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A B S T R A C T

The first part of this work examines the Yukawa sector of a minimal
supersymmetric SO(10) model. As a result of a global numerical anal-
ysis, the GUT predictions for fermion masses and mixing observables
are challenged by recent data from neutrino experiments and lattice
simulations. Moreover, the possible values for the SUSY threshold
corrections to the Yukawa couplings turn out to be vastly constrained.

The second part concernes the quantum corrections to the MSSM
Higgs potential from heavy gluinos. An explicit resummation of these
effects to all orders in perturbation theory shows the relation to the
renormalisation scheme of the top squarks with the result that for
low-energy observables the on-shell scheme should be applied. The
fine-tuning in the MSSM can furthermore be less severe compared to
the leading order result if these contributions are taken into account.

Z U S A M M E N FA S S U N G

Der erste Teil dieser Arbeit untersucht den Yukawa Sektor eines mi-
nimalen supersymmetrischen SO(10) Modells. Eine globale Analyse
ergibt, dass die GUT Vorhersagen für Fermionmassen und deren Min-
schungsobservablen von jüngsten Daten aus Neutrinoexperimenten
und Gittersimulationen angefochten werden. Weiterhin zeigt sich, dass
die möglichen Werte für SUSY Schwellenkorrekturen zu den Yukawa
Kopplungen erheblich eingeschränkt sind.

Der zweite Teil befasst sich mit den Quantenkorrekturen von schwe-
ren Gluinos zum MSSM-Higgspotenzial. Die ausdrückliche Resum-
mierung dieser Effekte zu allen Ordnungen der Störungstheorie zeigt
den Zusammenhang zum Renormierungsschema der Topsquarks mit
dem Ergbnis, dass für Niederenergieobservablen das on-shell Schema
angewandt werden sollte. Ferner kann das fine-tuning im MSSM, ver-
glichen mit dem Ergebnis in führender Ordnung, weniger drastisch
sein, wenn diese Beiträge berücksichtigt werden.

v





C O N T E N T S

1 strange 1

2 top-down 11

2.1 Fitting SUSY SO(10) to fermion observables . . . . . . . 13

2.1.1 Running the light quark masses to the EW scale 17

2.1.2 Extrapolating the SM parameters to higher scales 17

2.1.3 Matching the SM to the MSSM . . . . . . . . . . 18

2.1.4 Determining the GUT scale . . . . . . . . . . . . 20

2.1.5 Matching SO(10) to the MSSM . . . . . . . . . . 20

2.1.6 Decoupling of the right-handed neutrinos . . . 21

2.1.7 Fitting the GUT parameters to the experimental
data . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Results of the global minimisation . . . . . . . . . . . . 23

2.2.1 Discussion of the global minima . . . . . . . . . 23

2.2.2 Likelihood profiles for threshold corrections . . 27

2.2.3 Bottom-Tau unification and the atmospheric mix-
ing angle . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 bottom-up 35

3.1 The Higgs sector of the MSSM . . . . . . . . . . . . . . 37

3.2 Quantum corrections to the Higgs potential . . . . . . . 39

3.2.1 Two-loop calculations with Medusa . . . . . . . 43

3.2.2 Fixed order results for m2
ij . . . . . . . . . . . . . 49

3.2.3 All-order resummation of the gluino contributions 50

3.2.4 The top squark mass . . . . . . . . . . . . . . . . 58

3.2.5 The choice of the renormalisation scale . . . . . 60

3.2.6 The mass of the lightest CP even Higgs boson . 64

3.3 The fine-tuning in the MSSM . . . . . . . . . . . . . . . 66

3.4 An application to Meson mixing . . . . . . . . . . . . . 69

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 charm 75

a appendix 77

a.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 77

a.2 GUT Scale Parameters for the Global Minima . . . . . 79

a.2.1 Global Minima without SUSY Threshold Correc-
tions . . . . . . . . . . . . . . . . . . . . . . . . . 79

a.2.2 Global Minima with SUSY Threshold Corrections 80

a.2.3 Local Minima with SUSY Threshold Corrections 81

a.3 Technical details of the calculations in Chapter 3 . . . . 81

a.3.1 Two and four-component spinors. . . . . . . . . 81

a.3.2 Lagrangian . . . . . . . . . . . . . . . . . . . . . 83

a.3.3 Beta functions . . . . . . . . . . . . . . . . . . . . 84

a.3.4 Loop functions and squark mixing . . . . . . . . 85

vii



bibliography 87

L I S T O F F I G U R E S

Figure 1.1 Diagrams contributing to the self-energy of φ. 2

Figure 2.1 Gauge coupling unification. . . . . . . . . . . . 12

Figure 2.2 Flow chart of the fitting procedure. . . . . . . . 14

Figure 2.3 ∆χ2 of θ23 and δCP from NuFit3.0 . . . . . . . . 22

Figure 2.4 Pulls of all best-fit points . . . . . . . . . . . . . 25

Figure 2.5 Likelihood profiles for SUSY thresholds . . . . 28

Figure 2.6 Comparison of global and local minima. . . . . 30

Figure 2.7 Best-fit values of |yτ/yb| at MGUT . . . . . . . . 32

Figure 3.1 Feynman diagrams with gluinos . . . . . . . . 36

Figure 3.2 Overview of the matching scales . . . . . . . . 39

Figure 3.3 Counterterm conventions . . . . . . . . . . . . 41

Figure 3.4 Dyson resummation . . . . . . . . . . . . . . . 43

Figure 3.5 Massless diagrams . . . . . . . . . . . . . . . . 44

Figure 3.6 Gluon contributions to the top self-energy. . . 46

Figure 3.7 two-loop results . . . . . . . . . . . . . . . . . . 48

Figure 3.8 Resummed topologies . . . . . . . . . . . . . . 50

Figure 3.9 Expansion of the gluino subloop . . . . . . . . 53

Figure 3.10 Three indistinguishable birds on two wires . . 54

Figure 3.11 Results of the resummation . . . . . . . . . . . 56

Figure 3.12 Expansion parameters . . . . . . . . . . . . . . 57

Figure 3.13 Scheme dependence of the stop mass . . . . . 59

Figure 3.14 Matching conditions . . . . . . . . . . . . . . . 61

Figure 3.15 Comparison of matching procedures . . . . . . 62

Figure 3.16 Higgs mass . . . . . . . . . . . . . . . . . . . . . 64

Figure 3.17 Fine-tuning in the MSSM . . . . . . . . . . . . . 67

Figure 3.18 Diagrams for kaon mixing I . . . . . . . . . . . 70

Figure 3.19 Diagrams for kaon mixing II . . . . . . . . . . . 70

Figure 3.20 Results for kaon mixing . . . . . . . . . . . . . 72

L I S T O F TA B L E S

Table 1.1 Gauge representations in the SM . . . . . . . . 4

Table 2.1 Input data for quark masses . . . . . . . . . . . 17

Table 2.2 SM parameters in the MS . . . . . . . . . . . . 19

Table 2.3 SM observables in the DR scheme . . . . . . . 19

Table 2.4 Best-fit points of the global minimisation . . . 24

Table 3.1 Phenomenological constants . . . . . . . . . . . 51

viii



acronyms ix

A C R O N Y M S

QCD quantum chromodynamics

CKM Cabibbo-Kobayashi-Maskawa

PMNS Pontecorvo–Maki–Nakagawa–Sakata

EW electro-weak

EWSB electro-weak symmetry breaking

VEV vacuum expectation value

SM Standard Model of elementary particle physics

MSSM minimal supersymmetric extension of the Standard Model

NMSSM next-to-minimal supersymmetric extension of the Standard
Model

EFT effective field theory

RGE renormalisation group equation

QFT quantum field theory

TC threshold correction

GUT grand unified theory

SUSY supersymmetry

LSP lightest supersymmetric particle

DREG dimensional regularisation

DRED dimensional reduction





1
S Y N O P S I S

There is nothing so
strange and so
unbelievable that it
has not been said by
one philosopher or
another.
— René Descartes

breaking the fourth wall . When I was a student and at-
tended the lectures on quantum field theory (QFT) and particle physics
I would more than once find myself puzzled with the consequences
of quantum corrections: It seemed very strange to me that in perturba-
tion theory "everything could influence everything". I wondered how
one could make predictions from a theory whose values change at
each and every order in the perturbative expansion. I needed some
time to understand that many physical problems will become more
comprehensible to oneself if they are formulated in a different way.
Most of the time that question is: What is large and what is small?
More precisely, in QFT, there are two powerful tools that help to seper-
ate physics at small scales from physics at large scales: effective field
theory and the renormalisation group.

Let us illustrate these theoretical concepts with a simple one-loop
example before we actually apply them to physical problems. We
will not so much focus on the calculations and the results but on the
conclusions we can draw from them. Our conventions can be found
in Appendix A.1. Some of them are explicitely mentioned in the text,
some appear in the side margins as a reminder.

a toy model . part i . Consider a complex scalar field φ (mass m)
whose interaction with a Dirac fermion ψ (mass M) is described by
the Lagrangian density

PR,L = (1± γ5)/2 .
Lint = −y ψ PLψ φ− y? ψ PRψ φ? . (1.1)

We can calculcate the corrections to the scalar mass m coming from
this fermion in perturbation theory, as depicted in diagram 3 of Figure
1.1. For zero momentum transfer the scalar self-energy in d = 4− 2ε

dimensions is
The self-energy is
evaluated at p2 = 0
since we assume
M2 � p2.

i Σ(p2 = 0) = −
∣∣yµε

∣∣2 ∫ ddk
(2π)d

tr
{
(M− /k)PL(M− /k)PR

}
(k2 −M2)(k2 −M2)

= −
2i
∣∣y∣∣2 M2

(4π)d/2

(
1

1−ε + 1
)( µ

M

)2ε

Γ(ε) , (1.2)

where the renormalisation scale µ has been introduced to keep the
Yukawa coupling y dimensionless and the integral [1]

∫ ddk
(m2 − k2)λ

=
i πd/2

(m2)λ+ε−2
Γ(λ + ε− 2)

Γ(λ)
, (1.3)

1
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Figure 1.1: Diagrams contributing to the self-energy of φ.

has been used. The self-energy induces a shift in the pole of the Dyson
resummed propagator of φ, i. e. the physical mass becomes

m2
pole = m2 − Σ(p2) . (1.4)

This simple example illustrates two important aspects of quantum
corrections. Firstly, the integral in eq. (1.2) scales as ∼

∫
dk kd−3 for

large values of the loop momentum. Hence, the integral does not
converge in four spacetime dimensions. In dimensional regularisation
(DREG) [2], this divergency becomes manifest as a pole in the Laurent
series of the Γ function around ε = 0,

Numerically, the
Euler-Mascheroni

constant is
γE ≈ 0.5772.

Γ(ε) =
1
ε
− γE +O(ε) . (1.5)

Expanding now eq. (1.2) around ε = 0 gives

i Σ(p2 = 0) =
−i
∣∣y∣∣2 M2

16π2

(
4
ε
− 4 γE + 4 log 4π

+ 4 log
( µ2

M2

)
+ 2 +O(ε)

)
.

(1.6)

This expression is apparently not convergent in the limit ε → 0. But
we can deal with this divergency by replacing m2 → m2 + δm2 in the
Lagrangian. The pole mass of the scalar φ then becomes

m2
pole = m2 − Σ(p2) + δm2 . (1.7)

Choosing the counterterm δm2 such that it cancels the 1/ε poles in
eq. (1.6) makes m2

pole finite in four dimensions. δm2 must therefore at
least contain all the 1/ε poles but one could add any term that is finite
for ε → 0. This leaves us with an arbitrariness in the choice of δm2,
namely the choice of the renormalisation scheme.

The renormalisation scale µ has been introduced in eq. (1.2) to keep
the mass dimension of y fixed outside of four dimensions. Naively, µε

should give 1 for ε→ 0. But in combination with the 1/ε pole in the
gamma function there remains a finite term ∝ log(µ2/M2) in eq. (1.6).
Therefore m2

ren. now depends on the choice of both the renormalisation
scheme and the renormalisation scale. At this point it is convenient to
define the modified minimal subtraction scheme (MS, [3]): We replaceThe notation µ̄ is

used in this work to
avoid confusion with

the MSSM
parameter µ.

µ2 → µ̄2eγE /4π (1.8)
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and then absorb only the 1/ε pole into δm2. This is equivalent to
absorbing not only the poles but also the log 4π and γE terms that
always accompany them. We see that a different prescription of what
to absorb into the counterterm is the same as a rescaling of the renor-
malisation scale.

We can express the dependence of m2 on the renormalisation scale
µ̄ in the following way

dm2
MS

d log µ̄2 =
−4
∣∣y∣∣2 M2

16π2 . (1.9)

This so-called renormalisation group equation (RGE) tells us how the
value of m2

MS
changes if the value of µ̄ changes. This can be seen as

one of the puzzling consquences of QFT mentioned at the beginning
of this chapter: a physical quantity like a mass appears to depend on
the renormalisation procedure. This fact may become clearer when we
look at it from a different perspective: The renormalisation procedure
is part of how a theory is defined. If we change it, the renormalisation
group tells us how to change the other parameters of the theory in
order not to change the physical predictions of the theory. Practically,
one can think of the renormalisation group as a device to translate
between renormalisation scales and thus will be used recurringly
throughout this thesis.

Secondly, m2
ren in eq. (1.7) also depends on y and M. It is a peculiar-

ity of scalar fields that m2
ren scales (naively) as M2. If M2 � m2, the

quantum corrections can easily become much larger than the value of
m2 itself. On the one hand, this is not a problem since one can absorb
any finite contribution into δm2. On the other hand, however, a rela- If m is at the

electroweak scale and
M at the Planck
scale, roughly 32
significant decimal
digits, i. e. quadruple
precision (128 bit),
are required to get
the right order of
magnitude for m.

tively small change in the value of M may result in a relatively large
change of m which needs to be compensated by tuning δm2 accord-
ingly. One can compare this to numerical operations on a computer:
Adding and subtracting large numbers with small differences requires
high floating point precision. Keeping in mind that this fine-tuning of
the theory parameters must be done at every order in perturbation
theory, it seems implausible that physics at the scale of m is so sensi-
tive to physics at the scale of M� m. At this point our observation is
general to scalar masses in QFT. Let us now have an overview of the
Standard Model and particle physics to see the consequences of this
observation.

the standard model . Since its development in the 1960s and
1970s the Standard Model of elementary particle physics (SM) has
led to great success in describung the quantum nature of both the
electro-weak (EW) interaction [4–6] and quantum chromodynamics
(QCD) [7, 8]. The SM is a gauge theory with the gauge group SU(3)C ×
SU(2)L ×U(1)Y. The corresponding gauge bosons are the gluons Ga,µ
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field flavours SU(3)C SU(2)L Y

ei
R eR, µR, τR 1 1 -2

Li

(
νe,L

eL

)
,

(
νµ,L

µL

)
,

(
ντ,L

τL

)
1 2 -1

ui
R uR, cR, tR 3̄ 1 4/3

di
R dR, sR, bR 3̄ 1 -2/3

Qi

(
uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

)
3 2 1/3

Table 1.1: Gauge representations of the fermions in the SM. Subscripts L
and R are used for left-handed and right-handed chiral fermions,
respectively, such that ψL = PLψ and ψR = PRψ for a Dirac fermion
ψ. Bold numbers stand for the representations of SU(N). Y is the
hypercharge and i = 1, 2, 3 is a flavour index.

(a = 1, ..., 8) as well as the electroweak bosons W1,µ, W2,µ, W3,µ and Bµ.
They couple to the matter fermions ψi via the gauge kinetic term

LSM
kinetic = ψ

i i /D ψi . (1.10)

The covariant derivative Dµ here needs some clarification since it
depends on the gauge representation of the matter fields. It is an
important aspect of the electroweak interaction that it is chiral, i. e.
treats left-handed fermions and right-handed fermions differently.
Thus the SM accounts for the parity violation found in experiment [9].
Table 1.1 shows the gauge representations of the chiral fermions ψL =

PLψ and ψR = PRψ. In particular all right-handed fields are singlets
under SU(2)L (i. e. weak interaction) and all leptons are singlets under
SU(3)C (i. e. strong interaction). To fix the conventions we state the
covariant derivative as it applies to the left-handed quark doublet,

Dµ = ∂µ +
igY

2
BµY +

ig2

2
Wµ

i σi +
ig3

2
Gµ

a λa . (1.11)

Y denotes the hypercharge of the field. The Pauli matrices σi/2 are
the group generators acting on the weak doublets and the Gell-Mann
matrices λa/2 act on the colour triplets. We note that colour indices
for quarks (and also for squarks later on) will be suppressed in most
expressions of this thesis.

All fermion fields in the SM come in three copies, or generations.
We will often speak of down-type quarks meaning the quark flavours
down, strange and bottom, as well as up-type quarks meaning the up,
charm and top quark. The same applies to the charged leptons that
come in the flavours electron, muon and tau. These three generations
differ from each other in nothing but their masses. Mass terms in the
Lagrangian, however, are forbidden by gauge symmetry since they
would mix left-handed and right-handed fields. Fermion masses as
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they are observed in nature therefore require spontaneous breaking of
the electroweak interaction.

The electro-weak symmetry breaking (EWSB) is achieved with the
Higgs mechanism [10, 11]. What we call the Higgs field is a complex
scalar SU(2)L doublet field φ with hypercharge Y = 1 whose gauge
kinetic term and self-interactions are

Numerically,
v = 174.104 GeV,
replacing
v→ v/

√
2 in our

expressions will
restore the other
convention.

LSM
Higgs =

(
Dµφ

)†(
Dµφ

)
−m2 φ†φ− λ

4

(
φ†φ

)2
. (1.12)

In the minimum of the classical scalar potential the Higgs field config-
uration can be written in SU(2)L space as

〈φ〉 =
〈(

φ1

φ0

)〉
=

(
0
v

)
, with v2 = −2m2

λ
, for m2 < 0 . (1.13)

The vacuum expectation value (VEV) v breaks the SU(2)L × U(1)Y
gauge symmetry to the electromagnetic gauge group U(1)EM. The
electric charge in our conventions is Q = I3 + Y/2. The W± bosons I3 is the third

compent of the weak
isospin. For a weak
doublet that is σ3/2.

and the Z boson which correspond to the generators of the broken
symmetry receive a mass from the gauge kinetic term of the Higgs
field, whereas the mass of the Higgs boson itself is determined by
the curvature at the minimum of the classical scalar potential. In our
conventions these masses read

m2
W =

g2
2

2
v2, m2

Z =
g2

Y + g2
2

2
v2, m2

h = λv2 . (1.14)

Although these particles were already predicted in the 1960s, it was
not before 1983 until the W and Z bosons were discovered [12–15].
The long-standing search for all particles in the SM eventually came to
its end with the finding of the Higgs boson in 2012 [16, 17].

Moreover, the Higgs mechanism also gives masses to quarks and
leptons through the Yukawa interactions. The Yukawa sector of the SM

consists of all gauge invariant interactions of the Higgs field with the
chiral fermions, A dot denotes a

matrix product, the
metric tensor of
SU(2) is
ε =

(
0 1
−1 0

)
.

LSM
Yukawa =−Yij

e eRi φ† · Lj −Yij
d dRi φ† ·Qj −Yij

u uRi QT
j · ε · φ

+ H.c.
(1.15)

Ye, Yd and Yu are matrices in flavour space. We will use Yx for Yukawa The singular values
of a complex matrix
A are the square
roots of the
eigenvalues of A† A.

matrices and yx for their singular values. Inserting the VEV of the
Higgs field the mass matrices are

Mx = v Yx, for x = u, d, e . (1.16)

All mass matrices have a strong hierarchical structure with the first
generation being the lightest one. The fermions of the second and third
generation are heavier than the former ones by a factor of roughly 40

up to 100. This recurring pattern can be seen as a hint of an organising
principle in the Yukawa sector.
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beyond the standard model . Coming back to our simple toy
model from the beginning of this chapter, we can now compare it with
the SM: The main similarity is the existence of a complex scalar field
φ coupling to a fermion with a Yukawa interaction. The masses of
all particles in the SM, however, are set by the VEV of the Higgs field
(times some coupling). Therefore, there is no large mass hierarchy
within the SM that destabilises the mass of the Higgs boson like in
our simple example. The hierarchy problem arises if the Higgs doublet
couples to physics at scales that are much higher than the electroweak
scale. This could be the Planck scale at about 1019 GeV at which gravity
becomes strong enough to compete with the forces of the SM. But it
also could be any new particle heavier than the electroweak scale. This
is a well-motivated scenario since we know that the SM—although
quite accurate in its predictions—is at least an incomplete description
of nature.

An obvious shortcoming of the SM is that it cannot—at the renor-
malisable level— explain the masses of neutrinos which are indicated
by neutrino oscillations [18–21]. One possibility to generate neutrino
masses without introducing new particles is the dimension five opera-
tor [22]

ψC = −iγ2γ0ψ̄T .

LSM
κ =

κij

4

(
Lc

i · ε · φ
)(

LT
j · ε · φ

)
+ H.c. . (1.17)

The coupling κ has mass dimension minus one and hence is not renor-
malisable. This hints at a more fundamental theory that effectively
generates this operator. A renormalisable model can e. g. introduce
n species of right-handed neutrinos Ni. The most general way these
gauge singlets can couple to the SM particles is

LSM
N = −1

2
Mij NiNc

j −Yij
ν Ni LT

j · ε · φ + H.c. (1.18)

Below the mass scale M of the right-handed neutrinos, they can be
integrated out generating the effective Weinberg operator of eq. (1.17).
All information from the fundamental theory is then incorporated
in the Wilson coefficients κij as the right-handed neutrinos and their
dynamics are no longer part of the effective theory.

