meiboom – Gill pulse train; CSI − chemical shift 

index; CSP − chemical shift perturbation; DSS-d4, 3-trimethylsilyl-2,2,3,3-

tetradeuteropropionic acid sodium salt; EDTA, ethylenediaminetetraacetic acid; HSQC, 

heteronuclear single quantum coherence; HPLC, high performance liquid chromatography; 

TRIS-d11, perdeuterated 2-amino-2-(hydroxymethyl)1,3-propanediol. 
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Abstract 

S100 proteins play a crucial role in multiple important biological processes in 

vertebrate organisms acting predominantly as calcium signal transmitters. S100A1 is a typical 

representative of this family of proteins. Upon binding of four Ca2+ ions it undergoes a 

dramatic conformational change, resulting in exposure, in each of its two identical subunits, a 

large hydrophobic cleft that binds to target proteins. It has been shown that abnormal 

expression of S100A1 is strongly correlated with a number of severe human diseases: 

cardiomyopathy and neurodegenerative disorders. 

A few years ago we have found that thionylation of Cys 85 - the unique cysteine in 

two identical S100A1 subunits – leads to a drastic increase of the protein affinity for calcium. 

We postulated that the protein activated by thionylation becomes a more efficient calcium 

signal transmitter. Therefore, we decided to undertake, using NMR methods, a comparative 

study of structure and dynamics of native and thionylated human S100A1 in its apo and holo 

states. In this paper we present the results obtained for the both forms of this protein in its 

holo state and compare them with the previously published structure of native apo S100. 

The main conclusion that we draw from these results is that the increased calcium 

binding affinity of S100A1 upon thionylation arises, most probably, from rearrangement of 

the hydrophobic core in its apo form. 
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Introduction 

 A large number of papers on structure and biological function of S100 proteins can be 

found in the literature and every year this number increases dramatically. There is a good 

reason for that: these proteins, acting predominantly as calcium signal transmitters, have been 

shown to play a crucial role in multiple important biological processes in vertebrate organisms 

[1]. 

 S100A1 is a typical S100 protein. It is a homodimer composed of noncovalently 

bound, antiparallely oriented, subunits. Each of them is build of two so called “EF hand” 

motives bound together by a short linker. The N-terminal motives contain a 14 residue long 

calcium binding loop, specific for S100 proteins, flanked by two α-helices (helix I and 

helix II). The C-terminal ones coordinate Ca+2 ions by a “canonical” loop, ubiquitous in 

calcium binding proteins, formed by 12 amino acid residues situated in between helix III and 

helix IV. 

 Upon Ca2+ binding the protein undergoes a dramatic conformational change, resulting 

in exposure, in each of its subunits, a large hydrophobic cleft formed by residues situated in 

the linker, the C terminus, and helix III [2]. Numerous structural studies indicate that this 

region is responsible for recognition of S100 target proteins [3]. 

 S100A1 is highly expressed in human heart muscle and brain. It is also found in 

skeletal muscles and kidney. It has been shown that abnormal expression of this protein is 

strongly correlated with a number of severe human diseases: cardiomyopathy, and 

neurodegenerative disorders such as Alzheimer disease [4-7]. 

 A few years ago we have found that thionylation of Cys 85 - the strictly conserved, 

unique cysteine residue of S100A1 subunits by small thiol molecules such as β-

mercaptoethanol, glutathione or cysteine leads to a dramatic increase of the protein affinity 
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for calcium [8]. It prompted us to formulate the hypothesis that S100A1 can play the role of a 

linker between calcium- and redox-signal pathways. 

 Protein S-thionylation is the posttranslational modification of cysteine residues by 

forming a mixed disulphide between cysteine thiol group and low molecular mass 

endogenous thiols. At present, a large number of proteins undergoing thionylation has been 

described [9]. Thionylation of proteins has been shown to regulate activities of enzymes, 

transcriptional factors, cell surface receptors, and cytoskeletal proteins. It plays an essential 

part in the control of cell-signalling pathways associated with viral infections and with tumour 

necrosis factor [10]. The thionylation has been also suggested as a mechanism through which 

protein functions can be regulated by the redox status [11]. 

 To elucidate the molecular mechanism of S100A1 activation due to thionylation we 

decided to undertake, using NMR methods, a precise comparative study of structure and 

dynamics of human S100A1 protein, native and with thionylated Cys 85 residue, in its apo 

and holo states. 

 Knowledge of static 3D structures of proteins, while extremely important, is not 

sufficient to fully understand the function of proteins and their interactions in complexes. It is 

believed that intramolecular motions in proteins are one of the most important factors which 

determine their basic physico-chemical properties, biological activity, and also interactions 

with ligands, receptors or nucleic acids. Magnetic relaxation of 15N amide nuclei allows to 

monitor motions of protein backbone within the wide range of time scales. This approach of 

probing dynamics of N–H groups allows characterization of motions over most of protein 

backbone [12-13]. 

 The results obtained by us for human apo S100A1 have already been published [14]. 

