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Abstract

This thesis deals with the multiscale investigation of a weave reinforced composite
material with thermoplastic polypropylene matrix. Three different subscales are
investigated: the basic constituents, fibers and matrix, unidirectionally reinforced
microstructures, and the full composite of woven fiber structures embedded in a
thermoplastic matrix. The aim of the present work is the introduction of a closed
multiscale chain to predict the material behavior of the macroscopic composite
with respect to deformation and failure. First, the experimental evaluation of
the different scales of the present material system is discussed. The basic idea
throughout this thesis is to use fitted data as input for microstructure level simula-
tions only on the lowest scale, i.e. for matrix and fibers. The parameters for the
higher-scale models are calculated using simulations and a suitable methodology
for scale bridging. Taking into account different loading rates, moduli of elasticity,
plastic properties and material strengths as well as failure behavior are evaluated
on the basis of simple specimens. For the simulation of the deformation behavior
of the material on different scales it is of great importance to consider the local
orientation and the relative position of the reinforcing fibers. For this reason, the
geometry of the structures is first measured. The emphasis of the mechanical
tests lies on the determination of the anisotropic influence on the deformation
behavior of the composite materials and the comparison of the observed failure
types with those from the literature. The measured stress-strain curves are used
for the validation of the model responses. The generation of virtual representative
volume elements of the micro- and mesostructure based on the results of the
geometry measurement and the definition of suitable periodic boundary condi-
tions enables the computational analysis of the constitutive behavior of composite
materials. The second part of this thesis defines the theoretical framework for the
corresponding material models. Three constitutive models are introduced in the
course of this work according to the identified scales. In addition to the prediction
of deformation, the focus is on the consideration of material non-linearities such
as plasticity in the matrix material and damage development in all underlying
material systems. In order to ensure thermodynamically consistent behavior, the
models provided are derived from the free energy and the dissipation functions.
All models presented are defined in the kinematic framework of large strains.
The ability of the geometric and constitutive models to predict the deformation
and failure behavior of fiber-reinforced composites is demonstrated by means of
selected examples.
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Kurzfassung

Diese Arbeit beschäftigt sich mit der Multiskalenuntersuchung eines gewebe-
verstärkten Verbundwerkstoffs mit einer thermoplastischen Polypropylenmatrix.
Drei verschiedene Subskalen werden untersucht: die Basiskomponenten, Fasern
und Matrix, unidirektional verstärkte Mikrostrukturen und der vollständige Ver-
bund von gewebten Faserstrukturen in thermoplastischer Matrix. Das Ziel der
vorliegenden Arbeit ist die Einführung einer geschlossenen Multiskalenkette,
um das Materialverhalten des makroskopischen Verbundwerkstoffs in Bezug
auf Verformung und Versagen rechnerisch vorherzusagen. Zunächst wird die
experimentelle Bewertung der verschiedenen Ebenen des vorliegenden Materi-
alsystems vorgenommen. Die grundlegende Idee dieser Arbeit ist es, gefittete
Daten als Input für die Simulationen auf Mikrostrukturebene lediglich auf der
untersten Skala, das heißt für Matrix und Fasern zuverwenden. Die Parameter
für die Modelle höherer Ebenen werden mit Hilfe von Simulationen und einer
geeigneten Methodik zum Skalenübergang rechnerisch ermittelt. Unter Berück-
sichtigung unterschiedlicher Belastungsraten werden Elastizitätsmoduli, plastis-
che Eigenschaften und Materialfestigkeiten sowie das Versagensverhalten anhand
von Probekörpern ausgewertet. Für die Simulation des Verformungsverhaltens
des Materials auf unterschiedlichen Skalen ist es von großer Bedeutung, die lokale
Orientierung und die relative Lage der Verstärkungsfasern zueinander zu berück-
sichtigen. Aus diesem Grund werden die Geometrien der Strukturen zunächst ver-
messen. Der Schwerpunkt der mechanischen Prüfungen liegt auf der Bestimmung
des anisotropen Einflusses auf das Verformungsverhalten der Verbundwerkstoffe
und dem Vergleich der beobachteten Versagensarten mit denen aus der Literatur.
Die gemessenen Spannungs-Dehnungs-Kurven werden für die Validierung der
Modellantworten verwendet. Die Generierung von virtuellen repräsentativen
Volumenelementen der Mikro- und Mesostrukturen auf Basis der Ergebnisse aus
der Geometrievermessung und die Definition geeigneter periodischer Randbe-
dingungen ermöglicht eine rechnerische Analyse des konstitutiven Verhaltens
von Verbundwerkstoffen. Der zweite Teil der vorliegenden Arbeit definiert den
theoretischen Rahmen für die verwendeten Materialmodelle. Drei Konstitutiv-
modelle werden entsprechend der identifizierten Skalen im Laufe dieser Arbeit
eingeführt. Neben der Vorhersage der Verformung liegt der Schwerpunkt auf
der Berücksichtigung materieller Nichtlinearitäten wie Plastizität im Matrixmate-
rial und Schädigungsentwicklung in allen zugrunde liegenden Materialsystemen.
Um ein thermodynamisch konsistentes Verhalten zu gewährleisten, werden die
bereitgestellten Modelle aus der freien Energie und den Dissipationsfunktionen
abgeleitet. Alle vorgestellten Modelle sind im kinematischen Rahmen großer Ver-
formungen definiert. Die Fähigkeit der geometrischen und konstitutiven Modelle
das Verformungs- und Versagensverhalten faserverstärkter Verbundwerkstoffe
abzubilden, wird anhand von ausgewählten Beispielen aufgezeigt.
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1 Introduction

1.1 Motivation

Requirements and needs for mobility solutions are constantly increasing. In line
with these developments, a major part of research and development tasks in the
upcoming years will be related to the complex of alternative energies and an
efficient usage of available resources. Especially in the automotive context, a
political rethinking takes place these days, resulting in stricter emission regulatory
and environmental specifications. In order to stay competitive in such a regulatory
framework, it is of immense importance to drive research topics of resource
efficient mobility. In this context, lightweight design of structural parts plays an
important role. The usage of fibrous composites has an enormous potential to
support the overcoming of the mentioned issues. Here, textile composites gain an
increasingly important position in structural engineering, offering a reasonable
ratio of performance and weight reduction over classical structural materials when
designed correctly. Although continuous glass and carbon fiber composites mostly
based on a thermoset matrix have been extensively used in mobility related areas
like aeronautic, automotive, and transport applications, their potential regarding
high-volume production, repairs and recycle abilities and reliable designs is not
yet fully exploited. Composites based on thermoplastic matrix systems show
significant advantages in this regard, enabling considerably shorter production
cycle times, an easier handling during processing and an enhancement with regard
to repairs and recycling possibilities due to their different chemical character. In
contrast to these positive effects, the complex microstructure of fibrous composites
in general makes it very difficult to accurately predict deformation and damage
behavior. Especially the succession of failure processes and the identification of
responsible triggers have not been entirely clarified yet. In addition, failure in
woven fabric reinforced composites takes place on different scales, where single
phases with non-linear behavior interact. Consequently, these materials are often
used by means of exaggerated safety factors, based on empirical data. A purely
experimental approach to characterize failure in continuous fiber composites
results in high costs in terms of resources and time, necessary because of the
high testing effort due to anisotropic nature of such materials. To overcome this
drawback, numerical methods are used, supplying a valid support. However,
available numerical techniques regarding the overall behavior of woven fabric
composites including damage formulations have not yet reached a sufficiently
matured state. Multiscale analysis can help to provide a better understanding of
the interactions of the constituents on designated geometrical levels, allowing the
description of failure processes and finally enable the formulation of macroscopic
constitutive equations for woven fabric reinforced composites. The advantage of
such an approach is the transfer of local material effects occurring on different
length scales onto the macroscopic component level.
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1 Introduction

1.2 Objectives and overview

The work at hand deals with the experimental investigation and consequent
modeling of the failure behavior under quasi-static loading of organo sheets. The
latter are fully impregnated and consolidated semi-finished products, where a
thermoplastic material is used as basic constituent. Here, polypropylene serves as
a coating matrix and embedded glass fibers form the inter-woven reinforcement
structure. The results of an optical analysis of the given material system are
depicted in Fig. 1.1, allowing a direct identification of intrinsic hierarchical levels
in a top-down manner. Hereby, global and local entities can be defined on each
scale, describing the interfaces of the adjacent geometrical levels:

• Macroscopic level: The three-dimensional form defines the global behavior
of the composite part. As a direct derivation of geometry by means of local
parameters of the material, the distribution of the local reinforcements, fiber
volume fraction, reinforcement orientation, etc., follow. These entities finally
describe the local composite stiffness, which corresponds to the global level
on the mesoscopic level.

• Mesoscopic level: This level describes the superordinate reinforcement struc-
ture within the composite, defining the weave pattern, preferred fiber direc-
tions and volume fractions of tows, shaped during processing. On a local
level, two phases can be distinguished, areas of pure matrix and impregnated
yarns. While the matrix is assumed to be isotropic, the impregnated yarns
yield an anisotropic material behavior due to the principal directions of the
aligned fibers. Here, local entities such as fiber direction and volume fraction
define the overall stiffness of the impregnated yarn. Local variables can be
determined as the global behavior of the microscopic level.

• Microscopic level: The arrangement of fibers within the thermoplastic ma-

Thermoplastic matrix

Woven fabric 
reinforced component

Fabric topology
(matrix + impregnated roving)

Impregnated roving
(fibers + matrix)

a

b

c

c

Figure 1.1: Optical analysis of a woven fabric reinforced component made of organic sheets. Distinct
hierarchical levels in the multiscale structure can be identified as: (a) Macroscopic level, described
in the dimensions of the component, (b) Mesoscopic level, resolving the woven structure of the
material, and (c) Microscopic level, on which the basic constituents are visible.
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1.2 Objectives and overview

trix is described yielding the overall (global) material behavior of impregnated
yarns. Local properties are defined by the material behavior of the basic con-
stituents, fibers and matrix.

By inverting this analysis, the used multiscale approach that is pursued in a two-
track (experimental and numerical) manner is directly deduced. This structure is
also reflected in the structure of this work. Throughout the course of this work
a closed modeling chain over all scales is pursued, accompanied by numerical
calculations, using the finite element code Abaqus. By applying suitable homoge-
nized material formulations (cf. colored arrows in Fig. 1.2), the given methodology
allows the up-ward transfer of local failure mechanisms occurring on the depicted
scales. To this end, the definition of a newly proposed macroscopic material model
for fabric reinforced thermoplastics taking into account local material orientations
and relevant failure mechanisms is presented. An overview of the structure of the
presented thesis is given below.

Chapter 1 outlines the major research topics as well as goals and structure of the
present thesis.

Chapter 2 is devoted to the introduction of the fundamental continuum mechani-
cal formulations necessary for the definition of material models (cf. Section 2.1).
Furthermore, the basic equations used during a multiscale analysis (cf. Section 2.2)
are presented. Hereby, both analytical and numerical homogenization techniques
are considered. Section 2.3 introduces major geometrical features of the fabric
reinforced subcomposites necessary for the virtual assessment of the failure behav-
ior associated with the mesoscopic structure and illustrates the resulting physical

Constituents 
(fibers + matrix)

Lamina Woven fabric 
reinforced component

Impregnated roving

Microscopic model
of impregnated roving

Mesoscopic model of 
woven material

Macroscopic model 
for component design

Characterization and 
modeling of input 
materials

FEA MODEL

FEA MODEL

FEA MODEL

FEA MODEL

Figure 1.2: Proposed multiscale modeling approach guided by the optical analysis from Fig. 1.1.
Definition of the distinct four scales of interest: constituent, microscopic, mesoscopic, and macro-
scopic level. Scale-bridging, transferring information onto a superordinate scale, is achieved by the
definition of homogenized material models used within the finite element code Abaqus (cf. colored
arrows, labeled with Finite Element Analysis MODEL).
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1 Introduction

failure behavior in the single rovings and fabric reinforced composites. Available
modeling techniques for all relevant geometrical scales are shortly reviewed in
Section 2.4.

Chapter 3 introduces the materials used for characterization and validation of
the developed material model and presents the experimental results. Section 3.1
gives an overview over strain and stress measures used for the presentation
of the results. A solid parallel validation of the proposed modeling techniques
necessitates adequate experimental characterization of the underlying damage and
failure processes on the identified scales and hierarchical levels. Consistent with
the stages of the multiscale analysis presented above, three material levels, neat
polypropylene matrix (PP, cf. Section 3.2), unidirectionally glass fiber-reinforced
composite (PP/GF UD, cf. Section 3.3), and woven fabric reinforced polypropylene
(PP/GF twill weave, cf. Section 3.4) have been tested under quasi-static loading.

Referring to Fig. 1.2, the transfer from a lower to an upper scale (scale-bridging)
is accomplished by using suitable material models. These represent the material
behavior of the micro- and meso-structures in such a way, that all relevant material
effects in terms of damage are respected.

The development of the resulting three material models is presented in Chapter 4.
Section 4.1 focuses on the definition of a rate-dependent elastoplastic material
model including a thermodynamically consistent damage formulation of the
matrix material for isothermal conditions. After an initial definition of additive
plasticity using the small strain framework, the model is extended towards a finite
formulation using a formulation in the logarithmic strain space. Incorporating
the predominant occurring failure mechanisms, Section 4.2 introduces a fully
three-dimensional continuum damage model for impregnated rovings (UD model),
representing parallel fiber arrangement embedded in a thermoplastic matrix. In
order to consider large rotations of the reinforcement structures in the mesoscopic
fabric reinforced structure undergoing external loads, the presented material
model is defined in a finite strain framework. Suitable criteria for damage onset
and a thermodynamically consistent derivation of damage evolution complete the
constitutive model.

Section 4.3 focuses on the composite formulation of a constitutive model taking
into account the combination of the aforementioned constitutive equations. For
the present material system, the preferred directions coincide with the princi-
pal directions of the reinforcements which change continuously during loading
due to material deformation. Respecting these kinematic conditions by the in-
troduction of an intermediate configuration, separate damage formulations for
matrix and rovings are included from the models introduced before. The present
work therefore provides a straightforward formulation of a macroscopic material
model incorporating plastic and anisotropic damage effects for fabric reinforced
materials based on a combination of analytical and numerical homogenization
techniques. This procedure allows the transfer of dominant material effects onto
the macroscopic scale and the consideration of varying approximated arrangement
of reinforcement structures. Remarks on the algorithmic treatment and implemen-

4



1.2 Objectives and overview

tation of the constitutive equations for all scales are presented accordingly.

Chapter 5 deals with the numerical application of the presented material models
to realistic geometries. The results of numerical calculations obtained using vir-
tual micro- and mesoscopic structures support the interpretation of experimental
results and enhance a further understanding of occurring material effects. An
additional objective of such investigations is the assessment of the usability of
virtual characterization as a substitute for expensive experimental testing of plastic
composites. A major key to retrieve resilient results is the correct reproduction of
the microstructural conditions at hand. Section 5.1 is devoted to the introduction
of microstructure generation of unidirectionally and woven composites, based on
the results presented in Chapter 3 with regard to the geometry of the composite.
An extension of an available algorithm for the generation of statistically repre-
sentative volume elements (SRVE) is presented, giving the possibility to respect
variable fiber diameters as well as near-field clustering of groups of fibers. For the
generation of the virtual woven unit cells an existing software package (TexGen)
was used and embedded in the preprocessing framework.
Section 5.2 demonstrates the results of virtual characterization calculations, using
the generated unidirectional microstructures. Hereby, the focus lies on the calcula-
tion of the elastic bodies and the demonstration of plastic and damage behavior of
the composite using selected examples. Where possible, the obtained results are
compared to experimental results. Following the strategy of the implemented mul-
tiscale analysis, the main objective of the presented calculations on this scale is the
determination of a failure envelope, that is used to parametrize the homogenized
UD model discussed in Section 4.2.
Using the UD model for the calculation of geometrical mesoscopic models of the
impregnated fabric structure (woven unit cell) in Section 5.3, enables a up-transfer
of the subordinate damage effects. On the basis of selected loading cases, the
kinematical and damage related behavior of woven fabric reinforced composites is
investigated. A comparison of numerically obtained homogenized and available
experimental results is given, with respect to stiffness and the non-linear behavior
of the stress-strain response.
The features of the newly proposed macroscopic material model are demonstrated
in Section 5.4. The model behavior with respect to the change of material orien-
tation under deformation as well as the representation of damage evolution is
reviewed in the course of exemplary virtual tests.

The thesis concludes in Chapter 6, summarizing the undertaken modeling steps
included in the proposed full-featured multiscale approach. Discussing the ob-
tained results, propositions for improvement of the used methodology as well as
remarks on possible future work are given.

5





2 Fundamentals and state of the art

The objectives of this chapter are to introduce the fundamental formulations
of continuum mechanics (cf. Section 2.1) and basic equations necessary for a
multiscale analysis (cf. Section 2.2) using analytical and numerical homogenization
techniques. Furthermore, Section 2.3 summarizes the major geometrical features of
the woven subcomposites and illustrates the resulting physical failure behavior in
the single rovings and multi-layer woven composites. Finally, Section 2.4 reviews
relevant available modeling activities on different scales.

2.1 Fundamentals of continuum mechanics

The subsequent section introduces the basic equations of continuum mechanics
that are needed to describe arbitrary material response. Throughout this work
all quantities are expressed in terms of Cartesian coordinates. This section is by
no means complete, for a more detailed representation the interested reader is
referred to the work of HOLZAPFEL [169] among others.

2.1.1 Kinematics

In an EUCLIDean space R3, an orthonormal base with its base vectors ei and origin
O is defined. Within this domain a continuous body B containing any point of
this body P ∈ B can be described. The setting of B ∈ R

3 is generally called a
configuration χ (P, t), whereby Bs = χ (B,t) and x = χ (P, t). Bs is the occupied
region by B at time t, and x gives the spatial position of P within R

3 as functions
of time t. The initial undeformed configuration χ0 = χ (t0) is chosen as reference
configuration with Bm = χ0 (B, t0) andX = χ0 (P, t0) and serves as the material
(LANGRANGian) description of the body with material coordinatesX . Deformed
configurations are called spatial (EULERian) descriptions with spatial coordinates
x. The uniquely invertible map function ϕ maps from reference to any spatial
configuration by

x = ϕ (X, t) and X = ϕ−1 (x, t) (2.1)

All entities introduced so far are depicted in Fig. 2.1. The motion of a continuum is
the change of the position of any material point P in time. With known coordinates
X and x of the undeformed and deformed material points the displacement field
reads

u = x (X, t)−X = x−X (x, t) . (2.2)

The velocity field v is obtained by the time derivative of the motion

v (X, t) =
dϕ (X, t)

dt
= v

(
ϕ−1 (x, t) , t

)
= v (x, t) . (2.3)

7
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ℝ3

𝜑

𝜒t𝜒0

𝒙𝑿
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𝒪
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ℬ

𝒆1

𝒆2

𝒆3

Figure 2.1: Configurations and motion of a continuous body B within R3. The reference configura-
tion is depicted by the undeformed body Bm and the current configuration is represented by the
deformed body Bs.

In continuum mechanics the deformation gradient F as well as its inverse F−1

play the most important role. They are defined by

F (X, t) =
∂x (X, t)

∂X
and F−1 (x, t) =

∂X (x, t)

∂x
(2.4)

and are used to describe kinematic entities. The deformation gradient maps
line elements and is used to derive strain measures. In general, F and F−1 are
non-symmetric second-order tensors that relate two different configurations and
therefore are designated as two-point tensors. Due to the existence of the inverse,
J = det (F ) 6= 0 must hold true for the Jacobian determinant. The displacement
gradients in material and spatial configuration can be introduced analogously by

∇Xu = F (X, t)− 1 and ∇xu = 1− F−1 (x, t) . (2.5)

At this point, three frequently used decompositions of the deformation gradient
shall be mentioned. The first is the geometrical decomposition in volumetric and
isochoric deformations

F (X, t) = F vol (X, t)F iso (X, t) . (2.6)

The second consists of an elastic and an in-elastic part, according to

F (X, t) = F e (X, t)F i (X, t) , (2.7)

as depicted in Fig. 2.2. The polar decomposition splits the deformation gradient
according to

F = RU = V R, (2.8)

where R is an orthogonal rotation tensor and U and V are the right and left

8



2.1 Fundamentals of continuum mechanics

𝑿

ℬm

 ℬ

𝒪
𝒆1

𝒆2

𝒆3

ℬs

𝒙𝑭 = 𝑭𝑒𝑭𝑖

𝑭𝑖 𝑭𝑒

 𝑿

Reference 
configuration

Current
configuration

Intermediate 
configuration

Figure 2.2: Intermediate configuration Ω̄ and the corresponding decomposition of the deformation
gradient F = F eF i in an elastic and in-elastic part within R3.

symmetric stretch tensors, corresponding to material and spatial configuration
respectively. By squaring the stretch tensor, the definition of the right and left
CAUCHY-GREEN tensors follow

C = U 2 = F TF and b = V 2 = FF T (2.9)

being again material and spatial tensors respectively. Note thatR describes pure
rigid body rotations, hence, all information about volume change is contained by
U and V . Therefore, we can rewrite the determinant of F simply by

J = det [U ] = det [V ] and J2 = det [C] = det [b] . (2.10)

The introduction of general, symmetric, positive definite and local deformation
measures can be derived directly from the stretch tensors. For the material config-
uration the general SETH-HILL strain measures λ are often found. They can be
written as

λ =

{
1
m

[Um − 1] , if m 6= 0

ln [U ] , if m = 0
(2.11)

with m ∈ R. Analogously strain measures corresponding to the spatial configura-
tion can be found. In the following, two cases which will be used throughout this
work are introduced in more detail. For m = 2 in Eq. (2.11) the GREEN-LAGRANGE
strain measure is obtained

E (X, t) =
1

2
[C (X, t)− 1] , (2.12)

whereas m = 0 yields the HENCKY or logarithmic strain measure

ε (X, t) = ln [U (X, t)] =
1

2
ln [C (X, t)] . (2.13)

9



2 Fundamentals and state of the art

Taking into account the decompositions in Eqs. (2.6) and (2.7), the additive
deviatoric-volumetric split as well as the elastic-inelastic split can be recovered

ε = εvol + εiso and ε = εe + εi, (2.14)

which have special significance throughout the course of this work.

Remark. For small deformation gradients, a simplified representation of the
motion can be found (cf. DE SOUZA NETO et al. [296]). In general, the CAUCHY-
GREEN deformation tensor can be rewritten in terms of the displacement gradients
(cf. Eq. (2.5)) as

C = 1+∇Xu+ (∇Xu)T + (∇Xu)T∇Xu,
b = 1+∇xu+ (∇xu)T +∇xu (∇xu)T .

(2.15)

For considerably small displacement gradients∇u ≈ ∇Xu ≈ ∇xu, the quadratic
terms and the distinction between material and spatial configuration vanish (C ≈
b ≈ 1+∇u+ (∇u)T) and the infinitesimal or nominal strain can be written as

ε =
1

2

[
∇u+ (∇u)T

]
= ∇su (2.16)

with ∇s being the symmetric gradient. Approximating the deformation by the
infinitesimal strain measure, the GREEN-LAGRANGE and logarithmic strains are
similar to the nominal representation (E ≈ ε ≈ ε). Furthermore it can be shown
that the available decompositions for the logarithmic strains apply in a similar
manner also for infinitesimal strains.

With the abbreviation for the total time derivative (·̇) := d(·)/dt, the rate form
of the deformation gradient can be introduced by the gradient of the material
velocity field

Ḟ (X, t) =
dF
dt

= ∇Xϕ̇ (X, t) = ∇Xv (X, t) . (2.17)

The spatial counterpart is defined analogously as

l (x, t) = ∇xv (x, t) = Ḟ F−1 = d (x, t) +w (x, t) , (2.18)

where d (x, t) = 1
2

(
l + lT

)
andw (x, t) = 1

2

(
l− lT

)
with the symmetric part d = dT

as the rate of deformation tensor and the skew partw = −wT as the rate of rotation
tensor. The independence of the right CAUCHY-GREEN deformation tensor (cf.
Eq. (2.9)1) from rotational components becomes visible also in its rate form through

Ċ = Ḟ
T
F + F TḞ = 2F TdF . (2.19)

The same applies therefore for the GREEN-LAGRANGE strain measure (cf.

10



2.1 Fundamentals of continuum mechanics

Eq. (2.12))

Ė = F TdF , (2.20)

using the standard pull-back operation of d in both cases. Inversion of the relation
yield the definition of the standard push-forward operation, transforming entities
from the spatial to the material configuration.

2.1.2 Concept of stresses

Starting from the traction vector t on the surface ∂Bs of the body Bs in spatial
configuration, the application of the theorem of CAUCHY such that

t = σn (2.21)

and using the definition of an infinitesimal surface traction force tda yields
the CAUCHY stress tensor σ. Analogously, the introduction of the first PIOLA-
KIRCHHOFF stress tensor P enables the formulation of the current stress state
corresponding to the infinitesimal surface dA of the body B0 of the reference con-
figuration. Applying material cuts in accordance to the EULER principle, every cut
volume can be seen as a body Bs and hence the stress tensor σ can be defined in
any material point x ∈ Bs as depicted in Fig. 2.3.

𝒪 𝒆1

𝒆2

𝒆3

ℬ𝑚

𝜑

𝑑𝐴

𝑵
𝑻

ℬ𝑠

𝑑𝑎

𝒏𝒕

 𝒖  𝒖

𝑿
𝒙

Figure 2.3: Material T and spatial traction vectors t of continuum body in the cutting plane. ū
denotes the displacement boundary conditions of Bm and Bs, respectively.

Equation (2.22) summarizes frequently used stress measures in literature.

σ CAUCHY stress tensor
τ = Jσ KIRCHHOFF stress tensor

P = JF−1σ First PIOLA-KIRCHHOFF stress tensor

S = JF−1σF−1 Second PIOLA-KIRCHHOFF stress tensor

(2.22)

By performing standard push-forward and pull-back operations the description of
stresses in the referring configuration can again be changed. The same applies for
the strain measures accordingly.

11



2 Fundamentals and state of the art

2.1.3 Physical balance principles

In this section a short overview over the necessary balancing equations is given.
For a more detailed review the reader is referred to the extensive works of
HOLZAPFEL [169], TRUESDELL [388], ERINGEN [106],TRUESDELL & NOLL [389],
DOYLE & ERICKSEN [100], GREEN & ADKINS [130], and others. The subsequent
equations must be satisfied at all material points within the volume at all times.
For the modeling activities throughout this work, the overview here is restricted
to a purely mechanical context. Four basic groups of equations regarding a spatial
subregion Ps ⊂ Bs (Pm ⊂ Bm for the material framework) can be identified.

1. Conservation of mass: Neglecting transport into a subregion Ps and produc-
tion within Ps, the now constant mass can be described by a single scalar
value by

d
dt
m = 0 with m =

∫
Ps

dm =

∫
Ps
ρdv =

∫
Pm

ρ0dV (2.23)

in terms of the current density ρ and the reference density ρ0 = Jρ.

2. Balance of linear and angular momentum: The balance of linear momentum
postulates the equality of the temporal change of the linear momentum I of
Bs and external force F ext

d
dt
I = F ext, (2.24)

with the definitions of the linear momentum

I =

∫
Ps
ẋdm =

∫
Ps
ρvdv (2.25)

and the resulting external force

F ext =

∫
Ps
ρbdv +

∫
∂Ps
tda (2.26)

with b as a prescribed acceleration field. The surface integral can be rewritten
as volume integration, applying the GAUSS divergence theorem∫

∂Ps
tda =

∫
∂Ps
σnda =

∫
Ps
∇x · σdv. (2.27)

Localization theorem finally yields the strong form of the balance of linear
momentum

ρv̇ = ∇x · σ + ρb. (2.28)

In a similar manner the balance of angular momentum can be formulated. It
states the equilibrium of the temporal change of the angular momentumD0

with respect to an arbitrary point (usually the origin O of a fixed coordinate

12



2.1 Fundamentals of continuum mechanics

system) and externally applied torqueM 0
ext

d
dt
D0 = M 0

ext (2.29)

with

D0 =

∫
Ps
x× ẋdm =

∫
Ps
x× ρvdv (2.30)

being the angular moment. The sum of the applied moments resulting from
the body forces ρb and the surface tractions t yield the torque

M 0
ext =

∫
Ps
x× ρbdv +

∫
∂Ps
x× tda. (2.31)

Without showing the derivations, a direct conclusion is the symmetry of the
stresses σ = σT.

3. First law of thermodynamics - Balance of energy: The first law of thermo-
dynamics describes the equality of the change of total energy Etot of a distinct
subregion Ps and the sum of external mechanical and thermal power (Pext
and Qext)

d
dt
Etot = Pext +Qext. (2.32)

With regard to the context of purely mechanical problems, the specific defini-
tion of the thermal power is neglected at this point and Qext vanishes. The
mechanical power can be defined in spatial configuration by

Pext =

∫
Ps
ρb · v dv +

∫
∂Ps
t · v da. (2.33)

The time derivative of the total energy being Ėtot = K̇ + U̇ , consists of the
kinetic contribution

K̇ =
d
dt

∫
Ps

1

2
ẋ · ẋdm =

d
dt

∫
Ps

1

2
ρv · v dv (2.34)

and a part regarding internal energy storage mechanisms

U̇ =
d
dt

∫
Ps
ρudv, (2.35)

based on the specific internal energy density per unit volume u. From
Eq. (2.32) the balance of kinetic energy can be derived

K̇ = Pext − S (2.36)

13



2 Fundamentals and state of the art

where S describes the stress power evaluated in the current configuration

S =

∫
Ps
σ : ddv. (2.37)

Hereby, d denotes the strain rate tensor. Alternative notations in a material
configuration reads

S =

∫
Pm

wint dV with wint = Jσ : d = P : Ḟ = S : Ė (2.38)

giving the rate of internal mechanical work per unit reference volume and
defining work conjugated pairs. The balance of kinetic energy yields directly
the formulation for the balance of internal energy,

d
dt
U = S (2.39)

and the according local strong form in the spatial configuration can be stated
as

ρu̇ = σ : d. (2.40)

4. Second Law of thermodynamics - Entropy inequality Principle: When a
material returns in its initial state upon unloading then it behaves reversibly.
However, energy is usually dissipated in some kind, e.g. through plastic or
damage evolution. In order to quantify the extend of this energy transfer, the
state variable of entropy G(t) is introduced. It is considered as a measure for
the orderliness of an investigated system. In general, the entropy inequality
condition states a positive entropy production at all times

Γ(t) =
d
dt
G(t)−Q ≥ 0 (2.41)

with

Γ =

∫
Ps
ργ dv and G =

∫
Ps
ρη dv, (2.42)

where γ is the local entropy production per unit mass and η the local entropy
per unit mass. Q is the rate of entropy input in the system and is governed by
non-mechanical entities and therefore neglected here. The above relation in
Eq. (2.41) is called the second law of thermodynamics, defining the direction
of energy flow and ensuring the irreversibility of thermodynamic processes.
Coming back to the example mentioned above, reversible processes are
characterized by Γ(t) = 0, but are handled as an idealized special case. The
mechanical dissipation per unit volume is introduced as

D = γθ ≥ 0. (2.43)
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2.2 Multiscale modeling of fiber composites

Neglecting convective contributions, the CLAUSIUS-PLANK inequality for
internal dissipation is identified as

ρDint = σ : d− ρΨ̇ ≥ 0, (2.44)

with the HELMHOLTZ free energy Ψ = u− θη where θ denotes the absolute
temperature.

2.2 Multiscale modeling of fiber composites

Figure 1.1 shows the different levels of micro-structures in an organo sheet. The
qualitative and quantitative mechanical behavior on the macroscopic scale of
organo sheets are a direct consequence of the behavior of materials on the sub-
ordinate scales, their microscopical setup, and corresponding interactions. In
many cases during the design process it is not necessary to know the exact stress
and strain states within the microstructure, but it is sufficient to describe the
overall behavior of the material adequately by means of macroscopic and effec-
tive substitute models. The mapping of microscopic effects onto a macroscopic
description is commonly referred to as homogenization. This contrasts with the
procedure of localization where distinct macroscopic measures are distributed onto
the microstructures (cf. SUQUET [367]).

2.2.1 Scale bridging techniques

Multiscale models and modeling of the micro- or meso structures are popular ap-
proaches in order to assess the elastic and inelastic behavior of a material. General
methods are well described in FISH [113] and SPAHN [360] among others. The
relation between a mesoscale and a microscale is described by multiscale models,
using homogenization laws. At the microscale, constitutive models are imple-
mented and the resulting stress and strain fields are transferred to the upper scale
via transformation field tensors (cf. CHACBOCHE et al. [67], FISH & YU [114], FISH
et al. [116], and VOYIADJIS & DELIKTAS [407]) or by solving a numerical problem
(e.g. finite element problem, cf. CAR et al. [50] and OLLER et al. [301]). In order to
minimize computational effort, a certain degree of periodicity in microstructures
is assumed. Throughout this work the microstructures of the material under con-
sideration is taken into account by representative volume elements (RVE). Only
a few decades ago, such a computational approach was not directly accessible
due to the absence of sufficiently performant computers. Therefore, starting in the
framework of linear elasticity, a number of analytical or semi-analytical approxi-
mation schemes based on RVEs and mean-field homogenization were developed
early on, providing efficient algorithms to estimate the overall stiffness and other
properties. Key models are the self-consistent-method by HILL [160] and HILL [161],
its extension towards the Halpin-Tsai equations (cf. HALPIN & CARDOS [146])
or procedures based on the Eshelby method by ESHELBY [107, 108, 109], such as
the Mori-Tanaka method introduced by MORI & TANAKA [280] and many others.
For a more extensive review of existing homogenization schemes, the interested
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reader is referred to the works of TUCKER & LIANG [394] and KLUSEMANN &
SVENDSEN [194].

2.2.1.1 Average stress and strain

Carefully note, that the given models yield reasonable results only in defined
limits of volume fractions of the single phase α and furthermore special attention
has to be given on the symmetry properties of resulting stiffness or compliance
tensors for the case of elastic properties (cf. BENVENISTE [31], BENVENISTE et
al. [32]). The main goal and strategy of this modeling type is to substitute and
approximate a heterogeneous material by a homogenized equivalent. As a main
assumption, statistical heterogeneity is stated, i.e. the homogenized material has the
same (or at least comparable) overall properties as the heterogeneous material. To
this end, the following equation is fulfilled

σ̄
(
X̄
)

= C̄
(
X̄
)

: ε̄
(
X̄
)

(2.45)

defining C̄
(
X̄
)

as the homogenized macroscopic (effective) stiffness tensor and

σ̄
(
X̄
)

=
1

V

∫
Bm
σ (X) dV and ε̄ =

1

V

∫
Bm
ε (X) dV. (2.46)

X̄ is the position vector of a macroscopic point within the material. Note that (̄·) =
〈(·)〉 indicates the ensemble average and therefore a homogenized macroscopic
entity and X ∈ Bm denotes the position vector of any available material point
in the representative averaging volume V on the microscopic scale. Figure 2.4
depicts the relation between macro and micro scale. For improved clarity, X̄ and

𝒪
𝒆1

𝒆2

𝒆3

 𝑿

 ℬm

ℬm

𝑿

𝛼f
𝛼m

Figure 2.4: Relation between macro and micro scale. The material behavior of a macroscopic
material point at a distinct position X̄ ∈ B̄m is defined by its microstructure. Single phases are not
distinguishable on macroscopic level. The representative averaging volume Bm consists locally of
different phases α = α (X), where αm corresponds to matrix material and αf represents the fibrous
inclusions. Material points within the microstructure are denoted by X .

X are not noted from now on. Formulating Eq. (2.46) in words, σ̄ is defined
as the volume average stress of the point-wise stress σ over the volume V . V
has to be chosen big enough in order to guarantee statistical homogeneity of the
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2.2 Multiscale modeling of fiber composites

results. Assuming a two-phase composite, consisting of matrix and fibers, V can
be decomposed by phase differentiation according to

V = Vm + Vf, (2.47)

which leads further to the decomposition

σ̄ = vmσ̄m + vfσ̄f and ε̄ = vmε̄m + vfε̄f (2.48)

with vα=Vα/V being the volume fractions for fibers (α=f) and matrix (α=m), re-
spectively.
Analogously and equivalently, according to HILL [159] and HASHIN [154], the
homogenized stiffness tensor C̄ can be calculated through the potential energy
formulation

Ū =
1

2V

∫
V

σ : ε̄dV =
1

2
ε̄ : C̄ : ε̄. (2.49)

2.2.1.2 Energy-based boundaries of elastic properties

The potential energy defined in Eq. (2.49) gives rise to the introduction of two
classical and rigorous bounds of elastic properties, the VOIGT and REUSS bounds
(cf. HILL [158]). For the first it is assumed that all phases α see the exact same
uniform strain, ε̄∗. Applying the principle of minimum energy, the following
inequality is found

Ū ≤ U∗ =
1

2V

∫
V

ε̄∗ : C : ε̄∗dV =
1

2V
ε̄∗ :

∫
V

CdV : ε̄∗, (2.50)

where Ū is the true energy and U∗ the approximated one. Comparing coefficients
with those of Eq. (2.49) yields the estimation for the VOIGT bound of the elastic
stiffness tensor (cf. VOIGT [404] and WILLIS [418])

C̄ ≤
∫
V

CdV =
∑
α

vαCα = C̄V, (2.51)

which describes an upper bound of physically consistent elastic material properties.
The lower bound, described by the REUSS bound, is therefore derived analogously
by assuming uniform stresses σ̄∗ over all phases and approximating the overall
complementary energy

Ūc =
1

2V

∫
V

σ : C−1 : σdV, (2.52)

yielding

Ūc ≤ U∗c =
1

2V

∫
V

σ̄∗ : C−1 : σ∗dV =
1

2V
σ̄∗ :

∫
V

C−1dV : σ̄∗ (2.53)
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and finally

C̄ ≥
[∫

V

C−1dV
]−1

=

[∑
α

vαC
−1
α

]−1

= C̄R. (2.54)

For a more detailed review on the boundary derivation it is referred to the work
of WU & MCCULLOUGH [421]. The above bounds provide stiffness tensors in the
range

C̄R ≤ C̄ ≤ C̄V. (2.55)

For the case of isotropic phases, an isotropic homogenized stiffness will yield.
Taking into account the geometry of the inclusions, HASHIN & SHTRIKMAN [152,
153] proposed a set of narrower bounds.

2.2.1.3 Mori-Tanaka model as an example for analytical homogenization

In what follows, the Mori-Tanaka scheme (cf. MORI & TANAKA [280]) is intro-
duced, that allows a straight forward implementation and respects the microstruc-
ture in more detail. The basis for the derivations below is the concept of localization,
i.e. the mapping of macroscopic states onto the microstructure. According to
HILL [159], this is done by fourth-order strain- and stress-concentration tensors, A
and B, such that

ε̄f = A : ε̄ and σ̄f = B : σ̄. (2.56)

In general, the overall stiffness tensor can then be rewritten as

C̄ = Cm +
∑
α

vα (Cα − Cm) : Aα. (2.57)

An equivalent formulation for the compliance tensor can be formulated using the
stress localization tensor B. Equation (2.57) builds the basis for nearly all available
analytical homogenization schemes, differing in a varying specification of the
localization tensors. The above introduced Voigt and Reuss bounds of physically
meaningful stiffness values are for instance recovered by defining A = B = I.
The fundamental basis of more elaborated models is the ESHELBY’s equivalent
inclusion [107, 109], introducing the Eshelby tensor E. This theory is assumed
to be known at this point, for a detailed derivation it is referred to the works
of MURA [282], TAYA et al. [377, 380, 378, 379], and TANDON & WENG [373].
Applying the solution of Eshelby, it is possible to find the stiffness of a composite
with ellipsoidal fibers at dilute concentrations. The resulting localization tensor
can be identified as

AEshelby = [I+ E : Sm : (Cf − Cm)]−1 . (2.58)
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2.2 Multiscale modeling of fiber composites

Assuming for a dilute composite the average strain being identical to the applied
strain (ε̄ = εA) yields the strain state in the fibers

ε̄f = AEshelby : ε̄. (2.59)

In contrast, the Mori-Tanaka scheme assumes that each particle of the composite
is subjected to a far-field strain equal to the average strain in the matrix,

ε̄f = AEshelbyε̄m. (2.60)

The basic equation for the implementation of a two-phase Mori-Tanaka model
reads

AMT = AEshelby [(1− vf) I+ cfA
Eshelby]−1

, (2.61)

allowing an explicit computation of the composites stiffness tensors, according
to Eq. (2.57). A very comprehensive explanation of the Mori-Tanaka scheme is
provided by BENVENISTE [31].

2.2.2 Numerical homogenization

The justification of homogenization of continua is that constitutive equations for
basic constituents and geometrical circumstances on a microscopical scale are well,
or at least better, understood compared to the macro-scale directly. As described
before, analytical homogenization schemes take into account the geometry and
the behavior of the single phases, however making assumptions regarding their
interactions. As a powerful alternative, the methodology of numerical homoge-
nization is commonly used, directly taking into account the microstructure and
using elaborated constitutive models for the constituents. In practice, approaches
based on representative volume elements (RVE) are widespread and have attracted
increasing scientific attention during the last years. Respecting some requirements
concerning the case-dependent size of the RVE (cf. TRIAS [387]), these allow the
computation of micro-stress and -strain fields within a complex microstructure
enabling for example examination of micro-crack initiation, evolution and coales-
cence at distinct positions in the material in the context of a failure assessment. In
literature, the corresponding numerical methods are often referred to as computa-
tional homogenization methods, and basic works were published by SUQUET [367],
SANCHEZ-PALENCIA [358], HILL [159], WILLIS [418], GUEDES & KIKUCHI [137],
TERADA & KIKUCHI [382], MATSUI et al. [255], GHOSH et al. [124, 125, 123], MIEHE
& KOCH [271], SMIT et al. [357], KOUZNETSOVA et al. [197, 198, 199], GEERS et
al. [121, 122], MICHEL et al. [263, 264], YUAN & FISH [429], just to name a few. For
the special case of fully periodic media, the RVE can be further reduced to what is
called a unit cell (UC), which by continuously repetition yields the superordinate
structure (s. Fig. 2.6b and c as examples for textile unit cells). Equations (2.45)
to (2.49) are also valid in the context of numerical homogenization without any
further restriction but of course in a discrete way. The choice of correct boundary
conditions has a major influence on the plausibility of the results obtained by
computational homogenization. With σ and u being the active stress and dis-
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placement fields, the macroscopical work σ̄ : ε̄ and the average of the microscopic
work 〈σ : ε(u)〉must be identical, giving the definition of the macro-homogeneity
condition, also known as the Hill condition

σ̄ : ε̄ = 〈σ : ε〉. (2.62)

SUQUET [367] called this equation the equality of virtual work between the micro
and macro scales.
Similar to the formulation of localization tensors for single phases in Eq. (2.56), the
computation of microscopic tensor fields based on macroscopic fields is possible
by the introduction of a fourth-order localization tensor that yields

ε = Pε : ε̄ and σ = Pσ : σ̄. (2.63)

Note, that the microscopic tensor field can be reformulated, according to

σ = Pσ : σ̄ = I : σ̄ + P̃σ : σ̄ with P̃σ = Pσ − I, (2.64)

identifying a constant part σ̄ and a fluctuating part σ̃ = P̃σ : σ̄. The latter
represent residual stresses with vanishing average 〈σ̃〉 = 0. The same applies for
the micro-field of the strain,

ε = Pε : ε̄ = I : ε̄+ P̃ε : ε̄ with P̃ε = Pε − I, (2.65)

and 〈ε̃〉 = 0. Inserting the decomposition of the tensor fields in constant and fluc-
tuating terms in Hill’s condition and some simplification steps yield the reduced
form

σ̄ : ε̄ = σ̄ : ε̄+ 〈σ̃ : ε̃〉 (2.66)

which is only fulfilled in the case that the last summand is equal to zero. This
condition allows the formulation of three kinds of boundary conditions, valid on
∂Bm,

1. The approach of anti-periodic stress boundary conditions

σ
(
X, X̄

)
n (X) = σ̄

(
X̄
)
n (X) (2.67)

2. Assumption of linear displacement field

u
(
X, X̄

)
= ε̄

(
X̄
)
X (2.68)

3. A coupled formulation of the above mentioned solutions

σ
(
X, X̄

)
n (X) = σ̄

(
X̄
)
n (X) with u (X) = ε̄

(
X̄
)
X + ũ (X) ,

(2.69)

in terms of the periodic function ũ.

