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A de novo strategy for predictive crystal
engineering to tune excitonic coupling
Ritesh Haldar 1, Antoine Mazel2, Marjan Krstić 3, Qiang Zhang1,3, Marius Jakoby4, Ian A. Howard 4,5,

Bryce S. Richards4,5, Nicole Jung6, Denis Jacquemin 2, Stéphane Diring2, Wolfgang Wenzel3,

Fabrice Odobel2 & Christof Wöll 1

In molecular solids, the intense photoluminescence (PL) observed for solvated dye molecules

is often suppressed by nonradiative decay processes introduced by excitonic coupling to

adjacent chromophores. We have developed a strategy to avoid this undesirable PL

quenching by optimizing the chromophore packing. We integrated the photoactive com-

pounds into metal-organic frameworks (MOFs) and tuned the molecular alignment by

introducing adjustable “steric control units” (SCUs). We determined the optimal alignment of

core-substituted naphthalenediimides (cNDIs) to yield highly emissive J-aggregates by a

computational analysis. Then, we created a large library of handle-equipped MOF chromo-

phoric linkers and computationally screened for the best SCUs. A thorough photophysical

characterization confirmed the formation of J-aggregates with bright green emission, with

unprecedented photoluminescent quantum yields for crystalline NDI-based materials. This

data demonstrates the viability of MOF-based crystal engineering approaches that can be

universally applied to tailor the photophysical properties of organic semiconductor materials.
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Many applications1–3 require the development of highly
emissive chromophoric assemblies, but self-assembly of
fluorescent chromophores into mesoscale-ordered

structures often encounters problems resulting from the presence
of dominant non-radiative decay paths leading to photo-
luminescence (PL) quenching4,5. A typical case is the cofacial π–π
stacking, a frequent structural motif in the crystal structure of
planar aromatic molecules. In these aggregates, the absorbed
excitation energy is transferred to the lowest excited state in the
neighboring chromophore. In many cases, also referred to as H-
type non-emissive aggregates5, fluorescence is prohibited by dipole
selection rules, and the excitation decays via non-radiative pro-
cesses. Recovering the fluorescence present for the isolated
monomers is of pronounced interest. J-type aggregates containing
slipped or head-to-tail arranged π–π stacks of chromophores are
highly fluorescent and of substantial interest as organic light-
emitting materials6–8. As J-aggregates also feature high photo-
absorption efficiency and reduced charge-recombination losses,
they are also of pronounced interest for organic photovoltaics9,10.
This general interest has stimulated a large number of efforts to
enforce J-type aggregation of chromophores in supramolecular
assemblies11–13. However, very often the resulting assemblies do
not have the desired properties, instead of high luminescence, non-
radiative quenching processes result in “dark” materials4. Apart
from the H-aggregation, presence of transition metal-ions can also
quench the emission14. Many of these approaches were realized by
modifying intermolecular interactions via the introduction of
H-bonding side groups or moieties, which affect the molecular
packing through steric requirements6–8. The difficulties of crystal
structure prediction (CSP)15,16, however, have severely limited the
application of rational strategies and reported J-aggregates are
mostly the results of serendipitous discovery6–8,11–13,17. A typical
example is the case of 9-anthracene carboxylic acid (ACA), a
small, prototype chromophore. Non-substituted ACA crystallizes
in a triclinic structure, with bright PL properties. When side
groups are attached at the 10-position of ACA to modify the
position of emission bands, the slightly modified chromophores
crystallize in rather different crystal structures (triclinic, mono-
clinic, and orthorhombic)18. As the CSP method struggle to
predict experimentally realized structures, researchers had to
resort to trial-and-error strategies to optimize the photophysical
properties of such ACA assemblies.

Here, we propose a rational, de novo strategy for tuning
chromophore packing that is based on metal-organic frameworks
(MOFs). MOFs are constituted by coordinating organic linkers
(in this case chromophores with suitable coordination groups) to
metal or metal/oxo nodes, yielding porous, highly regular struc-
tures19–21. In these crystalline coordination networks, the struc-
tural freedom of the chromophore packing is highly reduced,
since the overall topology of the MOF mainly depends on the
connectivity of nodes and linkers. The porous structure of MOFs
provides sufficient free space to allow for rotations and other
conformational changes of the linkers within the bulk
structure22,23. Such changes can be induced by attaching func-
tional side groups to the chromophoric linkers. Since these
modifications do not affect the topology of the assembly24,25, CSP
can be carried out in a phase space of reduced dimensionality,
making it much more accurate than for molecular crystals26,27.