In the current paper we discuss the structure and dynamics of the holo form of this protein and 

its mixed disulfide with homocysteine. 
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 The choice of homocysteine can seem rather puzzling: glutathione is by far the most 

abundant thiol molecule in vertebrate organisms and, therefore, the most likely to form mixed 

disulfides with proteins. On the other hand, homocysteine is situated at a critical regulatory 

branch point in sulfur metabolism. It can be remethylated to methionine, an important amino 

acid in protein synthesis, or converted to cysteine in the transsulfuration pathway [15]. It has 

been shown that homocysteine has the highest tendency to create disulfide bonds with 

proteins among such thiols as homocysteine, cysteine and glutathione in HeLa cell cultures. 

Such S-homocysteinylation impairs the function of many enzymes, structural proteins and 

receptors disturbing many metabolic functions in the cell [16]. It has been also shown that 

homocysteine administered orally resulted in the increase of protein-bound homocysteine in 

plasma with a concurred decrease in protein-bound cysteine, suggesting displacement of 

bound cysteine [17]. Elevated level of homocysteine is associated with the increased risk of 

cardiovascular disease [18], cerebrovascular disease, Alzheimer disease, neural tube defects, 

osteoporosis, renal failure, and diabetes. Homocysteine can form mixed disulfides with 

plasma proteins, such as albumin, transthyretin, fibronectin or lipoprotein(a) as well as with 

intracellular proteins like metallothionein or glutathione peroxidase [19]. Therefore, 

homocysteinylation of S100A1, while not reported yet, might be a biologically important 

phenomenon: high levels of homocysteine are considered to be risk factors in the same 

disorders which are linked with abnormal S100A1 expression [20-21]. 

 Materials and Methods 

Sample preparation 

 15N-labeled and 13C,15N-double labeled S100A1 protein was obtained as previously 

described [14, 22]. Expression products were isolated using the classical method of 

ammonium sulfate precipitation [23-24], purified by reversed-phase HPLC on a 

semipreparative Vydac C18 column, and identified by electrospray ionization mass 
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spectrometry using a Macromass Q-Tof spectrometer. Two forms of the protein, one with the 

sequence strictly corresponding to its gene sequence and another one, with the additional 

initiator methionine at the N-terminus, were obtained from HPLC as partly overlapping peaks. 

NMR measurements indicated that structural differences between both forms are small and 

restricted to the close proximity of the N-terminal Met residue [14, 25]. Therefore, a mixture 

of both forms of proteins was used in all experiments. Thionylation of S100A1 protein with 

homocysteine (disulfide bond formation between cysteine 85 and homocysteine, S100A1-

Hcy) was performed in 0.2 M TRIS buffer containing 5 M GuHCl, 5 mM EDTA and 5 mM 

homocystine disulfide at pH 8.5. The reaction was carried out at room temperature for 50 min. 

The modified protein was purified by HPLC and identified by electrospray ionization mass 

spectrometry. NMR samples of 650 µL volume contained 0.8 - 1.0 mM protein solution 

(monomer concentration) in 90%/10% H2O/D2O, 50 mM TRIS-d11, 10 mM CaCl2, 0.1mM 

NaN3 and 50 mM NaCl with pH adjusted to 7.2 (uncorrected value). In case of HC detected 

experiments 100% deuterated buffer was used. 

NMR spectroscopy 

 All NMR measurements were performed at the temperature carefully adjusted to 37°C 

checked by an ethylene glycol reference sample. Time domain data were acquired using the 

States-TPPI quadrature detection [26] followed by the sensitivity enhanced detection 

introduced by L. E. Kay [27]. 1.6 s recycling delay was used, if not stated otherwise. All 

chemical shifts in 1H NMR spectra were reported with respect to external DSS-d4. Chemical 

shifts of 13C and 15N signals were referenced indirectly using the 0.251449530 and 

0.101329118 frequency ratios for 13C/1H and 15N/1H, respectively [28]. Experimental data 

were processed using the NMRPipe software package [29]. Zero filling and 90° shifted 

squared sine-bell filter were applied prior to the Fourier transformation. Processed spectra 

were analyzed with both the CARA [30] and the SPARKY [31] software. 
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 The sequence-specific assignments were performed using uniformly 13C,15N-double 

labeled samples of holo-S100A1 and holo-S100A1-Hcy. 3D heteronuclear HNCO [32], 

HNCA [33], HN(CO)CA [34], HNCACB [35], CBCA(CO)NH [36], and (HCA)CO(CA)NH 

[37] spectra were used to obtain assignments of the backbone 1H, 13C and 15N resonances. The 

assignments were additionally confirmed by analysis of sequential and medium-range NOE 

signals in the respective 3D 15N-edited NOESY-HSQC spectra [38]. The aliphatic side chain 

1H and 13C resonances were assigned from the analysis of the 1H–13C HSQC, C(CO)NH [39], 

HBHA(CBCACO)NH [40], HCCH-TOCSY [41], (H)CCH-TOCSY [41], and 13C-edited 

NOESY-HSQC spectra [42]. The aromatic side chain resonances were assigned from the 

(HB)CBHD, (HB)CBHE [43], 1H–13C HSQC, and 13C-edited NOESY-HSQC spectra 

recorded with the offset, spectral widths and 13C–1H coupling constants tuned to aromatic 

carbons. Distance constraints were obtained from the 15N-edited NOESY-HSQC spectra and 

the 13C-edited NOESY-HSQC spectra separately tuned to aliphatic and aromatic carbons. 

