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the growing cell influences monotonically the frequency of 
both modes of oscillations. The calculated power spectrum 
seen as a measure of the overall energy efficiency of tip 
growth under hypertonic, hypotonic and isotonic conditions 
implies that the biochemistry has been fine tuned to be opti-
mal under normal growth conditions, which is the develop-
mental implication of this work. A simple theoretical exten-
sion of the Ortega equation is derived and analysed with 
respect to its contribution to power spectrum. We show that 
the plastic term, related to the effective turgor pressure, 
with maximum contribution at frequency f = 0 is respon-
sible for the steady growth. In turn, the elastic contribution 
dependent on the time derivative of pressure fluctuations 
tends to move the system into oscillatory mode (f  >  0). 
None of those mechanisms is privileged over another. The 
coupling mechanism is naturally generated through a con-
volution of those two terms and will decide about the over-
all character of the growth for each particular case.

Keywords C oherence · Energy dissipation · Excitation 
spectrum · Growth rate · Longitudinal mode · Osmotic 
potential · Transverse mode

Introduction

The principle of least action (Feynman and Hibbs 1965) 
is one of the simplest and most beautiful physical cor-
nerstones of biophysical mechanism of cell growth. In 
its essence, it states that the mechanical system evolves 
along a path of the least action, which in common sense 
is considered to be optimal, selecting one mechanical solu-
tion over another. In the biological context, a growing cell 
always follows the optimized growth path under all physi-
ological conditions, similar to the light beam travelling in 

Abstract  We report on our results concerning growth 
rate and oscillation modes of the individual pollen tube 
apex. The observed volumetric growth and growth rate 
periodicity in the longitudinal (axial) direction are accom-
panied by transverse oscillations with similar frequencies 
but higher energies than the axial modes. Examination of 
the time-domain coherence between oscillations in mutu-
ally perpendicular directions revealed minimal energy dis-
sipation in the unperturbed (isotonic) case, opposite to the 
two remaining cases (hypertonic, hypotonic) with notable 
correlations. We conjecture that the minimal energy loss 
is therefore optimal in the natural growth conditions. The 
longitudinal growth velocity is also found to be the fast-
est in the unperturbed case. As a result, the isolated system 
(pollen tube tip) is conserving energy by transforming it 
from elastic potential energy of extending apical wall to the 
kinetic energy of periodical motion. The energy dissipation 
is found to be about 20 % smaller in axial direction than 
in lateral one, indicating that the main energy consumption 
is dedicated to the elongation. We further observe that the 
hypertonic spectrum is shifted towards lower and the hypo-
tonic towards higher frequencies with respect to the iso-
tonic spectrum. In consequence, the turgor pressure inside 
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the shortest time between two points (Fermat’s principle). 
In this paper, we find on the basis of our measurements 
and a simple theoretical model that at isotonic conditions 
the oscillatory growth of an individual male gametophyte 
of higher plants is additionally optimized by minimiz-
ing energy dissipation. We also note that mechanical con-
straints can self-optimize according to the principle of least 
action, in this case minimizing energy dissipation.

Pollen tubes are excellent model systems for such study 
because of their extremely rapid growth rates, non-linear 
dynamics of oscillatory growth rates (Kroeger and Geit-
mann 2012a, b), localized exocytosis and growth located in 
the subapical region (Zonia and Munnik 2008; Zonia 2010). 
Plant cells are surrounded by a stiff yet elastically flexible 
wall that is composed of polygalacturonate polymers and 
cellulose. Cell wall-modifying enzymes such as expansins 
and pectin methylesterases have demonstrated their role in 
mediating, respectively, cell wall relaxation, thus promot-
ing growth (Cosgrove 2005; Geisler et al. 2008; Szymanski 
and Cosgrove 2009). However, expansins have never been 
shown in vivo to lead to wall loosening and growth.

Water is one of the most important molecules for the 
emergence and propagation of life. In plants, osmotic pres-
sure is a fundamental property that affects all aspects of the 
life cycle. Controlled fluid dynamics provides turgor in the 
plant body. It is utilized to enable work. It drives cell elon-
gation during growth, and it provides the motile force for 
discharge of male gametes and sperm cells during repro-
duction (Zonia and Munnik 2007).

Currently accepted models for plant cell growth con-
sider two key factors: cell wall relaxation and turgor pres-
sure being responsible for cell elongation. However, the 
controversy remains, which of them acts as principal stim-
ulus. One approach considers cell wall relaxation being 
controlled independently of turgor pressure and acting as a 
prerequisite to turgor-driven cell expansion. The molecular 
details of cell wall growth have been characterized recently 
in extensive work on the green algae Chara (Proseus and 
Boyer 2007, 2008; Boyer 2009). In the second approach, 
the turgor pressure induces tension in the wall, leading to 
the elevated strain in the Ca2+ pectate bonds, which then 
lose calcium to newly secreted pectins that are appressed 
to the wall by osmotic pressure. The decreased density of 
calcium pectate bonds in the wall leads to cell wall loos-
ening, enabling pressure-driven elongation and intercala-
tion of the newly secreted calcium pectate polymers into 
the growing wall. Some studies show that when pressure 
drops below a critical value, the growth ceases altogether 
(Boyer 2009). The cell wall of the subapical growth zone 
and the apical dome are composed primarily of pectin poly-
mers (Bosch and Hepler 2005; Parre and Geitmann 2005; 
Zonia 2010). Experimental manipulation of the extracel-
lular osmotic potential induces rapid water flux across 

the plasma membrane into (hypotonic treatment) or out 
of (hypertonic treatment) pollen tubes (Zonia and Mun-
nik 2004; Zonia 2010). Hydrodynamics affects pollen 
tube growth rates, growth rate oscillation frequencies and 
amplitudes (Kroeger et  al. 2011, Fig.  4), and the rates of 
exocytosis and endocytosis (Zonia et  al. 2006; Zonia and 
Munnik 2008; Zonia 2010). These results may suggest that 
oscillations in osmotic pressure would result in oscilla-
tions in exocytosis, leading to oscillations in secretion, wall 
loosening, intercalation of new pectin polymers into the 
cell wall, ultimately resulting in pollen tube growth oscil-
lations. Recent work presented the first evidence that turgor 
pressure oscillates (‘hydrodynamic model’, as proposed 
by Zonia) during growth of lily pollen tubes (Zonia and 
Munnik 2011). Nonetheless, the opposite view about the 
primary role of wall strain/stress relations and periodical 
wall assembly is more commonly accepted (Winship et al. 
2010, 2011). In our opinion, this ongoing controversy is 
somewhat artificial, since only a full self-consistent model, 
which includes non-trivial coupling between both subsys-
tems, might deliver a proper solution.

