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Abstract 

Water reacting with silica causes the generation of hydroxyl SiOH accom-
panied by a volume or swelling expansion. The principle of LeChatelier 
ensures that the hydroxyl concentration increases with increasing externally 
applied stresses. From the analysis in [1,2] it becomes obvious that  

a) the hydroxyl concentration must depend on the multi-axiality of the 
applied stresses, and 

b) that the swelling effect is anisotropic.  

On the basis of the results in [1,2] it will be shown that under torsion loading 
the strongest effects on stress-enhanced hydroxyl generation and swelling 
strains should occur, although this stress state shows a disappearing hydro-
static stress term.  
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1 Motivation for anisotropic swelling 

Water penetrated into silica reacts with the silica network according to  

 Si-O-Si +H2O  SiOH+HOSi (1) 

with the concentration of the hydroxyl S = [SiOH] and that of the molecular water C 

= [H2O]. The equilibrium constant of this reaction is at temperatures >500°C  

 CSk /2  (2) 

Strongly different stress states can result in the same hydrostatic stress term h. While 
in [1] arbitrary stress states were considered, here we concentrate on the special case of 
vanishing hydrostatic stress, h=0. An example for this fact is illustrated in Fig. 1 
where the hydrostatic stress, given by  

 )(3
1

zyxh    (3) 

disappears completely. This is trivial when all stress components disappear, i=0 (Fig. 
1a). In the case of Fig. 1b where the transversal stresses are half of the longitudinal 
stress with inverse sign, it results from eq.(3), h=0. 

 

 
Fig. 1 a) b) Three stress states acting on a Si-O-bond exhibiting the same disappearing hydrostatic 
stress h=0: a) isotropic swelling is expected, for b) and c) swelling in z-direction should dominate. 
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The same holds for torsion loading, y=-z, Fig. 1c. It is hardly imaginable that the 
high tensile stresses in bond direction should have no effect on bond fracture via the 
reaction (1). It has to be expected that the reaction in tensile direction should produce 
swelling even for the hydrostatic stress state h=0. 
Figure 2 illustrates the load-displacement curves responsible for bond breaking. Per-
pendicular to the loading direction the necessary energy for splitting the bond is U to 
be provided by thermal vibrations.  
The portion Nx (subscript x means the bonds oriented in x-direction in which no stress 
acts) of opened bonds results from the Boltzmann equation as 

 







RT

U
N x exp  (4) 

The same equation holds for the y-direction 

 







RT

U
N y exp  (5) 

The potential barrier U belongs to the case when no stresses are present or when the 
bond is perpendicular to the stress, Fig. 2a. 
 

 
Fig. 2 Energy conditions for bond breaking (schematic). 
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Under action of a force F in bond-direction, Fig. 2b, the potential barrier is reduced to 
U-Fappl1. Consequently, the occurrence of opened bonds in z-direction is increased  

 





 


RT

VU
N z

z


exp  (6) 

where V is an activation volume. In the following considerations, it will be shown that 
the strongest anisotropy effect has to be expected for the torsion loading case. 

For the computations on anisotropic swelling let us follow the derivations made in [2]. 
The stress effect on the equilibrium constant for reaction SiO2+H2O2 SiOH can be 
derived from Eq.(6) of the article by de Boer [3]. Following the procedure in the re-
view article by Hamann [4], we obtain the following equation for the equilibrium con-
stant: 

  UWkRT  222ln SiOH0,H2O0,  , (7) 

where 0,H2O and 0,SiOH are the chemical potentials for molecular water and hydroxyls, 
respectively in the unstressed state; W represents the work per mol of SiOH done by 
the mechanical stresses; and U is the change of the elastic strain energy per mol due 
to a reduction of material stiffness as a consequence of the water reaction.  
The work term W in Eq. (7) is for loading in 3 directions x, y, z 

 
)1(
,

)1(
,

)1(
,0/ xswxyswyzswzVW     (8) 

with the Cartesian components of swelling strains sw,i, the glass volume, V0, conven-
iently chosen as the molar volume of dry glass, and the superscripts (1) standing for 1 
mole of S. The total swelling volume is in general the sum of the components 

 zswyswxswv ,,,    (9) 