Herein, we demonstrate our de novo approach for predictive
tuning of structural parameters in a crystalline chromophore
assembly for a particular MOF, Zn-SURMOF-2 28,29. A Zn-based
paddle-wheel-type secondary building unit is tethered to a dito-
pic, chromophore linker, yielding a square grid type two-
dimensional structure of closely packed sheets (Fig. 1a)28–30.
In the present study, we have focused on a unique class
of chromophores, naphthalenediimides (NDIs). In addition to

unsurpassed PL quantum yields (QYs) in solution, these organic
dyes are able to form of charged-transfer complexes and exhibit
high charge carrier mobilities as well as other interesting photo-
physical properties31–33. The photophysical properties of NDI
monomers can be rationally tuned by substituting the core with
electron-pushing or -pulling groups34. Despite their huge
potential, so far only a few supramolecular assemblies of such
core-substituted NDIs (cNDIs) have been explored35–37, since
the design of efficient cNDI-based chromophoric assemblies is
limited by tedious synthesis procedures and unpredictable self-
assembly35–39.

As a prototype linker for constructing chromophoric MOFs,
here we use a bis-ethoxy-substituted-NDI (NDI(OEt)2), equipped
with two carboxylic acids. This linker can be readily assembled
into a SURMOF-2 structure, where π–π interactions yield a rather
close packing (Fig. 1a). As expected in the case of such a close
packing of chromophores, non-radiative processes govern the
decay of optical excitations, and the corresponding SURMOF-2 is
a non-emissive H-aggregate40. When we inspected the structure
in more detail, we realized that H-aggregate formation could be
suppressed by increasing the rotation angle θ of the chromo-
phoric linkers around the molecular axis (Fig. 1b). Our heuristic
expectation that larger distances between NDI core planes and a
slipping of the intermolecular transition dipoles, resulting from
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Fig. 1 Prediction of Coulomb coupling in SURMOF-2 structure. a Schematic
of a Zn-SURMOF-2 structure showing the continuously stacked
chromophores along the [010] plane, with green box= Zn-paddle-wheel
type secondary building unit, yellow ellipsoid=NDI(OEt)2, black arrow=
transition dipole orientation. The schematic at the right-hand side illustrates
the linker with the”SCU” R. b The green line is a plot of calculated
(transition charge from electrostatic potential method, TrEsp) Coulomb
coupling vs rotation angle θ (as shown in the inset). The different R groups
that exert different values of θ are illustrated on the plotted graph. The
yellow sphere marked on the green line is the predicted θ (by GROMACS-
2018.4) without any SCU (R=H); The inset figure shows the rotation angle
θ controlled by the R groups
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larger values of θ, should lead to a reduction in fluorescence
quenching was confirmed by a theoretical analysis, see Fig. 1b.
These calculations (for details see the Methods section) were
based on the transition charge fit (TrEsp) and revealed that for θ
> 55.4° the Coulomb coupling changed sign, indicating a transi-
tion from H- to J-type aggregation. Note that we did not consider
charge-transfer coupling, because the inter-cNDI distance is
much larger than 4 Å (required for a tight molecular packing).