In this work, we would like to concentrate on the less 
explored areas, namely the dissipation and character of 
the oscillatory growth, as revealed by the power spectrum. 
Power spectral density (PSD), or power spectrum for short, 
describes how the power of a signal or time series is dis-
tributed over the different frequencies. Here, power can be 
the actual physical power, or more often, for convenience 
with abstract signals, can be defined as the squared value of 
the signal.

The main experimental concern is the non-linear pres-
sure/frequency dispersion relation and new features 
encountered in the excitation spectrum of pollen tubes and 
their variations under hyper- and hypo-tonic conditions. We 
also introduce a simple two-parameter model with constant 
turgor pressure and fluctuating osmotic pressure, to recog-
nize the control of non-linear growth behaviour.

Materials and methods

Pollen culture and extracellular osmotic stress treatments

Nicotiana tabacum pollen was used for these studies (Zonia 
and Munnik 2004; Zonia et  al. 2006). Anthers were har-
vested immediately before dehiscence and placed in desic-
cation chambers between 18 and 24 h. Tobacco pollen was 
collected and stored at −20  °C. Pollen from seven plants 
was harvested in batches and analysed before experiments 
for germination, morphology and growth rates. We chose 
two very similar pollen samples and used them for all the 
studies to ensure uniformity of experimental material. After 
removal from −20 °C, cells were held at room temperature 
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for 25–30  min. before suspending in standard germina-
tion medium [6 % (w/v) sucrose, 1.6 mM H3BO3, 200 μM 
CaCl2, and 25 μM MES (pH 5.5)]. Pollen was germinated 
and grown in culture chambers where it was assembled on 
microscope slides using silicone isolators for 3 h at 22.5 °C 
before performing experiments on slabs containing 0.3 % 
(w/v) low gelling temperature agarose (plant cell culture 
grade, Type VII, Sigma) in 200  μl germination medium. 
Pollen was used for imaging from 3 to 5  h after start of 
germination. Imaging was performed on a Zeiss Axiophot 
upright microscope, connected to a Nikon DXM/200 or 
UltraPix CCD camera, which were run by NSI-Elements or 
UltraView morphometric software, respectively, to record 
information about the experiments (Centre for Advanced 
Microscopy, Amsterdam, The Netherlands).

The main goal was to analyse the response (in real 
time) of single pollen tube to changes in the extracellular 

osmotic potential. To do these experiments, an appropri-
ate technique was developed to immobilize the cells, so 
they would not move during the experiment. The method 
to grow the cells in an agarose gel medium directly on 
microscope slides was used. Firstly, growth of test popu-
lations of pollen tubes using different concentrations of 
agarose was measured and recorded. The results showed 
that a concentration of 0.3 % agarose (see Supplementary 
Information) gave the best growth but still kept the cells 
immobile (Fig.  1a). Next we tested, how long it would 
take for the osmotic treatments to penetrate through the 
agarose medium. It was found that the osmotic treatments 
diffused through the agarose medium within 12–15 s. That 
was rapid enough for the live cell studies. The experimen-
tal method involved recording fast time series images of 
the live pollen tubes before and after osmotic treatment. 
Microscope images were collected and processed at a rate 

Fig. 1   a Average of ten 
samples’ (pollen tubes) lengths 
for different concentrations of 
agarose in tobacco germination 
medium. Error bars correspond 
to 2σ. b Fixed reference system 
measurement method (a, b) ver-
sus co-moving reference system 
(a′, b′) of the same pollen tube 
apical region. L0(1) and T0(1) 
stand for longitudinal and trans-
versal amplitudes; d0 = 6 μm 
is a constant assumed radius 
at which T is read off in the 
co-moving frame. Scale bar 
and the arrow pointing to the 
origin of the fixed reference 
system are indicated. Calculated 
spatial resolution ratio equals 
0.226 ≈ 0.23 μm/px
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of 1 image per 3 s. The recordings started 5 min before the 
specific osmotic treatment were added and refocused on 
the same cell (this took from 30  s to 1.5  min). Then the 
pollen tube growth response was recorded for 10 min. The 
images were then saved and transferred to a computer for 
further analysis. Experiments with environment condi-
tions close to isotonic conditions (hereafter called isotonic) 
were induced by addition of 100-μl standard germination 
medium without agarose on top of microscope slides with 
pollen gel culture. For the other specific osmotic treatment, 
liquid germination medium was removed from inside of 
the silicon isolator and 100  μl of appropriate substance 
was added. Experiments with hypo-osmotic stress (here we 
follow the nomenclature used in Zonia and Munnik 2011), 
were induced by the addition of water to the gel cultures, 
so that a 100 % (v/v) water stress treatment is a 1:2 (v/v) 
dilution of the pollen tube culture. Experiments with hyper-
osmotic stress were induced by addition of 25 mM NaCl. 
Although NaCl is biologically active and is metabolized in 
a cell, what potentially can lead to the change of the pres-
sures, such environment was found earlier to give station-
ary conditions over the time span (~5 min) of the experi-
ment (compare Zonia and Munnik 2008).