The effective masses for the left-handed neutrinos are of the order of
v2/M which lies in the eV range for M = O(1013)GeV in accordance
with the current experimental bound on the SM neutrino masses [23].
This is one example of how physics from different scales can interfere
with each other and a treatment in terms of an effective field theory
becomes necessary. In this thesis the see-saw will be revisited in
the context of SO(10) grand unification. One of the major findings of
Chaper 2 is that the Yukawa sector of supersymmetric SO(10) becomes
severely constrained with recent neutrino data. The setup of this model
still needs another ingredient, namely supersymmetry (SUSY) which
will be illustrated in the framework of our example from the beginning
of this chapter.
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a toy model . part ii . Let L and R be two complex scalar fields
coupled to φ via the quartic couplings

∆L = −
∣∣y∣∣2 L?L φ?φ−

∣∣y∣∣2 R?R φ?φ . (1.19)

Let φ have a VEV of the form 〈φ〉 = v. Then ∆L creates an additional
mass term M = yv for L and R (the same as for ψ in eq. (1.1)) as well
as the trilinear coupling

−
∣∣y∣∣ v L?L(φ + φ?)−

∣∣y∣∣ v R?R(φ + φ?) . (1.20)

Including these interactions, the diagrams 1,2,4 and 5 in Figure 1.1
also contribute to the self-energy of φ,

i Σ(p2 = 0) =
i
∣∣y∣∣2 M2

(4π)d/2

(
µ

M

)2ε Γ(ε)
1− ε

+
i
∣∣y∣∣2 M2

(4π)d/2

(
µ

M

)2ε

Γ(ε)

+ the same for diagrams 2 and 5 ,

where the first line corresponds to diagram 1, the second line to dia-
gram 4 and the last line stands for the contributions of R. Surprisingly,
these contributions exactly cancel that of the fermion ψ in eq. (1.2).
Explicitly, this cancellation applies to the UV divergent terms as well
as to the UV finite ones. The mass m hence does not need to be renor-
malised in our example and is stable against radiative corrections. But
this cancellation only holds under the very specific assumptions we
made: Introducing a complex scalar for each chiral component of ψ

and coupling them to φ like in eq. (1.19). If there were another source
of masses for L and R the cancellation would not be exact. Another
subtlety is present: The fermion trace in eq. (1.2) must be evaluated in
four dimensions, i. e. applying dimensional reduction (DRED) (DR, [24,
25]) which will later be commented on.

The discussion will
follow reference [26]
which adopts the
notation from [27].

Supersymmetry [28–33] puts this accidental cancellation on more for-
mal grounds by postulating a symmetry between bosons and fermions.
This has the benefit of stabilising the electroweak scale against radia-
tive corrections from heavy particles at any order in perturbation
theory. Instead of defining SUSY in a formal way we will use the
minimal supersymmetric extension of the Standard Model (MSSM) as
an example of a supersymmetric theory focusing on its phenomeno-
logical aspects.

The superpotential of
our toy model would
beW = y φLR.

the minimal supersymmetric standard model . A very
useful tool to describe supersymmetric interactions is the superpotential.
We can define it as a holomorphic function of the scalar fields with
mass dimension three. The SUSY partners of the SM fermions are
called squarks (Q̃i, ũR, d̃R) and sleptons (L̃i, ẽR) having the same
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gauge representations as the corresponding fermions in Table 1.1. The
superpotential of the MSSM [27, 34–38] then can be written as

WMSSM = µ H1 · ε · H2 + Yij
e eRi H1 · ε · Lj

+ Yij
d dRi H1 · ε ·Qj + Yij

u uRi ·Qj · ε · H2 ,
(1.21)

where i, j = 1, 2, 3 are flavour indices. The first observation is that
two Higgs doublets H1 (hypercharge Y = −1), H2 (Y = 1) are needed
because complex conjugation is not allowed in a holomorphic function.
To generate masses for all fermions also two VEVs are needed, in
SU(2)L space

〈H1〉 =
〈(

h0
1

h−1

)〉
=

(
v1

0

)
, 〈H2〉 =

〈(
h+2
h0

2

)〉
=

(
0
v2

)
. (1.22)

Reproducing the gauge boson masses of the SM fixes v2 = v2
1 + v2

2. The
ratio of the VEVs is defined as tan β = v2/v1. The Yukawa interactions
for the scalars φi and their chiral partners ψi can be derived from the
superpotential by

LYukawa = −
1
2

∂2W
∂φi ∂φj

ψiψj + H.c. (1.23)

It is also useful to define so-called F-terms and D-terms, respectively,

Fi =
∂W
∂φi

, Da = g φ?
i Ta

ijφj , (1.24)

where Ta is any matrix generator of the SM gauge groups and g
denotes the corresponding gauge coupling. The scalar potential is

V =
1
2

DaDa + F?
i Fi . (1.25)

The interactions of scalars and chiral fermions with the gauge bosons
are given by their respective gauge kinetic term. In addition, the gauge
bosons have superpartners, the gauginos λa (called bino b̃, wino w̃i,
gluino g̃). They are Majorana fermions in the adjoint representation of
the gauge group. Their gauge interactions are described by

σµ = (1,~σ)µ, all
further

two-component
spinor notation can

be found in
Appendix A.1

Lgaugino = ig fabcλaσµλb Vc
µ + i
√

2 Ta
ij

(
λaψjφ

?
i − λ̄aψiφj

)
, (1.26)

with the structure constants fabc of the respective gauge group with
gauge boson Va,µ.

In fact one further symmetry is required to forbid additional terms
in the superpotential of eq. (1.21): R-parity. All SM fields and the
Higgs doublets carry the multiplicative quantum number R = 1,
whereas their respective superpartners have R = −1. This has the nice
consequence that the lightest supersymmetric particle (LSP) is stable
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and serves as a candidate for dark matter. The lack of such a candidate
can be seen as another important shortcoming of the SM.

Finally, we have seen that supersymmetry demands particles and
their superpartners to be degenerate in mass. Yet, this is not what
we observe in nature and this fact hints at supersymmetry being not
an exact but a broken symmetry. Although there exist ideas on how
to break supersymmetry dynamically [39, 40], we will use general
soft-breaking terms [41] in the Lagrangian, that is masses for the scalars
and gauginos, namely

L = −mij φiφ
?
j −

1
2

M1 b̃b̃− 1
2

M2 ¯̃wiw̃i − 1
2

M3 ¯̃ga g̃a , (1.27)

as well as trilinear scalar couplings. They will be specified when we
make use of them. The important condition for all soft terms is that
they do not violate gauge symmetry. While phenomenologically addi-
tional scalar masses solve the problem of why we have not yet detected
any SUSY particles they also introduce a theroretical problem: The can-
cellation of radiative corrections we have encountered in our toy model
is spoiled. To make this statement more precise, let us suppose there
is supersymmetry restored at some energy scale MSUSY. That is, the
SUSY scalar masses are set at this scale. Then radiative corrections of
the order of M2

SUSY can contribute to the mass parameters in the Higgs
potential which destabilises the electroweak scale. Depending on how
large MSUSY actually is this behaviour reintroduces our problem from
the beginning, this time called the little hierarchy problem.

outline . As we have seen in this introductory chapter, there are
various reasons to speculate about new physics in the framework of
supersymmetry. But the fact that we have not yet found any SUSY par-
ticles gives rise to problems of its own. This thesis tries to tackle some
of them in two complementary ways: Chapter 2 will be concerned
with SUSY SO(10) grand unification following a top-down approach.
We will find that new data on quark masses and neutrino observables
constrain the threshold effects of SUSY particles in the Yukawa sector.
In Chapter 3 we will follow a bottom-up approach. We will consider
the limit in which the gluino becomes much heavier than the top
squarks as well as its implications on the Higgs sector and the little
hierarchy problem. As we will see, this scenario poses the question
of which renormalisation scheme should be adopted for radiative
corrections stemming from heavy SUSY particles. In the end, we will
summarise in Chapter 4 what we have learned from this Tale of Scales.





2
F E R M I O N M A S S E S A N D M I X I N G I N M I N I M A L
S U P E R S Y M M E T R I C S O ( 1 0 )

And what are two
thousand years?...
What, indeed, if you
look from a
mountain top down
the long wastes of
the ages? The very
stone one kicks with
one’s boot will
outlast Shakespeare.
—Virginia Woolf

supersymmetric grand unification. In the course of its de-
velopment, the SM not only provided a description of the electro-weak
interaction, but delivered proof that the concept of non-abelian gauge
theories [42] can function to describe nature at the quantum level. It
was not before long that this finding inspired physicists to embed the
SM into theories with simple gauge groups, so-called grand unified
theories (GUTs). The first of such models that has been published is
based on the gauge group SU(5) [43]. Interestingly, H. Georgi actu-
ally noticed earlier on that SO(10) is a valid candidate as well. This
line of research was pursued later in references [44, 45]. GUTs became
favoured by many theorists because of their elegance and simplicity:
Once the SM is embedded into the GUT, all quantum numbers of the
SM particles are fixed by gauge symmetry. In particular, GUTs explain
why the electric charges of the proton and the positron are exactly
equal. An SO(10) symmetric theory is also automatically free of gauge
anomalies [46, 47], while their absence is merely accidental in the SM.

The spinorial representation 16 of SO(10) additionally can accom-
modate for all fifteen SM fermions of one generation plus a right-
handed neutrino. Thus not only unification of the forces but also of
the matter fields is achieved. As a result, in SO(10) symmetric theories,
the Yukawa sectors of quarks and leptons are closely connected to
each other. Parity is restored since SO(10) has a subgroup SU(2)R

that couples to the right-handed SM fermions. Interestingly, in the
MSSM all three gauge couplings meet at MGUT = 1.35× 1016 GeV as
Figure 2.1 depicts. Although the unification is not quite perfect, it
makes SUSY GUTs very attractive since gauge coupling unification can
be achieved without additional particles below the GUT scale besides
the SM particles and their superpartners. SUSY also has the advantage
that it protects the EW scale against radiative corrections proportional
to M2

GUT that stem from heavy gauge bosons and the Higgs fields nec-
essary to break the gauge symmetry at MGUT. Over the last decades
a lot of studies on SUSY SO(10) models have been performed [48–61],
some particularly focusing on one specific model, sometimes called
the "(N)MSGUT" [62–81]. Nevertheless, we will not concern ourselves
with the details of such complete models but rather with the features
they all have in common: the Yukawa sector and its predictions for
fermion masses and mixing in the SM.

The fact that relations among the Yukawa couplings predicted by
GUTs are only valid at the GUT scale requires a thorough numerical

11
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Figure 2.1: RGE evolution of gauge couplings in the MSSM. As input val-
ues the 1 TeV data from Table 2.3 is used. The GUT scale is
determined by MGUT = 1.35× 1016 GeV and g2

1 = 3/5 g2
Y. For

greater detail see Section 2.1.4.

treatment of the RGE effects in order to fit the high-scale model to
low-energy data, such as quark masses. Of the various studies that
have been performed [55, 58–60, 82–88] we would like to point out
references [89, 90] as being the most recent and elaborate ones. Dück
and Rodejohann [90] perform a global fit to the fermion masses and
their mixing in both the supersymmetric and the non-supersymmetric
case while studying different combinations for the GUT Yukawa sector.
Bertolini, Schwetz and Malinsky [89] additionally analyse the GUT

potential regarding its influence on the see-saw scale. We will use both
their results to set up what we will call the minimal model.

During the last couple of years, furthermore, a lot of progress
has been made in improving the experimental data on quark and
lepton observables. This counts especially for the light quark masses
whose determination relies on lattice calculations [91]. Also the overall
uncertainties in the global fits to the CKM [92] and PMNS [93] matrices
have been reduced. As we will see, the new data severely challenges
the predictions made by grand unification.

minimal supersymmetric so(10) Due to the tensor structure
of SO(10), the only possible Yukawa couplings for fermions in the 16
representation are to Higgs fields in the 10, 120 and 126 representation,
see, e. g., [94]. In supersymmetry, the corresponding superpotential
reads, with flavour indices i and j

For simplicity, the
name of the field

indicates its
representation.

WYukawa
SO(10) = Yij

10 16i · 16j · 10H +Yij
120 16i · 16j · 120H +Yij

126 16i · 16j · 126H .

(2.1)
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A flavour rotation U ∈ U(3) on the fields in the 16 representation

16i → Uij 16j , (2.2)

allows to choose one Yukawa matrix diagonal, e. g.

Y10 → UTY10U = diag
(
y1, y2, y3

)
. (2.3)

A realistic model hence needs at least two Yukawa matrices to allow
for flavour non-diagonal couplings. Due to the tensor structure of
SO(10) one can further choose Y126 to be symmetric and Y120 to be
antisymmetric without loss of generality. As the studies in [90] have Because of its

antisymmetry, Y120
can help to fit the
mixing observables
but not the fermion
masses. Adding the
120 representation
would further
introduce another 12
parameters.

shown, the combination of the Higgs representations 10 and 126 is
more suited to describe the fermion data than other combinations of
two Higgs representations. We therefore will use this combination
for our minimal model, introducing 19 free parameters in the Yukawa
sector.

The problems
introduced by having
several copies of the
weak doublets and
colour triplets in the
Higgs
representations can
be solved in complete
SO(10) models via a
mechanism called
missing vev
mechanism, see,
e. g., [95].

The 126 representation does not only accommodate for two copies of
the MSSM Higgs doublets but also features weak singlets and triplets.
Their VEVs can trigger both Type I see-saw (stemming from weak
singlets) and Type II see-saw (stemming from weak triplets). For a
review, see e. g. [96]. In the analysis of [89], the authors find that fits
to a complete SUSY GUT potential prefer Type I see-saw over Type II
see-saw. We therefore will focus on Type I see-saw in order to keep
the number of parameters in our model minimal.

Besides their elegance GUTs make one spectacular prediction: They
conserve neither lepton nor baryon number. Thus, the proton is un-
stable in those theories. In SUSY GUTs, its lifetime also depends on
the absolute mass scale of the squarks. Analyses of minimal SUSY

SO(10) models [97–99] have shown that the predictions for the life-
time of the proton are typically above the lower bounds given by the
Super-Kamiokande experiment [100], being of the order of 1034 years.

2.1 fitting susy so(10) to fermion observables

The methodology of our global analysis will follow a top-down ap-
proach, i. e. the input parameters are set at the GUT scale and are
compared to the data given at the SUSY scale after applying RGE cor-
rections. Each step of the fitting procedure is shown in Figure 2.2 and
explained in detail in the subsection labelled by the red numbers. The
procedure can be roughly summarised as follows: The masses of the
light quarks are evolved to the EW scale. Between MZ and MSUSY, the
two-loop RGEs of the SM are used [101–103]. The GUT scale is deter-
mined by gauge coupling unification. At MGUT the input parameters
for the MSSM Yukawa couplings are set. Their values are then evolved
in the MSSM with additional singlet fields to account for the right-
handed neutrinos [104, 105] which are consecutively integrated out
at their mass scale. The fit is finally performed at the matching scale
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mark the subsections of Section 2.1
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MSUSY = 1 TeV, where also tan β enhanced threshold corrections (TCs)
are taken into account.

a note on running and decoupling . If right-handed neutri-
nos are added to the MSSM, the superpotential additionally includes
the following renormalisable couplings [106, 107]

WN =
1
2

Mij Ni Nj + Yij
ν Ni Lj · εT · H2 . (2.4)

Integrating out the right-handed neutrinos gives a contribution to the
Weinberg operator, whose supersymmetric form is The conventions are

chosen to coincide
with the
non-supersymmetric
version in eq. (1.17).

Wκ = −κij

4

(
Li · ε · H2

)(
Lj · ε · H2

)
. (2.5)

The Mathematica package REAP [108] features both the RGE running
of these couplings as well as the automatic decoupling of the right-
handed neutrinos at their threshold in the SM and the MSSM. For
solving the RGEs of the Yukawa couplings and the gauge couplings
at the two-loop level, we have rewritten REAP in C++ to speed up the
calculations. The RGEs themselves are coupled non-linear differential
equations of the Yukawa couplings Yx and gauge couplings gi that
take the general form

dYx

d log µ̄
= βYx ,

dgi

d log µ̄
= βgi , (2.6)

where the beta functions βYx and βgi are polynomials in Yx and gi.
Our template-based implementation uses the libraries odeint [109]
and eigen3 [110]. On a desktop machine (i5, 3.3 GHz), the C++ version
is a hundred times faster than the Mathematica version making the
time consuming computations of this analysis feasible. A generalised
version of the code is planned to be publicly available [111].

a note on fermion observables . At this point it should be
clarified what the expression fermion observables means. In the SM, U(3)
flavour rotations can be applied to the quark fields in the Lagrangian
of eq. (1.15) by

uR,i → UR,†
ij uR,j , Qi → UL,†

ij Qj , dR,i → DR,†
ij dR,j , (2.7)

if at the same time the Yukawa matrices, Yu and Yd, are rotated as

Yu → U†
R Yu UL , Yd → D†

R Yd UL . (2.8)

Hence the Yukawa matrices are not physical observables since they
depend on the flavour basis that is chosen. Eq. (2.8) allows to choose
one Yukawa matrix diagonal applying singular value decomposition.
For Yu that is

Yu → U†
R Yu UL = diag(yu, yc, yt) , (2.9)



16 top-down

by choosing UL and UR such thatMatrices of the form
Y†Y and YY† are

hermitian and
therefore can be

diagnalised with
unitary rotations.

U†
L Y†

u Yu UL = diag
(∣∣yu

∣∣2 ,
∣∣yc
∣∣2 ,
∣∣yt
∣∣2) = U†

R YuY†
u UR . (2.10)

The same procedure can not be applied to Yd, however, since only
one rotation, namely DR, remains to be chosen. Yet we can introduce
another unitary matrix DL demanding that

Yd → D†
R Yd UL = D†

R Yd DLD†
L UL (2.11)

= diag(yd, ys, yb) D†
LUL . (2.12)

The unitary Cabibbo-Kobayashi-Maskawa (CKM)-matrix [112, 113]
VCKM = D†

LUL describes the misalignement between Yd and Yu in the
flavour basis where either of them is diagonal. VCKM appears in the
coupling of the W± bosons to quarks and can be parametrised by
three mixing angles θ

q
12, θ

q
13, θ

q
23 and one CP phase δ

q
CP. Other phases

can be absorbed into the phases of the quark fields. Together with
the six singular values of Yu and Yd, the four CKM parameters are the
physisal observables of the quark Yukawa sector.

A similar procedure can be applied in the lepton sector. The rotations

eR,i → ER,†
ij eR,j , Li → EL,†

ij Lj, (2.13)

are sufficient to diagonalise

Ye → E†
R Ye EL = diag(ye, yµ, yτ) . (2.14)

In the SM, the neutrinos are massless and there is no lepton flavour vi-
olation. However, in the presence of the Weinberg operator a neutrino
mass is generated after EWSB by mν = −v2 κ/2. Applying the flavour
rotation to mν gives

mν → m′ν = ET
L mν EL . (2.15)

By construction, m′ν is a complex symmetric matrix which can be
diagonalised by

VT
PMNS m′ν VPMNS = diag(m1, m2, m3) . (2.16)

In addition to the mixing angles θl
12, θl

13, θl
23 and the CP phase δl

CP,
the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix VPMNS has ad-
ditional phases that might be physical. But neither of them nor the
absolute mass of the neutrinos has been measured yet. Neutrino oscil-
lation experiments are only sensitive to their mass squared differences
∆m2

ij = m2
i −m2

j . Altogether there are three singular values of Ye, two
mass squared differences and the elements of VPMNS as observables in
the lepton sector.

For extracting the mixing angles and the phases from the Yukawa
matrices and the neutrino mass matrix we have also implemented
the routines of REAP in C++ using the eigen3 library for the singular
value decomposition. The algorithms are described in the REAP manual
[108].
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obs. input value input scheme ref. value at µ̄ = MZ

mu 2.36(24) MeV µ̄ = 2 GeV [91, 114] 1.36(15) MeV
md 5.03(26) MeV µ̄ = 2 GeV [91, 114] 2.90(11) MeV
ms 93.9(1.1) MeV µ̄ = 2 GeV [91, 114, 115] 54.05(63) MeV
mc 996(25) MeV µ̄ = 3 GeV [91, 114, 115] 635(16) MeV
mb 4.190(21) GeV mb(mb) [91, 115, 116] 2.866(14) GeV
αs 0.1182(12) α

(5)
s (MZ) [91, 115–119] 0.1170(12)

mt 174.2(1.4)GeV pole [120] 172.3(1.5) GeV

Table 2.1: Used input data and values at µ̄ = MZ for the quark masses and
αs. All values in the right column are given in the MS scheme at
MZ = 91.1876 GeV with six active flavours. Conversions of the
renormalisation scheme have been applied where necessary.

2.1.1 Running the light quark masses to the EW scale

Since the masses of the light quarks are set in the energy range where
QCD cannot be treated perturbatively their determination depends on
non-perturbative techniques. In the recent years, the precision that can
be achieved with lattice gauge theory has significantly improved.

The N f = 2 + 1 + 1 combination from reference [91] summarises
these results and gives averages for masses of the five light quark
flavours and the strong coupling αs. The QCD running of the quark
masses and αs as well as the transition between the various flavour
schemes is performed with the Mathematica package RunDec [121] at
four-loops accuracy. Table 2.1 gives the input values from [91] and
[120] together with the results we obtain at MZ = 91.1876 GeV [120]
in the six flavour MS scheme. In all cases the errors from variation
of the decoupling scales are negligible compared to the experimental
uncertainty.

2.1.2 Extrapolating the SM parameters to higher scales

Above MZ it is more appropriate to consider the RGE running of
the Yukawa matrices rather than that of the fermion masses. As we
have discussed at the beginning of this section, the singular values
of the Yukawa matrices are given at the EW scale by the fermion
masses mi via yi = mi/v. Choosing Yu und Ye diagonal, Yd is given by
diag(yd, ys, yb)VCKM. The global fit of the CKM matrix VCKM by the
CKMfitter group [92, 122–161] was updated at the ICHEP conference
2016. Translating their results from the Wolfenstein parametrisation
[162] into that of the PDG [120] yields the values of the CKM param-
eters θ

q
12, θ

q
13, θ

q
23, δ

q
CP. Furthermore, the electro-weak gauge couplings

g1 =
√

3/5gY and g2 as well as the lepton Yukawa couplings are taken
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from [163]. All data at MZ can be found in Table 2.2 together with the
extrapolated values at 1 TeV, 3 TeV and 10 TeV, respectively.