In the present work, to tune θ to the desired value, we
implement an engineering approach by attaching “steric control
units” (SCUs) to the imide -N of the cNDI, as shown in Fig. 1b.
Unfortunately, the tedious synthesis of cNDI monomers prohibits
a trial-and-error approach to investigate the effect of these SCUs.
Therefore, we first create a library of 18 possible SCUs, then
optimize the geometry of the individual linkers using a force-field
calculation, and then use a simple scheme to assemble 18 dif-
ferent MOFs in silico using a previously described MOF con-
structor27. Then, the MOF lattice constant is fixed and an MD
scheme is used to optimize the structure of the linkers (including
the intramolecular dihedral angles). As a result of inter-ligand
interactions, the dihedral angles are changed and also the rotation
angle θ (angle between cNDI core and carboxylate-planes)
changed. The corresponding results (Fig. 1b) led to some sur-
prises, e.g. the fairly bulky benzyl group exerted smaller dihedral
and rotation angle compared to a –CH3 substituent. This com-
putational screening process identifies three suitable, synthetically
viable SCUs, which are then synthesized and assembled into the
Zn-SURMOF-2 structures displayed in Fig. 1a. The synthesized
Zn-SURMOF-2 displays J-aggregation feature with bright PL, as
predicted by computational methods.

Results
Structural prediction of a library of NDI(OEt)2-assemblies. To
arrange the cNDIs in space, we focused on MOFs of type Zn-
SURMOF-2, assembled from ditopic (with phenylcarboxylate
coupling groups) cNDI linkers (see Fig. 1a)28,29. A few cNDI-
based bulk MOF structures have been reported previously, but
either their photophysical properties were not studied41,42 or only
non-emissive H-aggregates were obtained40.

To study the interplay between chromophore packing and
photophysical properties, we started with a NDI(OEt)2 linker
(Fig. 2a and Supplementary Fig. 1). Using the DFT method we
have optimized a trimer model of NDI(OEt)2 (A). These
calculations yielded a cofacial stacking (~5.8 Å) of the NDI
(OEt)2 cores, an undesirable H-aggregate type arrangement (see
Methods section and Supplementary Fig. 2). The mounting of the
NDI(OEt)2-linker inside the framework (via the two phenylcar-
boxylate groups) offers the option for tuning the inter-NDI(OEt)2
coupling by changing the rotation angle θ (see Fig. 1b). To
illustrate this effect, we employed the electrostatic potential
(TrEsp) method43. The TDM–TDM (transition dipole moment)
Coulomb coupling between two closely spaced (~6.8 Å) NDI
(OEt)2 chromophores was calculated as a function of rotation
angle θ. Since such calculations are not possible for a periodic
structure, the situation inside the MOF was approximated by
studying two adjacent NDI(OEt)2 monomers placed at a distance
(x) of 6.8 Å between the molecular axis. While for θ ~ 2° the
coupling in these dimers was positive, explaining the H-aggregate
type behavior in A (Supplementary Table 2), for θ > 55.4° the
interchromophore coupling sign reversed, indicating the forma-
tion of a J-aggregate. For larger distances (x), the coupling
strength decreased, but the nature of coupling (H or J) remained
the same (Supplementary Fig. 3).

Next, we attached sterically demanding side groups R to the
cNDI core, as a synthetic strategy to tune θ. Depending on their

precise geometry (Fig. 1b), the R moieties act as SCUs by
changing the dihedral angle (α1) between the NDI(OEt)2 plane
and the phenyl plane, and thus affect the NDI core rotation angle
θ. We created a library of 18 possible R groups (chosen such that
they leave the optical properties of the chromophore unchanged)
and calculated the resulting values of θ (Fig. 2a, b and
Supplementary Table 1). These simulations (using a trimer
model) revealed that for these R-groups rotation angles between
0° and the maximum limit of ~90° can be achieved (Fig. 2b). It is
worth noting that the dihedral angle (α1) and rotation angle θ
show a nontrivial dependence on the “bulkiness” of R, where e.g.,
the methyl (8) group exerted larger dihedral and rotation angle
(89.7° and 40.9°, respectively) as by the benzyl (6) group (87.6°
and 34°, respectively) (Fig. 2b and Supplementary Table 1).

To validate the predictions for chromophore geometry and
excitonic coupling using the DFT method, we chose three R
groups, two from the borderline region in Fig. 2b (8, R=Me and
9, R= Et from the blue region), and one for which a J-aggregate is
predicted (15, R= iPr from the green region) (Fig. 2b), for
subsequent experimental analysis.