 Longitudinal (R1) and transverse (R2) relaxation rates were measured at three magnetic 

fields: 9.4, 11.7 and 16.4 T, with 15N-labeled sample using the sensitivity enhanced 1H–15N 

HSQC pulse sequence [27] with the option of either R1 or R2 measurements of 15N nuclei [44]. 

The R2 relaxation rate measurements were performed with the CPMG pulse train. A 

refocusing time of 650 µs was used during the evolution delays. The acquisition parameters 

for R1 and R2 measurements on each spectrometer were identical with the exception of the 

delay between π (1H) pulses used for the cross-correlation effect suppression [45]. 5 and 10 

ms delays were used in the R1 and R2 measurements, respectively. Delays between the scans 

of 1.8 s were employed in both types of experiments. {1H}–15N NOEs were measured with 

the pulse sequence included in the ProteinPACK Varian Inc. (Palo Alto, CA) software at 

16.4 T for holo-S100A1 and at 9.4 and 16.4 T for holo-S100A1-Hcy. 
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 Resonance intensities were used in calculating relaxation rates and NOE values. 

Experimental errors of relaxation rates were obtained from appropriate elements of the 

variance-covariance matrix. Experimental errors in NOE values were evaluated from signal-

to-noise ratios obtained for corresponding signals in spectra with and without NOE [46]. 

 The 1H, 13C and 15N resonance assignments and 15N magnetic relaxation data have 

been deposited in the BioMagResBank with the accession codes 18231 (holo-S100A1) and 

18230 (holo-S100A1-Hcy). 

Structure calculations 

 The NOESY interproton distance constraints were derived from the 3D heteronuclear 

15N- and 13C-edited NOESY-HSQC experiments. The initial structure calculations were 

performed with the CYANA 3.0 software [47]. The dimeric interface between the protein 

subunits was defined basing on structural similarity to the known structure of rat S100A1 

protein [2] (PDB entry 1ZFS). The automatic NOESY assignment procedure [48] provided 

1193 intrasubunit distance constraints and 121 intersubunit distance constrains for holo-

S100A1 protein. Appropriate numbers for holo-S100A1-Hcy were 1240 and 156, 

respectively. Stereospecific assignments for 74 (holo-S100A1) or 100 (holo-S100A1-Hcy) 

side chain chiral groups in each subunit were generated by the program GLOMSA [49] that is 

included in the CYANA software. Additional restraints for backbone φ and ψ torsion angles 

for Ser 2–His 18, Leu 28–Glu 63, and Val 69–Thr 82 segments were predicted from the 

chemical shifts using the PREDITOR server [50]. For the less defined protein regions (like 

Ser 19–Lys 27 and Asn 64–Glu 68 calcium binding loop segments or the C-terminus of helix 

IV starting from Val 83) the dihedral angle constraints were not applied. At first, the structure 

calculations were carried out using the XPLOR-NIH 2.26 program [51] with NOEs and 

dihedral angles as input constraints assuming the symmetry equivalence between two 

subunits. Before the final structure calculations, constraints defined as rHN-O = 1.5–2.5 Å and 
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rN-O = 2.5–3.5 Å for hydrogen bonds were added based on geometric criteria. If a given 

hydrogen bond existed in more than 75% of structures in the ensemble, then it was selected 

for the final refinement. Additional 20 constrains, defined as rCa2+-O = 2.33–2.47 Å for 

calcium ions coordination, were also included in final refinement. Only oxygen atoms taking 

part directly in calcium coordination were selected (O of Ser 19, Glu 22, Asp 24, Lys 27 and 

OE1, OE2 of Glu 32 for the first binding site, and OD1 of Asp 62, Asn 64, OD1, OD2 of 

Asp 66, O of Glu-68, and OE1, OE2 of Glu 73 for the second binding site), on the basis of the 

representative crystallographic structures of human S100A13 (PDB entry 2EGD) and bovine 

S100B (PDB entry 1MHO). For the purpose of final refinement of holo-S100A1-Hcy 

structure, the topology of an additional amino acid, homocysteine connected to cysteine by 

the disulfide bond, was manually added and included in XPLOR-NIH 2.26 topology file. 

Evaluation of the obtained S100A1 structures quality was done with the PROCHECK-NMR 

[52] and the What-If [53] programs. 

Analysis of 
15
N relaxation data 

 Methodology of analyzing 15N relaxation data measured at multiple magnetic fields 

has been described in our previous paper [14]. It is based on the extended model-free 

approach [54] with spectral density functions combined [55-56] with anisotropic overall 

tumbling [57]. 