Throughout this work, the periodic boundary conditions (PBC), were chosen and
implemented for the numerical simulation of the representative microstructures (cf.

20



2.3 Geometrical topology and failure of weave reinforced structures

Chapter 5).For RVEs or UCs with rectangular cuboidal shape, the set of equations
that allow the application for a 3D representative volume element are provided
by BARBERO [25, 26]. MELRO [260] states a reduced set of equations needed for
the simulation of one-layer woven structures, where only in-plane periodicity is
assumed. Both sets of equations are introduced into the simulation as node-wise
kinematic constraints for the opposing nodes on the boundaries in the form of
additional equations.

2.3 Geometrical topology and failure of weave reinforced structures

The microstructure of woven fabric reinforced composites is the decisive factor
when it comes to the derivation of macroscopic mechanical properties such as
stiffness and strength. Especially, effects related to damage progression depend
on the local geometrical topology on the micro- and mesoscopic level of the
composite. The following section gives a short introduction on the geometrical
topology and the technical terminology for the description of woven compos-
ites. A summarizing glossary of important terms for textile applications can be
found in PASTORE [309]. An extent description of the variety of fiber reinforced
composites as well as the corresponding processing techniques can be found in
HENNING [156], NEITZEL [295], LONG [239] and TEN HOMPEL [381]. Furthermore,
a general description of relevant damage evolution in unidirectional and woven
composites is addressed.

2.3.1 Topology of woven fiber-reinforced plastics

The general definition of textile reinforced composites states that these fiber re-
inforced composites are characterized by more than one preferred direction. On
constituent level, fibers (or filaments) and a matrix system define the behavior
of the composite. The fibers, as the basic unit of the textile material, are con-
verted into laminated tapes, yarns or direct formed fabrics (cf. BOGDANOVIC &
PASTORE [38]). For the present case special attention is given on the yarn, since
they can be used to set up a variety of fabric structures. Either carbon, glass,
ceramic or polymeric fibers are used within the assembly of the yarn, which can
then directly be processed into the chosen fabric structure. The terminologies of
yarns, rovings and tows are used in an equivalent manner throughout the present
work. Regarding unidirectional or multi-directional layups, several enhancements
can be provided by combining interwoven tows. Hereby, each tow consists of
several thousand (ideally parallel) fibers. For example, depending on the exact
microstructure, a reduction of the tendency of delamination during loading and a
better handling during processing are obtained. On the microscopic level woven
and more advanced textile composites, such as three-dimensional woven, braided,
knitted or stitched textiles, exhibit highly complex reinforcement geometries. By
varying the assembling pattern, a vast number of possible spatial arrangements
of the curved yarns can be achieved. To this end, the designer is able to tailor
the material for a specific requirement, apart from the choice of material systems.
Usually, these kinds of composites are manufactured on modern textile machinery.
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a b c

Figure 2.5: Three exemplary types of typical fabric composites: (a) Plain weave, (b) triaxially
braided fabric, and (c) warp knitted fabric. Images were taken from GOMMERS et al. [127].

In an industrial environment, fabrics with a high width to thickness ratio are
named two-dimensional fabrics. These fabrics are usually defined by a thickness
that is smaller than three yarn diameters, but widths of the order of magnitude of
meters. This definition allows the distinction of three-dimensional fabrics with a
much greater inherent thickness ratio. According to the material investigated in
this work, the focus of this introduction lies on woven textile composites. BOG-
DANOVIC & PASTORE [38] give a historical summary of the development of textile
composites and more details on three-dimensional textile composites. CLARKE &
MORALES [74] and KO & PASTORE [196] provide a comparative study of fabrics
for composites.
Figure 2.5 shows three different types of fabric composites where the differences
in the complexity of reinforcement orientation is visible. A plain weave (Fig. 2.5a),
as an example for a woven textile is produced by initially orthogonal or triaxial
interlacing of yarns. Figure 2.5b shows a braided fabric which is set up by the
intertwining of three or more strands of yarns. Finally, Fig. 2.5c represents a
knitted fiber architecture. It is formed by the interlooping of yarns along the
vertical direction and is therefore identified as a warp knit. In an analogous manner
weft knitted fabrics can be manufactured where the interloop runs horizontally. In
industry, woven fabrics are used most frequently. The most widely used examples
regarding such structures are plain, twill and satin (n-harness weaves) patterns
as depicted in Fig. 2.6. Here, the woven structures are set up by two tows (weft
and warp yarns) that are assumed to be identical in their mechanical properties.
However, the way of spatial arrangement differs for each type which causes
differences in the weaves appearance as well as the mechanical behavior. Looking
at the patterns in more detail, either inclined or straight passages can be considered.
Regarding plain weaves, all yarns are inclined over their complete length, since
they are floating constantly from bottom to top and vice versa. In contrast, yarns in
satin weaves show longer linear in-plane segments before they float to the opposite
side of the weave. Hereby, the length of the linear parts passing over or under
other yarns is dependent on n. Depending on the number and size of linear parts,
handling, manufacturing, and mechanics related properties are effected. The area
where yarns change sides within the weave is of special interest and is labeled as
crimp areas (cf. Fig. 2.7). The geometric characteristics of the crimp areas influence
the extent of the out-of-plane fiber orientation, the volume fraction, the thickness,
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and therefore the overall mechanical performance of the textile composite. The
dimensions within the created textile composite are of particular interest regarding
the mechanical behavior. Due to the loose connection of single filaments within a
dry yarn, the individual fibers can move to a great extent against each other. While
under longitudinal tension they tend towards a circular cross-section minimizing
both cross-sectional lengths and longitudinal curvature, transverse compressive
load as applied during the thermoplastic processing leads to a narrow lenticular
or elliptical shape of the cross-sections (cf. BOGDANOVIC & PASTORE [38], TANG
& WHITCOMB [375], ZHOU & YANG [433], XU et al. [426]). Hereby the minor axis
is oriented along the direction of applied pressure.
For the later modeling of the mesoscopic level of the woven composite in a geomet-
rical model it is imperative to respect the dimensions of the real specimen in order
to obtain sufficiently accurate results (cf. LOMOV et al. [231], GREEN et al. [132]).
As shown in Fig. 2.8, the essential dimensions of an idealized one-layer twill weave
are the tow wavelength (λ), weave height including the matrix domain (h), tow
width (p), tow heights (tw and tf) and the gaps between neighboring tows (g1 and
g2). Furthermore, weaves are usually described by parameters that describe the
volume ratios of fiber and matrix rich areas and are applicable in different ways.
vtow describes the volume fraction of tows in the weave. κ represents the fiber
volume fraction in the single tow. With this the the total fiber volume fraction in
the weave (vfw) can be calculated according to

vfw = κvtow. (2.70)

The relevant dimensions are summarized in Table 2.1. Beside the topology of single
weave layers, stacking plays a significant role when it comes to the mechanical
properties of the synthesis of the composite. During the manufacturing process
the impregnated layers undergo high pressures in thickness direction, yielding
deformed yarn shapes and paths. Measurable local variations of the section and
fiber volume fractions are the result (cf. OLAVE et al. [300], KARAHAN et al. [188]).
Furthermore, random shifts and nesting between the layers occur, which favor the
formation of complex contact regions between the yarns (cf. OLAVE et al. [300],
CHEN et al. [70], LOMOV et al. [238]). The relative position of yarns within the stack
and the degree of nesting has a pronounced influence on the local stress and strain

a b c

Figure 2.6: Three types of typical two-dimensional weave patterns in schematic form: (a) Plain
weave, (b) Twill weave, and (c) 5-harness satin weave. Weave patterns were created using the
software TEXGEN [350].
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a

b

c

Figure 2.7: Side view cut of (a) a plain weave, (b) a 2x2 twill weave, and (c) a 5-harness satin
weave as shown in Fig. 2.6. The crimp area, where the yarn floats from top to bottom side of the
textile is clearly visible. The side views were created using the software TEXGEN [350].
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Figure 2.8: Schematic display of a one-layer twill weave showing relevant dimensions. The
corresponding descriptions are given in Table 2.1.

Table 2.1: Parameters used to define the dimensions within a one-layer twill weave.

Type Dimension Description

λ Tow wavelength

h Weave mat thickness

p Tow width

Geometrical tw Tow thickness (warp)

tf Tow thickness (weft)

g1 Distance of gap between neighboring yarns

g2 Distance of gap between yarns in crimp area

vtow Tow volume fraction

Volume fractions κ Fiber volume fraction in the tow

vfw Fiber volume fraction in the weave

distributions, and thus, on damage initiation and propagation (cf. DAGGUMATI et
al. [85], LE PAGE et al. [212], JOHN et al. [181] and DOITRAND et al. [99]).

2.3.2 Failure behavior of unidirectional fiber composites

For the successful modeling of damage propagation in woven fabric reinforced
composites a sound understanding and description of the related physical phenom-
ena in the microstructure of different scales and hierarchical levels is mandatory.
In the previous sections it has been mentioned that woven composites consist
of interwoven yarns which by themselves can be described as subcomposites
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Figure 2.9: Definition of stresses on an arbitrary action plane. {x1, x2, x3} correspond to the
coordinate system of the lamina with the corresponding stresses {σ1, σ2, σ3, τ12, τ13, τ23}. The
action plane is inclined by the angle Θ around the fiber axis (x1). The normal stresses {σ1, σn, σt}
as well as shear stresses {τ1n, τ1t, τnt} can be identified. Image was taken from PUCK [319].

again. The damage phenomena observed in textile composites consist partly but
not exclusively of processes occurring in the curved but ideally unidirectional
reinforced yarns. In the following, an overview of the physical failure patterns
occurring in unidirectional is given.

The correct description of damage progression in continuous fiber reinforced
plastic composites is an ongoing topic of research. For the design of parts of
such materials PUCK [319] provides an established methodology investigating
the structure in a layer-wise manner. Therefore it is necessary to understand and
describe the micro and macro processes occurring within the layer. Due to the
material symmetry of unidirectional composites, PUCK introduces two types of
macroscopic failure occurring between the fibers (inter-fiber failure) as a matrix
dominated failure mode as well as an ultimate fiber failure. Both failure types can
be subdivided again, taking into account the sign of the corresponding stress state,
resulting in four distinct failure modes (modes I-IV). Additionally, PUCK describes
delamination as an inter-laminar failure mechanism, i.e. a separation between
two adjacent layers. The evolution of damage depends on the local strain states
during loading. Failure in fiber composites is the final result of a combination
of very complex damage processes that occur on different length scales within
the material. Each failure mode can be seen as a distinct state in the history of
its damage progression, where a specified combination of stress components on
a designated possible fracture plane (action plane) reaches a maximum, allowing
the formulation of a set of failure criteria for the different failure modes. The
action plane is identified as the plane with the highest risk of failure depending on
the active stress state (cf. PUCK [319]). The stresses on an arbitrary action plane,
inclined by an angle Θ around the fiber axis (x1), are depicted in Fig. 2.9.
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2.3.2.1 Fiber fracture

The fibers are the actual load-bearing elements, which should be utilized to the
limit of strength before other structures are destroyed. Tensile fiber failure (FF+), is
thus the only desired type of failure. Due to their high strength, the fibers are able
to withstand very high longitudinal stresses in the composite. In the transverse
direction, the strength of the fibers is virtually never achieved, since the yield of the
matrix is smaller by several orders of magnitude. In other words, the transverse
fracture behavior is not (primarily) influenced by the fibers themselves. In this
sense, fiber failure does not mean the breakage of individual fibers, but rather
the breaking of a large number of fibers or entire fiber bundles. The load-bearing
capacity of the laminate is greatly reduced over a large width. However, while
the term fiber breakage appears to be justified in the case of tensile stress (mode I),
where a "breaking" or "tearing" of the fibers actually occurs, the damage caused by
compressive stress (mode II) does not necessarily correspond to this term. Here the
degradation of the fiber bearing capacity is caused by a lack of elastic support by
the surrounding matrix material, which can be seen through a buckling motion
(microbuckling, internal buckling, kinking) (cf. Fig. 2.10a). Several of such areas can
grow and merge, yielding finally a compression fracture (cf. Fig. 2.10b). Stochastic
effects play a major role in fiber breakage. It can be observed that at about 70-80%
of the maximum achievable failure load, the first fractures of both single fibers and
fiber bundles occur (cf. PUCK [319]). When fracture occurs, the material cohesion
of matrix and fiber is almost completely degenerated due to high energy releases.
This leaves a strongly disjointed, brush-like fracture pattern. Degradation models
that leave the bond with a residual stiffness or strength across the grain after fiber
failure are considered unrealistic according to PUCK [319]. Fiber breakage affects
not only the layer in which it was initially formed. It often has a devastating effect
on the neighboring layers. In this way, it is possible to trigger the delamination
processes in layers that are already on the edge of fiber breakage more easily. This

a b

Figure 2.10: (a) Representation of the kinking as a precursor to fiber fracture under compression
and (b) Compressive fiber fracture in a unidirectional laminate, images taken from PUCK [319].
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renders failure detection a difficult task and the resolution of damage progression
during the breaking process becomes almost impossible.

2.3.2.2 Inter-fiber fracture

In the case of transverse loading, the stresses acting perpendicular to the fibers
are transmitted through both matrix and reinforcements. Inter-fiber fracture (IFF)
describes the crack opening taking place in the plane perpendicular to the fibers.
Regarding the damage effects, the cracks grow in the matrix-rich areas, while
the initiation occurs mostly in the boundary layer of fiber and matrix (interface).
Depending on the sign of the normal stresses in the action plane, different forms
of inter-fiber failure occur.

Normal tensional load on the action plane (σn>0)

This failure mode (mode III) is caused by a transverse tensile stress σ+
n and/or

transverse shear stress τ1n/1t. The resulting damage patterns are cracks in thickness
direction, i.e. on the active plane of the damaging stresses, as shown in Fig. 2.11.
The load was applied in horizontal direction. It is observed that the crack opens
further the higher the corresponding load σ+

n becomes compared to the shear loads
τ1n/1t. The cracking observed after the appearance of the first inter-fiber fracture
expresses itself through intensive noise emission (cf. DEUSCHLE [90]). The weak-
ening of the material, due to the affected layer being free of force in the cracked
areas and only gradually carrying the load again, is noticeable externally as a
reduced overall stiffness of the layer. The stiffness will gradually decrease further
with increasing crack density. This behavior is used for modeling the post-damage
behavior (post-failure-degradation). While the matrix material is heavily stressed
under such loads, the fibers integrity is hardly affected by inter-fiber fracture,
which can be shown by constant longitudinal stiffness and strength as shown
by DEUSCHLE [90] and PUCK [319]. The damage processes in the matrix during
loading, causing inter-fiber fracture at its end are depicted in Fig. 2.12. Starting
from reaching about 50% of the ultimate load, which causes pure inter-fiber frac-
ture, one can observe beginning micro-damage in the material (cf. Fig. 2.12b,
DEUSCHLE [90]). From this threshold, existing micro defects - microscopic cracks

a b

Figure 2.11: Mode III crack under horizontal tensional loading. a) Initial cracking and debonding
of the fiber/matrix interface and b) Coalescence into micro-cracks, image taken from PRAUD et
al. [317].
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Figure 2.12: Schematic representation of the progressing damage based on increasing σ+
n transver-

sal tensional load, image taken and modified from DEUSCHLE [90].

in the matrix - begin to grow and new ones are included in the matrix. This effect
explains the loss of stiffness, which leads to non-linearities in the stress-strain
curve before the ultimate failure exhibiting an anisotropic character. The increase
in the number and growth of defects depends on the type of loading. Hereby,
strains perpendicular to the fiber (out-of-plane) produce and promote more and
faster growing defects than in-plane strains (cf. DEUSCHLE [90]). If the load on
the layer becomes too high, the micro cracks coalesce and macroscopic, visible
cracks are formed. If, under certain circumstances, only a single layer had been
considered, it would lose its complete load-bearing capacity at this point, since
a material separation would occur. However, Puck’s theory considers the single
layer as a compound. Although the destroyed layer can no longer carry an im-
mediate load, it still contributes to the load-bearing capacity of the entire system
by redistributing the load into the neighboring layers. As a result, further load
can be applied until other cracks occur. This process will be repeated until a layer
saturated with cracks is present. The description of the loss of stiffness due to such
crack growth is the subject of post-failure modeling (post failure degradation).

Normal compressional load on the action plane (σn>0)

The defining characteristic of this type of failure (mode IV) is that the resulting
cracks do not proceed in the thickness direction, i.e. the common plane of action
of the stresses σ2 and τ21, but in an inclined fracture plane around the fiber axis by
an angle Θ . The fracture angle Θ depends on the ratio σ2/τ21 and lies in a range
of Θ ∈ [−90◦,+90◦]. At mode III and at the transition from mode III to IV the angle
takes the value of Θ = 0◦. It increases with growing ratio until it assumes the ap-
proximate value of Θ ≈ ±53◦ at pure compressive stress depending on the chosen
fiber/matrix composite and fiber volume fraction. In the fracture plane, now not
only an overlay of σ−n - and τ1n/1t-stresses, but an additional cross/transverse stress
τnt is active. An important characteristic that distinguishes the intermediate fiber
fractures by pressure from those under tension is the fact that the former can no
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longer be described as harmless. The wedge effect, caused by the oblique breakage
in the laminate, causes an explosive force acting in the direction of thickness,
resulting in sudden and devastating failure (cf. Fig. 2.13). The resulting fracture

Figure 2.13: Failure according to mode IV, transverse compression yields an inclined fracture
plane (Θ) accompanied by high out-of-plane forces due to the wedge effect, image taken from
PUCK [319].

angle cannot be specified a priori for the modes III and IV, but must be calculated.
In general, the different fracture modes can only be characterized in the general
case by the stress combinations acting on the fracture plane (cf. PUCK [319]).

2.3.2.3 Delamination

The interfaces of single laminae are distinct weak points due to the absence of
reinforcements. Delamination is defined as a separation of laminae possible
through the application of out-of-plane normal stresses or in-plane shear stresses.
These phenomena are caused by σ+

3 , τ32, and τ31 in a general 3D stress state,
so-called inter-laminar stresses. Extensive delamination occurs mostly, if a crack,
caused by inter-fiber damage, reaches the laminate interface. Such cracks enhance
the formation of delamination due to the concentrated, but inhomogeneous stress
states in the crack tip area (cf. DEUSCHLE [90] and PUCK [319]). It is observed that
layer separations grow with increasing monotonous load as well as with cyclic
load of constant amplitude. The extreme case is the complete detachment of whole
unidirectional layers, as described in SCHREIBER [347]. However, delamination is
a form of failure occurring in the laminate and not in the lamina and is therefore
not respected in the homogenized description of unidirectional composites.

2.3.3 Failure behavior of woven fiber composites

Interwoven composites (especially more advanced textile composites, e.g. 3D
woven, braided, knitted, stitched) show improved impact resistance and dam-
age tolerance in comparison to traditional laminates (cf. BOGDANOVIC & PAS-
TORE [38]). They are able to withstand a higher number of matrix cracks and fiber
debondings before reaching ultimate failure. In the case of three-dimensional fiber
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scaffolds, the material does not contain predefined delamination paths due to
the absence of planar interfaces. The undulation of the fiber tows yields a rather
random distribution of crack orientations within the tow. Thus, there are typically
no obvious and clear weak directions. Therefore, the formation of extensive crack
propagation which would lead to direct ultimate failure of the structural part is
prevented. The internal micro- and mesoscopic topology is hereby the key factor
when it comes to damage progression in textile composites.
To this end, the biggest difficulty regarding the understanding of such compos-
ites is that the damage processes have to be considered on different scales and
hierarchical levels. This circumstance makes the analysis more complicated than
it is the case for classical unidirectional laminates. Furthermore, changing the
weave architecture has a significant effect on the appearing damage modes within
the composite but even specimens that belong to the same architecture showed
varying damage features (cf. JOHN et al. [181]). Finally, the in-plane properties
of multilayer woven composites are affected by the misalignment of the fibers,
resin rich areas due to the weave design, pre-damage in the fiber tows due to
the weaving process (cf. FARLEY et al. [112], DING et al. [97], ARENDTS et al. [9],
NORMAN [298], BYUN & CHOU [45], GUESS et al. [138]) or pre-damage induced by
composite processing, e.g. due to thermal or cure stresses (cf. LOMOV et al. [237]).
All these influences on the mechanical performance of a certain material system
in combination with a chosen weave architecture necessitate the detailed exam-
ination of the damage processes for each textile composite. Looking at existing
works dealing with the description of failure in woven fiber composites, it is
immediately noticeable, that compared to their laminated unidirectional counter-
parts much less general literature is available. Publications concentrate on certain
weave architectures or material systems as a consequence of the above mentioned
reasons.
Important similarities can be found in the methodology of the monitoring and
characterization of damage during (online) and after (post-mortem) testing . LOMOV
et al. [237] proposes the usage of a variety of analytical techniques in order to
systematically study failure phenomena during tensile deformation, consisting of

1. Online acoustic emission (AE)
2. Online full-field strain mapping (SM)
3. X-ray/CT and ultrasonic C-scan examination (online and/or post-mortem)
4. Cross-sectioning and optical microscopy (post-mortem).

The several steps of this sequence complement each other in an upward direction
in order to identify both locus and mode of occurring failure. Acoustic emission
analysis as defined by WEVERS & SURGEON [410] detects transient stress waves
propagating in a material as a result of fast release of strain energy. It is a widely
used method, to gain information about the damage processes, its mode, and
location in the specimen without interrupting the test. The damage thresholds
can be identified by analyzing the curves of cumulative energy, as described
in TRUONG et al. [391], LOMOV et al. [237, 234], DAGGUMATI et al. [84], and
CARVELLI et al. [57]. This technique becomes interesting when combined with the
cluster analysis of AE events as performed by LOMOV et al. [231], JOHN et al. [181],
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EL HAGE [105], BENMEDAKHENE et al. [30] in glass/epoxy and carbon/epoxy
two- and three-dimensional woven composites and by CARVELLI et al. [56] for
a thermoplastic PPS carbon woven composite. Taking into account not only
the acoustic energy thresholds registered by the AE sensors but furthermore
other descriptors of AE events such as the frequency of the emitted signal (cf.
GUTKIN et al. [140], SAUSE et al. [342], BAKER et al. [23], MAILLET et al. [243])
allows a precise identification and distinction of the appearing damage modes
after calibration. The found clusters correspond to damage events originated
from transverse matrix cracks (events with low frequency and low amplitude),
local delaminations (low frequencies and high amplitude), and fiber breakage
(high frequencies). Together with the technique of strain mapping, where strains
on the stress-free surface are measured, the failure locations and types can be
identified in a non-destructive manner, helping to identify characteristic strain
levels for damage onset or change of damage modes. The specimen tensioned
up to a certain critical strain level, identified by the aforementioned techniques,
are then to be examined further by the usage of X-ray and ultrasonic C-scanning
technologies. While X-ray investigations allow the precise presentation of cracks
within the material, C-scan tests, as applied in TRUONG CHI et al. [391], give a
rougher picture of damage in the specimen and are hence more suitable to give
an impression of the overall damage extend, periodicity and to observe more
widespread damage patterns, related to the underlying textile architecture (cf.
LOMOV et al. [237]). Both techniques can be used while the specimen is loaded
and, in case of a tensional load, the cracks are opened and hence nicely visible.
To enhance visibility, contrast agents are often used in the case of X-ray analyses.
Cross-sectioning the identified locations of the cracks and their adjacent areas
with the help of the recorded X-ray and C-scan data allows further studying the
damage behavior on a microscopic level. In some cases further investigation of
the fiber-matrix interface is needed, which can be inquired by using a scanning
electron microscope (SEM). The proposed suite of tests presented here result in a
complex and time-consuming test preparation and execution.
As one of the first authors in recent history, JOHN et al. [181] introduce a system-
atic "taxonomy" of damage processes in three-dimensional woven E-Glass vinyl
ester composites using an alternative approach to analyze damage processes in
woven composites. By investigating the stiffness during tensile tests in measured
stress-strain relationships (cf. Fig. 2.14) and analyzing the step-wise softening
behavior of the material, different levels of damage onset were detected. By us-
ing solely post-mortem optical analyses, the essential failure modes appearing
under applied load in weft and warp yarns could be identified by the authors.
They describe the damage processes as a complex combination of transverse and
longitudinal cracks in the fiber tows followed by consecutive debonding on the
boundaries of the impregnated yarn-matrix and delamination finally yielding to
ultimate failure. Other works confirmed the results with regard to the sequence of
damage processes in both three-dimensional woven carbon/epoxy composites (cf.
EL HAGE [105]) and also for two-dimensional woven composites as demonstrated
in the works of TANG & WHITCOMB [375], KURASHIKI et al. [209], and UETSUJI
et al. [397], where the authors used optical analysis techniques for the detection
and investigation of damage. CARVELLI et al. [56] and SUGIMOTO et al. [364]
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Figure 2.14: Stress-strain relation of a woven composite tested under tensile load in warp direction.
The arrows indicate the identified failure modes by analysis of the secant stiffness and optical
microscopy. Image taken from JOHN et al. [181].

used acoustic emission for the identification of characteristic strain levels at which
damage initiation of different modes commences. Results of damage investiga-
tions of composites with varying fiber architecture indicate that the same basic
mechanisms are responsible for the ultimate damage. Using the broad spectrum
of possible analysis techniques presented above, LOMOV et al. [231], MASTERS
& IFJU [254], and IVANOV et al. [178, 176] focused on the damage evolution in
braided composites, and GREVE & PICKETT [134], EDGREN et al. [103], TRUONG
CHI et al. [391, 390], ASP et al. [16], MATTSON et al. [256], MIKHALUK et al. [278]
studied appearing patterns in non-crimp fabrics, all of them with the resulting
conclusion that the same sequence of damage event governs the failure behav-
ior of such composites. CARVELLI et al. [56] proposed the sequence of damage
events appearing in textile composites under tensional loading in warp direction
as depicted schematically in Fig. 2.15. The initial underlying mechanism that
triggers the damage evolution in woven composites is the local micro debonding
of single fibers of the transverse tow from their surround matrix. Coalescing micro
cracks form larger transverse cracks (t) as depicted in Fig. 2.16. While initially
only a few cracks exist in the weft tows, which furthermore do not span the whole
width of the yarn, the number, size, and length increases upon further loading,
until eventually reaching a state of saturation. The characteristic strain level ε1

Figure 2.15: Typical sequence of damage events appearing under tensile loading according to
CARVELLI et al. [56]. t: transverse cracking, tm: transverse cracking in resin pockets, l: local
delamination of impregnated yarns, sp: splitting in longitudinal yarns, L: inter-ply delaminations, f
fiber failure in longitudinal yarns. Identification of characteristic strain levels where certain damage
modes are triggered. ε1: Onset of t-cracks, and ε2: onset of local delaminations (l) and the formation
of large transverse cracks (tm).

32



2.3 Geometrical topology and failure of weave reinforced structures

Figure 2.16: Transverse cracks (t) in weft yarns (out-of-plane) after a tensile loading in warp
direction (horizontal). Image taken from JOHN et al. [181].

indicates thereby the onset of t-cracks. The experimental characterization of the
processes occurring by increasing the load further indicate a parallel development
of resulting damage modes. Originating inside the weft yarns, transverse cracks
propagate inside the matrix rich areas between the fiber tows (tm). Reaching the
interface of other, not aligned reinforcement structures, e.g. longitudinal (warp)
yarns or sheared weft yarns, the transverse cracks cause the appearance of local
delaminations (l). The main responsibility for that formation lies in the active
inhomogeneous stress states at the crack tip and especially the shear components.
Figure 2.17 shows local delamination phenomenon due to t-crack grown out of
a weft yarn. Other experimental investigations indicate that local delaminations
(l) can also appear without being initiated by t-cracks (cf. LOMOV et al. [237] and
EL HAGE [105]). The formation of tm- and l-cracks are identified by AE events
happening at a characteristic strain level, ε2. Looking at the warp fiber tows ori-
ented in loading direction, the damage mode of splitting (sp) can be identified. The
initially undulated longitudinal yarns straighten under tensile load. Especially in
the crimp areas this deformation is suppressed by the adjacent reinforcements and
surrounding matrix. Furthermore, being subjected to the Poisson contraction, the
transversal deformation of warp yarns is constrained, yielding internal transverse
stresses. For the case that these stresses exceed the transversal strength, inter-fiber

Figure 2.17: Starting local delamination (l) initiated by a t-crack. Image taken and modified from
LOMOV et al. [237].
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fracture occurs in the longitudinal yarns. Figure 2.18 shows a view of a micro cut
of such a damage behavior.

Figure 2.18: Transversal cracks in the longitudinal yarns (warp), oriented perpendicular to the
image plane here, due to the damage mode splitting (sp) indicated by arrows. Image taken from
JOHN et al. [181].

As local delaminations (l-cracks) grow due to increasing loading, they eventually
coalesce to larger delaminated areas (L-cracks). These preferably form in the
interface between single plies, effecting their separation, and are therefore often
described as an inter-ply failure, depending mainly on the inter-laminar fracture
toughness of the composite. The ultimate failure of the specimen is defined by
fiber failure (f ). LOMOV et al. [237] state, that fiber failure starts at locations
of delaminations. Experimental observations show a reduced failure strain in
warp direction for textile composites compared to their non-crimped counterparts.
CARVELLI et al. [56] explain this reduction by the prohibited stress transfer inside
the fiber bundles due to the adjacent micro damage. This effect is intensified by
the off-axis orientation of the fiber bundle due to the undulation.

2.4 Constitutive modeling approaches on different scales

Increasing attention has been given to composites with textile reinforcement in the
recent years with the purpose to close the gap between "high-tech" unidirectional
laminates and "high-volume" composites consisting of short-fibers or particulates
(cf. GOMMERS et al. [127]). While the idea of multiscale analysis of woven textile
composites is relatively old, there has been some recent progresses in the modeling
of the material behavior on the different scales. The focus of the following section
lies on the review of already existing modeling approaches of the thermoplastic
constituent (matrix), subcomposites and macroscopic formulation of impregnated
weaves. The structure of this presentation is based on the intrinsic hierarchy of the
woven composite material at hand.
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2.4.1 Plasticity and damage modeling for isotropic matrix material

The last decades have been marked by many developments in the field of describ-
ing elastic and inelastic behavior of a large number of different material classes,
such as metals, ceramics, plastics, natural materials, or tissues, just to name a few.
They cover a wide range of the most diverse applications and disciplines, such as
classical stress analysis, soil mechanics in civil engineering, deformation analysis
during manufacturing, food processing, mining operations or tissue engineering
in biomedical applications (cf. DE SOUZA NETO [296]). The following short review
of available models is exclusively carried out in the framework of continuum
mechanics. In the context of the presented work, formulations of viscoplasticity
and failure in plastics and plastic composites are of primary interest. Looking
at the performed material tests of the pure matrix in Section 3.2, those were the
predominant phenomenologically observable effects occurring under monotonous
loading.

2.4.1.1 Plasticity

Concerning the inelasticities associated to plasticity in a ductile metal, i.e. the
remaining of permanent deformation upon unloading during a uniaxial tension
test, DE SOUZA NETO [296] summarized the visible effects as follows:

1. The domain of stresses, where no permanent (plastic) strain evolution is
occurring and the material response can be assumed to be purely elastic, is
called the elastic domain. In the easiest isotropic case, it can be characterized
by one scalar value, the yield stress.

2. If the applied stress exceeds the yield stress, plastic yielding or plastic flow,
thus the evolution of remaining strains upon unloading, takes place.

3. Simultaneously, a change of the yield stress is observed, which is denoted as
hardening in the following.

These observations are valid analogously for plastic materials. Additionally, most
of the observable behavior is dependent on the rate of application of loads and/or
the timescale of the problems considered (crash vs. creep or relaxation). Gen-
erally, plastic materials show both viscoelastic and viscoplastic behavior. The
former shall be neglected in the current study since no significant expression
was observed in the experimental results. However, the interested reader is re-
ferred to CHABOCHE [64], LEMAÎTRE & CHABOCHE [224], or the textbook of
BERGSTRÖM [33], among many others for basic works on this topic. Self-evidently,
the respective characteristics of these effects depend strongly on the material to be
considered and the micromechanical processes occurring in it, depending on the
actual rate, time and temperature. Therefore it is a common approach to investi-
gate the processes on the micro scale, since they are particularly important for the
understanding of the material behavior under more complex rate/time dependent
loading scenarios, including thermal effects, the influence of hydrostatic pressure
or multi-axial loading.
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To describe the observed behavior qualitatively and quantitatively (either phe-
nomenologically or via micromechanical motivations) is the purpose of the mathe-
matical theory of plasticity using continuum constitutive models (cf. DE SOUZA
NETO [296]). Hereby, a multitude of modeling possibilities is given in the literature.
In an effort to establish a general model, the basic elements denoted in Box 2.1
have to be defined by the constitutive plasticity model.

Box 2.1: General formalism for a definition of a constitutive plasticity model.

1. Definition of kinematic framework and elastoplastic strain decomposi-
tion.

2. Formulation of the ground-state elasticity.

3. Determination of a suitable yield criterion describing the elastic domain.

4. Construction of the plastic flow rule defining the evolution of inelastic
strains.

5. Definition of a hardening law, characterizing the evolution of the elastic
domain.

Each of these elements were the topic of research for more than four decades, and
efforts are still ongoing. In Section 2.1.1 the major kinematic frameworks have been
introduced, distinguishing infinitesimal (cf. Eq. (2.16)) and finite deformation (cf.
SETH-HILL strain measures, Eq. (2.11)). According to MIEHE et al. [269], no canon-
ical kinematic framework has been found so far concerning finite plasticity. At
this point, it is referred to NAGHDI [286] and XIAO et al. [425] for a discussion and
a critical review of available approaches. Besides hypoelastic rate formulations,
which are neglected in this present work, and the decomposition of strain in the
logarithmic framework (cf. Eq. (2.14)1), basically two kinematical approaches to
finite plasticity are available: (a) Multiplicative decomposition of the deformation
gradient into the elastic and inelastic parts F = F eF i (cf. Eq. (2.7)) referred as the
Kröner-Lee decomposition (cf. KRÖNER [207], LEE [216], and MANDEL [250]). (b)
A framework according to the Green-Naghdi theory (cf. GREEN & NAGHDI [131])
that introduces the notion of an additional primitive Lagrangean pastic strain Ep.
Building on this work, MIEHE [273, 274] developed a third framework based on
the evolving reference plastic metric Gp. This framework is of particular interest,
since it allows the transfer from a plasticity model initially defined as a function
of logarithmic strains to a finite setting (cf. MIEHE et al. [268], PAPADOPOULOS &
LU [306, 307], MIEHE & APELT [275]). The elastic part εe of the Hencky strain ε (cf.
Eq. (2.13)) can be defined by

εe = ε− 1

2
ln (Gp) = ε− εp. (2.71)

A comparative study was performed by MIEHE et al. [268] showing the close-
ness of multiplicative approach with the newly designed additive finite plasticity
framework. According to the authors, another advantage is the easy algorithmic
implementation of the proposed setting. The basic constitutive equations for geo-
metrically linear theory of elastoplasticity is presented for example in HILL [163],
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RECKLING [331], BACKHAUS [21], among others. A detailed description of the
theory and remark on the numerical implementation, especially in the framework
of large deformations, is given by SIMO & HUGHES [352], and MIEHE [272]. Within
these works, the concept of hyperelasticity, i.e. the free energy function as the start-
ing point for the definition of constitutive laws for stress is also presented. DE
SOUZA NETO [296] provides hyperelastic models for both frameworks, includ-
ing corresponding comprehensive derivations. Examples for non-isotropic free
energy functions leading to more complex symmetry classes can be studied in
SCHRÖDER [346]. To some extent interconnected, the remaining elements (3-5) of
box 2.1 can be used to introduce time dependency in terms of viscoplasticity, using
different methods. The following statements apply analogously to both small
and large strain frameworks. In the literature, a vast number of yield criteria is
available. The formulations for the elastic domain according to TRESCA [385], VON
MISES [405], or the pressure dependent criteria by MOHR-COULOMB, described in
CHRISTENSEN [73], and DRUCKER-PRAGER [102] are the most classical examples.
Graphical depictions of the yield surface in the stress space are provided by DE
SOUZA NETO [296].

Focusing on yield behavior of polymers, a serious effort has been made over
the years to experimentally characterize the three-dimensional yielding behavior
and cast the observations in a general mathematical formulation of an elastic
domain. As a result, the data indicates the necessity of pressure dependency
and asymmetry of yield strength under tension and compression loading for a
sensible yield criterion for plastics (cf. RAGHAVA [328]). Modified von Mises
yield criteria are often used for this purpose, as provided by MELDAHL [258],
SCHLEICHER [345], STASSI D’ALIA [362], or TSCHOEGL [393] among many others.
For a more extensive state-of-art review on available yield criteria, please refer to
ALTENBACH et al. [3]. The borders of the elastic domain are described in terms
of strength values, which can be formulated as functions of rate/time in order to
introduce a viscoplastic formulation, thus directly influencing the formulation of
hardening (cf. DE SOUZA NETO [296]). A detailed review on modeling possibilities
concerning hardening is neglected at this point of the work and it is referred to
DE SOUZA NETO [296]. While the existence of a yield surface is essential for the
definition of rate-independent plasticity models, this is not required for some
viscoplasticity models. This means, that the model yields plastic deformation
whenever stress occurs (cf. LEMAÎTRE & CHABOCHE [223], SKZYPEK [356], and
others). Examples for such models are widely used, concerning the analysis
of creep (cf. Norton’s creep model, Lemaître-Chaboche law, and others). The most
intuitive way to adapt a rate-independent plasticity model towards a viscoplastic
formulation is done via the plastic flow rule. In general, the evolution equation
for the plastic strain in a small strain framework can be written as

ε̇p = γ̇N , (2.72)

where γ̇ is the plastic multiplier and N denotes the direction of plastic flow. The
latter is described in general by a flow potential Ψp (non-associative flow rule).
In the case that yield function (Φ) and the potential for plastic flow are chosen
to be identical, Ψp ≡ Φ, a associative (or associated) plasticity model is defined.
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Numerically speaking, for time-independent models an elastic predictor/plastic
corrector algorithm is usually applied in order to find the solution of elastic and
plastic strains, as a function of the plastic multiplier γ̇ (cf. DE SOUZA NETO [296]) in
an iterative manner. Viscoplastic formulations, however, use an explicit function
of γ̇, in order to model how the rate of plastic straining varies with the level
of stress. In the literature many approaches for such a definition are available
(cf. PERIC [311]), such as the Bingham model (cf. DE SOUZA NETO [296]) or the
Perzyna model provided by PERZYNA [313, 314]. CHABOCHE [66] provides another
extensive review on plasticity and viscoplasticity models for small strain settings.
As already mentioned, similar developments were undertaken also in the frame-
work of finite strain. In the context of polymeric materials, phenomenological
models date back to the works of EYRING [110]. Although the parameters of
this model have a physical meaning, their physical significance remains dubious,
according to MIEHE et al. [269], BOWDEN [40], and CRIST [80]. Therefore, early on
models based on thermally activated inter- and intramolecular mechanism were
developed (cf. MARSCHALL & THOMPSON [252], HAWARD & THACKRAY [155],
RIDER & HARGREAVES [335], VINCENT [403], ROBERTSON [337]). The basis for
a multitude of actual models is the work of ARGON [10], who introduced the
double-kink model.
With regard to the extension toward a viscoplastic formulation of (mainly glassy)
polymers, many contributions were provided in the last years. Hereby, the essen-
tial foundations were laid by works of BOYCE and ARGON among others (BOYCE
et al. [41], ARRUDA & BOYCE [11], ARRUDA et al. [13], HASAN & BOYCE [150]). Ex-
tensions of these models are provided by WU & VAN DER GIESSEN [422, 423, 424],
TOMITA & TANAKA [384], GOVAERT et al. [128], ANAND & GURTIN [4], BARDEN-
HAGEN et al. [27], MIEHE et al. [269], and many more. The eight-chain-model by
ARRUDA & BOYCE [12] and the non-affine microsphere model by MIEHE [267] are
particularly popular in this respect. Most of the named models are formulated
in the Kröner-Lee decomposition. The automatic outcome of this approach is
the existence of the hypothetical intermediate plastic configuration (see Fig. 2.2).
An important assumption for the upcoming developments in the course of this
work, is the suggestion made by BOYCE et al. [42], that the elastic part of the
deformation gradient has to be symmetric. A comprehensive review on available
viscoplastic models for polymers and their numerical implementation is given in
BERGSTRÖM [33].