Crystalline assembly of R-NDI(OEt)2 in Zn-SURMOF-2
structure. The three linkers obtained from the screening pro-
cess described above were synthesized according to the estab-
lished cNDI synthetic protocol40. Subsequently, using a layer-by-
layer (lbl) spin-coating method, we fabricated Zn-(R-NDI(OEt2))

90

(1)
(7)

(8)
(12)

(16)

(13) (17)

(14)

(18)

(15)

(9)

(10)

(11)

(2)

(3)

(4)

(5)

(6)

COOH
a

b

COOH

R

O

CH
3

CH
3

CH
3

CH
3

CH
3

CH
3

CH
3

CH
3

CH
3

CH
3

CH
3

CH
3

CH
3CH

3

CH
3

CH
3

CH
3

CF
3

Br

CH
2

OO

O

O

OO

R

R R

* *

*

75

60

R
ot

at
io

n 
an

gl
e 

� 
(°

)

45

30

15

0 2 4 6 8 10
R number

12 14 16 18 20

Fig. 2 Design of “steric control unit”. a Chemical structure of R-NDI(OEt)2
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(R=Me (8 A), Et (9 A), and iPr (15 A)) SURMOF-2 structures
on –OH functionalized quartz and silicon substrates (see Meth-
ods section). The out-of-plane and in-plane X-ray diffraction
(XRD) patterns of 8A revealed the successful growth of crystalline
MOF thin films that were oriented along the (001) axis, with
lattice dimensions (a= b= 2.6 nm) perpendicular and parallel to
the substrate that were identical to those of the parent Zn-(NDI
(OEt2)) SURMOF-2 structure (A) described previously (Fig. 3
and Supplementary Fig. 4)40. The other two SURMOF-2 struc-
tures, 9A and 15A, also revealed XRD patterns that were similar
to that of 8A, suggesting identical structures. In the case of 15A,
which contained the most bulky SCU –iPr, the interlayer distance
was found to increase to ~6.8 Å, 1 Å greater than that in A (~5.8
Å) (Supplementary Fig. 4). The interlayer distances for 8A and
9A were also similar (6.6–6.7 Å). This interlayer distance, how-
ever, did not affect the aggregation type (coupling sign), as evi-
denced by calculations of the Coulomb coupling for different
distances. The DFT simulated linker orientation angles are dif-
ferent (as expected) from the GROMACS-optimized values, see
Supplementary Table 2. Supplementary Figure 5 shows the pos-
sible geometry of the NDI(OEt)2 linkers in structure A and 15A
(by considering a model of trimer), illustrating the changes in
dihedral angles caused by the SCU.

Effect of “steric control units” on excitonic coupling. The
UV–Vis absorption spectra of all the linkers solvated in ethanol
were similar, confirming that the “steric control” R-groups do
not affect the optical properties of NDI(OEt2) (Supplementary
Fig. 6)44. However, after assembling the modified linkers into
the corresponding SURMOF-2 structures, the absorption spec-
tra exhibited pronounced differences, indicating substantial
differences in the excitonic coupling (Fig. 4a). First, the ratios of
the vibronic overtones at 436 (A(0–1)) and 472 (A(0–0)) nm
(Fig. 4a) were strongly different. In the case of 8A, the vibronic
ratio resembles that in A, but an additional blueshift was
observed. Interestingly, for 9A and 15A, an inversion of vibronic
intensity was observed. Considering the vibronic features
observed for typical Kasha aggregates5,8, the stronger intensity
of the first overtones (A(0-0)) in 9A and 15A clearly suggest loss
of cofacial stacking of the NDI(OEt)2 chromophores6. We noted
that the coupling energy (Jmn) for A (+22 meV) and 9A (+21
meV) or 15A (−16 meV) did not differ markedly (Fig. 1b), and
hence a large spectral shift would not be anticipated. Rather the

changes observed in the vibronic ratios indicated a different
aggregation behavior. Particularly, the absorption spectrum of
15A shows a broader peak in the longer wavelength region
(>500 nm) compared to the other SURMOFs. To explain this
behavior we employed time-dependent density functional the-
ory (TD-DFT) to simulate the electronic absorption spectra of
the NDI(OEt)2 dimers with rotation angles 34° and 60° for H-
and J-type coupling, respectively (Supplementary Figs. 7 and 8).
In the case of H-type, the absorption maximum shifted slightly
to a shorter wavelength. But, in J-type a new absorption
shoulder was observed in the longer wavelength region (~485
nm). This is because in a J-aggregate two transition dipoles
become almost collinear, and the dark state (in H-aggregate)
becomes allowed and low lying visible absorption peaks are
observed in the spectrum. These data agreed well with the
experimentally observed absorption spectrum of 15A.