 Three Euler angles relate the directions of the principal axes of the asymmetric 

diffusion tensor to the molecule-fixed coordinate system. Because of the symmetry 

requirement one of the principal axes of the diffusion tensor of homodimeric S100A1 protein 

(in our case z axis) is collinear with the protein symmetry axis. This condition reduces the 

number of the Euler angles from three to one. The coefficients describing orientation of H–N 

vectors in the molecule-fixed coordinate system were calculated using the atomic coordinates 

of the lowest energy NMR-derived structures. The vibrationally averaged N–H distance was 
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assumed to be 0.104 nm [58] and chemical shift anisotropy of 15N chemical shift tensor equal 

to –170 ppm [59]. The values and ratios of the principal values of inertia tensors are given in 

Supporting Information, Table S1 and compared with the apo form of S100A1 protein. 

Anisotropies of the inertia moment tensors are noticeable and, therefore, anisotropic overall 

tumbling may be expected. 

 The least-squares procedure used a written in-house Fortran routine optimizing the 

model parameters consisted of minimization through a grid-search of the target function χ 

given by: 

 ∑∑
= =

−=
N

i

M

j

ijcalc,ijexp,ij ]/)PP[(
1 1

22 σχ  

The sum was over M relaxation parameters for each of N residues, and Pij,calc were the 

appropriate relaxation parameters calculated from the assumed model. The σij values were the 

corresponding standard deviations of experimentally derived Pij,exp. The minimization 

procedure delivered four global parameters (three diffusion coefficients and one Euler angle) 

and N sets of local, residue specific, parameters comprising Sf, Ss, τf, τs, and Rex. The residues 

of both flexible termini were also excluded from the calculation delivering the overall 

diffusion parameters. Those unstructured, flexible terminal segments cannot be regarded as a 

part of the rigid rotor and description of their motions in terms of a single overall correlation 

time does not seem to be appropriate [60-61]. Model parameter uncertainties derived in the 

minimization of target function χ were obtained as standard deviations from 200 Monte Carlo 

simulations [62]. 

 

Results 

Sequence-specific resonance assignment 
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 The 2D 1H-15N HSQC spectra of both homodimeric S100A1 proteins displayed 

relatively good dispersion of amide correlation signals (cf. Fig. 1). In holo-S100A1-Hcy cross 

peaks for all residues could be assigned, except 5 residues placed, respectively, in the N-

terminus (Ser 2), the N-binding loop (Gly 23, Asp 24, and Lys 25) and the linker (Lys 49). In 

holo-S100A1 the cross peaks of the same residues and additionally of three other ones 

(Leu 41, Asn 86 and Asn 92) could not be identified because of line broadening caused, most 

probably, by exchange processes. The sequence-specific backbone and side-chain 

assignments were done using 2D and 3D NMR experiments. 91.4% of all resonances in holo-

S100A1 and 89.8% in holo-S100A1-Hcy were assigned. All resonances, except those of 

histidine rings and NH2 side chain groups of asparagines and glutamines, have been assigned 

unequivocally. The 13Cβ chemical shift of Cys 85 in holo-S100A1-Hcy (δCβ=40.6), as 

compared with that in holo-S100A1 (δCβ=26.5), clearly shows that the protein was 

thionylated [63-64] but the resonance assignment for the unlabeled homocysteine was not 

possible. 

Effect of calcium binding on the 
1
H-

15
N HSQC spectrum of S100A1 

 It is well known that saturation with calcium changes significantly many of the 

chemical shifts in S100 proteins [2]. In human S100A1 prominent examples are those of 

Glu 63 and Gly 67 occupying the second and sixth position of “canonical” calcium-binding 

loop. Their cross peaks in the 1H-15N HSQC spectrum move, respectively, from 

118.86 ppm/8.09 ppm and 109.02 ppm/8.22 ppm [14] to 129.19 ppm/8.35 ppm and 

113.25 ppm/10.27 ppm (this paper) upon calcium binding. Coordination of Ca2+ ions by 

S100A1 is also manifested by more general changes in the chemical shifts of the protein 

backbone amide nuclei in the 1H-15N HSQC spectra upon saturation of the apo-protein with 

calcium ions. The chemical shift perturbation (CSP) upon binding of Ca2+ ions was calculated 

for each residue using the equation: CSP = [(∆δHN)2 + (0.2 ∆δN)2]1/2 where ∆δHN and ∆δN are 
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chemical shift changes in proton and nitrogen dimensions, respectively. CSP values are 

shown in Supporting Information, Fig. S1. The largest changes are observed for both binding 

loops. Pronounced changes are also visible for the linker - particularly for its first residue, 

Ser 42 - and the C-terminal part of helix IV. On average, CSPs equal to 0.69 ppm for both 

pairs: apo-S100A1/holo-S100A1 and apo-S100A1/holo-S100A1-Hcy. Both CSP profiles 

mapped onto appropriate protein structures are given in Supporting Information, Fig. S2. A 

similar calcium-induced chemical shift perturbation profile was observed in the case of 

human S100A5 protein [65]. 