This procedure can
simply be put as
applying Bayes’
theorem with a

normal distribution
as prior.

For the propagation of errors, normally distributed random numbers
are generated at MZ. Each sample point is run up to the respective
energy scale. Then a normal distribution is fitted to the set of sample
points. That way, the relative errors of the observables increases during
running due to the uncertainty of the other observables, mostly the
top Yukawa coupling.

In addition to the observables in Table 2.2, the SM Higgs quartic
coupling is needed for the two-loop running of the Yukawa couplings.
It can be extracted from the Higgs mass measurement [120] via λ =

m2
Higgs/v2.

2.1.3 Matching the SM to the MSSM

As we have mentioned before, the matching between the SM and the
MSSM is performed at the scale of 1 TeV. In the supersymmetric phase
of the theory the DR scheme is adopted. The finite shift between the
MS and DR scheme for the Yukawa couplings and gauge couplings gi
are [164]

C(G) = N and
C(r) =

(N2 − 1)/2N for
SU(N).

gMS
i = gDR

i

(
1−

g2
i

96 π2 C(G)

)
, (2.17)

YMS
u = YDR

u

1 +
1

32 π2

(
− g2

1
60
− 3 g2

2
4

+
8 g2

3
3

) , (2.18)

YMS
d = YDR

d

1 +
1

32 π2

(
−13 g2

1
60
− 3 g2

2
4

+
8 g2

3
3

) , (2.19)

YMS
e = YDR

e

1 +
1

32 π2

(
9 g2

1
20
− 3 g2

2
4

) . (2.20)

Table 2.3 shows all results from Table 2.2 converted to the DR scheme.
Moreover, the MSSM Yukawa couplings also depend on tan β. Be-

sides, there are additional one-loop TCs from SUSY particles, in particu-
lar those which scale with tan β: They can lead to changes of O(10%)

in the Yukawa couplings and hence have a large impact on Yukawa
unification in GUTs [59, 84, 165–170]. We introduce three parameters
εq, εb, εl that encode these corrections to the Yukawa matrices. The
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MZ 1 TeV 3 TeV 10 TeV

g1 0.461425+0.000044
−0000043 0.467773± 0.000045 0.470766± 0.000046 0.474109± 0.000047

g2 0.65184+0.00018
−0.00017 0.63935± 0.00016 0.63383± 0.00016 0.62792± 0.00016

g3 1.2127± 0.0061 1.0549± 0.0040 1.0009± 0.0034 0.9503± 0.0029

yu/10−6 7.80± 0.86 6.73± 0.74 6.37± 0.70 6.03± 0.66

yc/10−3 3.646± 0.091 3.147± 0.79 2.976± 0.074 2.816± 0.071

yt 0.9897± 0.0086 0.8723± 0.0088 0.8317± 0.0088 0.7934± 0.0089

yd/10−5 1.663± 0.064 1.438± 0.056 1.361± 0.053 1.289± 0.050

ys/10−4 3.104± 0.036 2.685± 0.032 2.541± 0.030 2.407± 0.029

yb/10−2 1.646± 0.0082 1.3940± 0.0079 1.3091± 0.0071 1.2303± 0.0070

ye/10−6 2.794745+0.000015
−0.000016 2.8491± 0.0022 2.8659± 0.0031 2.8800± 0.0040

yµ/10−4 5.899863+0.000019
−0.000018 6.0146± 0.0046 6.0501± 0.0065 6.080± 0.0086

yτ/10−2 1.002950+0.000090
−0.000091 1.02246± 0.00078 1.0285± 0.0011 1.0336± 0.0014

θ
q
12 0.22704+0.00030

−0.00029 0.22704± 0.00029 0.22704± 0.00029 0.22705± 0.00029

θ
q
13/10−3 3.71+0.13

−0.14 3.79± 0.14 3.82± 0.14 3.85± 0.14

θ
q
23/10−2 4.181+0.047

−0.067 4.270± 0.058 4.303± 0.058 4.337± 0.059

δ
q
CP 1.143+0.011

−0.011 1.143± 0.011 1.143± 0.011 1.143± 0.011

Table 2.2: SM parameters in the MS scheme at MZ, 1 TeV, 3 TeV and 10 TeV.

MZ 1 TeV 3 TeV 10 TeV

g1 0.461425+0.000044
−0000043 0.467773± 0.000045 0.470766± 0.000046 0.474109± 0.000047

g2 0.65243± 0.00018 0.63990± 0.00017 0.63437± 0.00016 0.62844± 0.00016

g3 1.2185± 0.0062 1.0587± 0.0040 1.00415± 0.0034 0.9530± 0.0029

yu/10−6 7.71± 0.85 6.68± 0.74 6.32± 0.70 5.99± 0.66

yc/10−3 3.60± 0.090 3.120± 0.078 2.954± 0.074 2.797± 0.071

yt 0.9785± 0.0086 0.8651± 0.0087 0.8255± 0.0087 0.7881± 0.0088

yd/10−5 1.64441± 0.064 1.426± 0.056 1.351± 0.053 1.281± 0.050

ys/10−4 3.06979± 0.036 2.663± 0.032 2.523± 0.030 2.392± 0.029

yb/10−2 1.6274± 0.0082 1.3825± 0.0073 1.2995± 0.0071 1.2224± 0.0070

ye/10−6 2.796719± 0.000016 2.8510± 0.0022 2.8677± 0.0031 2.8818± 0.0041

yµ/10−4 5.904029± 0.000019 6.0186± 0.0046 6.0540± 0.0065 6.0836± 0.0086

yτ/10−2 1.003658± 0.000091 1.0231± 0.0078 1.0292± 0.0011 1.0342± 0.0015

θ
q
12 0.22704+0.00030

−0.00029 0.22704± 0.00029 0.22704± 0.00029 0.22705± 0.00029

θ
q
13/10−3 3.71+0.13

−0.14 3.79± 0.14 3.82± 0.14 3.85± 0.14

θ
q
23/10−2 4.181+0.047

−0.067 4.270± 0.058 4.303± 0.058 4.337± 0.059

δ
q
CP 1.143+0.011

−0.011 1.143± 0.011 1.143± 0.011 1.143± 0.011

Table 2.3: SM parameters in the DR scheme at MZ, 1 TeV, 3 TeV and 10 TeV.



20 top-down

matching between the SM and the MSSM is described in the DR scheme
by

YSM
u = sin β YMSSM

u , (2.21)

YSM
e = cos β (1 + εl tan β) YMSSM

e , (2.22)

YSM
d = cos β diag

(
1 + εq tan β, 1 + εq tan β, 1 + εb tan β

)
YMSSM

d .

(2.23)

The parametrisation is valid provided that the squark mass matrices
are nearly degenerate with small off-diagonal elements and the trilin-
ear scalar couplings are hierarchical with dominant third generation
elements [163, 171–173]. Note that the TCs do not decouple for large
values of MSUSY but rather depend on ratios of the SUSY parameters.
This allows us to study the influence of SUSY corrections without being
specific about the actual SUSY spectrum. In the fit we allow for the
following ranges

−0.05 ≤ εq ≤ 0.05 , (2.24)

−0.10 ≤ εb ≤ 0.10 , (2.25)

−0.03 ≤ εl ≤ 0.03 . (2.26)

Note that εl stems from electro-weak one-loop corrections whereas εq

and εb also receive contributions from QCD. That is why the absolut
values of the latter ones are allowed to be larger. εb additionally can
be enhanced by soft trilinear couplings of the bottom squarks. For the
up-type quarks there we ignore such corrections since corresponding
contributions scale with cot β and are hence suppressed.

2.1.4 Determining the GUT scale

For the MSSM running of the gauge and Yukawa couplings two-loop
RGEs are used. We first determine the GUT scale by minimising the
squared differences of the gauge couplings. Neglecting the SUSY TCs

we find MGUT = 1.35× 1016 and

g1 = 0.706 , g2 = 0.708 , g3 = 0.705 , (2.27)

at MGUT. Since the influence of the Yukawa couplings on the gauge
couplings is a very small two-loop effect we keep the GUT scale and
the gauge couplings at MGUT fixed in all fits to GUT parameters.

2.1.5 Matching SO(10) to the MSSM

In the minimal SO(10) setup discussed in the beginning of this chapter,
the MSSM Yukawa matrices are set by the GUT Yukawa matrices, see
for instance [58, 59, 90, 174, 175]

The factor of 3 in
front of Y126 is a
Clebsch-Gordan

coefficient of SO(10).
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Yu = r (Y10 + s Y126) , (2.28)

Yd = Y10 + Y126 , (2.29)

Yν = r (Y10 − 3 s Y126) , (2.30)

Ye = Y10 − 3 Y126 , (2.31)

M = rR Y126 . (2.32)

The mixing of the Higgs doublets from the GUT representations into
the MSSM Higgs doublets H1 and H2 is described by the complex
parameter s. The parameters r and rR denote ratios of VEVs of the GUT
Higgs fields that can be chosen real. rR also sets the see-saw scale by
giving a Majorana mass M to the right-handed neutrinos. A flavour
rotation of the GUT fields (i. e. of 16i) allows to choose Y10 real and
diagonal. From the tensor structure of SO(10) follows that Y126 is a
complex symmetric matrix. In this setup, there are altogether 19 real
parameters that determine the MSSM Yukawa matrices at the GUT scale:
r (one parameter), rR (one parameter), s (two parameters), Y10 (three
parameters), Y126 (twelve parameters).

2.1.6 Decoupling of the right-handed neutrinos

When solving the RGEs for the MSSM with additional singlets from
MGUT to MSUSY one comes across the thresholds where the heavy
right-handed neutrinos Ni need to be integrated out. The procedure
is described in great detail in [176] and can be sketched as follows:
The thresholds are determined from the eigenvalues of M. At each
threshold Mn the Wilson coefficient of the Weinberg operator κ receives
a contribution from the Yukawa coupling Yν

The equation holds in
a flavour basis where
M is diagonal and at
the renormalisation
scale µ̄ = Mn.

(n)
κij =

(n+1)
κij + 2

((n+1)
Yν

T)
in

M−1
n

((n+1)
Yν

)
nj

, (2.33)

with no sum over n and flavour indices i, j, where
(n)
κ stands for

the matrix κ with the last n rows deleted. After EWSB κ generates
the masses for the left-handed neutrinos. As a result of the see-saw
mechanism these masses are suppressed by Mn.

2.1.7 Fitting the GUT parameters to the experimental data

It is convenient to perform the global fit at MSUSY treating the SM

fermion observables as experimental data to compare the GUT predic-
tion with.

The 19 GUT parameters from Section 2.1.5 give the input for the
MSSM Yukawa matrices and M, which are evolved to MSUSY = 1 TeV.
Note thatMSUSY is a matching scale and not necessarily the mass scale
of SUSY particles.The SM model Yukawa couplings are determined
according to eqs. (2.21)-(2.23). The TCs εq, εb, εl give three additional
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Figure 2.3: ∆χ2 distribution of the atmospheric mixing angle θ23 and the CP
phase δCP in degrees. The plots are taken from NuFit3.0 [93].

input parameters for the fit. The fermion observables are extracted as
described at the beginning of this section.

For the comparison of the GUT prediction with the experimental
data a χ2 function is defined by

χ2 =
15

∑
i=1

(
Otheo

i −Oexp
i

σi

)2

+
4

∑
i=1

χ2
PMNS,i . (2.34)

The experimental uncertainties, σi, of the 15 observables Oi are as-
sumed to be Gaussian. Firstly, these are the quark and charged lepton
Yukawa couplings yi (nine observables) and the CKM parameters
(four observables), whose extrapolated values at 1 TeV can be found
in Table 2.3. Secondly, one has the neutrino mass squared differences
(two observables). The data from the global analysis of NuFit3.0 [93,
177–192] also depend on the mass ordering, in case of normal neutrino
mass ordering

∆m2
21 = (7.50± 0.18)× 10−5 eV2 , (2.35)

∆m2
31 = (2.524± 0.0395)× 10−3 eV2 . (2.36)

For the PMNS parameters (four observables) the one-dimensional χ2

distributions from NuFit3.0 are included (depending on the respec-
tive mass ordering). The reason is that the uncertainties of the PMNS

parameters are not Gaussian but rather exhibit more complicated
likelihood profiles. Figure 2.3 shows the ∆χ2 distribution of the atmo-
spheric mixing angle θl

23 with two competing minima together with
the ∆χ2 distribution of the CP phase δl

CP which—although it has not
been measured yet—prefers values between 180◦ and 360◦.

The χ2 function is minimised by varying the 19 input parameters
(22 with TCs) to fit the 19 experimental observables. The minimisation
is performed with the Sbplx/Subplex [193] and ISRES algorithms [194,
195] from the C++ implementation of the NLopt2.4.2 library [196].
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2.2 results of the global minimisation

a note on yukawa unification. Before discussing the results
of the global analysis, let us illustrate the challenge for the Yukawa
sector that arises from SO(10) grand unification. We will do so by
making some rough estimates in order to understand the numerical
results later on. From eqs. (2.28)-(2.31) follows that the third generation
Yukawa couplings at the GUT scale are, neglecting mixing to other
generations,

yt = r (Y33
10 + s Y33

126) , (2.37)

yb = Y33
10 + Y33

126 , (2.38)

yτ = Y33
10 − 3 Y33

126 . (2.39)

Assuming r and s to be of order one, we have yt ≈ yb at MGUT,
implicating that tan β ≈ mt/mb ≈ 60. Realistically, the ratio can be
smaller than 60, as yt decreases and yb increases between MZ and
MGUT due to RGE effects. Nevertheless, bottom-top unification will prefer
values of tan β of the order of ten and larger. For smaller values of
tan β the mass hierarchy between the top and bottom quark must stem
from r and/or s.

Note that the two parameters r and s are universal for all three
generations, the respective hierarchy between up-type quarks and
down-type quarks, howewer, is not (mc/ms ≈ 10 and mu/md ≈ 0.5).
In that case, there must be cancellations between the matrix elements
of Y10 and Y126 in order to reproduce the hierarchy between up-type
and down-type quark masses correctly in all generations.

Furthermore, the third generation Yukawa couplings also affect
the mixing between the second and third generation of fermions. It
has been noticed that a large atmospheric mixing angle θl

23 demands
yτ = yb at MGUT [197], neglecting SUSY TCs. This fact gives rise to
another constraint on the Yukawa sector which will be commented
later on in Section 2.2.3.

The same discussion can be continued for the second and first
generation. Nevertheless, due to hierarchical structure of the Yukawa
matrices, a tension in the observables related to the third (second)
generation cannot necessarily be resolved by tuning the parameters
related to the second (first) generation.

2.2.1 Discussion of the global minima

In the global minimisation tan β is not treated as a free parameter
but its value is rather kept fixed to tan β = 10 , 38 , 50, respectively, to
ensure numerical stability. These particular values are merely chosen
for historical reasons, see e. g. [90]. The minimisation of the χ2 function
is performed both with and without including SUSY TCs in the fit. Thus,
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without TC with TC

tan β 10 38 50 10 38 50

χ2
127.0 94.69 75.43 40.37 1.74 3.71

pull yu 0.19 0.29 0.12 0.01 0.25 -0.17

yc 2.73 2.71 2.44 1.66 0.19 0.11

yt -2.06 -2.01 -1.85 -1.26 -0.35 0.06

yd -7.42 -8.08 -6.30 -4.53 0.82 1.26

ys 0.90 2.12 1.17 -0.12 -0.17 -0.42

yb -0.36 -0.55 0.39 -0.22 -0.04 -0.15

θ
q
12 0.62 0.45 0.38 0.11 -0.05 -0.08

θ
q
13 -0.71 -1.03 -0.42 2.81 0.35 -0.11

θ
q
23 -0.38 -0.58 0.40 -1.61 0.52 -0.49

δ
q
CP 1.51 0.64 0.77 0.38 -0.12 -0.16

ye 0.01 0.01 0.04 0.17 -0.08 -0.04

yµ -0.30 -0.73 -0.33 0.28 -0.15 0.04

yτ 0.42 0.14 0.19 0.30 -0.17 0.00

∆m2
21 0.81 0.17 0.49 -0.30 -0.05 0.03

∆m2
32 -0.25 -0.11 -0.31 0.19 0.03 -0.02

θl
12 -1.30 -0.45 -0.87 -1.07 -0.02 -0.01

θl
13 -4.13 -0.40 -0.93 0.72 0.00 -0.04

θl
23 -5.74 -2.67 -4.29 -0.48 0.18 -0.26

δl
CP -1.83 -1.73 -1.78 1.61 0.56 1.24

best-fit mν,1 in meV 2.4 2.6 2.4 1.8 2.4 2.0
values mν,2 in meV 9.1 9.1 9.0 8.8 9.0 8.9

mν,3 in meV 50.2 50.3 50.2 50.3 50.3 50.3

εq/10−2 – – – 5.00 2.80 4.72

εb/10−2 – – – -7.35 -4.06 -0.60

εl/10−2 – – – -3.00 -0.60 0.13

Table 2.4: Best-fit points of the global minimisation. The table shows the minimal χ2, the corre-
sponding pulls of the observables in the DR scheme for different values of tan β as well
as the best-fit values for the light neutrino masses and SUSY threshold corrections (TC) if
included in the fit.
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Figure 2.4: Pulls of all global minima. The minimisation is performed separately for tan β =
10, 38, 50 both including and neglecting SUSY threshold corrections.
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there are, in total, six global minima (best-fit points) which will be
discussed in the following.

The pulls of the Gaussian observables in eq. (2.34) are defined by

pulli =
Otheo

i −Oexp
i

σi
. (2.40)

For the PMNS parameters the χ2
PMNS-distributions and the best-fit

values Obest−fit
i of NuFit3.0 are employed to define the pull as

pulli = sign (Otheo
i −Obest−fit

i )
√

χ2
PMNS,i . (2.41)

The pulls of all observables for the six global minima are given in Ta-
ble 2.4 and visualised as bar charts in Figure 2.4. The input parameters
at the GUT scale are listed in Appendix A.2 for all six global minima.

the case without susy threshold corrections . If SUSY

TCs are not included in the fit one finds a poor description of the
fermion data, indicated by minimal χ2 values of 75. . . 127. This holds
for all values of tan β, although the tensions become smaller for larger
tan β. The largest pulls (> 6σ) are found in the down-quark Yukawa
coupling yd. Note that, opposite to the second and third generation, in
the first generation, the down-type quark is heavier than the up-type
quark posing a challenge on Yukawa unification. The tension in yd has
already been seen in previous analyses [89, 90] albeit then it has been
less severe. It can directly be traced back to the improved precision of
lattice calculations [91]. Similar observations can be made concerning
the atmospheric mixing angle θl

23 where the experimental uncertainty
has been reduced compared to data used in former analyses.

For a statistical interpretation of the χ2 function, one has to consider
the degress of freedom in the fit. Given the fact that there are as
many parameters as there are observables, the number of degrees of
freedom is actually zero. Naively, one would therefore expect a perfect
fit, i. e. χ2 = 0. As we have argued at the beginning of this section,
the input parameters do not influence all observables alike due to the
non-linearity of the problem (numerical integration and singular value
decomposition) and the hierarchical structure of the Yukawa matrices.
Still, the χ2 function and the pulls of the various observables provide
useful information for a qualitative discussion of the results.

the case with susy threshold corrections . Allowing for
the tan β enhanced threshold corrections, the minimal χ2 values sig-
nificantly decrease for all values of tan β. One should keep in mind
that the TCs get multiplied by tan β. For tan β = 10, the combintation
of εq,b,l tan β is absolutely smaller than for tan β = 38 and 50. These
correction are in turn not as able to resolve the tensions encountered
without TCs.
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For tan β = 10, one again finds large tensions in the down-quark
Yukawa coupling yd (> 4σ) and the quark mixing angle θ

q
13 (> 2σ).

In addition to the pulls, Table 2.4 also shows the respective best-fit
values of the threshold corrections εq, εb and εl . For tan β = 10, some
of them lie on the borders of the allowed ranges, namely εq = 0.05
and εl = −0.03. This fact indicates that the goodness of fit would
improve if the allowed ranges for εq and εl were larger and TCs had a
larger impact. Overall, for tan β = 10 the minimal model can hardly
reproduce the fermion data.

The best fit in all our studies is obtained for tan β = 38, with
χ2 = 1.74. For this best-fit point we only find slight pulls in the down-
quark yukawa coupling yd and in the CP phase of the PMNS matrix,
δl

CP. It has already been noticed in reference [88], that SO(10) grand
unification has a predictive power for δl

CP. This fact will be important
if, in the future, the CP phase is known precisely.

For tan β = 50, the best-fit point has χ2 = 3.71. Again there are
slight pulls in yd and δl

CP making the overall picture quite similar to
that for tan β = 38.

For all values of tan β we find a preference for positive εq and
negative εb. This means that the predicted value from the GUT is
enhanced for yb, whereas it is reduced in the case of yd and ys. εl ,
does not have a distinct preference for its sign. This observation is
confirmed by the likelihood profiles for εb, εq and εl in Section 2.2.2.

additional constrains and predictions . Although the fit
can only account for the mass squared differences of the neutrinos, the
model actually predicts the absolute neutrino mass scale. The neutrino
masses for the respective best-fit points are listed in Table 2.4. In all
cases the masses are hierarchical with normal mass ordering, which is
caused by the hierarchical structure of the Yukawa matrices. The neu-
trinos have a typical mass of 2, 9, 50 meV, rather independent of tan β

and TCs. Their sum is in all cases below bounds from cosmology [198]

3

∑
i=1

mν,i < 0.23 eV . (2.42)

The effective β-decay masses are also below the current bound from
the Troitsk experiment [23]

m2
ν,β =

3

∑
i=1
|V l

ei|2m2
ν,i < 2.05 eV , (2.43)

and below the expected sensitivity of the KATRIN [199] experiment.