2.4.1.2 Damage and failure

Failure describes the complete loss of load-carrying capability of the material.
Ahead of the ultimate failure event, progressive internal damage processes oc-
cur in the material, which correspond to the formation of cracks and cavities at
the microscopic level. The theory of Continuum Damage Mechanics (CDM) as a
branch of continuum solid mechanics, formulates constitutive models, in the best
case taking into account these micromechanical effects with the aim of a reliable
life time prediction (cf. KACHANOV [184], KRAJČINOVIĆ [204] and LEMAÎTRE &
CHABOCHE [223]). The phenomena in the material leading to damage evolution
and failure are for most materials essentially different from those characterizing
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deformation (cf. DE SOUZA NETO [296]). A direct consequence thereof is the
introduction of state variables that are connected to damage processes additional
to the standard variables for elastoplasticity (e.g. (plastic) strain). Thus, the new
state variables represent the density and/or distribution of microscopic effects
characterizing directly or indirectly the damage state within the material (cf. DE
SOUZA NETO [296]). KACHANOV [184] proposed the first continuum damage
model in the literature, by means of a scalar internal variable in order to model
creep damage for metals under uniaxial loading scenarios. Despite the lack of
any physical meaning of the damage variable, this pioneer work marks the be-
ginning of a series of many important publications. Early on, RABOTNOV [327]
interpreted the physical meaning of a scalar damage variable as the reduction of
the net area of the loaded material due to microcracking as a suitable measure
of internal damage. In the following years and in the context of creep model-
ing, processes were made based on these original developments regarding the
generalization towards three-dimensional descriptions of damage (e.g. LECKIE
& HAYHURST [213]). MURAKAMI & OHNO [285] and MURAKAMI [284] made
noteworthy developments regarding the anisotropic formulation of damage states,
presented therefore by second-order tensors. CHABOCHE [62, 63, 65, 61] devel-
oped a new phenomenological approach for the description of creep-damage
evolution based on thermodynamic considerations and proposed the existence of
mechanically equivalent ficticious undamaged configurations, also known as stress/s-
train equivalence. This hypothesis is also used in contexts other than creep (e.g.
damage due to monotonous loading). Further developments were provided by
LEMAÎTRE [219, 221, 222] and GURSON [139] for ductile damage. Anisotropic
damage as well as unilateral damage effects due to the asymmetry of the dam-
age effect during tensile and compressive load was provided by LEMAÎTRE et
al. [225]. A discussion of the separation of CDM theories into two categories,
micromechanical and phenomenological models, is presented in BASISTA et al. [28].
In their work, SIMO & JU [353, 354] give very comprehensible derivations of
generally anisotropic strain- and stress-based damage models, consistent with
the theory of Lemaître’s work. The usage of this hypothesis generally leads to a
non-symmetric tangent operator. To overcome this problem CORDEBOIS & SIDO-
ROFF [77] published an elastoplastic damage model based on the assumption of
energy equivalence and using second-order tensors to describe the damage state.
LECKIE & ONAT [214] and ONAT [302] show in their work, that distribution of
voids in metallic material can be mathematically presented best by tensors of
an even rank. Apparently unaware of this statements, in literature a number of
damage models based on a vectorial definition of the damage state are available
(cf. KRAJČINOVIĆ & FONSEKA [203], FONSEKA & KRAJČINOVIĆ [117], or KRAJČI-
NOVIĆ [201], among many others). KRAJČINOVIĆ [202] furthermore introduced
a model which is able to distinct between a set of active and passive systems of
microcracks. KACHANOV [182] and MITCHELL [279] provide an overview over
available vector-based damage models. Very extensive reviews of available mod-
eling techniques concerning damage is given in CHABOCHE [60, 61], LEMAÎTRE
& CHABOCHE [223], PEERLINGS [310] and LEMAÎTRE & DESMORAT [226] among
others. Here, also formulations for other loading scenarios, such as fatigue, are
addressed. Based on the above mentioned concepts, constitutive models of the
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type of LEMAÎTRE & CHABOCHE [223] make use of the degradation of the elastic
moduli, hence using the stiffness as the macroscopical measure of damage.Their
derivation based on thermodynamical consistent assumptions for hyperelastic
materials is presented very comprehensively in DE SOUZA NETO [296] within
the framework of small strains. Hyperelastic damage models in the context of
finite strain available in the literature are introduced mainly by the example of
the Mullins effect in rubber materials. Description of the occurring damage effects
as well as (general) derivations for the thermodynamically consistent derivation
of the isotropic damage model are given in HOLZAPFEL [169]. Further work
concerning this topic is provided by LION [230] and MIEHE & KECK [270].
Representative volume elements are one of the main remedies in order to perform
numerical studies of the microstructure of unidirectional fiber reinforced com-
posites with the aim of computing and characterizing macroscopic behavior (i.e.
stiffness, plastic behavior, failure and many more). For further reading please refer
to the works of MELRO et al. [260], WONGSTO & LI [419], LI & WONGSTO [228] or
TRIAS et al. [386]. These investigations showed furthermore, that it is necessary
to model the microstructure of UD material by means of statistically representative
volume elements (SRVE) when the characterization of plasticity and damage evolu-
tion is the intended goal. The arrangement of the fibers has a significant influence
on the stress and strain distribution on micro level. Works by PYRZ [323, 324],
SØRENSEN & TALREJA [361], and BROCKENBROUGH [43] are just a few examples
that underline the importance of a random spatial arrangement of the reinforce-
ment. For a very extensive review on available as well as a presentation of an
intuitive and easy to implement method to generate virtual unidirectional mi-
crostructures for the use in finite element applications, please refer to MELRO [260].
A review of the state of the art concerning the modeling of thermoplastic com-
posites with a unidirectional fiber reinforcement shows that viscoplastic behavior
is neglected in a large number of publications for the analytical and numerical
characterization of the macroscopic behavior. One partial objective of this work
is therefore the derivation of a elasto-viscoplastic damage model for the ther-
moplastic matrix material. It will be used as a basic constitutive model during
the meso-modeling of the subsequent microstructures and, thus, can be used to
investigate the viscoplastic portion of deformation in the respective composites
virtually.

2.4.2 FE-Modeling approaches on the mesoscopic scale of textile composites

This section deals with meso-level analysis of mechanical behavior of impregnated
textile composites. The simulation of dry composites as well as forming simu-
lation will not be addressed directly and is out of scope here. A short review of
available literature is given, that concentrates on the meso-modeling with the aim
of maximum detail level with regard to the reinforcement geometry consequently
in a very accurate prediction of stress-strain states, using finite element modeling.
These analyses allow further investigation of damage initiation and development.
When it comes to modeling the mesoscopic level of woven fiber composites regard-
ing deformation and failure onset/progression, engineers have to face a two-fold
problem, apart from current issues of the numerical and conceptual framework
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of multiscale analysis within an FE environment (consideration of symmetry, correct
formulation of boundary conditions, application of numerical homogenization techniques,
pre-/post-processing of the FE model). These are:

1. consideration of geometrical effects in multi-layered woven composites and

2. reliable constitutive modeling of the single phases (rovings and embedding
matrix).

LOMOV et al. [231] presented a wide-ranging review of the implementation of pro-
gressive damage modeling for different kinds of textile composites. Furthermore,
they propose a "road map" in order to set up a multiscale analysis of textile com-
posites, containing the aforementioned issues with focus on the implementation
of a closed process chain, starting at the generation of the meso-structure up to the
evaluation of damage initiation criteria and damage development.

2.4.2.1 Virtual geometric modeling of weave reinforced composites

The geometrical modeling of woven composites in a finite element context is very
challenging. The interlacing of the yarns yields complex microstructures, which
have to be accurately rendered in its virtual counterpart. The main difficulties
here is the correct definition of the geometry of the single yarns embedded in
the composite. Therefore, neighboring yarns and crimp regions, where yarns
with different directions meander to the opposite side of the weave layer, are of
special interest. In the literature, a large number of authors deal with the FE-meso
modeling of textile fabrics (cf. CARVELLI & POGGI [54], KING [192], ZAKO et
al. [430], BARBERO et al. [24], and many others, e.g. [232, 374, 416, 412, 35, 54, 82,
86, 142, 165, 215, 235, 236, 325, 348, 371, 420, 22, 36, 433, 179, 55, 413, 431, 81, 297,
58, 103, 209, 375, 397, 368, 411, 116]) with variations in the fiber architecture and
resolution of the inner structures. Please see CROOKSTON et al. [81] and LOMOV
et al. [231] for a detailed overview of available modeling approaches. Overall,
mostly woven composites are addressed. Given a sufficiently accurate geometry
representation including an adequate FE-mesh, it was shown that the computation
of elastic properties can be performed on a very reliable level. The success of these
basic investigations and the promising results obtained, encouraged researchers
to approach more complex problems such as the investigation of nesting effects
(cf. HALE & VILLA [142], KURASHIKI et al. [209], LE PAGE et al. [212]) and
damage progression (cf. NICOLETTO & RIVA [297], EDGREN et al. [103], ZAKO
et al. [430], DAGGUMATI et al. [85], or WANG et al. [408]). An important step,
yielding to a significant simplification and enhancing model possibilities, was
the development of microstructure generators for textile composites. The two
most prominent representatives are the software packages WiseTex (cf. LOMOV
et al. [231] and VERPOEST & LOMOV [402]) and developments from researchers
of the University of Nottingham, who provide the open-source solution TexGen
(cf. SHERBURN [350]). Both software solutions deliver accurate representations
of both dry and impregnated textile microstructures. In combination with finite
element meshers, e.g. meshTex or TetGen (cf. LOMOV et al. [231] or SHERBURN [350]
respectively), an easy transfer to commercial FE programs like Ansys or Abaqus
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(cf. SIMULIA [355], CADFEM [47]) is possible, distinguishing between matrix rich
areas (matrix pockets) and weft/warp tows. Due to given information about the
element-wise fiber orientation and fiber volume fraction, it is possible to accurately
assign the local stiffness properties of the single phases. Using this technique, the
majority of the current works deal with the investigation of the local structural
behavior of unit cells using FE simulations. Three-dimensional formulations of
periodic boundary conditions are mainly used, exploiting the idea of the unit
cell under investigation originating from the center of a laminate (cf. LOMOV et
al. [231], WHITCOMB [414], WHITCOMB [415], BOGDANOVICH [37]). However,
recent studies show the influence of free surfaces and edges on the local stress
behavior of shell-like structures (cf. IVANOV et al. [177], OWENS et al. [305],
LOMOV et al. [238]), therefore motivating the usage of in-plane periodic boundary
conditions (see a definition in MELRO [260]). The resulting virtual model on the
mesoscopic scale contains two phases: (a) the impregnating matrix and (b) the
undulated rovings. For the approach taken here, a homogenized substitute model
is needed for the latter that takes into account the anisotropic nature of elasticity as
well as all relevant damage modes. In the following, an overview of some already
known models and the requirements for the formulation of damage within the
framework of the CDM that were derived from such is given.

2.4.2.2 Constitutive damage modeling of impregnated rovings

An intuitive way for simulating damage in composites is the theory of fracture
mechanics, thus, introducing discrete cracks in the FE model. In general, it is
however difficult in a computational sense, to create free boundaries in a complex
microstructure. Furthermore, the crack path has to be known and well defined be-
forehand, which is normally the only case during delamination of yarns from the
surrounding matrix, as reported by CAMANHO et al. [49]. Hence, only simplified
two-dimensional or abstracted geometries were evaluated using classical fracture
mechanics (cf. EDGREN et al. [103], LE PAGE et al. [212]). As a consequence, in
the context of continuum damage mechanics, models based on internal damage
variables are widely used. The advantage here is the possibility of considering
a stiffness degradation without introducing cracks directly in the mesh. It does
not necessitate mesh refinement, is therefore computationally simple (cf. LOMOV
et al. [231]), and hence an important tool for modeling damage evolution in fiber
composites. With regard to textile composites, it is widely used (cf. CARVELLI
& POGGI [58], TANG & WHITCOMB [375], WHITCOMB & SRIRENGAN [411], FISH
& YU [115], ZAKO et al. [430], HAMELIN & BIGAUD [147] just to name a few). In
the majority of available works it is assumed, that the matrix behaves isotropic,
impregnated tows locally behave like unidirectional composites, showing an ini-
tially transversal isotropy and corresponding failure modes. WANG et al. [408]
state the importance of further investigations on the exact failure behavior of
tows, especially in crimped areas, based on their virtual assessment of the failure
behavior of 2D twill woven composites. Most of the damage models used, follow a
local formulation. In other words, the damage initiation and progression depends
solely on the deformation of the element where the damage criterion is evaluated.
In contrast to that, other formulations like phase-field approaches exist, where
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damage is an additional field (for example to stress, strain or temperature field)
that is solved simultaneously (cf. FISH et al. [116]). These concepts are not taken
into consideration throughout this work. In order to relate stresses and experi-
mentally determined material strengths to the onset of failure, stress-based failure
criteria are commonly used and a large number of available criteria are available in
the literature (see e.g. SODEN et al. [359] or PARIS [308]). As a further development
of the von Mises criterion, HILL [157] proposed the first anisotropic failure criterion,
named the Tsai-Hill criterion. Criteria of TSAI & WU [392] (Tsai-Wu criterion) and
HOFFMAN [168] followed, but all three were unable to distinguish the occurring
failure modes. To overcome this weakness, HASHIN [151] published the Hashin
criterion. Intentionally formulated for fatigue failure, it is formulated depending
on tensile or compressive loads in combination with shear and distinguishes fur-
thermore between longitudinal (fiber) and transversal (matrix) direction, therefore
corresponding directly to the nature of unidirectional plies. SUN et al. [366] and
PUCK et al. [321, 320] take into account a detailed investigation of failure modes,
appearing during different loading scenarios. More recently, a criterion was pre-
sented by DAVILA et al. [88], named LaRC03, corresponding to a plain-stress
problem. Extending this formulation towards a general stress state, the criterion
called LaRC04 was developed (cf. PINHO et al. [315], see also for a review on
failure criteria). Additionally, CATALANOTTI et al. [59] proposed another three-
dimensional failure criterion for plastic fiber composites, taking special attention
to the effect of ply thickness. The extensive work of HINTON et al. [164] evaluated
common damage initiation criteria in their world wide failure exercise. The reviewed
criteria were then adopted by most researchers towards the usage in textile fabrics
and build the basis of the assessment of damage evolution. Hereby, the composite
lamina (here, this corresponds exclusively to the impregnated yarns) are assumed
to be a homogeneous, albeit anisotropic material. The effect of delamination of
plies, is usually addressed by methods of linear-elastic fracture mechanics. Here,
mostly the virtual crack closure technique (cf. KRUEGER et al. [208]) or cohesive
formulations (cf. ALFANO & CRISFIELD [1], ALLIX & CORIGLIANO [2], CAMANHO
et al. [48], TURON et al. [395], DE BORST [89], JANSSON & LARSSON [180], LI et
al. [229]) are used. MAIMÍ et al. [244, 245, 246] published a two-dimensional contin-
uum ply damage model for composite laminates, presenting both the theoretical
framework as well as the numerical implementation. To ensure thermodynam-
ical consistency during damage evolution, the crack band model of BAZ̆ANT [19]
is employed. In the context of standard dissipative material theory, a failure
model including an anisotropic damage formulation to describe fiber-reinforced
composites was proposed by MATZENMILLER et al. [257]. The corresponding rate-
equations for damage evolution are consistent with the laws of thermodynamics. A
three-dimensional generalized damage model was presented by GOVINDJEE [129]
in the context of anisotropic brittle damage of concrete, shows however similar-
ities to a model suitable also for fibrous composites. The appeal of this model
is the usage of thermodynamic forces in order to specify the damage evolution.
As a result of the hyperelastic theory, these forces are a direct product of the
energy potential, which is hence specifying the whole model. The difficulty is
however the lack of physical meaning and the therefore non-intuitive usage of
such formulations. Based on their previous works, MAIMÍ et al. [247] published
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an extended damage model to consider general three-dimensional stress states
intending to incorporate damage effects due to delamination. The presented con-
stitutive models account for crack closure and passive damage effects under load
reversal. In his work, MELRO [260] used this model to evaluate damage evolution
in the yarns of a 5-harness stain weave unit cell micro structure under uni- and
biaxial loading in combination with a thermodynamically correct elastoplastic
damage formulation for the matrix (cf. MELRO et al. [261]). Elastoplasticity in
fiber-reinforced composites is investigated and modeled by CHEN et al. [71]. Tak-
ing into account RVEs based on measurements of real geometries, BAHEI-EL-DIN
et al. [22] presented a damage progression model for three-dimensional weaves,
predicting the overall behavior under general, multi-axial stress states. Special
attention was paid on the compressive behavior of three-dimensional braided
composites by FANG et al. [111]. Other non-linear numerical material models for
the prediction of textile composites under damage were provided by COUSIGNÉ et
al. [78] and MARTÍN-SANTOS [253]. More recently, ZHONG et al. [432] published
a study, in which the prediction of the damage initiation and the development
in a three-dimensional woven composite is addressed. Therefore, the authors
provide another continuum damage model, covering the predominant failure
modes in fiber and in transverse direction as well as matrix failure separately.
Damage onset was predicted by using the Puck failure criteria. WANG et al. [408]
present a progressive damage modeling strategy based on a multiscale approach
to investigate the damage and failure behavior of tow-dimensional woven com-
posites. An anisotropic damage model based on the Murakami-Ohno damage tensor
is provided. A slightly different approach was presented by THIEME et al. [383],
who developed a probabilistic approach to assess failure in glass fiber reinforced
weft-knitted thermoplastics. This summary is not intended to be exhaustive and
should serve as an introduction. Please note, that the presented damage model
used the framework of geometrically linear formulations. A major lesson that
can be drawn from the literature review is that the prediction of damage evolu-
tion in fibrous composite materials necessitate the capturing of the anisotropic
nature of damage. Consequently, with regard to the mathematical representation
of directional damage, an at least second or higher order tensor is needed (see
e.g. CAROL [52, 53, 51], SIMO & JU [353, 354]). For the case of higher order ten-
sors many damage models for several kind of material classes are available (see
e.g. DRAGON & MRÓZ [101], KACHANOV [185], CHABOCHE [62], MURAKAMI
& OHNO [285], BETTEN [34], ODA [299], ORTIZ [303], CHOW & WANG [72], MU-
RAKAMI [283], SUARIS [363], YAZDANI & SCHREYER [428], WEI et al. [409], VALA-
NIS [398], LEMAÎTRE & CHABOCHE [223], HANSEN & SCHREYER [148], LUBARDA
& KRAJC̆INOVIĆ [240], VOYIADJIS & PARK [406], among many others ). CAROL
et al. [52, 53] presented a standardized formulation of important concepts in the
context of continuum damage mechanics (e.g. effective stress and strain and energy
equivalence) and provided a very comprehensive description of damage models
using second-order damage tensors at small strains, following the theory of MU-
RAKAMI & OHNO [285], CORDEBOIS & SIDOROFF [77], and MURAKAMI [283].
This notation will also be used throughout the present work. MENZEL & STEIN-
MANN [262] provide the formulation of anisotropic continuum damage mechanics
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at large strains and also deal with the algorithmic treatment.

Literature research has shown a large number of available works when it comes to
meso modeling of textile composites. Techniques to reliably model the geometry
of meso structures based on real geometrical data exist and are widely used. In
terms of damage modeling of such composites, many constitutive models are
available in numerous variations and were applied in many studies. This high va-
riety and the concomitant discrepancies in notations makes it difficult to compare
the single models. Works with the effort of standardization of formulations have
been mentioned in the above review. For the purpose of finite element analysis of
the mesostructure of two-dimensional woven composites, which will be carried
out throughout this work, a homogenized constitutive model representing the
impregnated and undulated rovings is needed. This model has to take into con-
sideration the occurring physical failure modes, their effects on the stiffness tensor
and has to be able to predict post-failure behavior. To this end, an anisotropic and
thermodynamically consistent damage model based on hyperelasticity will be pre-
sented in this thesis. Experimentally observed large rotations of the reinforcement
structures are hereby described within the framework of finite strains.

2.4.3 Homogenized material models for woven composites

Taking into account the level of detail and the corresponding intensive computa-
tional effort necessary by the methods introduced in Section 2.4.2, a homogenized
material formulation is needed in order to calculate the deformation and failure
behavior of entire structural parts consisting of layered textile composites. Hereby,
the knowledge of both, in-plane and through-thickness properties are essential. To
address this problem, reliable three-dimensional homogenization methods imple-
mented in material models for the usage in industrial applications (cf. HU [170],
MOURITZ et al. [281], AYRANCI & CAREY [18]) are needed, respecting all geo-
metrical factors, such as fiber architecture (woven, braided or knitted) as well
as properties of the subcomponents (mechanical properties, volume fractions,
orientations, etc.).

2.4.3.1 Analytical modeling approaches for the computation of the elastic
stiffness tensor for textile composites with a specifically defined topology

In analogy to short fiber composites, first analytical homogenization techniques
to model the elastic behavior of textile composites were developed. Two-step ho-
mogenization procedures, executed on meso- and macro-levels set up the general
scheme of these techniques. The idea here is to first predict the elastic properties
of a sub-volume of a subdivided unit cell or RVE, taking into account realistic
geometrical conditions, where the reinforcements can be assumed to be piecewise
unidirectional lamina with long fibers. By calculating the homogenized stiff-
ness of the sub-volumes at micro-level (usually within the local {123} coordinate
system, where the 1-direction corresponds always to the direction of the local rein-
forcement) and transforming them into the global coordinate system {XYZ} with
respect to the RVE, the second homogenization step can be performed. Applying
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a particular homogenization technique the results from the single sub-volumes
are assembled, yielding a prediction of the overall global stiffness matrix of the
complete RVE. HALLAL et al. [144] cluster available analytical methods in five
categories based on the corresponding homogenization method used at meso-
and macro-levels: Classical Laminate Theory (CLT), iso-strain assumption, mixed
iso-strain/iso-stress assumptions, inclusion methods and the methods of cells
(MOC).

Classical Laminate Theory

Well known from applications with 2D laminated composites, models based on
CLT yield good results in comparison with experimental and FE results. In the
studied literature, this technique was mostly used on 2D woven textile composites,
supported by the relatively simple fiber architecture, such as plain weaves, twill
weaves, satin weaves, etc. The advantage of such structures is, that the RVE geome-
tries can be decomposed into layers along the thickness direction rather easily, en-
abling a straight forward usage of CLT. ISHIKAWA & CHOU [173, 172, 171, 174, 175]
provide fundamental and basic work on modeling textile composites using CLT
as homogenization technique. ISHIKAWA & CHOU [173] derive two approaches,
iso-strain and iso-stress condition, yielding finally upper and lower bounds of
the in-plane elastic properties. In the course of the just quoted works, three ba-
sic models were introduced, the mosaic, the undulation, and the bridging model.
Figure 2.19 shows the used ways of microstructure abstraction. Starting point
of their developments was the mosaic model, where the RVE is idealized as a
asymmetrical cross-ply laminate as depicted in Fig. 2.19a. Further development
lead to a one-dimensional crimp model, the fiber undulation model, that described
the undulation of the yarn under loading using a sinusoidal function, whereas
transverse yarns were assumed to be straight (cf. Fig. 2.19b). This extension of
the mosaic model makes use of the iso-stress assumption. Of particular interest
applying this model is the subdivision of the undulated sections of the fabric
composite, where the stiffness matrices are calculated locally and then assembled
under iso-stress condition using CLT. The authors state that this modeling tech-
nique works best for two-dimensional plain weave composites (cf. ISHIKAWA &
CHOU [173]). Finally, they also proposed the bridging model, where the unit cell
is further decomposed in five sub-regions (cf. Fig. 2.19c), where region III corre-
sponds to the crimp region. All sub-regions are then assembled using iso-stress
conditions in series and iso-strain condition in parallel. The authors state, that
this model is best used for satin fabrics with long straight regions. The models
just introduced were the starting point for further developments, with increasing
complexity regarding the abstraction of the microstructure as well as the sequence
of homogenization using different assumptions. YANG et al. [427] presented an
extension of the fiber undulation model, called fiber inclination model, where
the unit cell is assumed to consist of inclined yarns. Using CLT together with
the iso-stress condition, the effective elastic properties for a three-dimensional
braided composite are derived. In a similar manner, WHITNEY & CHOU [417]
provide a model for the prediction of in-plane thermo-elastic properties of a three-
dimensional angle interlock composite. Attempting to combine the iso-strain and
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a b c

Figure 2.19: Schematic representations of assumptions used by analytical homogenization tech-
niques by ISHIKAWA & CHOU [173]. Approximation of the weave geometry and definition of
sub-regions by (a) mosaic model, (b) undulation model, and (c) bridging model. Images taken from
HALLAL et al. [144].

iso-stress conditions, BYUN et al. [46] introduce a micro-cell model in combination
with CLT. Comparison of the model response with experimental results show an
improved prediction of the axial Young’s modulus as well as in-plane Poisson’s
ratio, whereas less accurate results for the axial shear stiffnesses are obtained. With
the cross-over model, RAMAKRISHNA [330] proposed another two-dimensional ana-
lytical model for the prediction of the elastic behavior of plain knitted composites.
Using CLT together with an iso-strain condition, the calculation of elastic entities
in sub-volumes of the curved yarns was carried out in four symmetric sub-regions
of the RVE. In the second homogenization step a micromechanical model defined
by UEMARA et al. [396] was used to assemble the elastic properties of the yarns
and the surrounding resin matrix in order to obtain the stiffness matrix of the RVE.

Iso-strain models

In literature it is reported about all above presented models, that the application
of CLT is considerably more difficult when it comes to the modeling of three-
dimensional woven, braided or knitted composites, with a more complex yarn
structure. In such cases it is more reasonable to adopt a simpler homogenization
method. Analytical models using the iso-strain method allow a straightforward
and easy calculation of homogenized stiffness properties by only using a dis-
cretization of curved or undulated yarns in sub-volumes, with the fiber volume
fraction and orientation in each sub-volume and a subsequent averaging over
the volume of the yarns and matrix under an iso-strain assumption. Prominent
works were published early on by TARNOPOL’SKII et al. [376] and KREGER &
MELBARDIS [205], who introduce the analogous formulation of the rule of mixture
for textile composites, called the orientation average model. Similar to the models
using CLT, the microstructure is idealized and decomposed into piecewise unidi-
rectional sub-structures and are then averaged using either iso-stress (compliance
average model) or iso-strain (stiffness average model) assumptions, defining the
upper and lower bounds of the elastic properties respectively. Modifications were
made by COX & DADKHAH [79] for the application on three-dimensional interlock
composites. Further developments were presented by HAHN & PANDEY [141],
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where all yarns were assumed to be undulated and the overall stiffness can be
computed in a three-dimensional model. Modifications of this model for the usage
on tri-axially braided composites are given by SHOKRIEH & MAZLOOMI [351].
Other examples for the application on different scaffold types are presented by
CHANG et al. [69] for the calculation of the stiffness of three-dimensional angle
interlock woven ceramic composites. EL HAGE [105] and EL HAGE et al. [104]
applied a similar model to predict the elastic properties of orthogonal and angle
interlock woven composites. For the former, the authors state a good agreement
of the model with experimental data, especially when it is applied on the RVE
instead of just a unit cell. HALLAL et al. [145] predict the properties of a three-
dimensional angle interlock composite where especially transverse properties are
in good agreement with experimental results. Treating three-dimensional braided
fabrics, the iso-strain model shows equally good agreement as presented in LI
et al. [227]. By its nature, the iso-strain model yields elastic properties in both
in-plane as well as out-of-plane directions, which makes it an effective model for
almost all advanced textile composites (cf. SHOKRIEH & MAZLOOMI [351], QUEK
et al. [326], LI et al. [227] and EL HAGE et al. [104]). However, this simplicity of
using only an iso-strain condition is the major drawback concurrently, since it is to
be assumed, that such assumption will yield less accurate predictions of ultimate
strength and fatigue (cf. HALLAL et al. [144]). It should also be noted that at this
time there is not enough experimental data available to confirm the validity of the
prediction of out-of-plane properties.

Mixed iso-strain / iso-stress assumptions

With the compliance and stiffness average models being the limiters of physically
reasonable results, further developments were focused on finding a model taking
into account iso-strain and iso-stress assumptions in a superimposed way. To that
end, the intention is to respect the stress-strain fields in the RVE better than it is
the case with pure iso-strain models while predicting the mechanical behavior of
textile composites. By applying the CLT method and using different assembling
approaches in series or parallel the total stiffness of the composite is computed,
taking into account the actual geometry of the microstructure, i.e. architecture and
yarn cross-sections. NAIK & GANESH [290, 288], NAIK & SHEMBEKAR [292, 293],
SHEMBEKAR & NAIK [349] and GANESH & NAIK [119, 118] provide early on work,
resulting in a two-dimensional woven fabric model (2DWF) predicting the in-plane
elastic properties of woven composites. More recently, this methodology was ex-
tended to a three-dimensional model in order to compute also the out-of-plane
behavior of two- and three-dimensional weaves (cf. NAIK et al. [287], NAIK &
KUCHIBHOTLA [291], NAIK & SRIDEVI [289]). The results for 3D orthogonal and
angle interlock woven composites were found to be in good agreement with ex-
perimental data. Moreover, modifications towards the prediction of thermoelastic
properties of textile composites were provided by SANKAR & MARREY [341] by
their selective averaging method (SAM). TAN et al. [371, 370, 369, 372] developed
models in order to address the estimation of thermal expansion coefficients of
three-dimensional orthogonal and angle interlock woven fabrics. A model to
predict anisotropic elastic stiffness of three-dimensional textiles was presented
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by POCHIRAJU & CHOU [316]. Here, the macroscopic stiffness is computed us-
ing an effective response comparison (ERC) technique, based on the decomposition
of the RVE in small elements. The authors compared calculated and measured
results of angle interlock composites and found good agreement. A very simple
and intuitive way of combining iso-strain and iso-stress was the model of KA-
LIDINDI &ABUSAFIEH [186] and KALIDINDI & FRANCO [187]. Introducing a factor
α, giving the weight of the different shares of the two single solutions according to

C = αCε̄ + (1− α)S−1
σ̄ , (2.73)

where Cε̄ and S−1
σ̄ = Cσ̄ are the stiffness solutions coming from iso-strain and iso-

stress assumptions respectively. However, difficulties in the physical motivation
and the finding of a generalized form of such a factor arise.

2.4.3.2 Analytical modeling approaches for the computation of the stiffness
tensor for textile composites with an arbitrary topology

The commonality of all approaches so far, was the complex discretization of
the RVE, restricting the models to certain kinds of textiles. A slightly different
and more flexible approach was pursued by the now following authors. While
so far the RVE had to be fully discretized in sub-volumes, which then had to
be assembled in parallel or series along their loading directions, according to
their relative positions, the following approach is based on the assemblage by
components. In other words, first sub-volumes of curved parts of the yarns
are assembled and in a second step complete homogenized yarns and matrix
are combined to estimate the overall stiffness of the RVE. An example for such
a procedure is the model of VANDEURZEN et al. [400, 401], who presented an
improved fabric geometrical model, based on thorough geometrical and mechanical
study on two-dimensional woven fabrics. The stiffness of combi-cells, which
consist of a pure yarn and a matrix layer, is computed using the complementary
variational principle. The assembly is then carried out by applying either iso-strain
or iso-stress models. Other examples are given by the mixed iso-strain/iso-stress
model of RUAN & CHOU [340] for weft-knitted composites, the three-dimensional
model proposed by LEE et al. [217] for the calculation of the elastic properties of
plain weave composites or the three stages homogenization method (3SHM) first used
on three-dimensional angle interlock composites (cf. HALLAL et al. [145]) and later
on braided and knitted composites (cf. HALLAL [143]). The nature of the second
type of models allow a more general usage and applications on different kinds of
architectures.

Inclusion models

To promote further generalization, the Mori-Tanaka scheme (MT) was employed by
GOMMERS et al. [127] and applied on many types of textile composites, including
woven, braided and knitted scaffolds. Comparing the Mori-Tanaka scheme with
other frequently used analytical homogenization schemes, it shows the advantage
of delivering an explicit formulation for the effective stiffness tensor, regarding
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local stresses and strains. The general approach of MT is to approximate the
inclusion shape as ellipsoidal, resulting in a constant stress and strain field in each
inclusion. In the case of textile composites, the inclusions correspond to curved
yarns and can be approximated by a set of ellipsoids with circular or elliptical
cross-section in such a way that the fiber orientation distribution is not altered.
GOMMERS et al. [127] state that textile composites have to be modeled using a non-
trivial fiber orientation distribution, i.e. not aligned nor random, of non-spherical,
anisotropic inclusions. The yarns are therefore partitioned into sub-volumes,
which are then treated as single inclusions with elliptical cross-sections at an
infinite length. Good agreement with experimental and Finite Element results was
found by LOMOV et al. [233] for three-dimensionally woven composites. PERIE
et al. [312] reports good agreement for 3D angle interlock composites with the
remark that the accuracy of the geometrical modeling has a high influence on the
validity of inclusion models.

Methods of cells

One of the most recent developments in modeling the elastic behavior is done by
PRODROMOU et al. [318], who presented the method of cells (MOC) in the context of
analytical modeling of woven composites, while analyzing a wide range of two-
and three-dimensional woven fabrics. For the application of this model, a full
discretization of the microstructure into smaller cells containing yarn and matrix
layers is necessary. Therefore, the authors used the software Wisetex. While the
stiffness of the yarn layers is computed using Chamis’ micromechanical model [68],
the assembly of the sub-cells and homogenization of block-cells is done by using
the complementary energy minimization method. Analyses of results from MOC
show an improvement with respect to the MT model for a wide range of two- and
three-dimensional woven composites (cf. PRODROMOU et al. [318]). However, the
authors state as well that the computation time is significantly higher compared
to that of other analytical models, but yet less than Finite Element solutions (cf.
PRODROMOU et al. [318]).

For a more detailed review of available homogenization approaches using the
different categories, the interested reader is referred to the very extensive and
comprehensive reviews of HALLAL et al. [144] and DIXIT [98]. Furthermore, these
authors performed a study, in order to compare the elastic results of particular
homogenization techniques and point out substantial differences. They report
that some models were designed to predict properties for some specific kind of
composite whereas others show a more universal character, whereas only few
studies focus on the development of generalized models. Moreover, it can be
stated that the modeling of three-dimensional fiber architectures pose a major
challenge due to their more complex microstructure. HALLAL et al. [144] show in
their comparative study that the considered analytical models are quite capable of
delivering reliable results and are at the same time easy to use.
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2.4.3.3 Damage modeling in homogenized material models for textile composites

With the emphasis of the presented thesis on modeling the failure behavior of
textile composites on structural level, the next logical step is to look at damage
initiation, progression and ultimate strength. On the macroscopic level rather
few works have been published on this matter. In terms of analytical models,
NAIK [294] presented a study for woven and braided fabric composites where he
used the iso-strain assumption together with different failure criteria for yarns and
matrix respectively. According to DOITRAND et al. [99], macroscopic models that
predict damage evolution and failure in textile composites have been published
more recently for two- and three-dimensional textile composites respectively
(cf. HOCHARD et al. [166], HOCHARD et al. [167], MARIE & CHABOCHE [248],
MARCIN [251], and RAKOTOARISOA et al. [329]). With the focus lying on woven
composites, the two-dimensional model of HOCHARD et al. [166] is presented in
more detail in the following. To the knowledge of the author, this model is the
only one of its kind. Based on the meso scale model presented by AUBOURG [17],
a model to describe the non-linear degradations with progressive damage and
inelastic strains was presented. Hereby, a thermodynamic consistent, generalized
formulation for the progression of internal variables (d1, d2, and d12) associated
with the decrease of elastic moduli is used, which are directly related to the brittle
fiber fracture in warp and weft direction as well as the decreasing shear stiffness,
respectively. The development of d12, as the progressive damage variable for shear,
depends on the shear load as well as traction loads, which yield micro-cracks at
the fiber/matrix interfaces in the warp and weft yarns and are supposed to be
oriented in parallel. The complementary free energy potential of woven plies can
therefore be written as

ΛD =
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+
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− 2
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(2.74)

assuming plain stress and small strains. 〈·〉± denote the positive or negative
Macaulay brackets which distinguish between tensile and compressive loads.
In such a way the unilateral feature of damage is included in the model. The
derivation of the strain energy with respect to the damage variables yield the
thermodynamic driving forces Y associated with the damage variables for tension
and shear di where i = 1, 2 and d12 according to
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∂ΛD

∂di
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=
σ2

12
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.

(2.75)

The values of the timely maximum of the thermodynamic forces drive the de-
velopment of the internal variables. In the underlying model, it was assumed
that failure corresponding to d1 and d2 is instantaneous in order to represent the
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brittle characteristics of fiber failure. An equivalent thermodynamic force Y for
the development of d12 was formulated by

Y = α1Yd1 + α2Yd2 + Yd12 with Y (t) = sup
τ≤t

(Y (τ)) (2.76)

in order to take into account the traction/shear coupling. αi denote the coupling
coefficients which are treated as material parameters. The damage formulation
closes with the definition of the damage evolution law

d12 =

〈√
Y −√Y0√
Yc −

√
Y0

〉
+

, d1 = 0 and d2 = 0 (2.77)

if d12 < 1 and Yd1 < Y1f and Yd2 < Y2f or else

d1 = d2 = d12 = 1. (2.78)

Y0 and Yc are constant parameters, corresponding to the threshold and critical
value of the development of d12. Y1f and Y2f define the thermodynamic forces at
which ultimate failure in the warp and weft yarns occur. Besides the development
of damage, HOCHARD et al. [166] considered inelastic strains that were observed
in [45]8 laminates, as a consequence of slipping phenomena between damaged
fiber bundles/matrix interfaces during shear loading. They considered occurring
significant inelastic strains only under shear since the stiff fiber bundles prevent the
formation in fiber direction. In order to describe these strains, a plastic-hardening
model provided by LADEVÈZE & LE DANTEC [211] was used. Taking into account
the formulations for effective stress σ̃ and strain ε̃ (cf. LADEVÈZE [210]) the
coupling of damage and plasticity was obtained. The elastic domain was modeled
by

f (σ̃12, ε
p
acc) = |σ̃12|− (R (εpacc)−R0) (2.79)

with R0 being the initial threshold for inelastic strain and R (εpacc) describes the
hardening as a function of the accumulated plastic strain εpacc (cf. HOCHARD et
al. [166]). In the underlying work, a power law was chosen for R and associative
flow was assumed. The combination of inelasticity and damage evolution shows
good agreement with experimental results for several laminate stackings.

It is important to mention that throughout the complete loading path the woven
plies are regarded as homogeneous orthotropic, thus, not taking into account
reorientations of reinforcements due to off-axis loadings. Non-linearities in the
loading/unloading hysteresis, due to slipping/friction effects on micro level were
neglected. Furthermore, it has to be underlined at this point that all presented
models concerning the prediction of the behavior of textile composite so far are
formulated in the framework of infinitesimal strains.

The lack of an existing three-dimensional macroscopic failure model taking into
account the damage mechanisms taking place in the single reinforcement struc-
tures as well as in the adjacent matrix and furthermore respects the local material
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re-orientations due to deformation motivates the formulations carried out in the
following chapters. With the suggested approach, the aim is to address the need
of the industry for a failure model for textile composites at the structural level.
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3 Experimental investigations of constituents and composites

This chapter introduces the materials used for characterization and validation of
the developed material models and presents the experimental results. Compliant
with the suggested multiscale approach, the following distinct scales have been
under investigation in particular:

1. Neat polypropylene (PP) matrix

2. Unidirectionally glass fiber-reinforced composite (PP/GF-UD)

3. Fabric reinforced composite (organo sheets)

All mechanical and micro-optical investigations presented in the following were
conducted in the in-house laboratory at Robert Bosch GmbH where a standard
200 kN universal testing machine of the manufacturer Zwick was used. For the
mechanical testing of the unreinforced matrix, an alternative 20 kN load cell was
installed. Longitudinal expansion was captured by an integrated multiXtens
extensometer, whereas transversal deformation was measured by a digital image
correlation technique (ARAMIS) for some specific cases. The tests were executed
by applying different strain rates in a normed environment, i.e. at an ambient
temperature of T = 23◦C and a relative humidity of φ = 50%. In what follows
experimental data in forms of stress-strain relationships will be presented. Thereby,
recorded raw experimental data will be displayed using gray lines, whereas the
colored lines depict an average of the grouped curves up to the minimal fracture
strain of respective velocity set. The used strain rates are equally spaced in a
logarithmic scaling.

3.1 Experimental strain and stress measures

The determination of mechanical properties for the subsequent use in a material
model is only possible by conclusive preceding material testing. Due to very large
numbers of possible varieties and combinations of loading states (e.g. stress states,
loading rates, or environmental influences like temperature or humidity) in real
parts, the relevant influencing factors have to be identified. For the experimental
campaign presented in this work, environmental influences were not considered.
Mechanical quasi-static loads taking into account time-dependent effects were
investigated only. Therefore, one fundamental aspect of material characterization
becomes the assessment of stress and strain response of the material. In order
to avoid superposition of different material mechanisms, a first approach con-
centrates on macroscopically uniaxial loading states. In contrast to multi-axial
experiments, these types of tests are easier to conduct on standard testing equip-
ment with regard to the required testing technology. With the stress and strain
states being not directly accessible from the specimen, they have to be calculated
from measured forces and displacements.
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To correlate stress and deformation, it is necessary to define an appropriate strain
measure. In Eq. (2.11) the general SETH-HILL strain measurements have been
introduced. For the one-dimensional case, they relate the state of current deforma-
tion L to a defined initial length L0. For large deformations or non-linear processes
it is recommended to use the GREEN or logarithmic (HENKY) strain measures (cf.
GRELLMANN & SEIDLER [133]). The latter was used throughout this work and is
explicitly defined by

ε =

∫ L

L0

1

L
dL = ln

(
L

L0

)
∈ [−∞,∞] . (3.1)

Deformations that appear in transversal direction (ε⊥) are related to those appear-
ing in the principal loading direction (ε‖) by the Poisson’s ratio ν via

ν = −ε⊥
ε‖

(3.2)

or in terms of relative changes of these quantities

ν = −∆ε⊥
∆ε‖

. (3.3)

The Poisson’s ratio can be calculated in all three spatial directions. For isotropic
materials all ratios assume the same values defined in the range of ν ∈ [−1, 0.5],
where ν = 0.5 stands for incompressible material behavior. For composites with
complex microstructure, this domain does not apply in general. BECKER [29]
presents an overview of standard values for the Poisson’s ratio of a selection of
pure plastics. For polypropylene, Poisson’s ratios of ν = [0.3, 0.45] are reached (cf.
DASSOW [87], SCHENKEL [343]) but are not generally assumed to be constant dur-
ing deformation. Due to their particular molecular structure, plastics exhibit a rate
dependent deformation behavior. In order to describe this time-dependency, the
entity of strain rate is introduced here. Analogously to the strain itself, the strain
rate is a dimensionless measure to describe the velocity during the deformation
process, defined by

ε̇ =
dε
dt
. (3.4)

For a local measurement of the strain rate it can be written alternatively as

ε̇ =
vT(t)

L(t)
, (3.5)

where vT(t) is the velocity measured by the extensometer. In general, ε̇ can change
locally in the course of the experiment, e.g. due to localization effects, and can
therefore not be considered as constant. In analogy to Eq. (3.5), a technical strain
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3.2 Neat polypropylene matrix (PP)

rate can be defined as

ε̇t =
vT(t)

L0

, (3.6)

in terms of the initial free measurement length L0. The true stresses are defined by

σ(t) =
F (t)

A(t)
, (3.7)

where F is the measured force and A is the current cross-sectional area of the test
sample. If the loading direction and the normal of A coincide, the stress is defined
as a normal stress σ otherwise as a shear stress τ . In general, for the computation
of the stresses from experimental observations, the current forces are related to
the initial cross-sectional area A0. In this case, the corresponding stress measure is
called technical stress

P (t) =
F (t)

A0

. (3.8)

For the sake of reducing the experimental effort, the change of cross sectional
area is not taken into account. The experimental results are given in terms of the
technical stresses.