The growth rate of the cells was measured using the 
open-source morphometry software ImageJ in 3-s inter-
vals independently from the used camera. Longitudinal 
(L) growth (mainly depending on plastic deformation of 
the wall) was measured by choosing a fixed point on the 
cell, and then finding the distance to the apex (fixed refer-
ence system, Fig. 1b). Transversal (T) size change (princi-
pally elastic as the transversal size does not increase sig-
nificantly) was measured at a constant distance from the 
apex (reference system co-moving with the tip, Fig.  1b) 
because this apical region of the pollen tube undergoes the 
most rapid and extensive cell oscillations during osmotic 
perturbation experiments. These measurements gave a list 
of lengths (micrometre) that were imported into the Sigma-
Plot software. The exact time intervals were received from 
UltraView/NSI, which were imported into the same work-
sheet in SigmaPlot. From length and time measurements, 
growth rate was calculated using the formula (l1  −  l0)/
(t1 −  t0), with l for length (width) and t for time in both 
mutually perpendicular (longitudinal and transversal) 
cases, respectively. Growth rates obtained in that procedure 
were later on used to establish phase relations between lon-
gitudinal and transversal oscillation modes.

We have to note that the observed changes in the trans-
versal mode are on the edge of the detection and optical 
resolution of the system. However, there are two factors 
that allow us to justify the relevance of the data:

(a)	 the analysis of correlations between the L and T modes 
displays correlation, which could not originate only 

from the thermal or optical noise of the system, as it is 
improbable to generate a correlated noise in two differ-
ent places for such extended time period,

(b)	 there are significant regularities observed in power 
spectrum of both modes.

For further detailed description of the employed meas-
urement routine—see Supplementary Information.

Power spectra evaluation

PSD, the fast Fourier transform (FFT) and correlation func-
tions of longitudinal and transverse oscillation modes were 
obtained using algorithms built into the Origin (Microcal) 
plotting software. The Fourier transform relates the func-
tion’s time domain to the function’s frequency domain. The 
component frequencies, spread across the frequency spec-
trum, are represented as peaks in the frequency domain. 
The oscillation data were not filtered before analysis to 
preserve all the information including noise, ubiquitous 
in biological systems. Most computations and plots were 
performed using Excel (Microsoft), SigmaPlot 8.0 (SPSS 
Science Inc., Chicago, IL, USA) and Origin (Microcal). In 
case of longitudinal oscillations the bias (identified as the 
mean growth velocity) was subtracted before FFT calcu-
lations. To reduce termination artefacts, the Hann window 
function was used.

PSD was calculated for three different osmotic environ-
ments and two mutually perpendicular vibration modes 
(longitudinal and transversal), and the corresponding total 
energy was calculated. The most intense peaks were indi-
cated and the appropriate frequencies assigned. (On the use 
of Fourier transformation to analyse pollen tube growth 
oscillations, see also Sanati Nezhad et al. 2013).

The Nyquist sampling theorem was satisfied in the time 
domain. The signal with total length of 300  s can suf-
ficiently be described in the frequency domain with low 
frequency cut-off at 2 * 1/300/s ≈  0.007 Hz. That means 
that the mode with the longest period is fully contained at 
least twice in our measurement. To be on a safe side we 
did not consider any signals below 0.013 Hz, which is an 
equivalent of four complete periods of oscillation. We have 
to note that the 0.013 Hz lies very close to the main period 
of oscillations reported earlier (Zonia et al. 2006). Later on, 
we shall refer to it by calling it Ω0.

On the other hand, the signal sampled every 3  s (sam-
pling rate 0.33 Hz) can sufficiently be described in the fre-
quency domain with the Nyquist frequency of 0.17 Hz =  
1/(2 * 3 s). We have to note that at least six clearly identi-
fied modes of oscillations were contained within the range 
(0.015, 0.09) Hz, i.e. with at least quadruple oversampling.

A linear regression was applied to all identified modes 
in the frequency spectrum. In all cases, the determination 
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coefficient R2 exceeded 0.99 confirming high correlation 
of all oscillation modes. We have to note that it does not 
exclude any lower frequencies present but they are outside 
the safe detection window. Basic oscillation periods were 
calculated in all cases from the simple formula Tbase  =  
1/fbase and expressed in seconds. To get an idea about the 
possible shape of the signals in the time domain, the identi-
fied modes were later on used for the inverse Fourier trans-
form with no assumed phase shift (ϕi = 0):

The time cross-correlation function, defined as

where L and T denote longitudinal and transversal oscil-
lation modes, respectively, was calculated for the 9-point 
adjacent average of the input data. In all cases the data 
were detrended. We have to note that forgetting to remove 
the bias may introduce unwanted artefacts in the frequency 
domain (like imitation of 1/f noise from the f = 0 peak) or 
a broad correlation peak in the time domain. Similar proce-
dure was performed for isotonic and perturbed treatments 
to find the relative time shift between the longitudinal and 
transversal modes.

Model of the energy spectra of pollen tube dynamics

A model of pollen tube growth must include terms for tur-
gor pressure, elastic and plastic deformation of the cell 
wall, and incorporation of new materials into the wall. The 
goal of the present analysis is to derive a model that relates 
changes in osmotic pressure to growth dynamics. The 
growth of cell walls is determined by the visco-elastic and 
plastic response of the wall to the mechanical force exerted 
by the effective turgor pressure. To decipher behaviour spe-
cific for the processes involved we begin with the Ortega 
(1985) equation

which formalizes the combined effect of plastic (Φ) and elas-
tic (ε) ingredients on the cell volume V. It takes into account 
elastic deformation of the cell wall by introducing volumet-
ric elastic modulus ε for the changing turgor pressure P(t) 
with the constant yield threshold Y; Φ stands for the ‘exten-
sibility coefficient’ of the wall which is defined as the inverse 
of the viscosity of the material. Equation (1) describes the 
relative rate of change in volume of cell wall chamber, as the 
sum of irreversible and reversible deformation of the wall.

f (x) =
A0

2
+

N
∑

i=1

Ai sin(2π fit + φi).