2.2.2 Likelihood profiles for threshold corrections

The global analysis of Section 2.2.1 has shown the importance of
tan β enhanced threshold corrections. Since they may have important
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Figure 2.5: Likelihood profiles for fixed values of the threshold corrections εb, εq and εl . The
minima of the global minimisation are marked with circles.
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consequences for flavour model building in SUSY, it is an interesting
question how sensitive the fits actually are to these corrections. For this
study, the minimisation of the χ2 is performed with one of the thresh-
old corrections εb, εq and εl fixed. This procedure is then repeated
for different values of the particular TC and for tan β = 10, 38 and 50,
respectively. As a result, the likelihood profiles for the TCs are shown
in Figure 2.5. On the left, the profiles over the complete ranges of εb,
εq and εl are shown. On the right, the same plots are zoomed into the
regions of interest. The density of points on the x-axis is increased
around the minima for better numerical convergence. Also the global
minima of Section 2.2.1 have been added to the plots and marked by
circles.

For tan β = 10, the χ2 profiles exhibit in general less features than
for larger values of tan β. The χ2 function has a minimum for εb =

−0.0735. For both εq and εl , the best-fit points lie on the edges of the
allowed ranges, as has been noticed before. The profiles also show a
preference of larger values for εq and smaller values for εl .

For tan β = 38 and tan β = 50 the χ2 profiles for εq and εl are
qualitatively similar. There is a preference for positive values of εq.
In contrast to tan β = 10, all minima are within the allowed ranges.
The χ2 profiles for εl , both show a minimum around zero. Therefore,
rather small corrections are preferred in the lepton sector.

The most distinct features in the plots are two competing minima in
the profile of εb for both tan β = 38 and tan β = 50. The local minima
are nearly degenerate with the global ones, having χ2 values of 3.71

(tan β = 38) and 4.69 (tan β = 50). Both being steep and narrow,
the four minima actually shrink the possible values for εb to very
fine-tuned regions. The pulls of this minima compared to those of the
global minima are shown in Figure 2.6. Interestingly, for tan β = 38 the
minimum with smaller εb is the preferred one, whereas for tan β = 50
the one with larger εb is preferred. The effective corrections are also
rather large, especially for those minima with the smaller values of
εb we have εb tan β < −1. It has been pointed out, that the tan β

enhancement of the threshold corrections occurs at one-loop, but does
not repeat itself at higher loop orders. To be precise, there are no
corrections scaling as εn

b tann β at n > 1 loops, see e. g. [200].

2.2.3 Bottom-Tau unification and the atmospheric mixing angle

It has been analysed in detail in [66, 73, 197] that there is an intricate
connection between the atmospheric mixing angle θl

23 and unification
of the bottom and tau Yukawa couplings, yb and yτ, in SO(10) grand
unification. In these studies, however, SUSY TCs have not been taken
into account. As we will see, considering these corrections gives us a
qualitative understanding of the numerical fit results.
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Figure 2.6: Comparison of global and local minima. The local minima appear in the likelihood
profile of εb in Figure 2.5.
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Neglecting the second generation Yukawa couplings, there is a
relation between the mixing angles in the quark and lepton sector at
the GUT scale [66]

tan 2θl
23 =

sin 2θ
q
23

2 sin2 θ
q
23 + yτ/yb − 1

. (2.44)

This relation can be expanded for small θ
q
23

yτ

yb
= 1 +

2θ
q
23

tan 2θl
23

. (2.45)

The right-hand side of the equation is to a good approximation one, as
θ

q
23 is of order one permille and tan 2θl

23 is of order one. To reproduce
the lepton and quark mixing angles between the second and third
generation fermions, yb and yτ must be equal at the GUT scale to a
rather high precision. That explains, why we find large tensions in the
atmospheric mixing angle θl

23. Applying the SUSY TCs to this relation
gives at MSUSY, neglecting RGE corrections

yτ(1 + εl tan β)

yb(1 + εb tan β)
= 1 +

2θ
q
23(1 + (εq − εb) tan β)

tan 2θl
23

. (2.46)

On the right-hand side, the picture does not change qualitatively. On
the left-hand side, however, SUSY corrections can loosen the strict
constraint from bottom tau unification. For εb tan β < −1 the left-
hand side can become negative. The two competing minima in the
likelihood profiles of εb actually correspond to εb tan β < −1 and
−1 < εb tan β < 0, respectively. This sign does not necessarily need
to be physical since singular values can always be chosen real and
positive. The simplified two generation model used here can also
not account for physical phases. But it is interesting to note that the
occurence of this sign seems to allow for two distinct solutions.

For illustration, the absolute value of the left-hand side of eq. 2.46 is
plotted in Figure 2.7. In the case where no TCs are included, |yτ/yb| is
much larger than one at the GUT scale explaining the bad convergence
of the fit. For the global minima including TCs, we find a big deviation
from one for tan β = 10. The deviation is smallest for tan β = 38 and
a bit larger for tan β = 50. Thus the goodness of fit is qualitatively
reproduced for all global minima. This also holds for the local minima
in the χ2 profile of εb in Figure 2.5. Note that, for tan β = 50, the global
and local minimum are nearly degenerate.

2.3 conclusions

We have studied fermion observables in a minimal SUSY SO(10) model.
The results of Section 2.2.1 clearly suggest that the predictions of
minimal SUSY SO(10) for the fermion sector of the SM can only be
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shows the deviation from one.

viable in the presence of large tan β and sizable TCs from heavy SUSY

particles. In comparison to previous studies with similar approaches,
updated values for the fermion observables in the SM are used. The
reduced uncertainty in lattice and neutrino data leads to tensions in
the GUT predictions for the down quark yukawa coupling yd and the
atmospheric mixing angle θl

23. Both quantities are expected to become
more precisely known in the future. Lattice and neutrino data hence
will be able to provide insight on models of grand unification.

Improvements on the experimental side, however, call for improve-
ments on the theoretical side. The global analysis of this chapter,
therefore, focuses on a elaborate treatment of all energy scales in the
problem in terms of effective field theory (EFT). The procedure includes
integrating out right-handed neutrinos at their respective mass scale
and consistent use of two-loop RGE evolution. For this purpose effi-
cient code has been written in C++ that will be made publicly available.
Not only is this to our knowledge the first fit to SUSY GUTs that features
threshold corrections, but this work also provides likelihood profiles
for their values. As a result of Section 2.2.2, the likelihood profile for
the correction to the bottom Yukawa coupling, εb, shows two narrow,
deep and nearly degenerate minima. These specific values for the TCs

may be of interest for model building since they depend on the flavour
structure of the SUSY spectrum.

When the τ and the bottom quark were discoverd in the 1970s, the
idea of grand unification has already been around. It must have been
an astonishing insight for the pioneers of particle physics that there
is not only a third family of fermions but more than that it would
fit into the bigger picture of grand unification. More than twenty
years after the discovery of the top quark, all fermions of the SM

have been discovered and their couplings have been measured ever
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more precisely. This data and modern computing power now allow
us to take the predictions of GUTs seriously and question them at a
quantitative level. QFT thus can provide us with insight on physics that
might happen at much higher energy scales by carefully connecting
them to the physics we find in experiment.





3
R E S U M M AT I O N O F G L U I N O C O N T R I B U T I O N S T O
T H E M S S M H I G G S P O T E N T I A L

If there is going to be
change, real change,
it will have to work
its way from the
bottom up, from the
people themselves.
That’s how change
happens.
—Howard Zinn

the fine-tuning in the mssm . The existence of the Higgs
boson as a particle is one of the central predictions of the SM. Before
its discovery in 2012, the value of its mass was therefore subject to
widespread speculation among physicists. In contrast to the SM, the
mass of the Higgs boson can be calculated in the MSSM once the SUSY

mass spectrum is known.
At the tree-level, the mass of the lightest CP even Higgs boson mh

must be below MZ via m2
h ≤ M2

Z cos 2β. This mass range had already
been excluded in the 1990s by the LEP experiments that set a lower
bound on the Higgs mass. A combined analysis of all experimental
results from LEP excludes Higgs masses below 114.4 GeV at the 95%
confidence level [201]. Loop corrections, however, can shift the Higgs
mass above MZ. Since the discovery of the Higgs boson [16, 17], the
measurements of its mass have constantly been improved. The current
PDG average for the mass of the SM model Higgs boson is [202]

mh = 125.18± 0.61 GeV . (3.1)

In the MSSM this particular value requires soft SUSY breaking parame-
ters in the TeV range, see e. g. [203]. SUSY particles with masses above
several TeV are also suggested by recent bounds from direct searches.
The recent study in [204] finds e. g. mass bounds for the top squark
of mt̃ > 1.23 TeV and the gluino of mg̃ > 2.12 TeV, both at the 95%
confidence level. These bounds yet depend on theoretical assumptions
regarding the mass of the LSP (typically the neutralino, i. e. the mass
eigenstate of the mixed higgsino, bino and wino states after EWSB) and
the branching fractions of those particles into their respective final
states.

But let us return from these recent developments to the more gen-
eral aspects of supersymmetry. Recalling the arguments of Chapter 1,
heavy particles with mass M yield large corrections to the self-energy
of scalars that scale as M2. In the context of softly broken supersym-
metry, these corrections give rise to the little hierarchy problem that is
induced by the fact that SUSY particles appear to be heavier than the
electro-weak scale. Thus, the electro-weak scale receives corrections of
the order of MSUSY and the counterterms have to be tuned accordingly
at every order in perturbation theory. This issue raised concern even
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Figure 3.1: Feynman diagrams with gluinos. The two-loop diagrams (Figure
3.1a) lead to large contributions to m2

ij in case the gluino is heavy.
The three-loop diagram (Figure 3.1b) is an example of how these
contributions appear recurringly at higher orders in perturbation
theory.

before the days of LEP and the little hierarchy problem was quantified
by introducing the fine-tuning measure [205, 206]

∆(p) =

∣∣∣∣∣ p
MZ(p)

∂ MZ(p)
∂p

∣∣∣∣∣ . (3.2)

∆(p) is a measure of the logarithmic dependence of the electro-weak
scale, i. e. MZ, on a soft SUSY parameter p.If the Z boson is

renormalised
on-shell and used as

input, as usually
done in SUSY Higgs

mass calculations,
the fine-tuning is

found in the
counterterm of MZ.

Here, MZ is a function of p in the sense that if one calculates
the corrections to the Higgs potential as a function of p and then
determines MZ from the minimum of the Higgs potential, MZ depends
on p. As an example, consider a top squark mass of the order of 1

TeV. Thus, in the determination of M2
Z, contributions of the order of

(1 TeV)2 appear. The fine-tuning ∆(mstop) then is roughly 100. That
means that when adding up contributions of the order of (1 TeV)2

they need a tuning of 1% (1 in 100) to give a result of the order of
(100 GeV)2.

What concerned physicists about the LEP results? The fine-tuning
in a SUSY theory is smallest, when all SUSY parameters are of the same
order as the EW scale. The higher the lower bounds on the masses
of SUSY particles become, the larger the fine-tuning becomes. This
development continued from the LEP experiments until today [207–
211].

outline . In this chapter, we will study the fine-tuning in the MSSM

from a novel perspective. We will consider the SUSY spectrum itself to
be hierarchical with the gluino being heavier than the top squarks. The
gluino couples to the Higgs fields at the two-loop level via the strong
coupling to the top quarks and top squarks, see Figure 3.1a. For the
study of the fine-tuning, we calculate the corrections to the parameters
in the MSSM potential in an EFT approach. Since we want to focus onIn GUT models with

bottom-top
unification values of

tan β > 1 are
typically preferred,
see e. g. Chapter 2.

the impact of the hierarchy between top squarks and the gluino, we
only include corrections induced by the top Yukawa coupling yt and
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the corresponding trilinear scalar coupling At. These contributions
are typically also the largest ones for tan β > 1. The parameters in the
Higgs potential are all renormalised in the DR scheme in order not to
hide the fine-tuning by absorbing finite pieces into the counterterms.
We also assume a GUT scenario, or at least the existence of a theory
at higher scales than the SUSY scale, where the soft parameters are set
and evolved to the SUSY scale by RGE running. For that reason, all soft
parameters are given at the SUSY scale in the DR scheme.

This chapter is structured as follows: The details of the MSSM Higgs
potential are discussed in Section 3.1. Section 3.2 contains all technical
details about the calculation. It is divided into subsections as follows:
At first the two-loop calculation is described in Section 3.2.1 and the
fixed order results in the DR scheme are discussed in Section 3.2.2. For
large gluino masses, the two-loop corrections to the potential can be
quite sizeable. These corrections require an all-order resummation that
is explicitely performed in Section 3.2.3. However, this resummation
can be avoided by renormalising the top squarks in an on-shell scheme.
We demonstrate in Section 3.2.4 that these procedures are equivalent.
The gluino contributions cause a large scheme difference between the
DR mass and the OS mass. Section 3.2.5 investigates the matching
scale at which the SUSY particles should be integrated out in our
scenario. In Section 3.2.6 the mass of the lightest CP even Higgs boson
in the MSSM is discussed in the light of the contributions to the Higgs
potential we have calculated. Before the fine-tuning in the MSSM is
studied in a numerical scan in Section 3.3, we summarise, all results
from the previous sections. As an illustration of how these results can
be generalised to SUSY phenomenology beyond the Higgs sector, the
implications on Kaon mixing are studied in Section 3.4, before we
conclude this chapter with Section 3.5.

3.1 the higgs sector of the mssm

This section follows
the pedagogical
introductions of
[212] and [213].

The scalar potential of the MSSM contains terms from three distinct
sources: D-terms, F-terms and SUSY breaking terms. Its subpart de-
scribing the neutral components h0

1 and h0
2 of the Higgs doublets that

is responsible for EWSB and the masses of the Higgs bosons can be
written as, including one-loop corrections

VH = m2
11 |h0

1|
2
+ m2

22 |h0
2|

2 −
(

m2
12 h0

1 h0
2 + H.c.

)
+

g2
Y + g2

2
8

(
(1 + ∆11) |h0

1|
4
+ (1 + ∆22) |h0

2|
4

− 2 (1 + ∆12) |h0
1|

2 |h0
2|

2
)

.

(3.3)
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The ∆ij encode the quantum corrections to the quartic couplings, the
m2

ij stand for the loop corrected mass parameters. At the minimum of
the potential, h0

1 and h0
2 acquire VEVs defined by〈

h0
1

〉
= v1 = v cos β ,

〈
h0

2

〉
= v2 = v sin β , (3.4)

where v = 174.10 GeV. The necessary condition that the gradient of
VH vanishes at its minimum yields for v1 6= 0 6= v2

0 = m2
11 −m2

12 tan β + ρ M2
Z , (3.5)

0 = m2
22 −m2

12 cot β− ϕ M2
Z , (3.6)

where we have used that M2
Z = v2(g2

Y + g2
2)/2 and

2 ρ = cos(2β) + cos2 β
(

∆11 − ∆12 tan2 β
)

, (3.7)

2 ϕ = cos(2β)− sin2 β
(

∆22 − ∆12 cot2 β
)

. (3.8)

The necessary condition now allows us to write MZ and m2
12 as a

function of m2
11, m2

22, tan β and the ∆ij

m2
12 =

ϕ m2
11 + ρ m2

22
ϕ tan β + ρ cot β

, M2
Z =

m2
22 tan β−m2

11 cot β

ϕ tan β + ρ cot β
. (3.9)

Moreover, the potential must be bounded from below. For classical
field configurations with h0

1 6= h0
2 this is ensured by the quartic terms.

Along the so-called D-flat directions where |h0
1| = |h0

2| one must further
require, at the tree-level

m2
11 + m2

22 − 2 m2
12 > 0 . (3.10)

After EWSB the complex Higgs fields h0
1 and h0

2 mix into their mass
eigenstates. Writing these fields as h0

i (x) =
(
φi(x) + i σi(x)

)
/
√

2 the
mass squared matrix of the CP odd scalars is

M2
ij =

〈
∂2VH

∂σi ∂σj

〉
(3.11)

with

M2
11 = m2

11 + ρM2
Z = m2

12 tan β , (3.12)

M2
22 = m2

22 − ϕM2
Z = m2

12 cot β , (3.13)

M2
12 = m2

12 . (3.14)

From detM2 = 0 follows that at least one eigenvalue is zero. TheThis also shows the
existence of one

neutral (would-be)
Goldstone boson

which then becomes
the longitudinal

polarisation of the Z
boson.

other eigenvalue is given by the trace ofM2

trM2 =
2 m2

12
sin 2β

≡ m2
A . (3.15)
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Figure 3.2: Overview of the relevant scales in Section 3.2. In Section 3.2.2
the contributions to the parameters in the MSSM Higgs potential
are calculated in an EFT approach at the matching scale µ̄ as
depicted on the left. On the right the matching at separate scales
M3 and MSUSY is shown with the RGE running performed between
those scales. Section 3.2.5 compares the two approaches in order
to find a suitable value for µ̄.

Analogously for the CP even scalars the mass squared matrix is

M2
ij =

〈
∂2VH

∂φi ∂φj

〉
(3.16)

with

M2
11 = m2

12 tan β + M2
Z cos2 β (1 + ∆11) , (3.17)

M2
22 = m2

12 cot β + M2
Z sin2 β (1 + ∆22) , (3.18)

M2
12 = −m2

12 −M2
Z sin β cos β (1 + ∆12) . (3.19)

The masses of the CP even Higgs boson can be obtained by diagonalis-
ingM2. In analogy to the SM, one of the eigenvalues must be negative
to trigger EWSB.

From the last equation it also follows that the lightest CP even
Higgs boson must be lighter than the Z boson at the tree-level, i. e.
m2

h ≤ M2
Z cos 2β. The corrections to the quartic couplings then can

shift its mass above MZ.

3.2 quantum corrections to the higgs potential

The gluino couples the MSSM Higgs fields via squarks loops at the
two-loop level. We are interested in the limit where these corrections
become as sizeable as the one-loop corrections. This section will deal
with the more technical details of this limit. To point out its implica-
tions, namely the renormalisation scheme applied to the top squarks,



40 bottom-up

we will restrict ourselves to the contributions from the top and stop
sector of the MSSM, i. e. those governed by the superpotentialIn this chapter, yt is

the Yukawa coupling
as it appears in the
superpotential. Its
relation to the SM

Yukawa coupling is
yt =

ySM
t

sin β = mt
v sin β

a the tree-level.

W = µ
(

h0
1 h0

2 − h−1 h+2
)
+ yt

(
t̃R t̃L h0

2 − t̃Rb̃L h+2
)

, (3.20)

where the obvious colour indices have been suppressed. The cor-
responding Lagrangian is derived according to [26] and given in
Appendix A.3. There, also the SUSY QCD interactions are listed.

The calculation is performed in an EFT approach, i. e. the SUSY parti-
cles are integrated out at the matching scale µ̄, and in the unbroken
electro-weak phase of the MSSM. In particular, the top quark is mass-
less in this limit and the gauge eigenstates of the top squarks, tL and
tR do not mix.

For a review of the
two-Higgs-doublet

model see e. g. [214].

Below the matching scale µ̄ the RGE running of the parameters in
the Higgs potential is the same as in a two-Higgs-doublet model of
Type II. At the mass scale of the top quark mt the solutions of the RGEs

for the mass parameters are to leading order in yt [215]

m2
11(mt) = m2

11(µ̄) , m2
11(mt) = m2

11(µ̄) , (3.21)

m2
22(mt) =

(
1−

6
∣∣yt
∣∣2

16 π2 log
( µ̄

mt

))
m2

22 (µ̄) . (3.22)

The RGE effects to the ∆ij are neglected which is commented on later.
Regarding the fine-tuning we would like to point out the difference

between the electro-weak scale and the masses of the Higgs bosons:
The loop corrections to the m2

ij affect the electro-weak scale and there-
fore are relevant for the discussion of the hierarchy problem. The ∆ij
can only have a logarithmic dependence on the SUSY masses by power
counting and set the masses of the Higgs bosons after EWSB. For that
reason, we consider two-loop contributions to the mass parameters but
only one-loop corrections to the quartic couplings. Thus we only ob-
tain a rough estimate of the masses of the Higgs bosons. Nonetheless,
that estimate is sufficient for the discussion of the fine-tuning.

We renormalise the parameters of the potential in eq. (3.3) in the
DR scheme. We then compute MZ from the input parameters m2

11 and
m2

22 with eq. (3.9) of the previous section, that also fixes m2
12 via the

choice of tan β.
Albeit our considerations lack some accuracy by not including the

complete SUSY spectrum, they have the advantage of less complicated
analytic results that allow for a comparison of different methodologies.
Sections 3.2.2-3.2.4 weigh the differences between the renormalisation
scheme of the stops. Section 3.2.5 deals with the choice of the matching
scale µ̄ by comparing the previous results to the matching at two
separate scales M3 and µ̄, see Figure 3.2. The uncertainty regarding
the masses of the Higgs bosons is estimated in Section 3.2.6.

The structure of this comparably long and technical section is a
pedagogical one that aims at developing our methodology step by
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(a) (b) (c) (d)

Figure 3.3: Counterterm conventions. Counterterms for scalar propagators,
fermion propagators and vertices. The respective Feynman rules
are given in consecutive order in eqs. (3.25), (3.26), (3.28) and
eq. (3.36)

step. We will sometimes remind the reader of previous results or
postpone certain questions to later discussions. To begin with, all
results of this section are summarised at the beginning of Sections 3.3
where the fine-tuning in the MSSM is considered.