3.2 Neat polypropylene matrix (PP)

3.2.1 Specimen preparation

The unreinforced polymeric polypropylene matrix builds the basic constituent
of all considered composites on upper scales. In order to operate on consistent
material systems throughout the scales it is required to use the same materials on
all scales, ranging from the pure matrix material to the organo sheet. This concept
holds true for the basic polypropylene matrix. In addition to the readily assembled
sheet material, neat matrix raw material could be provided by the material supplier
in the original composition, i.e. containing additives as used in the final woven
composite. The preparation of injection moulded specimens was carried out by
SKZ - KFE gGmbH in Würzburg, Germany. Since the matrix material is to be
tested under tensile and compressive conditions three specimen geometries were
generated. For tensile testing under moderate strain rates the specimen geometry
according to DIN EN ISO 3167 [93] is proposed as displayed in Fig. 3.1. For
compressive tests, specimens were cut by water jet from the middle part of the
tensile dumbbells in two ways according to DIN EN ISO 604 [96]. Both, tensile
and compressive tests are performed to determine the modulus of elasticity and
the stress at rupture. The dimensions of the prismatic specimens are summarized
in Table 3.1. The measurement of density according to DIN EN ISO 1183-1:2004-
05 [91] of the unreinforced matrix revealed an average value of ρ̄ = 0.907 g/cm3,
which lies in good accordance with literature values for polypropylene. More
detailed results are presented in Table 3.2. The glass transition temperature (Tg)
was determined to Tg = 281.7 K by using dynamic mechanical analysis (DMA).
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Figure 3.1: Dimensions (mm) of tensile specimen Campus A1 according to DIN EN ISO 3167 [93].

Hence, the amorphous phase of the material is in rubber-like state at testing
temperature of T = 296 K.

Table 3.1: Dimensions of used for compression testing according to the standard DIN EN ISO
604 [96] (mm).

Type Measurement Length Width Thickness

A Modulus 50± 0.2
10± 0.2 4± 0.2

B Strength 10± 0.2

For the subsequent material tests the above geometries were used. The measuring
length for tensile specimen was L0 = 50 mm and was measured in the lean
centered part of the specimen. Change in length during compressive deformation
was recorded by a flat extensometer with a gauge of L0 = 20 mm for specimen
type A. In case of a type B specimen, the direct displacement of the machines cross
beam was evaluated. In order to characterize the deformation behavior of the
thermoplastic polypropylene matrix, quasi-static tensile and compressive tests
with and without unloading were performed.

Table 3.2: Density measurements of neat polypropylene matrix. Average value of density ρ̄ and
the standard deviation s.

ID Density (g/cm3)

1 0.90734

2 0.90705

3 0.90708

4 0.90709

5 0.90723

ρ̄ 0.907158

s 1.1·10−4
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3.2 Neat polypropylene matrix (PP)

Table 3.3: Cross beam velocities and corresponding strain rates for tensile tests of pure matrix
(measurement length L0 = 50 mm).

Cross beam velocity Strain rate

vT (mm/min) ˙̄ε (1/s)

1.6 5.33·10−4

5 1.67·10−3

16 5.33·10−3

50 1.67·10−2

160 5.33·10−2

500 1.67·10−1

3.2.2 Tensile tests

As shown in Table 3.3, tensile tests were performed at six different position-
controlled cross beam velocities. With this test the material stiffness and strength
as well as the stress-strain relation at different strain rates are identified. The
specimens were loaded monotonously under tension up to failure, characterized
by a sudden drop of force and the formation of separation fronts in the material.
Contrary to first expectations, the material failed in a very brittle manner without
pronounced necking. Figure 3.2 shows a series of matrix specimens exhibiting
brittle failure.

Figure 3.2: Campus A1 matrix specimens after being tested under tension at different loading
rates. All specimens exhibit brittle failure.

Figures 3.3 to 3.8 display the measured stress-strain relations. For each velocity set
of specimens, the material stiffness Et

m, the material strength Rt
m, and the fracture

strain εt
F were determined and are summarized in Tables 3.4 to 3.9. The initial

stiffness was measured in the strain range of 0.05 ≤ ε ≤ 0.25% according to DIN
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Figure 3.3: Stress-strain relation of quasi-
static tension tests of pure matrix at vT =
1.6 mm/min.

Table 3.4: Determined parameters
from tensile tests of neat matrix at
vT = 1.6 mm/min.

Et
m Rt

m εt
F

(MPa) (MPa) (%)

1670.40 31.22 8.41
1641.01 31.51 8.50
1635.62 31.65 8.21
1646.67 31.14 8.01
1624.80 31.05 8.04

µ 1643.70 31.31 8.22
s 16.961 0.228 0.204
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Figure 3.4: Stress-strain relation of quasi-
static tension tests of pure matrix at vT =
5 mm/min.

Table 3.5: Determined parameters
from tensile tests of neat matrix at
vT = 5 mm/min.

Et
m Rt

m εt
F

(MPa) (MPa) (%)

1661.60 31.64 7.51
1760.71 32.18 7.61
1666.86 32.01 8.17

µ 1696.39 31.94 7.77
s 55.764 0.226 0.292
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Figure 3.5: Stress-strain relation of quasi-
static tension tests of pure matrix at vT =
16 mm/min.

Table 3.6: Determined parameters
from tensile tests of neat matrix at
vT = 16 mm/min.

Et
m Rt

m εt
F

(MPa) (MPa) (%)

1887.88 34.32 6.41
1882.36 34.57 6.52
1903.70 34.59 6.57
1933.37 34.49 6.30
1931.29 34.17 6.12

µ 1907.72 34.43 6.36
s 23.807 0.163 0.141

EN ISO 527-1[94]. Strain at failure εt
F is identified as the strain where the tensile

material strength, hence the maximum value of stress, is reached. The stress-strain
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Figure 3.6: Stress-strain relation of quasi-
static tension tests of pure matrix at vT =
50 mm/min.

Table 3.7: Determined parameters
from tensile tests of neat matrix at
vT = 50 mm/min.

Et
m Rt

m εt
F

(MPa) (MPa) (%)

2031.90 37.43 5.99
1989.87 36.69 6.28
1989.40 36.72 6.03
1946.91 36.87 5.74

µ 1989.52 36.93 6.01
s 43.701 0.296 0.193
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Figure 3.7: Stress-strain relation of quasi-
static tension tests of pure matrix at vT =
160 mm/min.

Table 3.8: Determined parameters
from tensile tests of neat matrix at
vT = 160 mm/min.

Et
m Rt

m εt
F

(MPa) (MPa) (%)

1858.31 38.41 5.77
1925.03 38.04 5.86
1920.44 38.52 5.49

µ 1901.26 38.32 5.71
s 37.272 0.206 0.158

0.00 0.02 0.04 0.06 0.08
Strain

0

5

10

15

20

25

30

35

40

St
re

ss
in

M
Pa

Experimental (500 mm/min)
Mean (500 mm/min)

Figure 3.8: Stress-strain relation of quasi-
static tension tests of pure matrix at vT =
500 mm/min.

Table 3.9: Determined parameters
from tensile tests of neat matrix at
vT = 500 mm/min.

Et
m Rt

m εt
F

(MPa) (MPa) (%)

2055.26 39.54 4.65
2042.56 39.51 4.61
2072.88 39.29 4.45
1988.80 39.26 4.32

µ 2039.88 39.39 4.51
s 36.255 0.125 0.131

relation in the post-failure regime is not displayed. By comparing the averaged
curves, the influence of the external strain rate on the material behavior becomes
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Table 3.10: Cross beam velocities and corresponding strain rates for compression tests of pure
matrix (measurement length L0 = 20 mm).

Cross beam velocity
Strain rate
˙̄εc (1/s)

Cross beam velocity

for type A specimen for type B specimen

vT (mm/min) vT (mm/min)

0.5 4.16·10−4 0.25

5 4.16·10−3 2.5

50 4.16·10−2 25.0

500 4.16·10−1 250.0

apparent (cf. Fig. 3.9). With increasing loading rate, the specimens exhibit an
increasing initial stiffness and material strength as well as decreasing strain values
at fracture. Figure 3.10 displays the correlation of strain rate and material strength.
Poisson’s ratio was measured to νm = 0.42 by using a digital image correlation

0.00 0.02 0.04 0.06 0.08
Strain

0

5

10

15

20

25

30

35

40

St
re

ss
in

M
Pa

Mean (1.6 mm/min)
Mean (5 mm/min)
Mean (16 mm/min)
Mean (50 mm/min)
Mean (160 mm/min)
Mean (500 mm/min)

Figure 3.9: Stress-strain relations of
quasi-static tension test of pure matrix
at different loading rates.
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Figure 3.10: Matrix tensile strengths
at different strain rates.

(DIC) via the optical analysis tool ARAMIS, applying three different loading rates
(vT = [5 mm/min, 50 mm/min, and 500 mm/min]). However, no significant
dependency on the loading rate was detected and νm stayed constant in the
course of the quasi-static tests. The optically determined parameters stiffness Et

m,
strength Rt

m, and failure strain εt
F were in good agreement with the conventionally

determined values.

3.2.3 Compression tests

Compression tests were performed at four different position-controlled cross
beam velocities for two different specimen geometries respectively (cf. Table 3.1).
For type A specimens, Table 3.10 shows the corresponding strain rates with a
measurement length of L0 = 20 mm. The following experiments identify the
material stiffness and strength as well as the stress-strain relation at different
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Figure 3.11: Schematic stress-strain relation of quasi-static compression test of pure matrix.

loading rates. Therefore, the material was loaded monotonously under uniaxial
compression. The upper and lower specimen flanks were covered with grease
prior mounting into the testing machine in order to reduce friction effects between
specimen and steel blocks. Figure 3.11 shows a schematic stress-strain response
of a type B specimen under compression. For all conducted experiments the
characteristic local stress minimum in a strain range ε > 12% could be observed
after exceeding a precursory local stress maximum, accompanied by the formation
of shear bands. In the following, the local maximum was used for the definition of
the the material strength Rc

m. Strain at failure εc
F is identified as the strain where

the compressive material strength Rc
m is reached.
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Figure 3.12: Stress-strain relation of quasi-
static compression tests of pure matrix at
vT = 0.25 mm/min.

Table 3.11: Determined parameters
from compression tests of neat matrix
at vT = 0.25 mm/min.

Ec Rc
m εc

F
(MPa) (MPa) (%)

1314.30 49.92 10.51
1163.97 48.39 10.33
1223.21 48.19 9.94

µ 1233.83 48.83 10.26
s 61.83 0.76 0.23

Figures 3.12 to 3.15 display the measured stress-strain relations of type B speci-
mens loaded with the defined strain rates to determine the compressive strength.
The initial stiffness Ec was measured in the strain range of 0.05% ≤ ε ≤ 0.25% ac-
cording to DIN EN ISO 604 [96] using specimen type A. The stress-strain pathway
beyond the defined failure point is not displayed. An overview of the measured
results is given in Tables 3.11 to 3.14. Analogously to the behavior under tension,
compressive loading yields a time-dependent material response. Confronting the
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Figure 3.13: Stress-strain relation of quasi-
static compression tests of pure matrix at
vT = 2.5 mm/min.

Table 3.12: Determined parameters
from compression tests of neat matrix
at vT = 2.5 mm/min.

Ec Rc
m εc

F
(MPa) (MPa) (%)

1199.55 54.83 10.65
1385.08 55.37 10.73
1405.78 54.89 11.19

µ 1330.14 55.03 10.86
s 92.72 0.24 0.24
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Figure 3.14: Stress-strain relation of quasi-
static compression tests of pure matrix at
vT = 25 mm/min.

Table 3.13: Determined parameters
from compression tests of neat matrix
at vT = 25 mm/min.

Ec Rc
m εc

F
(MPa) (MPa) (%)

1428.26 63.38 10.73
1486.83 64.53 10.7
1344.13 65.81 10.87

µ 1419.74 64.57 10.77
s 58.57 0.99 0.07
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Figure 3.15: Stress-strain relation of quasi-
static compression tests of pure matrix at
vT = 250 mm/min.

Table 3.14: Determined parameters
from compression tests of neat matrix
at vT = 250 mm/min.

Ec Rc
m εc

F
(MPa) (MPa) (%)

1533.29 72.76 12.01
1543.41 71.99 11.83
1500.26 70.22 11.93

µ 1525.65 71.66 11.93
s 18.43 1.06 0.07

averaged curves, the influence of the external strain rate on the material behavior
becomes visible (cf. Fig. 3.16). Again, specimens with increasing loading rate show
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an increasingly higher initial stiffness and higher material strength. The correla-
tion of strain rate and material strength is displayed in more detail in Fig. 3.17.
Regarding the stiffness values, a unimodal behavior can be observed. However, in
contrast to the before presented results under tensile loading, the value of strain
εc

F at reached material strength Rc
m increases with rising loading rates.
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Figure 3.16: Stress-strain relations of
quasi-static compression tests of pure
matrix at different loading rates.
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Figure 3.17: Measured matrix com-
pressive strengths at different strain
rates.

3.2.4 Tensile loading and unloading experiments

Figures 3.18, 3.19 and 3.22 show the stress-strain relations of the tensile test with
12 loading and unloading cycles for two strain rates. The experiments were
conducted up to a maximum strain of ε = 5%. In addition, the respective quasi-
static material response is displayed as an envelope in gray. For each loading rate
five specimens were tested. However, to enhance visibility, only one representative
curve is displayed here. In a consistent manner to the already presented behavior
under tensile loading, increasing loading rates yield higher stresses at the same
values of strain. The diagrams show that hysteresis phenomena appear already at
very low strain levels. It is assumed that for small deformations, the residual strain
upon unloading is completely recovered if the material is given time for relaxation.
This implies that the material shows a viscoelastic behavior first. For higher
strains, the residual strains after unloading are only partly recovered in time, hence
introducing a viscoplastic component. BRUSSELLE et al. [44] conducted a thorough
study to further investigate these effects. To assess the development of material
stiffness over loading cycles, the secant between the two extreme values in the
half-cycle during unloading was investigated (cf. Figs. 3.20 and 3.21).The full line
in Fig. 3.23 shows the calculated slopes of the secants over strain. With increasing
deformation, the secant stiffness decreases continuously. The degradation seems
to converge against a limit value for both strain rates. The dashed lines in Fig. 3.23
represent the normalized secants with respect to their initial value. Both sets of
curves are plotted over the number of cycles. Since the two curves nearly coincide,
it can be stated that the loading rates have no significant influence on the secant
degradation.
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Figure 3.18: Stress-strain relation of
the tensile test of pure matrix with 12
loading and unloading cycles at vT =
5 mm/min up to ε = 6%. The gray
curves mark the quasi-static envelopes
at the corresponding loading rate.
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Figure 3.19: Stress-strain relation of
the tensile test of pure matrix with 12
loading and unloading cycles at vT =
50 mm/min up to ε = 6%. The gray
curves mark the quasi-static envelopes
at the corresponding loading rate.
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Figure 3.20: Stress-strain relation of
the tensile test of pure matrix with
12 loading and unloading cycles at
vT = 5 mm/min up to ε = 6%. The
gray dashed lines depict the decreasing
secant stiffness during unloading.
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Figure 3.21: Stress-strain relation of
the tensile test of pure matrix with
12 loading and unloading cycles at
vT = 50 mm/min up to ε = 6%. The
gray dashed lines depict the decreasing
secant stiffness during unloading.

Figure 3.24 shows a fractured matrix specimen after cyclic loading and unloading.
Small cracks in the vicinity of the edges as well as a whitened core are visible in
the matrix specimen under transmitted light. It is assumed that the formation
of this micro defects is mainly responsible for the deterioration of the material
stiffness.
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Figure 3.22: Stress-strain relations of
cyclic loading and unloading tension
tests of pure matrix at different loading
rates.
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Figure 3.23: Change of secant stiff-
ness over loading cycles. The full lines
represent the absolute secant stiffness
values, whereas the dashed lines show
the data normalized (fn = Ei/E0)
with respect to the initial value.

Figure 3.24: Microcracks formed during cyclic loading/unloading in a neat matrix specimen made
visible by transmitted light.

3.2.5 Discussion

The preceding section has shown that the basic constituent polypropylene, that
is used throughout this work, exhibits a significant time-dependent material
behavior. This results in differing stress-strain relations, stiffness, and strengths
all depending on the strain-rate. The reasons for this viscoelastoplastic behavior
can be affiliated to time-dependent processes occurring in the semi-crystalline
molecular structure of polypropylene. Shear yielding is assumed to be the main
deformation mechanism of unmodified polypropylene (cf. KINLOCH et al. [193],
OSWALD & MENGES [304]). In polypropylene as an example of a semi-crystalline
polymer, this effect appears near to crystalline areas, as depicted in fig. 10.21 in
OSWALD & MENGES [304]. Amorphous regions around crystalline zones allow
crystals to exhibit positional distortions (e.g. shear and intra-lamellar slipping and
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rotation). If the deformations inducing this motion are considerably small, these
processes are reversible. Otherwise they lead to an irreversible break-up of lamellar
aggregates and rearrangement of the polymer chains. In an extreme case both
amorphous and crystalline zones are oriented along the loading direction leading
to quasi-fibrous stretched characteristics (cf. ARENCON et al. [5], ARENCON &
VELASCO [8]). Subjecting the material to small loading rates, polymeric chains
can glide, slip, or rotate past each other more easily, allowing higher strains
upon failure. With the secondary bounds being primarily subjected to load, the
achievable forces are lower than during loading with high loading rates. Here
mainly the polymeric backbone is on load, yielding lower stiffness and strengths.
Gliding processes on the molecular level become visible by earlier appearance of
non-linearity in the stress-strain relations under low loading rates.
The stress-strain relations under cyclic tensile loading show a degradation of se-
cant stiffness. It is assumed here that the degradation itself has several origins.
Elasticity in the energy-elastic range in plastic materials relates to intra-molecular
secondary bonds. Again, increasing elastic deformation causes a deflection of
neighboring atoms from their equilibrium position. In an ideal case, the necessary
energy is equivalent to the stored elastic energy in the material that allows fully
reversible back-deformation upon unloading. However, deflected atoms result
in deteriorated secondary bond forces as well as a lower effective stiffness of the
covalent primary bonds (cf. ROESNER [339]). Hence, the overall material stiffness
reduces. By increasing the deformation, the degradation of the material stiffness
is decelerated. This effect is related to reorientation processes of crystalline areas
(spherulites) in the direction of the active load. In general, this is accompanied
by significant plastic shares. Due to the additional plastic contribution at higher
strains with ε > 3%, a decreasing amount of the deformation is to be endured by
elasticity. The effect of the disturbance of the equilibrium position of the chains
is reduced, since larger parts of the deformation can be described by rotation
of spherulites, see e.g. RÖSLER et al. [338], leading to a diminished change of
secant stiffness. Moreover, microscopical investigations have shown a noticeable
formation of microcracks. It is assumed that these microvoids are created mainly
due to an effect called stress whitening as described by OSSWALD & MENGES [304].
Here, microcracks form in the interface between neighboring spherulites. Accord-
ing to ARENCON [8], the degradation process is accompanied by the formation
of crazes. Both processes are irreversible, causing permanent deformation in the
polymer. If these microvoids coalesce, macroscopic visible cracks form, finally
leading to ultimate fracture. Due to the relatively high percentage of crystalline
areas, the damage processes take place in such a high extent that brittle failure
through coalescence of microvoids is reached before the typical necking behavior
of polypropylene at room temperature appears. The reason for the high percentage
of crystalline areas can be found in the manufacturing process of the specimens or
in the exact composition of additives in the polymer causing a higher tendency
towards crystallinity. A further discussion of these two effects is not part of the
present work. However, besides processing-induced structures and the molecular
characteristics of polypropylene (e.g. molecular mass), the micro/nanostructural
morphology has a particularly strong influence on the fracture behavior (cf. AREN-
CON et al. [7, 6]).
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3.3 Unidirectional fiber-reinforced polypropylene (PP/GF UD)

The full experimental assessment of all scales addressed within the multiscale
approach of organo sheets requires specimens with unidirectional reinforcements.
It is important that in the material only one preferred direction exists and no
perpendicular structures are present that have falsifying effects. The material
provider of the organo sheet does not offer materials complying with such con-
ditions. Therefore, unidirectional glass fiber reinforced tape material of the type
CELSTRAN®CFR-TP PP GF70-13-PP with a fiber volume content of vf = 45.3%
from the material supplier TICONA is used for characterization (cf. A.1 for the
data sheet). One major uncertainty that arises is the mismatch of the matrix
material of this supplier and the material that is used later in the weaves. There-
fore, a consistent usage of the same materials throughout the scales is violated
at this stage. The material is delivered as a coiled 0.25 mm-thick tape. Several
trimmed layers of these tapes have been stacked manually and consolidated in
an industrial press under the influence of temperature. The manufacturing was
realized by the Fraunhofer Institute for Chemical Technology in Pfinztal (Fraun-
hofer ICT), Germany. The compression force was FP = 186 kN with a temperature
of TP = 200◦C for a time of t = 200 s. The dimensions of the resulting plates
was 380 x 380 x dmm3, where d differs for tensile and compressive specimens. In
addition to the unidirectional sheets, plates with a [0/90]s stacking order were
produced.

Figure 3.25: Microstructure obtained from a cross-section transverse to fiber direction in unidirec-
tional composites.

Figure 3.25 shows a dark-field section of the microstructures perpendicular to the
fibers. The actual volume fraction of the fibers was determined to vf = 43% by us-
ing image segmentation on multiple microsections and evaluating the surface areas
of matrix and fiber regions. Figure 3.26 depicts a detailed view of the microstruc-
ture. In addition to the statistically dispersed fibers, a significant distribution of
the fiber diameter can be observed. The average diameter was determined to
d̄f = 13µm with a standard deviation of sf = 2.4µm. Furthermore, no indications
of voids were found and the sections showed an unmitigated impregnation of
the fibers. The conducted experiments presented in the following enhance the
understanding of the overall anisotropic failure processes occurring in the unidirec-
tional composite during quasi-static loading and further allows a comparison with
failure behavior in unidirectionally reinforced plastics as described in literature.
Hence, quasi-static tension and compression tests as well as ±45◦ off-axis (shear)
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Figure 3.26: Detailed microscopy of a UD specimen showing non-constant fiber diameters.

tests under tension were performed at various strain rates. The dimensions of the
specimens were chosen according to relevant norms as 250 x 25 x 2 mm3 for tension
(cf. DIN EN ISO 527-4 [95]) and type B2 with 125 x 25 x 10 mm3 for compression (cf.
DIN EN ISO 14126 [92]). For the tensile cases a measurement length L0 = 50 mm
was chosen, while the displacement during compression was recorded directly by
slim extensometers with a distance of L0 = 20 mm. All specimens were cut out of
the corresponding plates by waterjetting taking into consideration the direction of
the reinforcements.

3.3.1 Longitudinal tensile tests

Tensile tests in fiber direction were performed at three different position-controlled
cross beam velocities. Table 3.15 shows the corresponding strain rates. Figures 3.27
to 3.29 show the resulting material responses. After a linear regime the material
fails instantaneously for all cases. Tables 3.16 to 3.18 summarize the stiffness Et

‖,
material strength Rt

‖, and strain at failure εt
‖. Investigating the confronted stress-

strain curves for longitudinal tension tests (cf. Fig. 3.30), small but present viscous
effects can be observed. This is due to slight fiber undulations occurring in the
specimen, hence, introducing viscous effects dominated by the matrix. The fracture
strain lies at about εt

‖ = 3% and the corresponding stiffness is Rt
‖ = 900 MPa,

which agrees with the indicated values from the data sheet. Figure 3.31 shows a

Table 3.15: Cross beam velocities and corresponding strain rates for tensile tests of unidirectional
specimens (measurement length L0 = 50 mm).

Cross beam velocity Strain rate

vT (mm/min) ˙̄ε (1/s)

5 1.67·10−3

50 1.67·10−2

500 1.67·10−1
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side view of a UD specimen that failed under longitudinal tension loading. It can
be seen that, as soon as failure occurs, the integrity of the material is completely lost.
No sharp failure zone can be identified, but the whole specimen gets destroyed to
a large extent.
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Figure 3.27: Stress-strain relation of quasi-
static tension tests along the fiber direction
of UD specimens at vT = 5 mm/min.

Table 3.16: Determined parameters from
tensile tests along the fiber direction of UD
specimens at vT = 5 mm/min.

Et
‖ Rt

‖ εt
‖

(GPa) (MPa) (%)

33.49 934.25 3.06
32.91 874.95 2.89
34.65 859.60 2.84

µ 33.68 889.59 2.93
s 0.890 32.194 0.095
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Figure 3.28: Stress-strain relation of quasi-
static tension tests along the fiber direction
of UD specimens at vT = 50 mm/min.

Table 3.17: Determined parameters from
tensile tests along the fiber direction of UD
specimens at vT = 50 mm/min.

Et
‖ Rt

‖ εt
‖

(GPa) (MPa) (%)

26.21 937.43 2.90
24.94 910.15 3.01
28.58 889.19 2.86
28.25 986.99 2.95

µ 27.00 930.94 2.93
s 1.723 36.617 0.057
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Figure 3.29: Stress-strain relation of quasi-
static tension tests along the fiber direction
of UD specimens at vT = 500 mm/min.

Table 3.18: Determined parameters from
tensile tests along the fiber direction of UD
specimens at vT = 500 mm/min.

Et
‖ Rt

‖ εt
‖

(GPa) (MPa) (%)

39.79 934.49 2.77
37.24 951.82 2.87
39.57 914.04 2.91

µ 38.87 933.45 2.85
s 1.421 15.441 0.059
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Figure 3.30: Stress-strain relations of quasi-static tensile test in fiber direction of UD specimen at
different loading rates.

Figure 3.31: Side view of a UD specimen failed under longitudinal tension.
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3.3.2 Transversal tension tests

Tensile tests transverse to the fiber direction were performed at three different
position-controlled cross beam velocities, see Table 3.15. Figures 3.32 to 3.34 show
the respective material responses. Tables 3.19 to 3.21 denote the corresponding
measured stiffnessEt

⊥, material strengthRt
⊥ and strain at failure εt

⊥. After a degres-
sive stress-strain relation, brittle failure terminates the experiment. Confronting
the single curves (cf. Fig. 3.35), no significant strain rate effect could be observed re-
garding initial stiffness and failure strength. However, the degree of non-linearity
seems to be affected by the rate of external loading, since the material fails at larger
strains given a slow loading rate (εt

⊥(vT=5 mm/min) = 0.65%) compared to high
loading (εt

⊥(vT=500 mm/min) = 0.48%). Even though the deformation behavior
is matrix dominated in this direction, a brittle behavior like in fiber direction is
observed. The strength lies at about Rt

⊥ = 22 MPa, which is significantly lower
compared to the tensile strengths of the pure matrix specimens as discussed in
Section 3.2.2.
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Figure 3.32: Stress-strain relation of quasi-
static tension tests in transverse direction of
UD specimens at vT = 5 mm/min.

Table 3.19: Determined parameters from
tensile tests in transverse direction of UD
specimens at vT = 5 mm/min.

Et
⊥ Rt

⊥ εt
⊥

(GPa) (MPa) (%)

4.32 21.73 0.78
4.40 20.72 0.66
4.55 21.25 0.64

µ 4.42 21.23 0.69
s 0.112 0.412 0.059
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Figure 3.33: Stress-strain relation of quasi-
static tension tests in transverse direction of
UD specimens at vT = 50 mm/min.

Table 3.20: Determined parameters from
tensile tests in transverse direction of UD
specimens at vT = 50 mm/min.

Et
⊥ Rt

⊥ εt
⊥

(GPa) (MPa) (%)

4.82 22.73 0.68
4.77 23.16 0.74
4.92 21.72 0.55

µ 4.84 22.54 0.65
s 0.085 0.614 0.078
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Figure 3.34: Stress-strain relation of quasi-
static tension tests in transverse direction of
UD specimens at vT = 500 mm/min.

Table 3.21: Determined parameters from
tensile tests in transverse direction of UD
specimens at vT = 500 mm/min.

Et
⊥ Rt

⊥ εt
⊥

(GPa) (MPa) (%)

4.91 20.94 0.48
4.97 22.24 0.56
5.10 21.96 0.51

µ 5.00 21.71 0.52
s 0.105 0.567 0.032
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Figure 3.35: Stress-strain relations of quasi-static tensile test in transverse direction of UD specimen
at different loading rates.

Figures 3.36 and 3.37 show views of a UD specimen that failed under transversal
tensile loading. A clear fracture plane can be identified that lies perpendicular
to the loading direction. Microsections show that the crack grows in the matrix
material around the fibers.
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Figure 3.36: View of a UD specimen
failed under transversal tension. The
failure plane lies perpendicular to the
loading direction.

Figure 3.37: Microsection of a UD
specimen failed under transversal ten-
sion. Load was applied horizontally.

3.3.3 Longitudinal compression tests

Compression tests in fiber direction were performed at three different position-
controlled cross beam velocities. Table 3.22 shows the corresponding strain rates.
Figures 3.38 to 3.40 show the respective material responses. After a linear regime

Table 3.22: Cross beam velocities and corresponding strain rates for compression tests of unidirec-
tional specimens (measurement length L0 = 20 mm).

Cross beam velocity Strain rate

vT (mm/min) ˙̄ε (1/s)

0.5 4.16·10−4

5 4.16·10−3

50 4.16·10−2

the material fails instantaneously for all cases. Tables 3.23 to 3.25 summarize the
corresponding measured stiffness Ec

‖, material strength Rc
‖, and strain at failure

εc
‖. Again, no significant strain rate effect could be observed regarding stiffness,

strength, or failure strain (cf. Fig. 3.41) when confronting the single curves. The
fracture strain lies at about εc

‖ = 0.8% and the corresponding strength is about
Rc
‖ = 280 MPa. Failure under compression is mainly induced by fiber buckling

representing a local material instability. A further investigation on the influence
of an initial fiber misalignment and process-induced undulations on the stability
failure is not part of the present work.

75



3 Experimental investigations of constituents and composites

−0.010 −0.008 −0.006 −0.004 −0.002 0.000
Strain

−300

−250

−200

−150

−100

−50

0

St
re

ss
in

M
Pa

Experimental (0.5 mm/min)
Mean (0.5 mm/min)

Figure 3.38: Stress-strain relation of quasi-
static compression tests in longitudinal direc-
tion of UD specimens at vT = 0.5 mm/min.

Table 3.23: Determined parameters from
compression tests in longitudinal direction
of UD specimens at vT = 0.5 mm/min.

Ec
‖ Rc

‖ εc
‖

(GPa) (MPa) (%)

36.41 272.04 0.86
35.50 269.62 0.77
37.26 266.32 0.72

µ 36.39 269.32 0.78
s 0.884 2.352 0.056
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Figure 3.39: Stress-strain relation of quasi-
static compression tests in longitudinal direc-
tion of UD specimens at vT = 5 mm/min.

Table 3.24: Determined parameters from
compression tests in longitudinal direction
of UD specimens at vT = 5 mm/min.

Ec
‖ Rc

‖ εc
‖

(GPa) (MPa) (%)

34.97 293.58 0.85
35.16 293.18 0.85
35.12 279.26 0.97

µ 35.08 288.80 0.89
s 0.082 6.753 0.056
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Figure 3.40: Stress-strain relation of quasi-
static compression tests in longitudinal direc-
tion of UD specimens at vT = 50 mm/min.

Table 3.25: Determined parameters from
compression tests in longitudinal direction
of UD specimens at vT = 50 mm/min.

Ec
‖ Rc

‖ εc
‖

(GPa) (MPa) (%)

32.15 292.92 0.82
35.41 300.42 0.86
32.52 275.01 0.80

µ 33.36 289.45 0.83
s 1.791 10.659 0.025

76



3.3 Unidirectional fiber-reinforced polypropylene (PP/GF UD)

−0.010 −0.008 −0.006 −0.004 −0.002 0.000
Strain

−300

−250

−200

−150

−100

−50

0

St
re

ss
in

M
Pa

Mean (0.5 mm/min)
Mean (5 mm/min)
Mean (50 mm/min)

Figure 3.41: Stress-strain relations of quasi-static compression test in longitudinal direction of UD
specimen at different loading rates.

3.3.4 Transversal compression tests

Compression tests transverse to the fiber direction were performed at three dif-
ferent position-controlled cross beam velocities. For the resulting strain rates see
Table 3.22. Figures 3.42 to 3.44 show the material responses. Tables 3.26 to 3.28
summarize the measured stiffness Ec

⊥, material strength Rc
⊥, and strain at fail-

ure εc
⊥. As expected, the material behavior in this material direction is matrix

dominated and shows a high degree of non-linearity in the stress-strain relation.
Confronting the single curves in Fig. 3.45, no significant strain rate effect could be
observed regarding initial stiffness and failure strain. Material strength however,
shows a dependency on the strain rate. The material fails at about εc

⊥ = 2%. Fig-
ure 3.46 shows a view of a UD specimen that failed under transversal compressive
loading. Looking at the failure image, a shear failure can be seen, expressed by
a clearly identifiable fracture plane that is inclined by about Θfp = ±50◦ with
respect to the loading direction. The microsection shows that the crack grows in
the matrix material around the fibers. Due to the fracture plane angle that deviates
significantly from zero, it is assumed that a critical shear load leads to failure
in one distinct plane. This behavior lies in good agreement with the behavior
reported in relevant literature, e.g. PUCK [319].
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Figure 3.42: Stress-strain relation of quasi-
static compression tests in transversal direc-
tion of UD specimens at vT = 0.5 mm/min.

Table 3.26: Determined parameters from
compression tests in transverasal direction
of UD specimens at vT = 0.5 mm/min.

Ec
⊥ Rc

⊥ εc
⊥

(GPa) (MPa) (%)

5.14 47.83 2.21
4.87 49.25 2.77
4.88 49.24 2.76

µ 4.96 48.78 2.59
s 0.125 0.672 0.262
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Figure 3.43: Stress-strain relation of quasi-
static compression tests in transversal direc-
tion of UD specimens at vT = 5 mm/min.

Table 3.27: Determined parameters from
compression tests in transversal direction
of UD specimens at vT = 5 mm/min.

Ec
⊥ Rc

⊥ εc
⊥

(GPa) (MPa) (%)

4.28 50.42 2.88
5.15 54.93 2.33
4.41 51.57 2.44

µ 4.61 52.31 2.55
s 0.466 1.914 0.238
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Figure 3.44: Stress-strain relation of quasi-
static compression tests in transversal direc-
tion of UD specimens at vT = 50 mm/min.

Table 3.28: Determined parameters from
compression tests in transversal direction
of UD specimens at vT = 50 mm/min.

Ec
⊥ Rc

⊥ εc
⊥

(GPa) (MPa) (%)

5.71 59.01 2.21
5.38 61.47 3.47
4.54 62.92 2.60

µ 5.21 61.14 2.76
s 0.601 1.614 0.527
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Figure 3.45: Stress-strain relations of quasi-static compression test in transversal direction of UD
specimen at different loading rates.

Figure 3.46: Microsection of a specimen failed under transversal compression.
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3.3.5 Tensile tests of ±45◦ off-axis specimens

Tensile tests on±45◦ off-axis specimens were performed at three different position-
controlled cross beam velocities, resulting in the effective strain rates as summa-
rized in Table 3.15. For each strain rate three specimens were tested. Figures 3.47
to 3.49 show the respective material responses. Due to the relatively high ductil-
ity in the thermoplastic matrix during shear loading, the specimens show large
deformations and a pronounced non-linear behavior in this loading direction.
In Tables 3.29 to 3.31 the corresponding measured initial stiffness Es, material
strength Rs, and strain at failure εs are documented. The reason for reaching such
high strain values of more than 25% lies in the ability of the fibers to re-orientate
along the loading direction, see Fig. 3.51. This is possible due to the ductility
of the surrounding matrix. The motion within the material yields a significant
change in cross-sectional area and therefore the true stresses in the material differ
from the measured tensions. Even though this material direction activates matrix
dominant processes, no significant strain rate effect could be observed regarding
initial stiffness and failure strength and strain, see also the single curves in Fig. 3.50.
Figure 3.52 shows the fracture area of a ±45◦ off-axis UD specimen that failed
under tensile loading. Delamination of the single layers is the dominant failure
mode, leading to a separation of the specimen.
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Figure 3.47: Stress-strain relation of quasi-
static shear tests of UD specimens at vT =
5 mm/min.

Table 3.29: Determined parameters
from shear tests of UD specimens at
vT = 5 mm/min.

Es Rs εs
(GPa) (MPa) (%)

4.96 167.29 33.00
5.18 178.86 30.86
4.83 142.78 32.17

µ 4.99 162.98 32.01
s 0.180 15.044 0.883
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Figure 3.48: Stress-strain relation of quasi-
static shear tests of UD specimens at vT =
50 mm/min.

Table 3.30: Determined parameters
from shear tests of UD specimens at
vT = 50 mm/min.

Es Rs εs
(GPa) (MPa) (%)

5.24 169.89 34.64
5.81 187.76 32.04
6.10 178.26 28.96

µ 5.72 178.64 31.88
s 0.440 7.301 2.321
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Figure 3.49: Stress-strain relation of quasi-
static shear tests of UD specimens at vT =
500 mm/min.

Table 3.31: Determined parameters
from shear tests UD specimens at
vT = 500 mm/min.

Es Rs εs
(GPa) (MPa) (%)

4.66 124.89 27.78
5.26 155.89 31.77
4.55 184.85 29.79

µ 4.82 155.21 29.78
s 0.38 24.482 1.63

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Strain

0

25

50

75

100

125

150

175

St
re

ss
in

M
Pa

Mean (5 mm/min)
Mean (50 mm/min)
Mean (500 mm/min)

Figure 3.50: Stress-strain relations of quasi-static shear test of UD specimen at different loading
rates.
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Figure 3.51: Development of fiber angle with increasing strain.

Figure 3.52: Failed ±45◦ off-axis specimen after tensile test. Close-up view of fracture area.

3.3.6 Discussion

The quasi-static experiments presented here summarize the basic deformation
behavior of unidirectionally glass fiber reinforced thermoplastics. It has been
shown that those materials show a significant dependency on the loading direction
with respect to their fiber direction as well as a pronounced asymmetry under
tensile and compressive loading. Furthermore, especially directions that are
matrix dominated show an influence on the loading rate. The fibers introduce a
heterogeneity in the composite with local stress concentrations when the material
is deformed. The morphology of the fibers (e.g. mean diameter and orientation),
their mechanical properties, and the characteristics of the inter-facial adhesion
have significant influence on the deformation behavior, failure dynamics, and
hence on the overall behavior of the composite (cf. KOWALEWSKI et al. [200]).
Since the matrix around the fibers cannot move freely and its motion is constrained
by the adjacent fibers, the process of plasticity, crack propagation and fracture are
highly influenced by the given micro-structural circumstances. The macroscopic
permanent deformation can be explained by processes happening on the micro
level, namely plastic flow and debonding damage processes of the matrix between
inclusions. In literature, several authors claim that debonding processes between
fibers and the thermoplastic matrix are the main initial damage mechanisms,
finally leading to failure. Especially composites consisting of matrix material
with a low polarity, as it is the case for polypropylene, inter-facial adhesion is
usually weak and separation of matrix and fiber takes place more easily. Hence,
several approaches to address the issue of fiber matrix debonding are proposed in
literature (cf. PUKANSZKY et al. [322], ZHUK et al. [434], VAN HARTINGSVELDT &
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VAN AARTSEN [399]). In order to estimate the influence of the interface debonding
for the present composite, the fracture surfaces of unidirectional specimens were
investigated, using a scanning electron microscope (SEM). Figure 3.53 shows
a series of representative micro scans of specimens subjected to cryo-fracture
using a high magnification. In contrast to the expected results, no clear interface
debonding between matrix and fiber is observed, but the fibers are impregnated
with a thin layer of matrix. It is assumed here, that additives are responsible for
the improved adherence.

a b

c d

Figure 3.53: Series of SEM scans of unidirectional specimens subjected to cryo-fracture. (a) Fracture
plane at a magnification of 100. (b)-(d) Detailed views of single fibers (1000x magnification). All
examined fibers show pronounced matrix adhesion.

Reviewing the results above, a good agreement of the failure manifestation of
the composite used in this study with the processes described in literature can
be observed. As expected, tension loading in fiber direction results in a linear
stress-strain relation. In this material direction, the fibers are the constituents
which mainly carry the load. Failure occurs in an abrupt manner and the integrity
of the specimen is completely lost and no distinct fracture plane is recognizable.
Just before the final failure of the specimen, a series of sound emissions is per-
ceptible, indicating a successive failure of single fibers up to the point that the
active load exceeds the remaining load-bearing capacity and the specimen fails
catastrophically. The average failure strain is slightly below εt

‖ = 3%. Even though
unexpected, a slightly rate-dependent material behavior was observed. Due to

83



3 Experimental investigations of constituents and composites

the processing, fibers were not aligned perfectly parallel and a certain effect of the
viscoelastic behavior of the matrix could be observed. Compressive loading in
fiber direction leads to a matrix dominated failure behavior, even though no sig-
nificant dependency on the loading rate was detected. Slight initial misalignments
in the fibers lead to buckling which consequently yields to shear load exposure
and finally to failure in the adjacent matrix regions followed by fiber fracture due
to excessive bending. Transverse to the fiber direction, the material shows very
brittle behavior under tension forming a macroscopic crack perpendicular to the
loading direction. The composite failed under tension at about εt

⊥ = 0.5%, even
though a thermoplastic matrix is present between the single fibers, that however
failed in a brittle manner but reached relatively high failure strains as shown in
Section 3.2.2. It is assumed that due to the high stiffness of the glass fibers, the
macroscopic deformation accumulates in the softer matrix. Locally, the material
is strained to a larger extent compared to uniaxial test in unreinforced matrix. It
is noticeable that the values for the material strengths of the UD materials are
lower than in the neat matrix. Due to the fibrous inclusions, the stress state in the
material as a result of external uniaxial loading gets disturbed and hence becomes
multi-axial on a microscopic level with high volumetric shares. Especially under
tension, these favor damage initiation and inhibit plastic deformation (cf. ASP
et al. [15], KIM et al. [191]). Therefore, the fibers introduce a local notch effect,
disturbing a smooth strain field. Compressive loading induces the typical failure
patterns known from thermoset composites, being reproducible also within the
thermoplastic matrix. A macroscopically planar but inclined fracture plane char-
acterizes a shear failure in the matrix around the fibers. In contrast to the very
brittle deformation behavior in longitudinal and transverse direction, loading in
a ±45◦-direction allows the material to develop high strains. The pronounced
non-linearity of the stress-strain relation indicates a high mobility of the matrix.
This allows the fibers to re-orientate in the load direction during the course of
loading, leading to a successive stiffening in the material response, visible towards
the end of the experiment. The reached high strains of more than εs ≥ 25% allow
for the assumption that the deformation in the matrix is accompanied by high
plastic shares. Regarding the application of such materials in structural parts,
this large deformation is not expected due to mixed stackings of UD layers. In a
similar manner, in woven structures large deformations will be inhibited by the
interweaving of the rovings. Even though the deformation behavior is assumed
to be matrix-dominated, no strain rate dependency was observed. In general, the
viscous behavior in the UD composite becomes less visible than in the neat matrix
due to multi-axial strain and stress states in the matrix phase.
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3.4 Woven fabric reinforced polypropylene (PP/GF twill weave)

This section is concerned with the characterization of the full composite. The
organo sheet with the typecast TEPEX®dynalite 104-RG600(n)/47%, where n
specifies the number of layers, was purchased from Bond Laminates (cf. A.2 for
the data sheet). It is suitable for further processing supported by the application of
temperature and pressure. The overall fiber content in the material is vfw = 47%
and the interwoven rovings are assembled in a balanced twill weave pattern.
Figure 3.54 shows a schematic and a real view taken from µCT data of the weave.
In both cases the matrix phase is masked out and only the roving structures are
visible for a better presentation of the weave pattern.

a b

Figure 3.54: Twill weave pattern. (a) Schematic display of twill weave from TexGen
(SHERBURN [350]) and (b) Depiction of twill weave pattern in real specimen taken from µCT
scan.

