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ABSTRACT

Aim Species atlases provide an economical way to collect data with national

coverage, but are typically too coarse-grained to monitor fine-grain patterns in

rarity, distribution and abundance. We test the performance of ten downscaling

models in extrapolating occupancy across two orders of magnitude. To provide

a greater challenge to downscaling models, we extend previous downscaling

tests with plants to highly mobile insect taxa (Odonata) with a life history that

is tied to freshwater bodies for reproduction. We investigate the species-level

correlates of predictive accuracy for the best performing model to understand

whether traits driving spatial structure can cause interspecific variation in

downscaling success.

Location Mainland Britain.

Methods Occupancy data for 38 British Odonata species were extracted from

the Dragonfly Recording Network (DRN). Occupancy at grains ≥ 100 km2 was

used as training data to parameterize ten downscaling models. Predicted occu-

pancy at the 25, 4 and 1 km2 grains was compared to observed data at corre-

sponding grains. Model predictive error was evaluated across species and

grains.

Main conclusions The Hui model gave the most accurate downscaling predic-

tions across 114 species:grain combinations and the best predictions for 14 of

the 38 species, despite being the only model using information at a single spa-

tial grain. The occupancy–area relationship was sigmoidal in shape for most

species. Species’ distribution type and dispersal ability explained over half of

the variation in downscaling predictive error at the species level. Species with a

climatic range limit in Britain were poorly predicted compared with other dis-

tribution types, and high dispersal ability was associated with relatively poor

downscaling predictions. Our results suggest that downscaling models, using

widely available coarse-grain atlas data, provide reasonable estimates of fine-

grain occupancy, even for insect taxa with strong spatial structure. Linking spe-

cies-level traits with predictive accuracy reveals general principles about when

downscaling will be successful.

Keywords

Aggregation, biodiversity monitoring, distribution, occurrence, spatial scale.

INTRODUCTION

The lack of fine-grain data over large spatial extents is prob-

lematic for accurate monitoring of threatened species and

limits our theoretical understanding of biodiversity patterns

(McGill, 2010a, b; Beck et al., 2012; Jetz et al., 2012; Keith

et al., 2012). Species’ distributions are typically mapped in

the form of atlases derived from spatially explicit, opportu-

nistic occurrence records for a specific taxanomic group

within a defined geographical extent and time period (Rob-
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ertson et al., 2010). Atlases use coarse-grain sizes to mini-

mize pseudo-absences (false absences or omission errors), at

a cost of including large areas where the species is actually

absent (commission errors: Boitani et al., 2011). However,

distribution size is highly scale dependent (Kunin, 1998),

such that coarse-grain occupancy is a poor predictor of

abundance (Hartley & Kunin, 2003).

Recently, ecologists have begun to realize that the scale

dependency of species distributions can be described statisti-

cally and even extrapolated across scales (He & Gaston, 2000;

Kunin et al., 2000; He et al., 2002; Hui et al., 2006; He & Con-

dit, 2007), thus helping to address this fine-grain data deficit

and improve our assessment of rarity and extinction risk

(Mace et al., 2008). Specifically, the occupancy–area relation-

ship (OAR, following the terminology in McGill, 2010b)

describes how occupancy (the proportion of grid cells where a

species is present) increases with grain size (the area of each

grid cell). Elsewhere, closely related relationships are the scale–

area curve (Kunin, 1998; Veldtman et al., 2010), area–area

curve (He & Gaston, 2000), range–area curve (Green et al.,

2003), scaling pattern of occupancy (Hui et al., 2006; Hui,

2009) and p-area curve (Storch et al., 2008). As the grain used

to record species’ presences becomes coarser, empty fine-grain

cells merge with neighbouring occupied cells and a greater

proportion of the study region appears occupied. There is con-

siderable variation in the shape and slope of the OAR among

species, driven by species’ overall abundances, patterns of

intraspecific aggregation (Cowley et al., 2001; Storch et al.,

2008; Conlisk et al., 2009; Gaston & He, 2011) and the logical

constraint that no fewer than one cell can be occupied at a

given scale (Fig. 1). The local slope of the OAR contains infor-

mation about intraspecific aggregation: a steep local slope

between two spatial grains indicates a species occurs in few

fine-grain cells within each occupied coarse-grain cell (a

sparse, fragmented distribution). A shallow local slope indi-

cates that the species is present in many fine-grain cells within

each coarse-grain cell (an aggregated, contiguous distribution)

(Wilson et al., 2004; Veldtman et al., 2010). Although down-

scaling models do not describe the processes shaping aggrega-

tion patterns, they are nonetheless able to capture interspecific

variation in the shape of the OAR (Azaele et al., 2012).

