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Unmethyl-esterified homogalacturonan and
extensins seal Arabidopsis graft union
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Abstract

Background: Grafting is a technique widely used in horticulture. The processes involved in grafting are diverse, and
the technique is commonly employed in studies focusing on the mechanisms that regulate cell differentiation or
response of plants to abiotic stress. Information on the changes in the composition of the cell wall that occur
during the grafting process is scarce. Therefore, this study was carried out for analyzing the composition of the cell
wall using Arabidopsis hypocotyls as an example. During the study, the formation of a layer that covers the surface
of the graft union was observed. So, this study also aimed to describe the histological and cellular changes that
accompany autografting of Arabidopsis hypocotyls and to perform preliminary chemical and structural analyses of
extracellular material that seals the graft union.

Results: During grafting, polyphenolic and lipid compounds were detected, along with extracellular deposition of
carbohydrate/protein material. The spatiotemporal changes observed in the structure of the extracellular material
included the formation of a fibrillar network, polymerization of the fibrillar network into a membranous layer, and
the presence of bead-like structures on the surface of cells in established graft union. These bead-like structures
appeared either “closed” or “open”. Only three cell wall epitopes, namely: LM19 (un/low-methyl-esterified
homogalacturonan), JIM11, and JIM20 (extensins), were detected abundantly on the cut surfaces that made the
adhesion plane, as well as in the structure that covered the graft union and in the bead-like structures, during the
subsequent stages of regeneration.

Conclusions: To the best of our knowledge, this is the first report on the composition and structure of the
extracellular material that gets deposited on the surface of graft union during Arabidopsis grafting. The results showed
that unmethyl-esterified homogalacturonan and extensins are together involved in the adhesion of scion and stock, as
well as taking part in sealing the graft union. The extracellular material is of importance not only due to the potential
pectin–extensin interaction but also due to its origin. The findings presented here implicate a need for studies with
biochemical approach for a detailed analysis of the composition and structure of the extracellular material.
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Background
Grafting is a technique in which either organs from dif-
ferent plants (heterografting) or from the same plant
(autografting) are joined so as to continue their growth
together. The upper part of the combined plant is called
the scion, while the lower part is called the rootstock. In
addition, the isolated organ fragments [1], or even callus
tissues [2, 3], can be successfully used for grafting.
Although grafting has been performed for centuries, the

mechanisms that regulate this process are still unclear
(for a review see [4]). In the last ten years, there has
been growing interest in grafting especially with respect
to hormonal and genetic analyses of vascular regener-
ation, reactions to wounding, and cell differentiation,
and recent studies have provided new information using
mutants and transgenic lines of different species, as well
as with the help of new research techniques [5–8].
Grafting leads to the development of a stable union zone

in which a structural and functional connection between
the vascular system and other tissues of the scion and root-
stock is established [9]. A stable graft union is achieved with
the formation and differentiation/re-differentiation of the
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callus cells of scion and stock. Various differentiation pro-
cesses that occur during regeneration result in differences
in the arrangement of the cells/tissues and in cell pheno-
types in the union zone compared to the “mother” parts of
the grafted scion and stock [10].
Before the above-described cell events occur, an adhe-

sion between the scion and the stock develops and stabi-
lizes [5, 11]. During the first stage of grafting, the callus
emerges as a result of wounding [12], and subsequently
non-sister cells adhere de novo at the graft interface. On
the surface of the callus cells, numerous bead-like struc-
tures, consisting of carbohydrates (mainly pectins) and
proteins, appear [12–14]. Thus, during the “recognition”
of the callus cells from the scion and rootstock, different
cell wall components may be observed [15].
Pectins comprise a heterogeneous group of polysaccha-

rides composed mainly of galacturonic acid residues [16].
Within the pectin “family”, the homogalacturonan (HG)
and rhamnogalacturonan I (RG I) domains can be clearly
distinguished. HG domains are believed to be the most
widespread and constitute up to 65% of all cell wall pec-
tins [17]. HG is synthesized and incorporated in the cell
wall in a methyl-esterified form [18]. Removal of methyl
esters from the cell wall matrix results in varied degree
and pattern of methyl esterification which, in turn, is
reflected in the different properties of HG (e.g. rheological
properties) [19, 20]. In contrast to HG, the amount and
distribution of RG I domains are thought to be variable
and undergo dynamic changes during development of
cells or tissues. A previous study has shown that changes
in the composition of side chains, which are composed of
neutral sugars like galactan or arabinan, are correlated
with the status of cell differentiation and determine the
mechanical properties of the cell wall [21]. Alike pectins,
hemicelluloses are a heterogeneous group of polysaccha-
rides, and their structure, occurrence, and function vary
depending on the type of plant species, tissues, and cells
[22]. Apart from their main structural role, where hemi-
celluloses together with cellulose microfibrils form a scaf-
fold responsible for the mechanical properties of the cell
wall, these polysaccharides may also serve as a storage ma-
terial for plant cells [23, 24]. It is interesting that oligosac-
charides that originate from the enzymatic or mechanical
defragmentation of the polymers in the cell wall, such as
xyloglucan [25] or HG, are biologically active fragments
and act as endogenous growth regulators that trigger
physiological reactions [26, 27].
Arabinogalactan proteins (AGPs), a class of highly glyco-

sylated proteins [28–31], have been detected in many cellu-
lar compartments, including cell wall matrix, cell
membrane, tonoplast, and vacuole, and also in various cel-
lular secretions [32–35]. The localization of these proteins
and their transient presence in various cellular compart-
ments suggest that they are involved in cell signaling rather