The procedure to measure the fiber volume fracture inside the UD material was
also applied here, using microsections as depicted in Fig. 3.55. Image segmentation
yields an average volume fraction of κ = 63% within the rovings. According to
vtow = vfw/κ this yields a tow volume fraction of vtow = 74.6%. Analyses of the fiber
diameters were performed subsequently and an average of d̄F = 13µm could be
confirmed here. The relevant dimensions introduced and summarized in Fig. 2.8

a b

Figure 3.55: Microsections of multi-layer weave. (a) Exemplary microsection that was used for the
determination of out-of-plane weave geometries and (b) detailed view on single rovings.

and Table 2.1 were determined and are given in Table 3.32. Semi-finished sheet
material with a dimension of 620 x 1300 x dmm3 was delivered. With a thickness
per layer of d0 = 0.5 mm, the variable amount of n layers defines the complete
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Table 3.32: Measured average dimensions of one-layer twill weaves (cf. Fig. 2.8 and Table 2.1).

Dimension Value

Geometrical (mm)

λ 15.667 ± 0.723

h 0.543 ± 0.014

p 3.264 ± 0.141

tw 0.256 ± 0.019

tf 0.255 ± 0.024

g1 0.596 ± 0.221

g2 0.573 ± 0.237

Volume fraction (-)

κ 0.631

vfw 0.471

vtow =
vfw
κ 0.746

thickness of the compound d. In the case of stacked layers, single lamina were
arranged with aligning preferred directions. Even if the preferred directions of the
single lamina coincide, the mesoscopical geometrical conditions within a laminate
can severely differ. Describing the undulation of a roving according to a sinusoidal
curve, top and bottom turning points (peak P and valley V ) can be identified. The
relative positioning of the local extrema of the undulated fiber rovings is known as
nesting behavior and has significant influence on the mechanical behavior of the
laminate. Figure 3.56 depicts some possible nesting configurations in a four-layer

a

b

c

d

Figure 3.56: Microsections of woven specimens in warp direction. Various characteristics of
layer phase shift are recognizable. (a) Symmetric stacking configuration: peaks P and valleys V
are opposing, (b) Simple stacking configuration: peaks and valleys are in-phase, and (c) and (d)
intermediate topologies of the two extreme states.
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Table 3.33: Cross beam velocities and corresponding strain rates for tensile tests of woven speci-
mens (measurement length L0 = 50 mm).

Cross beam velocity Strain rate

vT (mm/min) ˙̄ε (1/s)

5 1.67·10−3

50 1.67·10−2

500 1.67·10−1

laminate. The middle sections illustrated in Fig. 3.56a and b show the two extreme
examples of nesting, namely the combinations of peaks (P ) and valleys (V ) in the
setting [P , V , P , V ] for section (a) and [V , V , V , V ] followed by [P , P , P , P ] in
section (b). These configurations are identified as symmetric and simple stacking.
In general, more or less expressed intermediate states of nesting can be found
(cf. Fig. 3.56 c and d). The analysis of micro sections of the composite showed
no microvoids in matrix rich areas between the impregnated rovings and a com-
plete coverage of the fibers with plastic matrix. In the following, all specimens
were cut by waterjetting from the corresponding plates taking into considera-
tion the direction of the reinforcements. Ruler specimens with the dimensions of
250 x 25 x 2 mm3 were used for the tensile quasi-static experiments according to
DIN EN ISO 527-4 [95]. The measurement length was set to L0 = 50 mm. For
the experiments with a loading under an angle of 45◦, additional specimens with
one layer with thickness d = 0.5mm were manufactured. Compression tests were
conducted using specimens with a dimension of 100 x 15 x 4 mm3 and a measure-
ment length of L0 = 20 mm in a similar fashion to DIN EN ISO 14126 [92]. In
order to understand the deformation behavior and the influence of the loading
rate, it is necessary to investigate the glass fiber woven fabric reinforced thermo-
plastic experimentally. The experimental results are summarized in the following
subsections.

3.4.1 Longitudinal tensile tests

Tensile tests in fiber direction were performed at three different position-controlled
cross beam velocities. Table 3.33 shows the corresponding strain rates. Figures 3.58
to 3.60 show the respective material responses. The presented results were ob-
tained from a ruler specimen with one layer n = 1. After a linear pathway, the
material fails instantaneously for all cases. Tables 3.34 to 3.36 summarize the
corresponding measured stiffness Et

‖, material strength Rt
‖ and strain at failure εt

‖.
No significant strain rate effect could be observed regarding stiffness, strength, or
failure strain (cf. Figure 3.61) when comparing the single curves for the two higher
velocities. Merely, the tensile test at vT = 5 mm/min indicates, that the time-
dependent properties of the matrix and the woven structure and geometry of the
composite have an influence. Under quasi-static loading, the stress-strain response
is approximately linear elastic up to the maximum bearable stress followed by
abrupt failure. The fracture strain lies at about εt

‖ = 2.5% and the corresponding
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strength is in the range Rt
‖ = 350 MPa to Rt

‖ = 390 MPa, which agrees approx-
imately with the indicated values in the data sheet. The expected progressive
stiffening of the material due to straightening of the undulated rovings was not
observed. Figure 3.57 shows a top view of a one-layer woven specimen that failed

Figure 3.57: Top view of a one-layer woven specimen failed under longitudinal tension.

under longitudinal tension loading. The damage mechanisms generally include
matrix cracking, localized warp fiber fracture, weft fiber pull-out, and in case
of a multilayer specimen, delamination along the middle plies. Matrix cracking
was observed dominantly in the weft fiber rovings, oriented perpendicular to the
loading direction. These cracks propagate in an opening mode due to the normal
stresses acting in the load direction. When reaching the roving interfaces, they can
cause interfacial debonding within the lamina or interply delamination.
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Figure 3.58: Stress-strain relation of quasi-
static tension tests along the fiber direction
of woven specimens at vT = 5 mm/min.

Table 3.34: Determined parameters from
tensile tests along the fiber direction of wo-
ven specimens at vT = 5 mm/min.

Et
‖ Rt

‖ εt
‖

(GPa) (MPa) (%)

16.14 365.12 2.49
16.60 362.14 2.50
17.61 343.55 2.47

µ 16.78 356.93 2.49
s 0.752 9.545 0.009

The tensile test in fiber direction has been conducted in both warp and weft
direction. However, for both directions comparable results could be achieved.
Also using layered specimens, no significant differences were observed.
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Figure 3.59: Stress-strain relation of quasi-
static tension tests along the fiber direction
of woven specimens at vT = 50 mm/min.

Table 3.35: Determined parameters from
tensile tests along the fiber direction of wo-
ven specimens at vT = 50 mm/min.

Et
‖ Rt

‖ εt
‖

(GPa) (MPa) (%)

15.14 391.40 2.68
18.57 391.58 2.53
15.63 399.58 2.77

µ 16.45 394.19 2.66
s 1.863 3.817 0.099
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Figure 3.60: Stress-strain relation of quasi-
static tension tests along the fiber direction
of woven specimens at vT = 500 mm/min.

Table 3.36: Determined parameters from
tensile tests along the fiber direction of wo-
ven specimens at vT = 500 mm/min.

Et
‖ Rt

‖ εt
‖

(GPa) (MPa) (%)

16.78 411.36 2.69
15.37 417.56 2.99
15.26 362.80 2.52

µ 15.80 397.24 2.74
s 0.858 24.483 0.198

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Strain

0

100

200

300

400

St
re

ss
in

M
Pa

Mean (5 mm/min)
Mean (50 mm/min)
Mean (500 mm/min)

Figure 3.61: Stress-strain relations of quasi-static tensile test in fiber direction of UD specimen at
different loading rates.
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3.4.2 Longitudinal compression tests

Compression tests in longitudinal fiber direction were performed at three different
position-controlled cross beam velocities. The corresponding strain rates are given
in Table 3.37. Figures 3.62 to 3.64 show the respective material responses. In
Tables 3.38 to 3.40 the corresponding measured stiffness Ec

‖, material strength Rc
‖,

and strain at failure εc
‖ as extracted from the experimental results are summarized.

Under compression, the material response is approximately linear elastic up to
the point of instantaneous failure. Comparing the stiffness values in longitudinal
direction obtained under tension, a less stiff response is observed under compres-
sion. This behavior can be explained by the geometrical fact that the fiber rovings
are impregnated in the thermoplastic matrix in an undulated way. Loaded under
compression, the main deformation is not carried by the fibers in longitudinal
direction directly, but leads to a buckling motion of the already deflected bundles.
Consequently, not the entire stiffness of the fibers becomes effective but rather a
combination of flexural (bending) modulus of the undulated rovings and matrix,
yielding a more compliant material response. Due to the high shares of matrix be-
ing loaded, time-dependent behavior can be observed with regard to the stiffness
values. With increasing loading rate, the material responds in a stiffer manner.
The averaged strengths Rc

‖ = 125 MPa and failure strains εc
‖ = 1% are similar for

the different compressive loading rates. High scattering of the material strength
could be an indication of the influence of nesting effects. Under compression, the
material fails at strains that are significantly lower compared to tensile tests. This
behavior has already been observed in the UD matrix and is accredited again to
the brittle matrix failure, which is responsible for the failure behavior.
Figure 3.66a and a more detailed view in Fig. 3.66b show a typical failure of woven
composite specimens that failed under longitudinal compressive loading. The
whole specimen failed under the formation of a localized through thickness shear
band that becomes macroscopically visible. The shear failure bands range from
30◦ to 57◦ for all specimens, with an average of about 45◦. Failure in the form of a
shear band can be explained by the woven nature of the material, especially the
preexisting deflections in the undulated rovings, as suggested by HARDING [149].
Taking a closer look on the micrograph of the damaged area in Fig. 3.66b, several
failure modes become visible. In general, fiber micro-buckling leads to fiber
kinking followed by failure of the fibers and matrix through the thickness of the

Table 3.37: Cross beam velocities and corresponding strain rates for compression tests of woven
specimens (measurement length L0 = 20 mm).

Cross beam velocity Strain rate

vT (mm/min) ˙̄ε (1/s)

1 8.33·10−4

10 8.33·10−3

100 8.33·10−2
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Figure 3.62: Stress-strain relation of quasi-
static compression tests along the fiber direc-
tion of woven specimens at vT = 1 mm/min.

Table 3.38: Determined parameters from
compression tests along the fiber direction
of woven specimens at vT = 1 mm/min.

Ec
‖ Rc

‖ εc
‖

(GPa) (MPa) (%)

10.39 141.10 1.26
11.88 121.44 1.08
11.35 83.90 1.11

µ 11.21 115.48 1.15
s 0.753 23.730 0.082
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Figure 3.63: Stress-strain relation of quasi-
static compression tests along the fiber
direction of woven specimens at vT =
10 mm/min.

Table 3.39: Determined parameters from
compression tests along the fiber direction
of woven specimens at vT = 10 mm/min.

Ec
‖ Rc

‖ εc
‖

(GPa) (MPa) (%)

12.18 109.23 1.11
11.56 138.88 1.14
11.83 193.26 1.59
12.33 160.10 1.31

µ 11.98 150.37 1.29
s 0.346 30.651 0.192
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Figure 3.64: Stress-strain relation of quasi-
static compression tests along the fiber
direction of woven specimens at vT =
100 mm/min.

Table 3.40: Determined parameters from
compression tests along the fiber direction
of woven specimens at vT = 100 mm/min.

Ec
‖ Rc

‖ εc
‖

(GPa) (MPa) (%)

12.45 130.04 1.01
12.18 132.62 1.04
12.46 158.55 1.21

µ 12.36 140.41 1.09
s 0.158 12.875 0.088

specimen along the distinct shear band. As a result of the buckling motion of
the tows within the material, matrix areas positioned in between two rovings
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Figure 3.65: Stress-strain relations of quasi-static compression test in fiber direction of woven
specimens at different loading rates.

are sheared locally to a high extent. This results in high volumetric strain and
hence failing prematurely in a brittle manner (cf. GROVES et al. [135]). Reducing
locally the stabilizing effect of the matrix surrounding the fiber bundles, micro-
buckling is caused. Subsequently fiber kinking (cf. Fig. 3.66c) and fiber breakage
(cf. Fig. 3.66d) favor the formation of the macroscopic shear band.

3.4.3 Tensile tests of ±45◦ off-axis specimens

Off-axis ±45◦ tensile tests were performed at three different position-controlled
cross beam velocities. The corresponding strain rates are given in Table 3.41.
Figures 3.67 to 3.69 show the respective material responses. In Tables 3.42 to 3.44

Table 3.41: Cross beam velocities and corresponding strain rates for tension tests of woven ±45◦

off-axis specimens (measurement length L0 = 20 mm).

Cross beam velocity Strain rate

vT (mm/min) ˙̄ε (1/s)

5 1.67·10−3

50 1.67·10−2

500 1.67·10−1

the corresponding measured stiffness Es, material strength Rs, and strain at failure
εs as extracted from the experimental results are summarized. Combining the
single curves in Fig. 3.70, it becomes obvious that the shear stress-strain behavior
is dominated by the matrix material and exhibits significant non-linearity over
a large strain range. Analyzing the stress-strain response in terms of strain rate
dependency, several conclusions can be drawn. The initial stiffness is independent
of the loading rate, however, the non-linear pathway changes with the strain
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Figure 3.66: Typical failure manifestation under compressive load in a woven fabric reinforced
composite. (a) Side view photograph of a woven specimen failed under longitudinal compression,
(b) Detailed section of a woven specimen failed under longitudinal compression, (c) detailed
microscopy of section of a woven specimen failed under longitudinal compression showing fiber
kinking and (d) fiber shear fracture.

rate. The results are inconclusive regarding a valid statement for the failure strain,
showing high scatter within the single velocity sets. Merely the shear strength
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shows an increasing trend for increasing shear rates. Such a behavior is also
reported in BONNET [39]. Photographs of the post-test in-plane shear specimens
are depicted in Fig. 3.71. The major macroscopic failure modes were matrix
cracking, fiber pull-out, fiber bundle pull-out and delamination. Similar to the
±45◦ off-axis UD specimen before, also in the weave, fiber reorientation (scissoring)
in the direction of the external load direction was observed. According to KELLAS
et al. [190] this process induces interlaminar stresses at the ply interfaces resulting
in delamination. The final failure is accompanied by the formation of a V-shaped
in-plane fracture surface (±45◦ to fiber axis). This plane indicates at the same time
the plane where the critical shear load is active.
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Figure 3.67: Stress-strain relation of quasi-
static ±45◦ off-axis tension tests of woven
specimens at vT = 5 mm/min.

Table 3.42: Determined parameters
from ±45◦ off-axis tension tests of wo-
ven specimens at vT = 5 mm/min.

Es Rs εs
(GPa) (MPa) (%)

5.23 73.61 11.04
5.94 74.79 8.11
5.53 75.08 8.09

µ 5.56 74.49 9.08
s 0.366 0.635 1.388
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Figure 3.68: Stress-strain relation of quasi-
static ±45◦ off-axis tension tests of woven
specimens at vT = 50 mm/min.

Table 3.43: Determined parameters
from ±45◦ off-axis tension tests of wo-
ven specimens at vT = 50 mm/min.

Es Rs εs
(GPa) (MPa) (%)

6.06 88.12 9.72
5.95 75.11 6.99
5.88 82.63 10.38

µ 5.96 81.96 9.03
s 0.09 5.331 1.464
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Figure 3.69: Stress-strain relation of quasi-
static ±45◦ off-axis tension tests of woven
specimens at vT = 500 mm/min.

Table 3.44: Determined parameters
from ±45◦ off-axis tension tests of wo-
ven specimens at vT = 500 mm/min.

Es Rs εs
(GPa) (MPa) (%)

6.01 87.75 9.29
6.61 94.04 9.49
6.60 92.16 9.40

µ 6.40 91.32 9.39
s 0.280 2.639 0.083
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Figure 3.70: Stress-strain relations of quasi-static ±45◦ off-axis tension tests of woven specimens
at different loading rates.

a b

Figure 3.71: Detailed views of (a) one-layer and (b) multi-layer ±45◦ off-axis woven specimen
failed under tension. Roving/Fiber pullout in conjunction with matrix cracking is identified as the
dominant failure mode in both cases.

3.4.4 Discussion

The previous sections presented the experimental results obtained from woven
fabric reinforced polypropylene subjected to tension and compression load. Addi-
tionally, ±45◦ off-axis tension tests have been performed. Special attention was
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paid to the influence of time-dependent viscous behavior of the composite, tak-
ing into consideration the anisotropic structure. It could be shown that tensile
tests in fiber direction of the woven composite yield a slightly time-dependent
behavior. Hence, the strain rate effects in the material are influenced primarily by
the matrix viscoelasticity, fiber-matrix interfacial properties, the composite woven
reinforcement architecture, and the time-dependent nature of damage accumu-
lation. Mainly the matrix component, which takes a high volume fraction in the
composite, is responsible for this behavior. The share of the matrix with regard to
the overall stiffness can therefore not be neglected. Due to the undulation of the
reinforcement structures, matrix-related effects are measured in all directions of
the composite. GUAGLIANO & RIVA [136] and NICOLETTO & RIVA [297] showed
that nesting effects within the stacking of a woven composite have significant
influence on the mechanical behavior in terms of stiffness and strength. Compar-
ing the compression and tension tests in fiber direction, a tension/compression
asymmetry could be observed with respect to stiffness and strength. Both entities
yielded considerably lower values under compression, which was entirely related
to effects happening in the thermoplastic matrix, stabilizing the impregnated tows.
Undulation triggers first local matrix failure and therefore a disturbance on the
stabilizing effect, leading to matrix damage. The continuous fibers tend to be
prone for kinking due to their high aspect ratio and are hence highly dependent
on the supporting effect of the surrounding matrix. Increasing undulation results
in decreasing strength and stiffness, as reported in GUAGLIANO & RIVA [136],
NICOLETTO & RIVA [297] as well as GARNICH & KARAMI [120] and KARAMI &
GARNICH [189]. Losing this support, the fibers fail collectively within the roving,
accompanied by concurrent formation of matrix failure and delamination. The
final failure becomes visible in the form of a macroscopical shear band. Off-axis
±45◦ specimen loaded under tension showed a significant non-linearity, leading
to large deformations within the material. Scissoring effects within the material
enable a reorientation of the reinforcement structures with the external loading
direction. The specimen finally failed due to delamination caused by foregone
matrix cracking and fiber pullout. Large rotations of the fibers yield high inter-
ply shear loads which finally lead to delamination and separation of the crack
fronts. However, taking into account the results obtained by ROESNER [339], the
measured strength values are dependent on the specimen dimensions and are
therefore not to be taken as material parameters. Regarding the appearance of
failure within the woven specimen as well as the determination of material pa-
rameters, no difference concerning the loading in warp or weft direction could be
observed. This is due to the fact that a balanced weave under waiver of the use of
binders was investigated.

In this chapter, experimental results have been presented for the constituents and
subcomposites appearing in organo sheets. The assessment of the deformation
behavior, especially of anisotropic materials, is very challenging and an urgent
issue in current research. Due to their complex inner structure and hence direction-
dependent behavior, many tests have to be conducted in order to understand
the processes taking place internally. However, superimposed loading states

96



3.4 Woven fabric reinforced polypropylene (PP/GF twill weave)

are often hard or impossible to achieve. Therefore, computer aided techniques
deliver significant benefits. Microstructures can be generated virtually and loaded
in arbitrary loading combinations. In the upcoming chapters a procedure is
presented that enables a virtual characterization of organo sheets on different
levels of geometrical resolution, introducing both generation of microstructures
and necessary material models.
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4 Constitutive modeling of constituents and composites

This chapter demonstrates the derivations of the three required constitutive mod-
els in order to run the multiscale approach presented in Fig. 1.2. Section 4.1
addresses the rate-dependent definition of the elastoplastic and damage behavior
of the neat thermoplastic matrix, characterized in Section 3.2. With regard to later
developments, the initially defined small strain framework is extended towards
a finite setting formulated with the help of logarithmic strains. The transition
is done by purely geometrical operations applied on the strain tensor. In order
to perform the first scale-bridging step, a fully three-dimensional, transversely
isotropic continuum damage model is introduced in Section 4.2. Representing the
impregnated rovings, this constitutive model is used in the virtual unit cell, i.e.
the mesoscopic model. Incorporating the anisotropic nature of unidirectionally re-
inforced materials, a transversely isotropic ground-state elasticity law is presented
in a finite strain framework in order to consider large rotations that can occur in
weave reinforced composites. The preferred direction is therefore characterized by
one vector. Depending on the orientation, experimentally observed predominant
emerging failure mechanisms are integrated by the definition of suitable criteria
for damage onset. Further evolution of directional damage parameters is driven
by a thermodynamically consistent formulation using the theory of maximum
dissipation. The last constitutive model presented here enables the transition
from a mesoscopic to a macroscopic formulation, hence representing the weave
reinforced material on part level. Section 4.3 demonstrates the composition of the
two aforementioned material models, creating a new straightforward formula-
tion for the macroscopic material behavior, incorporating plastic and anisotropic
damage effects by combining analytical and numerical homogenization steps. In
the present case of a twill weave reinforced composite, the preferred directions
of the woven composite coincide conveniently with the principal directions of
the reinforcing systems. However, due to external loading, the initially known
preferred directions change as the material deforms. Therefore, an intermediate
configuration based on the plastic share of the deformation gradient is introduced
in order to take these kinematic particularity into consideration. By extending the
given definitions by separate damage formulations for matrix and rovings, the
transfer of dominant material effects onto the macroscopic scale is enabled. While
Chapter 4 is limited entirely to the theoretical derivation of the constitutive models
including some remarks on the algorithmic treatment and implementation of the
governing equations of all scales, Chapter 5 presents the numerical application
and results.

4.1 Constitutive modeling of polypropylene matrix

This section focuses on the modeling of the rate-dependent elastoplastic and
damage behavior of the matrix material for isothermal conditions. The formulation
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4 Constitutive modeling of constituents and composites

of elastoplasticity in a finite framework has been worked on extensively during
the last decades. For a thorough overview, the interested reader is referred to
the works of NAGHDI [286], or XIAO et al. [425]. Basically, two main approaches
exist for modeling large-strain inelastic material models. The first approach bases
on a multiplicative decomposition of the deformation gradient into elastic and
plastic contributions F = F eF p, also referred to as Kröner-Lee decomposition (cf.
KRÖNER [207], LEE [216], MANDEL [250]). The origin of this definition can be
found in the micromechanical description of plasticity in crystalline materials,
but is frequently used for the phenomenological description of plasticity. The
second approach bases on the Green-Naghdi theory and uses the Lagrangean plastic
deformation measure Ep (cf. GREEN & NAGHDI [131]). For the present work, the
formulation introduced by MIEHE [273, 274] together with the additive framework
for the plastic strains (cf. MIEHE et al. [268], PAPADOPOULOS & LU [306, 307],
MIEHE & APEL [275]) is used to set up the constitutive model in the logarithmic
strain space. This framework allows for the formulation of a geometrically linear
plasticity model in the core that is embedded into a purely geometric pre- and
post-processing algorithm, rendering the model geometrically non-linear. In the
present work, first a material model for the thermoplastic matrix is derived in the
context of a geometrically linear frame using the additive decomposition of the
strains which is then embedded into the aforementioned logarithmic framework.
The experimental behavior under quasi-static tension and compression at different
strain rates of the present thermoplastic polypropylene matrix is demonstrated
in Section 3.2. For the model here it is assumed that the time-dependency arises
purely due to time-dependent plastic effects in the matrix. In this section, we
first introduce the overall constitutive equations of the elasto-viscoplastic material
model, including an isotropic formulation for damage. A second part describes
in more detail the modular structure of the kinematic approach required for the
implementation in Abaqus.

4.1.1 Basic kinematics and state variables

Aiming at a continuum mechanical description of a non-associative elasto-
plasticity coupled to continuum damage mechanics at small strain, the basic
kinematics need to be defined. The macroscopic strain ε = ∇su can be decom-
posed into elastic and inelastic parts, which allows for the introduction of the
stress producing elastic strains.

εe = ε− εp (4.1)

The elastic strain is used to described energy storage mechanisms that are related
to elastic macroscopic distortions of the material. In addition, hardening effects
are captured by the hardening variables αc and αt taking into account hardening
effects under compression and tension, respectively. For modeling damage effects,
i.e. a softening of the material, a scalar damage variable d is introduced, modeling
a gradual degradation of the material. Thus, the total constitutive state can be
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4.1 Constitutive modeling of polypropylene matrix

summarized by

{ε; εp, αc, αt, d} (4.2)

which builds the kinematic framework for the formulation of the constitutive
equations. Regarding the later implementation, the coupled plasticity and damage
partition will not be treated monolithically. In a typical loading phase, the material
will be loaded plastically up to a critical state with the damage partition not being
active. After the turning point, the plastic state of the material is frozen and
damage evolves.

4.1.2 Rate independent non-associative elasto-plasticity

4.1.2.1 Energy storage mechanisms and stresses

The energy storage mechanism is determined by the free energy function of the
specific form

Ψ = Ψ(ε; εp, αc, αt, d)

= (1− d)Ψ0(ε, εp, αc, αt)

= (1− d)
[
Ψe

0(εe (ε; εp)) + Ψ
p,c
0 (αc) + Ψ

p,t
0 (αt)

]
.

(4.3)

In this representation, damage effects enter the free energy by a classical (1− d)-
ansatz which reduces the stiffness in the material. Focusing on a decoupled
plasticity and damage formulation, the latter is not active during plastic loading
of the material. Thus, evaluation of the Clausius-Plank inequality for the internal
dissipation with ḋ = 0 takes the form

D = σ0 : ε̇− Ψ̇0 ≥ 0 (4.4)

in the isothermal case. From Eq. (4.3) we obtain by application of the chain rule

Ψ̇0 =
∂Ψe

∂εe : ε̇e +
∂Ψ

p,c
0

∂αc
α̇c +

∂Ψ
p,t
0

∂αt
α̇t. (4.5)

Insertion into the dissipation inequality gives

D =

[
σ0 −

∂Ψe
0

∂εe

]
: ε̇+

∂Ψe
0

∂εe : ε̇p − ∂Ψ
p,c
0

∂αc
α̇c −

∂Ψ
p,t
0

∂αt
α̇t ≥ 0. (4.6)

Standard arguments, see e.g. COLEMAN & GURTIN [75] or LUBLINER [241], give
the definition of stresses

σ0 =
∂Ψe

0

∂εe (4.7)

and the reduced dissipation inequality

Dred = σ0 : ε̇p + Ycα̇c + Ytα̇t ≥ 0 (4.8)
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in terms of the driving forces

Yc = −∂Ψ
p,c
0

∂αc
and Yt = −∂Ψ

p,t
0

∂αt
(4.9)

for hardening mechanisms under compression and tension, respectively. In what
follows, the quadratic form of the free energy function is chosen

Ψe
0 (εe) =

1

2
κtr2 [εe] + µ‖dev [εe] ‖2 (4.10)

in terms of the compression modulus κ and the shear modulus µ. Equation (4.7)
yields the stresses

σ0 = κtr [εe]1+ 2µdev [εe] = C0 : εe (4.11)

expressed by the isotropic elastic stiffness tensor C0 = κ1⊗ 1+ 2µPsym in terms of
the fourth-order deviatoric projection tensor Psym = Isym − 1

3
1⊗ 1. The hardening

mechanisms are taken into account by the energetic contributions

Ψ
p,c
0 (αc) =

(
σ∞c − σ0

c

)(
αc +

1

ωc
exp [−ωcαc]

)
Ψ

p,t
0 (αt) =

(
σ∞t − σ0

t

)(
αt +

1

ωt
exp [−ωtαt]

) (4.12)

for compressive and tensile response. Equation (4.9) gives the driving forces

Yc = −
(
σ∞c − σ0

c

)
(1− exp [−ωcαc])

Yt = −
(
σ∞t − σ0

t

)
(1− exp [−ωtαt]) .

(4.13)

4.1.2.2 Non-associative plastic flow

For the present material, the elastic domain E in stress-space is a smooth domain

E := {(σ0, Yc, Yt) |Φ (σ0, Yc, Yt) ≤ 0} (4.14)

bounded by the yield function Φ. An associative form of the evolution equations
for the plastic strain εp and the hardening variables αc and αt follow from the
principal of maximum dissipation (σ0 − σ∗0) : ε̇p − (Yc − Y ∗c ) α̇c − (Yt − Y ∗t ) α̇t ≥ 0
for all (σ∗0, Y

∗
c , Y

∗
t ) ∈ E. See also HILL [162], DRUCKER [102], and others. It directly

induces the associative evolution equations

ε̇p = γ̇∂σ0Φ and α̇c = γ̇∂YcΦ and α̇t = γ̇∂YtΦ (4.15)

along with the loading/unloading conditions (Karush-Kuhn-Tucker conditions)

γ̇ ≥ 0 and Φ ≤ 0 and γ̇Φ = 0 (4.16)
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4.1 Constitutive modeling of polypropylene matrix

where γ̇ denotes the plastic multiplier. Carefully note that within the associative
theory, the yield function Φ plays the role of a so-called plastic potential which
governs the flow rule. The generalization towards a non-associative flow response
bases on the introduction of independent flow directionsN

ε̇p = γ̇N and α̇c = γ̇Nc and α̇t = γ̇Nt. (4.17)

The flow directions are assumed to be derived from a plastic potential function
Ξ (σ0, Yc, Yt) in the sense

N :=
∂Ξ

∂σ0

and Nc = Nt =
√
k‖N‖. (4.18)

The variable k, controlling the hardening mechanism, depends on the used yield
criterion but can generally be defined by

k =
1

1 + 2ν2
p

(4.19)

using the plastic pendant of the Poisson’s ratio νp. Clearly, definition Eq. (4.18)2

identifies the internal variables αc and αt with the accumulated plastic strain with
the evolution equation

α̇c = α̇t =
√
k‖ε̇p‖=: ε̇

p
acc. (4.20)

To be specific, for the present material model, the pressure dependent yield func-
tion according to TSCHOEGL[393] is chosen and reads

Φ (σ0, Yc, Yt) = 6J2(σ0) + 2 [σc (Yc)− σt (Yt)] I1(σ0)− 2σc (Yc)σt (Yt) (4.21)

in terms of the yielding parameters σc and σt and the invariants

J2 =
1

2
‖dev [σ0] ‖2 and I1 = tr [σ0] . (4.22)

A graphical representation of the yield function in the stress space is depicted in
Fig. 4.1. The hardening mechanisms under compression and tension take the form

σc (Yc) := σ0
c − Yc and σt (Yt) := σ0

t − Yt (4.23)

in terms of the driving forces Eq. (4.13). The flow direction from Eq. (4.18) is
characterized by the plastic potential which, according to MELRO [260], reads

Ξ (σ0) = 3J2 (σ0) +
1

9
αI2

1 (σ0) (4.24)

again in terms of the invariants from Eq. (4.22). Making use of equations Eq. (4.18),
the flow direction can be identified as

N = Niso +Nvol = 3dev [σ0] +
2

9
αtr [σ0]1 (4.25)
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Figure 4.1: Paraboloidal yield surface Φ. Image taken and modified from TSCHOEGL [393].

in terms of a variable controlling the volumetric plastic flow

α =
9

2

1− 2νp

1 + νp
. (4.26)

4.1.3 Modeling ultimate damage

This section serves to extend the introduced elasto-plastic response by a stress-
based damage formulation. Physically speaking, damage is interpreted as the
result, growth and coalescence of microcracks (cf. SIMO & JU [353, 354]). Introduc-
ing a material model within the framework of continuum mechanics, damage is
often treated as an evolving internal variable which can be a scalar or tensorial
entity. In the following, a scalar damage variable is assumed which does not take
into account tension/compression asymmetry and is independent of the loading
direction. Hence, damage is defined as completely isotropic. In this work, the
hypothesis of strain equivalence is applied (cf. LEMAITRE [218, 220]). This method
favors the implication that the evolution of damage is directly linked to the history
of total strain, as stated by SIMO & JU [353, 354]. In order to derive the model in a
thermodynamically consistent manner, the complementary free energy potential,
the Gibb’s potential written as

Λ(σ, εp, Yc, Yt, dσ) = dσΛ0(σ0) + σ : εp − Λp(Yc, Yt, ε
p) (4.27)

is introduced. Hereby, the stress based damage variable dσ = (1 − d)−1, the
thermodynamic driving forces for hardening Yc and Yt, together with the elastic
contribution

Λ0(σ) =
1

2
σT

0 : H0 : σ0 (4.28)
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4.1 Constitutive modeling of polypropylene matrix

and complementary plastic potential Λp, analogously to the general formulation
of SIMO & JU [353, 354] are used. H0 = (C0)−1 denotes the undamaged compli-
ance tensor, that can be expressed in an analogous way to the pristine stiffness
tensor C0 in terms of the isotropic stiffness parameters E and ν. Consequently,
the subsequent focus lies on the damage mechanisms solely. For an isothermal
case the Clausius-Duhem inequality (cf. COLEMAN & NOLL [76], COLEMAN &
GURTIN [75]) takes the form

D = Λ̇− σ̇ : ε ≥ 0. (4.29)

with
Λ̇ = Λ̇(σ, εp, q, dσ) (4.30)

for any admissible process. For a decoupled plastic and damage formulation with
frozen plastic state variables during damage loading, the application of the chain
rule of Eq. (4.29) takes a simplified form

∂Λ

∂σ
: σ̇ +

∂Λ

∂dσ
ḋσ − σ̇ : ε ≥ 0. (4.31)

With standard arguments together with the additional assumption that unloading
processes are always elastic we obtain

ε =
∂Λ

∂σ
= dσ

∂Λ0

∂σ
+ εp (4.32)

along with the dissipative inequality

Dred = Λ0(σ0)ḋσ ≥ 0 (4.33)

for dissipative contributions during the evolution of damage. MALVERN [249]
states, that the positiveness of the dissipated energy is required by any constitutive
model, since it represents the second law of thermodynamics. Carefully note, that
the additive decomposition for the strains is recovered from Eq. (4.32). It follows
from Eq. (4.27) and Eq. (4.33) that

Y =
∂Λ(σ, dσ)

∂dσ
= −Λ0(σ0). (4.34)

Therefore, the initial elastic complimentary energy Λ0(σ0) is the thermodynamic
force −Y conjugate to the damage variable dσ, which intrinsically fulfills the
condition of irreversibility of damage ḋ ≥ 0. Note that for the linear case Λ0(σ0) =
1
2
σT

0 : H0 : σ0, where H0 is the undamaged compliance matrix. It follows from
Eq. (4.32) and

Λ0(0) = 0 and
∂Λ0(σ0)

∂σ

∣∣∣∣
σ0=0

= 0 (4.35)
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that the plastic strain εp is precisely the residual strain obtained upon (local) un-
loading. Thus, identifying the elastic strain with recoverable strain after unloading,
i.e. εe = ε− εp, from (4.32)

εe ≡ dσ
∂Λ0

∂σ
⇒ ε̃e = (1− d)εe =

∂Λ0

∂σ
(4.36)

is obtained with ε̃e being the effective elastic strain. Therefore, the updated
damaged stiffness tensor

C = (1− d)C0 =

[
dσ
∂2Λ0

∂σ2

]−1

(4.37)

follows, since from the concept of stress equivalence ("the stress associated with
a damaged state under the applied strain is equivalent to the stress associated with its
undamaged state under the effective strain" cf. SIMO & JU [353, 354]) follows

σ = C0 : ε̃e !
= C : εe = (1− d)C0 : εe. (4.38)

An equivalent derivation based on the equivalence of the Helmholtz free energy
yields the same results due to the special position of damage in the respective
potentials as well as the assumption of independence between the evolution of
the damage variable d from plastic processes. In the following, the hypothesis of
strain equivalence is used, introducing the relation

σ̃ = M−1 : σ (4.39)

with σ as the homogenized stress tensor and σ̃ denoting the effective stress tensor
(cf. CAROL et al. [52, 53]). The fourth-order tensorM characterizing the damage
state, simplifies for the present isotropic case toM = (1− d)Isym, with Isym being
the rank four identity tensor and a formulation for the stresses equivalent to the
one in Eq. (4.38) is valid,

σ = C : εe = (1− d)C0 : εe. (4.40)

The evolution of damage in the material is characterized by means of a stress-based
damage criterion and a damage rule. Here, a similar criterion as for the presented
plasticity formulation from earlier is used (cf. TSCHOEGL [393], MELRO [260]),
whereby the yield strengths are replaced by failure strengths. The damage activa-
tion function F d defines the elastic domain under a general stress state, using the
tensile and compressive strengths of the material

F d = φd − r =

{
< 0, elastic domain
= 0, damage criterion activated

(4.41)

where r is the internal variable controlled by the damage evolution law (threshold
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variable) and φd is the loading function defined by

φd =
3J̃2

XcXt
+ Ĩ1

(Xc −Xt)

XcXt
(4.42)

with Xc as the materials compressive and Xt as tensile strength, respectively.
The definitions for the invariants here are given analogously to Eq. (4.22) but as
functions of the effective stress σ̃. The Karush-Kuhn-Tucker conditions for the
evolution of damage are given as

ṙ ≥ 0 and F d ≤ 0 and ṙF d = 0. (4.43)

In order to distinguish loading from unloading situations and determine if damage
evolution takes place, the rate of the loading function φ̇d must be evaluated. If
φ̇d ≤ 0 the state is one of unloading, otherwise damage evolution is taking place
and the following consistency condition is valid

Ḟ d = φ̇d − ṙ = 0 (4.44)

under the condition that (a) the internal variable r depends only on the damage
variable and (b) the loading function is defined in terms of the strain tensor. If
these conditions hold true, the constitutive model can be integrated explicitly (cf.
SIMO & JU [353, 354]). From the consistency condition (F d = Ḟ d = 0) we get

r = max
{
r0,max

t→∞

{
φd

t

}}
. (4.45)

For the described model, the initial internal threshold parameter is set to r0 = 1.
The missing constitutive relation describes the mapping of r ∈ [1,∞] on a discrete
damage variable d ∈ [0, 1]. In a general approach it is easily found that damage
states can basically be divided in three stages that formulate boundary conditions
for a valid choice of the damage evolution law:

1. Pristine state: Material is undamaged r = 1→ d = 0.

2. Damage progress: The change rate of damage is greater than zero (ṙ ≥ 0→
ḋ ≥ 0). This is fulfilled if the damage evolution law satisfies the condition

∂d

∂r
≥ 0

since
ḋ =

∂d

∂r
ṙ ≥ 0.

3. Fully damaged material: The threshold variable strives towards r →∞ and
the damage variable takes the value d = 1.

The ansatz for damage evolution law is therefore chosen as

d = 1− 1

r
exp (Am(1− r)) (4.46)

107



4 Constitutive modeling of constituents and composites

fulfilling all required conditions. Figure 4.2 shows the evolution of the damage
variable with increasing threshold variable r > 1.
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Figure 4.2: Mapping function of the damage variable d ∈ [0, 1] as a function of the threshold
variable r ∈ [1,∞] and exemplary adjustment parameters Am accounting for the element size.

To integrate a development of a suitable strain localization limiter that minimizes
mesh-sensibility associated with strain-softening, Baz̆ant’s crack band model (cf.
BAZ̆ANT & OH [19]) has been applied and integrated in the definitions of the
damage evolution law. Hereby, Am is the adjustment parameter, dependent on the
characteristic length of the particular observed element le, that will be determined
under the assumption of a uniaxial tensile load. Without that, damage would
localize in a narrow band with the same thickness as the element where damage
was activated. This would cause a dependency of the structural response on the
mesh size. The smaller the element in the band of localized damage, the less the
computed dissipated energy. The solution for this localization problem lies in a
regularization of the computed dissipated energy by the characteristic length le of
each element obtaining the dissipative energy density

ψD =

∫ ∞
0

−Y ḋσdt =

∫ ∞
1

Λ0 (σ)
∂dσ
∂r

dr =
Gf

le
(4.47)

where Gf is the critical energy release rate. Solving Eq. (4.47) for Am enables the
subsequent damage update. Remarks on the numerical implementation are given
in Appendix B.1. From here the damaged stresses can be computed. The approach
of strain equivalence states that

σ = C : εe and σ0 = C0 : εe. (4.48)

Simply plugging the above equations together, yields

σ = C : (C0)−1 : σ̃ = (1− d)σ0 (4.49)

in terms of the undamaged elastic stresses defined in Eq. (4.11) and the damage
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variable d.