Downscaling models have been tested (using training data

at coarse grains and a test data set at fine grains) for 73 species

of rare plants in mainland Britain (Kunin, 1998; Kunin et al.,

2000), 92 species of grasses in mainland Britain (Kunin et al.,

2000), 301 tree species in a 0.5 km2 tropical rainforest plot in

Barro Colorado Island, Panama (He & Condit, 2007), 824 tree

species in 0.5 km2 tropical rainforest plot in Pasoh, Malaysia

(He & Gaston, 2000), passerine birds in Bedfordshire (He &

Gaston, 2000), six large mammalian herbivores in the

13912 km2 Kruger National Park (Tosh et al., 2004) and

southern African bird species (Lennon et al., 2007; Hui et al.,

2009). Azaele et al. (2012) tested the performance of nine

downscaling models across several orders of magnitude in

grain size using multi-scale occupancy data for 16 rare British

plant species. The Thomas model, derived from a clustered

Poisson point process, provided the most accurate and unbi-

ased estimates of fine-grain occupancy across the 16 species,

despite the absence of information about the spatial positions

of occupied cells. Virtually all of these tests are for plants, and

in most cases, three or fewer of the available downscaling

methods were applied to the data. The range of extrapolation

varies greatly among studies from 25-fold (Kunin, 1998) to

four orders of magnitude (Azaele et al., 2012). In the absence

of a mechanistic understanding of the OAR (but see McGill &

Nekola, 2010; McGill, 2011), it is important to establish

whether downscaling models are general enough to describe

all observed forms of the OAR and to extend comparative tests

of model performance to taxa with a very different set of dis-

persal abilities, habitat requirements and spatial structures.

We identify four traits, measured at the level of the species,

which we predict will lead to interspecific variation in the

shape of the OAR (and therefore downscaling success). A spe-
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Figure. 1 The occupancy–area relationship (OAR) for three

hypothetical species (adapted from Azaele et al., 2012). There

are a wide variety of shapes and slopes of the OAR among

species, reflecting both the extent of a species’ distribution

within the study region and the intensity of intraspecific

aggregation. Here, the differences in slopes cause the species’

curves represented by the solid black line and the dotted black

line to cross over, demonstrating that the grain at which

occupancy is measured can change our perception of which

species is rarest. For widespread species (solid black line) within

the study region, the curve becomes shallower as the sampling

grain approaches the extent of the study region, A0. At grains

coarser than the point of saturation, S, the species represented

by the solid black line occurs in all cells (e.g. occupancy = 1).

For a species that is restricted to some portion of the study

region (dashed line), an inflection point will be seen at the finest

grain to contain the entire distribution within a single grid cell

(the point of endemism, E). Saturated and endemic grains add

no information about the scaling of occupancy for the purposes

of downscaling. Occupancy cannot fall within the shaded grey

area, which represents the region where occupancy < A/A0 and

equates to a species occurring in less than one cell in the study

region.
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cies’ distribution type (widespread, range limited, local-sparse

or local-aggregated) is a broad descriptor of interspecific vari-

ation in the number and spatial arrangement of occupied

cells (see Appendix S2d in Supporting Information). On a

more mechanistic level, patterns of intraspecific aggregation

depend on the interplay between dispersal ability and the pat-

chy distribution of suitable (micro)climate and habitat (Hub-

bell, 2001; Green & Plotkin, 2007; Storch et al., 2008; McGill,

2010b). The other three traits (dispersal ability, habitat

breadth and range change) are chosen for their relationship

to those processes influencing intraspecific aggregation and

variation in the shape and slope of the OAR (Fig. 1).

