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Abstract A network of quantum gates designed to implement universal quantum
cloningmachine is studied.We analyze how thermal environment coupled to auxiliary
qubits, ‘blank paper’ and ‘toner’ required at the preparation stage of copying, modifies
an output fidelity of the cloner. Thermal environment is described in terms of the
Markovian Davies theory. We show that such a cloning machine is not universal any
more but its output is independent of at least a part of parameters of the environment.
As a case study, we consider cloning of states in a six-state cryptography’s protocol.
We also briefly discuss cloning of arbitrary input states.

Keywords Cloning · Decoherence · Davies approach

1 Introduction

Soon after recognizing that quantum information can be neither perfectly copied [1]
nor broadcasted [2], physicists have gone to any length to bypass this limitation. As it
has been a struggle against nature, their efforts could be only partially successful [3,4].
Possibility of quantum cloning, even though imperfect, has a great impact on security
of quantum data transmission [5,6]. References [7] and [8] can serve as two examples
of reviews summarizing theoretical and practical achievements of quantum cloning.
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2662 J. Dajka, J. Łuczka

There are various types of cloning machines dedicated to cloning often very specific
and special classes of states, but we focus our attention on the most elementary and
fundamental universal quantum cloningmachine (UQCM) [3]which in an ideal setting
can clone equally effectively arbitrary states. Such a machine operates on three qubits:
The first is the input which is to be copied; the second and the third are auxiliary which
are quantum counterparts of ‘blank paper’ and a ‘toner cartridge’ which are demanded
by a classical copying machine.

Under real operating conditions, quantum cloning machines are affected by its
decohering environment. The more complicated the system is the more likely the
properties of some of components change. It is known how the UQCM works if
one attempts to clone a state which is influenced by the thermal environment [9].
Here, we consider the complementary problem: How effective is the UQCM which is
contaminated by thermal noise. We assume a natural setup when the auxiliary qubits
are ‘dirty.’ We assume that before using them the qubits are in contact with thermal
noise. It is pretty obvious that even a classical copying machine works worse if its
toner cartridge is worn out or if one uses paper which is not ideally blank.

Aneffect of thermal contaminationof qubits canbedescribedusingvariousmethods
[10] devoted to different problems. However, there are models applicable to a very
broad class of situations. In this paper, we adopt Davies approach [11] which is both
mathematically rigorous and physically consistent with microscopic description. It is
also strictly Markovian what is probably its most bothersome feature since it cannot
be used for systems driven by time-dependent external forces. Nevertheless, we claim
that it is the best candidate for an ‘unbiased choice’ of decoherence.

The structure of the paper is the following: In Sect. 2, in order to keep this study
self-contained, we briefly review UQCM considered here simply as a unitary trans-
formation consisting of a net of gates [12]. In Sect. 3, the model of reduced dynamics
of an open quantum system coupled to thermal Davies environment is formulated in
terms of a quantum map [13]. In Sect. 4, there is a case study of how cloning machine
contaminated by thermal noise copy states used in the six-state cryptography protocol
[14]. Next, in Sect. 5 we discuss some main features of copying arbitrary input states
with an emphasis given on an invariance an output fidelity with respect to certain
parameters of the input. Finally, in Sect. 6 we summarize our work.

2 Universal quantum cloning machine: a brief review

An elementary and the most fundamental 1 → 2 universal cloning machine [3] is the
unitary transformation

Uclon : C2 ⊗ C
2 ⊗ C

2 → C
2 ⊗ C

2 ⊗ C
2 (1)

which requires three input qubits: The first qubit Q1 is the one which an initial state is
to be copied; the remaining two qubits Q2 and Q3 are auxiliary and represent ‘blank
paper’ and a ‘toner cartridge’ inserted to the cloner. There is an implementation of
universal cloner [3] via a quantum circuit [12]. The procedure of cloning consists of
two (unitary) stages: preparation of the qubits Q2 and Q3 and copying the initial stage
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Quantum cloning disturbed by thermal Davies environment 2663

of the qubit Q1, namely

Uclon = UcopUprep (2)

where

Uprep = R2(υ3)CNOT32R3(υ2)CNOT23R2(υ1), (3)