4.1.4 Extension towards rate-dependency

Recollecting the experimental results for the thermoplastic matrix from Section 3.2
suggests that the material exhibits a pronounced rate sensitivity in terms of both
plastic and damage response. A simple phenomenological approach to cover this
behavior in terms of plasticity is obtained by means of a viscous regularization of
the evolution parameters of the presented rate-independent strain-based plasticity
as presented by PERZYNA [313]. This method has the property of introducing a
viscosity coefficient ηvp as one additional parameter for a rate-dependent plasticity.
Depending on its value, the non-linearity during plastic evolution becomes rate-
dependent in the sense that plastic effects are decelerated at higher strain rates.
The governing rate equations for viscous plasticity are different from their inviscid
counterparts and, following the arguments of PERZYNA, can be explicitly rewritten

γ̇ =
1

ηvp
〈Φ(σ)〉+. (4.50)

However, an alternative and more general approach is chosen, introducing rate-
dependent hardening terms, yield strengths, and failure strengths. For all cases,
a similar exponential formulation as for the hardening is chosen (cf. Eq. (4.23)),
introducing the time-dependent definition for the corresponding parameters P ∈{
σ0

c,t, σ
∞
c,t , ωc,t, Xc,t

}
of the form

P = P0 + (P∞ − P0)
(
1− exp

(
−ηPv ‖ε̇‖α

))
, (4.51)

where P0 corresponds to the parameter at low and P∞ at high strain rates respec-
tively. ηPv controls the speed of transition from P0 to P∞ and can be interpreted as
a viscous parameter.

4.1.5 Algorithmic treatment of constitutive equations

The upcoming section will describe the algorithmic setting that is necessary for a
numerical implementation of the visco-plasticity and damage formulation defined
above. For the present case, the model is implemented in a user-defined material
subroutine (UMAT) for the implicit solver Abaqus (cf. SIMULIA [355]). In Fig. 4.3,
the proposed model is visualized in a one-dimensional rheological system, consist-
ing of a series of one spring, responsible for ground-state elasticity, and a parallel
setting of a friction element and a damper, representing the viscoplastic part. Af-
fecting the material stiffness, the damage variable is responsible for the ultimate
damage representation. Plasticity and damage related terms are rate-dependent.
This model induces the calculation of stresses according to

σ = (1− d (ε, ε̇))C0 : εe (ε, εp (ε, ε̇)) . (4.52)

For the following derivations it is assumed however, that (a) one constant strain
rate ε̇ is active and (b) plasticity and damage evolution are not inter-dependent
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and will therefore be calculated in a staggered manner, i.e. consecutively. In other
words, plasticity will evolve (γ̇ > 0) only as long as macro damage has not started
to evolve (d = 0). As soon as the material strength in terms of failure is reached,
plastic strains will be frozen. That is the reason why the algorithmic setting of
plastic evolution and damage can be looked at separately. In this setting, the
plastic strain rate defined in Eq. (4.17)1 is integrated yielding

εp = ε
p
n +

∫ t

tn
ε̇pdt = ε

p
n +

∫ t

tn
γ̇Ndt. (4.53)

Application of implicit backward Euler gives

εp = ε
p
n + γ̇∆tN = ε

p
n + ∆γN . (4.54)

By definition the elastic trial strains are introduced by

εtr = ε− εp
n. (4.55)

The assumption that the complete strain increment ∆εmade in the current time
increment is purely elastic for the moment holds. Based on this trial state we
obtain an alternative representation of the current elastic strains, namely

dev [εe] = dev
[
εtr]−∆γNiso

1

3
tr [εe] =

1

3
tr
[
εtr]−∆γNvol

(4.56)

With these current strains, the current (undamaged) stresses can be determined
according to Eq. (4.11) yielding

dev [σ0] = 2µdev
[
εtr]− 2µ∆γNiso

1

3
tr [σ0] = κtr

[
εtr]− 3κ∆γNvol.

(4.57)

Combining equations (4.57)1 and (4.57)2 the classical formulation for an elastic
predictor/plastic corrector algorithm can be recovered, which reads

σ0 = C0 : (εe
n + ∆ε)−∆γC0 : N . (4.58)

𝜺e 𝜺p

𝝈 𝝈

Figure 4.3: One-dimensional representation of the proposed matrix material model, depicting
the strain split into elastic (black) and plastic (red) contributions. The stiffness is degraded by the
progressive damage variable (blue).
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The first part of the equation is called elastic predictor σtr=C0 : (εe
n + ∆ε) which

estimates the stresses at the end of each loading increment tn+1 assuming the step
to be purely elastic, and the second part plastic corrector. Latter is zero if the step
is elastic and greater than zero in the case of plastic flow in the time increment,
thereby correcting the elastic predictor. To determine the plastic corrector, the set
of equations in box 4.1 has to be solved simultaneously in the return mapping
scheme.

Box 4.1: Evolution equations necessary for the definition of the plastic return mapping algorithm.

∆εp = ∆γN (σ0, q)

∆αc = ∆αt = ∆εPacc =
√
k‖∆εp‖

σ0 = σtr − C0 : ∆εp

Φ(σ0, Yc, Yt) = 0

Taking into consideration the definitions from Eq. (4.25) and performing a stress
split into deviatoric and volumetric parts, it is possible to rewrite the stresses as

dev [σ0] = 2µdev
[
εtr]− 6µ∆γdev [σ0]

1

3
tr(σ0) = κtr(εtr)− 2

3
κα∆γtr(σ0)

(4.59)

and hence, solving for the current stress

dev [σ0] =
2µ

ζs
dev

[
εtr] and

1

3
tr(σ0) =

κ

ζp
tr
[
εtr] (4.60)

with the two coefficients ζs = 1 + 6µ∆γ and ζp = 1 + 2κα∆γ as the plastic corrector
terms which reduce the elastic predictor stresses (cf. MELRO [260]). Note that
these two terms depend on the plastic multiplier solely. Having formulated all
the above information, it is now possible to formulate the radial return mapping
scheme in order to identify the plastic multiplier ∆γ.

4.1.5.1 Return mapping algorithm for update of plastic strains

The starting point of the return mapping algorithm is the stress split described in
Eq. (4.58) where the current stresses can be written as a combination of an elastic
predictor and a plastic corrector that becomes active depending on the current
loading situation. In the case of plastic loading, the consistency condition needs
to be evaluated in order to find the correct plastic multiplier ∆γ which yields the
correct plastic material response. From the definition for the yield function (4.21)
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and the substituting formulations for the stresses from Eq. (4.60), we obtain

Φ (∆γ) = 3

(
2µ

ζs (∆γ)

)2

‖dev
[
εtr] ‖2

+
6κ(σc (∆γ)− σt (∆γ))

ζp (∆γ)
tr
[
εtr]

− 2σc (∆γ)σt (∆γ)
!

= 0

(4.61)

This is a nonlinear equation that has to be solved for the plastic multiplier ∆γ.
This is done, using a local Newton iteration scheme taking into consideration
the other equations from box 4.1. Coming back to the elastic-plastic stress split
(cf. Eq. (4.58)), the most apparent relation is the definition of the increment of
plastic strain that can be read as

∆εp = ∆γ

(
3

dev [σtr]

ζs
+

2

9
α

tr(σtr)

ζp
1

)
(4.62)

using the definition for the plastic flow directionN (cf. Eq. (4.25)). With this, the
increment of the accumulated plastic strains that have been initially introduced in
rate form (cf. Eq. (4.20)), can now be written as

∆εPacc =
√
k‖∆εp‖=

√
k∆γ

√
72µ2

ζ2
s

dev [εtr] : dev [εtr] +
4

27

(
κα

ζp
tr [εtr]

)2

. (4.63)

The above formulation is important later to describe the materials hardening
behavior. Note that so far all quantities are only dependent on the trial strain εtr

and the plastic multiplier ∆γ. Thus, since the trial strains are constant over one
increment and there exists no closed form solution for ∆γ, a local Newton-Raphson
iterative update scheme has to be devised that solves the above equations for ∆γ.
Following the reasoning of the return mapping algorithm, where the equilibrium
state Φ(∆γ) = 0 is in demand, we define for the present case the residual rΦ for a
frozen deformation state ε at time tn+1 as

rΦ = Φ(∆γ)
!

= 0 (4.64)

The basis for a Newton iteration is the linearization of the residual function

Lin {rΦ} (∆γ,∆∆γ) = rΦ(∆γ) + c∆∆γ
!

= 0. (4.65)

where the local tangent of the Newton iteration is defined as

c =
∂rΦ (∆γ, σc (∆γ) , σt (∆γ))

∂∆γ
. (4.66)

The plastic multiplier is then updated according to

∆γ ⇐ ∆γ + ∆∆γ (4.67)
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or in other words

∆γ ⇐ ∆γ − rΦ(∆γ)c−1. (4.68)

This update will be performed until convergence is obtained, i.e. ‖rΦ(∆γ)‖≤ εtol.

4.1.5.2 Update of macroscopic damage variable

Parallely to the update of the plastic evolution, the damage activation criterion
from Eq. (4.41) is checked in each increment. Since plasticity and damage are
assumed not to be coupled in terms of dissipative processes, the material point
is evaluated in an elastic-plastic-damage order. As soon as damage has been
activated, the calculation of plastic evolution is skipped and the plastic strain
remains constant. Up to that point, the material behaves purely elasto-viscoplastic.
Analogously to the return mapping algorithm for plastic strain, an update of
elastic strain

εe = εn +∆ε− εp (∆γ) (4.69)

and resulting new trial stress

σ0 = C0 : εe (4.70)

is performed, that is used to evaluate damage evolution. In the case of active
damage propagation, the internal variables r and consequently d are updated
according to Eqs. (4.45) and (4.46). For a geometrically non-linear analyses the
mesh adjustment parameter Am has to be calculated in every time increment. A
more detailed description of the integration method is not given at this point, but
it is referred to the implementation presented in the work of MAIMÍ et al. [245]
(cf. also Appendix B.1). With the damage variable being known, the damaged
stiffness tensor can be updated according to Eq. (4.37) and finally the damaged
stresses are computed by Eq. (4.49).

4.1.5.3 Determination of the consistent algorithmic tangent operator

In order to obtain a robust convergence behavior in the commercial software
package Abaqus, the global Newton-type iterative scheme requires a proper
definition of the global algorithmic tangent. With the definition of the tangent
being the sensitivity of the stresses with respect to the strains the operator can be
defined by

Ct = ∆εσ =
dσ
dε

. (4.71)

In terms of the stresses defined in Eq. (4.52) the tangent can be rewritten as

Ct = (1− d)C0 : (Isym − ∂εp

∂ε
)− (C0 : εe)⊗ ∂d

∂ε
(4.72)

being able to separate again plastic and damage effects. Knowing that the plastic
strains defined in Eq. (4.54) are a function of the plastic multiplier and the flow
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direction, we can extend the derivation

∂εp

∂ε
=
∂ [εp (∆γ,N )]

∂ε
=

∂εp

∂∆γ︸ ︷︷ ︸
(i)

⊗ ∂∆γ

∂ε︸ ︷︷ ︸
(iv)

+
∂εp

∂N︸︷︷︸
(ii)

:
∂N

∂ε︸︷︷︸
(iii)

. (4.73)

From here it becomes clear that Eq. (4.73)(i-iii) are rather easy to find

∂εp

∂∆γ
= N + ∆γ

∂N

∂∆γ

∂εp

∂N
= ∆γIsym

∂N

∂ε
= C0 :

(
3Psym +

2

9
α (1⊗ 1)

) (4.74)

with Psym being the symmetric deviatoric projection tensor, whereas the deter-
mination of (4.73)(iv) is problematic since ∆γ is solved iteratively in the Newton-
Raphson scheme described in Section 4.1.5.1 and thus no analytical formulations
for the plastic multiplier and its derivations exists. Exploiting however the persis-
tence condition implying the steady fulfillment of vanishing residuum defined
in Eq. (4.64), this situation can be alleviated by applying the implicit functional
theorem (in analogy to GOEKTEPE [126]). Therefore, the total derivative of the
residuum must also be zero at any given instant of the deformation,

dεrΦ
!

= 0. (4.75)

Extending the formulation of Eq. (4.75)

dεΦ =
∂Φ

∂ε
+

∂Φ

∂∆γ

∂∆γ

∂ε
!

= 0 (4.76)

a substitute for the wanted expression

∂∆γ

∂ε
= −∂Φ

∂ε

[
∂Φ

∂∆γ

]−1

(4.77)

is obtained. This can be inserted into Eq. (4.73). The derivation of the yield surface
Φ being defined in Eq. (4.61) with respect to the total strain ε reads

∂Φ

∂ε
=

6

ζ2
s (∆γ)

∂J tr
2 (εtr)

∂ε
+ 2

I tr
1 (εtr)

ζp(∆γ)

(
∂σc(ε

tr,∆γ)

∂ε
− ∂σt(ε

tr,∆γ)

∂ε

)

+ 2
(σc (εtr,∆γ)− σt (εtr,∆γ))

ζp (∆γ)

∂I tr
1 (εtr)

∂ε

− 2

(
σc
(
εtr,∆γ

) ∂σt (εtr,∆γ)

∂ε
+
∂σc (εtr,∆γ)

∂ε
σt
(
εtr,∆γ

))

114



4.1 Constitutive modeling of polypropylene matrix

where

∂J tr
2

∂ε
= 4µ2dev

[
εtr] and

∂I tr
1

∂ε
= 3κ1. (4.78)

The derivation of the yield strengths (σc,t) with respect to total strain ε are based on
the definition for hardening, which is a function of the increment of accumulated
plastic strain (cf. Eq. (4.63)). The part of the tangent concerning macro damage has
to be further investigated. The total derivations of d with respect to total strains
can be rewritten as

∂d

∂ε
=
∂d

∂r

∂r

∂ε
. (4.79)

In the case of active damage evolution (F d = 0) it becomes obvious from equa-
tion (4.41) and the definition of the threshold parameter r (cf. Eq. (4.45)) that

r = Φd(εe). (4.80)

Therefore, the missing derivation ∂εr can be determined as

∂r

∂ε
=

3

XcXt

∂J tr
2

∂ε
+

(Xc −Xt)

XcXt

∂I tr
1

∂ε

=
12µ

XcXt
dev [εe] +

3κ (Xc −Xt)

XcXt
1

(4.81)

4.1.6 Transformation to a large deformation setting

Decomposing total strains additively into elastic and plastic parts is a typical fea-
ture of the geometrically linear theory of plasticity. The classical approach using
the Lee-Kröner decomposition of the deformation gradient yields a stress-free
relaxed intermediate configuration described by its metric tensor Ḡ. Consistent
with this multiplicative decomposition, MIEHE et al. [268] propose an additive
definition of total strains in the logarithmic strain space, hence giving a possibility
to transfer material definitions given in Hencky strains to a logarithmic setting. A
comparison shows the closeness of solutions obtained by the additive finite plas-
ticity in the logarithmic strain space and the results given by classic multiplicative
approaches. Hereby, both isotropic and anisotropic cases have been investigated.
With the assumption that total and plastic deformations are coaxial, i.e. C andGp

commute, this approximation yields close results to a fully multiplicative form
εe ≈ ε̄e=1

2
ln[F p-TCF p−1] with the right Cauchy-Green strain measure C=F TgF

and the plastic part of the deformation gradient F p. The framework defined in
the following was used throughout this work, extending the original form by its
application in the context of viscoplastic material as shown in MIEHE [277]. For
the present case, the logarithmic Lagrangian elastic strain split can be defined by

εe =
1

2
ln [C]− εp with ε =

1

2
ln [C] . (4.82)
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The internal variable of plastic strains is defined as

εp =
1

2
ln [Gp] (4.83)

where Gp=F pTḠF p is the plastic metric equivalent to the Cauchy-Green strain
measure and within this framework the primary variable for plastic deforma-
tion. Ḡ is the metric tensor on the intermediate plastic configuration. The major
characteristics of the proposed logarithmic framework is its modular structure:

1. Geometric pre-processor: Strain measures for total and plastic deformations are
defined in the logarithmic space according to Eqs. (4.82) and (4.83).

2. Constitutive model: Here, constitutive equations in accordance to the geometric
linear theory as described above are defined. The strain measure ε and the
set of internal variables q are used as input for the proposed model, yielding
finally stress and tangent moduli entities in the logarithmic space.

3. Geometric post-processor: After the computation of the relevant objects in
the logarithmic domain, a mapping to their desired stress measures and
tangent moduli is required. This is made possible by purely geometrical
considerations and taking into account the consistency of local stress powers

wint = g : P : Ḟ = σ : ε̇. (4.84)

MIEHE & LAMBRECHT [276] show that by applying the chain rule for the
time derivation

ε̇ =
∂ε

∂F
: Ḟ = P : Ḟ (4.85)

a fourth order stress projection tensor P=∂Fε can be identified. A de novo
time derivation of the projection tensor

Ṗ = L : Ḟ (4.86)

yields the sixth order projection tensor L=∂FFε such that the tangent moduli
from the logarithmic domain Ct are projected by

C = PT : Ct : P+ σ : L. (4.87)

MIEHE & LAMBRECHT [276] provide a thorough presentation of the necessary
algorithms to determine the projectors P and L.

116



4.2 A material model for unidirectional fiber-reinforced polypropylene

4.2 A material model for unidirectional fiber-reinforced polypropylene

Woven materials consist of two basic constituents, fibers and matrix. A main issue
in modeling these kind of materials is the incomplete set of test data due to de-
formation modes not accessible through experiments. To overcome this problem,
a virtual material characterization framework is set up, taking into account the
microstructure of the materials (cf. Fig. 1.1). For the upcoming steps in the multi-
scale analysis, a homogenized material model considering anisotropic damage
initiation and progression is necessary to predict the behavior of the impregnated
rovings within the woven composite. By definition, the embedded fiber yarn
is considered to be initially transversely isotropic with the preferred direction
along the fiber axes. However, the symmetry class changes due to introduction of
anisotropic damage. The relevant failure modes found in literature and during the
experimental analysis are considered via direction-dependent failure criteria. This
formulation allows furthermore the distinction of tensile/compressive asymmet-
ric failure behavior. This section introduces therefore a fully three-dimensional
continuum damage model for impregnated rovings, representing parallel fiber
arrangement embedded in a thermoplastic matrix. Since on the macroscopic
level the woven structure experiences large deformations, especially in the form
of rotations, these motions have to be accounted for and reasonably described
on the mesoscopic scale. To this end, a thermodynamically consistent constitu-
tive model in the finite strain setting with the capability of predicting damage
onset and evolution is derived here. A general framework to formulate elastic
degradation and damage at small strain was presented by CAROL et al. [51] as an
example. Extensions towards a formulation of large strains in a Lagrangian setting
is presented in the following section. Assuming an initially transversal isotropic
material behavior while being undamaged, an elastic constitutive formulation for
large strain deformations is derived.

4.2.1 Transverse isotropic ground-state elasticity

Transversal isotropy is defined by the invariance of constitutive equations de-
scribing a material as a result of rotations around a principal symmetry axis A
acting as the normal of the transversely isotropic plane. For the present case, this
direction can conveniently be identified by the fiber axis. The principal symmetry
axis in the reference configuration Bm is described by a normed contra-variant
vector A = {AI}I=1,2,3; ‖A‖= 1. Its deformed counterpart in the current config-
uration Bs(B0) can be written as a contra-variant vector a = {ai}i=1,2,3. The two
representations are connected via the deformation gradient F by the tangent map

a = FA. (4.88)

Figure 4.4 depicts the valid kinematics of the principal symmetry axis of a transver-
sal isotropic material in the framework of large deformations. The knowledge of
the direction of local reinforcements allows the formulation of the (transversal
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isotropic) structural tensors

M = A⊗A or m = a⊗ a (4.89)

which are in general a function of the chosen coordinate system and the symmetry
properties of the material under investigation. In a general formulation, the
purely elastic free energy function Ψ0 is introduced as a function of the right
Cauchy-Green deformation tensor C and the structural tensorM , thus directly
containing the information about the materials orientation (cf. SCHRÖDER [346]).
The requirement of objectivity states, that the free energy function is invariant
with regard to orthonormal transformations R and therefore has to fulfill the
condition (cf. TRUESDELL & NOLL [389], LURIE [242], SUHUBI [365], RIVLIN &
ERICKSEN [336])

Ψ0 (C,M) = Ψ0 (R ∗C,R ∗M ) ∀ R ∈ R
3 (4.90)

where the operator ∗ denotes the Rayleigh product. The first step in order to
obtain a geometrically non-linear transversely isotropic material formulation is to
substitute the deformation tensor of a linear formulation by the Green deformation
tensor E = 1

2
(C −G). G denotes the metric tensor of the underlying base system.

For an isotropic case, this corresponds to the St. Venant material, according to
SCHROEDER [346]. Furthermore, the author provides the extended formulation of
the free energy function for a transversal isotropic material in a Lagrangian setting
as a function of the Cauchy-Green strain

Ψ0 (C,M ) = Ψ0
iso (C) + Ψ0

aniso (C,M ) (4.91)

𝒙𝑿

𝒪
𝒆1

𝒆2

𝒆3

𝑨

𝒂

𝑭

𝜑(𝑿, 𝑡)ℬm

ℬs

Figure 4.4: Kinematics of transversal isotropy at large deformations. Due to a deformation, the
initial fiber direction A is transformed to a direction a in the current configuration. The deformation
is described by the tangent map with the deformation gradient F .
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where the isotropic and anisotropic contributions can be written as

Ψ0
iso (C) =

1

8
λ (tr [C]− 3)2 +

1

4
µT
(
tr
[
C2
]
− 2tr [C] + 3

)
Ψ0

aniso (C,M) =
1

4
α (ACA− 1) (tr [C]− 3) +

1

8
β (ACA− 1)2

+
1

2
(µL − µT )

(
AC2A− 2ACA+ 1

)
.

(4.92)

The five independent material parameters λ, µT , µL, α and β hereby completely de-
scribe transversal isotropy. Applying Coleman’s method, the second Piola-Kirchhoff
stresses S0 can be identified following the standard arguments by

S0 = 2
∂Ψ (C,M )

∂C
= 2

∂Ψ0
iso (C)

∂C
+ 2

∂Ψ0
aniso (C,M)

∂C
= S0

iso + S0
aniso. (4.93)

The contributions in the reference configuration read then

S0
iso =

1

2
λ (tr [C]− 3)

(
G−1

)
+ µT

((
G−1

)
C
(
G−1

)
−
(
G−1

))
S0

aniso =

[
1

2
α (tr [C]− 3)− (µL − µT ) +

1

2
β (ACA− 1)

]
A⊗A

+
1

2
α (ACA− 1)

(
G−1

)
+

1

2
(µL − µT )ΞS

(4.94)

with

ΞEF
S =

(
AE
(
G−1

)FC
+ AF

(
G−1

)EC)
CCDA

D

+ AACAB

((
G−1

)BE
AF +

(
G−1

)BF
AE
)
.

(4.95)

The Kirchhoff stresses are obtained by a push-forward operation (�) of S onto the
current configuration

τ 0 (b,m) = F � S0 (C,M) = FS0 (C,M )F T = τ 0
iso (b) + τ 0

aniso (b,m) . (4.96)

A detailed notation of τ 0
iso and τ 0

aniso as a function of the finger tensor b and the
deformed principal symmetry axis a is given in SCHRÖDER [346] and is not
repeated here. Further differentiation of Eq. (4.93) with respect to the deformation
measure gives the transversal isotropic elasticity tensor

C0 = 4
∂2Ψ0 (C,M)

∂C2 = C0
iso + C0

aniso. (4.97)

119



4 Constitutive modeling of constituents and composites

The contributions can be written as

C0
iso = λ

(
G−1

)
⊗
(
G−1

)
+ 2µT I

sym

C0
aniso (M) = α

(
A⊗A⊗

(
G−1

)
+
(
G−1

)
⊗A⊗A

)
+ βA⊗A⊗A⊗A+

1

2
(µL − µT )X

(4.98)

with

(Isym)EFGH =
1

2

((
G−1

)EH (
G−1

)FG
+
(
G−1

)EG (
G−1

)FH) (4.99)

and

XEFGH = AE
(
G−1

)FG
AH + AE

(
G−1

)FH
AG

+ AF
(
G−1

)EG
AH + AF

(
G−1

)EH
AG

+ AG
(
G−1

)HE
AF + AG

(
G−1

)HF
AE

+ AH
(
G−1

)GE
AF + AH

(
G−1

)GF
AE.

(4.100)

The spatial counterparts are again obtained by performing a push-forward operation
according to SCHRÖDER [346] as

c (b,m) = F � C0 (C,M ) = ciso + caniso. (4.101)

The formulation of the elastic moduli according to Eq. (4.97) yields a structure
known from Hooke’s law at small deformations

S0 = C0 (M ) : E. (4.102)

Equation (4.102) allows the computation of the linear elastic material behavior in a
geometrically non-linear framework. C0 (M) depicts the standard representation
of a pristine transversely isotropic stiffness tensor, specified by the five indepen-
dent material parameters and the structural tensorM . Written in Nye notation,
and assuming the preferred direction to be AI = [1, 0, 0]T, the symmetry properties
become apparent

C0 =


λ− 2µT + 2α + β + 4µL λ+ α λ+ α 0 0 0

λ+ α λ+ 2µT λ 0 0 0
λ+ α λ λ+ 2µT 0 0 0

0 0 0 µL 0 0
0 0 0 0 µL 0
0 0 0 0 0 µT

 . (4.103)

A comparison of the coefficients with the stiffness tensor consisting of engineering
constants (E‖ = E1, E⊥ = E2 = E3, G‖ = G12 = G13, G⊥ = G23, and the in-plane
Poisson’s ratio ν = ν12 = ν13 and the isotropy assumption ν⊥ = ν23 = ν32) yields
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the following relations

α = −
2

((
1 +

(ν − 1)

2G⊥

)
E‖ − E⊥ν2

)
G⊥(

1
2

E⊥

G⊥
− 2

)
E‖ + 2E⊥ν2

β =
2G⊥β

∗((
1
2

E⊥

G⊥
− 2

)
E‖ + 2E⊥ν2

)
E⊥

µL = G‖

µT = G⊥

λ =

2

(
E⊥ν

2 + E‖

(
1

2

E⊥

G⊥
− 1

))
G⊥(

1

2

E⊥

G⊥
− 2

)
E‖ + 2E⊥ν2

.

(4.104)

with

β∗ =

(
1

4

E2
⊥

G2
⊥
− E⊥
G⊥

)
E2
‖ + ν2

(
1− 4

G‖
G⊥

)
E2
⊥

+

((
ν

G⊥
− G‖
G2
⊥

)
E2
⊥ +

(
4
G‖
G⊥
− 1

)
E⊥

)
E‖.

(4.105)

With the elastic moduli, the corresponding stresses can be computed.

4.2.2 Failure mechanisms and three-dimensional failure criteria

The evolution of damage depends on the strain states during loading and is
therefore a continuous process. The onset of this progression is determined by
the evaluation of failure criteria, which indicate a single event of failure in the
material. Such formulations allow the extension towards a progressive damage
formulation, thus introducing corresponding damage modes. The mechanical
failure behavior of unidirectional composites and major failure modes have been
described in Section 2.3.2. As a result taken from these observations, it can be
concluded that failure occurs in different forms and sizes, strongly depending on
the active loading condition and the loading direction. One of the major issues
for the homogenized modeling of the onset and propagation of damage in fiber
reinforced plastics is the setup of constitutive equations that capture the mate-
rials microstructural behavior and associated anisotropic failure behavior. The
main task of a realistic computational model is therefore to establish if, when and
how damage occurs and to give a sound prediction of how the material behav-
ior changes with further damage evolution. For the present case the anisotropic
manner of failure has to be respected and reflected in the choice of relevant failure
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criteria. Hereby, four different failure modes are considered which are summa-
rized in Table 4.1. The manifestation of each mode has to be predictable for any

Table 4.1: Considered failure modes in the material model for unidirectional fiber-reinforced
composite. Display of nomenclature used throughout this work as well as a model representation
of the failure manifestation. Images taken and modified from KNOPS [195].

Notation Failure mode Manifestation

FF+ Tensile fiber failure

FF− Compressive fiber failure

IFF+ Tensile inter-fiber failure

IFF− Compressive inter-fiber failure

given three-dimensional loading case and is treated as a distinct state in the load
history, where a certain combination of stress components reaches a maximum.
Therefore, in analogy to the procedure already introduced in Section 4.1, scalar
functions (criteria) are formulated for each failure mode. Due to their predominant
importance, a combination of the three-dimensional failure criteria by PUCK [319]
and the LaRC04 criterion (cf. PINHO [315]), modified according to MAIMÍ et
al. [247], has been chosen. In order to distinguish whether a certain loading
scenario leads to failure, the stress-dependent scalar effort value φi is introduced,
where i ∈ {FF+, FF−, IFF+, IFF−} represents the different failure modes. The
failure planes for modes I and II are related to failure in fiber direction whereas
modes III and IV are associated with the matrix dominated failure occurring on
one distinct action plane. The latter has to be chosen from the set of the transver-
sal isotropic planes and is identified as the plane with the highest probability of
failure, following the theory of Puck’s action plane concept. The stresses acting
on the action plane are displayed in Fig. 2.9. The orientation of the potential
fracture plane is characterized by the action plane angle Θ, giving the inclination
of the normal xn. Table 4.2 summarizes the implemented effort functions that
characterize fiber and inter-fiber failure. Please note, that for the given case of
rotations around the fiber axis, the normal and shear stress components Snn, Sn1,
and Snt on the tangential action planes are functions of S22, S33, S12, S13, and S23

but not S11. Hence failure modes III and IV are independent of stresses in fiber
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4.2 A material model for unidirectional fiber-reinforced polypropylene

Table 4.2: Implemented effort functions to characterize fiber and inter-fiber failure. In the present
model four different failure mechanisms are considered: Fiber failure due to tensile and compressive
load, φFF+ and φFF− (cf. MAIMÍ et al. [247], DEUSCHLE [90]), and inter-fiber failure due to tensile
and compressive load, φIFF+ and φIFF− (cf. PUCK [319]).

Mode Effort value Condition

FF+ φFF+ =

(
S11

R+
‖

)2

S11 ≥ 0

FF− φFF− =

(
S11

R−‖

)2

S11 < 0

IFF+ φIFF+ =

√(
1
R+
⊥
− p+

⊥Ψ

RA
⊥Ψ

)2

S2
nn +

(
Snt

RA
⊥⊥

)2

+

(
S−n1

RA
⊥‖

)2

+
p+
⊥Ψ

RA
⊥Ψ

Snn Snn ≥ 0

IFF− φIFF− =

√(
p−⊥Ψ

RA
⊥Ψ

)2

S2
nn +

(
Snt

RA
⊥⊥

)2

+

(
S−n1

RA
⊥‖

)2

+
p−⊥Ψ

RA
⊥Ψ

Snn Snn < 0

direction. On the other hand, failure in fiber direction (I and II) is solely caused
by S11. In order to take into account differing tensile and compressive failure
behavior, the given criteria are formulated unilaterally. These equations put into
context the active stress state S with a set of strength parameters, valid in different
directions depending on the orientation of the action plane. In fiber direction
the damage onset is characterized by the tensile and compressive strength, R+

‖
and R−‖ respectively. The choice of such effort functions is a strong simplification,
neglecting kinking and buckling effects of fibers, especially under compression.
Perpendicular to the fibers, Puck’s proposition of three-dimensional effort func-
tions are used, incorporating several strength parameters valid on the transversal
isotropic planes. According to PUCK [319] they take the form

R+
⊥ Resistance of the action plane against failure due to

normal tensile loading S+
nn

RA
⊥⊥ Resistance of the action plane against failure due to

shear on the transversal plane Snt
RA
⊥‖ Resistance of the action plane against failure due to

shear in fiber direction Sn1

A graphical display of the failure surfaces regarding inter-fiber failure in the
domain of second Piola-Kirchhoff stresses as well as the indication of the corre-
sponding strength parameters is given in Fig. 4.5. Additionally, an interpolation
term including RA

⊥Ψ is defined by

p±⊥Ψ

RA
⊥Ψ

=
p±⊥⊥
RA
⊥⊥

cos2 Ψ +
p±⊥‖

RA
⊥⊥

sin2 Ψ (4.106)

with

Ψ = arctan
Sn1

Snt
and p−⊥⊥ = −

cos
[
2Θ̂fp

]
1 + cos

[
2Θ̂fp

] . (4.107)
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a

Sn1

Snt

Snn

b

Sn1

Snt

Snn

Figure 4.5: Failure surfaces for inter-fiber fracture formulated in terms of second Piola-Kirchhoff
stresses and depiction of material strength parameters. (a) Capped failure surface under tension. (b)
Paraboloidal failure surface for compressive failure. Images taken and modified from PUCK [319].

Hereby Θ̂fp corresponds to the measured action plane angle appearing under
transverse compressive failure. Furthermore, it is assumed that p+

⊥⊥ = p−⊥⊥. p±⊥‖
are the inclination parameters introduced by PUCK [319].

4.2.3 Modelling ultimate damage

In order to assess damage initiation, the damage activation function Fi is introduced,
corresponding to the formulation of the failure criteria

Fi = φi − ri ≤ 0 ∀ i ∈
{
FF+, FF−, IFF+, IFF−

}
. (4.108)

If Fi is less than 0, the material sees no further damage due to the corresponding
failure mode (i). When Fi reaches 0, damage evolution is active and a set of
damage variables is computed. The damage threshold value ri, initially 1, must
satisfy the Karush-Kuhn-Tucker conditions

ṙi ≥ 0, and Fi ≤ 0, and ṙiFi = 0 (4.109)

in order to guarantee thermodynamic consistency. Furthermore, the consistency
condition

Ḟi = 0 if Fi = 0 (4.110)

must be fulfilled at all times. For the evolution of the threshold values, the above
equations can be summarized by

ṙi =

{
0 if Fi < 0

φ̇i if Fi = 0
, (4.111)

which according to SIMO & JU [353, 354] can be integrated explicitly yielding the
representation

ri = max

{
1, max

τ∈[0,t]
{φτi }

}
(4.112)
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4.2 A material model for unidirectional fiber-reinforced polypropylene

with t being the total time. In analogy to a plasticity formulation, the failure criteria
may be interpreted as loading criteria, with the threshold variables ri substituting
the yield stress (cf. MATZENMILLER [257]). The maximum value of φi in time will
define the value of the corresponding damage variable as outlined later on.

4.2.3.1 Damage effect and the concept of effective stresses

Degradation of material stiffness due to damage effects in a continuum framework
is understood as the average effect of microcracks. In accordance with the work
of KACHANOV [184, 183], only the undamaged material between the voids is
subjected to load and therefore transmit stresses. Effective stresses S̃ and effective
strains Ẽ are introduced to quantify those entities. To this end, the behavior of the
remaining (undamaged) material skeleton can be written as

S̃ = C0 : Ẽ and Ẽ = H0 : S̃, (4.113)

where H0 = (C0)
−1 corresponds to the undamaged compliance tensor and C0

is the undamaged stiffness tensor already defined in Eq. (4.102). According to
MATZENMILLER [257] the formulation of the failure criteria should consequently
depend on the effective entities rather than their nominal counterparts. The
task of the damage variables is to relate effective quantities to their externally
measured (nominal) counterparts. Basically three possibilities are available to
establish this relationship, strain, stress and energy equivalence (cf. LEMAÎTRE &
CHABOCHE [220, 223], CORDEBOIS & SIDOROFF [77], CHOW & WANG [72] among
others). Most common is the usage of the theory of strain equivalence, where it is
assumed that effective and nominal strains are equal and stresses differ. Therefore,
Eq. (4.113) simplifies to

S̃ = C0 : E and E = H0 : S̃. (4.114)

The effect of damage is introduced by the fourth-order damage effect tensors M (D)
and B (D) as functions of the damage state D, yielding

S =
[
(M)−1 : C0

]
: E =

[
B : C0

]
: E and E =

[
H0 : M

]
: S, (4.115)

since

S̃ = M : S and S = B : S̃ (4.116)

define the simple relationship between effective and nominal stresses. Despite
the known shortcoming in terms of symmetry of the secant stiffness tensor (cf.
CAROL et al. [52, 53]), this approach is pursued throughout this work due to a
possible straightforward derivation and implementation. The notion of unilateral
failure criteria motivates the introduction of two different crack systems with
associated action planes, active under tensile (D+) and compressive loading (D−)
respectively. In this way the asymmetric behavior under tension and compression
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is considered. Thus, Eq. (4.115)1 can be rewritten as

S =
[(
P+
E : B+

(
D+
)

+ P−E : B−
(
D−
))

: C0
]

: E

=
[
B+
(
D+
)

: C0
]

: E+ +
[
B−
(
D−
)

: C0
]

: E−,
(4.117)

with the projection tensor

P±E =
∂

∂E

[
3∑
I=1

〈EI〉±nI ⊗ nI
]

(4.118)

yielding positive or negative contributions of the strain tensor E

E± = P±E : E. (4.119)

Hereby, Ei and ni are the eigenvalues and eigenvectors of the strain tensor
E. Hence, damage effects active under tensile load manifest only if the strain
tensor contains tensile entries and vice versa. Following the arguments of
CAROL et al. [52], MURAKAMI et al. [285], CORDEBOIS & SIDOROFF [77] and MU-
RAKAMI [283], a symmetric second-order damage tensor is chosen to characterize
the internal damage state D ≡ D±. The index ± allows again the distinction
between damage states active under tensile or compressive conditions. Modes I
and III are respected inD+, whereasD− contains damage variables that evolve
due to damage progression as a result of damage modes II and IV. However, the
notation is neglected for the next few derivations. D varies between zero at the
beginning, corresponding to an undamaged state and unity at the fully damaged
state. An equivalent notation is introduced by the integrity tensor

Υ = 1−D ∧
= δij −Dij (4.120)

behaving in the inverted manner (cf. BETTEN [34] and VALANIS [398]). With
the nominal-effective relations given in Eq. (4.116) the damage effect tensors
can be identified. In order to ensure symmetry of these terms, a product-type
symmetrization is applied, originally proposed by CORDEBOIS & SIDOROFF [77].
This induces the introduction of the square root terms ω (D) of the integrity tensor

Υ = ω2 ∧= ωikωkj. (4.121)

Rewriting Eq. (4.116)2 yields therefore

Sij = ωikS̃klωlj. (4.122)

Taking into consideration the symmetry of S̃, the damage effect tensor B with all
minor and major symmetries is obtained by

B
∧
=

1

2
(ωikωjl + ωilωjk) . (4.123)
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4.2 A material model for unidirectional fiber-reinforced polypropylene

Carefully note the similarity with the symmetric fourth-order identity tensor. The
damage effect tensor in the principal axes of damage in Nye’s notation then reads

B =


Υ1

Υ2

Υ3 √
Υ1Υ2 √

Υ1Υ3 √
Υ2Υ3

 (4.124)

The damaged stiffness tensor can then be formulated as

C = B : C0 =
[
P+
E : B+

(
D+
)

+ P−E : B−
(
D−
)]

: C0. (4.125)

4.2.3.2 Damage evolution law and damage update

Having selected the form of the damage effect tensors, the upcoming derivations
deal with the definition of damage evolution. Following the example of the
damage evolution law already defined for the matrix model (cf. Eq. (4.46)), the
damage variables d̄∗i valid on the action plane Θ (indicated by ·̄) are calculated
according to

d̄∗i = d̄∗i (φi (Θ)) = 1− 1

φi
exp (Ai(Θ) (1− φi)) . (4.126)

A reduction of mesh sensitivity during damage localization is obtained by appli-
cation of the crack band model according to BAZ̆ANT & OH [19]. Therefore, the
adjustment parameters Ai are calculated in such a manner that the equation for
dissipated energy density gi for a monotonous uniaxial test

gi =

∫ ∞
0

∂Ψ

∂d̄∗i

˙̄d∗idt =

∫ ∞
1

∂Ψ

∂d̄∗i

∂d̄∗i
∂φi

dφi =
Gi

l∗
(4.127)

is fulfilled at all times. Hereby, l∗ is the characteristic length of the respective
finite element and Gi is the fracture toughness for the associated loading case. The
numerical implementation is described in more detail in MAIMÍ et al. [245] and
outlined in Appendix B.1. Using the damage variables d̄∗i computed on the active
action plane, the trial damage tensors D̄∗ is obtained. It has three orthogonal
principal directions n̄I with I ∈ [1, 2, 3] and the corresponding principal values D̄∗I .
This formulation allows the interpretation of the damage variables as a measure
for the net area reduction due to damage. It reads

D̄
∗

=
3∑
I=1

D∗In
∗
I ⊗ n∗I = D̄∗ijēi ⊗ ēj =

d̄∗1 0 0
0 d̄∗n 0
0 0 0

 ēi ⊗ ēj. (4.128)

The base vectors n̄I = {ēi}i=1,2,3 define the coordinates of the action plane system
inclined by the angle Θ and correspond to the principal axes of the trial damage.
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The damage variable d̄∗1 corresponds to the failure modes I and II, d̄∗n describes the
damage state due to inter-fiber damage evolution (modes III and IV). The damage
tensors from Eq. (4.128) are then compared to the damage tensors Dn induced
during the load history. In order to obtain thermodynamic consistency (Ḋ > 0),
the damage update has the following form in a general case

D ⇐Dn + ∆D
(
D̄
∗)

= Dn +

〈d̄∗1 − d̄n
1〉+ 0 0

0 〈d̄∗n − d̄n
n〉+ 0

0 0 0

 ēi ⊗ ēj
=

d̄1 0 0
0 d̄n d̄n

nt

0 d̄n
nt d̄n

t

 ēi ⊗ ēj.
(4.129)

Together with the knowledge of Θ, ∆D̄ does not only contain information about
the magnitude, but also the direction of damage evolution.Therefore, D̄ describes
the change of symmetry class and increasing anisotropy. Rewriting the damage
tensor from Eq. (4.129) in the material base coordinates and in the principal system
yields

D =

d1 0 0
0 dn dnt
0 dnt dt

 ei ⊗ ej =
3∑
I=1

DInI ⊗ nI . (4.130)

At this point it is also considered that the damage effect caused under compressive
load is activated under tension as well, since the introduced cracks open under
tension, whereas tensile damage is passive under compressive load. Depending
on the previous state of damage Dn the resulting principal system of damage
does not have to be conform with the principal system of the trial damage, i.e.
in general nI 6= n∗I . Carefully note, that the index ± has not been written here
for reasons of better readability, but applies to all damage entities. In analogy to
Eq. (4.125) the damaged stiffness tensor on the action plane can thus be formulated
according to

C̄ =
[
P̄+
Ē

: B̄+
(
D̄

+
)

+ P̄−
Ē

: B̄−
(
D̄
−
)]

: C0 (4.131)

with C̄ = C0 forD = 0. Back-transformation yields the damaged stiffness tensor
in the material system

C = RT (Θ) ∗ C̄. (4.132)

The damaged stresses can then finally be written as

S = C : E. (4.133)
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4.2.4 Algorithmic treatment

The proposed continuum damage model is implemented in the implicit finite
element software Abaqus/Standard using the user-defined material subroutine
UMAT (cf. SIMULIA [355]). An algorithmically simplified counterpart of the stress
response from Eq. (4.133) is employed. Hereby, the structural tensorM with the
corresponding direction of the reinforcementA is handled as an input variable (cf.
Eq. (4.89)). The material stiffness takes the specific form

C (E,En) = RT (Θ (En)) ∗ C̄ (E,En) . (4.134)

The projection tensors from Eq. (4.131) are redefined as P±
En , being a function of

the deformation state Ēn on the action plane from the previous time increment
n. The analogous assumption applies for the computation of the action plane
angle Θ = Θ

(
Ē

n)
= Θn, and thus also the adjustment parameters Ai (Θn), result-

ing in a significantly simplified formulation for the global tangent operator as
demonstrated later on. SCHIRMAIER et al. [344] recently proposed an enhanced
method to accelerate the search for the action plane angle Θ. However, in this
implementation an arbitrary number of m = 360 effort values φj

(
Ē

n
,Θj

)
with

j ∈ [IFF+, IFF−] at different given Θj ∈ [−90◦, 90◦] are calculated for every time
step. Finally, the configuration resulting in the maximum φj is chosen to be the
valid action plane angle Θ. A straight forward convergence of the calculation in
the implicit framework of Abaqus necessitates the definition of the global tangent
operator, defined as

Ct = ∆ES =
dS (E,En)

dE

=
d

dE
[C (E,En) : E]

= C (E,En) +
∂C (E,En)

∂E
: E.