A(τ ) =

τ
∫

0

L(t)T(t + τ)dt

(1)
1

V

dV(t)

dt
= Φ(P(t) − Y) +

1

ε

dP(t)

dt

To begin, we consider the volume of the growing pol-
len tube and utilize the property of additivity to partition 
the total cell volume VT into two compartments VD and 
VA. VD is the volume of the pollen tube distal region; VA 
is the volume of the apical region (Zonia et al. 2006), and 
VT(t) = VD(t) + VA(t) is a function of time t. Experimental 
data indicate that there is a continuous smooth transition in 
the cell mechanical properties between the apical and dis-
tal regions (Geitmann and Parre 2004; also Pietruszka et al. 
2012, Fig.  2A, B; Vogler et  al. 2013). We further assume 
that VD(t)  =  u0t and [u0]  =  μm3/s, where VD is consid-
ered for the quasi-linear phase of elongation growth (e.g. 
Pietruszka 2012, Fig. 8A) where this approximation holds. 
Next, to describe pollen tube apical volume oscillations we 
utilize Eq. (1) which is a first-order differential equation 
that takes into account elastic (ε) deformation of the cell 
wall. Further, we expand this equation by allowing time 
dependence of the extensibility coefficient Φ = Φ(t) while 
keeping the elastic modulus ε constant (it may be treated 
as a piecewise constant function along the tube) in the 
apex. We assume that the intracellular osmotic pressure can 
change in response to changes in the extracellular osmotic 
potential, therefore the osmotic pressure term δπ =  δπ(t) 
must be also introduced in Eq. (1). We also make a distinc-
tion between the turgor pressure P which is maintained 
constant and time-dependent osmotic pressure fluctuations 
δπ(t)  =  ±[πout(t)  −  πin(t)], which are variable inside or 
outside the vacuole. As a result, we construct a so termed 
“two-fluid model”: P  ±  δπ(t). Assuming turgor pressure 
P =  constant and turgor threshold Y =  constant, we may 
rearrange Eq. (1) in the following way

since both P and Y time derivatives vanish. We have to note 
that constant character of turgor pressure as suggested by 
Benkert et  al. (1997) is not strictly what has been shown 
later by Zonia and Munnik (2011) (see Fig. 3 ibid.); how-
ever, its time derivative is negligible.

Equation (2) shows that the relative change in time of the 
apical volume VA depends on the sum of the plastic proper-
ties proportional to the effective pressure P – δπ − Y, and 
the elastic properties related to the changes (the time deriv-
ative) of the osmotic pressure. It is important to observe, 
that identical formalism may be restricted to the formulae 
including only the fluctuations of turgor δP(t), without the 
osmotic pressure δπ(t).

From the formal point of view, the whole calculus above, 
repeated after such substitution, leads to the same kind of 
equations. The material constants responsible for cell wall 
properties of the growing wall are specified by Φ and ε, 
describing irreversible growth and reversible cell exten-
sion, respectively. Furthermore, by taking Φ  =  Φ(t) and 

(2)
1

VA

dVA(t)

dt
= Φ(t)(P − δπ(t) − Y) −

1

ε

d(δπ(t))

dt
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ε = constant, we may follow (Pietruszka 2013) to introduce 
some additional cell wall properties. Cell wall visco-elas-
ticity is expressed with the relation Φ(t) = Φ0x0exp(−k0 t),  
where Φ0 = constant is the extensibility coefficient as orig-
inally proposed by Lockhart (1965), with dimensionality 
[10−6/(MPa s)]. The quantities x0 and k0 [1/s] represent pol-
ymer initial (potential) density x0 = x(t = t0) and cell wall 
intercalation rate, respectively. By substituting the explicit 
form of Φ(t) in Eq. (2) we get

Equation (3) represents a differential equation that takes 
into account the existing pressures in the system and also 
(in the first approximation) the cell wall elastic and plastic 
properties. This equation introduces deposition of new wall 
material into the existing cell wall at a rate k0, with the ini-
tial concentration of pectins that are used for new cell wall 
growth denoted as x0. We recall that the pollen tube growth 
is described by its total volume VT (t) [growth rate is then 
defined by the time derivative: V′T (t) = V′D(t) + V′A (t)] 
and that the continuity condition for the volume flow from 
the apical to distal region must be fulfilled. The general 
solution of such an equation is non-trivial but we shall only 
concentrate on the Eq. (3) as it describes the relative growth 
rate of the apex of pollen tube.

Now we offer a qualitative evaluation of the Fourier 
decomposition of Eq. (3) and its implications to biological 
processes. The right-hand side of Eq. (3) can be split into 
three contributions: plastic, fluctuating-plastic and fluctuat-
ing-elastic, respectively

Their respective Fourier transforms will have forms  
(f stands for frequency):

where ‘*’ symbolizes convolution, and F Fourier transform.
The contributions to the energy distribution spectrum read:

(3)
1

VA

dVA(t)

dt
= Φ0x0(P − δπ(t) − Y)e−k0t −

1

ε

d(δπ(t))

dt
.

(4.1)Φ0x0(P − Y)e−k0t ∼ e
−k0t

(4.2)Φ0x0δπ(t)e−k0t ∼ δπ(t)e−k0t

(4.3)
1

ε

d(δπ(t))

dt
∼

d(δπ(t))

dt
.