Ucop = CNOT31CNOT21CNOT13CNOT12. (4)

For simplicity, we adopt the notation where Ri (υ) denotes a tensor product of the i-th
qubit rotation

R(υ) =
(

cos(υ) sin(υ)

− sin(υ) cos(υ)

)
(5)

and the identity operator acting on remaining two qubits. Similarly, CNOTi j acts
as a gate of controlled negation with i the controlling and j the controlled qubits
leaving the third k-th qubit untouched. For the rotation angles υ1 = υ3 = π/8 and
υ2 = − arcsin(1/2−√

3/3)1/2, the cloningmachineUclon is universal (UQCM) [3,8].
In the paper, we assumes only these values for υ1, υ2 and υ3.

The action of cloning of a pure qubit state |ψin〉 is unitary and reads

ρout = UclonρinU
†
clon (6)

where ρin = |ψin〉〈ψin| ⊗ |0〉〈0| ⊗ |0〉〈0|. The initial state of the qubit Q1 is parame-
terized by two real numbers x and y, namely

|ψin〉 = |x, y〉 := cos(x)|0〉 + eiy sin(x)|1〉 (7)

To quantify how successful is cloning, we consider, following Ref. [8], fidelity of the
outputs,

F2 = Tr(ρinρ2), (8)

F3 = Tr(ρinρ3), (9)

where the reduced density operators of the qubit Q2 isρ2 = Tr1,3[ρout] and of the qubit
Q3 is ρ3 = Tr1,2[ρout], respectively. The cloning machine is universal if its output
does not depend on the input state, i.e., neither on x nor on y which parameterize the
state (7). It is symmetric if F2 = F3, and the best what can be achieved using UQCM
is F2 = F3 = 5/6.We show that if the UQCMdefined by Eqs. (2)–(3) is contaminated
by thermal noise then it looses its universality and symmetry.
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3 Model of thermal environment

A salient obstruction during the real cloning process is quantum decoherence which
is caused by the influence of environment. In the following, we assume that the qubit
Q2 or/and the qubit Q3 are affected by the environment while the copied qubit Q1 is
ideally isolated from the environment. The influence of the environment on the qubit
Qi (i = 2, 3) is modeled by the Hamiltonian in the form:

H = Hi + Henv + Hint (10)

where Hi is the Hamiltonian of the qubit, Henv models the environment and Hint
describes the qubit–environment interaction. For the qubit,

Hi = ωi

2
(|1〉〈1| − |0〉〈0|), (11)

where ωi is the energy splitting of the i-th qubit (below we consider the case
ω2 = ω3 = ω). We assume that the interaction between the qubit and its environment
satisfies the Davies weak coupling conditions [11] dedicated for rigorous construction
of the qubit reduced (with respect to the environment) dynamics in terms of a com-
pletely positive (strictly Markovian) semigroup using parameters of the microscopic
Hamiltonian of the full system [11]. As the Davies semigroups can be rigorously and
consistently derived from microscopic models of open systems, they recover most of
the desired thermodynamic and statistical–mechanical properties such as the detailed
balance condition and the Gibbs canonical distribution in the stationary regime [11].
The Davies method has been successfully used in recent studies of various problems
in quantum information and physics of open quantum systems including teleportation
[15], entanglement dynamics [16], quantum discord [17,18] or properties of geomet-
ric phases of qubits [19] and thermodynamic properties of nano-systems [20]. Here,
instead of exploring the full power of the Davies semigroups, we consider only their
certain elements: Davies maps [13]. The Davies map D = D(p, A,G, ω, t) acts as
follows [13]:

D

[
|1〉〈1|

]
= [1 − (1 − p)(1 − e−At )]|1〉〈1| + (1 − p)(1 − e−At )|0〉〈0| (12)

D

[
|1〉〈0|

]
= eiωt−Gt |1〉〈0| (13)

D

[
|0〉〈1|

]
= e−iωt−Gt |0〉〈1| (14)