The differences in the PL spectra upon excitation at 450 nm
were even more dramatic. In contrast to the non-emissive
structure A, 8A and 9A exhibited substantial PL intensities, with a
maximum at 480 nm and a broad band at longer wavelength
(520–600 nm) (Fig. 4b). In the case of 15A (blue), PL became
much more intense; also the 480 nm peak became less prominent
and was overtaken by a broad PL peak with a maximum at 540
nm. The PL maximum at 480 nm resembled that observed for
non-coordinated linkers in solution. We attributed the red shifted
PL in these SURMOFs to the formation of J-aggregates. We can
rule out the possibility of excited state dimer (excimer)45,46

formation: the absorption vibronic ratios do not resemble that of
the solvated chromophore and the excitation spectrum monitored
at 580 nm exhibited a broader peak ~500 nm compared to that of
the solvated chromophore (Supplementary Fig. 9). This outcome
agrees well with our prediction, as the “steric control” 15
rendered J-type coupling, and the observed intense red shifted PL
supports the hypothesis.

The PL lifetimes recorded for 8A, 9A, and 15A exhibited two
components with different lifetimes of ~6.5 and ~1.3 ns (Fig. 4c).
Whereas in 8A and 9A the short-lived component dominated the
emission, in 15 A, the long-lived PL47 became the more
prominent component. This observation is consistent with the
larger rotation angle θ, which would lead to a loss of the cofacial
packing. Photographic images of the linkers in solution and of the
corresponding SURMOFs are given in supplementary Fig. 10 (see
also Supplementary Fig. 11). Whereas the bright cyan emission of
the solvated linker PL remains unaffected by attaching the “steric
control” group, the SURMOFs reveal striking changes. Attach-
ment of the SCUs transformed the non-emissive A to an intensely
green emissive thin film 15A. The PL QY measured for 8A, 9A,
and 15A (~0.4%, 0.7%, and 2.3%, respectively) was consistent
with the formation of J-type assemblies (Fig. 4d).

Discussion
Our results reveal that a MOF-based approach using chromo-
phoric linkers allows for a rational crystal engineering of highly
regular chromophoric assemblies. Starting from a non-emissive
H-aggregate, where the close proximity of neighboring chromo-
phores strongly quenches optical excitations, we have used
computational methods to search for SCUs to modify the linker
packing, with the aim to realize J-aggregates with bright emission.
Using a library of chromophoric MOF linkers differing in their
SCUs, we were able to identify functionalities, which change the
molecular packing such that the π–π cofacial stacking is strongly
reduced. This search was only possible because in this MOF-
based approach prediction of the linker (chromophore)
arrangement is largely simplified by the fixed framework topol-
ogy, where effectively only one degree of freedom remains. The
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Fig. 3 Assembly of R-NDI(OEt)2 in SURMOF-2 structures: out-of-plane
XRD patterns of A, 8A, 9A, and 15A
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computational screening procedure reduced the dipole–dipole
coupling of the non-emissive start structure (~+22 meV) to −16
meV.

The theoretical prediction was fully confirmed by a thorough
photophysical characterization of the SURMOFs built from the
modified organic linkers identified in the computational screen-
ing. The optical characterization of the target material was greatly
aided by the structural properties of SURMOFs as compared to
systems made from MOF powders28,29. In the latter case, the
morphological heterogeneity and the irregular nanoscale mor-
phology severely hamper the optical and photophysical char-
acterization. The non-emissive starting material was converted
into a highly emissive SURMOF with bright green luminescence.
The possibility to rationally design J-aggregates from starting
chromophores is of tremendous interest from the perspective of
exciton transport, electron transport, and other related optoe-
lectronic properties.