(5.1)
1

k0 + 2π if

(5.2)F(δπ(f )) ∗
1

k0 + 2π if

(5.3)ifF(δπ(f ))

(6.1)
1

k2

0
+ 4π2f 2

Let us briefly analyse these components. The first one 
(more viscous, plastic) will have a maximum at (about) 
f = 0 (quasi-linear) and a Lorentz form for higher frequen-
cies (compare with Kroeger and Geitmann 2013). It is 
very unlikely to contribute to oscillations and the central 
part will be subtracted by detrending before Fourier proce-
dure. It is worth noting that any appearance of oscillations 
(f > 0), will compete for a spectral density allocated to this 
part. To discuss the remaining contributions let us simplify 
for a moment the case by assuming that δπ(t) is a random-
type noise with 0 (detrended) expected value. In biologi-
cal systems, its power spectrum will usually have a form 
F(δπ) = S0/f

−α, where S0 is a power per frequency unit and 
1 < α < 2 (α = 2 for Brownian or α = 1 for “pink” noise) 
(see Dutta and Horn 1981; Weissman 1988, for a review). 
The second component (fluctuating-plastic) is a non-trivial 
one and will not be discussed here in detail but will act as 
an effective coupling between the first and last terms.

On the other hand, the third term (fluctuating-elas-
tic in origin) will have an envelope of f2F(δπ), which for 
the noise spectrum assumed above will read fβS0, where 
0 < β < 1. This will necessary be 0 at f = 0 (even for β = 0, 
the noise must have a lower energy cut-off) and increase 
with frequency, therefore, it will naturally promote the 
oscillatory state. We have to note that in the current form, 
none of those terms selects a clear “resonant” value for fre-
quency. It will most likely be decided by the coupling term 
or an external constraint.

Experimental results

Longitudinal (L) and transverse (T) oscillations of the api-
cal region of N. tabacum pollen tube were measured under 
hypertonic (25  mM NaCl), isotonic and hypotonic (H2O) 
conditions. Careful measurements revealed oscillations 
not only in the axial direction, but also in the lateral one. 
Instead of the usual applied co-moving frame reference 
system, a fixed coordinate system was used (Fig.  1b) to 
reveal phase relations between mutually perpendicular spa-
tial modes of oscillations and retrieve various key charac-
teristics of the periodic pollen tube growth.

Raw measurements are plotted in Fig.  2, for L and T 
oscillation modes under all growing conditions. We have 
not applied any averaging before the spectral analysis as it 
effectively acts as a high frequency filter. At the first sight, 
it is easily seen that the transverse oscillations possess, on 
average, slightly greater amplitudes than the longitudinal 

(6.2)
∣

∣

∣

∣

F(δπ(f )) ∗
1

k0 + 2π if

∣

∣

∣

∣

2

(6.3)f 2|F(δπ(f ))|2.
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ones. The tendency is clearly visible in the values collected 
in Table 1. The amplitudes of L oscillations decrease with 
decreasing pressure but behave non-monotonically for T 

with the smallest amplitude in the isotonic case. Further 
spectral analysis using the FFT, required subtraction of bias 
(baseline) in all three longitudinal cases. By identifying 
bias with mean (linear) elongation velocity, we found it to 
be the fastest for isotonic case (Table 2) based on the calcu-
lations with the 95 % confidence level.

We have to stress that L and T oscillations cannot be 
treated as the same mode. Their frequency and amplitude 
characteristics clearly show that they must be considered 
as separate degrees of freedom, although highly coupled  
(Fayant et al. 2010, Fig. 1).

Spectral analysis also delivered reliable data concerning 
energy consumption/dissipation by the growing system. Per-
forming integration over power spectra, we calculated total 
energy of oscillations, and hence contributions of longitudinal 
and transverse modes (Table 3). The calculated total energy 
in the isotonic case was the lowest of all cases, fulfilling the 
fundamental physical principle of the least action for the pol-
len tube growing in the natural conditions. Moreover, the 
computed transversal oscillations were of about one order of 
magnitude more powerful than the longitudinal ones. It meant 
that the energy connected with longitudinal motion is less dis-
sipated in oscillations and mostly directed to the elongation.

The Figs. 3, 4 and 5 present power density spectra calcu-
lated for L and T oscillation modes for the original hyper-
tonic, isotonic and hypotonic data presented in Fig. 2. The 

Fig. 2   Growth rate oscillations of Nicotiana tabacum single pol-
len tube plotted from the raw experimental data (without averaging). 
Two oscillation modes, longitudinal and transversal, are presented 
for hypertonic, isotonic and hypotonic treatment. The calculation of 
growth rate is acquired with the optimal temporal resolution (sam-
pling) of 3 s. Here we have 0.45 μm/3 s corresponding to 0.15 μm/s 
in the plot

Table 1   Calculated oscillation amplitudes for hypertonic, isotonic 
and hypotonic cases

Amplitude (μm/s) Hypertonic Isotonic Hypotonic

Longitudinal 0.0289 0.0278 0.0222

Transversal 0.0514 0.0477 0.0506

Table 2   Calculated mean velocity (growth rate in μm/s) and the  
confidence interval (left-, right-edges) for longitudinal oscillation 
modes in hypertonic, isotonic and hypotonic cases

Confidence level: 1 − α = 0.95 (95 %), error: 2σ

Growth rates N Mean (μm/s) Left edge Right edge

Hypertonic 15 0.045 (7) 0.040 0.049

Isotonic 15 0.058 (10) 0.052 0.065

Hypotonic 15 0.033 (18) 0.023 0.044

Table 3   Calculated total energy for longitudinal and transversal 
oscillations modes in hypertonic, isotonic and hypotonic cases

Energy dissipation (in %) for the longitudinal and transversal modes 
indicated

Energy (μJ) Hypertonic Isotonic Hypotonic

Longitudinal (5.3 ± 0.5) × 10−8 (4.5 ± 0.4)  
× 10−8

(3.1 ± 0.3) × 10−8

Transversal (1.7 ± 0.2) × 10−7 (1.4 ± 0.1)  
× 10−7

(1.6 ± 0.2) × 10−7

Total (2.2 ± 0.2) × 10−7 (1.9 ± 0.2)  
× 10−7

(1.9 ± 0.2) × 10−7

Longitudinal 
(%)