D

[
|0〉〈0|

]
= p(1 − e−At )|1〉〈1| + [1 − (1 − e−At )p]|0〉〈0|, (15)

where p ∈ [0, 1/2] is related to the temperature T (here we set kB = 1) via:

p = exp(−ω/2T )/[exp(−ω/2T ) + exp(ω/2T )]. (16)
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The case T = 0 corresponds to the value p = 0 and for T → ∞ the parameter
p → 1/2. The parameters A = 1/τR and G = 1/τD , if interpreted in terms of
spin relaxation dynamics [21], are related to the energy relaxation time τR and the
dephasing time τD , respectively [13]. The inequalities [21]

G ≥ A/2 ≥ 0 (17)

guarantee that the Davies map is a trace-preserving completely positive map. The
limiting case A = 0 and G 
= 0 corresponds to pure dephasing without dissipation of
energy.

Finally, let us notice that in long-time limit the Davies map transforms any qubit
state ρ into the equilibrium Gibbs state in the form:

lim
t→∞ D(p, A,G, ω, t)ρ = p|1〉〈1| + (1 − p)|0〉〈0|. (18)

Now, we consider three distinct cases: the first when the cloning machine operator
uses ‘dirty blank paper,’ the second when the ‘toner’ is noisy and the third when
both resources are equally affected by thermal environment. Formally, this three cases
correspond to three distinct input states:

ρI
in = |ψin〉〈ψin| ⊗ D

[
|0〉〈0|

]
⊗ |0〉〈0| (19)

ρII
in = |ψin〉〈ψin| ⊗ |0〉〈0| ⊗ D

[
|0〉〈0|

]
(20)

ρIII
in = |ψin〉〈ψin| ⊗ D

[
|0〉〈0|

]
⊗ D

[
|0〉〈0|

]
(21)

Notice, that thermal contamination influences only the machine whereas the copied
state |ψin〉 remains untouched. From Eqs. (12) to (15), it follows that in such a setting
an output of the cloning machine is independent of G, i.e., on a dephasing.

4 Case study: six-state and BB84 protocols

Quantum cloning machines can be effectively utilized by Eve, an eavesdropper, who
wants to know what Alice is saying to Bob. There are various methods which can be
adopted by Eve, but all of them are limited by the laws of nature. Imperfect cloning
is one of the tools which can be used to gain some knowledge about a subject of
communication [6,7]. Probably, the best-known application of quantum information
processing is the quantum key distribution [6] when two parties (Alice and Bob)
exchange secret key using quantum states as a resource. The first and still the most
celebrated protocol is the famousBB84 [22] furthermodified into the six-state protocol
[14]. In these protocols, Alice and Bob to communicate utilize the selected input states
|ψin〉 = |x, y〉 Eq. (7) forming the set of four BB84 states [22]

BB84 = {|π/4, 0〉, |π/4, π/2〉, |π/4, π〉, |π/4, 3π/2〉}. (22)
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2666 J. Dajka, J. Łuczka

completed, in the case of six-state protocol, by two basis vectors [14]:

|0, 0〉 = |0〉, |π/2, 0〉 = |1〉 (23)

One of the possible attacks performed by Eve is based on a possibility of (imperfect)
cloning of quantum states traveling fromAlice to Bob [7,23,24]. There are two groups
of strategies. The first is analyzed in the next section inmore detail, when Eve performs
her measurement on her copied raw qubit [23] before the sifting phase of the Alice–
Bob communication. The second is discussed below, when Eve has an access to a
quantum memory and can store her copied qubit and wait until she learn the basis
used by Alice and Bob.