(4.135)

The partial derivation of the damaged stiffness tensor C with respect to the defor-
mation yields a sixth-order tensor

∂C

∂E
=

∂

∂E

[
RT (Θn) ∗ C̄ (E,En)

]
∧
=

∂

∂EAB

[(
RC

D

)T (
RE

F

)T (
RG

H

)T (
RI

J

)T
C̄CEGI

]
=
(
RC

D

)T (
RE

F

)T (
RG

H

)T (
RI

J

)T ∂C̄CEGI
∂EAB

=
(
RC

D

)T (
RE

F

)T (
RG

H

)T (
RI

J

)T
ACEGIAB.

(4.136)

Keep in mind that the transformation tensors R (Θn) are independent of the
current deformation state. The partial derivation of the active stiffness tensor on
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the action plane in Eq. (4.136) can be further simplified to

∂C̄

∂E
=
∂C̄

∂Ē
:
∂Ē

∂E
(4.137)

with

∂Ē

∂E
=
∂ (R (Θn) ∗E)

∂E
∧
= RO

IR
P
JIOPMN . (4.138)

With C̄
(
Ē, Ēn

)
=
[
P̄+
Ēn

: B̄+
(
Ē
)

+ P̄−
Ēn

: B̄−
(
Ē
)]

: C0, only the derivations of

the damage effect tensor B̄± with respect to the deformation (on the action plane)
stay undetermined

∂C̄
(
Ē, Ēn

)
∂Ē

=

[
P̄+
Ēn

:
∂B̄+

(
Ē
)

∂Ē
+ P̄−

Ēn
:
∂B̄−

(
Ē
)

∂Ē

]
: C0. (4.139)

Analogously for damage effects active under compression and tension, the ex-
ploitation of the chain rule then yields

∂B̄
(
Ē
)

∂Ē
=
∂B̄
(
D̄
)

∂D̄
:
∂D̄

(
Ē
)

∂Ē
(4.140)

and further

∂B̄
(
Ē
)

∂D̄
=
∂B̄
(
Ē
)

∂ω̄
:
∂ω̄

∂Ῡ
:
∂Ῡ

∂D̄
. (4.141)

Taking into consideration Eqs. (4.120) and (4.125), the derivations

∂B̄
(
Ē
)

∂ω̄
∧
=

1

2

(
∂ω̄IK
∂ω̄MN

ω̄JL + ω̄IK
∂ω̄JL
∂ω̄MN

+
∂ω̄IL
∂ω̄MN

ω̄JK + ω̄IL
∂ω̄JK
∂ω̄MN

)
(4.142)

and

∂Ῡ

∂D̄
= −I (4.143)

are rather easy to determine. The remaining contribution in Eq. (4.141) can be
rewritten using the eigenvalue decomposition of Ῡ as

∂ω̄

∂Ῡ
=

∂

∂Ῡ

[
3∑
I=1

(
ῩI

)1/2
nI ⊗ nI

]
. (4.144)

An algorithmic treatment for the derivation of isotropic tensor functions can be
found in MIEHE [274]. The missing contribution in Eq. (4.140) can be identified by

∂D̄
(
φi
(
Ē
))

∂Ē
=
∂D̄

∂φi
:
∂φi
∂Ē

=
∂D̄

∂φi
:
∂φi

∂S̃
:
∂S̃

∂Ē
=
∂D̄

∂φi
:
∂φi

∂S̃
: C0 (4.145)
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using the corresponding case dependent definitions for the effort functions φi
which were formulated in the effective stress S̃

(
Ē
)

on the action plane. After the
computation of the damaged stresses and moduli a push-forward operation is
performed, yielding the corresponding entities (τ and c) on the current configura-
tion. Regarding an implementation of the material model using an Abaqus user
material subroutine (UMAT), the true stresses (Cauchy stresses)

σ =
τ

J
(4.146)

and the corresponding moduli associated to the Jaumann derivation are needed
(cf. MIEHE [266] and BAASER et al. [20]). The latter can be written as

c̃
abcd =

[
c
abcd + δacτ bd + τacδbd

]
/J (4.147)

where J = detF is the determinant of the deformation gradient F .
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4.3 Constitutive modeling of woven fiber-reinforced plastics

Organo sheets consist of a fabric structure embedded in a thermoplastic matrix
material. These are layered composites, where each layer consist of two sets of in-
terwoven rovings (weft and warp), set up in a twill weave pattern. The undulated
glass-fiber reinforcement structures define preferred directions in the material as
depicted in Fig. 4.6. Materials with preferred directions perpendicular to each

Figure 4.6: Change of material orientation due to deformation of a weave reinforced composite.
The display of the matrix domain is omitted.

other are associated with orthotropic symmetry. Deviations from this lead to
different groups of symmetry, e.g. monoclinic symmetry. The principal directions
of the reinforcements are assumed to be initially known, e.g. by drape simulation
or assumptions. However, the application of external mechanical loads results
in a finite change of reinforcement orientation, containing both reversible and
irreversible contributions and hence establishing a differing stress-free state upon
unloading. Hereby, the matrix behavior is related to plastic deformation processes
in the matrix-rich regions of the composite material, i.e. in the interstices of the
rovings. The work proposed here concentrates on the composite formulation of a
constitutive model taking into account the aforementioned kinematic observations.
In crystal plasticity it is often assumed that the initially known preferred directions
(i.e. the crystal latices) do not change with the material directly (cf. RICE [334],
KRÖNER & TEODOSIU [206] and MANDEL [250]). In terms of finite plasticity, this
means that the structural tensors in the intermediate configuration stay constant
and the corresponding yield condition is formulated in terms of the Schmidt stresses
Σ (cf. HILL [162], ASARO [14], CUITINO & ORTIZ [83] or MIEHE [265], among
others). For the present material system, the preferred directions coincide with
the directions of the rovings which change during loading continuously due to
material deformation. In his work, MIEHE [268] states that for such cases a finite
plasticity formulation based on the plastic metric

Gp = F pTḠF p (4.148)

can be formulated. Due to the occurring anisotropy within the chosen material
class, it is hardly possible to find a sound overall formulation for plasticity and
damage onset of the material. To overcome this problem, the approach of the
model presented here is to superimpose two angled preferred directions, coupled
through an isotropic matrix by means of analytical homogenization technique.
Moreover, using the damage models presented before (cf. Section 4.1 and Sec-
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tion 4.2), the incorporation of mechanism-based damage formulations in both the
reinforcements and the thermoplastic matrix is enabled. The overall consistency in
terms of thermodynamics (dissipation inequality) is assumed to be preserved since
the formulations for the phases were developed along these guidelines. To the
knowledge of the author such an approach, combining analytical homogenization
techniques with damage formulations within the single phases, is the first of its
kind, addressing the damage modeling of textile woven composites.

4.3.1 Material orientation and plastic intermediate configuration

In general, the initial structural tensors of a weave can be written asM i = Ai⊗Ai

for each preferred direction i ∈ [1, 2] as displayed in the undeformed weave in
Fig. 4.6. Given an arbitrary deformation expressed in terms of the deformation
gradient F = F eF p, the material orientation may change and will now be aligned
with the deformed structural tensorsmi = ai ⊗ ai. The vectors ai correspond to a
deformed preferred direction (cf. Fig. 4.6, right) and are defined by

ai = FAi. (4.149)

Figure 4.7 depicts that behavior schematically. For thermoplastic basic constituents,

𝒙
𝑿

𝒪
𝒆1

𝒆2

𝒆3

𝑨𝟏

𝒂𝟏

𝑭

𝜑(𝑿, 𝑡)ℬ𝑚

ℬ𝑠

𝑨𝟐

𝒂𝟐

Figure 4.7: Weave kinematics at large deformations. The initial material orientation Ai in the
reference configuration is mapped on its deformed representation ai on the current configuration
by means of the deformation gradient F .

inelastic behavior during loading prior damage effects is observed. In the follow-
ing it is assumed that this behavior is attributed solely to plastic effects in the
matrix (phase index m), resulting in a plastic share of the deformation gradient
F

p
m. In the present case, plasticity in the matrix model is introduced additively

according to Eq. (4.1). Consulting again Section 4.1.6, a relation of the logarithmic
plastic strains εp =

∑3
I=1 ε

p
InI ⊗nI and the plastic metric tensorGp (cf. Eqs. (4.83)

and (4.148)) was defined by MIEHE [277]. Combining the above mentioned equa-
tions, a formulation for the plastic contribution of the deformation gradient can be
found. With the assumption that only the thermoplastic matrix (α =m) outside of
the tows is objected to plastic effects, it reads

F p = F
p
m =

3∑
I=1

F
p
I nI ⊗ nI =

√
Gp (4.150)
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with the eigenvalues

F
p
I =

[
exp

[
2ε

p
I

]]1/2
. (4.151)

This kind of formulation yields a symmetric form for F p, an observation that
was also reported by REESE [333]. As a consequence, the plastic spin remains
undetermined, similar to isotropic elastoplasticity formulations (cf. REESE [332,
333]). The possibility to split the deformation gradient in an elastic and plastic
contribution gives rise to the introduction of the plastic intermediate configuration
in the co-/contravariant domains B̄ and B̄∗ for both metrics and stresses (cf. Fig. 4.8).
Please recall that Bm is the reference or material configuration, whereas Bs denotes

a

𝑿
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 ℬ
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Figure 4.8: Schematic display of co-/contravariant domains for (a) metric and (b) stresses in analogy
to Fig. 2.2. The plastic intermediate configuration is a function of the plastic share of the deformation
gradient F p = F

p
m due to inelastic effects in the matrix material. Failure of tows is evaluated on

this configuration in terms of the Schmidt stresses Σ̄.

the current or spatial configuration. Both entities are defined in the co-variant
domain. Their counterparts in the contra-variant domain can be written as B∗m and
B∗s . The key concept of the presented model is the idea of embedding reinforcement
structures in a thermoplastic matrix by separating the plastic deformation and
the definition of the intermediate configuration. The elastic response and damage
evaluation of the matrix is computed in the reference configuration. By contrast
the elastic response of the reinforcement structures (index ri) are calculated on
the intermediate configuration. In Eq. (4.97) it has been shown that the elastic
response of a transversal isotropic roving is a function of its structural tensor. For
the present case, the normalized preferred directions Ān

i are used therefore for the
weft and warp yarn (i ∈ [1, 2]), respectively. They can be denoted as

Ā
n
i =

F pAi

‖F pAi‖
. (4.152)

The right Cauchy-Green tensor C = F TgF is chosen to describe the deformation
for the overall definition of the continuous weave model in the reference configu-
ration, where g is the metric tensor in the Eulerian configuration (cf. Fig. 4.8).
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4.3 Constitutive modeling of woven fiber-reinforced plastics

4.3.2 Combination of models from lower scales

Having defined the assumed geometrical framework, the computation of stresses
and moduli of the composite follows. The scalar strain energy potential

Ψ = f
(
vm,Ψm (C,Gp (C) , d (C)) , vri ,Ψri

(
Ce (Gp) , Ā

n
i (Gp) ,D± (Ce)

))
(4.153)

is assumed, describing the overall composite as a function of matrix and reinforce-
ment behavior. Hereby, Ψm corresponds to the strain energy function of the matrix
defined within the finite strain framework extension defined in Section 4.1.6 and
Ψri as the strain energy functions of the reinforcements ri formulated on the plastic
intermediate configuration dependent on Ce (cf. Fig. 4.8). Carefully note that,
while Ψm is independent of the preferred directions, Ψri takes Ān

i as input, hence,
introducing preferred directions, since the ground state elasticity of the reinforce-
ment structures are assumed to be initially transversely isotropic. vm and vri in
Eq. (4.153) denote the volume fractions of the matrix and the two reinforcement
phases respectively, with

vm +
n∑
i=1

vri = 1. (4.154)

For the present work a balanced weave is assumed, yielding vr1 = vr2 = vtow/2
(cf. Table 3.32). Standard arguments yield the second Piola-Kirchhoff formulation
defined on the reference configuration for the stresses in the matrix according to

Sm = 2
∂Ψm

∂C
= Sm (C,Gp (C) , dm (C)) . (4.155)

Analogously, the global tangent operator can be expressed as

Cm = 4
∂2Ψm

∂C2 = Cm (C,Gp (C) , dm (C)) . (4.156)

The material behavior of the tows is assessed on the intermediate configuration.
Similar derivations, involving the exploitation of Coleman’s method, yield the
Schmidt stresses in the reinforcements

Σ̄
ri = 2

∂Ψri

∂Ce = Sri
(
Ce (Gp) , Ā

n
i (Gp) ,D± (Ce)

)
. (4.157)

A de novo derivation yields the corresponding moduli

c̄
ri = 4

∂2Ψri

∂Ce2 = c̄
ri
(
Ce (Gp) , Ā

n
i (Gp) ,D± (Ce)

)
. (4.158)

In order to allow the superposition of all stresses, Σ̄
ri and c̄

ri are transferred to the
Lagrangian setting, applying a pull-back operation (�). The stresses and moduli in
the reinforcements written in the reference configuration then read

Sri = F p � Σ̄
ri and Cri = F p � c̄

ri . (4.159)
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4 Constitutive modeling of constituents and composites

The assembly function f in Eq. (4.153) defines the used homogenization tech-
nique and therefore the combination rule of stresses and moduli. For reasons
of simplicity, in the present work the assembly rule according to VOIGT [404] is
used. This hypothesis serves here as a first guidance, even though the internal
microstructure of the weave is not explicitly considered. Other homogenization
schemes, taking into account these geometrical particularities, have been proposed
by many different authors (cf. Section 2.4.3 for a short review). The homogeniza-
tion scheme according to Voigt corresponds to the assumption that all phases
experience the same uniform strain. As already reported, this assumption is
known as the iso-strain assumption in literature. Together with the assumption
of the stress-concentration tensor being Ari = I, the Voigt formulation can be
recovered from Eq. (2.57), yielding the overall formulation for the stresses and
moduli according to

S = vmSm +
2∑
i=1

vriSri (4.160)

and

C = vmCm +
2∑
i=1

vriCri . (4.161)

The here proposed framework allows a straightforward implementation of the
constitutive equations in Abaqus/Standard, using a user-defined material sub-
routine (UMAT). After the computation of Eqs. (4.160) and (4.161) defined on
the reference configuration, a push-forward operation is necessary in order to
obtain the Kirchhoff stresses τ and the corresponding moduli c. Subsequently, the
transformations given in Eqs. (4.146) and (4.147) have to be employed to ensure
compatibility with the Abaqus UMAT interface.
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5 Simulations

The following section focuses on the compilation of the simulative results, where
the structure specified by the multi-scale analysis was also taken into account.
The starting point of the simulations was the generation of the microstructures (cf.
Section 5.1) needed on the distinct scales. Beginning with a parameter fitting of
the basic constituents, the calculations of the deformation and damage behavior
of the unidirectional microstructure (cf. Section 5.2) and woven mesostructure (cf.
Section 5.3) are presented. Finally, the features of the newly proposed macroscopic
material model are demonstrated in Section 5.4. Its behavior with respect to the
change of material orientation under deformation as well as the representation of
damage evolution is reviewed in the course of exemplary virtual tests.

5.1 Generation of virtual microstructures

For the multiscale approach, two virtual microstructures are needed: the represen-
tative volume element characterizing the unidirectionally reinforced composites
and the unit cells standing for the woven composite. For an easier handling of
the simulation models, a python routine was developed in order to embed the
routines of the microstructure generation into the preprocessing framework of
ABAQUS. The application of case-dependent periodic boundary conditions (PBCs)
is described in more detail in Appendix C. For both microstructures, existing
generation methods were used. For the creation of topology data of UD-SRVEs it
therefore is referred to the work of MELRO et al. [259] who developed a three-step
methodology to generate UD microstructures. Described is an iterative process
that is repeated several times to achieve the desired fiber volume fractions. The
single steps of one cycle are named by

1. Hard-core step: Placing new fibers in the control volume

2. Stirring step: Creating free space by shaking the present fibers

3. Compression step: Compacting of existing fibers towards the center

and are demonstrated in Fig. 5.1. The movements within one single cycle are
rather small but due to the big amount of fibers a very dynamic system emerges.
The purpose of steps two and three is the liberation of areas where new fibers
could be placed. In such a way it is possible to attain UD cells with a high volume
fraction of fibers. Figure 5.2 shows the progress of the routine over several cycles.
A further feature for the generation of clustered microstructures was developed
in the course of the present work. Figure 5.3 visualizes the process steps in order
to obtain a clustered geometry. The starting point is a RVE with a high fiber
volume fraction (vf = 63%, cf. Fig. 5.3a). The highlighted green areas in Fig. 5.3b
indicate the randomly chosen cluster centers, which are free to overlap. In the
present case a target fiber volume fraction of vf = 43% was specified. The routine
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5 Simulations

a b c

Figure 5.1: The three steps of one cycle of the generation routine by MELRO et al. [259]: (a)
Hard-core step, (b) stirring step, and (c) compression step.

removes fibers from the RVE that are not in the area of the cluster centers until
the desired fiber volume content is reached. The red fibers in Fig. 5.3b correspond
to the inclusions to be removed. Finally, a control volume with areas of higher
density of fibers and such with lower density forms that differs significantly from
structures with a more even fiber distribution (cf. Fig. 5.4 and Fig. 5.3c). The
routine by MELRO et al. [259] was furthermore extended towards the possibility
to use normally distributed fiber diameters (cf. Fig. 5.4). The user can specify a
standard deviation in addition to the nominal diameter. The basic principals of the
original routine stay unchanged, only the eventual overlap of the fiber volumes
has to be checked depending on the present diameters.
Remark. Despite the possibility of using clustered models with varying fiber
diameters, these options were not used for the following investigations in order to
achieve comparable data records, not being influenced by imperfections on the mi-
crostructure. This option builds the basis for future investigations. Carefully note,
that due to the special case of the prevailing symmetry of UD materials, the prob-
lem of fiber placement in the presented cases is reduced to a two-dimensional one.
The resulting output of the microstructure generation is therefore the information
about the position of the fiber centers and its diameter as well as the size of the rep-
resentative volume. A python routine, developed throughout this thesis, transfers
the created two-dimensional input to ABAQUS, where a three-dimensional model
is created by extrusion along the fiber axis. Further preprocessing operations are
likewise carried out, such as the material assignment, meshing, and the identifica-
tion of the sorted element sets on the boundaries of the RVE, which are crucial for

Figure 5.2: Evolving microstructures during the generation process. By repeating the three above-
mentioned steps the volume fraction of the control volume increases until the designated target
fraction is reached (here vf = 63%).
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5.1 Generation of virtual microstructures

a b c

Figure 5.3: Sequence of actions during the generation of clustered microstructures. (a) Original
microstructure with a high fiber volume fraction (vf = 63%). (b) Randomly placed cluster centers
are highlighted in green. Fibers that are positioned within these centers stay untouched. The red
highlighted fibers belong to the set of fibers that were randomly chosen to be subtracted from the
geometry set. The removal process takes place as long as the desired fiber content does not fall
below a specified value. (c) Resulting clustered UD-RVE with a volume fraction of vf = 43%.

a sound definition of the periodic boundary conditions. The connection between
fibers and adjacent matrix was modeled by a conform mesh. The use of cohesive
zone elements has been dispensed with. During the experimental investigations,
no evidence could be found that failure occurs in the fiber matrix adhesion (cf.
Fig. 3.53), supporting this decision. Figure 5.5 shows a fully meshed UD-SRVE
geometry. TRIAS et al. [387] performed a thorough study on the necessary size of
RVEs, by using several criteria, such as fiber content, effective properties, stress
and strain fields including the probability density function (PDF) of occurring
stress and strain in the matrix , the Hill condition, and distance distributions. To
this end, a parameter δ = a/R ≥ 50 was defined for the minimum size of SRVEs
regarding the computation of plasticity and failure, defined by the RVE side length
a and the radius of the inclusions R. Throughout this thesis, this factor was always
respected. A smaller size was selected for the sake of a better representation for
the upcoming plots. For the following simulations, the fiber diameter was defined
to be df = 13µm. UD-SRVEs for both relevant fiber volume fractions vf,1 = 43%
and vf,2 = 63% were considered.

Figure 5.4: UD-SRVE with normally
distributed diameters (vf = 43%).

Figure 5.5: Discretized geometry of
a UD-SRVE (δ = 30, vf = 43%,
df = 13µm). HEX (C3D20R) and
WEDGE (C3D15) elements were used.

139



5 Simulations

a b

Figure 5.6: (a) Meshed reinforcement structures of a 2x2 twill weave. The single yarns are not
in contact with each other but are separated by small gaps to ensure a successful meshing of the
complete structure. (b) Meshed body of the surrounding matrix. The matrix is connected to the
yarns by a conform mesh, thus sharing nodes on the surface of the yarns. A coarser mesh size is
displayed here for the sake of a clearer representation.

The virtual unit cells for the impregnated (wet) woven composites were created
by using the software package TexGen (cf. SHERBURN [350]). With this tool, a
straight-forward generation of impregnated and dry woven composites is possible.
Thus, twill weaves were created considering the geometric dimensions measured
during the experimental investigations (cf. Table 3.32). Hereby, the weave was
considered to be balanced in terms of both geometry and material properties,
i.e. warp and weft yarns have the same properties. The yarns are modeled as
lenticular-shaped structures not being in contact with each other. The model is
thickened artificially to ensure a meshing of the matrix in the space between two
overlapping yarns. The surrounding matrix shares nodes with the yarns, hence
setting up a conform mesh, where no other interface is necessary nor defined.
Using the integrated meshing tool TetGen, a three-dimensional meshed structure
was obtained (cf. Fig. 5.6). Please note, that the presented mesh is not considered
to be fine enough, but a coarser mesh was chosen here for a better display. Local
material orientation, especially the fiber direction, plays an important role for the
validity of the following simulations and therefore builds an essential input for the
computation. TexGen also provides the local material orientation ({1′, 2′, 3′}) which
can be imported in an ABAQUS computation as it can be seen in Fig. 5.7 for an
exemplary single yarn of a 2x2 twill weave. Hereby, the 1′-direction corresponds
to the fiber axis, which follows the undulation of the yarn throughout its length.
Hereby, the orientation of the rovings is defined piecewise linearly for each element.

1′

2′

3′

Figure 5.7: Imported material orientation of one single yarn. For each element of the yarns a local
material system {1′, 2′, 3′} is defined, where the 1′-direction corresponds to the fiber axis.

Instead of using local coordinate systems, the directional information Ai ∀ i ∈ [1, 3]
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5.1 Generation of virtual microstructures

is passed in the material routine as additional parameters. Internally, the results
are first calculated with respect to the corresponding orientation system and
afterwards transformed onto and saved in the global coordinate system. The
use of TexGen was embedded in a python routine responsible for the completion
of further preprocessing steps, necessary for a FE-simulation. Especially the
identification of the element sets on the surface of the unit cell is taken care of. The
user is free to define three-dimensional or in-plane periodic boundary conditions.
For the simulation results using woven unit cells presented in this work, in-plane
PBCs were used.
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5 Simulations

5.2 Computations on unidirectional unit cell

5.2.1 Parameter identification for matrix material

One principal idea of using a multiscale approach in order to assess and transfer
composite behavior from micro to macro scales is the input of material data on
the lowest scale. In the present case the thermoplastic polypropylene matrix and
the glass fibers are the basic constituents that build up the basis of the following
investigations. In the first step, a parameter identification procedure was carried
out. The input for the fitting process was delivered by the experimental cam-
paign presented in Section 3.2.2 and Section 3.2.3. Here, the polymeric matrix was
tested under uniaxial tension and compression. The main results are summarized
in Fig. 3.9 and Fig. 3.16 consisting of six curves for tension and four curves for
compression loading at different loading rates. An elasto-viscoplastic material
model including an ultimate damage formulation was presented in Section 4.1.
The parameters for that constitutive model were adapted in order to minimize
the resulting error during curve fitting. The available software package LS-Opt
supplied the optimization framework. A polynomial meta model was created
and adapted using the sequential response surface method (SRSM). The objec-
tive of the optimization was the minimization of the least-square error of the
areas underneath the resulting calculated and experimental curves. Furthermore,
the identification of the precise position of the failure onset (εf(ε̇), Rm(ε̇)) was
an objective. Since the rate dependent parameters for tensile and compressive
behavior show a strong connection, all objectives had to be solved in parallel. The
resulting set of material parameters for the thermoplastic matrix are summarized
in Table 5.1. When comparing the calculated material response and experimen-
tally recorded curves, a good agreement is noted and applies both in tension and
compression (cf. Figs. 5.8 and 5.10). The results show the basic properties of the
implemented material model. All curves start with the same stiffness. The point
where the material response becomes non-linear (yield initiation) is dependent on
the strain rate, just like the behavior during increasing plasticization. Finally, the
stress where the material starts to fail (ultimate failure initiation) varies with the
strain rate. Figures 5.9 and 5.11 show a good prediction accuracy when it comes
to ultimate strength, even though this parameter function was not a direct fitting
objective but resulted from the curve fitting.
Remark. Since single glass fibers were not available from the material supplier,
a detailed experimental investigation was not carried out. Standard material
constants for E-glass fibers were taken as summarized in Table 5.1. However
the same subroutine as for the matrix material could be used, deactivating the
viscoplastic features, rendering a purely elastic model which includes the damage
formulation.

5.2.2 Computation of elastic bodies

Having generated the virtual microstructures of the UD-SRVEs, modeled and
characterized the isotropic basic constituents, the first step of simulation is the
assessment of the elastic properties of the given unidirectionally reinforced mi-
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5.2 Computations on unidirectional unit cell

Table 5.1: Identified material parameters for the thermoplastic matrix material and assumed
parameters for the E-Glass fiber material. Parameters with superscript 1 are estimated and such
with 2 are measured.

Neat matrix E-Glass fiber

Elastic
E (in MPa) 1998.85 720001

ν (-) 0.422 0.221

Plastic νp (-) 0.421

Yield onset (tension)

σ0
t,0 (in MPa) 2.62
σ0

t,∞ (in MPa) 14.61
ησ

0
t (-) 39.70

ασ
0
t (-) 0.65

Yield onset (compression)

σ0
c,0 (in MPa) 9.83
σ0

c,∞ (in MPa) 21.86
ησ

0
c (-) 61.92

ασ
0
c (-) 1.09

Yield limit (tension)

σ∞t,0 (in MPa) 29.91
σ∞t,∞ (in MPa) 40.82
ησ
∞
t (-) 9.98

ασ
∞
t (-) 0.59

Yield limit (compression)

σ∞c,0 (in MPa) 44.93
σ∞c,∞ (in MPa) 74.65
ησ
∞
c (-) 4.45

ασ
∞
c (-) 0.49

Hardening evolution (tension)
ωt,0 (-) 70.05
ωt,∞ (-) 101.72
ηωt (-) 150.29

Hardening evolution (compression)
ωc,0 (-) 64.98
ωc,∞ (-) 65.87
ηωc (-) 150.29

Damage onset (tension)

Xt,0 (in MPa) 29.86 21501

Xt,∞ (in MPa) 39.34 21501

ηXt (-) 14.06
αXt (-) 0.63

Damage onset (compression)

Xc,0 (in MPa) 44.37 21501

Xc,∞ (in MPa) 73.96 21501

ηXc (-) 4.33
αXc (-) 0.48

Fracture toughness KIc (in MPa/mm
1
2 ) 4.501 0.901
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Figure 5.8: Comparison of the ma-
terial model response (colored, solid
lines) and the average experimental re-
sults (gray, dashed lines) taken from
Fig. 3.9.
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Figure 5.9: Comparison of measured
ultimate strengths of the matrix mate-
rial at different strain rates under ten-
sion with the model response. Please
note, that no direct fitting on this data
has been done.
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terial model response (colored, solid
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Figure 5.11: Comparison of measured
ultimate strengths of the matrix ma-
terial at different strain rates under
compression with the model response.
Please note, that no direct fitting on this
data has been done.

crostructures under study. Six calculations corresponding to the six uniaxial load
cases are sufficient to determine the full stiffness tensor. The equations of the
numerical homogenization presented in Section 2.2.2 and the homogenization in-
tegrals in Eq. (2.46) relate the far-field strain and/or stress applied to the RVE with
the help of the periodic boundary conditions with the resulting and more complex
stress and strain states within the microstructure. Table 5.2 shows the averaged
elastic properties for two given volume fractions (vf = 43% and vf = 63%). In
total, a number of n = 10 microstructures with a size ratio of δ = 50 were used
for each volume fraction. Assuming initial orthotropic symmetry, the stiffness
tensor can be described by nine independent variables. After computation, the
results show that the symmetry can be reduced further, since Ē2 ≈ Ē3, ν̄12 ≈ ν̄13,
Ḡ12 ≈ Ḡ13, and Ḡ23 ≈ Ē2/(2(1+ ν̄23)) which are the characteristics of a transversely
isotropic material system. The small standard deviations obtained in this study
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5.2 Computations on unidirectional unit cell

Table 5.2: Average of computed elastic properties of n = 10 different unidirectionally reinforced
microstructures with a fiber volume fracture of vf = 43% and vf = 63%. The given nine parameters
can be summarized to a reduced set showing the characteristics of a transversely isotropic medium.

vf = 43% vf = 63%

Ē1 (in MPa) 31923.01 ± 0.25 45924.83 ± 0.29

Ē2 (in MPa) 4972.70 ± 29.92 9724.11 ± 107.76

Ē3 (in MPa) 4966.66 ± 38.56 9702.05 ± 68.94

ν̄12 (-) 0.322 ± 0.001 0.281 ± 0.001

ν̄13 (-) 0.321 ± 0.001 0.280 ± 0.001

ν̄23 (-) 0.595 ± 0.004 0.501 ± 0.003

Ḡ12 (in MPa) 1544.72 ± 9.64 2892.69 ± 26.06

Ḡ13 (in MPa) 1540.34 ± 10.51 2891.69 ± 20.35

Ḡ23 (in MPa) 1557.35 ± 10.42 3164.70 ± 32.74
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Figure 5.12: Three dimensional representation of the elastic body of the unidirectionally reinforced
material with a volume fraction of vf = 63%. The elastic properties are given in Table 5.2.

show (cf. Table 5.2), that the calculation of the elastic properties by numerical
homogenization is a stable process (using big RVEs) and the random placement
of fibers within the microstructure does not play a predominant role at the tested
volume fractions. Figure 5.12 shows a three-dimensional representation of the
elastic stiffness body of the unidirectionally reinforced material under investiga-
tion with a fiber volume fraction of vf = 63%. Similar forms are obtained with
the respective properties of different volume fractions. It becomes clearly visible
that one preferred direction is dominating the elastic behavior of the material.
Furthermore the characteristic of rotational symmetry around the preferred di-
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5 Simulations

rection (x-axis) is recognized. By projecting the three-dimensional stiffness body
onto one symmetry plane, the values of the direction dependent Young’s moduli
can be directly extracted. Figure 5.13a shows the projected stiffness body of a
UD-SRVE with a volume fraction of vf = 43%. Half symmetry is considered
here, and the preferred axis of the composite is aligned with the indicated 0◦-
direction. Results from selected analytical as well as the numerical solution are
depicted. With the numerical solution lying in the interspace of the Voigt and
Reuss solution, a physically reasonable outcome can be stated. Please note that
the Voigt and Reuss solution is isotropic (circle) since the input materials were as-
sumed to be isotropic. Furthermore experimental data is available for the present
volume fraction and is displayed here as an average of the Young’s moduli mea-
sured at different strain rates (cf. Section 3.3). Comparison of the experimental
results with both the numerical and the analytical Mori-Tanaka solution for the
special case of UD materials yields a good agreement in terms of longitudinal and
transverse Young’s moduli. In Fig. 5.13b a comparison of the numerical results
using UD-SRVEs and Mori-Tanaka solutions for two different volume fractions is
displayed (vf = 43% (blue) and vf = 63% (green)). The higher number of fibers
within the control volume yields an increase of stiffness in both longitudinal and
transverse direction. While higher longitudinal stiffness is directly deducable by
the increased cross-sectional area of fiber material, the reason for higher transverse
stiffness lies in the micromechanical circumstances in the matrix between the fibers.
With higher volume fractions the distance of single fibers diminishes and there-
fore the adjacent matrix is exposed to high multi-axial straining yielding a stiffer
composite behavior. While the Mori-Tanaka solution lies in good agreement with
the numerical solution for vf = 43%, the results for vf = 63% show a significant
deviation especially in the transverse direction. The Mori-Tanaka method assumes
a dilute concentration of inclusions and therefore yields an underestimation of
the influence of single fibers towards each other. In contrast, by using micro mod-
els, the superelevation of strain in the interspace of single fibers is immediately
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Figure 5.13: Projection of the elastic stiffness body from Fig. 5.12 onto polar coordinates, where
0◦ corresponds to the preferred axis. (a) Comparison of results obtained by selected analytical
homogenization techniques and the numerical solution as well as the averaged experimental data
from Section 3.3. (b) Comparison of the numerical and Mori-Tanaka (UD) solution at vf = 43%
and vf = 63%.
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considered. A comparison of results obtained by numerical and a selection of
analytical homogenization techniques at different volume fractions is depicted
in Fig. 5.14. Both diagrams show the respective Young’s modulus over the fiber
volume fraction in a semi-logarithmic display. To this end, UD-SRVEs with vol-
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Figure 5.14: Comparison of analytical and numerical homogenization techniques for the calcu-
lation of (a) the longitudinal (Ē‖ = Ē1) and (b) the transverse Young’s modulus (Ē⊥ = Ē2) at
different volume fractions.

ume fractions vf = [10%, 20%, 30%, 40%, 43%, 50%, 60%, 63%] were created and an
elastic investigation was pursued. In Fig. 5.14a the course of the longitudinal
Young’s modulus (Ē‖ = Ē1) is depicted. It can be seen that the Voigt, Mori-Tanaka
and the numerical solution coincide over the whole range of fiber volume fraction,
while the Reuss solution yields stiffnesses that are lower due to the assumption of
a series connection of the single components. Figure 5.14b depicts the course of the
transverse stiffness (Ē⊥ = Ē2) over the fiber volume fraction. While the Voigt and
Reuss solutions are identical to the ones in Fig. 5.14a, the Mori-Tanaka yields a di-
vergent response, due to the consideration of the internal orientation of reinforcing
structures. A similar picture applies to the solutions of the numerical calculations.
For volume fractions vf ≤ 40% the numerical and Mori-Tanaka solution coincide.
Exceeding this threshold the effect of an increasing interference of the single fibers
plays an ever more important role, resulting in diverging results. The investiga-
tions in Section 3.4 showed a volume fraction of vf = 63% in the reinforcing yarns.
However, only UD material with a volume fraction of vf = 43% could be tested
(cf. Section 3.3). The studies in this section demonstrated the possibility of the
prediction of the elastic properties of the unidirectionally reinforced composite by
comparing numerical and experimental results. The assumption applied in the
following is that the numerical approach yields realistic elastic constants for the
material at vf = 63% (cf. Table 5.2) which will be used throughout this thesis.

5.2.3 Plasticity and damage evolution

The material parameters determined in Section 5.2.1 were used to simulate six
different representative loading cases described in the following. Therefore, UD-
SRVEs with a side ratio of δ = 50 were created. The plastic and damage evolution
in the matrix material were solved simultaneously and are depicted in the figures
below for a fiber volume fraction of vf = 43%. For the sake of a clear repre-
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sentation, RVEs with a side ratio of δ = 30 are displayed here and the fibers
where assumed to be purely elastic for all presented cases except for the case of
longitudinal tension. Carefully note, that having implemented the general set of
periodic boundary conditions, any arbitrary loading scenario can be applied on
the RVE and the results here serve solely as a small selection.

5.2.3.1 Transversal tension

Figure 5.15 shows the results of an applied horizontal transversal tension load to a
UD-SRVE with a volume fraction of vf = 43% (cf. Fig. 5.15(a)) and vf = 63% (cf.
Fig. 5.15(b)) in five consecutive steps (1-5) respectively. The top row represents
the damage progression and the one at the bottom row shows the development of
the accumulated plastic strain. The first figure (1) shows the RVE in its pristine
state. In (2) a damage initiation in the material is observable where the stress
state locally exceeds the failure criterion. This process is preferably triggered in
the space between two fibers situated in close vicinity to each other and thus
the tensile hydrostatic stresses are high. From Fig. 5.16 it can be seen that this
process starts around the 50% threshold of the ultimate strength. By increasing the
external load, the existing damaged regions grow, new failure spots are introduced
and existing cracks coalesce (cf. (3)). Comparing Fig. 5.15a and b at stage (3) it
can be stated, that RVEs with a higher volume fraction show considerably more
locations of damage initiation due to the smaller distances in-between fibers and
thus the resulting higher shares of tensile hydrostatic stress. By decreasing the
undamaged volume, a further loss of stiffness is observed, yielding non-linearity
of the stress-strain curve (cf. Fig. 5.16). A localized band of damaged elements
starts to evolve through the RVE (cf. (4)) which is oriented perpendicular to
the external loading direction. Carefully note, that other existing cracks stop
to grow and stay constant eventually. Subsequently, the section of localized
cracks grow further and finally coalesce to a transverse crack throughout the
RVE. The described behavior of the material in the simulation above lies in good
agreement with the reported failure behavior of UD composites in Section 2.3.2
under transverse tensile load. The plastic evolution inside the RVE behaves similar
to the development of the damage variable. Initiating plastic flow occurs in-
between the fibers and progresses from there. As soon as cracks begin to grow
and to coalesce, the areas of high plastic strain rates are located near the crack tips.
Keep in mind for the following observations that as soon as damage evolution is
triggered, further plastic evolution is deactivated in the corresponding element.
Remark. Even though it is talked about cracks at this point here, it must be kept
in mind, that this is synonymous with a band of elements with a highly reduced
stiffness rather than discrete cracks in the sense of material separation.
Additionally to the above mentioned qualitative simulations where the focus lied
on the correct reproduction of the damage mechanism, the homogenized stress-
strain curves performed at three strain rates under investigation were compared
to the corresponding experimental results (cf. Section 3.3). Figure 5.17 shows the
results in terms of stress-strain curves for a UD-SRVE with a volume fraction of
vf = 43% objected to a transverse tensile load at three different loading rates,
(a) 1.25 mm/min, (b) 12.5 mm/min, and (c) 125 mm/min. These correspond to
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Figure 5.16: Resulting stress-strain diagrams for transverse tensile loading of UD-SRVEs with
volume fractions of vf = 43% and vf = 63%. The numbers indicated correspond to the failure
stages depicted in Fig. 5.15: (1) describes the pristine state, (2) is the point of beginning damage
initiation, (3) and (4) show the effect of increasing crack lengths and coalescing cracks, and (5)
indicates the point in the loading history where the resulting crack traverses the whole RVE.

the loading rates applied during the experimental assessment, allowing therefore
a direct comparison. Keeping in mind the viscoplastic behavior of the matrix,
differences in the material response are observed. At the lowest strain rate (cf.
Fig. 5.17a), the plasticity in the matrix dominates the composite behavior in such
a way, that the matrix yields already early on and with the formation of large
plastic strain. To this end, a failure strain results, overestimating the one seen
in the experiments. The failure strength is predicted in good agreement with
the experimental results. In Fig. 5.17b the strain rate influence in the numerical
model becomes visible. Here, the UD-SRVE was loaded by a medium strain rate.
Compared to before, the composite material shows a stiffer response, a lower
degree of non-linearity which is associated to a slower plastic evolution, and a
lower failure strain. The form of the numerical and experimental curves align
in good agreement and also the failure onset is predicted well. By increasing
the strain rate further as shown in Fig. 5.17c the material response takes yet
another form. Also here, the numerical response is in good agreement with the
experimental results. However, the material strength is slightly overestimated.
Summarizing the above mentioned results it can be stated, that the visco-plastic
constitutive model used for the matrix is capable of transferring rate dependent
effects to the composite level. However, using the model parameters determined
from specimens of pure matrix (cf. Section 5.2.1) the model overestimates the

a b c

Figure 5.17: Comparison of numerically and experimentally obtained stress-strain curves for
loading rates of (a) 1.25 mm/min, (b) 12.5 mm/min, and (c) 125 mm/min under transverse tension.
For this investigation a UD-SRVE with a fiber volume fraction of vf = 43% was used.
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rate dependency to some degree compared to experimental results obtained in
Section 3.3, where only a small rate influence was observed. The material strengths
are predicted sufficiently well for the presented case here.

5.2.3.2 Transversal compression

Figure 5.18 shows the result from an UD-SRVE subjected to transversal com-
pression, which is applied horizontally here. Figure 5.18a represents the spatial
distribution of the damage variable dm of the matrix, whereas Fig. 5.18b corre-
sponds to the equivalent plastic strains εp

acc. The regions with a higher degree of
accumulated damage follow a crack pattern that is not aligned with the direction
of the compressive load but is inclined by about Θ = 50◦ with the horizontal
load axis. Inclined crack patterns usually arise when the shear strength is ex-
ceeded. Similar results where observed and reported in the experimental section
of this thesis (cf. Section 3.3) as well as in the literature (cf. Section 2.3). Carefully
note, that the crack growth is accompanied by the formation of plasticized bands
with locally large plastic strains (εp

acc > 10%). Again, the high plastic strains
form preferably in front of the crack tip, once it occurs. Figure 5.19 shows the

a b

Figure 5.18: Results of a UD-SRVE with a fiber volume fraction of vf = 43% objected to a
transverse compressive load. (a) Spatial distribution of the damage variable inside the matrix, (b)
spatial distribution of equivalent plastic strains.

stress-strain curves of the UD-SRVEs subjected to three different loading rates
after homogenization. The influence of the rate dependency of the constitutive
model is observable by the increasing strength values for higher load velocities
rather than the degree of non-linearity of the material responses as it was the case
in the previous example. Structural failure is identified by an abrupt change in
the stress-strain curve and only a small scatter in the material strength can be
observed. Once initiated, crack propagation evolves very fast. The formulation
of damage progression as implemented in the present case has been calibrated
for a uniaxial tensile case (mode I) therefore overestimating the pace of damage
evolution. To this end, the predicted failure strengths are slightly lower than the
experimentally recorded ones. With the damage variable growing too rapidly
inside the RVE, the resulting failure strains do not reach the same extent as in the
experiments.
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a b c

Figure 5.19: Comparison of numerically and experimentally obtained stress-strain curves for
loading rates of (a) 0.5 mm/min, (b) 5 mm/min, and (c) 50 mm/min under transverse compression.
For this investigation a UD-SRVE with a fiber volume fraction of vf = 43% was used.