Here, we present a comparison of downscaling methods

applied to coarse-grain records of British Odonata and

extrapolate occupancy through two orders of magnitude in

spatial grain. These distribution data are used to investigate

(1) which downscaling models perform best in predicting

fine-grain occupancy from coarse-grain atlas data and (2)

whether species traits can explain interspecific variation in

predictive success. Our analyses extend knowledge gained in

previous downscaling studies by testing for general principles

in our ability to predict occupancy at fine-spatial grains.

METHODS

Odonata distribution data

Occupancy data for British Odonata were extracted from the

Dragonfly Recording Network (DRN) held by the British

Dragonfly Society (BDS). The DRN data comprise over 1 mil-

lion records on 34 510 spatially referenced 1 km2 cells in

mainland Britain. OARs based on eight spatial grains were

estimated for a total of 38 species, comprising the resident

breeding Odonata species in the UK (Appendix S1). Spatial

variation in recording intensity, geographical biases and

pseudo-absences must be acknowledged when estimating spe-

cies occupancies from presence-only, opportunistic occurrence

records (Van Strien et al., 2013). To address the issue of

pseudo-absences, we included only cells in which at least one

species had been recorded (as evidence of a visit), and assumed

species not recorded in a grid cell were absent. This threshold

is intended to address the trade-off between the number of

false absences and the exclusion of large amounts of fine-grain

data (Appendix S2a). Cells with < 30% land cover (≥ 70%

sea) were excluded at each spatial grain as a trade-off between

the total amount of land represented by cells in the analysis

and the total number of cells available for analysis at coarse

grains (Appendix S2b). The spatial references of occupied grid

cells at 1 km2 were coarsened to obtain species’ occupancies at

the 4, 25, 100, 144, 400, 1600, 6400 km2 grains to estimate the

OAR for each species. A species’ occupancy was calculated as

the proportion of the total number of sampled grid cells in

which the focal species occurs. Data cleaning, manipulation

and calculation of species occupancies at multiple scales were

performed in R version 2.15.1 (R Development Core Team,

2012).

Downscaling

Ten downscaling models (Table 1) were fitted to occupancy

data at coarse grains (≥ 100 km2) for the 38 British Odonata

species. This reflects the typical 100 km2 grain of atlas data

in the UK. Models 2–9 (Table 1; Appendix S2c) use the

shape of the OAR at multiple grains to extrapolate to finer

grains (reviewed in Azaele et al., 2012). The term Thomas

model, as used here, refers to the downscaling formula in

Appendix S2c, rather than the spatially explicit Thomas point

process from which it was derived by Azaele et al. (2012).

We parameterized these models using occupancy at five

coarse-spatial grains (100, 144, 400, 1600 and 6400 km2)

(Appendix S2c). Saturated grains contain no information for

downscaling purposes (Fig. 1). For seven widespread species,

the OAR was saturated (i.e. reached 100% occupancy) at the

coarsest (Enallagma cyathigerum, Sympetrum striolatum,

Pyrrhosoma nymphula, Libellula quadrimaculata and Sympe-

trum danae) or two coarsest (Lestes sponsa, Ischura elegans)

grains, and so these grains were excluded when parameteriz-

ing models. Model 1, the Hui model (Hui et al., 2006; Hui,

2009; Table 1), uses spatially referenced data from one refer-

ence grain size to estimate occupancy at others based on just

two pieces of information: the probability that a cell is occu-

pied, P+, and the conditional probability that neighbouring

cells are occupied, Q+/+ (an index of spatial aggregation).

Bayes’ theorem can be used to express all conditional proba-

bilities of occupancy in terms of P+ and Q+/+ and to derive

the OAR. We implemented the formulae in Hui (2009),

using 100 km2 as our reference grain size (Appendix S2c).

Mathematica 9.0 Student Edition (Wolfram Research, Inc.

2012) was used for optimization of parameter estimates for

all models.

The parameterized models were used to predict occupancy

at 25, 4 and 1 km2 grains. Model predictions were obtained

at three grains (25, 4 and 1 km2) for the 38 species, giving a

total of 114 predictions for each model. Model predictions

were evaluated as the absolute value of the percentage error
�
�ppred

A;i
�pob

A;i

�
�

pob
A;i

:100, where pobA;i and ppredA;i are the observed and pre-

dicted occupancies at grain A for species i. We assessed

model performance on a species-by-species basis, as well as

across all 114 species:grain combinations. Species-level per-

formance was evaluated as the number of species for which

each model gave the best overall predictions (the mean abso-

lute value of percentage error across the three predicted

grains). The median, minimum and maximum of absolute

values of percentage errors were used to evaluate model per-

formance across all 114 species:grain combinations.