24.0 23.7 16.1

Transversal 
(%)

76.0 76.3 83.9
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insets visualize positions of the noticeable maxima fre-
quencies together with linear fit f = fbase +nf0. We have to 
note that the base frequency might suffer from the possible 
omission or low amplitude of the lowest frequency peaks, 
which would change the numbering of the harmonics. In 
turn, the f0 obtained from the slope of the linear regression 
fit did not depend on the choice of the first peak. The val-
ues are presented in Table 4 (Tbase = 1/fbase). The calculated 
determination coefficients R2 are equal or above 0.99 con-
firming linearity of frequencies. The shapes of the power 
spectra were found to be different for the L and T cases 
in the low-lying pronounced peaks present in the L case, 
which were absent in the T case. They have been marked 
as Ω0 and can be related to the peaks in spectrum observed 
by Zonia et al. (2006). A wide gap near zero frequency was 
found in all of transversal cases, while there were low fre-
quency peaks present in longitudinal cases with the smallest 

one observed for isotonic one. In any case, all peaks above 
0.015 Hz for transversal mode possess their counterparts in 
longitudinal case—the mutually corresponding frequencies 
being almost equal. All frequency spectra have no intensity 
close to zero frequency, resulting from baseline subtraction.

In addition, under hypotonic conditions, when the pres-
sure is greatest, the frequency is also the highest. This fact 
can be easily explained by the total turgor pressure value, 
which is the greatest in this case.

Figure 6 depicts the results of the inverse Fourier trans-
form computations of selected modes. In Fig.  6 we have 
taken the simple sum of the first 11 harmonics for hyper-
tonic and isotonic cases and 13 harmonics for hypotonic 
one, to uncover periodicity hidden in Fig. 2. These results 
reveal the main period of all considered modes of oscilla-
tions in the time domain. In the following example (Fig. 6, 
the insets), we considered the sum of 4 first harmonics to 
retrieve the character of the basic signal. It turned out that 
it could approximately be described by triangular jigsaw: 
from steep increase in the hypertonic case to the moderate 
increase in the hypotonic case.

Fig. 3   Power spectral density (PSD) calculated for longitudinal (L) 
and transversal (T) oscillation modes for the hypertonic data pre-
sented in Fig.  2. The strongest peaks are indicated and the corre-
sponding frequencies assigned. The inset presents linear dependence 
of higher harmonics and linear regression fit, which slope is equiva-
lent to the basic frequency (R2 delivers determination coefficient; 
P < 0.0001 in all insets in Figs. 3, 4 and 5). Calculated total energy: 
see Table 3

Fig. 4   Power spectral density (PSD) calculated for longitudinal (L) 
and transversal (T) oscillation modes for the isotonic data presented 
in Fig. 2. Further description as in Fig. 3
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We also examined the LT-correlation functions under 
hypertonic, isotonic and hypotonic conditions (origin). For 
this case, the signals were mapped from −150 to +150 s, over 
a total range of 300 s, Fig. 7. The detailed analysis of such cor-
relation cross-product is beyond the scope of this paper but 
we have to observe that the amplitudes in the perturbed cases 
seem to be much higher than in the unperturbed one.

Discussion

In this study, we will focus on mechanical aspects of peri-
odical growth of N. tabacum pollen tube. The essential fea-
ture of the study was to investigate general energetics of the 

less studied transverse mode (the transverse component is 
not commonly measured, but recent studies used a parame-
terization of the cell surface (e.g. Rojas et al. 2011), and the 
correlations between T and L oscillations of the apical part 
of the cell. We do not wish to argue with the biochemical or 
intracellular mechanisms of the cell growth preferring tur-
gor pressure or cell wall relaxation, as they are present on 
the equal terms in the calculations conducted in the theo-
retical section.

From our point of view there are several main areas 
of interest: amplitudes, frequencies, energies and cross-
correlations, and their influence on the growth rate. First 
of all, the linear growth velocity (corresponding to the 
linear extension of the distal volume VD) is the fast-
est for the unperturbed (isotonic) case. This hypothesis:  
vhiper  <  vhypo  <  viso, with v standing for the linear mean 
velocity is found to be true at the 95 % confidence level, on 
the basis of data from Table 2. This linear velocity can be 
treated as an indirect measure for the rate of wall building 
processes and exocytosis at a given turgor pressure P, pro-
viding that the elastic component can be neglected. Clearly 
the steady growth component reflects the f = 0 power spec-
trum contributed by plastic deformation.

We must note that the optimal character of the iso-
tonic solution cannot be justified only on the basis of the 
longitudinal oscillatory mode. Table 1 shows that that the 
amplitudes of L-mode oscillations change monotonically 
with pressure as well as their energies (Table  3). Hence, 
it is not clear why the isotonic case is optimal, especially 
when iso- and hyper-tonic cases have also very similar val-
ues (Tables 4, 5). The situation changes when we take into 
consideration also the transverse mode, which is clearly 
singled out by amplitude in Table 1 and a little weaker by 
energy in Table 3. Furthermore, the base frequencies of T 
oscillations are now closer to hypo-osmotic case.