Structures of holo-S100A1 and holo-S100A1-Hcy 

 The three-dimensional solution structures of the human holo-S100A1 protein and its 

derivative modified by disulfide formation with homocysteine at Cys 85 (holo-S100A1-Hcy) 

were calculated from NMR-derived constraints (cf. Table 1). 99.2 % (99.6 %) of all residues 

are located in the most favored 95.1% (95.9%) or additionally allowed regions 4.1% (3.7%) 

of the Ramachandran plot. The statistics for the ensembles of 20 most favorable structures for 

both proteins are given in Table 1. In Fig. 2 the ribbon diagrams for the lowest energy 

structures of holo-S100A1 (Fig. 2A) and holo-S100A1-Hcy (Fig.2B) are shown with color-

encoded EF-hand helices. The atomic coordinates for all 20 structures of each protein have 

been deposited in the Protein Data Bank with the accession codes 2LP3 for human holo-

S100A1 and 2LP2 for holo-S100A-Hcy, respectively. 

 The structures of both proteins are almost identical, as could be expected from 

comparison of their 1H-15N HSQC spectra: the average chemical shift perturbation CSP for 

the holo-S100A1/holo-S100A-Hcy pair equals merely 0.04 ppm (cf. Fig. S1C) and it arises 

predominantly from local effects of the protein thionylation. Each subunit of holo-S100A1 

(holo-S100A1-Hcy) contains four α-helices formed by residues Glu 3–Gly 20 (Lys 21), 

Lys 30–Glu 40, Ala 53–Leu 61 and Phe 71–Glu 91 (Trp 90) and one short antiparallel β-sheet 
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formed by Lys 27, Leu 28, Val 69, and Asp 70. In the linker region joining two EF-hand 

domains (residues 41 - 50) of holo-S100A1-Hcy the α-helix is formed consisting of Gly 43–

Asp 46. Such short helical motif does not appear in holo-S100A1 proteins of both, human 

(this work) and rat [2] species. 

 For residues Glu 5–Cys 85 within one subunit of holo-S100A1 (holo-S100A1-Hcy), 

the r.m.s.d. for the backbone atoms (N, Cα, C') equals 0.86 ± 0.22 Å (0.44 ± 0.10 Å) and for 

all heavy atoms 1.49 ± 0.26 Å (0.85 ± 0.12 Å), while for both subunits in the dimer the 

corresponding values are 0.94 ± 0.22 Å (0.54 ± 0.14 Å) and 1.54 ± 0.27 Å (1.04 ± 0.15 Å), 

respectively. Almost identical r.m.s.d. values obtained for the single subunit and the 

homodimer in both proteins prove that the interface between subunits is correctly determined 

and the resulting ensembles of structures represent well defined homodimeric proteins. In 

both proteins the dimer interface is located mainly between helices I and I', I and IV' and 

helices IV and IV'. On average 4 – 5 long-range distance restraints have been established from 

the NOE data for residues involved in the dimer formation. 

Dynamics of holo-S100A1 and holo-S100A1-Hcy 

 For holo-S100A1 and holo-S100A1-Hcy proteins the analysis of relaxation data was 

performed for 73 and 66 residues, respectively, allowing for the simultaneous determination 

of four global parameters and corresponding sets of local parameters. The principal values of 

the overall diffusion tensors are collected in Supporting Information, Table S2. As supposed 

the overall tumbling is anisotropic with anisotropy DA = 2Dz/(Dx+Dy) equal to 0.78±0.01 and 

0.88±0.04 for holo-S100A1 and holo-S100A1-Hcy, respectively. Anisotropy of the overall 

tumbling in apo-S100A1 is less pronounced and equal to 0.92±0.02. The averaged isotropic 

rotational correlation time, τR = (2Dx+2Dy+2Dz)
-1, equal to 9.50±0.08 ns and 9.27±0.20 ns for 

holo-S100A1 and holo-S100A1-Hcy, respectively, is typical for globular proteins of about 20 

kDa size and corresponds well to the results obtained for other proteins from the S100 family 
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[14, 65-68]. Comparison of the apo and holo forms reveals that overall tumbling of holo 

forms is ca. 10% slower. It should not be surprising in the light of larger molecular inertia 

moments of holo forms (cf. Supporting Information, Table S1). 

 Out of five residue-specific parameters describing the local mobility of the backbone 

amide N–H vectors within the frame of the extended model-free approach, S2 = Sf
2
Ss

2 and Rex 

are of special importance. The former describes restrictions imposed on motions much faster 

than the overall protein diffusion (the ps time scale) and the latter allows detection of much 

slower motions, but fast enough to average chemical shifts of the exchanging sites (usually on 

the µs–ms time scale). Site specific values of those parameters can reveal local dynamics 

changes due to the thionylation and calcium loading for both studied proteins when compared 

with corresponding values in apo-S100A1 [14]. However, differences in mobility of the 

protein structural elements (helices, loops) on the ps time scale become much more evident 

when the weighted means of S
2 values determined for the residues building them are 

compared. 