Odonata traits

Downscaling errors are most extreme when extrapolated fur-

thest from the fitted region of the OAR. Therefore, the per-

centage errors at 1 km2 (including the direction of error, +
or �) for the overall best performing model were used as the
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response variable in a species-level trait analysis calculated as
�
�ppred

1;i
�pob1;i

�
�

pob
1;i

:100, where pob1;i and p
pred
1;i are the observed and

predicted occupancies at the 1 km2 grain for species i. Data

on two distributional traits (distribution type, range change)

and two life-history traits (habitat breadth, dispersal ability)

were obtained for the 38 British Odonata species. Distribu-

tion type was classified as widespread, range limited, local-

aggregated or local-sparse, based on the number and spatial

arrangement of occupied cells (Appendix S2d). Habitat

breadth (1–6) was obtained from Powney et al. (2014). Data

for British Odonata range change between 1970 and 2012

were taken from NJB Isaac (unpublished data) as the annual

linear trend in the probability of occupancy on a logit scale

using a generalized linear mixed-effect model (Roy et al.,

2012). We obtained dispersal ability estimates from Fitt

(2013), who inferred dispersal distances from the positions

of newly colonized 1 km2 cells in each year from 1991 to

2012 (2000–2012 for the recent colonist Erythromma viridu-

lum). Distances of newly colonized cells from the nearest

previously occupied 1 km2 cell were weighted by the proba-

bility of a species being previously missed in that cell, given

the number of times the newly colonized cell was surveyed

prior to the first recording of the species (using the list

length model; Szabo et al., 2010). This method is intended

to reduce the error in dispersal distance estimates driven

by cells that appear newly colonized, but were in fact merely

unrecorded due to low sampling intensity. The 75th percen-

tile of dispersal distances was used as the measure of dis-

persal ability in the trait analysis (Appendix S2e).

Statistical analyses

We fitted a phylogenetic generalized least squares model

(Appendix S2f) with normally distributed errors using func-

tion pgls in R package caper (Orme et al., 2013). The depen-

dent variable was the percentage error of downscaling

predictions at the 1 km2 grain. In the global model, predic-

tor variables were the dispersal ability (measured as the

upper quartile of dispersal distances), habitat breadth, range

change and distribution type. Residuals of the model were

improved by log10 transformation of dispersal ability. Models

were ranked by Akaike information criterion with a small

sample size correction (AICc) using the function dredge in R

package MuMIn (Barton, 2013). Models with D(AICc

difference) < 4 were selected, and weighted model averag-

ing across this subset of models was used to estimate the

parameters (Burnham & Anderson, 2002). Standardized

model parameter estimates were used to compare effect sizes

between traits. We tested for collinearity between predictor

variables using both correlation coefficients between pairs of

predictors and variance inflation factors (Appendix S3b), but

found collinearity was not sufficient to warrant exclusion of

predictors from the global model. All statistical analyses were

performed in R version 2.15.1 (R Development Core Team,

2012).

RESULTS

Observed OARs generally became shallower at the finest

grains, resulting in a concave or sigmoidal OAR for many of

the 38 Odonata species. The Hui model predictions were also

of this shape (Fig. 2). The Hui and Power Law models were

the only models biased towards over-prediction of occupancy

(see Fig. 2; Appendix S3b), as indicated by the positive med-

ian value of percentage errors (Fig. 3). All other models

tended to under-predict occupancy. This was particularly

severe for the Poisson model, which systematically under-

predicted occupancy at all predicted grains for all species

(Fig. 3). The Hui model had the highest peak in percentage

errors surrounding zero, followed by the Nachman and

Power Law models. The Hui model also had a lower range

of percentage errors (141.6) than either the Nachman (151.3)

or Power Law (210.2) models (Fig. 3). Half the Hui model

Table 1 Summary of performance for ten downscaling models.