than being a structural component [28, 34, 36–38] and may
act as factors triggering plant cell differentiation [30]. An-
other class of cell wall proteins, called extensins, have a
protein core that is mainly rich in hydroxyproline and
serine; hence, this class of proteins are also known as
hydroxyproline-rich glycoproteins (HRGPs) [28]. Unlike
AGPs, which can be easily extracted from the cell wall and
which are considered to be “mobile”, extensins are ex-
tremely resistant to extraction, and even after secretion into
the cell wall, they immediately become immobilized via co-
valent bonding with other extensin molecules [39, 40] or
other polymers in cell wall, presumably pectins [41],
thereby forming networks that influence the extensibility of
cell wall. Increase in the content of extensins in the cell wall
results in termination of cell growth [28, 42, 43]. Moreover,
the amount of extensins significantly increases in plants fol-
lowing mechanical injury or pathogen attacks [44–46].
Understanding the roles of the cell wall components in

plant cell differentiation processes is crucial for enhancing
the knowledge base and for their commercial applications.
While studying the changes in cell wall composition that
occur during grafting of the Arabidopsis hypocotyl, we ob-
served the formation of a layer covering the surface of the
graft union. As this phenomenon has not been described so
far, we focused on the exterior area of a graft union instead
of the adhesion zone, which has been the subject of numer-
ous studies. The aims of this study were 1) to describe the
histological and cellular changes that occur during the
process of regeneration in autografted Arabidopsis hypocotyls
and 2) to perform preliminary chemical and structural ana-
lyses of the material that extracellularly deposits and finally
seals the graft union.

Results
Formation of the graft union – morphological features
Three time frames were chosen to evaluate the process of re-
generation of the Arabidopsis hypocotyls during grafting
based on the occurrence of dominant cellular events (Fig. 1,
section I). The first time frame, that is, 0–3 days after grafting
(dag), was characterized by a fragile graft union zone (scion
and stock came apart during the preparation or fixation pro-
cedure). During this stage, an increase in the scion circum-
ference was observed (Fig. 1a), callus cells were found to
emerge, and the cut surface of the scion and stock was
covered by an extracellularly deposited material (Fig. 1b).
Adventitious roots were also found to develop (not shown).
An increased stainability was observed in the intercellular
spaces and in the walls of cortical cells (not shown), as well
as in the cytoplasmic compartments of some of the cortical
and epidermal cells that were located near the site of the cut
(Fig. 1c). During the second time frame (i.e., 4–6 dag), the
graft union was found to be more stable and the adventitious
roots were also developed further (Fig. 1d). The surface of
the scion and stock was still covered with the extracellular
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material. Differentiated tracheary and sieve elements and
groups of meristematic cells were observed within the graft
union zone (Fig. 1e). In the third time frame (i.e., 6 dag and
further), the graft union was found to be filled with cells (Fig.
1f) and the vascular system was reconnected (Fig. 1g). In
addition, polyphenolic and lipid substances were detected in
the walls of the cells that were adjacent to the regenerated
stele (Fig. 1g and h).

Established graft union – appearance of extracellular
material and bead-like structures
Scanning electron microscope (SEM) analysis showed that
extracellular deposition of material accompanied the

formation of graft union during all the stages of regeneration.
During the second time frame (4–5 dag), material that was
deposited on the surface of the callus cells appeared in two
structural forms: fibrillar and membranous (Fig. 2a, b, and e).
The terms “fibrillar” and “membranous” are only used to de-
scribe the physical shape of the deposited material and do
not refer to the chemical nature of its components (although
the further analyses pointed to them as carbohydrates/pro-
teins). Both fibrillar and membranous forms were observed
covering the groups of callus cells (Fig. 2a and b). In the
older grafts, that is, during the third time frame (8–9 dag),
the graft union zone was found to be sealed by a membran-
ous structure (Fig. 2c and d). The border between the

Fig. 1 Hypocotyl grafting: (I) schematic representation of the following stages and (II) important morphological features. a and inset – graft union
with callus cells (arrowheads), local increase in the circumference of the scion (arrows). b – scion, cut surface covered with extracellular material
(arrowheads). c – epidermal cells, increased staining of the cytoplasmic compartments (arrows and arrowhead). d – stable graft union
(arrowhead), developing adventitious root (arrow). e – tracheary elements (full arrows), sieve elements (arrowhead), and meristematic cells
(arrows). f – graft union (arrowhead), dotted line – site of the cut. g – bluish autofluorescence of polyphenolic compounds present in the walls of
the endodermal (arrows) and peripheral cells of the graft union (arrowheads); pink – autofluorescence of chlorophyll. h – lipid substances stained
red and detected in the walls of the endodermal (arrows) and peripheral cells of the graft union (arrowheads), asterisk – graft union area. Cor
cortex, dag days after grafting, en endodermis, ep epidermis, sc scion, st (root)stock, TBO toluidine blue O, te tracheary elements. Scale bars: a, a
inset, d, and f = 200 μm; g = 100 μm; h = 50 μm; b, c, and e = 10 μm
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stock–scion epidermis and the graft union cells was
barely visible (Fig. 2c and d). In addition, some
bead-like structures were observed on the surface of
callus cells that were not covered by a membranous
layer (Fig. 2d). The fibrillar material that was observed
during the second time frame had a net-like structure
(Fig. 2e); however, it was rarely found in the older grafts
(Fig. 2f). Thus, it can be suggested that the formation of fi-
brillar material precedes the formation of membranous
structure, which might arise through polymerization or
other processes of conversion of the fibrillar material.
At the beginning of the regeneration process (i.e., during

the first and second time frames), the callus cells in the
graft union zone had a smooth surface with no visible
bead-like structures; however, strands of fibrillar material
were associated with some of these cells (Fig. 3a). In the
more advanced stage, numerous bead-like structures were

observed on the surface of the graft union cells that were
not enclosed by a membranous layer (Fig. 3b and c). These
structures were diverse in their size and form, and ap-
peared either “closed” (Fig. 3c and d) or “open” (Fig. 3e
and f). During this stage, the strands of fibrillar material
were mostly found associated with “closed” bead-like
structures (Fig. 3d). Because the “open” bead-like struc-
tures were larger than the “closed” ones, it can be specu-
lated that the “open” form is the subsequent stage of the
“closed” form.