Methods
X-ray diffraction. The XRD measurements for out-of-plane (co-planar orienta-
tion) were carried out using a Bruker D8-Advance diffractometer equipped with a
position-sensitive detector LynxEye in geometry, operated with a variable diver-
gence slit and a 2.3° Soller-slit on the secondary side. Cu Kα1,2-radiation (λ=
0.154018 nm) was used in all cases.

Computational methods. The Coulomb couplings (TDM–TDM coupling shown
in Fig. 1b as a green line) were calculated using transition charge from electrostatic
potential (TrEsp) fit (where transition charges were fitted to every atom in the
monomer from electrostatic potential fit)43. First we calculated transition density
matrix between ground state S0 and excited state S1 and save it in “cube” format.
From this point we employed MultiWfn program48 to make the fit and calculate
transition charges for every atom in monomer. These transition charges have been
used to calculate Coulomb coupling by the sum over interaction between atomic
transition charges approach of Howard et al.49. This approach have been shown to

reproduce very good values for the exciton interaction energy compared to point-
dipole or extended-dipole approaches. Note that the magic angle of 55.4° is slightly
different than that obtained in the case of the point-dipole approach (54.74°). This
is because the NDI linker is not completely planar (see Supplementary Fig. 12) and
we used the sum over interaction between atomic transition charges approach (see
Supplementary Table 3) to evaluate the exciton interaction energy.

The ditopic cNDI linkers, irrespective of the size of attached “steric control
units”, form isoreticular Zn-SURMOF-2 structures, which have been reported in
previous works29,40. In the previous work, also DFT calculations where the whole
SURMOFs were optimized have been described. With this previous information in
hand, we have assembled the (geometry-optimized) ditopic linkers into a
SURMOF-2 structure using an MOF constructor27. Test experiments have shown
that the unit cell dimensions along the [100] direction and the [001] direction do
not change upon substitution the cNDI linkers used here with R-groups. To predict
the excitonic coupling (TDM–TDM coupling), the most important parameters are
interchromophore distance and transition dipole moment geometry. Our proposed
model structures, as described below, consider those two important parameters.

The proposed molecular dynamic (MD) scheme to predict the rotation angle θ
for various R groups consists of 3 steps: (i) Optimization of the R-NDI(OEt)2
monomer geometry based on optimized potential for liquid simulation (OPLS)
force field50–52 to get the dihedral angle (α1) between the NDI(OEt)2 plane and the
phenyl plane (there is a second dihedral angle (α2) between the phenyl group and
the carboxylate group and this is basically zero for the isolated linker. In our
discussion we focus on α1); (ii) optimization of the interlayer distance ([010]
direction) via calculating the potential energy of neighboring linkers (for a dimer)
as a function of layer spacing (5.0–8.0 Å); (iii) construction and optimization of a
trimer geometry (for final coordinates see SupplementaryTable 4) with the layer
distance obtained in step (ii) and measure the rotation angle θ of central linker. MD
simulations were carried out in GROMACS-2018.4 package53–56.

For step (i) all initial R-NDI(OEt)2 monomers were optimized using steepest
descent method until the maximum force was smaller than 0.001 kJ mol−1 nm−1 or
the maximum step 100,000 had been reached. Then, the backbone atoms
(carboxylate groups, and atoms lying along the rotation axis) of the structures were
fixed and remaining atoms were only allowed to rotate around the central axis.
Next, simulated annealing simulations (SA-MD)57 with constraint were carried out
in step (i) and (iii) to find a global optimum geometry.

SA-MD were implemented using the following strategies: by coupling to the V-
rescale thermostat under NVT ensemble (time step 1 fs), the system is quickly
heating up from 300 to 1800 K in 25 ps to ensure random state and then stepwise
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cooling down to 0 K at a cooling rate of −2 K ps−1. Finally, the monomer (step i)
and trimers (step iii) structures obtained from the SA-MD were energy minimized
using conjugated gradient method in 50,000 steps. Taking the optimized potential
energy value as criteria, the geometry obtained via SA-MD is better than without
SA-MD optimization.