Model # Params Best Median Min Max References

Hui 2 14 16.594 0.313 102.467 (Hui et al., 2006; Hui, 2009)

Nachman 2 12 19.480 0.119 85.121 (Nachman, 1981)

Power Law 2 5 25.196 0.202 126.543 (Kunin, 1998)

Logistic 2 5 30.107 0.548 93.259 (Hanski & Gyllenberg, 1997)

Thomas 3 1 59.795 0.457 98.518 (Azaele et al., 2012)

Finite negative binomial 2 1 73.946 0.835 97.591 (Zillio & He, 2010)

Generalized negative binomial 3 0 32.561 0.209 99.515 (He et al., 2002)

Improved negative binomial 3 0 35.009 0.080 89.026 (He & Gaston, 2003)

Negative binomial 2 0 72.046 0.473 97.863 (He & Gaston, 2000)

Poisson 1 0 91.111 46.648 99.132 (Wright, 1991)

For model formulae and notation, see Appendix S2c. # Params is the number of free parameters. Best is the number of species for which each

model gave the best downscaling predictions (the lowest mean percentage error for each species across the three predicted grains). Median, Min

and Max are the median, minimum and maximum absolute value of percentage error of downscaling predictions across 114 species: grain combi-

nations,

�
�ppred

A;i
�pob

A;i

�
�

pob
A;i

:100, where p
pred
A;i and pobA;i are the predicted and observed occupancy at grain A for species i.
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predictions were within 16.6% of the observed occupancy

(Table 1): the next two best models were the Nachman and

Power Law, with comparable figures of 19.5% and 25.2%,

respectively. The Hui model had the lowest median absolute

percentage error across species and gave the best predictions

for 14 of the 38 species (Fig. 4; Table 1). The Hui model was

never worse than the seventh best model for any species. The

relative performance of the Hui model was retained when

only predictions at the finest grain were considered; at the

1 km2 grain, the Hui model gave the best predictions for 15

of the 38 species, with 50% of predictions within 36.2% of

observed occupancy. By comparison, the Nachman model

gave the best predictions for 10 species at the 1 km2 grain

with 50% of predictions within 41.1% of observed occu-

pancy, and the Power Law model was best for 5 of the 38

species with 50% of predictions within 42.6% of observed

occupancy.

The percentage errors of Hui model downscaling predic-

tions at the 1 km2 grain were used to investigate species-level

trait correlates of downscaling predictive accuracy. The esti-

mate of lambda from the phylogenetically controlled analysis

was zero, implying no tendency for closely related species to

have similar downscaling error at the 1 km2 grain. Therefore,

we proceeded with model averaging of linear models. The

top three models, ranked by AICc, explained between 0.590

and 0.596 of the variation in downscaling predictions among

species (Table 2). Distribution type and dispersal ability were

the most important predictors of Hui model downscaling

error and were present in all three models with DAICC < 4

(Table 2). Percentage error for species with local-aggregated

distributions, local-sparse distributions and widespread dis-

tributions was, on average, 35.6, 52.8 and 36.8 lower than

climatic range limited species, respectively. The 95% confi-

dence intervals of the parameter estimates for these three dis-

tribution types did not incorporate zero (Fig. 5). A unit

increase in a species’ log10 dispersal ability increased percent-

age error of downscaling predictions by, on average, 89.8

(see Appendix S3b). The 95% confidence intervals for the

dispersal ability parameter estimate did not incorporate zero

(Fig. 5). Habitat breadth was present in two of the four best

models and had lower relative importance in predicting

downscaling error. Range change was present in one of the

top three ranked models (Table 2), increasing the amount of

variation in error explained by less than one per cent. There

was a weak positive effect of range change on the percentage

error of downscaling predictions but the 95% confidence

intervals for this parameter incorporated zero. Habitat

breadth had the lowest relative importance, and the effect

size was close to zero (Table 2; Fig. 5).