We consider the following attack strategy: Eve, using universal cloning machine,
copies a qubit |ψin〉 = |x, y〉 Eq. (7) sent by Alice to Bob; i.e., she performs theUclon
Eq. (6). The output is a three-qubit state ρout. Eve sends a single qubit ρ2 = Tr1,3[ρout]
to Bob and keeps ρ3 = Tr1,2[ρout] for a further analysis. In this paper, we assume that
in addition to the fundamental limitation for copying originating from the no-cloning
theorem the cloning procedure is contaminated by thermal noise; i.e., instead of the
input state |ψin〉 ⊗ |0〉 ⊗ |0〉 the Eve’s copying machine works with one among the
states Eq. (19) depending of the character of the contamination. The thermal noise,
given here by the Davies map D[·], essentially affects both the states which arrives
to Bob and information gained by Eve. We qualify [8] the effect of cloning by its
fidelities given in Eq. (8): FBob = F2 in the case of Bob and FEve = F3 in the case
of Eve. The relation between them quantifies security of the key distribution protocol
[7,8]. In particular, for the BB84 protocol [7,24,25] the secret key can no longer be
extracted as soon as F2 = F3 [7]. For the BB84 and the six-state protocols, the cloning
contaminated by thermal noise is given by the unitary transformation Uclonρ

i
inU

†
clon

(with i =I, II, III) performed by Eve for the input states in Eq. (19) with |ψin〉 given in
Eqs. (22) and (23). Partial trace with respect to the first qubit followed by the partial
trace with respect to either the third or the second qubit allows to calculate the state
of the Bob’s and Eve’s qubit, respectively.

For three different input states ρ
I,II,III
in depending on the type of thermal contam-

ination, there are only three possible values of the output fidelities F2 (Bob) and F3
(Eve), namely

F2,3 = {5/6, FA, FB}, (24)

where

FA = 1

6
+ 2

3
p + 2

3
e−At

(
1 − 2

3
p

)
(25)

and

FB = 5

6
− 4

3
p + 4

3
p2 + e−At

(
4p − 4

3
− 8

3
p2

)

+ 4

3
e−2At

(
1 − 2p + p2

)
(26)
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Table 1 Output fidelity F2 and
F3 defined in Eqs. (8) and (9) for
the noisy input state ρIin in (a);

for ρIIin in (b) and for ρIIIin in (c)

The cloner state is
|ψin〉 = |x, y〉 as in Eq. (7)

x π/4 π/4 π/4 π/4 0 π/2
y 0 π/2 π 3π/2 0 0

(a)

F2 5/6 FA 5/6 FA FA FA
F3 FA FA FA FA 5/6 5/6

(b)

F2 FA 5/6 FA 5/6 FA FA
F3 5/6 FA 5/6 FA FA FA
(c)

F2 FA FA FA FA FB FB
F3 FA FB FA FB FA FA

Here and in further discussion, we set ω = 1 and work in rescaled time units
t → t/ω. The possible outcomes for different inputs are summarized in Table 1. It
follows that a particular value of the output fidelity depends on the input ρI,II,III

in defined
in Eqs. (19)–(21). Let us notice that some of the BB84 states can be cloned with the
output fidelity F2,3 = 5/6, i.e., as good as in the case of noiseless cloning machine.
The exception is the input ρIII

in for which F2,3 < 5/6 at nonzero temperature T > 0.
If one considers the noisy cloning machine as a probabilistic device, it can operate as
good as a noiseless one (but with probability 1/3) on a set of six states in Eqs. (23)
and (22). Moreover, let us notice for ρ

I,II
in cloning fidelity is never worse than FA.

There is a qualitative difference between the output fidelity FA = FA(t) in Eq. (25)
and FB = FB(t) in Eq. (26) considered as a function of time. For any fixed value
of temperature p, the function FA(t) exhibits a strictly exponential decay whereas
FB(t) is nonmonotonic with respect to change of t , cf. panels (a) and (b) in Fig. 1.
In particular, for p = 0 the output fidelity FB(t) first decreases reaching its minimal
value, and next it increases to the value 5/6. In panels (c) and (d) of Fig. 1, the influence
of the energy relaxation rate A is depicted at zero temperature, p = 0. We detect that
the fidelity FB(t) decays to aminimum at the characteristic time tc and next it increases
to the asymptotic value 5/6. The value of tc depends on the relaxation rate A: If A is
larger, then tc is smaller.