Consequently, it holds for 1 mole of S 

 )1(
,

)1(
,

)1(
,

)1(
zswyswxswv    (10) 

The change of strain energy is for uniaxial loading by z=appl 

 EVU appl 2
2
1

0/   (11) 

where ∆E is the change in the Young’s modulus as a consequence of the material 
damage by hydroxyl generation. 
Due to the reaction between water and silica, a stiffness reduction of the SiO2-
structure, E/S, must occur since the interaction forces between the two S-groups are 
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lower than the forces between the silicon atoms of the original Si-O-Si bond. The re-
duction in stiffness results in a change in the quantity of elastically stored energy, 
which in turn, contributes to the driving force of the reaction [5]. Since E0, the con-
tribution U has the same sign as W. In the following evaluation, the energy term, 
U, will be neglected assuming that E/S is small due to the low hydroxyl con-
centrations in our calculations. Hence, we use the undamaged Young’s modulus in all 
equations having in mind that the results of our computations are lower limits.  
Equations (7) and (8) now yield  

 










 


RT
Vkk xswxyswyzswz )(

2exp
)1(
,

)1(
,

)1(
,

00


, (12) 

where k0 includes all of the terms that are independent of stress (μ0,SiOH, μ0,H2O and 
ln[C]). The molar volume for glass is V0=27.27 cm3/mol. For one mole of hydroxyl 
with the mass mOH=17g/mole in the volume V0 we obtain the hydroxyl concentration 
in weight units (mass S/mass SiO2)  

  283.0
g/mole60

g/mole17

glass

OH)1( 
M

m
S  (13) 

with the related volume strain according to [2] 

  274.0)1()1(  Sv   (14) 

(0.97). Then it holds for )1(
0 vV      

  /molecm5.7274.027.27 3)1(
0 vV   (15) 

2. Hydroxyl concentration under stresses 
Combining eq.(12) and the equilibrium constant k=S2/C (with the concentration of the 
hydroxyl S = [SiOH] and that of the molecular water C = [H2O]) yields the stress-
enhanced hydroxyl concentration for the most general stress state 

 






 


RT
VSS xswxyswyzswz )(

exp
)1(
,

)1(
,

)1(
,

00


 (16) 

Under purely uniaxial tensile stresses z = appl >0, x= y =0, it results from (16) simp-
ly [2] 

 









RT
VSS zswappl

)1(
,

00 exp


 (17) 
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In terms of the volume strain v it is 

 











 


RT

VSS vappl
)1(

00 exp  (18) 

where the ratio  is a measure for the anisotropy of swelling: 

 )1()1(
, / vzsw    (19) 

Since appl>0, the hydroxyl concentration in pure tension increases, S > S0. 

3 A Finite Element model for a single reaction event 
Due to the reaction (1), a SiO-bond may fracture in the absence of externally applied 
stresses. The coordinate system is oriented so that the z-axis agrees with the direction 
in which the repulsive forces between the silanols act (Fig. 3a). The “nano-pore” de-
fined by the dashed circle in Fig. 4a was modelled as a sphere of radius R in an “infi-
nite body”. In a FE-study [6] we modelled the “infinite body” by a cylinder of radius 
500 R and half height 500 R, Fig. 3b. For the computations, we used ABAQUS Ver-
sion 6.9 on a mesh of 1246 elements and 3880 nodes. Due to symmetry, only a 4th of 
the total body had to be modelled. Expansion of the pore is prescribed by a displace-
ment 0 in z-direction. As the only material parameter of relevance we used the Pois-
son ratio of =0.17. Figure 4 represents the displacement distribution for a cylinder 
contour with h =  =16 R. The distance from the pore is large. On the other hand, the 
contour is small compared with the modelled body. Saint-Venant’s theorem ensures 
that no boundary effects and details of the pore shape can affect the results noticeably. 
The displacements are normalized on the maximum displacements present on the 
symmetry lines. 
The volume changes in axial and radial directions, Vz and Vr, are given by  

 