DISCUSSION

Our comparison of methods for downscaling coarse-grain

atlas data has produced four notable results. First, we have
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Figure. 2 Hui model downscaling

predictions for (a) 14 species of British

Zygoptera (damselflies) and (b) 24

species of British Anisoptera

(dragonflies). The Hui model gave the

best overall predictions of the ten

downscaling models tested. Black lines

and points are the observed occupancies

at each spatial grain. Grey lines are the

Hui downscaling predictions at the 25, 4

and 1 km2 grains.
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observed sigmoidal OARs for many of the 38 species, a shape

that has not previously been reported. Second, extrapolating

the OAR across two orders of magnitude delivers sensible

estimates of fine-grain occupancy, even for highly mobile

insects. Third, the Hui model outperforms nine other down-

scaling models. Finally, we have shown that downscaling

accuracy varies systematically with species traits in Odonata.

These findings have several implications, and applications for

how distributional data are used across scales.

The two-parameter Hui model outperforms nine other

downscaling models, three of which have an additional

parameter. Moreover, it requires data at only one spatial

grain. The Hui model has previously given accurate predic-

tions of occupancy for Drosophila species in a mesocosm

experiment (Hui et al., 2006) and predictions of the

regional-scale abundance of southern African bird species

(Hui et al., 2009).

The success of the Hui model reflects that it is the only

model tested here to predict an OAR with a slope that

becomes shallower at finer grains. The OAR is typically con-

vex at coarse grains for widespread species (approaching sat-

uration), and it is this combination of convex at coarse

grains and concave at fine grains that generates the overall

sigmoidal relationship. This property indicates that individu-

als are most aggregated at the finest grain (i.e. 1 km2), per-

haps reflecting the characteristic grain of British wetlands

and the dependence of Odonata on freshwater for reproduc-

tion. The fragmented pattern of freshwater bodies in the
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Figure 2 (Continued).
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landscape would also explain the steeper slope of the OAR at

intermediate grains. Observed OARs for Barro Colorado

Island tree species (He & Condit, 2007), Alaskan tree species

(Lennon et al., 2002) and British plant species (Kunin, 1998)

do not consistently show the sigmoidal patterns seen here

for British Odonata. However, successful predictions for

Odonata do not imply that the Hui model is constrained to

produce sigmoidal OARs. It will be important to investigate

the generality of a sigmoidal OAR (and, therefore, the gener-

ality of the Hui model’s success) among taxa without strong

habitat associations.

Variation in the shape of the OAR between studies and

taxa (and variation in model performance) could also reflect

the window of scales through which the OAR is viewed. Dis-

persal, biotic interactions, disturbances and habitat availabil-

ity affect the intensity of intraspecific aggregation (and

therefore the slope of the OAR) at characteristic scales (Hor-

tal et al., 2010; Proches� et al., 2010). It is possible that the

range of scales used in this study and those in Kunin (1998),

He & Condit (2007) and Lennon et al. (2002) are not suffi-

ciently broad to capture the full range of variation in the

slope of the OAR. Our results suggest that the shape of the

OAR may be more complex when viewed across the full

range of scales. This mirrors the development of theory

describing the slope of the SAR. Crawley and Harral (2001)

observed multiple phases of increase and plateau in the spe-

cies–area relationship (SAR) for vascular plants from

0.01 m2 to 110 ha. More recently, the assumed shape of the

SAR has shifted from power law to triphasic (Drakare et al.,

2006; Sizling et al., 2011; Storch et al., 2012), while the

assumed shape of the OAR has developed from linear

(reflecting a fractal distribution across scales: Kunin, 1998)

to concave down (reflecting saturation in a finite study area:

Azaele et al., 2012) to sigmoidal (this study). The theory of

OAR and SAR is not merely developing in parallel; the two

patterns are linked, conceptually (McGill, 2010b). Summing

species’ occupancies at each grain provides an estimate of

the mean number of species for a given area (Sizling &

Storch, 2007). By varying the area, we therefore obtain the

SAR and may be able to infer properties of the SAR from

the OAR.

The shape of the predicted OAR depends on each model’s

depiction of intraspecific aggregation. Spatial structure can

be incorporated into OAR models in spatially implicit way
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downscaling predictions for 114 species:
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See Table 1 for a summary of

comparative model performance.
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(describing spatial variance only) or a spatially explicit way

(e.g. pair correlation functions) (Wiens, 2000; Hui & McGe-

och, 2007; Hui et al., 2010; McGill, 2011). Spatially explicit

information has been identified as a key property improving

the predictions of several biodiversity patterns (Hui et al.,

2006; Morlon et al., 2008; Conlisk et al., 2009; Hui, 2009).