The Higgs fields also
have a
supersymmetric
mass term, such that
their tree-level mass
terms are
m2,tree

11 =
∣∣µ∣∣2 + m2

h1

and m2,tree
22 =∣∣µ∣∣2 + m2

h1
,

respectively.

soft terms and higgsinos . We define soft terms for SUSY break-
ing by

−Lsoft = At

(
t̃R t̃L h0

2 − t̃Rb̃L h+2
)
+ A?

t

(
t̃?L t̃?R h0,?

2 − b̃?L t̃?R h+,?
2

)
+ m2

L

(
t̃?L t̃L + b̃?Lb̃L

)
+ m2

R tRt?R

+ m2
h1

(
h0,?

1 h0
1 + h−,?

1 h−1
)
+ m2

h2

(
h0,?

2 h0
2 + h+,?

2 h+2
)

+
1
2

M3 ψg̃ψg̃ , (3.23)

where ψg̃ is the Majorana spinor of the gluino, see Appendix A.3.
In the basis of gauge eigenstates the higgsinos h̃0

1 and h̃0
2 as well as

their SU(2)L partners h̃−1 and h̃+2 have a common mass term µ and we
therefore use

∣∣µ∣∣ as the higgsino mass which is correct if they do not
mix with the bino and the neutral wino. The four-component spinors
of the neutral higgsinos are Majorana spinors and those of the charged
higgsinos are Dirac spinors. Their definition and interactions are also
given in Appendix A.3.

the feynarts model file . For the generation of Feynman dia-
grams and the corresponding amplitudes, the interactions described by
the Lagrangian in eqs. (A.34)-(A.38) are implemented in a FeynArts

[216] model file. Fermion number violating interactions are imple-
mented in FeynArts according to [217].

renormalisation. For the two-loop calculation the Higgs fields
need to be renormalised at the two-loop level and all internal particles
and vertices at the one-loop level. For later reference, we explicitly
state our conventions for renormalisation. For scalars, field and mass
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renormalisations are introduced by the following replacements in the
Lagrangian

φ→
√

Z φ , m2 → m2 + δm(1),2 + δm(2),2 , (3.24)

with Z = 1 + δZ(1) + δZ(2), where the number in brackets marks the
counter term order in the perturbative expansion. The renormalisation
is done diagrammatically in renormalised perturbation theory, i. e. by
introducing additional Feynman rules for counterterms that are also
implemented in the FeynArts model file. The propagator counterterm
(Figure 3.3a) for scalars at the one-loop level is

i p2 δZ(1) − i
(

δm(1),2 + m2 δZ(1)
)

, (3.25)

and at the two-loop level (Figure 3.3b)

i p2 δZ(2) − i
(

δm(2),2 + m2 δZ(2) + δm(2),2 δZ(1)
)

. (3.26)

For chiral fermions analogous replacements are made,

ψL,R →
√

ZL,R ψL,R , m→ m + δm , (3.27)

with ZL,R = 1 + δZ(1)
L,R in the perturbative expansion. The subscripts L

and R denote the left-handed and right-handed components of four-
component fermions. The propagator counterterm (Figure 3.3c) for
fermions is

i /p(δZL PL + δZR PR)− i
(
δm + m(δZL + δZR)/2

)
(PL +PR) . (3.28)

For Majorana fermions ZL = ZR.
A diagram is called

one-particle-
irreducible if it

cannot be cut into
two disconnected

pieces by dropping
one internal line.

Self-energies Σ are defined such that the sum of all connected and
one-particle-irreducible diagrams with two external legs equals i Σ(p2),
where p is the external momentum. Σ̂ denotes the renormalised self-
energy. The Dyson resummed propagator then becomes, see Figure 3.4

∞

∑
n=0

i
p2 −m2

(
i Σ(p2)

i
p2 −m2

)n

= i
(

p2 −m2 + Σ(p2)
)−1

. (3.29)

It has its pole at m2 − Σ̂(p2). The renormalised self-energy for scalars
in terms of field and mass renormalisation constants is, at the one-loop
level

Σ̂(p2) = Σ(p2)− δm2 −m2 δZ + p2 δZ . (3.30)

At the two-loop level also one-loop diagrams with counterterm inser-
tions must be considered. When the mass corrections are calculated in
an EFT approach adopting the DR scheme, the self-energy is asymp-
totically expanded around p2 = 0

Σ(p2) = Σ(0) + Σ(1) p2 + . . . (3.31)
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i Σ ++ i Σ +  ...i Σ

Figure 3.4: Dyson resummation. The insertion of n self-energies into a scalar
propagator are formally summed to all orders.

After comparing coefficients of p2, the DR renormalisation constants
are defined by subtracting the ε poles only div denotes the UV

divergent part rather
than the divergence
of a vector field.

δZ = −div Σ(0) , (3.32)

δm2 = div Σ(0) + m2 div Σ(1) . (3.33)

In an OS scheme, Σ̂(p2) is defined such that the Dyson resummed
propagator in eq. (3.29) has a pole at p2 = m2, i. e. when the particle is
on-shell, with residue one. It follows that

δm2 = Σ(p2 = m2) , δZ = − d
dp2 Σ(p2 = m2) . (3.34)

The couplings yt, g3 and At are renormalised by substituting in the
Lagrangian

yt → Zyt yt , g3 → Zg g3 , At → ZAt At , (3.35)

where Zx = 1 + δZx for x = yt, g3, At. Expanding to the given order
in perturbation theory gives the one-loop counterterms for vertices,
see Figure 3.3d. E. g. for the top Yukawa coupling we have

−i
2

yt

(
2 δyt + δZh0

2
+ δZtL + δZtR

)
PL + H.c. (3.36)

3.2.1 Two-loop calculations with Medusa

This overview is
based on the
upcoming manual of
Medusa which was
kindly provided by C.
Wiegand.

the package . Medusa [218, 219] is a yet unpublished Mathematica

package for the automated calculation of one-loop and two-loop dia-
grams. It has been developed by Christoph Wiegand and is particularly
designed for calculating contributions of heavy particles in the loops.
For that reason Medusa adopts asymptotic expansions in external mo-
menta and large masses as described in [220]. This procedure allows
to reduce general two-loop integrals to the tensorial vacuum integral∫

ddk ddl
lν1 · · · lνr kµ1 · · · kµs

(m2
1 − k2)α (m2

2 − l2)β (m2
3 − (l + k)2)γ

, (3.37)

with arbitrary powers of the denominators and masses m1, m2, m3.
Medusa contains an implementation of a closed form solution of this
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Figure 3.5: Massless diagrams. Several classes of massless diagrams that
appear in our calculations and cannot naively be calculated with
Medusa.

integral that has been derived based on the solutions in [221–223].
Various one-loop integrals are implemented based on d dimensional
results in [224, 225]. For the Laurent expansion of the integrals in
ε = (4− d)/2 HypExp [226] is used and the Dirac algebra is solved with
TRACER [227]. Medusa loads these packages into different namespaces
to avoid conflicts due to homonymous internal variables.

After loading the package into the Mathematica kernel, the inter-
face to Medusa is provided by the function ComputeAmplitudes. This
function takes analytic expressions generated with FeynArts as in-
put. Further necessary arguments are the depth of the expansions in
momenta and masses as well as the mass hierarchy of all occurring
particles. In our case that is

mtree
22 <

∣∣µ∣∣ < mtree
11 < mR < mL < M3 . (3.38)

ComputeAmplitudes takes several optional arguments including the
possibility to switch off the large mass expansion and the momentum
expansion, too. In all two-loop amplitudes propagator diagrams the
large mass expansion is therefore switched off. ComputeAmplitudes
also allows to obtain higher powers in the expansion in ε, which are
needed for one-loop diagrams with counterterm insertions.

The use of asymptotic expansion poses a problem for diagrams with
only massless propagators. At this stage, Medusa does in addition not
support DRED or the calculation of colour factors from QCD vertices.
In the following we exemplify how these issues can be avoided.

massless diagrams . Figure 3.5 shows several diagrams that only
contain loops with massless particles. In the corresponding integrals,
logarithms of the form log(p2/µ̄2) appear, where p is an external mo-
mentum. Hence the expansion in small momenta is ill-defined since
these logarithms cannot be expanded around p2 = 0. One must there-
fore sort all diagrams of an amplitude into two categories depending
on whether they contain massive internal particles or not. For the
latter ones the momentum expansion in Medusa has to be switched
off. Nevertheless not all the necessary loop integrals are implemented
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in Medusa as it is designed to calculate contributions of heavy parti-
cles. We explain in the following how we treat the different classes of
diagrams in Figure 3.5.

Figure 3.5a shows a diagram which is needed for the field renor-
malisation of h0

2 at one-loop. Medusa can calculate tensorial propagator
integrals of the form∫

ddk
kµ1 · · · kµr

((k + p)2 −m2
1)

α(k2 −m2
2)

β
, (3.39)

for arbitrary external momenta p, masses m1, m2 and powers α, β

of the denominators. For that reason, massless one-loop propagator
diagrams are not an issue once the momentum expansion is turned
off. In this way also the OS self-energies in Section 3.2.4 are calculated.

The diagram in Figure 3.5b gives a QCD contribution to the renor-
malisation constant of yt. Integrals with three massless propagators
cannot be calculated in Medusa and a unique placeholder denoting∫

ddk
numerator

k2 (k + p1)2 (k + p2)2 , (3.40)

is returned instead of a result. In our cases, the numerators of this
integral are 1, kµ or kµkν. The respective integrals are calculated with
Package-X [228, 229] and saved as a set of rules to substitute the
placeholders after the calculation with Medusa.

Diagrams like those in Figure 3.5c are regularised with a finite top
quark mass. The diagrams can then be evaluated with Medusa. For
greater detail see Section 3.2.6.

Figure 3.5d shows a two-loop self-energy diagram with massless
propagators only that cannot be reduced to the vacuum master inte-
gral in (3.37). Also in that case Medusa returns placeholders for these
integrals. To cross-check our results and the renormalisation we were
kindly provided with private results from [230] for all massless two-
loop diagrams that appear in our calculation.

dimensional reduction. In SUSY calculations DRED is prefer-
ably used to regularise loop integrals since it is consistent with su-
persymmetry as opposed to DREG which explicitly breaks SUSY. The
reason is that the symmetry between bosons and fermions only holds
in four spacetime dimensions, while in DREG loop integrals are eval-
uated in d dimensions. In [231], it is shown how DRED can be con-
structed consistently such that fermions and vector bosons are treated
in "quasi" four dimensions and loop integrals in d dimensions.

The direct sum of
two infinite
dimensional vector
spaces is also infinite
dimensional.

Formally, one defines d dimensional space (with metric tensor ĝµν)
as in DREG, for details see e. g. [232]. (4− d) dimensional space is de-
fined analogously (with metric tensor g̃µν). "Quasi-four-dimensional"
space (with metric tensor gµν) is defined as the direct sum of these
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Figure 3.6: Gluon contributions to the top self-energy. Sample diagrams at
the one-loop level (left) and two-loop level (right).

vector spaces, such that gµν = ĝµν + g̃µν. The respective metric tensors
fulfil

gµνgµν = 4 , ĝµν ĝµν = d , g̃µν g̃µν = 4− d = 2 ε , (3.41)

and also serve as projectors onto d and 4− d dimensional space

gµν ĝνρ = ĝµ
ρ , gµν g̃νρ = g̃µ

ρ , ĝµν g̃νρ = 0 . (3.42)

Over each vector space a Dirac algebra is defined such that

{γµ, γν} = 2 gµν , {γ̂µ, γ̂ν} = 2 ĝµν , {γ̃µ, γ̃ν} = 2 g̃µν , (3.43)

and γµ = γ̂µ + γ̃µ. We additionally define {γ5, γµ} = 0 which de-
mands

tr {γµ1 · · · γµn γ5} = 0 . (3.44)

Momenta are treated in d dimensions, i. e. pµ = p̂µ, since they are
subject to the d dimensional Lorentz group. Contractions with Dirac
matrices actually project onto d dimensional space, i. e. /p = pµγµ =

p̂µγ̂µ = /̂p.
In contrast to DREG, vector bosons are four dimensional quantities.

They can be decomposed as Aµ = Âµ + Ãµ. In Feynman gauge, the
propagator of vector bosons is then proportional to gµν = ĝµν + g̃µν.
Medusa interprets all Lorentz structures and therefore also metric
tensors as d dimensional which is not consistent with DRED.

As an example of how this issue affects our calculations let us
discuss the Dirac part of the gluon contribution to the top self-energy,
see Figure 3.6a. The d dimensional part of the gluon propagator is

γµ/pγν ĝµν = γ̂µ
/pγ̂µ = (2− d) /p , (3.45)

where p is the momentum flowing through the top propagator. The
(4− d) dimensional part of the gluon propagator is

γµ
/pγν g̃µν = γ̃µ

/pγ̃µ = −(4− d) /p . (3.46)
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This additional contribution is formally of order ε but yields a finite
contribution in the presence of ε poles from loop integrals. The sum
of both contributions (eqs. (3.45) and (3.46)) gives the same result as
treating all quantities in four dimensions

γµ
/pγν gµν = γµ

/pγµ = −2 /p . (3.47)

At leading order in QCD, it is therefore sufficient to treat all Dirac
objects and metric tensors as four dimensional and all loop integrals
and momenta as d dimensional. In practice, the Dirac algebra must
be solved separately and all four dimensional quantities must be en-
capsulated before passing the amplitudes to Medusa. The results from
Medusa then contain only d dimensional quantities since they purely
stem from loop integrals. When contracting the results afterwards
eqs. (3.41) and (3.42) must be applied.

Beyond leading order in QCD, additional gluon propagators as in
Figure 3.6b will generate combinations of metric tensors like gµνgρσ =

(ĝµν + g̃µν)(ĝρσ + g̃ρσ). This problem is typically solved by treating Ãµ

as a separate field, called epsilon scalar, with own Feynman rules and
renormalisation constants, which can e. g. be found in [233].

colour algebra . In the current version, Medusa cannot deal with
the QCD expressions that are generated in FeynArts. The colour algebra
hence is also solved before the evaluation with Medusa. The relevant
formulae are given in Appendix A.1.

checks for consistency. As Medusa is still in the stage of de-
velopment and testing, we perform various cross-checks on final and
intermediate results. All calculations and testing routines are fully au-
tomated, including the export from Mathematica to C++ for numerical
evaluation. Thus, it has been possible to rerun and test the computa-
tional setup after each update of Medusa providing useful feedback for
the developer.

Beta functions for the couplings and masses can be extracted from
the renormalisation constants, for details see e. g. [102]. They are listed
in Appendix A.3 and compared to the one-loop and two-loop results
in [104] finding perfect agreement. All renormalisation constants are
calculated from all vertices to test the FeynArts model file and to
ensure that the SUSY, QCD and SU(2)L relations between different
vertices hold also beyond leading order. The finite pieces of one-
loop integrals are additionally cross-checked with FormCalc [234] and
Package-X. The corrections to the quartic Higgs couplings are further
compared to the compact analytic expressions in [235]. Finally, it is
analytically checked that the self-energies for charged and neutral
Higgs fields yield the same results as expected in the unbroken phase
of the MSSM.
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Figure 3.7: Numerical results of the two-loop calculation. The numerical input values are defined
in eqs. (3.48)-(3.51). Figure 3.7a shows that the two-loop corrections to m22 are of
comparable size as a the one-loop corrections for gluino masses of several TeV. The
various two-loop contributions to m22 are compared to each other in Figure 3.7b. The
two-loop corrections to m11 and m12 in Figures 3.7c and 3.7d, respectively, are of the
order of percent for our choice of parameters. This is also the case if the top squarks are
renormalised on-shell or if the DR contributions from gluino loops are resummed to all
orders.
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3.2.2 Fixed order results for m2
ij

This section deals with the numerical results for the corrections to the
mass parameters m2

ij. For the corrections to the quartic couplings ∆ij
see the discussion of the Higgs masses in Section 3.2.6.

Figure 3.7a shows the one-loop and two-loop corrections to the
mass parameter m2

22 as a function of M3 where the following input
parameters have been used

The values for the
couplings yt and g3
are the DR values at
1 TeV taken from
Table 2.3.

yt sin β = 0.8651 , g3 = 1.004 , (3.48)

mtree
11 = 600 GeV , mtree

22 = 272 GeV , (3.49)

mR = 1300 GeV , mL = 1600 GeV (3.50)∣∣µ∣∣ = 300 GeV , tan β = 5 . (3.51)

The choice of the renormalisation scale µ̄ =
√

mL mR is investigated
in Section 3.2.5. These parameters evade bounds from experimental
searches for stops, see e. g. [204] and for neutralinos if the bino and
wino states are heavy enough to leave the higgsino states nearly
degenerate at µ = 300 GeV, see e. g. [236].

For M3 < 3000 GeV, the two-loop correction are rather small com-
pared to the one-loop corrections. For larger values of M3, the two-loop
corrections nonetheless become larger than the one-loop corrections.
Figure 3.7b shows the different two-loop contributions. All non-QCD

corrections at two-loop are small, i. e. at the level of view percent,
compared to the one-loop results.

For M3 > 3000 GeV, the g2
3

∣∣yt
∣∣2 contributions are largest in magni-

tude and of the order of the one-loop corrections. The g2
3|At|2 terms

as well as the mixed g2
3yt A?

t + H.c. contributions are at the level of
10% of the one-loop corrections. The analytic result for the dominant
contributions proportional to g2

3

∣∣yt
∣∣2 M2

3 also shows the scaling of the
two-loop corrections with M2

3
The dilogarithm is
defined in eq. (A.12).
For M3 � mL,R we
approximately have
Li2 (1) = π2/6.

∆m2
22 =

4 N CF g2
3

∣∣yt
∣∣2 M2

3

256 π4

((
2 log

(M3

µ̄

)
− 1
)(

1 + 2 log
( µ̄ M3

mL mR

))
+Li2

(
1−m2

L/M2
3

)
+ Li2

(
1−m2

R/M2
3

))
.

(3.52)

These contributions originate from gluino loops like in Figure 3.1a. For
large values of M3 they do not only become larger than the one-loop
corrections but reappear at higher loop orders in perturbation theory,
see Figure 3.1b.

Before we resum these large gluino contributions to all orders, let
us note that the two-loop corrections to m11 and m12 are relatively
small, i. e. at the percent level, see Figures 3.7c and 3.7d. These figures
also anticipate the results of Section 3.2.3 where the gluino loops have
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Figure 3.8: Topologies for the all-order resummed diagrams. Blue brackets
mark the repeated insertions of gluino-top-loops into the stop
propagator. Topology I exists for both t̃L and t̃R. Topology II
includes both species of top squarks. The coupling constants
c1, c2 and c3 (in red) are given in Table 3.1 for the respective
self-energies.

been resummed and those of Section 3.2.4 where the top squarks are
renormalised on-shell. Also in this cases the contributions to m2

11 and
m2

12 are much smaller than those to m2
22.

3.2.3 All-order resummation of the gluino contributions

The gluino contributions that are recurring at all orders appear in
two topologies, see Figure 3.8. In both topologies gluino-top-loops
are inserted into the stop propagators. In Topology I, the top squarks
couple to h2 via the F-term proportional to

∣∣yt
∣∣2 and only one species

of the top squarks is present, i. e. either t̃L and t̃R. In Topology II, there
are two arches of propagators, one with a left-handed and one with a
right-handed stop. They couple to the external Higgs fields through
trilinear scalar couplings: for h2 that is At and for h1 that is µ y?t . All
couplings are encoded in the coefficients c1, c2 and c3 where the latter
one resembles all colour and Dirac factors from the gluino-top-subloop.
The ci are listed in Table 3.1 for the different contributions to the Higgs
self-energies.

In all expressions, the integral measure is defined by

∫
ddk̃ = eγEε

(
µ̄2

4π

)ε ∫
ddk , (3.53)

and we write m for the respective stop mass (mL or mR) and M for the
gluino mass (M3) to keep expressions short.
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self-energy correction to ĉ1 ĉ2 ĉ3

h0
1 → h0

1 m2
11

−N|yt|2
16 π2

−4 CF g2
3

16 π2
−N|At|2

16 π2

h0
1 → h0,?

2 m2
12 0

−4 CF g2
3

16 π2
N y?t µ At

16 π2

h0
2 → h0

2 m2
22 0

−4 CF g2
3

16 π2
−N|yt|2|µ|2

16 π2

Table 3.1: Coupling constants for different self-energies. The coefficients
c1 and c2 appear in Topology I while the coefficients c2 and c3
appear in Topology II, see Figure 3.8. For shortness, we define
ĉi = πd/2 ci/(4π)ε. The colour factors are N = 3 and CF = 4/3.

topology i . The first topology (Figure 3.8a) with n gluino-top-
loops inserted corresponds to the loop integral

Σ(n)
I =

∫
ddk̃

i c1

k2 −m2

(
i c2

k2 −m2 J(k2)

)n

, (3.54)

where J(k2) denotes the subloop with gluino and top quark

J(k2) =
∫

ddq̃
q2 − k · q

q2 ((q− k)2 −M2)
. (3.55)

The function J(k2) is logarithmically divergent in the UV by power
counting. But each insertion of J(k2) comes with a corresponding
counterterm diagram that renormalises this subloop. The integral over
k in eq. (3.54) is logarithmically divergent for n = 1 and UV finite for
n > 1 because of the increasing number of propagators. Therefore an
exact two-loop calculation is needed for n = 1 since nested divergences
can appear resulting in double logarithmic terms, see eq. (3.52). For
n > 1, our strategy is to extract those contributions from J(k2)n that
are large in the limit m � M. Afterwards the integration over k can
be performed, yielding a UV finite result that can be summed to all
orders. Thus the perturbative expansion is reorganised in powers of
M and subleading logarithms log m/M.

Moreover, J(k2) depends on two mass scales, k and M. Logarithms
of the form log(m2/M2) therefore come from the kinematic region
where k ' m. Expanding J(k2) around k2 = m2 gives

J(k2) =
i πd/2

(4π)ε

(
J0 + (k2 −m2) J1 + (k2 −m2)2 J2 + . . .