0

)(2 drrrV zz  ,   






h

rr dzzrV
0

)(2  (20) 

Since the cylinder volume is 

  


32
0

h

hV


  (21) 

the volume swelling strain results as  

 



3

rz
v

VV 
  (22) 

Finally, the anisotropy ratio vzsw  /,  is obtained by:  

 
rz

z

v

zsw

VV

V






 ,  (23) 
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A more detailed derivation of eqs.(20-23) is given in the Appendix and in [6]. The av-
erages of strains are explained in more detail in the Appendix. For the cylinder contour 
of  = h = 16 R, the evaluation of eq.(23) results in 

  06.2, 
v

zsw




 (24) 

 

   
Fig. 3 a) Two-dimensional schematic drawing of bond breaking by water/silica reaction; the two hy-
droxyls yield an expansive displacement 0 in z-direction; the volume element in which the reaction 

occurred is represented by the dashed circle, b) Finite Element model of a “nano pore” (sphere of radi-
us R) loaded by axial displacement 0. 

 

 
Fig. 4 Displacement distributions z and r at the cylinder contour in a distance of h==16 R. 
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Having in mind that the volume strain is  

  rswzswzswyswxswv ,,,,, 2   (25)  

a “Poisson’s ratio  ” for swelling strains can be defined via 

  
z

rsw




 ,  (26) 

From eqs.(24) to (26) we obtain 

  257.006.2
21

1

21

1

2

,

,,,

,, 








 









zsw

rswrswzsw

zsw

v

zsw  (27)  

resulting in a Poisson’s ratio as is usual for ceramics. The transverse swelling strains 
are 

  53.0,,, 
v

ysw

v

xsw

v

rsw










 (28) 

It has to be emphasized here once more, that the results from FE were obtained under 
the assumption that all stress-enhanced swelling strains are oriented in direction of the 
load. This is of course an upper limit case.  

4 Hydroxyl concentrations for disappearing hydrostatic stress 

4.1 Hydrostatic stress state as limit case 

In the case of a purely equi-triaxial stress state 

  zyx    (29) 

the hydrostatic tensile stress h is trivially given as  

  )3()( 3
1

3
1

zzyxh    (30) 

Then eq.(16) reads: 

  
























RT

V
S

RT

V
SS vh

v

xswyswzswh
0)1(

0
0

)1(

)1(
,

)1(
,

)1(
,0 exp)(exp 




  

 (31) 

When V  denotes the partial molar volume for the hydroxyl S, (31) can be rewritten as 

  Svvh
Sh VV

RT

V

RT

V

S

S













 0

)1(0)1(

0

expexp 
 (32) 
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4.2 Biaxial stress state in a torsion test 
Under torsion loading, the maximum and minimum principle stresses appear in a co-
ordinate system turned by 45° with respect to the length axis. In this system, Fig. 1c, 
the “applied” stresses are  

 0, ,,,  xapplzapplyappl   (33) 

Under this load, eq.(16) reads  

 






 


RT
VSS yswyswyapplzswzswzappl

)1(
,,,

)1(
,,,

00

)()(
exp


, (34) 

Introducing the ratio =sw,z/v, using (33) and replacing appl,z=appl 

 
































)1(
,

)1(
,

,,)1(
,

)1(
,

)1(
0

0 1exp
zsw

ysw
yswzsw

zsw

ysw
appl

v

RT

V
SS








  (35) 

Under torsion load the hydrostatic stress term disappears, h=0. From this point of 
view, the torsion test seems to be an ideal tool to decide whether the individual stress 
components or the hydrostatic stress is responsible for the stress-enhanced reaction 
eq.(1) in a solid:  

When swelling would be governed exclusively by the hydrostatic stress, not any en-
hanced hydroxyl concentration should be observable. The swelling strains would not 
depend on the coordinates x, y, z, resulting always in isotropic swelling, expressed by 
sw,x =sw,y =sw,z =v. Especially for h=0 it would then result v=0 and the whole ex-
ponent in eq.(35) would then disappear. The consequence is S=S0 f(load). If even in 
torsion the hydroxyl concentration increases under load, the occurrence of anisotropy 
in swelling would be proofed as had been derived and confirmed in [2].  