Our results are consistent with this trend: the Hui model is

the only one of our candidate models to incorporate infor-

mation about the relative positions of occupied cells. In fact,

the downscaling formula for the Thomas model, as derived

in Azaele et al. (2012), can incorporate spatially explicit

information, like the Hui model, but here was implemented

without using such information. When including spatially

explicit information, for example, by calculating the correla-

tion function, the model might be expected to deliver down-

scaling predictions that are comparable with the Hui model.

A second property of the Hui model likely to be associated

with its predictive accuracy is the assumption that intraspe-

cific aggregation is strongest at the finest spatial grains

and approaches random at coarse grains, while spatially

implicit models typically predict the reverse (Hui et al.,

2006). Empirical evidence is generally consistent with the

assumptions of the Hui model (Hartley et al., 2004; Wiegand

et al., 2007; Proches� et al., 2010). The shape of the OARs we

observed indicates that Odonata species are generally more

aggregated at fine grains (higher occupancy) than are

assumed by the other downscaling models, all of which con-

sistently under-predict fine-grain occupancy (with the excep-

tion of the Power Law). The poorer predictions for range

limited species are also consistent with the Hui model

assumption of weaker aggregation at coarse grains. Climatic

range limits represent strong intraspecific aggregation at the

coarsest scales, thus violating one of the assumptions of the

Hui model (Hui et al., 2006).

While the predictive accuracy of downscaling models is

encouraging, there are a number of ways in which our results

can inform downscaling improvements.

All downscaling models, as fitted here, do not incorporate

environmental information from the study region. Although

the Hui model uses spatially explicit information, its predic-

tions are spatially implicit. A potentially useful approach to

improving downscaling predictions would be to integrate the

concepts used in species distribution modelling (SDM) with

downscaling models. The incorporation of climatic or habitat

correlates would surely improve the errors associated with Hui

model predictions for species with a climatic range limit.

Moreover, SDMs would allow us to predict where occupied

cells are likely to be. There have been previous attempts to

downscale SDMs with varying success (Ara�ujo et al., 2005;

Mcpherson et al., 2006; Niamir et al., 2011), but only one

method has attempted to incorporate the spatial structure cap-

tured by the OAR (Keil et al., 2012). The reverse approach, of

integrating SDMs into downscaling models, has not been

attempted, but offers great potential for deriving accurate pre-

dictions that are both fine-grain and spatially explicit.

The accuracy of downscaling models is crucial to a range

of applications including monitoring of range change at mul-

tiple spatial scales. The slope of the OAR contains informa-

tion about recent range expansion and contraction (Wilson

et al., 2004; Pocock et al., 2006; Hui, 2011). Moreover, time-

slicing occurrence data and constructing the OAR for two or

more time periods would predict changes in occupancy at

multiple scales. Our results also suggest that downscaling

may be a promising tool for estimating abundance over spa-

tial extents that are too large to sample using traditional

methods. If accurate downscaling can be achieved at suffi-

ciently fine grains that each occupied cell contains just one

individual, then downscaling methods can be used to predict

national-scale abundance (Kunin, 1998) and to link popula-

tion dynamics across scales. However, scaling discontinuities

(poor correlations between occupancy at neighbouring spa-

tial grains) have been identified at the grain of human land

use and may present an obstacle to downscaling to abun-

dance (Hartley et al., 2004; Webb et al., 2007). Our OARs

do not extend to sufficiently fine grains to confirm whether

the same scaling discontinuity can be seen within the Odo-

nata. A useful exercise would be to investigate the degree of

correlation between fine-grain occupancy predictions and

mean local abundance. If this is sufficiently accurate, down-

scaling could provide a proxy for multisite monitoring of

populations.

Table 2 Model selection. Three models selected from

16 candidate linear models quantifying the effects of species-

level traits of British Odonata on the percentage error of

downscaling predictions.