)
. (3.56)

The coefficient functions Ji are determined by the small momentum
expansion of two-point functions according to [237]

Jj =
(4π)ε

i πd/2
Γ(d/2)

4j Γ(j + 1) Γ(j + d/2)

(
∂2

∂kµ · ∂kµ

)j

J(k2)
∣∣∣
k2=m2

. (3.57)
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The d dimensional result for J(k2) can be obtained from its Feynman
parameter representation

The hypergeometric
function is defined in

eq. (A.15). J(k2) =
i πd/2 eγEε µ̄2ε Γ(ε)

2 (1− ε) (4π)ε
(

M2
)ε−1

×
(

1 +
(

1− k2

M2

)1−ε

2F1

(
ε, 1− ε; 2− ε;− k2

M2−k2

))
.

(3.58)

The coefficient functions Ji are calculated by taking the derivatives
according to (3.57) and expanding the hypergeometric 2F1 function in
ε with HypExp. The first four coefficient functions are

J0 =
2M2 −m2

2 ε
+

1
2

(
3 M2 − 2 m2

)
+
(

M2 − m2

2

)
log
( µ̄2

M2

)
−

(
M2 −m2

)2

2 m2 log
( M2

M2 −m2

)
+O(ε) , (3.59)

J1 = − 1
2 ε

+
1
2

log

(
1− m2

M2

)
+ log

(M2

µ̄2

)+O(ε) , (3.60)

J2 =
m2 − 2M2

12
(
m2 −M2

)2 +O(ε) , (3.61)

J3 = − M4

24
(
m2 −M2

)4 +O(ε) . (3.62)

The leading terms in J0 are proportional to M2 while the leading terms
in J1 depend logarithmically on M2. J2 is power suppressed by M2 and
each following coefficient function is supppressed by an additional
power of M2. For large M we therefore have

J0 > m2 J1 > m4 J2 > . . . (3.63)

Figure 3.9 shows the expansion of J(k2) compared to the full result.
This expansion of J(k2) is inserted into Σ(n)

I in eq. (3.54)

Σ(n)
I =

∫
ddk̃

ic1

k2 −m2

(
−ĉ2

k2 −m2

)n

×
(

Ĵ0 + (k2 −m2) Ĵ1 + (k2 −m2)2 Ĵ2 + . . .
)n

,
(3.64)

where ĉi = πd/2 ci/(4π)ε and Ĵi denote the renormalised coefficient
functions. For the moment, we will only consider the DR scheme,
where in Ĵi only the ε poles are subtracted from the coefficient functions
Ji. The OS scheme will be discussed in Section 3.2.4.
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Figure 3.9: Expansion of J(k2). The plot shows the real part of J(k2) com-
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pansion are given in eqs. (3.59)-(3.62). Numerical values from
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To perform the integration over k the integrand in eq. (3.64) is
reorganised in powers of denominators resulting in one-loop vacuum
integrals

Σ(n)
I =

∫
ddk̃

ic1

k2 −m2

(
−ĉ2

k2 −m2

)n

Ĵn
0

×

1 + n(k2 −m2)
Ĵ1

Ĵ0
+ (k2 −m2)2

(
n

Ĵ2

Ĵ0
+ n(n− 1)

Ĵ2
1

Ĵ2
0

)
+ . . .

 .

(3.65)

The first term in the second line gives the leading contribution in
powers of Ĵ0/m2 ∝ M2/m2. The loop integral for this term gives

Σ(n)
I,1 = ĉ1 m2 eγEε

(
µ̄

m

)2ε
(

ĉ2 Ĵ0

m2

)n
Γ(n + ε− 1)

Γ(n + 1)
, (3.66)

which is UV finite for n > 1, as mentioned before. For n > 1, these
contributions from all orders are summed

ΣI,1 =
∞

∑
n=2

Σ(n)
I,1 = ĉ1 m2

∞

∑
n=2

ξn Γ(n− 1)
Γ(n + 1)

(3.67)

= ĉ1 m2 (ξ + (1− ξ) log(1− ξ)
)

, (3.68)

with ξ = ĉ2 Ĵ0/m2.
The second term in the second line of eq. (3.65) resembles the next-

to-leading contribution in the powercounting of M. It has an additional
combinatorical factor of n since the power in eq. (3.64) contains n terms
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Figure 3.10: Combinatorics of three indistinguishable birds on two wires.
The case for n = 3 is depicted above. For placing n birds on two
wires one has n + 1 possibilities since there can be 0, 1, 2, . . . n
birds on the upper wire, corresponding to also n, n − 1, . . . , 0
birds on the lower wire.

of the form J1 Jn−1
0 . The integration over k gives for the second term in

eq. (3.65)

Σ(n)
I,2 = (ic1) (−ĉ2)

n n Ĵ1

Ĵ0
Ĵn
0

∫
ddk̃

1
(k2 −m2)n (3.69)

= −ĉ1 m2 eγEε µ̄2ε

m2ε

(
Ĵ1m2

Ĵ0

)(
ĉ2 Ĵ0

m2

)n
n Γ(n + ε− 2)

Γ(n)
. (3.70)

The result is UV finite for n > 2. We note that the nested divergencies
for n = 2 can only be resolved in a complete three-loop calculation.
Hence we sum all terms starting with n = 3

ΣI,2 =
∞

∑
n=3

Σ(n)
I,2 = −ĉ1 m2 χ1 ξ

(
ξ + (1− 2ξ) log(1− ξ)

)
, (3.71)

with the additional abbreviation χi = (m2)i Ĵi/ Ĵ0.
Analogously, the third term of eq. (3.65) is integrated over k and

gives a UV finite result for n > 3. Resumming these contributions to
all orders gives

ΣI,3 = ĉ1 m2 ξ2

((
2 χ2 −

χ2
1(ξ − 2)
1− ξ

)
ξ

+
(
(2− 3 ξ)χ2 + χ2

1(2− 6 ξ)
)

log(1− ξ)

)
.

(3.72)

topology ii . In the second topology (Figure 3.8b), there are n1

gluino-top-loop insertions on the upper stop propagator with mass mR

and n2 on the lower stop propagator with mass mL. The corresponding
loop integral therefore is∫

ddk̃
i c3

(k2 −m2
R)((k + p)2 −m2

L)

(
i c2 J(k2)

(k2 −m2
R)

)n1
(

i c2 J((k + p)2)

(k + p)2 −m2
L

)n2

.

Expanding to leading order in the external momentum p and neglect-
ing the mass splitting between mR and mL simplifies this topology to

Σ(n)
II = (n + 1)

∫
ddk̃

i c3

(k2 −m2)2

(
i c4 J(k2)

k2 −m2

)n

, (3.73)
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with n = n1 + n2 and m = (mL + mR)/2. The combinatorical factor
n + 1 counts the possibilities to distribute n gluino-top-loops on both
propagators, see Figure 3.10.

In comparison to Topology I there is one additional propagator
and the factor n + 1 that has to be considered in the summation. We
therefore adopt the same strategy as in the previous case and expand
Σ(n)

II in terms of the coefficient functions Ji analogously to eq. (3.65)

Σ(n)
II = (n + 1)

∫
ddk̃

ic3

(k2 −m2)2

(
−ĉ2

k2 −m2

)n

Ĵn
0

×

1 + n(k2 −m2)
Ĵ1

Ĵ0
+ (k2 −m2)2

(
n

Ĵ2

Ĵ0
+ n(n− 1)

Ĵ2
1

Ĵ2
0

)
+ . . .

 .

(3.74)

The integral over the first term gives

Σ(n)
II,1 = −ĉ3 eγEε (n + 1)

(
µ̄

m

)2ε
(

ĉ2 Ĵ0

m2

)n
Γ(n + ε)

Γ(n + 2)
. (3.75)

Although the integral is UV finite for n ≥ 1 the sum must start at
n = 2 to avoid double counting the two-loop contribution

ΣII,1 =
∞

∑
n=2

Σ(n)
II,1 = −ĉ3

∞

∑
n=2

ξn (n + 1) Γ(n)
Γ(n + 2)

= −ĉ3
(
ξ + log(1− ξ)

)
,

(3.76)

where ξ = ĉ2 Ĵ0/m2 as before.
Analogous to Topology I, integration and summation for the second

term of eq. (3.74) yield

ΣII,2 = −ĉ3
χ1 ξ

ξ − 1

(
ξ(3 ξ − 2) + 2 (ξ − 1) log(1− ξ)

)
. (3.77)

The result for the third term of eq. (3.74) finally is

ΣII,3 = ĉ3 ξ

(
ξ

(1− ξ)2

(
χ2

1 ξ (6− 19 ξ + 12 ξ2)

− χ2 (2− 9 ξ + 13 ξ2 − 6 ξ3)
)

+
(

6 χ2
1 ξ + χ2(6 ξ − 2)

)
log(1− ξ)

)
.

(3.78)

numerical results . Recalling the fact that the resummation
sums terms starting at three-loop and including the fixed order re-
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scheme only the stops are renormalised on-shell and for compar-
ison with the DR scheme the stop masses are converted from
the DR to the OS scheme, see Section 3.2.4.

sults of the previous section, we have for the corrections to the mass
parameters

m2
ij = m2,tree

ij − Σ̂one−loop
ij − Σ̂two−loop

ij

− Σ(ij)
I,1 (m = mR)− Σ(ij)

I,2 (m = mR)− Σ(ij)
I,3 (m = mR)

− Σ(ij)
I,1 (m = mL)− Σ(ij)

I,2 (m = mL)− Σ(ij)
I,3 (m = mL)

− Σ(ij)
II,1 − Σ(ij)

II,2 − Σ(ij)
II,3 .

(3.79)

Note that for the first topology, denoted by Σ(ij)
I , the contributions of

both species of top squarks need to be added, while in the second
topology, Σ(ij)

II , both species are already included. Figure 3.11 shows
the numerical results as function of M using the parameters from
eqs. (3.48)-(3.51). Compared to the two-loop result, the resummed
results grow even faster with M. The first terms of the resummation
give the largest additional contribution while the contribution of the
second term is comparably small. The difference of the second and
third term, however, is hardly recognisable in the plot. Hence the
expansion converges well for the given set of parameters.

convergence and validity. For both topologies, the expansion
and resummation depends on three assumptions which we like to
evaluate in the light of the numerical results.

Firstly, the self-energy insertions are expanded around k2 = m2 to
extract logarithms of the form log m/M. Other kinematic regions of
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Figure 3.12: Numerical evaluation of the expansion parameters. The input
values for yt and g3 are those of eq. (3.48) and m = 1300 GeV.
The upper plots show the expansion parameters χi = m2 J0/Ji
(Figure 3.12a) and ξ = ĉ2 Ĵ0/m2 (Figure 3.12b) as a function of
M. The lower plots show the relative (Figure 3.12a) and absolute
(right) size of the terms in the expansion and resummation of
Section 3.2.3.

the loop integrals do not contribute to these logarithmic terms and
therefore are not parametrically enhanced.

Secondly, the powers of the coefficient functions Ji in eq. (3.64) have
been rearranged assuming that Ĵ0 > m2 Ĵ1 > m4 Ĵ2 > . . . In other
words, we have assumed that the series of the expansion parameters
χi = m2 Ĵi/ Ĵ0 converges fast enough. Numerically, this is verified in
Figure 3.12a for the first three terms in the expansion. For the given set
of parameters, χ1 still is of the order of percent but the higher order
terms are rather small for values of M larger than 3000 GeV.

Thirdly, the powers of J0 ∝ M2 are summed to all orders, resulting
in logarithms of the form

∞

∑
n=1

ξn/n = − log(1− ξ) . (3.80)

This series converges for ξ = ĉ2 Ĵ0/m2 < 1. But ξ scales proportional
to M2, see Figure 3.12b. Hence there is a maximal value of Mmax

for that the series converges. For the given set of parameters, that is
Mmax ≈ 5.4 TeV. By reconstructing the imaginary part of ξ from the
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branch cut of J(k2) for k2 > M2 one can analytically continue these
logarithms to the region outside the disc with |ξ| < 1. This allows the
expansion to be valid beyond Mmax ≈ 5.4 TeV.

Nevertheless, let us restate this issue from a different perspective: We
have explicitly demonstrated that for large mass hierarchies between
M3 and mL, mR, the application of the DR scheme leads to large
corrections that demand an all order resummation.

3.2.4 The top squark mass

Since the resummation sums the renormalised subloops Ĵ0, the ques-
tion of how the resummation depends on the renormalisation scheme
arises. Let us for instructional purposes go back to eq. (3.54) now
performing the summation before the integration

This equation is
practically nothing

else but Dyson
resummation.

∞

∑
n=0

1
k2 −m2

(
i c2 J(k2)

k2 −m2

)n

=
1

k2 −m2 − ĉ2

(
Ĵ0 + (k2 −m2) Ĵ1 + . . .

) ,

where again the hats on top of variables denote renormalised quanti-
ties. Writing the integrals of the previous section in this form would
make them quite hard to evaluate. In this way it should become clearer,
what the implications of the renormalisation scheme for the top squark
mass m are. In an OS scheme, the conditions for pole and residue of
the resummed propagator yield Ĵ0 = 0 = Ĵ1. Regarding the resumma-
tion of the previous section, this implies that there are no higher order
terms of the form Ĵn

0 that need to be resummed. As a major result of
this chapter, we conclude that in case of a heavy gluino the OS scheme
should be applied for top squarks in order to avoid resumming large
corrections from all orders.

scheme conversion. Having in mind a high-scale scenario where
the stop masses are set, it is useful to translate between the DR and the
OS scheme. Assuming the stop masses are evolved from a high scale,
the DR scheme is the obvious choice for the renormalisation group
evolution. The contributions to the Higgs potential and low-energy
observables should be calculated using the OS definition of the stop
mass. For this conversion the scheme difference of the stop masses
∆m2 is needed. Since the bare mass m0 is the same in both schemes,
∆m2 is given by the difference of the counterterms

∆m2 = m2,OS −m2,DR

= m2
0 + δm2,OS −m2

0 − δm2,DR

= δm2,OS − δm2,DR . (3.81)

The scheme difference is always UV finite because UV divergences are
universal for all renormalisation schemes.
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For heavy gluinos the leading terms proportional to M2
3 in ∆m2 are

We have checked that
this result coincides
with the
corresponding terms
∝ M2

3 of (−ĉ2 Ĵ0) in
eq. (3.59).

∆m2 =
g2

3
6 π2

(
−m2 log

(M2
3

m2

)
− 3 M2

3 + 2 M2
3 log

(M2
3

µ̄2

)
+ M2

3

(
2− M2

3
m2

)
log
(

1− m2

M2
3

))
,

(3.82)

for m = mL, mR. We note that in all calculations the complete one-loop
result for the stop mass counterterm is used rather than the leading
terms only.

Figure 3.13 shows the on-shell masses of the top squarks as function
of the DR masses and the gluino mass M3. The given set of param-
eters (eqs. (3.48)-(3.51)) is especially interesting. As we recall from
the beginning of this chapter bounds from direct searches typically
exclude scenarios with stop masses below 1 TeV. Collider experiments,
however, test the physical masses. Figure 3.13 shows that DR masses
can be several hundreds of GeV lower than the on-shell masses if
the gluino is heavy enough. It is an important result that in case of
hierarchical SUSY spectra the renormalisation scheme difference must
be kept in mind when confronting theory to collider experiments.

In Section 3.2.2, the two-loop contributions to the Higgs mass pa-
rameters have been calculated in the DR scheme. The yellow curves
in Figure 3.11 show the same calculation with the top squarks renor-
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malised on-shell. To compare both results the OS result is expanded
in terms of the m2,DR

L,R . To leading order in g2
3 we have

f (m2,OS) = f (m2,DR + ∆m2)

= f (m2,DR) + ∆m2 d f (m2,DR)

dm2,DR
+O(g4

3) . (3.83)

For the two-loop results the scheme difference is formally of three loop
order and is consequently not included. For the one-loop result f is
formally of the same order as a two-loop result and therefore included.
That is why the one-loop OS result in Figure 3.11 has a dependence
on M3. Figure 3.11 also shows the resummed contributions in the DR
scheme. For moderately large gluino masses, the OS result numerically
reproduces the resummed result but also turns out to be numerically
stable around M3 > 5400 GeV, where the expansion parameter ξ

becomes larger than one, as can be seen in Figure 3.12b.
In most computations it will be more convenient to numerically

calculate the OS stop mass from the SUSY spectrum and use this
value, e. g. to compute flavour observables. As an application of these
techniques kaon mixing is considered in Section 3.4.

It has already been mentioned that heavy gluinos can have large
two-loop effects on the mass parameters m2

ij proportional to M2
3, see

e. g. [238] and that these corrections can partially be absorbed in the
OS scheme, see e. g. [239]. The corrections to dimensionless couplings
as well as to the Higgs mass, however, in this case are logarithmic in
M3, see e. g. [240, 241]. Our resummation performed in Section 3.2.3
explicitly shows that when working in the DR scheme the corrections
from higher orders in perturbation theory actually make the situation
worse and that these corrections are absent in the OS scheme. Inter-
estingly, in [242] it is mentioned that corrections from a heavy gluino
are critical in terms of the little hierarchy problem because they lift
the stop masses. The authors of [242] also note, that in a numerical
study the fine-tuning can become smaller if M3 > mL,R. Nonetheless,
in Section 3.3 we will show that this scenario can in contrast be helpful
concerning the little hierarchy problem.

3.2.5 The choice of the renormalisation scale

In the previous sections, the contributions to the mass parameters in
the Higgs potential m2

ij from eq. 3.3 have been calculated. From the
EFT perspective, all SUSY particles were integrated out at once at the
matching scale µ̄ =

√
mLmR. As there are two separate mass scales,

namely that of the top squarks and that of the gluino, that choice of
the renormalisation scale is not obvious. This ambiguity also concerns
the mass scale at which the couplings g3 and yt are evaluated.

As a consequence we will study the influence on the matching
scale µ̄. We will do so by first integrating out the gluino at its mass
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Figure 3.14: Contributions to the matching of CL,R
1 and C2 and their respective anomalous di-

mensions. Figures 3.14a-3.14c show the matching conditions for the Wilson coefficients
CL

1 , CR
1 and C2, respectively. The CR

1 insertions in Figure 3.14c are the same as the
ones for CL

1 with t̃L replaced by t̃R. Figures 3.14d-3.14f depict the contributions to
the anomalous dimensions of CL

1 , CR
1 and C2, respectively. For clarity, counterterm

diagrams are not shown.
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scale. Afterwards we study the renormalisation group of the effective
couplings generated from integrating out the gluino. We then perform
the matching to m2

ij at the scale µ̄ and compare the results to the
matching procedure of the previous sections. Both procedures are
illustrated in Figure 3.2.

If the gluino is integrated out at the scale M3, it generates effective
mass terms for the top squarks and the Higgs field. In the follow-
ing, let us treat them as effective vertices described by the effective
Hamiltonian

Heff. = CL
1 t̃?L t̃L + CR

1 t̃?R t̃R + C2 h0,?
2 h0

2 . (3.84)

The Wilson coefficients CL,R
1 and C2 have mass dimension two and

are defined by the matching conditions sketched diagrammatically
in Figures 3.14a-3.14c. In addition to the shown diagrams also the
corresponding counterm diagrams contribute, i. e. the matching is
performed between renormalised theories. For CL

1 and CR
1 we have, at

the matching scale µ̄ = M3

CL
1 (µ̄ = M3) =

4 CF g2
3

16 π2 M2
3 = CR

1 (µ̄ = M3) . (3.85)

The dominant two-loop contributions to C2 are the same as inSee [243] for a
pedagogical

introduction to the
application of

effective operators in
the context flavour

physics.

eq. (3.52). Below M3 the RGEs of the Wilson coefficients are

µ̄
d

dµ̄
~C(µ̄) = γT ~C(µ̄) . (3.86)
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The vector of Wilson coefficients is ~CT = (CL
1 , CR

1 , C2) and γ is the
anomalous dimension matrix of the corresponding operators. It can
be calculated from the diagrams in Figures 3.14d-3.14f

γ =

0 † γ0

† 0 γ0

∗ ∗ 0

 , with γ0 = −
2 N

∣∣yt
∣∣2

16 π2 . (3.87)

Note that the ε poles of the diagrams in Figures 3.14d and 3.14e
exactly cancel each other and therefore yield no QCD contribution the
anomalous dimension matrix. The entries in eq. (3.87) that are labelled
with a star (∗) are of the order

∣∣yt
∣∣4 g2

3 and therefore not relevant for
the discussion of the matching scale. The same holds for those entries
labelled with a dagger (†) that mainly induce operator mixing of the
CL,R

1 but are not enhanced by M2
3.

Below M3, there is no renormalisation group running of CL
1 and CR

2

to leading order in
∣∣yt
∣∣2 and hence

C1(µ̄) = C1(µ̄ = M3) , C2(µ̄) = C2(µ̄ = M3) . (3.88)

The operator mixing with CL
1 and CR

1 induces the RGE running of C2

C2(µ̄) = C2(M3) +
(

CL
1 (M3) + CR

1 (M3)
) log µ̄∫

log M3

d log µ γ0 . (3.89)

The integral measure can be rewritten in terms of yt using the beta
function βyt =

d yt
d log µ̄ = yt (6 y2

t − 16 g2
3/3)/16π2 = β0 yt

C2(µ̄) = C2(M3) +
(

CL
1 (M3) + CR

1 (M3)
) yt(µ̄)∫

yt(M3)

dyt
γ0

yt β0
. (3.90)

In perturbation theory, CL
1 and CR

1 are of the order of g2
3. The matching

is correct up to order y2
t g2

3. β0 and γ0 are consequently expanded to
order in y2

t , resulting in γ0/β0 = −1
log yt(µ̄=1 TeV)

yt(µ̄=3 TeV)
=

0.047.
C2(µ̄) = C2(M3)−

(
CL

1 (M3) + CR
1 (M3)

)
log

yt(µ̄)

yt(M3)
. (3.91)

Numerically, the running of yt is of the order of few percent as can be
seen from the data in Table 2.3.