Detection of unmethyl-esterified HG and extensins at
scion–stock interface
In order to characterize the components of extracellular
material observed during Arabidopsis grafting, monoclo-
nal antibodies against cell wall components were uti-
lized. Immunohistochemical analysis showed the

Fig. 2 SEM images of graft union. a and b – some of the callus cells from the graft union covered with a membranous structure (arrows) and
some covered with a fibrillar material (arrowheads). c and d – the graft union enveloped with a membranous structure (arrows), arrowhead – cell
not covered with a membranous structure, visible bead-like structures on the surface. e – net-like structure formed from the fibrillar material
(arrows). f – membranous structure (asterisk) that covers the graft union cells. Dag days after grafting
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abundant presence of two HG epitopes – LM19 and
LM20 (un/low- and high-methyl-esterified HG, respect-
ively) – in the walls of the dividing cells near the site of
the cut; they were also seen within the maternal tissues
of the scion and stock (Fig. 4a and b). However, no
LM20 epitope was observed in the walls or on the sur-
face of the callus cells that were seen protruding from
the scion or stock (Fig. 4a and a'). Conversely, LM19 epi-
tope was found abundantly in those cells, especially in
the walls, in the cytoplasmic compartments, and on the
surface (Fig. 4b). Similarly, two extensin epitopes (JIM11
and JIM20) were detected on the surface of the cut parts
(Fig. 4c) and within the cytoplasmic compartments of
some of the cortical and epidermal cells in the vicinity
of the site of the cut (Fig. 4d). The extensin epitope
JIM12 was not present at any of those sites (not shown).
Interestingly, none of the AGP epitopes that were exam-
ined in the study were present in the callus cells or on
their surface (JIM8 and LM2 are not shown; JIM13 is
shown in Fig. 4e).

Occurrence of only unmethyl-esterified HG and extensins
in extracellular material and bead-like structures
In the stable graft union zone, the LM20 epitope was ob-
served in the walls of the graft union cells, except for the
cells that were located peripherally (Fig. 5a and a'). More-
over, no LM20 epitope was detected on the surface of the
cortical or the epidermal cells and the peripherally located
graft union cells (Fig. 5a and a'). By contrast, the LM19 epi-
tope was observed abundantly on the surface of the above-
mentioned cells as well as in the cytoplasmic
compartments of some of these cells (Fig. 5b–e). LM7, an-
other HG epitope (partially methyl-esterified HG), was not
detected in the grafted hypocotyls at all (Additional file 1:
Fig. S1A). LM8 epitope (xylogalacturonan domain in HG)
was found to be present in the grafted hypocotyls; however,
it was not extracellularly localized (Additional file 1: Fig.
S1B and C). Although the analysis of RG I epitopes showed
their presence in cell walls (LM5 epitope – galactan, LM13
epitope – processed arabinan; Additional file 2: Fig. S2A, B,
E, and F) and in the cytoplasmic compartments (LM6

Fig. 3 SEM images of cells from graft union. a – callus cells (c) without bead-like structures, fibrillar material associated with some of them
(arrow). b – graft union, bead-like structures on the surface of the cells that are not covered with a membranous structure (asterisk). c and d –
bead-like structures on the cell surface (arrows), arrowhead – fibrillar material associated with some of the bead-like structures. e – two types of
bead-like structures found: “closed” (arrowheads) and larger, “open” (arrows) ones. f – magnification of an “open” bead-like structure". sc scion
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epitope – arabinan; Additional file 2: Fig. S2E and F) of the
graft union cells, none of these epitopes was detected on
the surface of graft union.
The occurrence of two extensin epitopes, JIM11 and

JIM20, was identified to be similar to that of the LM19 epi-
tope; these were detected on the cell surface and in the
cytoplasmic compartments (Fig. 6a, b, and d). Moreover,
the abovementioned epitopes were present in high amounts
in the intercellular spaces that were located near the graft
union zone (Fig. 6a and c). Although the third extensin epi-
tope, JIM12, was detected abundantly in the outer periclinal
walls and/or in the cuticle of the epidermis, its fluorescence
signal was punctate and weak in the graft union zone com-
pared to that of the JIM11 or JIM20 epitope (Add-
itional file 3: Fig. S3A). The fourth epitope, LM1, was
present in the walls and in the cytoplasmic compartments;
however, it was found only in fewer cells compared to
JIM11 or JIM20 epitope (Additional file 3: Fig. S3B and C).
The epitopes of the AGPs were not found on the surface of
the graft union cells located peripherally, although all the
epitopes examined were detected in the cytoplasmic com-
partments of some of these cells (Additional file 3: Fig.
S3D–F). Epitopes JIM8 (not shown) and JIM13 were also

detected in the endodermal cells and in the cells associated
with vascular system (Additional file 3: Fig. S3D).
The distribution of hemicellulose epitopes, LM15

(xyloglucan) and LM21 (heteromannan), during grafting
process was also studied. LM15 epitope occurred abun-
dantly in the walls of cells in the graft union area, except
for endodermal or peripheral cells (Additional file 4: Fig.
S4A and B), while LM21 epitope was detected in cellular
compartments or, in low amounts, in the cell walls
(Additional file 4: Fig. S4C and D). However, none of
these epitopes was found to be extracellularly localized.
Results from the whole-mount immunolabeling ana-

lysis mostly correlated with those that were obtained
with the stained hypocotyl sections, with the exception
of the JIM12 epitope. The LM20 epitope was present at
the edges of the cuts of the scion and stock, but only a
weak fluorescence signal was detected in the graft union
area (Fig. 7a). By contrast, the LM19 epitope was
found in abundance in the graft union area (Fig. 7b–
f ), and a fluorescence signal was observed at the
edges of the cuts of the scion and stock, as well as
on the surface of the graft union cells, including the
bead-like structures (Fig. 7b–f ).