Figures  3, 4 and 5 show the energy density functions 
(obtained via FFT) generated from the signals presented in 
Fig. 2, related to the amount of energy dissipated at each 
frequency. Closer examination reveals relationship between 
the longitudinal and transversal spectra: In all transver-
sal spectra a wide gap opens up, while in the longitudinal 
spectra some low-lying peaks exist (see also Figs.  9, 10), 
in the region marked as Ω0. Comparison with other authors 
(Zonia et al. 2006) show some similarities in the spectrum 
(existence of a peak centred about 0.15 Hz), but also dis-
crepancies. In all figures (ibid., Figs. 7b, c, 8b, c, h, i, k, l, 

Fig. 5   Power spectral density (PSD) calculated for longitudinal (L) 
and transversal (T) oscillation modes for the hypotonic data presented 
in Fig. 2. Further description as in Fig. 3

Table 4   Calculated basic 
frequency modes and 
corresponding oscillation 
periods

Periodicity Hypertonic Isotonic Hypotonic

fbase (Hz) Tbase (s) fbase (Hz) Tbase (s) fbase (Hz) Tbase (s)

Longitudinal 0.019 (2) 53 (6) 0.017 (3) 59 (10) 0.027 (1) 37 (2)

Transversal 0.017 (4) 59 (14) 0.033 (3) 30 (3) 0.033 (2) 30 (2)
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Fig. 6   Calculated inverse Fourier transform. Data presented for the 
sum of the first 11 harmonics [hypertonic (L, T), isotonic (L, T)] and 
13 harmonics [hypotonic (L, T)]. The sum of four first harmonics 

(insets) calculated for data indicated in Figs. 3, 4 and 5. The underly-
ing triangle waveform, corresponding to wall building/relaxation pro-
cesses, indicated
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9h, i, k, l, 10b, c) an intense, broad peak at zero is indicated 
and discussed later in the terms of 1/f noise. We must note 
that such procedure must be taken with caution as the noise 

should be based on the detrended spectra and analysed over 
wider frequency range. Direct comparison of peak subtle 
structure in both axial and transverse spectra leads to clear 
identification of significant peaks in all osmotic environ-
ments (Figs.  3, 4, 5, compare upper and lower charts for 
frequencies). Further procedure (linear regression) allows 
precise indication of fundamental oscillation frequencies 
in all cases of interest and low-lying higher harmonics 
(Figs. 3, 4, 5, the insets), which are determined with R2 val-
ues >0.99.

Starting from the identified peaks with non-zero ampli-
tudes, using the inverse Fourier transform (see Figs.  3, 4, 
5; Table  3), we were able to retrieve from noise hidden 
time-domain periodicity. As the relative phase was lost in 
the analysis, we assumed no phase shift between the har-
monics. These qualitative results, are clear enough to inter-
pret, and are presented in Fig. 6. The change of oscillation 
periods is clearly visible either in rows [longitudinal (L) 
to transversal (T) transition], or columns (hypertonic–iso-
tonic–hypotonic transition). These tendencies are visual-
ized for the expanding or shrinking periods in all cases.

For further reconstructions, we limited ourselves to sev-
eral basic harmonics, to visualize a general form-factor 
(a basic signal) of oscillations. As it is shown (Fig. 6, the 
insets), the form-factor is a triangle-shaped one (jigsaw). 
In the first approximation, the slope of both sides of these 
saw-shaped triangles may be used for discrimination of cell 
wall relaxation rates connected with varying magnitudes of 
internal pressure. (Special attention is required with peaks 
close to zero frequency in the longitudinal spectra, which 
may be connected with the exocytosis/elongation rates). In 

Fig. 7   Cross-correlation function for longitudinal (L) and transversal 
(T) oscillation modes presented for hypertonic, isotonic and hypo-
tonic treatment. The correlation was calculated for a 9-point adjacent 
average of the time signals. Δt is a time shift between L and T modes

Table 5   Calculated relative elongation (in %) per cycle in basic 
osmotic environments; l0 = l(t = 0), l1 = l(t = T)

Periodicity Hypertonic Isotonic Hypotonic

fbase (Hz) Tbase (s) fbase (Hz) Tbase (s) fbase (Hz) Tbase (s)

Longitudinal 0.019 (2) 53 (6) 0.017 (3) 59 (10) 0.027 (1) 37 (1)

(l1 − l0)/l1 (%) 5.8 (3) 6.6 (2) 3.7 (2)

Fig. 8   Schematic diagram of a basic vibration mode of the apical 
part of a pollen tube (exaggerated). Easy to imagine, in-phase, peri-
odical mode allowing penetration through the tissue (thin or thick tip 
in each growth cycle)

Fig. 9   Longitudinal power spectrum of Nicotiana tabacum pollen 
tube: −1 corresponds to the hypotonic case, 0—isotonic case and 
2.5, 3 and 5 correspond to 25, 30 and 50 mM NaCl for the hypertonic 
case, respectively. Low-lying peaks of high intensity are clearly vis-
ible. Interpolated by DAVE (Azuah et al. 2009)
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other words, the slope of the triangle may serve as a meas-
ure of the influence of turgor pressure-induced longitudinal 
and transversal oscillations onto wall building/relaxation 
processes and vice versa. In fact, both processes cannot 
be treated separately, which is encapsulated in the second 
non-trivial component (plastic-fluctuating) of the spectral 
density of the Ortega equation. We can say, that pressure 
relations and cell volume oscillations due to wall building/
relaxation processes (in pollen tube apical region) are inte-
gral components of the biomechanics of N. tabacum pollen 
tube growth. They are clearly competing for the mechani-
cal contribution to the total energy (pV) but with differ-
ent shapes of spectral density. The wall building wants its 
energy centred at f =  0 (component 1), while the oscilla-
tory part requires f  >  0 (component 3). The tug-of-war is 
done through the plastic-fluctuating component 2.

Hence, we may expect, that the changes in turgor pres-
sure may also influence pollen tube oscillations. In fact, it 
has already been observed (Taiz 1984) when the reduction 
in turgor pressure of only 0.02 MPa resulted in the immedi-
ate cessation of growth in the living cells. This led to the 
recognition (theory of loss of stability, Wei and Lintilhac 
2007) that with an increase of turgor pressure the resulting 
stresses of the wall will gradually increase to a certain criti-
cal value, at which time loss of stability must occur, lead-
ing to stress relaxation of the wall, and consequent growth. 
We must note that close to the critical point there must be 
a boost for fluctuations which would promote the oscilla-
tions. Combining these elements together we may gener-
ally conclude that the polar growth of highly elongated cell 
of pollen tube requires self-consistent organization of many 
cellular features and functions.