In a second matching step, the corrections to m2
22 are calculated

at the renormalisation scale µ̄. The calculation is the same as in the
previous sections except for the diagrams with gluinos. These are now
replaced by the diagrams with insertions of the effective couplings
CL,R

1 and C2. These diagrams also appear in the matching condition for
C2, see Figure 3.14c. Despite that, these diagrams are now evaluated
at the renormalisation scale µ̄ rather than at M3.
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Figure 3.16: Comparison of the Higgs mass calculation. In the upper plot,
results obtained with FeynHiggs ("FH") are compared to our
one-loop SUSY corrections. In the lower plot, the difference
to between both result is given. For larger values of MSUSY
the logarithmic terms dominate the result and are correctly
reproduced by our calculation. The input values are given in
eqs.(3.92)-(3.94)

Using the same parameters as in eqs. (3.48)-(3.51) and additionally
M3 = 3 TeV, the results of this section are compared to the results of
the previous sections for different values of µ̄. Figure 3.15 shows that
for µ̄ =

√
mLmR = 1.44 TeV the results of the previous sections are

in accordance with the twofold matching and RGE evolution of this
section which is additionally less dependent on the matching scale µ̄.
The schemes differ by about a factor of 10% from each other.

From eq. (3.91) we can further conclude that all gluino interactions
are to be evaluated at the scale of M3. For our analysis of the fine-
tuning we will therefore use g3 = g3(M3) even if all SUSY particles are
integrated out at once.

3.2.6 The mass of the lightest CP even Higgs boson

As we have discussed in Section 3.1, the mass of the lightest CP even
Higgs boson in the MSSM is at tree-level bounded by the Z mass,
mh ≤

∣∣cos 2β
∣∣MZ. In order to identify this boson with the SM Higgs

boson, rather large loop corrections are needed. These corrections are
dominated by the stop masses and the stop mixing Xt = At − µ cot β

which are also relevant for the discussion of fine-tuning where we
include an approximation for the Higgs mass as important constraint.
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The precise determination of the mass of the Higgs bosons in the
MSSM has been a productive field of study for many years. Full one-
loop [244–247] and two-loop results [239, 248–264] and partial three-
loop [265–267] results have been calculated in a diagrammatic ap-
proach. Furthermore there are EFT calculations [238, 268–274] where
the contributions of heavy SUSY particles are treated as corrections
to the parameters in the Higgs potential. For comparisons of those
methods see e. g. [275, 276].

Due to the relevance of the loop corrections to mh in the MSSM, they
can hardly be neglected in a numerical study of the fine-tuning in the
MSSM. In our approach the mass of the CP even Higgs bosons is given
by eq. (3.16). The loop corrections to the mass parameters m2

ij have
already been discussed in the previous section. The corrections to the
quartic couplings ∆ij are calculated at the one-loop level including now

a finite top mass mpole
t = 173.1± 0.9 GeV [202]. We do not consider RGE

running of the ∆ij and therefore choose the renormalisation scale to be
µ̄ = mt. The dominant contributions then are of the form log m2

L,R/m2
t

and are checked analytically with the compact expressions in [235].
This also provides a useful check of our computational setup.

Our approach is still only an estimation since electro-weak correc-
tions and corrections from the finite VEVs, besides mt, are not taken
into account. Hence we compare our numerical results to those of
FeynHiggs-2.14.3 [247, 248, 277–281] in order to quantify these un-
certainties.

For the comparison the following strategy is adopted: FeynHiggs
uses MZ and the mass of the CP odd Higgs boson mA as input. For
this reason, we fit the DR parameters m2

11 and m2
22 to MZ and mA,

which in our setup are obtained by eqs. (3.9) and (3.15). For the global
scan we export the analytical expressions from Mathematica to C++.
Dilogarithms are evaluated with the GNU Scientific Library [282].
For the fitting routines the ISRES algorithms [194, 195] from the C++

implementation of the NLopt2.4.2 library [196] is used.
The masses of the CP even Higgs bosons are given by the eigen-

values of the mass matrix given in eq. (3.16). The following input
parameters are used The parameters M1

and M2 are
mandatory for the
usage of FeynHiggs.
Their value is chosen
small to avoid large
contributions from
this sector.

mA = 800 GeV ,
∣∣µ∣∣ = 400 GeV , (3.92)

tan β = 5 , M1 = 100 GeV , (3.93)

M2 = 100 GeV , M3 = 1000 GeV . (3.94)

We further keep the mass splitting mL −mR = 200 GeV fixed and vary
At and MSUSY =

√
mLmR as shown in Figure 3.16. The stop masses

are given in the DR scheme. For comparison, only the contribution
from top and stop quarks are included at the one-loop level when
calling FeynHiggs. Thus contributions from finite momenta in the These options are set

calling FeynHiggs

with the octal code
12110000.

propagator, resummed logarithms and RGE running of the top quark
mass as well as CP violation are neglected. Figure 3.16 finally shows
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that we generally underestimate mh, especially for smaller values of
MSUSY. The reason is that for larger values of MSUSY, the logarithms
log MSUSY/mt, which in our approach are reproduced, dominate the
result. Figure 3.16 also shows difference to the FeynHiggs result. This
difference is used to improve our estimate for the Higgs mass in our
analysis of the fine-tuning in the MSSM.

3.3 the fine-tuning in the mssm

So far, the gluino corrections to the Higgs potential in the MSSM

have been studied from different perspectives, some of them rather
technical. Let us summarise our results, before applying them to the
study of the fine-tuning in the MSSM.

A heavy gluino leads to large corrections to the mass parameters m2
ij

in the Higgs potential. Regarding the fine-tuning in the MSSM those
contributions shift the electro-weak scale towards higher values, see
Section 3.2.2.

The gluino contributes to the Higgs potential at two-loop via top
squark loops. If the top squarks are renormalised in the DR scheme
these corrections appear recurringly at higher orders in perturbation
theory and therefore need to be summed to all orders, see Section 3.2.3.
This resummation is, however, not necessary, if an on-shell scheme
is applied to the top squarks. The gluino contributions increase the
on-shell mass of the top squarks compared the DR mass. As we have
argued in Section 3.2.4, the splitting can allow DR mass parameters to
be several hundreds of GeV below the current collider bounds, that
are sensitive to the physical mass.

Concerning the fine-tuning in the MSSM, the question of the renor-
malisation scheme is actually the question of which parameters define
the theory. The fine-tuning is a measure to assess these theory pa-
rameters. Assuming the SUSY parameters are set at a high scale in
an underlying, more general theory, the fine-tuning of the EW scale
should be studied with respect to these parameters. In practical calcu-
lations these will mostly be the DR parameter. From that perspective,
the on-shell mass is an observable that can be determined from the
theory parameters.

It is rather interesting that the gluino mass M3 may increase the on-
shell mass compared to the DR mass. As we have seen in Section 3.2.4
this allows DR masses to be closer to the EW scale than one would
expect from LHC mass limits. As our analysis will show, the fine-
tuning is hence reduced. We will compare the fine-tuning calculated
from the naive one-loop corrections to m2

ij to the fine-tuning calculated
from the two-loop corrections. Formally, the one-loop results have
no control over the renormalisation scheme dependence of the top
squark. For the two-loop corrections we adopt the OS scheme for the
top squarks and expand the result in terms of the DR mass.
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Figure 3.17: The fine-tuning of MZ for sample points in the M3-MSUSY-plane. Upper plot: The
colour-coded areas show the median fine-tuning of 100 sample point that have been
fitted to MZ and mh. For reference, the one-loop result is shown for each value of
MSUSY =

√
mL mR. Lower plot: For comparison the two-loop result from the upper

plot has been divided by the one-loop results. A decrease in the fine-tuning at two-loop
compared to one-loop is marked with blue colours.
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Each point in the MSSM parameter space has a certain fine-tuning.
Our considerations are nonetheless of more general kind. Hence we
will not focus so much on the fine-tuning of a single set of parame-
ters but try to formulate a more general statement about the MSSM

parameter space. This is done by performing a global scan in the
MSUSY =

√
mL mR and M3 plane. For each value in this plane, a χ2

function defined by

χ2 =

(
Mexp

Z −Mtheo
Z

σMZ

)2

+

(
mexp

h −mtheo
h −moffset

h
σmh

)2

, (3.95)

is evaluated. For σMZ = 2.1 MeV the experimental uncertainty from
[120] is used. To account for the uncertainty in the Higgs mass calcula-
tion the difference to the FeynHiggs calculation found in Section 3.2.6
is used as an offset to the experimental values to account for the
corrections to the Higgs mass that are neglected and σmh = 1 GeV. The
χ2 function is minimised by varying the values of m2

11, m2
22, mR and

At over the following ranges
Having fixed

MSUSY, the choice of
mR also fixes ML.

mtree
11 = 10 . . . 600 GeV , mtree

22 = 10 . . . 600 GeV , (3.96)

mDR
R = 400 GeV . . . MSUSY , At = 10 GeV . . . 3 MSUSY . (3.97)

Starting from 100 random points in this parameter space we thus
generate 100 sets of parameters with χ2 < 1. For each point MZ is
calculated from the right-hand side of eq. (3.9) including the complete
two-loop corrections for m2

ij with the top squarks renormalised on-
shell and the complete one-loop corrections to ∆ij with the stop masses
converted to the OS scheme. The fine-tuning of MZ is then determined
as a function of mR, according to eq. (3.2). During the parameter scan
the following values are kept fix

tan β = 5 ,
∣∣µ∣∣ = 400 GeV . (3.98)

The DR couplings yt and g3 are evaluated at the scales yt = yt(MSUSY)

and g3 = g3(M3), as has been discussed in Section 3.2.5. The parameter
scan is performed in C++ as described in Section 3.2.6.The plots that show

the mean and the
quartiles are not

shown since
qualitatively they all

look alike.

For illustration, Figure 3.17a shows the median of the fine-tuning
measure over all 100 sampling points for each point in the MSUSY-M3

plane. For comparison, the scan is also performed including only
the one-loop corrections. The result is indicated by the colour bar in
Figure 3.17a. The one-loop corrections are independent of the gluino
mass M3.

Let us illustrate how to read this plot for MSUSY = 3500 GeV: Con-
sidering the one-loop results we find a median for fine-tuning of about
1 in 70, i. e. half of the points in the scan are less fine-tuned. In the
column for MSUSY = 3500 GeV of the two-loop result, we find a simi-
lar fine-tuning for a gluino mass of 12 TeV. For gluino masses below
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12 TeV the colour coding indicates lower values of the fine-tuning
reaching down to about 1 in 40.

For comparison, the lower plot of Figure 3.17b shows the ratio of
the fine-tuning obtained at two-loop divided by the one-loop result.
The colour coding is chosen such that ratios around one appear to
be greenish, i. e. when both methods yield the same fine-tuning. If
the fine-tuning for the two-loop result decreases compared to the
one-loop result a blue colour is chosen, while a yellow colour marks
the opposite case.

Overall, the fine-tuning including the gluino contributions is typi-
cally smaller than the one found at one-loop for the same values of
MSUSY. That is an astonishing result because it shows that the electro-
weak scale might not be as fine-tuned as one would naively expect
from a one-loop analysis.

There are still two caveats. As indicated by Figure 3.17b, for high
values of M3 the fine-tuning starts to increase compared to the one-
loop result, e. g. for MSUSY = 5 TeV and M3 = 15 TeV. The reason is
that the dominant two-loop contributions to m2

ij and therefore to MZ

stem from terms scaling as M2
3 log M3/mL,R (see eq. (3.52)). The fine-

tuning measure is basically the logarithmic derivative with respect to
mR and hence proportional to M3 for those contributions. At some
point the two-loop contributions to the fine-tuning become larger than
the one-loop contributions in which case the fine-tuning increases.

Furthermore, the fit only converges well for values of MSUSY starting
at 2 TeV. Below these values the Higgs mass of 125 GeV cannot be
accounted for with our set of parameters, see Figure 3.16. The parame-
ters in the scan are chosen such that the stop mixing Xt = At− µ cot β

is not much larger than the SUSY scale. Allowing for larger values of
the stop mixing to account for the Higgs mass would in turn introduce
an additional source of fine-tuning.

For a review of the
NMSSM see, e. g.
[283, 284].

The fact that both MZ and mh receive the largest contributions from
the top and stop sector (at least for tan β > 1) leads to an implicit
connection of the Higgs mass and the fine-tuning. This situation is
specific to the MSSM, though. In the next-to-minimal supersymmetric
extension of the Standard Model (NMSSM) an additional SM singlet
superfield is added whose VEV gives an additional contribution to
the masses of the Higgs boson. In such a scenario the DR masses
could be of the order of a hundred GeV if the gluino is heavy enough
for sufficiently large on-shell masses. Thus, we conclude that a mild
hierarchy between stop and gluinos masses could be the answer to
the little hierarchy problem.

3.4 an application to meson mixing

In March 2019, the LHCb collaboration announced the observation of
CP violation in charm decays [285]. CP violation was first discovered
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Figure 3.18: Sample diagrams for kaon mixing I. Diagram (a) appears in the
SM. The gluino boxes in diagrams (b) and (c) cancel each other
for M3 ≈ 1.5 mq̃. The clashing arrows in diagram (c) that denote
fermion flow are due to the Majorana nature of the gluino.
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Figure 3.19: Sample diagrams for kaon mixing II. The chargino box does
at one-loop not depend on the gluino mass M3. At two-loop,
gluino insertions into the up-type squark propagator scale as
M2

3 and introduce a dependence of the renormalisation scheme
of the squarks.

in the system of neutral kaons in 1964 [286]. The weak interaction
allows the flavour eigenstate K0 = (s̄d) to oscillate into K0 = (sd̄), see
Figure 3.18a. But the rate of that process is not the same as for the
reversed process. This leads to the fact that the mass eigenstates KL

and KS, which are superpositions of K0 and K0, are not CP eigenstates.
The existence of the CP violating decay KL → ππ at a rate of two per
mille then lead to the discovery in 1964. At the quark level, the mixing
of K0 into K0 and vice versa is described by the effective Hamiltonian

H∆s=2
eff =

8

∑
i=1

Ci(µ̄) Qi(µ̄) + H.c. . (3.99)

In the SM only the operator Q1 = s̄γµPLd s̄γµPLd contributes due to
the chiral structure of the weak interaction. The corresponding Wilson
coefficient at the mass scale of top quark is at leading order

CSM
1 (µ̄ = mt) =

G2
F

16 π2

(
Vts

CKMVtd,?
CKM

)2
m2

W S

(
m̄t

2

m2
W

)
, (3.100)

with the Inami-Lim function S(m̄t
2/m2

W) = 2.35 [287, 288].
In SUSY models also the operators Q2 . . . Q8 contribute [289–294].

Since we are interested in the effect of the renormalisation scheme
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adopted for the squarks, we will only discuss the SUSY corrections to
C1 and compare them to the SM value. The dominant contributions
originate from gluino and chargino boxes [295], see Figures 3.18 and
3.19

Cg̃g̃
1 = − g4

3
16 π2

6

∑
i,j

(11
36

D2(md̃i
, md̃j

, M3, M3)

+
1
9

M2
3 (md̃i

, md̃j
, M3, M3)

)
Vd LL

i 12 Vd LL
j 12 ,

(3.101)

Cχ̃+χ̃+

1 = − g4
2

128 π2

6

∑
i,j

D2(mũi , mũj , M3, M3)Vu LL
i 12 Vu LL

j 12 . (3.102)

For the definition of the loop functions D0 and D2 and the Mixing
matrices Vu,d see Appendix A.3.4 or references [296, 297].

These Wilson coefficients are defined at MSUSY = 1 TeV. At the mass
scale of the top quark they are [298]

With the input of
Table 2.2,
(. . . )6/21 = 0.963CSUSY

1

(
µ̄ = mt

)
=

(
αs(MSUSY)

αs(mt)

)6/21

CSUSY
1 (MSUSY) . (3.103)

The squark masses are mũ = md̃ = mq̃ = MSUSY = 1 TeV. Following
the approach by the authors of [299] we include mixing between
the weak doublets and parametrise the squark mass matrices in the
super-CKM basis as follows

M2
d̃ =

(
M2

q̃ 0
0 M2

d̃

)
, M2

ũ =

(
VCKM M2

q̃ V†
CKM 0

0 M2
ũ

)
, (3.104)

where M2,ij
ũ = m2

u δij, M2,ij
d̃

= m2
d δij and M2,ij

q̃ = m2
q (δ

ij + ∆ij). The
off-diagonal elements are set to ∆12 = ∆13 = ∆23 = 0.005 and all
others to zero. In addition, we choose M2 = 600 GeV.

It has already been pointed out in [295], that there is an interesting
interplay between the chargino and the gluino boxes depending on the
value of the gluino mass M3, see the dashed lines in Figure 3.20a. For
M3 of the order of 1 TeV, i. e. the squark masses, the gluino contribu-
tions dominate over the chargino contributions that are proportional
to the weak coupling g2. Interestingly, at M3 ≈ 1.5 mq̃ the gluino
loops become zero due to the interference with the crossed diagrams
(Figure 3.18c). For larger values of M3, the gluino decouples and the
chargino loops dominate the result.

At two-loop, however, the gluino contributes via squark loops that
scale as M2

3 as shown in Figure 3.19b. As we have argued in Sec-
tion 3.2.4, the resummation of these loops is equivalent to renormal-
ising the squarks in an OS scheme. To account for this corrections,
the scheme difference for mq̃ induced by the flavour universal gluino
corrections is calculated according to eq. (3.82). The results for the
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Figure 3.20: Renormalisation scheme comparison for Kaon mixing. The plots show the real (top)
and imaginary (bottom) part of the SUSY contributions to C1 at the scale mt, normalised
to CSM

1 (mt). Above M3 ≈ mq̃ = 1 TeV, chargino boxes are dominant. The dashed lines
depict the case where the squark masses are given in the DR scheme while the solid
lines depict the case where the squark masses have been converted to the OS scheme.
The area shaded in grey shows the 68% confidence interval for CεK from the 2018 new
physics fit by UTfit. M2 = 600 GeV and all squark masses are set to 1 TeV.
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Wilson coefficient C1 are represented by solid lines in Figure 3.20a.
Because the OS mass for the squarks is increased compared to DR
mass, the size of the chargino loops that scale as 1/m2

q̃ is decreased.
Still, they dominate the SUSY contributions for values of M3 above
3000 GeV. Note that the size of the scheme difference increases up to a
factor of two.

The shaded area in Figure 3.20b corresponds to the 68% confidence
interval from the 2018 new physics fit by the UTfit collaboration [300,
301] that suggests CεK = 1.12± 0.12. Neglecting the contributions
from charm and light quarks that value corresponds to CεK − 1 =

Im CSUSY
1 / Im CSM

1 in our scenario. Note that the RGE running below
mt and the hadronic matrix elements cancel in this ratio. For M3 >

4000 GeV, the DR results (dashed lines) show a slight tension in CεK

whereas the OS result does not (solid lines).
In Figure 3.20a a similar constraint from the mass difference of the

Kaons applies. This constraint, however, depends on long-distance
effects that are not yet fully understood, see e. g. [91, 302–305].

As a result, we summarise that also in predictions for flavour pro-
cesses the OS mass for squarks should be used in presence of a heavy
gluino, in order to avoid the resummation of higher orders. This
scheme difference does in addition have an effect on the constraints of
new physics.

3.5 conclusions

In this chapter we have considered the quantum corrections to the
MSSM Higgs potential in case the gluino mass M3 is larger than the
masses of the top squarks. The gluino contributes to the Higgs po-
tential at two-loop. Its contributions to the mass parameters in the
Higgs potential scale as M2

3 and therefore can exceed the one-loop
corrections. These corrections also affect the renormalisation scheme of
the top squarks. If those are renormalised in the DR scheme the gluino
contributions repeat themselves also at higher loop order and hence
need to be resummed. We have demonstrated that the resummation
of the DR contributions can be avoided by adopting the OS scheme
for the top squarks. As a consequence, the OS mass of the top squarks
becomes considerably larger than the DR mass.

This relation is crucial if the SUSY parameters are set in some high-
scale scenario and evolved to the scale of SUSY particles. Then the
DR masses should be translated to the OS scheme for comparison
with collider experiments that are sensitive to the on-shell mass of
particles. As an example we have studied the influence of the squark
renormalisation scheme in kaon mixing. The scheme difference can
change the SUSY contributions by a factor of two. We emphasize that
this observation is universal for any model of new physics with an
additional scalar at an intermediate mass scale.
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Moreover, this relation is interesting concerning the little hierarchy
problem in the MSSM. The fine-tuning in the MSSM may be lower
compared to the naive one-loop loop result if the contributions of a
heavy gluino are included. As has been shown in a numerical scan
this holds for large ranges of the MSSM parameter space. This effect
could be even stronger in supersymmetric models with an extended
Higgs sector.

The Mathematica package Medusa has been developed by C. Wie-
gand to calculate two-loop amplitudes with heavy particles in the
framework of EFT. Our work provided a unique opportunity to test
this new package and for this reason we laid special emphasis on
cross-checking and self-consistency of our results.



4
C O N C L U S I O N S

Charm is a way of
getting the answer
’Yes’ without asking
a clear question.
—Albert Camus

the other side of the desert. Gauge coupling unification in
the MSSM calls for two important assumptions, namely the absence
of generic new physics beyond the MSSM that would modify the
RGEs and the magnitude of the SUSY scale being in the TeV range.
This hypothetical picture of physics beyond the SM has often been
compared to that of a desert with no new particles between the SUSY

and the see-saw or GUT scale.
From today’s perspective, this picture is a two-sided one. On the one

hand, it offered the prospect of finding new particles and interactions
with searches at collider experiments. On the other hand, this simpli-
fied picture can narrow our view on the dynamics of new physics. In
this work we have approached possible SUSY scenarios both from high
and low energies and studied the implications thereof.