Fig. 4 Immunohistochemistry of the grafted hypocotyl sections, first time frame – homogalacturonan (LM20 and LM19 epitopes), extensins
(JIM11 and JIM20 epitopes), and AGPs (JIM13 epitope). a – scion, epitope present in the walls of the dividing cells (arrows), no epitope detected
on the surface of the callus cell protruding outside the scion (arrowhead). a′ a, Calcofluor White. b – scion, epitope present in the walls of the
dividing cells (full arrows), in the cell compartments (arrow), and on the surface of the callus cells protruding outside the scion (arrowhead). c –
stock, epitope detected in the walls (arrow) and on the surface of the cells (arrowheads). d – scion, epitope present in the cellular compartments
of some cortical and endodermal cells, near the cut (arrows). e – scion, epitope present in the endodermal cells (full arrow) and cells next to the
vessels (arrows), no epitope detected in the callus cells protruding outside the scion (arrowhead). c Calcofluor White en endodermis. Scale bars:
a–c = 10 μm; d and e = 50 μm
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The JIM12 epitope was primarily observed on the sur-
face of the epidermal cells of the scion and stock (Fig. 8a
and b). In some of the analyzed cells from the graft
union, the JIM12 epitope was detected abundantly (Fig.
8a). However, a moderate amount of this epitope was
also detected on the surface of some of the cells in the
graft union (Fig. 8b). These observations differed from
the results obtained from immunostaining of the sec-
tioned material. Epitopes JIM11 and JIM20 were seen at
the edges of the cuts of the two grafted parts, on the
surface of the graft union cells, and especially in the
bead-like structures (Fig. 8c–e). Thus, it can be declared
that the JIM11 and JIM20 epitopes were observed in
similar locations as the LM19 epitope.

Results summary
The bead-like structures, which were considered to be
responsible for contact of callus cells and associated with
recognition events (Fig. 9a), were found after establish-
ment of graft union, on the surface of graft union cells,
along with extracellularly deposited material that cov-
ered the graft union (Fig. 9b). The sealing of graft union
with extracellular material was identified as a spatiotem-
poral process (Fig. 9c). In the third time frame, most of
the cells were differentiated, and therefore, the term
“callus” was replaced by “graft union cells” (Fig. 9c). The
analysis of the 17 epitopes, belonging to different cell
wall components, showed that only three were present

abundantly in extracellularly deposited material and in
bead-like structures (un/low-methyl-esterified HG and
extensins; Table 1).

Discussion
Chemical composition of extracellular material and its
implications
Among all the pectin epitopes, only two HG epitopes,
LM19 (abundant) and LM20 (scarce), were detected on
the surface of graft union (Table 1). Although both these
antibodies can bind to the same polysaccharide domains,
only LM19 can recognize unmethyl-esterified HG [47].
Because LM20 and LM7 antibodies do not bind to unes-
terified HG [47, 48], it can be concluded that HG detected
in extracellular material is in the unesterified form. The
residues of galacturonic acid present in the chains of low-
or unmethyl-esterified HG can cross-link with the calcium
cations, thereby creating a “pectin gel” that may cause
stiffening of the cell wall [16, 49–51]. It has also been pos-
tulated that non-esterified pectins are responsible for
maintaining cell adhesion. The cell-covering layer, which
consists of low-methyl-esterified HG, may confine or es-
tablish a predetermined volume and limit cell division, a
mechanism that was already suggested for the supraem-
bryonic network that covers somatic embryos [52]. This
layer, defined by other authors as an extracellular matrix
surface network (ECMSN), has been observed on the sur-
face of somatic embryos or embryogenic calli, or during

Fig. 5 Immunohistochemistry of grafted hypocotyl sections – homogalacturonan (LM20 and LM19 epitopes). a – weak labeling of the epidermal
and cortical cell walls (arrow), no or weak fluorescence signal in the peripheral cells of the graft union (arrowheads) and endodermal cell walls
(full arrow), asterisk – graft union area. a′ a, Calcofluor White. b – abundant occurrence of the epitope in the cytoplasmic compartments (arrows)
and on the surface of the graft union cells located peripherally (arrowheads), asterisk – graft union area. c and d – abundant occurrence of the
epitope in the cytoplasmic compartments, in the cell walls (arrows), and on the surface (arrowheads) of the graft union cells. e – epitope present
in the cytoplasmic compartments (arrows), in the cell walls (full arrow), and on the surface (arrowhead) of the graft union cells. c Calcofluor
White. Scale bars: a, a', and b = 50 μm; c–e = 10 μm

Sala et al. BMC Plant Biology          (2019) 19:151 Page 7 of 16



organogenesis or callogenesis in different plant species
that were cultured in vitro [53–59]. One common con-
stituent of different ECMSNs is un/low-methyl-esterified
HG, which is recognized by the LM19 or JIM5 antibodies
[55, 57, 58, 60, 61]. In the present work, the occurrence of
unmethyl-esterified HG may indicate a protective function
that stabilizes the surface of the graft union.
The second type of chemical constituent that was

found deposited outside the callus cells in the adhesion
zone was extensins. Until now, the increase in extensins
content in the cell wall is thought to be related to the
termination of cell growth due to their involvement in
the formation of the networks that stabilize the cell wall
structure [42, 62]. However, recent studies have indi-
cated that the presence of extensins may also be corre-
lated with the increase in cell size [63] or with the
initiation of cell growth [64]. It has been postulated that

extensins play a role in a plant’s acquisition of resistance
to pathogens (by strengthening the structure of the cell
walls), and in regulation of the pectin properties and the
degree of hydration of the cell wall [65–67]. In addition,
extensins serve as adhesive polymers responsible for
binding of cells to each other and to inert surfaces [68].
In accordance with this finding, in the current study,
both unmethyl-esterified HG and extensins were de-
tected at the scion–stock interface. Also, extensin epi-
topes were detected in the intercellular spaces. Some
extensin epitopes (JIM11, JIM20) found in the bead-like
structures were also seen in the intercellular spaces of
Asplenium, which indicates their secretion outside the
cell wall [69]. The detection of the JIM11 and JIM20 epi-
topes in the intercellular spaces at a distance of several
rows of cells above the union zone may be interpreted
that these structures resemble the secretory channel.