To investigate closer the order of events of the pollen 
tube apex the cross-correlation analysis was performed 
between the T and L components. In the search for the 
sequence of events it turned out (Fig. 7) that in the hyper-
tonic spectrum the transverse component is behind (nega-
tive time shift) and in hypotonic before (positive time 
shift) the longitudinal part. The isotonic case, although not 
clearly seen, must lie between those two cases with no shift 
between L and T modes.

A suitable explanation of biological mechanism behind 
positive or negative time delays between L and T modes 
(Fig.  7) can be given on purely mechanical foundations, 
assuming different and non-linear responses of the cell tip 
and basal part to the pressure. It has been shown earlier by 
Zerzour et  al. (2009) (see Fig.  1 therein, and Fig.  3a for 
normally growing pollen tube) that under hypertonic condi-
tions growth seizes except small swelling of apical region, 
meaning that the tip effectively expands faster than the dis-
tal part. In the opposite case of a higher internal pressure, 
the tip would reach its maximum plasticity (a plateau), 
while the response of distal part would continue to increase 
(see Fig. 1e, f ibid.).

We have to stress that despite being on the resolution 
limit of our microscope the high correlation between T 
and L modes cannot be generated by the random fluctua-
tions of the image. From this data, a new picture emerges: 
in one cycle of the longitudinal wave measured in the apex, 
a transversal cycle takes place (see Fig. 8 for illustration). 
This situation, which is only observed in isotonic condi-
tions may be termed as normal oscillation mode of the api-
cal part of a pollen tube, see also Fig. 1A′, B′ in Pietruszka 
et  al. 2012. This behaviour can be identified in Rounds 
et  al. 2010, Fig.  3a, Fayant et  al. 2010, Figs.  1, 4, 6 and 
Krichevsky et al. 2007, Fig. 2.

The common feature of all tip-growing cells is their abil-
ity to invade a biological matrix (Geitmann 2010; Sanati 
Nezhad and Geitmann 2013). As noticed, such invasion 
requires overcoming the mechanical impedance of the 
invaded matrix. And further: “To be a successful invader, 
any waste of energy needs to be avoided” (Geitmann 2010). 
By restricting cell expansion to the tip of the cell the poten-
tial energy loss is minimized (Fig.  8), where (phase 1) 
elongation takes place with the more pointed (shrinking) 
tip, which is followed by (phase 2) extension/swelling in 
the tissue without advancing in the axial direction. This 
mode of elongation being energetically and environmen-
tally advantageous in vivo, is in agreement with our pre-
vious energetic considerations, also allowing for optimal 
efficiency of pollen tube penetration of stylar tissues. This 
must result in the appearance of the transverse oscilla-
tions and again advocates for their inclusion in the analy-
sis. Eventually, we should note that the subtle spectrum—
individual frequencies indicated by the pronounced peaks 

Fig. 10   Transversal power spectrum of Nicotiana tabacum pollen 
tube: −1 corresponds to the hypotonic case, 0—isotonic case and 
2.5, 3 and 5 correspond to 25, 30 and 50 mM NaCl for the hypertonic 
case, respectively. A gap at low-lying frequencies is clearly visible. 
Interpolated by DAVE (ibid.)
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in the power spectrum (see Figs. 9, 10)—may be ultimately 
connected with physiological processes taking place in the 
growing pollen tube (e.g. calcium, chloride, etc. fluxes). 

Rapidly growing pollen tubes show distinct similarities 
to the physics of phase transitions in that the system tends 
to become “quasi equilibrated” in extension under isotonic 
conditions, as opposed to both the hypo- and hyper-tonic 
conditions, where it expends more energy for less growth. 
It may be concluded that the freely growing cell is at the 
‘critical point’, where the growth is the fastest. The pres-
ence of the self-organization (the correlation length must 
be at least of the order of the cell) of the system might be 
the reason behind the close to 1/f noise spectrum observed 
earlier (e.g. in Zonia et  al. 2006), although we do not 
clearly see it in our data. This means that under normal 
growth conditions the system will tend to equilibrium (iso-
tonic case) from hypertonic or hypotonic cases by equating 
osmotic potentials. Yet, this can be achieved by water and 
solute fluxes in or out of the growing cell. Furthermore, the 
fact that the calculated total energy is the lowest and that 
the linear velocity is the fastest in the isotonic case may 
indicate perfect adaptation of elongating (tobacco) pollen 
tube to the natural growth conditions.

Conclusions

The fastest growth of the pollen tube apex under isotonic 
conditions cannot be adequately interpreted using only the 
longitudinal mode of oscillation. The importance of the 
transverse oscillatory component was confirmed by the 
analysis of its energy, which was 10 times higher than the 
longitudinal one. Under the isotonic condition, the trans-
versal wave had the smallest amplitude. The least action 
principle was suggested as a possible candidate for the 
underlying law of nature behind such behaviour.

This work shows that the familiar Ortega equation can 
be re-interpreted using the methods of Fourier analysis 
to reveal the underlying energy/power relationship gov-
erning the rapid growth of single tip-growing cells such 
a pollen tubes. The elastic part was shown to be capable 
of promoting an oscillatory solution with a non-zero fre-
quency even from a purely random fluctuations. At the 
same time, it is found to compete for spectral density 
with the plastic “steady growth f = 0″ component respon-
sible for the elongation. Interestingly, both types of pol-
len extension, oscillatory and steady, are observed, and 
the transition between both cases should also be found. 
Finally, we have to stress that the analysis of the energy 
spectrum of the Ortega equation revealed presence from 
all contributions: the turgor pressure, fluctuations and 
cell wall elastic and plastic components with a simple but 
non-trivial coupling terms.
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