 The S2 values averaged over structural elements presented in Fig. 3 indicate that the 

helices are always the most rigid segments of the studied proteins (full profiles of site specific 

S
2 values are given in Supporting Information, Fig. S3). Rigidity of both binding loops in the 

holo forms is comparable to that of helices. On the other hand, the linker is the most flexible 

part of the molecule, much more flexible than in the apo form. In the holo forms residues 

involved in chemical exchange processes monitored by the Rex parameter (Fig. 4) are 

predominantly located in the helices I and II and the linker in contrary to the most affected by 

exchange processes N-terminal binding loop in apo form. 

 Residues of binding loops differ in their dynamic behavior between the holo and apo 

forms. In the latter structure, the residues located in the binding loops display intense mobility 

on the ps time scale comparable to that of the linker. Moreover, they show the exchange terms 
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being the largest in the N-terminal loop. Therefore, calcium binding imposes restriction on the 

mobility of residues comprising binding loops on fast and slow time scales. On the contrary, 

the mobility of the linker, on both time scales, and of large parts of helices I and II on slow 

time scale becomes more pronounced in the holo forms. 

 The obtained model parameters reproduce well input experimental data. The plot of 

calculated vs. experimental R2/R1 ratios is given in Supporting Information, Fig. S4. 

Discussion 

Impact of calcium binding on human S100A1 structure and its backbone dynamics 

 The structural transition in human S100A1 protein induced by calcium binding is 

strictly similar to that observed in rat S100A1 [2, 69] and characteristic for the majority of 

S100 proteins [65, 70]: helix III changes its orientation by ca. 100° (cf. Table 2 and Fig. 5) 

that leads to the creation of a large hydrophobic cleft on the surface of the protein comprising 

the residues situated in the linker, helix III, and helix IV. To this region of holo-S100A1 the 

target proteins bind [71-72]. 

 From studies on rat S100A1 [2, 69] the authors have concluded that elongation of 

helix IV at its C-terminus is an additional structural change induced by calcium binding in the 

protein. A similar conclusion has been drawn from studies on human S100A5 [65]. In human 

apo-S100A1 [14] we have found one turn more in helix IV than reported for the rat apo 

protein [69] but the residues participating in its formation (Asn 87 - Trp 90) are in equilibrium 

between helical (310-helix) and non-helical conformation. In the holo forms of S100A1 

presented in this paper the equilibrium is shifted toward the α-helical conformation. 

 As could be expected the striking difference in dynamics of apo-S100A1 and holo-

S100A1 proteins is the significant restriction of motion of both calcium binding loops. S
2 

values averaged over structural motifs are larger for calcium binding loops in holo-S100A1 

(cf. Fig. 3). In calcium bound form those previously mobile on subnanosecond time scale 
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structural elements become as rigid as helices. In other words, quite expectedly calcium 

binding imposes restriction on fast motions of the loops. Additionally, the linker region in 

holo-S100A1 becomes more mobile and thionylation of Cys 85 enhances this effect. The 

latter phenomenon can be explained by possible interactions between attached homocysteine 

and residues within the linker (cf. Fig. 2B). Moreover, the analysis of differences in Rex terms 

for those two proteins reveals that calcium binding restricts the mobility of S100 specific 

calcium binding loop. There is another feature that characterizes studied holo protein forms, 

namely the significant increase of exchange terms in helices I and II in comparison with apo 

form. This effect has not been reported for any of S100 proteins up to now. It points out to the 

increased mobility on the µs–ms time scale of secondary structure elements which usually 

remain rigid. This behavior can be a hallmark of the target binding site as recently reported 

for the S100A6 complex with a fragment of C-terminal domain of Siah-1 protein [3]. It was 

observed that complex formation resulted in both, chemical shift perturbation in H/N 

correlation spectrum and broadening or disappearing of numerous cross peaks corresponding 

to several regions of S100A6 including most of the residues within helix I. It can also 

correlate with the increased exchange rates of several amide protons with solvent within 

helices I and II of human [73] and rat [74] S100B proteins. 

Comparison of holo-S100A1 structures 

 Until now there are three available structures of holo-S100A1 proteins: rat (1ZFS) [2] 

and presented in this paper human (2LP3) and human thionylated with homocysteine (2LP2). 

All these structures, determined by NMR methods, are very similar. The r.m.s.d. values 

calculated for backbone atoms of residues Glu 5 - Cys 85 in structure pairs 1ZFS/2LP3, 

1ZFS/2LP2, and 2LP2/2LP3 equal to 1.92±0.20 Å, 2.24±0.11 Å and 1.63±0.09 Å, 

respectively. The positions of secondary structure elements as well as mutual orientations of 

helices (see Table 2) are also very similar in those three structures. The only structural 
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difference is visible in the linker region (residues Leu 41 - Asp 50). It does not contain any 

elements of secondary structure in rat and human holo-S100A1 proteins, while in holo-

S100A1-Hcy an α-helix segment consisting of Gly 43–Gln 46 has been found. Nevertheless, 

we believe that it is simply more populated because in all these proteins the linker region is 

very flexible (see Fig. 3). Existence of a short α-helix in the linker region has been found in 

all crystallographic structures of calcium loaded S100 proteins [75-77]. Moreover, the 

chemical shift index (CSI) values of Cα nuclei obtained for all discussed here S100A1 

proteins indicate that residues 42-46 (42-45 in rat S100A1) are likely to adopt the α-helical 

conformation (cf. Supporting Information, Fig. S5). 