Fig. 6 Immunohistochemistry of grafted hypocotyl sections – extensins (JIM11, JIM12, and JIM20 epitopes) and AGPs (JIM13, JIM8, and LM2
epitopes). a – abundant occurrence of the epitope in the intercellular spaces (arrowheads), graft union area (arrows), and cytoplasmic
compartments of cells adjacent to the graft union area (arrows), inset: epitope present in the cytoplasmic compartments (arrowheads) and on the
cell surface (arrow). b – abundant occurrence of the epitope in the graft union area (arrowhead) and cytoplasmic compartments of the cells
adjacent to the graft union area (arrows). c – epitope present in the intercellular spaces between the cortical cells (arrows). d – scion cells
adjacent to the graft union area, epitope present in the cytoplasmic compartments (arrowheads) and on the cell surface (arrow). c Calcofluor
White, ep epidermis. Scale bars: a and b = 50 μm; a inset, c, and d = 10 μm
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The postulated secretion of extensins is also supported
by the presence of JIM11 and JIM20 epitopes on the sur-
face of the cells of Arabidopsis. It is known that in a
plant organism, secretions can be collected in the extra-
cellular spaces [70], and that some plants produce such
spaces in organs that have been damaged [71, 72].
Therefore, such a location of extensins in the grafted hy-
pocotyls confirms their participation in the plant defense
reactions to damage and their protective properties
against the harmful effect of the external environment.
What does finding extensins and unmethyl-esterified

HG together mean? The possible interactions between
HRGPs and carbohydrate polymers in the cell wall in-
volve glycosidic linkages between arabinose or galactose
from protein and sugar, covalent cross-linking to each
other via isodityrosine residues, and formation of ionic
bond between basic and acidic molecules [73]. Between
both the identified components – unmethyl-esterified
HG and extensins – ionic interactions can occur as they
present opposite charges at physiological pH [39, 74,
75]. Basic extensins form ionic bond with acidic pectins;

however, charge densities of HG may vary depending on
the degree of methyl esterification, whereas extensins
are only weakly charged due to their lysine content [76].
Peptide–pectin interactions can influence the properties
of pectin; for example, they can reduce the swelling of
pectin network in water [65]. Analysis of an in vitro bio-
mimetic model constructed with purified molecules of
extensins and pectin showed that both polymers are in-
timately mixed and together form a plastic network [76].
All these findings suggest that we found an interesting
composite material, formed presumably by pectin–
extensin network(s).
Although antibodies are a powerful tool in plant biol-

ogy, the epitopes they represent are merely regions of
the cell wall polymers and do not express the true het-
erogeneity of cell wall matrix. Thus, there is a need for
further, more comprehensive approach to investigate the
extracellular material, including analysis of its structure
and biochemical composition, in order to find the link
between its composition and its mechanical properties
and function.

Fig. 7 Immunohistochemistry of pectins in the grafted hypocotyls (whole mount). a – epitope present at the cut surface (arrows), weak
fluorescence signal on the surface of the graft union cells, dotted lines – outline of the scion and stock. b and c – abundant occurrence of the
epitope on the surface of the graft union cells (arrowheads), at the cut surface (arrows), and in some of the epidermal cells (full arrows), dotted
lines – outline of the scion and stock. d–f – abundance of the epitope in the bead-like structures (arrowheads) and on the callus cell surface
(arrows). c Calcofluor White. Scale bars: a–f = 50 μm
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Structure and origin of extracellular material
The spatiotemporal changes that were observed in the
morphology of the material covering the callus and, sub-
sequently, the graft union cells included the following: 1)
formation of a fibrillar material outside the walls, 2)
polymerization leading to the formation of a membran-
ous layer, and 3) the presence of bead-like structures,
which appeared either “closed” or “open”. Moreover, the
structure of the extracellular material that was observed
under SEM resembled an ECMSN as was mentioned
earlier [52, 58].
Bead-like structures, or beads, have previously been

observed on the surface of the callus cells that emerged
during grafting [14, 77]. However, their occurrence was
associated with the adhesion of callus of scion and stock;
during contact, the bead-like structures fuse, creating
the functional counterpart of middle lamellae [12]. Such
structures have also been described to be related to
other processes that occur during normal development
[69]. In the present study, the bead-like structures were

observed on the surface of the graft union cells, on dif-
ferent planes, and after the adhesion stage, and there-
fore, they may be associated with a different function.
An important question is how the graft union is sealed.
Hypothetically, a material containing unmethyl-esterified
HG and extensins can be secreted outside of the cells by
exocytosis, similar to the mucus cells. The presence of
the LM19, JIM11, and JIM20 epitopes in the cytoplasmic
compartments, in the cell walls, and on the surface of
cell walls supports the logical sequence of the secretory
pathway, thus confirming the exocytosis. However,
whether the bead-like structures are an expression of the
exocytosis is still unclear. Also, it is not known whether
the “open” form is the later stage of the “closed” one.
Furthermore, whether the occurrence of the fibrillar ma-
terial on the surface of the callus cells, which has no
bead-like structures, is connected with the cellular distri-
bution of the pectic and extensin epitopes in the cortical
and epidermal cells needs to be studied. If all these are
proved, they would indicate an association between the