Evaluation of experimental results by Agarwal et al. [7] and FE-computations show 
that the strain ratio =sw,z/v, representing anisotropic swelling, is in tension =1.92 
[2] from experiment and =2.06 [6] from FE, respectively. Both values are a clear in-
dication for anisotropic swelling since isotropic swelling would result in = 1/3.  
In the case of uniaxial tension, z , the results from FE-computations are given in 
the first line of Table 1. As an example of application to torsion, the second line shows 
the result for the limit case of torsion equivalent to the biaxial stresses y=  z, x =0. 
The work W, eq.(8), last column in Table 1, is larger under torsion even than in uni-
axial tension. Consequently, we have to expect stronger stress enhancement in hy-
droxyl generation and swelling strains as can be concluded from eqs.(8) and (16) writ-
ten in the common form  

 




 

RT

W
SS exp0   
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i.e. the larger the work W is, the stronger is the hydroxyl increase. 

 

 z y x 
)1(

v
)1(
, / zsw  

)1(
v

)1(
, / ysw

)1(
v

)1(
, /  xsw W/(V0

)1(
v z) 

Tension  0 0 2.06 -0.53 -0.53 2.06 

Torsion   0    2.06 

2.06(0.53)=2.59 

Table 1 Work W, eqs.(8, 9), done under torsion loading, compared with uniaxial tension (for 
=2.06). 

 
Fig. 5 Time dependence of twist angle (red curve) in a constant moment test and time dependent mo-

ment for twist angle kept constant (black curve) 

Consequences for torsion tests: 
In our study, we could show that the hydroxyl-enhancement in a torsion test is in the 
order of magnitude of uniaxial tensile tests. Measurable effects are expected. For thin 
water-affected surface layers of thickness b=(D t)

1/2 (D=diffusivity, t=time) and b<<R 
(R=fiber radius), 
 
1. the remaining S after the test would roughly be proportional to Sbt, probably 

measurable by IR-spectroscopy, 
2. in a test under constant twist angle (black curve in Fig. 5), the swelling stresses in 

the surface layer must decrease, resulting in a reduced torsion moment M=M0-M 
with Msw,zbt 

3. in a constant moment test (red curve in Fig. 5), the reduced moment M must be 
compensated, i.e. an additional twist angle t must appear, so that the instan-
taneously applied angle 0 is increased to 0+.  

4. After unloading a remaining twist angle  should be observable. 
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For very short times, there has to be considered that the initial hydroxyl S0 is not yet 
reached as has been outlined in [8]. Consequently, the time dependence will deviate 
from t dependency for t0. 

 
 
Appendix: Displacements and strains from FE 

According to [6] the relation between volume changes, displacements, and strains are 
outlined in in this Appendix. In terms of the geometric quantities of Fig. 3b, the vol-
ume change by the displacements in axial direction is given by  

 



0

)(2 drrrV zz  (A1) 

In radial direction it holds  

 






h

rr dzzrV
0

)(2  (A2) 

On a cylinder contour with =h the average displacement in z-direction reads 

 








2
0

2
)(

2 z
zz

V
drrr


   (A3) 

Consequently, the average strain in z-direction is obtained as 

  



3

zz

h

z
z

V

h





 (A4) 

Since the cylinder volume in the absence of swelling is 

  


32
0

h

hV


  (A5) 

the volume welling strain results as 

 



3

rz
v

VV 
  (A6) 

The anisotropy ratio vz  /  is obtained by combining eqs.(A4) and (A6):  
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z

v

z

VV

V








 (A7) 
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A cylinder contour of  = h = 16 R may be considered. In this case, the evaluation of 
eq.(A7) results in 

  06.2
v

z




 (A8)  

A Poisson’s ratio  for swelling strains can be defined via 

  
z

r




   (A9) 

Since the volume strain is  

  rzzyxv  2  (A10)  

eqs.(A8) to (A10) yield 

  257.006.2
21

1

21

1

2









 









z

rrz

z

v

z  (A11)  

The resulting Poisson’s ratio is similar to those found for ceramics and metals.  
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