The qualitative difference between FA and FB is even more apparent in the long-
time limit. It follows form Eqs. (25) and (26) that the long-time limit is obviously
A-independent:

lim
t→∞ FA = 1

6
+ 2

3
p (27)

lim
t→∞ FB = 5

6
− 4

3
p (p − 1) (28)

In panel (e) of Fig. 1, we plot these limits as a function of temperature p. For infinite
temperature, p = 1/2 both FA,B → 1/2. For finite temperatures, p < 1/2, the func-
tions FA and FB are significantly different from the worst value 1/2. The conclusion is
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Fig. 1 Output fidelity F = FA (a) and F = FB (b) calculated for A = 1 and different values of p. Output
fidelity F = FA (c) and F = FB (d) calculated for p = 0 and different values of A. e Long-time limit
F = limt→∞ FA and F = limt→∞ FB versus the effective temperature p (Color figure online)
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apparent: Even in the long-time limit, the cloning machine contaminated by thermal
noise can be still better than pure guess.

Properties of fidelities summarized in Table 1 need to be taken into account in
security analysis of the BB84 quantum key distribution protocol with respect to the
attack of an eavesdropper equipped with cloning machine and quantum memory, i.e.,
the one who gains information of the copied qubit after the sifting phase of Alice–Bob
communication. Let us focus on the most contaminated case (Table 1(c)). Security
condition FEve < FBob (i.e., F3 < F2) holds provided that FB < FA. In particular,
the deep minimum of FB presented in panel (c) of Fig. (1) can be utilized: If Bob
and Alice are able to finalize their total communication before FB increases, they can
essentially get the better of Eve.

Let us notice that the reasoning presented above is based on the assumption that Eve
knows if she has either ρ2 or ρ3 at her disposal. Her potential ignorance of that aspect of
copying procedure introduces additional randomness and decreases her information.

5 General input states

In this paper, we consider the cloning machine which in its noiseless limit is universal.
Hence, it is natural not to restrict our attention to a useful but narrow class of cloned
states Eqs. (23) and (22) but rather attempt to analyze an effect of thermal contami-
nation for the cloning general state |x, y〉 given in Eq. (7). In this section, we briefly
discuss this question.

In calculations, we have used analytic results for the output fidelity F2,3, but they
are rather complicated and their presentation in a clear and compact form, as we did
in the previous section, is a formidable task. In order to reduce the complexity of the
problem,we limit our consideration to a long-time regime and study limt→∞ F2,3. Yet,
the results exhibit some peculiar features and symmetries. First, as one could expect
neither F2 nor F3 depends on A in the long-time limit. Second, there are two types of
y-dependence of the output fidelity. They can be either y-periodic or y-independent. If
the input is ρ I

in or ρIII
in , i.e., the auxiliary qubit labeled by 2 is contaminated by thermal

noise, then limt→∞ F3 and limt→∞ F2 are y-independent. In other words, the cloning
machine not universal any more works as a phase-invariant cloner. In all the remaining
cases, the output fidelities are periodic functions of y. Moreover, if the output is y-
dependent, we assume y to be fixed. We chose y which is by no means specific and
analyze the qualitative features of x-dependence for different values of p. In panel (a) of
Fig. 2, we present limt→∞ F2 for ρII

in. There is a symmetry limt→∞ F2 = limt→∞ F3
of output fidelities for the inputs ρI

in and ρII
in as it is presented in panel (b) and (c) of

Fig. 2. Let us observe that even for p = 1/2 the output fidelity limt→∞ F2,3 
= 1/2
except only for very special values of x as it is indicated in panel (a)–(c). It means that
regardless of the temperature the cloning machine works. Let us notice that it is no
more the case if both auxiliary qubits are contaminated by thermal noise. In panel (d)
and (e) of Fig. 2, we present limt→∞ F2,3 for ρIII

in when both the auxiliary qubits are
noisy. Two noisy auxiliary qubits result is lowering an amplitude of an output fidelity.
Let us also notice that for p = 1/2 limt→∞ F2,3 = 1/2 for all values of x , and hence
the cloningmachine becomes useless since it is nomore effective than a random guess.
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Fig. 2 a Output fidelity F = limt→∞ F2 for different initial states |x, π/3〉 in Eq. (7) for initial preparation
ρIIin Eq. (20). b Output fidelity F = limt→∞ F3 [F = limt→∞ F2] for different initial states |x, π/3〉 in
Eq. (7) for initial preparationρIIin Eq. (20) [resp.ρ