Model rank

1 2 3 Importance

Distribution type ● ● ● 1

Log10 UQ dispersal

ability (km)

● ● ● 1

Range change (1970–

2012)

● 0.188

Habitat breadth ● 0.147

R2 0.590 0.596 0.590 –

DF 6 7 7 –

AICc 358.637 361.170 361.660 –

DAIC 0 2.533 3.024 –

Akaike weight 0.666 0.188 0.147 –

The global model was Percentage Error ~ Distribution type + log10
UQ dispersal ability + Habitat breadth + Range change. Dispersal

ability is measured as the upper quartile (UQ) of all distances (km)

to newly colonized cells between 1990 and 2012. The symbol ●
denotes the variables in each candidate model. Models were ranked

by AICc scores, which applies a correction for small sample sizes to

the AIC. R2 is the amount of variation explained by each model and

DF is the number of degrees of freedom. DAICC is the difference in

AICc scores between models. Models with DAICC < 4 were selected

for weighted model averaging. Akaike weight is the relative likeli-

hood of each model within the subset of models selected. Impor-

tance is the relative importance of predictor variables and is the sum

of Akaike weights across all models including that predictor.
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While the DRN records are among the richest available

datasets for exploring the OAR over two orders of magni-

tude, it is worth reflecting on the imperfections in these

data. In particular, we have assumed that a single record

within a 1 km2 grid cell reflects evidence that other species

are absent. This is probably not the case at 100 km2, which

is the scale at which species atlases are traditionally pub-

lished (BDS will publish a new atlas in 2014). In reality,
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Figure. 4 Predictive performance of ten downscaling models for 38 British Odonata species. Each boxplot represents the distribution

of mean absolute percentage errors in predictions at 25, 4 and 1 km2 for 38 species. Mean absolute percentage errors for each species
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grid cells differ markedly in sampling intensity, and our esti-

mates of occupancy for most species are likely to be system-

atically under-estimated at the finest grain. It follows that

we have over-estimated the performance of eight underpre-

dicting models and under-estimated the downscaling accu-

racy of the Hui model, which was our best performing

model overall and over-predicted at the finest scales (Fig. 2;

Fig. 3).

We tested four hypotheses about interspecific variation in

the predictive accuracy of downscaling models: collectively,

these traits explained more than half the observed variation.

In particular, dispersal ability and distribution type may be

of use for identifying species for which downscaling predic-

tions are unlikely to be successful. Species with a range limit

in Britain were less well predicted than other distribution

types. Climatic range limits reflect coarse-scale environmen-

tal heterogeneity. In fact, no downscaling model is currently

equipped to incorporate information about environmental

heterogeneity. The Hui model assumes that intraspecific

aggregation becomes weaker at coarse grains, therefore range

limited species violate one of the assumptions of the Hui

model (Hui et al., 2006). A climatic range limit also gener-

ates species OARs that approach the scale of endemism (as

defined in Fig. 1), which contains little information for the

purposes of downscaling. One way to address this would be

to calculate the Hui parameters, P+ and Q+/+, while exclud-

ing cells outside of the range margin, thereby avoiding the

portion of the OAR that approaches the scale of endemism.

Downscaling predictions were more successful for species

with limited dispersal abilities and relatively poor for the

most mobile species. One reason could be that mobility

reduces aggregation at the finer scales, thus violating the Hui

model assumption that spatial structure is strongest at fine-

spatial grains. Alternatively, dispersive species experience

higher rates of population turnover (Simmons & Thomas,

2004; P€oyry et al., 2009; Hill et al., 2011; Hof et al., 2012;

Jaeschke et al., 2013) and vagrancy (individuals recorded

during migration between suitable habitat patches), such

that records collated over many years overestimate the aver-

age number of occupied fine-grain cells in any 1 year. Like

many of the predictions that emerge from macroecological

theory, we assumed the data are static and do not incorpo-

rate temporal dynamics (Fisher et al., 2010; White et al.,

2010).

Describing species’ spatial structure is central to under-

standing and linking biodiversity patterns and informing our

conservation efforts, but atlas data are typically too coarse to

address these issues effectively. We have demonstrated that

downscaling models can provide accurate estimates of fine-

grain occupancy for highly mobile insects, observed a sig-

moidal OAR for many species and found the Hui model to

provide the most accurate downscaling estimates. In doing

so, we have identified some properties that explain the suc-

cess and failure of downscaling models and which will con-

tribute to their development and future application to a

range of theoretical and conservation issues.
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