In Chapter 2 we have followed a top-down approach confronting a
minimal SUSY SO(10) GUT model with recent data from lattice and neu-
trino experiments. An extensive numerical treatment of the RGEs has
enabled us to constrain the SUSY threshold corrections in the Yukawa
sector. This analysis has impact on GUT inspired SUSY model building
while at the same time it remains agnostic regarding the details of the
SUSY spectrum. With increasing precision of both neutrino observables
and of our knowledge of the light quark masses, we expect that the
Yukawa sector of SUSY SO(10) will further be challenged.

Following a bottom-up approach in Chapter 3, we have investigated
the fine-tuning in the MSSM in the presence of a hierarchy between
the top squarks and the gluino. We have found that a heavy gluino
induces a sizeable shift between the on-shell mass and the DR mass
of the stops. As a consequence, the little hierarchy problem and the
fine-tuning can be milder compared to a one-loop analysis if one
includes two-loop corrections to the Higgs sector. Furthermore we
have demonstrated that in case of a hierarchical SUSY spectrum the
on-shell mass definition should be applied for calculating low-energy
observables in order to avoid large loop corrections at every order in
perturbation theory by explicitly performing the resummation of these
terms. But, Mousie, thou

art no thy-lane,
In proving foresight
may be vain;
The best-laid
schemes o’ mice an’
men
Gang aft agley,
An’ lea’e us nought
but grief an’ pain,
For promis’d joy!
—Robert Burns

Both approaches have in common that the theory predictions from
higher energy scales are massively altered through quantum correc-
tions that make the treatment in an EFT framework necessary. In the
future, the challenge for particle theory may be to deal with the reality
that new physics could be more hierarchical than the desert picture
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suggests. Eventually, nature, as we observe it, is hierarchical in terms
of energy scales. New physics might be not different from that.
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A P P E N D I X

a.1 conventions

This conventions
coincide with those
in reference [306].

Throughout this thesis, a system of units is used, where the Planck
constant h̄ and the speed of light c equal one.

space and time . A Lorentz vector and its derivative are defined
by their timely and spatial components as

xµ = (t,~x) , ∂µ =

(
∂

∂t
,−~∇

)
. (A.1)

Lorentz indices can be raised and lowered using the metric tensor

gµν = gµν = diag(1,−1,−1,−1) . (A.2)

If not explicitely stated otherwise, all Greek indices are Lorentz indices
and double occuring indices are automatically summed over.

The Dirac algebra obeys the anti-commutation relation

{γµ, γν} = γµγν + γνγµ = 2 gµν . (A.3)

For contractions of Lorentz vectors with Dirac matrices Feynman’s
slash notation is used /k = kµγµ. Traces over even numbers of Dirac
matrices can iteratively be rewritten as

tr (γµ1 · · · γµn) =
n

∑
i=2

(−1)igµ1µi tr (γµ2 · · · γµi−1 γµi+1 · · · γµn) , (A.4)

whereas traces of odd numbers of Dirac matrices vanish and tr (γµγν) =

2 gµν. For a discussion of the Dirac algebra outside of four dimensions
see Section 3.2.1.

With γ5 = iγ0γ1γ2γ3 the projectors onto left-handed and right-
handed states are

PL =
1
2
(1− γ5) , PR =

1
2
(1 + γ5) . (A.5)

colour algebra . The group generators of SU(3)C are Ta = λa/2
with λa being the Gell-Mann matrices, see e. g. [306]. The structure
constants f abc are defined by the commutation relation of the group
generators

[Ta, Tb] = TaTb − TbTa = i f abc Tc . (A.6)
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For the Casimir operators we write CF = (N2 − 1)/2N and CA = N
for SU(N). They obey

(TaTa)ij = CF δij , (TaTb)ii =
1
2

δab (A.7)

f acd f bcd = CA δab , f abc(TbTc)ij =
i
2

CA Ta
ij . (A.8)

For the calculation of the renormalisation constant of the strong cou-
pling the Fierz identity of SU(N) is used

(Ta)ij(Tb)kl =
1
2

δilδkj −
1

2N
δijδkl . (A.9)

In all final results, N is set to three.

special functions The real and imaginary part of a complex
number z are denoted by Re z and Im z, respectively. In polar coordi-
nates we have z = r eiϕ, with r = |z| and ϕ = arg z. We write z? for the
complex conjugate.

The logarithm of real arguments x ∈ R is defined by

log x =
∫ x

1
dt

1
t

. (A.10)

For complex arguments z ∈ C the principal value of the logarithm is
defined by

log z = log|z|+ i arg z , (A.11)

with −π < arg z ≤ π, i. e. the branch cut is on the negative real axis.
The dilogarithm is defined by

Li2 (z) = −
∫ z

0
dt

log(1− t)
t

(A.12)

and fulfils the identity

Li2 (1− z) + Li2

(
1− 1

z

)
= −1

2
(log z)2 . (A.13)

The Γ function is defined by

Γ(z) =
∫ ∞

0
dt tz−1e−t , Re z > 0 , (A.14)

and obeys the functional equation Γ(z + 1) = z Γ(z), i. e. for positive
integers n ∈ N, Γ(n) = (n + 1)! It can be analytically continued to the
complex plane with single poles for negativ integers.

The hypergeometric function is defined by

2F1 (a, b; c; z) =
Γ(c)

Γ(b) Γ(c− b)

∫ 1

0
dt

tb−1 (1− t)c−b−1

(1− z t)a , (A.15)

for 0 < Re b < Re c and a, z ∈ C.
The trace of a matrix A is defined by the sum of its diagonal entries

tr {A} = ∑
i

Aii . (A.16)
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parametrisation of flavour rotations . Any unitary 3× 3
matrix can be parametrised as

U = diag
(

eiδ1 , eiδ2 , eiδ3
)
·V · diag

(
e−iφ1/2, e−iφ2/2, 1

)
. (A.17)

For the CKM matrix, the additional phases δ1, δ2, δ3, φ1 and φ2 can be
absorbed into redefinitions of the fields. The matrix V is given in the
standard parametrisation of the PDG

V =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 ,

(A.18)

where the sines and cosines of the mixing angles are sij = sin θij and
cij = cos θij and the δ is the CP phase.

The PMNS matrix can be parametrised in the same way. However,
only the phases δi can be absorbed and the Majorana phases φ1 and
φ2 could be physical although they have not been measured yet. In
the analyses of Chapter 2 they are therefore treated as being zero.

a.2 gut scale parameters for the global minima

This section gives the coordinates of the global minima found in
Section 2.2. The parametrisation of the GUT Yukawa matrices Y10 and
Y126 is as follows

Y10 = diag (H1, H2, H3) , Y126 =

F1 F2 F3

F2 F4 F5

F3 F5 F6

 .

All results are given with a high numerical precision so that they can
be reproduced. For the correspondence to the MSSM Yukawa matrices
see Section 2.1.5.

a.2.1 Global Minima without SUSY Threshold Corrections

tan β = 10, χ2 = 127.016

r = 8.93109 , s = 0.40219 + 0.0537018 i ,

rR = 5.7222× 1014 GeV , H1 = −8.13678× 10−6 ,

H2 = 0.000546749 , H3 = 0.0587967 ,

F1 = (3.62943 + 1.11577 i)× 10−5 , F2 = (−4.86448− 6.8181 i)× 10−5 ,

F3 = −8.669× 10−5 + 0.00101114 i , F4 = −0.00122229 + 0.000483037 i ,

F5 = 0.00229999− 0.00243838 i , F6 = −0.00436435 + 0.000144527 i .
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tan β = 38, χ2 = 94.6859

r = 2.09333 , s = 0.361579 + 0.00221939 i ,

rR = −1.01454× 1014 GeV , H1 = −3.76306× 10−5 ,

H2 = 0.0017972 , H3 = 0.254405 ,

F1 = 0.000100472 + 0.000137311 i , F2 = 3.1103× 10−5 + 0.000457557 i ,

F3 = −0.00260288 + 0.0039351 i , F4 = −0.00474944 + 0.00161864 i ,

F5 = −0.0107501 + 0.00940057 i , F6 = −0.0119578− 0.047225 i .

tan β = 50, χ2 = 75.438

r = −1.351 , s = 0.380723 + 0.0112833 i ,

rR = 7.08356× 1013 GeV , H1 = −5.44756× 10−5 ,

H2 = 0.00295336 , H3 = 0.418203 ,

F1 = 0.000198815 + 0.000167965 i , F2 = 0.000197095 + 0.00060758 i ,

F3 = 0.00302059− 0.00664685 i , F4 = −0.00713153 + 0.00251093 i ,

F5 = 0.0167445− 0.0153386 i , F6 = −0.0253209− 0.0530162 i .

a.2.2 Global Minima with SUSY Threshold Corrections

tan β = 10, χ2 = 40.3671

r = 2.68759 , s = 0.146006− 0.258778 i ,

rR = 4.05262× 1013 GeV , H1 = 5.28137× 10−6 ,

H2 = 0.000694187 , H3 = 0.186542 ,

F1 = (−7.52986− 11.2321 i)× 10−6 , F2 = (−5.92321− 9.76299 i)× 10−5 ,

F3 = 0.000578945 + 0.000363829 i , F4 = 6.89316× 10−5 − 0.000631902 i ,

F5 = 0.0100828 + 0.000256401 i , F6 = 0.0424372 + 0.028391 i ,

εq = 0.05000 , εb = −0.07348963 ,

εl = −0.02999953 .

tan β = 38, χ2 = 1.74389

r = 0.739487 , s = 0.171775− 0.0527206 i ,

rR = 3.00163× 1012 GeV , H1 = 1.74192× 10−5 ,

H2 = 0.00263311 , H3 = 0.873783 ,

F1 = (−4.52508− 1.40042)× 10−5 i , F2 = −0.000670712− 0.000352788 i ,

F3 = 0.00257905 + 0.000499293 i , F4 = −0.00325008− 0.0013532 i ,

F5 = 0.0128581 + 0.0601288 i , F6 = 0.474974 + 0.216717 i ,

εq = 0.02796541 , εb = −0.04061278 ,

εl = −0.006000 .
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tan β = 50, χ2 = 3.73552

r = 0.699764 , s = 0.137602− 0.0279775 i ,

rR = 2.33× 1012 GeV , H1 = 1.21069× 10−5 ,

H2 = 0.00246264 , H3 = 0.988718 ,

F1 = (−4.09545− 1.24086 i)× 10−5 , F2 = 0.000472532 + 0.00031884 i ,

F3 = 0.00483506 + 0.00119957 i , F4 = −0.00190458 + 0.00028723 i ,

F5 = −0.0316564− 0.0584933 i , F6 = 0.607543 + 0.0633526 i ,

εq = 0.04720754 , εb = −0.006000 ,

εl = 0.001271233 .

a.2.3 Local Minima with SUSY Threshold Corrections

tan β = 38, χ2 = 3.71108

r = 0.670043 , s = 0.11989− 0.0413042 i ,

rR = 2.03128× 1012 GeV , H1 = 1.09545× 10−5 ,

H2 = 0.00255376 , H3 = 1.05489 ,

F1 = −3.38058× 10−5 − 5.63× 10−10 i , F2 = −0.00040558− 0.00026938 i ,

F3 = 0.00523839 + 0.000883983 i , F4 = −0.00226047 + 0.00066294 i ,

F5 = 0.0259931 + 0.063712 i , F6 = 0.622678 + 0.0958844 i ,

εq = 0.04999992 , εb = −0.01243252 ,

εl = −0.0048000 .

tan β = 50, χ2 = 4.6864

r = 0.719454 , s = 0.17033− 0.0410235 i ,

rR = 2.89057× 1012 GeV , H1 = 1.14972× 10−5 ,

H2 = 0.00276048 , H3 = 0.898288 ,

F1 = (−3.87624− 1.31146 i)× 10−5 , F2 = −0.000600001− 0.000317934 i

F3 = −0.00275464− 0.00102727 i , F4 = −0.00375989− 0.00115394 i

F5 = −0.0164547− 0.0618966 i , F6 = 0.552 + 0.0273906 i

εq = 0.4246740 , εb = −0.03408847 ,

εl = 0.0020000 .

a.3 technical details of the calculations in chapter 3

a.3.1 Two and four-component spinors.

Supersymmetry is typically defined in terms of Weyl spinors since
they are the components of supermultiplets. For practical calculations,
e. g. in FeynArts, it is often useful to translate them into the language
of four component spinors. All relations are taken from reference [27]
and also work without introducing spinor indices as we will see.

Let ξ and η be two two-component spinors of degenerate mass
m that transform under M ∈ SL(2, C). The spinors ξT and ξ̄ then
transform under M−1 and (M−1)∗, respectively, such that ξTη = ηTξ
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and ξ̄T η̄ = η̄T ξ̄ are invariants. For simplicity, the scalar products are
written as ξη, etc. outside this Appendix. From the trasformation
properties follows that (ξTη)† = η̄T ξ̄. The Weyl equations for those
spinors read

pµσ̄µξ = mη̄ , pµσµη̄ = mξ , (A.19)

where the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.20)

are used to define σµ = (1,~σ) and σ̄µ = (1,−~σ). Introducing four
component notation

ψ =

(
ξ

η̄

)
, γµ =

(
0 σµ

σ̄µ 0

)
, (A.21)

the Weyl equations can be rewritten as the Dirac equation

pµγµψ = mψ . (A.22)

Let us define two Dirac spinors

ψt =

(
tL

t̄T
R

)
, ψb =

(
bL

b̄T
R

)
. (A.23)

The conjugated Dirac spinors ψ = ψ†γ0 are

ψt =
(

tT
R, t̄L

)
, ψb =

(
bT

R, b̄L

)
. (A.24)

For Yukawa interactions we need the bilinear forms

ψbψt = bT
RtL + b̄L t̄T

R , (A.25)

ψtψb = tT
RbL + t̄Lb̄T

R . (A.26)

We can project onto the chiral components by

ψbPLψt = bT
RtL , ψbPRψt = b̄L t̄T

R , (A.27)

ψtPLψb = tT
RbL , ψtPRψb = t̄Lb̄T

R . (A.28)

For the fermion coupling to gluons the vector bilinear forms are
needed, e. g.

ψtγ
µPLψt = t̄Lσ̄µtL , ψtγ

µPRψt = tT
Rσµ t̄T

R . (A.29)

Majorana particles, however, have to be treated differently. The
gluino can e. g. be put in four component notation as

ψg̃ =

(
g̃
¯̃gT

)
. (A.30)
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For the top-stop-gluino couplings the following bilinear forms are
needed

ψtPLψg̃ = tT
R g̃ , ψtPRψg̃ = t̄L ¯̃gT , (A.31)

ψg̃PLψt = g̃TtL , ψg̃PRψt = ¯̃gt̄T
R . (A.32)

Finally, also a vector bilinear appears in the gluino-gluino-gluon cou-
pling

ψg̃γµPLψg̃ = ¯̃gσ̄µ g̃ , ψg̃γµPRψg̃ = g̃Tσµ ¯̃gT . (A.33)

a.3.2 Lagrangian

The Feynman rules
get an additional
factor of i because,
instead of L, iL
appears in the
definition of Green’s
functions in
perturbation theory.

The Feynman rules are derived from the superpotential in 3.20 ac-
cording to [26]. For the translation into four component spinors the
expressions from the previous section are used. The interactions of
gluons and gluinos in Feynman gauge are

LSQCD = i g3 f abc ψ
a
g̃γµ(PL + PR)ψ

b
g̃ Gc

µ

− g3 Ga
µ

(
ψtγ

µTa(PL + PR)ψt + ψbγµTaPLψb
)

− i g3 Ga
µ

(
t̃?L Ta ∂µ t̃L + t̃R Ta ∂µ t̃?R + b̃?L Ta ∂µ b̃L

)
+
√

2 g3

(
t̃?L Ta ψg̃PLψt − ψtPRψg̃ Ta t̃L

)
+
√

2 g3

(
b̃?L Ta ψg̃PLψb − ψbPRψg̃ Ta b̃L

)
+
√

2 g3

(
ψtPLψg̃ Ta t̃?R − tR Ta ψg̃PRψt

)
+ g2

3 Ga
µGb,µ

(
t̃?L TaTb t̃L + t̃R TaTb t̃?R + b̃?L TaTb b̃L

)
+

1
2

g2
3

(
t̃?L Ta t̃L + t̃R Ta t̃?R + b̃?L Ta b̃L

)
×
(

t̃?L Ta t̃L + t̃R Ta t̃?R + b̃?L Ta b̃L

)
− 1

4
Fa

µνFa,µν − c̄a ∂µ

(
δab ∂µ + g3 f abc Gc,µ

)
cc , (A.34)

where colour indices have been suppressed. In colour space ψt, ψb, t̃L,
b̃L, t̃?R are column vectors while their respective conjugates are row
vectors. The field strength tensor is

Fa
µν = ∂µGa

ν − ∂νGa
µ + g3 f abc Gb

µGc
ν , (A.35)

and ca is the Faddeev-Popov ghost [307].
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The Yukawa interactions derived from 3.20 are

−LYukawa = yt ψtPLψt h0
2 + y?t ψtPRψt h0,?

2

+ yt t̃R ψh,2PLψt + y?t ψtPRψh,2 t̃?R
+ yt ψtPLψh,2 t̃L + y?t t̃?L ψh,2PRψt

− yt ψtPLψb h+2 − y?t ψbPRψt h+,?
2

− yt ψtPLψ+ b̃L − y?t b̃?L ψ+PRψt

− yt t̃R ψC
+PLψb − y?t ψbPRψC

+ t̃?R , (A.36)

where four-component spinors of the higgsinos are given by

ψh,2 =

 h̃0
2

h̃
0,T
2

 , ψ+ =

 h̃+2
h̃
−,T
1

 , ψC
+ =

 h̃−1
h̃
+,T
2

 . (A.37)

Finally, the F-terms are

−LF =
∣∣yt
∣∣2 t̃R t̃?R h0

2 h0,?
2 +

∣∣yt
∣∣2 t̃?L t̃L h0

2 h0,?
2 +

∣∣yt
∣∣2 b̃?Lb̃L h+2 h+,?

2

+
∣∣yt
∣∣2 t̃R t̃?R h+2 h+,?

2 −
∣∣yt
∣∣2 b̃?L t̃L h0

2 h+,?
2 −

∣∣yt
∣∣2 t̃?Lb̃L h?2 h+2

+
∣∣yt
∣∣2 t̃R t̃L t̃?L t̃?R + yt µ? h0,?

1 t̃R t̃L + y?t µ h0
1 t̃?L t̃?R

+
∣∣yt
∣∣2 t̃Rb̃L b̃?L t̃?R + yt µ? h−,?

1 t̃Rb̃L + y?t µ h−1 b̃?L t̃?R

+
∣∣µ∣∣2 h0

1 h0,?
1 +

∣∣µ∣∣2 h0
2 h0,?

2 . (A.38)

a.3.3 Beta functions

The beta functions that result from this subset of the MSSM can be
derived from the one-loop and two-loop expression in [104]. Defining

d
d log µ̄

X =
1

16 π2 β
(1)
x +

1
(16 π2)2 β

(2)
x , (A.39)

one finds

β
(1)
g3 = −15

2
g3

3 , (A.40)

β
(1)
yt = yt

(
6
∣∣yt
∣∣2 − 16

3
g2

3

)
, (A.41)

β
(1)
At

= At

(
18
∣∣yt
∣∣2 − 16

3
g2

3

)
+

32
3

yt g2
3 M3 , (A.42)

β
(1)
m2

L
= 2

∣∣yt
∣∣2 (m2

m2
h2
+ m2

L + m2
R) + 2 |At|2 −

32
3

g2
3 M2

3 , (A.43)

β
(1)
m2

R
= 4

∣∣yt
∣∣2 (m2

m2
h2
+ m2

L + m2
R) + 4 |At|2 −

32
3

g2
3 M2

3 , (A.44)

β
(1)
M3

= −15 g2
3 M3 , (A.45)

β
(1)
m2

h2

= 6
∣∣yt
∣∣2 (m2

m2
h2
+ m2

L + m2
R) , (A.46)
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β
(2)
m2

h2

= −36
∣∣yt
∣∣2 (∣∣yt

∣∣2 (m2
m2

h2
+ m2

L + m2
R) + 2 |At|2

)
+ 32 g2

3

(∣∣yt
∣∣2 (m2

m2
h2
+ m2

L + m2
R) +|At|2 + 2

∣∣yt
∣∣2 M2

3

− y?t At M3 − yt A?
t M3

)
. (A.47)

We have checked all counterterms from our calculations with these
expressions and found perfect agreement.

a.3.4 Loop functions and squark mixing

The loop functions that appear in eqs. (3.101) and (3.102) from refer-
ences [296, 297] are

C0(m1, m2, m3) =
m2

1 m2
2 log

(
m2

1
m2

2

)
+ m2

2 m2
3 log

(
m2

2
m2

3

)
(m2

1 −m2
2)(m

2
2 −m2

3)(m
2
3 −m2

1)

+
m2

3 m2
1 log

(
m2

3
m2

1

)
(m2

1 −m2
2)(m

2
2 −m2

3)(m
2
3 −m2

1)
,

(A.48)

D0(m1, m2, m3, m4) =
C0(m1, m2, m3)− C0(m1, m2, m4)

m2
3 −m2

4
, (A.49)

D2(m1, m2, m3, m4) = C0(m1, m2, m3) + m2
4 D0(m1, m2, m3, m4) .

(A.50)

The squark mixing is described by

Vq LL
i 12 = Wq

1i Wq,?
2i , q = u, d , (A.51)

with no sum over i = 1, . . . , 6 and Wq
ij diagonalise the up-type squark

and down-type squark mass matrices of eq. 3.104

Wq,† M2
q̃ Wq = diag

(
q̃1, . . . q̃6

)
, q = u, d . (A.52)
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