Fig. 8 Immunohistochemistry of extensins in the grafted hypocotyls (whole mount). a – epitopes occurring abundantly on the surface of the
graft union cells (arrowheads), at the cut surface (arrows), and in some of the epidermal cells (full arrows), dotted lines – outline of the scion and
stock. b and c – epitope detected in the outer walls and cuticle of the scion and stock epidermal cells (full arrows), on the surface of the graft
union cells (arrowheads), and at the cut surface (arrows). d – epitope occurring abundantly on the surface of the graft union cells (arrowhead), at
the cut surface (arrows), and in some of the epidermal cells (full arrows), dotted lines – outline of the scion. e – epitope detected on the surface
of the graft union cells (arrowheads) and in the bead-like structures (arrows). c Calcofluor White. Scale bars: a–d = 50 μm; e = 20 μm
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scion, stock, and callus/graft union cells in sealing of the
graft union. These aspects remain to be confirmed using
other microscopy techniques including transmission
electron microscopy.

Conclusions
In the present study, analysis of the sectioned material
indicated that grafting process was accompanied by de-
position of extracellular material. SEM revealed two
forms of the extracellularly deposited material – fibrillar
and membranous – as well as the occurrence of
bead-like structures on the surface of the graft union
cells, long after a connection was established between
the scion and stock. The extracellular material subse-
quently sealed the graft union. Only unesterified HG
and extensins were detected abundantly in both the
extracellular material and the bead-like structures. Thus,
our results contribute to the current state of knowledge
regarding plant grafting and introduce a structure, which
is interesting in terms of its form and composition, that
potentially protects the graft union area and which has
not been observed during the grafting of other species
before. The results also indicated a possibility of ionic
interaction between the two polymers, acidic pectins

and basic extensins, due to their chemical nature, which
can result in the formation of a network with beneficial
properties.

Methods
Plant material and sample preparation
Seeds of Arabidopsis thaliana Col-0 (Nottingham Arabidop-
sis Stock Center, Nottingham, UK; stock ID: N1093) were
surface-sterilized with 20% commercial bleach (ACE Lever
Co., Fater SpA, Pescara. Italy) for 8min, rinsed five times
with sterile distilled water (each time for 5min), and left for
3 days at 4 °C in darkness. Then, the sterilized seeds were
sown on Petri dishes with a medium containing ½ Mura-
shige and Skoog salts (Sigma-Aldrich, St. Louis, MO, USA),
1% sucrose (CHEMPUR, Karlsruhe, Germany), and 0.8%
agar (BioShop, Burlington, Ontario, Canada), pH 5.80–5.84.
After seeding, the Petri dishes were sealed with parafilm
(Bemis Company Inc., Neenah, WI, USA) and placed verti-
cally in a growth chamber (20–22 °C, relative humidity 40%,
photoperiod 16/8, and photosynthetic active radiation
40 μmolm− 2 s− 1). Following incubation, 4-day-old seedlings
(six to seven seedlings per Petri dish) were transferred under
sterile conditions onto Petri dishes with a medium contain-
ing ½ Murashige and Skoog salts (Sigma-Aldrich, St. Louis,

Fig. 9 Early (a) and late (b) regeneration stages during Arabidopsis grafting. Schematic representation of sealing of the graft union by
extracellular material
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MO, USA), 1% sucrose (CHEMPUR, Karlsruhe, Germany),
and 1.8% agar (BioShop, Burlington, Ontario, Canada), pH
5.80–5.84. Later, another set of Petri dishes were prepared
with a medium which was allowed to solidify at an angle of
15°, and grafting procedure was performed according to the
method previously described [8] using an SZM-140 stereo-
microscope (Motic, Hong Kong): First, horizontal cuts were

made in the middle of the hypocotyls with a microknife
(Fine Science Tools, Heidelberg, Germany), and then the
scion and stock were carefully aligned together using a prep-
aration needle. After grafting, the Petri dishes were sealed
with parafilm (Bemis Company Inc., Neenah, WI, USA) and
placed vertically in a growth chamber (20–22 °C, relative hu-
midity 40%, photoperiod 16/8, and photosynthetic active ra-
diation 40 μmolm− 2 s− 1).
The grafted seedlings were collected at 0–9 dag (60

seedlings on each day) and analyzed using an SZH10
stereomicroscope (Olympus, Tokyo, Japan). The roots,
cotyledons, and developing leaves were excised, follow-
ing which the grafted hypocotyls were fixed and embed-
ded in Steedman’s wax as described previously [78].
Longitudinal sections (5- to 6-μm thick) were cut using
a HYRAX M40 rotary microtome (Zeiss, Oberkochen,
Germany) and collected on microscopic slides covered
with Mayer’s albumin or coated with poly-L-lysine
(Menzel Gläser, Braunscheig, Germany).

Histo- and immunohistochemistry
The sections were dewaxed, rehydrated in a successive
series of ethanol solutions (three times in 100% and once
in 90 and 50% (v/v) solution, and then in distilled water;
each wash for 10 min), and prepared for the histochem-
ical analysis using a 0.05% (w/v) toluidine blue O aque-
ous solution used for general histological evaluation
(Cat. No. T-0394; Sigma-Aldrich, St. Louis, MO, USA)
and 0.5% (w/v) Sudan III solution used for detection of
lipid substances (Cat. No. S4136; Sigma-Aldrich, St.
Louis, MO, USA). Toluidine blue O is metachromatic
dye that imparts different colors to particular cell com-
ponents (e.g. green/blue for polyphenolic compounds,
pink/purple for acidic polysaccharides with COO−

groups [79]), whereas Sudan III stains the lipids with an
orange-red color [80].
For the immunolabeling procedure, the sections were

dewaxed and rehydrated in a series of ethanol solutions
(three times in 100, 90, and 50% (v/v) solution in
phosphate-buffered saline (PBS); each wash for 10min).
The primary rat monoclonal antibodies (Plant Probes,
Leeds, UK) used in the current study are listed in Table 2.
The secondary antibody used was AlexaFluor 488 goat
anti-rat antibody (Cat. No. 112–545-003; Jackson Immu-
noResearch Laboratories, West Grove, PA, USA). The
negative controls were prepared without the addition of
primary antibody; hence, no fluorescence signal was ob-
served in the control set of sections. Prior to immunola-
beling with hemicellulose probes (LM15 and LM21
antibodies), the sections were incubated in pectate lyase
(Cat. No. PRO-E0250; Prozomix Ltd., Northumberland,
UK) and 3-(Cyclohexylamino)-1-propanesulfonic acid
(CAPS) buffer (Cat. No. C263; Sigma-Aldrich, St. Louis,
MO, USA) buffer solution to remove HG according to a