I
in Eq. (19)]. cOutput fidelity F = limt→∞ F3 for different

initial states |x, y〉 in Eq. (7) for initial preparation ρIin Eq. (19). d Output fidelity F = limt→∞ F2 for

different initial states |x, y〉 in Eq. (7) for initial preparation ρIIIin Eq. (21). e Output fidelity limt→∞ F3 for

different initial states |x, π/3〉 in Eq. (7) for initial preparation ρIIIin . The results in panels (c) and (d) are
y-independent (Color figure online)
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Let us consider, following Refs. [23,24,26], a particular case of an attack of an
eavesdropper Eve performed on a raw qubit traveling from Alice to Bob before the
sifting stage of the communication. We assume that Eve is able to clone the qubit
using the universal cloning machine ρout = Uclonρ

III
in U

†
clon but then, contrary to the

case discussed in previous section, she cannot wait until the sifting phase but she
measures her copy ρ3 = Tr1,3[ρout] in a randomly guessed basis which includes a
state |ζ 〉 = cos(ζ/2)|0〉 + sin(ζ/2)|1〉 paramterized by a variable angle ζ . Fidelity of
her guess is given by:

F(ζ ) = 〈ζ |ρ3|ζ 〉 (29)

Let us focus on the BB84 protocol when Alice sends one among four states |π/4, y〉
with y = 0, π/4, π/2, π, 3π/2 Eq. (22). For y = π/2 and y = 3π/2, the correspond-
ing fidelity depends neither on ζ nor on any of the parameters of the environment and
reads F(ζ ) = 1/2. For the remaining states with y = 0 and y = π , the fidelity is
given by:

F(ζ, y) = 1

2
+

√
2

6
(1 + e−At )

[
sin

(
1

4
π + ζ

)
− cos

(
1

4
π + ζ

)]

+
√
2

6
p(1 − e−At )

[
sin

(
1

4
π + ζ

)
+ cos

(
1

4
π + ζ

)]
(30)

Let us notice that as the above formula does not depend on G = 1/τD , the quality of
Eve’s choice of the measurement basis is not affected by dephasing time of the qubit.

6 Summary

Power of quantum cloning machines as an answer for the celebrated no-cloning theo-
rem [1] suffers from various drawbacks and limitations. In our work, we have studied a
simplest and probablymost obvious problem—thermal noise affecting auxiliary qubits
necessary for implementing [12] the UQCM. We adopt the Davies maps [13] origi-
nating from the most general Markovian treatment of open quantum systems. In our
studies, which are complementary to the earlier analysis of cloning thermallymodified
quantum states [9], we have shown certain undesirable, while expected, deterioration
of an effectiveness of cloning. Nevertheless, in most cases the cloning machine works
also in the presence of thermal noise contaminating its auxiliary qubits. First and the
most general conclusion is that for the Davies Markovian approximation the output
of the cloning machine never depends on the dephasing time τD = 1/G of auxiliary
qubits no matter what the state is to be cloned.

We have presented a detailed analysis for cloning of quantum states applicable in the
well-known six-state crypto-protocol [14]. We show that there are only three different
values of the output fidelity quantifying effectiveness of cloning. One of them is the
same as for a ‘perfect’ cloning of noiseless machine, i.e., 5/6. The other two exhibit
qualitatively different properties controllable by temperature p of the environment.
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As we start with the universal cloner, we also discuss more general classes of
initial states. In the presence of thermal contamination, the cloning machine loses its
universality but still it can work identically on certain subclasses of states. Interesting
observation is that under certain circumstances one of its output is phase invariant.
Unfortunately, a choice of the proper output qubit is to be done randomly.Nevertheless,
in many cases even for high temperature of the environment influencing auxiliary
qubits, the cloning process is more effective than pure guessing (F 
= 1/2).

Typical problems raising time and again in every nine-to-five job are often linked to
a faulty copying machines. Technical staff responsible for an office equipment knows
very well how to recognize and fix such problems. We hope that our work may be
useful for technicians maintaining quantum copying machines. If not today, hopefully
in a not very far future.
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