 The results presented in this paper show that the protein thionylation is not reflected in 

any significant changes in the structure or dynamics of its holo form. Therefore, the rationale 

of increase of the protein affinity for calcium due to the thionylation of Cys 85 should be 

searched in conformational changes in its apo form. 

 Therefore, it seems obvious that we should to investigate this problem by thoroughly 

analyzing the structure of apo-S100A1-Hcy. Unfortunately, the signal dispersion in NMR 

spectra of this protein is very poor precluding spectral assignments at the level allowing for 

the precise structure determination. Nevertheless, at least partial assignment of a number of 

resonances was possible. It allowed us to identify C/H correlations for several aromatic 

moieties and calculate CSP values caused either by calcium binding or thionylation of the 

protein. The aromatic 1H–13C HSQC spectra, which can be regarded as fingerprints of the 

hydrophobic core arrangement, are virtually identical for both studied holo proteins (S100A1 

and S100A1-Hcy) and the apo form of S100A1-Hcy, while the corresponding spectrum of 

native apo S100A1 markedly differs from them. Visual inspection of superpositions of 

selected pairs of 2D aromatic 1H–13C HSQC spectra (Supporting Information, Fig. S6) 

confirms this statement. Selected CSP values of aromatic C/H cross peaks and Nε1/Hε1 side 
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chain Trp residue are large and similar for apo-S100A1/holo-S100A1 and apo-S100A1/apo-

S100A1-Hcy pairs. On the other hand, they are much smaller for the apo-S100A1-Hcy/holo-

S100A1-Hcy pair (cf. Supporting Information, Table S3). One can conclude that the 

rearrangement of hydrophobic side chains of aromatic residues due to the protein thionylation 

reflected by aromatic C/H correlation spectrum of apo-S100A1-Hcy is similar to that 

resulting from calcium binding to S100A1. This conclusion is in line with our previous 

finding that Cys 85 thionylation stabilizes C-terminal part of helix IV  in S100A1 protein [68] 

as does the calcium binding. 

Conclusions 

 Loading of S100A1 protein with calcium results in stabilization of the C-terminal part 

of α-helix IV in addition to drastic reorientation of helix III. As could be expected, the 

calcium binding loops are much more rigid in the holo form of the protein. 

 Quite surprisingly, helices I and II and, in particular, the linker region in the holo 

form, are more flexible than in the apo form. It can be of functional importance facilitating 

molecular recognition of the protein target molecules. 

 Neither the structure nor the dynamics of holo-S100A1 are perceptibly affected by the 

protein thionylation. That leads to the following important conclusion: the observed increase 

of S100A1 affinity for calcium upon its Cys 85 thionylation results generally from 

conformational changes in the apo form of the protein which seem to arise from 

rearrangement of aromatic residues constituting its hydrophobic core. 
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Supporting Information 

 Detailed information on structure and dynamics of studied proteins contains three 

tables and six figures. This material is available free of charge via the Internet at 

http://pubs.acs.org 
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Table 1. NMR-derived constraints and statistics for human holo-S100A1 and holo-S100A1-

Hcy proteins calculated with XPLOR-NIH 2.26 

NOE distance constraints within subunit 

Intraresidual & sequential (|i−j|≤1) 

Medium-range (1<|i−j|<5) 

Long-range (|i−j|≥5) 

Intersubunit NOE distance constraints per subunit 

Hydrogen bond constraints 

Restraints per residue 

Restraints for Ca2+ ion per subunit 

1193 

713 

302 

178 

121 

29 

14.4 

10 

1240 

723 

270 

247 

158 

50 

15.6 

10 

Torsion angle constraints: 

Backbone (ϕ/ψ) 

Side chains (χ1/χ2) 

 

74/71 

0/0 

 

67/67 

0/0 

Mean r.m.s.d. from experimental restraints (±s.d.) 

NOE (Å) 

Dihedral angles (deg) 

 

0.0126 ± 0.0012 

1.13 ± 0.20 

 

0.0192 ± 0.0013 

0.59 ± 0.08 

r.m.s.d. from idealized covalent geometry (region 1..93)( ±s.d.) 