The optical properties of NDI(OEt)2 monomer and dimers were studied using
the DFT method with the hybrid B3LYP functional58. For all atoms the triple-z-
valence-plus-polarization (def2-TZVP) atomic orbital (AO) basis sets were used59.
The Grimme D3 correction with Becke–Johnson damping was included for all
systems studied60,61. The monomer NDI(OEt)2 structure was fully optimized using
gradient minimization techniques. The dimer structures for simulation of UV–Vis
absorption spectra were constructed by placing the molecules 6.8 Å apart (MD
optimized distance for 15 A [a trimer model], also confirmed by experimental data)
to mimic the distance experimentally measured in the SURMOF and then both of
them rotated by angles 0°, 34°, or 60° to simulate the steric effects of varying side
groups (R). These angles were chosen based on the first level of theoretical
simulations performed with the MDs on the trimers within GROMACS-2018.4 and
reported in Supplementary Table 1. Calculations carried out at the TD-DFT level of
theory also yielded a similar change in absorption spectra. They can be attributed
to the Coulomb coupling between the neighboring cNDI cores of SURMOFs. To
simulate UV–Vis absorption spectra 20 lowest lying singlet excitations have been
calculated using time-dependent (TD) DFT approach (Supplementary Table 3).

The influence of different SCUs on NDI(OEt)2 assemblies within SURMOF-2
was further verified using the DFT method, only for the experimentally fabricated
SURMOFs. A trimer of NDI(OET)2 was constructed and the distance between the
linkers was set up according to experimental values. To improve the efficiency of
simulations for larger systems, trimers were fully optimized using the resolution of
identity (RI)-DFT procedure62 together with multipole accelerated resolution of
identity-J using the Perdew–Burke–Ernzerhof functional63 and def2-SVP AO basis
set64. We took three NDI(OEt)2 organic linkers, placed them at the distance
corresponding particular side group (R=H 5.8 Å, R=Me and Et 6.6 Å, R= iPr
6.8 Å) and fixed the terminal oxygen atoms to mimic the influence of zinc paddle-
wheel (as in SURMOF-2). From these energy optimized trimers, only the central
NDI(OEt)2 has been visualized in Supplementary Fig. 5 (overlap of R=H and iPr).
To increase the accuracy of the calculations Grimme D3 dispersion correction with
Becke–Johnson damping and high-quality grid (m5) was also used. All DFT and
TD-DFT calculations were performed in TURBOMOLE 7.3 software package65.

Optical characterization. Time‐resolved spectroscopy: For the time‐resolved
spectroscopy, time correlated single photon counting (TCSPC) with Nano LED
light source (373 nm peak wavelength, 1 MHz max. repetition rate, 1.3 ns pulse
duration) and FluoroHub Single Photon Detection Module was used.

PLQY measurements were performed according to the method described by de
Mello et al.66. The beam of a 405 nm continuous wave laser diode (Thorlabs,
DL5146-101S) was focused on the sample held inside an integrating sphere
(Labsphere) with a diameter of 150 mm. For the detection two y-fiber-coupled uv/
vis spectrometers (Avantes, AvaSpec-ULS-RS-TEC and Thorlabs, CCS200) were
used. The spectral response of the whole detection system was calibrated using a
calibration lamp (Ocean Optics, HL-3plus-INT-CAL).

Fabrication of Zn-R-NDI(OEt)2 SURMOF-2. Ethanolic solutions of 1 mM zinc
acetate and 20 μM R-NDI(OEt)2 (R=methyl/ethyl/isopropyl) solutions (in etha-
nol) were sequentially deposited onto the precleaned quartz glass substrates using a
spin-coating method in a lbl fashion. After the metal or linker deposition, the
samples were washed with ethanol to remove unreacted metal/linker or by-
products from the surface. For metal and linker both, the spin-coating time was
fixed at 10 s with r.p.m. of 2000.

We have used SURMOF as a chromophore assembling template, instead of
conventional MOF powders. The preference of SURMOFs over MOF powders was
motivated by the requirements of optical and optoelectronic applications, which
require optically active thin films deposited on transparent and conductive
substrates with good control over the film thickness.

Data availability
The data sets generated during and/or analyzed during the current study are available
from the corresponding authors on reasonable request.
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