Table 1 Abundant (+), low (+/−), or no (−) occurrence of
epitopes from different cell wall components in extracellular
material and bead-like structures found in Arabidopsis graft union

Cell wall compounds Occurrence in
extracellular material

Occurrence in
bead-like structures

Cellulose – –

Hemicelluloses

Epitope recognized
by LM15 antibody

– –

Epitope recognized
by LM21 antibody

– –

Pectins

Homogalacturonan

Epitope recognized
by LM19 antibody

+ +

Epitope recognized
by LM20 antibody

+/− –

Epitope recognized
by LM7 antibody

– –

Epitope recognized
by LM8 antibody

– –

Rhamnogalacturonan I

Epitope recognized
by LM5 antibody

– –

Epitope recognized
by LM6 antibody

– –

Epitope recognized
by LM13 antibody

– –

Epitope recognized
by LM16 antibody

– –

AGPs

Epitope recognized
by JIM8 antibody

– –

Epitope recognized
by JIM13 antibody

– –

Epitope recognized
by LM2 antibody

– –

Extensins

Epitope recognized
by LM1 antibody

+/− –

Epitope recognized
by JIM11 antibody

+ +

Epitope recognized
by JIM12 antibody

+/− +/−

Epitope recognized
by JIM20 antibody

+ +
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procedure already described [81]. To visualize the cell
walls, the sections were counterstained with 0.01% (w/v)
Calcofluor White, a dye that stains cellulose (Fluorescent
Brightener 28; Cat. No. F3543; Sigma-Aldrich, St. Louis,
MO, USA), in PBS for 10min. All the observations were
performed and photographs were taken using a Nikon
Eclipse Ni-U microscope equipped with a Nikon Digital
DS-Fi1-U3 camera with the corresponding software
(Nikon, Tokyo, Japan), at a maximum excitation wave-
length of 490 nm (AlexaFluor 488) or 330 nm (Calcofluor
White). The details of the staining procedures are de-
scribed in previous studies [78, 82]. On each day of regen-
eration, five grafted hypocotyls were stained and their
representative photographs were taken.

Scanning electron microscopy
For SEM analysis, the roots, cotyledons, and developing
leaves were first excised from the grafted seedlings (4 and
9 dag). The remaining hypocotyls with the graft union
zone were fixed by immediately placing them in 100%
methanol (Sigma-Aldrich, St. Louis, MO, USA) for 30min
to 1 h, according to a previously described procedure [83].
After fixation, the samples were washed twice in 100%
ethanol (each time for 30min), followed by which ethanol
was replaced with acetone. The dehydrated samples were

dried with liquid carbon dioxide using a Pelco CPD 2
critical-point drier (Pelco, Fresno, CA, USA) and placed
on aluminum stubs using double-sided adhesive carbon
tape (Plano GmbH, Wetzlar, Germany). Then, the samples
were coated with a 20-nm film of gold using a Pelco SC-6
sputter coater (Pelco, Fresno, CA, USA). The coated sam-
ples were observed using a Hitachi SU 8010 field emission
SEM (Hitachi High-Technologies Corporation, Tokyo,
Japan) with a secondary electron detector at accelerating
voltages of 5 kV and 10 kV.

Whole-mount and confocal microscopy
First, 4- and 9-dag hypocotyls were fixed in a mixture of
3% (w/v) paraformaldehyde (Polysciences, Washington,
PA, USA) and 1.25% (v/v) glutaraldehyde (Sigma-Aldrich,
St. Louis, MO, USA) in PBS, pH 7.2, overnight at 4 °C.
Following fixation, the samples were washed three times
with PBS (each time for 10min) and placed in a blocking
buffer containing 2% bovine serum albumin (Jackson
ImmunoResearch Laboratories, West Grove, PA, USA) in
PBS (w/v) for 30min. After washing, the samples were in-
cubated with primary antibodies (listed in Table 1) and
with a secondary antibody (AlexaFluor 488) (Jackson
ImmunoResearch Laboratories, West Grove, PA, USA).
Following each incubation, the samples were washed three

Table 2 List of primary rat monoclonal antibodies used in the current study

Antibody Recognized epitope References

Hemicelluloses

LM15 XXXG motif of xyloglucan, shows some cross-reactivity with a single galactosyl residue in xyloglucan subunits XXLG and XLXG [81]

LM21 β-(1→ 4)-manno-oligosaccharides in heteromannan (mannan, glucomannan, galactomannan polysaccharides) [84]

Pectins – homogalacturonan and rhamnogalacturonan I

LM19 unmethyl-esterified, partially methyl-esterified HG [47]

LM20a methyl-esterified HG [47]

LM7a partially methyl-esterified HG [48]

LM8 xylogalacturonan, HG domain [85]

LM5 linear tetrasaccharide in (1–4)-β-D-galactans (RG I side chain) [86]

LM6 linear pentasaccharide in (1–5)-α-L-arabinans (RG I side chain) [87]

LM13 longer stretches of 1,5-linked arabinosyl residues [88]

LM16 epitope associated with arabinans, may involve galactosyl residue(s) on RG backbones [89]