Bonds (Å) 

Angles (deg) 

Impropers (deg) 

 

0.0038 ± 0.0003 

0.68 ± 0.03 

0.56 ± 0.03 

 

0.0056 ± 0.0003 

0.84 ± 0.02 

0.65 ± 0.02 

Ramachandran plot (1..93) 

Residues in the most favored regions (%) 

Residues in additional allowed regions (%) 

Residues in generously allowed regions (%) 

Residues in disallowed regions (%) 

 

95.1 

4.1 

0.6 

0.2 

 

95.9 

3.7 

0.2 

0.2 

Ramachandran plot (5..85) 

Residues in the most favored regions (%) 

Residues in additional allowed regions (%) 

 

94.4 

4.6 

 

95.7 

4.0 
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Residues in generously allowed regions (%) 

Residues in disallowed regions (%) 

0.7 

0.3 

0.1 

0.2 

r.m.s.d. to the mean subunit structure 

Ordered backbone atoms (1..93) (Å) 

Ordered heavy atoms (1..93) (Å) 

Ordered backbone atoms (5..85) (Å) 

Ordered heavy atoms (5..85) (Å) 

 

1.06 ± 0.25 

1.70 ± 0.26 

0.86 ± 0.22 

1.49 ± 0.26 

 

0.84 ± 0.20 

1.19 ± 0.17 

0.44 ± 0.10 

0.85 ± 0.12 

r.m.s.d. to the mean structure of the whole dimer (both subunits) 

Ordered backbone atoms (1..93) (Å) 

Ordered heavy atoms (1..93) (Å) 

Ordered backbone atoms (5..85) (Å) 

Ordered heavy atoms (5..85) (Å) 

 

1.17 ± 0.29 

1.78 ± 0.29 

0.94 ± 0.22 

1.54 ± 0.27 

 

0.89 ± 0.20 

1.13 ± 0.17 

0.54 ± 0.14 

1.04 ± 0.15 

Structure Z-scores 

1st generation packing quality 

2nd generation packing quality 

Ramachandran plot appearance 

χ1 and χ2 rotamer normality 

Backbone conformation 

 

2.081 ± 0.525 

4.573 ± 1.451 

1.687 ± 0.364 

2.010 ± 0.438 

0.647 ± 0.504 

 

2.088 ± 0.451 

3.885 ± 1.278 

1.954 ± 0.319 

0.369 ± 0.412 

-0.181 ± 0.200 

Equivalent X-ray resolution of Ramachandran plot (1..93) (Å) 

Equivalent X-ray resolution of Ramachandran plot (5..85) (Å) 

Equivalent X-ray resolution of χ1 and χ2 (1..93) (Å) 

1.0 

1.0 

1.0/1.0 

1.0 

1.0 

1.1/1.0 

Page 32 of 40

ACS Paragon Plus Environment

Biochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 2. Angles (in degrees) between helices I, II, III and IV in human and rat S100A1 

structuresa. 

Helices 
human  

apo-S100A1b 

rat  

holo-S100A1c 

human  

holo-S100A1d 

human  

holo-S100A1-Hcye
 

I → II 133 ± 1 132 ± 1 132 ± 2 139 ± 1 

I → IV 117 ± 1 131 ± 2 119 ± 2 130 ± 1 

II → IV –34 ± 1 –29 ± 1 –26 ± 3 -35 ± 1 

I → I' –144 ± 2 –157 ± 3 –158 ± 2 –154 ± 1 

IV → IV' 151 ± 1 152 ± 3 144 ± 6 149 ± 1 

III → IV -167 ± 2 121 ± 2 130 ± 4 112 ± 2 

a Interhelical angles were calculated using interhlx (K. Yap, University of Toronto). 

b Taken from NMR structure (PDB entry 2L0P). 

c Taken from NMR structure (PDB entry 1ZFS). 

d Taken from NMR structure (PDB entry 2LP3), this work. 

e Taken from NMR structure (PDB entry 2LP2), this work. 

Sign of the interhelical angle was chosen according to convention proposed in [78]. 
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Figure captions 

 
Figure 1. 1H–15N HSQC spectrum of human holo-S100A1 protein. The terminal NH2 groups 

of Asn and Gln residues are not labeled. One of two cross peaks labeled W90 at 9.621/128.53 

corresponds to side chain NH group of indol moiety. 

Figure 2. Ribbon representations of the holo-S100A1 (A) and holo-S100A1-Hcy - (B) 

structures. Subsequent helices of EF-hand motifs are colored: helix I - blue, helix II - cyan, 

helix III - red and helix IV - yellow.  Calcium ions are shown as spheres and homocysteine in 

stick representation. 

Figure 3. Weighted means of generalized order parameter values <S
2> with corresponding 

error bars for amino acid residues in various structural elements of human holo-S100A1 and 

holo-S100A1-Hcy proteins compared with corresponding values obtained for apo-S100A1 

[14]. Relaxation data were analyzed assuming fully anisotropic overall tumbling [57] and 

extended model-free spectral density functions [54]. 

Figure 4. Data (vertical bars) for exchange terms Rex at 9.4 T with corresponding error bars 

for human apo-S100A1 (A) holo-S100A1 (B) and holo-S100A1-Hcy (C) proteins vs. residue 

number. Insignificant Rex values smaller than 0.5 s-1 and, therefore, close to their accuracy are 

shown as hatched bars. The horizontal lines indicate positions of four helices in EF-hand 

motifs. 

Figure 5. Comparison of most representative structures for human holo-S100A1 (red) and 

apo-S100A1 (blue) proteins. Calcium ions are represented as yellow spheres. 
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