AGPs

JIM8b Arabinogalactan [90]

JIM13 Arabinogalactan/ Arabinogalactan protein, carbohydrate epitope (β)GlcA1- > 3(α)GalA1- > 2Rha [91]

LM2 Arabinogalactan protein, carbohydrate epitope containing β -linked GlcA [92]

Extensins

LM1b Extensin/ HRGP (epitope most likely includes extensin glycan components) [93]

JIM11b Extensin/ HRGP glycoprotein [94]

JIM12b Extensin/ HRGP glycoprotein [94]

JIM20b Extensin/ HRGP glycoprotein [94]
aDoes not bind to unesterified HG. bEpitope structure for carbohydrate antigen: unknown. GalA galacturonic acid, GlcA glucuronic acid, Rha rhamnose
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times with the blocking buffer (each time for 10min).
Then, the samples were rinsed three times with PBS (each
time for 5min), counterstained with 0.01% Calcofluor
White (Fluorescent Brightener 28; Cat. No. F3543,
Sigma-Aldrich, St. Louis, MO, USA) in PBS (w/v) solu-
tion, and rinsed with PBS and distilled water for three
times (each time for 5min). For each antibody, three hy-
pocotyls were collected for analysis. The fluorescence of
the Calcofluor White (excitation 365 nm, emission 435
nm) and secondary antibody (excitation 498 nm, emission
520 nm) was detected using an Olympus FV-1000 con-
focal system (Olympus, Hamburg, Germany) equipped
with an Olympus IX81 inverted microscope, a 405-nm
diode laser, and a multi-line argon ion laser (Melles Griot
BV, Didam, Netherlands). A series of two-dimensional im-
ages of the optical sections through the hypocotyls
(z-stacks) were taken using two separate photomultipliers.
Image processing was performed using Fiji (ImageJ; NIH,
Rockville, MD, USA).

Photodocumentation
Photographs were obtained from two different channels
(ultraviolet, blue light) using an epifluorescence and con-
focal microscope, and were combined using Fiji (ImageJ;
NIH, Rockville, MD, USA). The figures (photographs
and schemes) were assembled using CorelDrawX7
graphics program.

Additional files

Additional file 1: Figure S1. Immunohistochemistry of grafted
hypocotyl sections –homogalacturonan (LM7 and LM8 epitopes). A – lack
of fluorescence signal. A′ A, Calcofluor White. B – epitope detected in
random sections (arrow) between groups of tracheary elements (asterisk)
and other graft union cells. C – epitope present in some locations (arrow)
within graft union area. c Calcofluor White. Scale bars: A and A′ = 50 μm;
B and C = 10 μm (JPG 2277 kb)

Additional file 2: Figure S2. Immunohistochemistry of grafted
hypocotyl sections – rhamnogalacturonan I (LM5, LM6, LM13, and LM16
epitopes). A and B – epitope detected abundantly in walls of graft union
cells (arrows) and in low amount in walls of cortical cells (full arrow),
epitope absent from extracellular material on the surface of graft union
(arrowheads). A′ A, Calcofluor White. C and D – epitope present in
cellular compartments of graft union cells (arrows), no epitope observed
in extracellular material on the surface of graft union (arrowheads). C′ C,
Calcofluor White. E – epitope detected in walls of some graft union cells
(arrows), apart from extracellular material on the surface of graft union
(arrowhead). E′ E, Calcofluor White. F – strong fluorescence signal in cell
wall of sieve tubes (arrows). G – epitope absent from graft union cells
(arrows) and from extracellular material (arrowheads). G′ G, Calcofluor
White. c Calcofluor White. Scale bars: A, A′, C, C′, E, E′, G, and G′ = 50 μm;
B, D, and F = 10 μm. (JPG 2868 kb)

Additional file 3: Figure S3. Immunohistochemistry of grafted
hypocotyl sections – extensins (JIM12 and LM1 epitopes) and AGPs
(JIM13, JIM8, and LM2 epitopes). A – epitope present in some of the
cortical cells (full arrow) and graft union area (arrowheads), intensive
fluorescence signal detected in the outer periclinal cell walls and cuticle
of the epidermis (arrow); inset: intensive fluorescence signal detected in
the outer periclinal cell walls and cuticle of the epidermis (arrow). B –
epitope detected in the cell wall (arrow) and on the outside of the cell

(arrowhead). C – epitope present in the cytoplasmic compartments of
cortical cells near the graft union area (arrow). D – occurrence of epitope
in the cells of the regenerated vascular bundle (arrows), in some
endodermal cells (arrowhead), and peripheral cells of the graft union
(inset: arrowhead), no fluorescence signal detected on the cell surface
(full arrow). E – epitope present in the cytoplasm and/or plasmolemma
of the graft union cells located peripherally (arrowheads), no fluorescence
signal detected on the cell surface (arrow). F and inset – weak labeling in
the cytoplasmic compartments of the peripheral cells (arrowheads), no
fluorescence signal detected on the cell surface (arrows). c Calcofluor
White, ep epidermis. Scale bars: A, D and D inset, and F = 50 μm; B, C, E, A
inset, and F inset = 10 μm (JPG 2588 kb)

Additional file 4: Figure S4. Immunohistochemistry of grafted
hypocotyl sections –xyloglucan (LM15 epitope), and heteromannan
(LM21 epitope). A and B – abundant occurrence of the epitope in the
walls of graft union cells (asterisks) except for endodermal or peripheral
cells (arrows), no fluorescence signal detected on the graft union surface
(full arrow). A′ A, Calcofluor White. C and D – epitope detected in cellular
compartments (arrows) and in the cell walls (full arrows) but not on the
graft union surface (arrowheads). C′ C, Calcofluor White. c Calcofluor
White. Scale bars: A, A′, C, and C′ = 50 μm; B and D = 10 μm (JPG 3122 kb)
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