5.2.3.3 Longitudinal tension

Figure 5.20 shows the stress-strain diagrams of UD-RVEs loaded under longitu-
dinal tension at different strain rates. The material response is perfectly linear
up to failure and no significant difference between the single tests in terms of a
strain-rate effect can be found. This behavior is however not surprising, since the
material response here is dominated by the fibers which has not been modeled to
be rate dependent. Once the stresses in the fibers reach the local strength, damage
is initiated. As soon as the stiffness has been reduced to such an extent that the
matrix is reaching a critical loading state, damage also grows within the matrix.
Interestingly, the matrix damage grows not entirely in the plane perpendicular to
the macroscopic load but also along the fiber axis. This phenomenon is observed
also in literature and is finally referred to as fiber pullout. Figure 5.21 shows the

a b c

Figure 5.20: Comparison of numerically and experimentally obtained stress-strain curves for
loading rates of (a) 5 mm/min, (b) 50 mm/min, and (c) 500 mm/min under longitudinal tension.
UD-SRVEs with a fiber volume fraction of vf = 43% were used.

spatial damage distribution of a quasi fully damaged SRVE due to a longitudinal
tensile load for the fiber and matrix regions respectively.

5.2.3.4 Transversal shear

Figure 5.22 shows the results of a RVE loaded by a symmetrically applied pure
ambilateral transversal shear load. Figure 5.22a hereby represents the resulting
damage pattern within the microstructure. Both horizontal and vertical cracks can
be observed. The regions of localized plastic strains coincide with the ones of high
damaged material (cf. Fig. 5.22b). The resulting stress-strain curve after homoge-
nization is depicted in blue in Fig. 5.22c. Furthermore, an equivalent investigation
was done for a UD-SRVE with a fiber volume fraction of vf = 63%. The homoge-
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a b

Figure 5.21: UD-SRVE with a fiber volume fraction of vf = 43% subbjected to longitudinal
tension. Spatial distribution of the damage variable (a) in the fibers and (b) in the matrix.

nized stress-strain curve is displayed as the green dashed line. Confronting the
two curves, the effect of the higher volume fraction is visible. Apart from the
increased stiffness, the composite with the higher volume fraction yields a slightly
higher ultimate failure strength. Due to the lower matrix share and the smaller
associated plasticity-related effects, a lower strain at failure is observed. More-
over, since the deformation is matrix dominated, a lower degree of non-linearity
manifests.

a b c

Figure 5.22: Results of a UD-SRVE with a fiber volume fraction of vf = 43% objected to a pure
transverse shear load. Hereby, the load was applied symmetrically. (a) Spatial distribution of the
damage variable inside the matrix, (b) spatial distribution of equivalent plastic strains, and (c)
comparison of two resulting stress-strain curves after homogenization for the fiber volume fractions
vf = 43% and vf = 63%.

5.2.3.5 Longitudinal shear

Figure 5.23 shows the results from an applied longitudinal shear load to a UD-
SRVE where a and b correspond to the spatial distribution of the damage variable
and the equivalent plastic strain respectively. The load was applied in such a
manner that the left edge of the RVE was moved into the visible plane along the
fiber direction. This displacement resulted in a sharp crack, i.e. a narrow band
of localized damage and plastic strains in the matrix material. The rest of the
matrix material remained largely intact and only a few areas show slight damage.
Again, the plastic hot-spots coincide with those of damage. Homogenization of
the local stresses and strains within the UD-SRVE yields the resulting stress-strain
curves depicted in Fig. 5.23c for the relevant fiber volume fractions vf = 43%
and vf = 63%. A direct comparison of the two obtained curves shows the
same tendencies as observed in the previous case. Again, the higher volume

153



5 Simulations

fraction leads to a slightly higher material strength as well as a reduced strain at
failure. Due to the less pronounced matrix related effects a reduced non-linearity
is observed.

a b c

Figure 5.23: Results of a UD-SRVE with a fiber volume fraction of vf = 43% objected to a pure
longitudinal shear load. (a) Spatial distribution of the damage variable inside the matrix, (b) spatial
distribution of equivalent plastic strains, and (c) comparison of two resulting stress-strain curves
after homogenization for the fiber volume fractions vf = 43% and vf = 63%.

5.2.3.6 Transversal tension and longitudinal shear

The main advantage of the virtual material characterization is the possibility
of applying a wide range of arbitrary loading scenarios, also those which are
hardly to achieve experimentally. The present loading case is an example for
this. A UD-SRVE was loaded simultaneously by a horizontal transversal tension
and a smaller amount of longitudinal shear. The results are demonstrated in
Fig. 5.24 as the spatial distribution of the damage variable as well as the equivalent
plastic strain. As expected and described by PUCK [319], the fracture plane forms
perpendicular to the tensile load. Plastic strain is mainly observed in the areas of
damage evolution. Homogenization of the local stress and strain states yields the

a b

Figure 5.24: Results of a UD-SRVE with a fiber volume fraction of vf = 43% objected to a
transverse tensile load superimposed by a longitudinal shear load. (a) Spatial distribution of the
damage variable inside the matrix, (b) spatial distribution of equivalent plastic strains.

overall stress-strain curve of the composite. Figure 5.25a shows the resulting curve
for the transverse stress σ̄22 versus the transverse strain ε̄22, whereas Fig. 5.25b
depicts the material response in terms of the shear stress σ̄21 and the corresponding
shear strain ε̄21. Please note the differently scaled ordinate axis of both diagrams.
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Again the investigation was performed for both relevant fiber volume fractions
vf = 43% and vf = 63%. Analyzing Fig. 5.25a, a similar form of the curves as for

a b

Figure 5.25: Homogenized stress-strain curves for UD-SRVEs with a fiber volume fraction of
vf = 43% and vf = 63%. (a) Transverse stress versus transverse strain (σ̄22-ε̄22), (b) Longitudinal
shear stress versus longitudinal shear strain (σ̄21-ε̄21).

the pure transverse tensile load calculated previously can be stated. However, due
to the additional load by the shear deformation, the strength values are slightly
reduced. The interaction of transverse tensile and longitudinal shear loads plays
an important role for the parametrization of the homogenized failure model of
the UD material recently presented in Section 4.2. The resulting effects are further
investigated in Section 5.2.4.

5.2.4 Computation of failure envelope

In Section 4.2, a constitutive model for unidirectionally reinforced fiber composites
was presented taking into account the most prominent damage mechanisms that
are observed experimentally. The appearing failure modes were classified in two
species, along the fiber axis and transversally to it. While the material strengths
for the first can be obtained directly from (virtual) characterization, the latter
considered the three-dimensional failure criterion introduced by PUCK [319]. To
this end, a failure envelope (cf. Table 4.2) described by the material strengths R±⊥
and R⊥‖ as well as the model parameters p±⊥‖, giving the inclination of the failure
surface at σ⊥ = 0, has been implemented. One purpose of the undertaken com-
putations was the virtual characterization of the chosen criterion. In Section 5.2.3
some examples for possible loading scenarios were presented. From there it is a
straightforward operation to extract the set of material strengths as the highest
appearing stresses throughout the analysis. Transversal tension superimposed by
a longitudinal shear at various in different relations defines the failure envelope
defined by PUCK [319]. The computations were conducted using n = 10 different
realization of UD-SRVE microstructures with a fiber volume fraction of vf = 43%
and vf = 63%. In order to discretize the failure surface in a sufficient manner,
m = 21 different ratios of transversal tensile/compressive and longitudinal shears
were defined. Figure 5.26a shows the raw results obtained from this analysis in
τ⊥‖-σ⊥ diagram. The results in red correspond to the UD-SRVEs with a fiber
volume fraction of vf = 43% whereas the blue results represent UD-SRVEs with
vf = 63%. The m = 21 single sets due to discretization as well as the scatter of
the material strength for each loading ratio due to the different microstructure are
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clearly distinguishable. The form of the obtained failure envelope lies in good
agreement with the model of PUCK [319]. Figure 5.26b displays moreover the
analytical formulation of PUCK’s failure criterion for both fiber volume fractions.
The curve was obtained by fitting the descriptive parameters with the help of a
least square error method. The material strengths are marked as triangles. The

a b

Figure 5.26: Representation of the computation results for different load ratios in a τ⊥‖-σ⊥ diagram
for fiber volume fractions vf = 43% and vf = 63%. The failure envelope was discretized by
m = 10 points, each representing a certain load ratio. For each support point n = 10 realization
were analyzed. (a) Display of the raw results, (b) Display of the fitted failure criterion introduced
by PUCK [319] and implemented in Section 4.2. The parameters are summarized in Table 5.3.

resulting strength parameters are given in Table 5.3 together with the material
strengths for transverse shear and longitudinal loads. Please note, that the material
strength for longitudinal compressive loads could not be investigated by using
the UD-SRVEs in the present form. Failure in fiber direction under compressive
is triggered by small misalignments and concomitant buckling effects of single
fibers which was not considered in the present model. Based on the experimental
results presented in Section 3.3, for the following investigations a longitudinal
compressive failure strength was assumed that is three times lower than the tensile
strength. A detailed examination of the related effects must be the subject of future
work.
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Table 5.3: Computed strength properties for unidirectionally glass-fiber reinforced composites
with a thermoplastic polypropylene matrix. The values were determined for two fiber volume
fractions (vf = 43% and vf = 63%) with the help of n = 10 realizations with a side ratio of
δ = 50. The values marked with the superscript 1 are estimates.

vf = 43% vf = 63%

R+
‖ 989.93 1361.63

R−‖ 3301 4601

R⊥⊥ 18.41 21.78

R+
⊥ 22.01 22.12

R−⊥ 47.64 59.87
R⊥‖ 16.12 17.31
p+
⊥‖ 0.19 0.20
p−⊥‖ 0.19 0.20

5.3 Computations on weave reinforced unit cell

5.3.1 Basic features of the homogenized UD model

The work at hand introduces a three-dimensional constitutive model for the
prediction of damage onset and growth in unidirectional reinforced plastics, corre-
sponding to the impregnated rovings in the weaves (cf. Section 4.2). Taking into
account large deformations, stress-based failure criteria and damage evolution
laws are introduced. The proposed model was implemented into the commercial
finite element code ABAQUS using the implicit user material subroutine UMAT.
The capability of taking into account both the tension/compression anisotropy
in damage evolution and the resulting damage effects with respect to different
loading directions is demonstrated in the following by means of selected nu-
merical use cases, involving single element simulation for a fictitious material.
Special attention was paid to the transversal failure modes, while the longitudinal
damage evolution behaves straightforward and is known from many existing
failure models. As a first example, a tensile transverse loading in 2-direction and a
subsequent unloading/reloading scenario is investigated. The resulting loading
cycle is shown in Fig. 5.27. Figure 5.27a shows the stress-strain relation, whereas
Fig. 5.27b depicts the evolution of the damage variable d+

2 that is associated to the
loading direction and the normalized deformation over time. It can be seen that
the proposed model predicts damage onset in loading direction without any pre-
vious inelastic material behavior (O-A). Exceeding the transverse tensile stiffness
R+
⊥, stiffness degradation follows due to damage evolution (A-B). Carefully note,

that only the damage variable d+
2 along the loading direction grows. All other

damage variables (d±1 , d−2 , d±3 ) stay zero. This behavior changes the symmetry
class of the stiffness tensor. During unloading, the degraded stiffness becomes
visible by a reduced secant (B-O). However, the calculated damage variables stay
constant (cf. Fig. 5.27b), which is a requirement for thermodynamic consistency. By
reloading, the material sees a reduced stiffness since the model represents a crack
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opening process of a preexisting crack (O-B). Exceeding the predamaged strength
in B, damage evolution for d+

2 progresses further (Fig. 5.27b) and a continuously
reduced stress response (B-C).

a
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Figure 5.27: (a) Stress-strain response for a loading/unloading/loading (O-A-B/B-O/O-B-C) sce-
nario in transverse direction of a single element. (b) Representation of the normalized deformation
ū2 and the corresponding damage evolution for d+

2 over time.

The second example examines the model response under compressive load rever-
sal and a subsequent tensile load. The loading cycle is depicted in Fig. 5.28, where
Fig. 5.28a shows the resulting stress-strain relationship, while Fig. 5.28b monitors
the evolution of damage and presents the normalized deformation ū2. At first, the
material does not see any degradation of stiffness (O-A). As soon as the stress
reaches the material strength for compression R−⊥ (at A), damage grows (A-B).
In contrast to the first example, damage evolves now not only in the direction
of external load, but, due to the inclination of the damage system by Θ, also in
the perpendicular 3-direction. In the present case, Θ = 45◦ yields a symmetric
evolution of transverse damage, d+

2 = d+
3 = d−2 = d−3 up to point B. The underly-

ing model representation yields that the crack emerging due to external load is
visible throughout the transverse isotropic plane. Note, that damage evolution
in the various directions is highly dependent on the occurring orientation of the
crack system. Once more, the evolution of damage changes the symmetry class of
the stiffness tensor. During unloading (B-O) the crack closes and the calculated
damage state remains unchanged. Due to the introduction of the previously in-
troduced damage (d±2 > 0), the stiffness under a subsequent tensile load stays
reduced (O-C). The model represents an opening process of a preexisting crack.
Up to C the material behaves linearly. Once exceeding the remaining strength,
continued damage progression results in a further decrease of the stiffness, since
the damage variable d+

2 keep growing (cf. Fig. 5.28b). The opposite case is dis-
cussed next. In the third example, a tensile transverse loading/unloading scenario
is followed by a compressive load, both in 2-direction. Figure 5.29a shows the
resulting stress-strain relation, whereas Fig. 5.29b depicts the evolution of the
damage variables d±2 and d±3 and the normalized deformation ū2 over time. The
tensile loading cycle (O-A-B-O) shows a similar behavior as in the first example
when it comes to the material response. In terms of the model representation, a
crack opens perpendicular to the loading direction, decreasing the stiffness under
a tensile load. After unloading, a compressive load is applied upon the single
element. The model representation now states that the preexisting crack is not only
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Figure 5.28: (a) Stress-strain response for a compressive loading/unloading (O-A-B/B-O) fol-
lowed by a tensile loading scenario (O-C-D) in transverse direction of a single element. (b) Repre-
sentation of the normalized deformation ū2 and the corresponding damage evolution for d−2 and
d+

2 over time.

closed but the compressive load results moreover in an active closing of the crack
flanks. Therefore, no reduced stiffness is observed at first (O-C). Once exceeding
the compressive strength R−⊥, further damage is introduced representing shear
damage (C-D, cf. Fig. 5.29b).
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Figure 5.29: (a) Stress-strain response for a transverse tensile loading/unloading (O-A-B/B-O)
followed by a transverse compressive loading scenario (O-C-D) in 2-direction of a single element.
(b) Representation of the normalized deformation ū2 and the corresponding damage evolution for
d+

2 , d+
3 , d−2 , and d−3 over time.

So far only loads in one load direction were presented. The forth example examines
the model response under subsequent transverse tensile loads in two perpendicu-
lar directions. The loading cycle is depicted in Fig. 5.30, where Fig. 5.30a shows
the resulting stress-strain relationship, while Fig. 5.30b represents the evolution of
damage and presents the normalized deformation ū2 and ū3. Similar to the first
example, a linear increase is calculated until the material strength R+

⊥ is reached
(O-A). Exceeding the material strength, damage evolution is initiated, resulting
in a increasingly reduced stiffness (A-B). The reduced stiffness becomes visible
during the unloading path, where the damage variables stay constant. The stress-
strain response is identical for both loading directions. The model concept states
that the two loads in the 2- and 3-direction cause a crack in each case. Since both
cracks are oriented perpendicularly, they do not affect each other, which can be
seen in the unchanged initial stiffness.
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Figure 5.30: (a) Stress-strain response for a transverse tensile loading/unloading (O-A-B/B-O)
in 2-direction followed by a transverse tensile loading scenario (O-A′-B′/B′-O) in 3-direction of a
single element. (b) Representation of the normalized deformation ū2 and ū3 and the corresponding
damage evolution for d+

2 and d+
3 over time.

5.3.2 Computation of elastic bodies

Having generated the virtual microstructures of the woven unit cells respecting
the geometrical parameters given in Table 3.32, modeled and parametrized the
UD model as well as the isotropic matrix, the elastic properties of the weave-
reinforced mesoscopic structure under study can be assessed. Carefully note, that
the height of the unit cell had to be adjusted slightly in order to allow a meshing
in the interspace of two crossing rovings. Equivalent to before, six calculations
corresponding to the six uniaxial load cases were performed in order to determine
the full stiffness tensor. Again, the equations of the numerical homogenization
presented in Section 2.2.2 and the homogenization integrals in Eq. (2.46) relate
the far-field strain and/or stress applied to the unit cell with the help of the in-
plane periodic boundary conditions with the resulting and more complex stress
and strain states within the microstructure. Table 5.4 shows the resulting elastic
properties of the given virtual weave. Assuming initial orthotropic symmetry, the
stiffness tensor can be described by nine independent variables. After computa-
tion, the results show that the orthotropic symmetry class is well represented.
Figure 5.31a shows a three-dimensional representation of the elastic stiffness body
of the weave-reinforced material under investigation in terms of Young’s modulus.
It is clearly visible that two preferred direction are dominating the elastic behavior
of the material corresponding with the preferred directions of the inter-woven
rovings. Orthotropy is defined by an invariance to all rotations about 180◦ around
the orthotropic axes which is reflected well by the given elastic body. By projecting
the three-dimensional stiffness body onto the symmetry plane aligning with the
x-y plane in Fig. 5.31a, the values of the direction dependent Young’s moduli
can be directly extracted. Figure 5.31b shows the projected stiffness body of the
virtual weave. Half symmetry is considered here and the preferred axis of the
composite is aligned with the indicated 0◦- and 90◦-direction respectively. Further-
more, experimental data is available and is displayed here as an average of the
Young’s moduli measured at different strain rates (cf. Section 3.4). Comparison
of the experimental results with the numerical solution yields a good agreement
in terms of Young’s modulus along the preferred axis, even though a slightly
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5.3 Computations on weave reinforced unit cell

Table 5.4: Obtained stiffness parameters by volumetric homogenization of a woven unit cell. The
geometrical parameters were taken from Table 3.32.

Elastic properties

Ē1 (in MPa) 16088.29

Ē2 (in MPa) 15908.79

Ē3 (in MPa) 6271.47

ν̄12 (-) 0.130

ν̄13 (-) 0.501

ν̄23 (-) 0.501

Ḡ12 (in MPa) 1280.42

Ḡ13 (in MPa) 1289.96

Ḡ23 (in MPa) 1554.49

smaller value is obtained. Lower values are also obtained in the 45◦-direction
which can be compared to the results of the ±45◦ off-axis experiments. In both
cases, the cause of the lower stiffness is the artificial additional matrix material in
the interspace of overlaid rovings. For the longitudinal case this yields a higher
sectional matrix share, for the latter the additional matrix allows an easier rotation
of the reinforcement structures with the load direction.
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Figure 5.31: (a) Display of the three-dimensional stiffness body computed from six uniaxial load
cases using a weave-reinforced unit cell. (b) Projection of the three-dimensional stiffness body
in the symmetry plane containing the reinforcing rovings (x-y plane from (a)). Half-symmetry is
considered here. Moreover the stiffness results from the experiments presented in Section 3.4 are
depicted.
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5.3.3 Plasticity and damage evolution

For the following load cases the in-plane formulation of the periodic boundary
conditions (cf. Appendix C) were used. Here, periodicity is assumed only in
the plane of reinforcements and does not apply in the perpendicular z-direction,
which is defined in the thickness of the ply. Four different loading scenarios are
considered: uniaxial tension, in-plane shear, biaxial tension along the rovings, and
a uniaxial tension case that superposed by an in-plane shear.

5.3.3.1 Uniaxial tension

Figure 5.32 shows the stress-strain (σ̄11-ε̄11) curve of a virtual uniaxial tension
test obtained by volumetric homogenization. The load was applied along the
reinforcement axes (horizontal 1-direction). The initial stiffness of the numerical
solution is just slightly lower than the experimental results which agrees with
the previous investigations (cf. Fig. 5.31b). The numbers indicated correspond
to five consecutive loading stages (1-5) depicted in Fig. 5.33. Hereby, the top
row represents the evolution of the equivalent plastic strain εp

acc while the second
shows the isotropic damage variable dm in the surrounding matrix. The last two
rows concentrate on the reinforcement structures. Here, the longitudinal damage
variable d+

1 is displayed in black whereas the transverse damage variable d+
2 is

displayed in orange. The first column (1) shows the unit cell in its pristine state.

2

1

3

4

5

Figure 5.32: Resulting stress-strain diagram (σ̄11-ε̄11) for a transverse tensile load in horizontal
direction of a twill weave reinforced unit cell. The indicated numbers correspond to the failure
stages depicted in Fig. 5.33: (1) describes the pristine state, (2) is the point of beginning transverse
damage initiation, (3) shows increasing transverse damage progression accompanied by plastic
evolution in the adjacent matrix, (4) additional initiation of longitudinal damage in the loaded
rovings, and (5) corresponds to a fully damaged unit cell.

In (2) a initiation of transverse damage in the rovings oriented perpendicular
to the loading direction is observable where the stress states locally exceeds the
implemented failure criterion. Predestined locations of damage onset are the crimp
regions. From Fig. 5.32 it can be seen that this process starts early on compared to
the point of ultimate failure. By increasing the external load, the existing damaged
regions grow across the whole perpendicular rovings. Decreasing the undamaged
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5.3 Computations on weave reinforced unit cell

volume yields an increasing loss of stiffness (cf. Fig. 5.32). By decreasing the
transverse stiffness of the damaged rovings, the adjacent matrix sees increasingly
higher deformation, resulting in the formation of plastic regions. Carefully note,
that the hot spots of the plastic evolution coincide with those of transverse damage
in the rovings. Due to the relatively small extent of plastic strains, this effect
attributes no additional non-linearity to the stress-strain curve at this stage (cf.
Fig. 5.32, (3)). When the local strength of the rovings in the preferred axis is
exceeded, fiber damage starts to arise (cf. Fig. 5.33, (4)), by building cracks that are
oriented perpendicular to the loading axis. Again, the crimp regions are the critical
locations for damage onset. A localized band of damaged elements starts to form
in the rovings aligned with the loading direction by further increasing the external
load. This behavior is associated with a drastic drop in the stress-strain curve
(cf. Fig. 5.32, (4-5)) since the principal load carrier are significantly weakened.
At stage (5), all horizontally aligned rovings show a crack over their complete
width associated with a significant stiffness drop in the composite response. This
is leading to a higher loading of the adjacent matrix around the cracks, resulting
in high plastic straining and the onset of matrix damage.
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5.3 Computations on weave reinforced unit cell

5.3.3.2 In-plane shear

The following examples focuses on a pure ambilateral in-plane shear load case.
Fig. 5.34 shows the evolution of the in-plane shear stress σ̄21 versus the far-field
strain ε̄21 obtained by volumetric homogenization that is compared to the corre-
sponding experimental results. As already observed in Fig. 5.31b, a lower stiffness
is computed in the in-plane shear case. The following non-linearity is caused
mainly by plastic effects in the matrix, superimposed with transverse damage
effects in the reinforcement structures.Figure 5.35 represents the resulting dam-
age pattern and plastic evolution within the mesostructure. Transverse damage

Figure 5.34: Resulting stress-strain diagram (σ̄21-ε̄21) for an in-plane shear load of a twill weave
reinforced unit cell obtained by volumetric homogenization. Additionally, the experimental results
for the given load case are presented again for comparison (cf. Section 3.3).

caused by the present shear load tends to concentrate in the crimp area of the
interwoven rovings, where the yarns cross each other and from there propagate
across the yarns. Damage in the longitudinal direction of the rovings has not been
initiated. In conclusion it can be stated, that under the given shear load the narrow
areas in the interspace of the rovings show high stress concentrations due to the
different shear moduli of the single components. Therefore, plastic strains arise in
those locations. The mentioned effects explain the non-linear progression of the
stress-strain curve in Fig. 5.34.

5.3.3.3 Biaxial tension

Figure 5.36 shows the results of an unit cell loaded by a two-sided in-plane tension
load after volumetric homogenization. As it can be seen from the diagram, a quasi
linear curve for both tensions (σ̄11 and σ̄22) can be seen up to ultimate failure. A
slight non-linear behavior is however reported due to the occurring transverse
damage in all rovings (cf. Fig. 5.37). Hereby, the damage in the horizontal rovings
is a result of the tension in the vertical direction and vice versa. At the point
of ultimate failure, the vertical rovings abruptly develop a crack band due to
the evolution of longitudinal damage leading to a drop in the stress response.
This is accompanied by plastic evolution in the matrix in close vicinity of the
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a b

c d

Figure 5.35: Results of twill weave reinforced unit cell loaded by an in-plane shear load. (a) Spatial
distribution of the accumulated plastic strain, (b) isotropic matrix damage variable, (c) longitudinal
damage, and (d) transversal damage variable in the rovings.

Figure 5.36: Resulting stress-strain diagram (σ̄11-ε̄11 and σ̄22-ε̄22) for a biaxial tensional load of a
twill weave reinforced unit cell obtained by volumetric homogenization.

occurring cracks. The stresses in the horizontal rovings however, continue to
rise and are not affected significantly by the damage effects in their counterparts.
Furthermore, comparing Fig. 5.32 for the uniaxial tensile case and Fig. 5.36, a
slightly lower ultimate strength together with a lower failure strain can be stated
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5.3 Computations on weave reinforced unit cell

for the superimposed case.

a b

c d

Figure 5.37: Results of twill weave reinforced unit cell loaded by a biaxial tensile load. (a) Spatial
distribution of the accumulated plastic strain, (b) isotropic matrix damage variable, (c) longitudinal
damage, and (d) transversal damage variable in the rovings.

5.3.3.4 Uniaxial tension and in-plane shear

Here again, the possibility of applying a superimposed load was used. Figure 5.38
shows the resulting stress-strain diagram for a combined horizontal tensile (σ̄11-ε̄11)
and a smaller in-plane shear load (σ̄21-ε̄21). Figure 5.39 shows the corresponding
failure pattern and plastic evolution in the matrix and roving structures respec-
tively. The observed non-linearity in Fig. 5.38 prior to ultimate damage can be
traced back to the evolving transverse damage in the vertical rovings together with
a plastic evolution in the matrix (cf. Fig. 5.39a and d) mainly provoked by the shear
load. The point of ultimate failure is indicated by a stress drop caused by a sudden
reduction of element stiffness in vertical crack bands in the load carrying rovings.
Once the stiffness locally is reduced by a great extent the surrounding material
gets locally objected to a higher degree of deformation due to stress redistribution.
As a result plastic bands and finally matrix damage evolves in these hot spots. For
the present case, the current strength (R‖,1 = 317 MPa) is slightly lower than the
strength under uniaxial tension (R‖,1 = 330 MPa). This allows the conclusion that
a influence of the longitudinal strength on superimposed shear loads exists. The
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Figure 5.38: Resulting stress-strain diagram (σ̄11-ε̄11 and σ̄21-ε̄21) for a horizontal tensional load
and a superimposed in-plane shear load of a twill weave reinforced unit cell obtained by volumetric
homogenization.

extent of this dependency is to clarify in future work.

a b

c d

Figure 5.39: Results of twill weave reinforced unit cell loaded by a horizontal tensile load in
combination with a superimposed in-plane shear load. (a) Spatial distribution of the accumulated
plastic strain, (b) isotropic matrix damage variable, (c) longitudinal damage, and (d) transversal
damage variable in the rovings.
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5.4 Computations with macroscopic model for woven composites

5.4 Computations with macroscopic model for woven composites

5.4.1 Computation of elastic bodies

The homogenized material model for weave reinforced composites (HomWeave)
does not take the overall elastic properties of the composite, but the stiffness
parameters of the single components for rovings and matrix. For the thermo-
plastic matrix, a parameter identification based on experimental results was un-
dertaken, presented in Section 5.2.1. The UD structures are represented by an
initially transverse isotropic material model (cf. Section 4.2) and the resulting
elastic properties are summarized in Table 5.2. The fiber volume fractions plays
an important role for the following investigations. The roving structures in the
present weave are characterized by a local fiber volume fraction of vf = 63%. The
overall fiber volume fraction in the weave was determined to be vtow = 74.6%
(cf. Table 3.32). This results in the single volume fractions of the homogenized
rovings of cr1 = cr2 = 0.746/2 where a balanced weave is assumed. The volume
fraction of the matrix is determined by Eq. (4.154) and was defined as cm = 0.254.
Having the computational model implemented, the resulting stiffness body can
now be calculated by means of six calculations corresponding to the six uniaxial
load cases. After volumetric homogenization, the full stiffness tensor is obtained.
Table 5.5 shows the averaged elastic properties for a composite. Assuming an
initial orthotropic symmetry, the stiffness tensor can be described by nine indepen-
dent variables. Figure 5.40a shows the resulting three-dimensional representation

Table 5.5: Obtained stiffness parameters computed by the homogenized weave model (HomWeave).
The parameters concerning the volume fraction were taken from Table 3.32. The elastic properties
of the yarns were obtained by volumetric homogenization (cf. Table 5.4).

Elastic properties

Ē1 (in MPa) 21562.82

Ē2 (in MPa) 21562.82

Ē3 (in MPa) 9246.24

ν̄12 (-) 0.111

ν̄13 (-) 0.449

ν̄23 (-) 0.45

Ḡ12 (in MPa) 2336.31

Ḡ13 (in MPa) 2336.31

Ḡ23 (in MPa) 2467.43

of the elastic stiffness body of the homogenized weave model under investigation.
Again, the two preferred directions in terms of stiffness corresponding with the
weft and warp directions become clearly visible. Furthermore, the characteristic
symmetry planes are observed. Projecting the three-dimensional stiffness body
onto the z-plane, the values of the direction dependent Young’s moduli can be
directly extracted. Figure 5.40b shows the projected stiffness body considering half
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symmetry in the x-plane. The preferred axes of the composite are aligned with the
indicated 0◦- and 90◦- direction. Additionally to the results of the material model
under investigation, the experimental results as well as the numerical solution
obtained by volumetric homogenization of the woven meso structure is depicted
here again. As expected for a material model using the homogenization technique
according to VOIGT [404], the material responds stiffer due to the assumption
made in such models. By neglecting the structural conditions on the meso level
and instead presuming a simple parallel connection of all constituents the overall
elastic properties are overestimated (ca. 30% higher stiffness in the preferred
directions compared to the experimental results).
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Figure 5.40: (a) Three-dimensional stiffness body computed from six uniaxial load cases using
the homogenized three-dimensional weave model. (b) Projection of the three-dimensional stiffness
body in the symmetry plane containing the reinforcing rovings (x-y plane from (a)). Half-symmetry
is considered here. Moreover the stiffness results from the experiments presented in Section 3.4 as
well as the results from the mesomodel are depicted.

5.4.2 Effective composite response

In the following, first results obtained by the simulation of a single element using
the newly introduced constitutive model for weave reinforced composites are
presented. The first example deals with the case of an 45◦ off-axis shear load,
neglecting damage effects. The purpose of this loading scenario is therefore to
show the possibility regarding the reproduction of the kinematical reorientation
of the fibers due to an external load. Figure 5.41 depicts the computed stress
response (σ21 versus ε21) together with the corresponding experimental results.
The two preferred axis initially are perpendicular to each other (γ0 = ] (A1,A2) =
90◦) but are rotated by ϕ = 45◦ with respect to the loading direction. A higher
stiffness in the numerical solution compared to the experiments is obtained. This
behavior reproduces the results already observed in Fig. 5.40b. The following
non-linearity of the stress-strain curve results from the evolution of plastic strain
in the matrix material. This is accompanied by a change in the angle between the
two preferred directions as depicted in Fig. 5.42. Here, the angle γ = ] (a1,a2) is
plotted over time t. With an increasing extent of deformation the angle is steadily
decreased. To this end, a stiffer material response results over time, since the
reinforcement structures are rotated in load directions and therefore make up
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 𝜎21/2

 𝜎21/2

𝑨1𝑨2

Figure 5.41: Resulting stress-strain diagram (σ̄21-ε̄21) for an in-plane shear load of a twill weave
reinforced unit cell computed by the omogenized material model for weave reinforced composites
(HomWeave). Additionally, the experimental results for the given load case are presented for
comparison (cf. Section 3.3).

an increasingly larger proportion of the total stiffness of the composite. Upon
unloading, the elastic parts of deformation in the matrix and the reinforcing
fibers spring back, while plastic strains remain in the matrix. These prevent a
complete back rotation of the roving. This effect can be observed by the increased
slope of the stress-strain curve during unloading in Fig. 5.41 and the final angle
γ ≈ 72.5◦ < 90◦ in Fig. 5.42. Hence, the introduced plastic strain in the matrix
create a changed stress-free state of equilibrium in the composite. In contrast to

Figure 5.42: Course of the inner angle γ = ] (a1,a2) between the reinforcing fibers for the two
presented examples over time t. The shear load provokes a reorientation of the reinforcement
structures that is characterized by a change of the inner angle. Upon unloading, the reversible
parts of the deformation decrease, leaving behind a remaining reorientation, characterizing a new
stress-free state. During the uniaxial load aligned with a preferred direction no change in the inner
angle γ is observed.

this is the deformation behavior of a composite, which is loaded in its preferred
direction. Figure 5.43 shows the computed σ̄11-ε̄11 diagram. The load was applied
along the reinforcement axes with the direction A1. The initial stiffness of the
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numerical solution is higher than the experimental results which agrees with the
previous investigations (cf. Fig. 5.40b). The numbers indicated correspond to
five consecutive loading stages (1-5). Already early on, transverse damage in
the direction perpendicular to the loading (A2) is activated. With the composite
stiffness being a function of all constituents, this results directly in a reduced
stiffness in the stress response. The superposition of the three material models
treats the matrix material as independent, solely coupled to the reinforcing rovings.
To this end, when a sufficient degree of deformation is reached, plastic strains
occur in the matrix. The kink in the stress-strain curve at (2) corresponds to the
onset of plastic evolution in the matrix that continues until the unloading point in
(4). At (3) the ultimate strength in longitudinal direction is reached inA1 yielding
an abrupt drop in the stress-strain curve up to (4) as the stiffness of the major load
carrying structure is reduced significantly by the evolving damage parameter d+

1 .
(4) denotes the point of unloading. Until here, no damage in the matrix dm was
observed. The higher calculated ultimate stresses of the composite result again
due to the VOIGT-homogenization. After unloading a permanent deformation
remains (5), revealing the plastic strains which evolved during the loading cycle.
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Figure 5.43: Resulting stress-strain diagram (σ̄11-ε̄11) for a uniaxial tensile load in a preferred
direction (A1) of a twill weave reinforced unit cell modeled by the homogenized weave model
(HomWeave). The indicated numbers correspond to the following events: (1) transverse damage
initiation in the roving with the direction A2, (2) plastic onset in the matrix, (3) longitudinal damage
initiation in A1, (4) point of beginning unloading, (5) unloaded state, revealing the permanent
plastic strains.

172



6 Conclusion

This thesis deals with the multiscale investigation of a weave reinforced com-
posite with a thermoplastic polypropylene matrix. To this end, three different
subscales were examined throughout this work, which have been identified by an
optical analysis: (a) matrix and fibers as the basic constituents, (b) unidirectionally
reinforced microstructures, and (c) the full composite of woven fiber structures
in thermoplastic matrix. For all three geometrical scales an experimental and
numerical treatment is proposed, which were developed in close coordination.
The common thread of the present work was to introduce a closed multiscale
chain in order to computationally predict the material behavior of the macroscopic
composite in terms of deformation and failure. The first part of the presented work
discusses the experimental assessment of the different levels (a)-(c) of the material
system at hand (cf. Chapter 3). Carefully note, that experimental testing gives an
essential input for the subsequent modeling activities, not only for characteriza-
tion purposes but also for the validation of the model response. Therefore, it is
of great importance to use consistent material systems throughout the multiscale
approach. In the present case, this requirement could not be strictly adhered to
since the unidirectionally reinforced composites could not be purchased from
the supplier of the organo sheets. Furthermore, it was not possible to test the
material behavior of the fibers individually. The main idea of the present work
was to use fitted data as an input only on the lowest scale, i.e. matrix (and fibers).
For the matrix, both tensile and compressive tests were performed. Considering
different loading rates, the rate dependency upon elastic moduli, plastic proper-
ties, and material strength was assessed. The goal of the experimental analysis
of the relevant composites (UD and woven) was slightly different. For the later
simulation of the UD microstructure and the woven mesostructure it was of great
importance to respect the spatial conditions within. For this reason, the structures
were initially measured in terms of geometry. The focus of mechanical testing
was on determining the anisotropy influence on the deformation behavior of the
composites and comparing the observed failure modes with those known from
literature. The obtained stress-strain diagrams were used to validate the model
response. Chapter 4 lays the theoretical framework of the corresponding computa-
tional material models. Three constitutive models were introduced in the course
of this work, all formulated in the framework of finite strains. The theoretical
basis of this framework was introduced and a geometric interpretation of the basic
kinematic equations was presented. Besides the prediction of the deformation, a
main focus was to respect material non-linearities, such as plasticity in the matrix
material and damage evolution in all underlying material systems. To ensure a
thermodynamically consistent behavior, the provided models are derived from
the free energy and the dissipation functions.

Starting on the lowest level of basic constituents, the matrix material was character-
ized with regard to its viscoplastic behavior in combination with rate-dependent
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failure using standard tests during the experimental campaign. The information
obtained here builds the fundamental basis for the identification of the relevant
material parameters and hence the starting point of all subsequent investigations.
An isotropic elasto-viscoplastic constitutive material model including a formu-
lation for progressive ultimate damage was defined. In a first step, a standard
plasticity model is introduced, using an additive elastic-plastic strain split in the
framework of small strains. By including a stress-based failure criterion and
adding formulations for damage evolution, the model was enabled to predict
progressive failure. The problem of mesh-dependent solutions during calcula-
tions was addressed by implementing the crack band model, incorporating a
characteristic length scale parameter regularizing the dissipation energy of the
localizing finite element. Finally, the existing model was extended towards a
rate-dependent formulation for plasticity and damage onset. By using purely
geometrical operations on the strain tensor, the model was then transferred to
a finite strain framework by means of logarithmic strains. The consideration of
viscoelasticity was neglected at this point but should be subject of future work.
Using the experimental results for the matrix material, the model parameters
were adapted. It has to be emphasized, that this is the only time in the present
work when a parameter fitting was carried out. The adaptation results showed
a good ability of the presented material model to predict the behavior of the
thermoplastic matrix both in terms of viscoplasticity and rate-dependent damage
onset. Carefully note, that the given model was also used for the fibers with the
characteristic of deactivated plasticity and rate-independent damage behavior.
With the help of numerical micromechanical analyses a better understanding of
the constitutive behavior of composite materials can be achieved. Conforming
with the multiscale strategy, such analyses were performed on two geometrical
levels. In a first step, UD-SRVEs were generated using an existing method. This
routine was then extended towards the consideration of variable fiber diameters
as well as the feature of clustered microstructures. Secondly, impregnated woven
unit cells were generated based on the determined geometric data. Implement-
ing the given three-dimensional and in-plane periodic boundary conditions, the
created microstructures can be loaded in any desired load combination, enabling
the assessment of their deformation and failure behavior. With the geometric
models of the microstructure generated and the constitutive model for matrix and
fibers implemented, an assessment of the unidirectionally fiber reinforced RVEs
was performed for two fiber volume fractions. The results regarding elasticity
and a selection of load cases with focus on resulting plasticity and damage were
presented. Volumetric homogenization of the calculated stress and strain fields
enabled the comparison with known experimental investigations. Overall, a good
forecasting quality of the predicted solutions and the experimentally obtained
results in terms of the transverse isotropic elastic properties can be stated. The
failure behavior of UD-SRVEs under transversal loading was investigated in detail
and is very consistent with the failure behavior known from literature. However,
it should be noted that the matrix of the tested material does not match the one
of the adjustment and therefore may explain occurring slight deviations in the
forecast of too high plastic contributions and therefore overestimated strength
when loaded in the matrix dominated direction. Deviating crystallization states in
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the matrix can be achieved due to the fiber input, which can lead to a change in
material behavior. The usage of the presented methodology allows the definition
of a vast number of possible superimposed loads whereby most of them cannot
be achieved experimentally. However, one load case has to be already a priori
excluded from this definition, the longitudinal compressive load. In reality, local
instabilities inside the material initially lead to defects in the matrix, which allows
local buckling of the fibers. In the following, this leads to total failure of the whole
material. Neglecting an initial undulation of the fibers, this effect can therefore not
be reproduced computationally with the described method. As an interface to the
next higher geometric scale, a failure envelope was calculated and approximated
by the Puck criterion. Hereby the influence of fiber stresses on the transverse
failure behavior was neglected and has to be numerically investigated in future
work. The required parameters are included in the presented constitutive model
for unidirectionally reinforced plastics.

A homogenized material model considering anisotropic damage initiation and pro-
gression is necessary to predict the behavior of the impregnated rovings within the
woven composite. This model is concerned with an initially transverse isotropic
formulation of elasticity in the framework of large strains. After the deduction
of the material stiffness by means of the free energy function, a methodology to
cover anisotropic damage initiation and progression is presented. Hereby the most
important failure modes identified in literature have been implemented. These
can be grouped in fiber failure and matrix related failure modes that are effective
in perpendicular directions. In both cases a unilateral damage behavior is defined
allowing the distinction of tensile and compressive failure and moreover takes
into account the interacting effects of damage introduced by tensile or compres-
sive loads. Generally, as soon as damage is introduced, the symmetry class of
the material changes. Mesh sensitivity is accounted for by means of the crack
band model as before. A known general framework of elastic degradation and
damage at small strains was extended towards a formulation of large strains in a
logarithmic setting. The kinematic features in terms of deformation, damage onset,
and progression were clarified using selected exemplary load cases, showing the
model response of single element tests. Virtual assessments of the deformation
and failure behavior of the woven fiber reinforced composite were performed in
order to show the capabilities of the geometrical as well as the constitutive models.
However, the purpose of this demonstrations was not the thorough study of exact
damage mechanisms but rather a feasibility study. An intensified study of the
micromechanical processes in the wet weaves and a comparison with experiments
or findings from literature is recommended.

The last modeling step closes the multiscale chain proposed in this work. Consid-
ering a finite change of reinforcement direction due to external loads, a composite
formulation of a constitutive model is presented taking into account the aforemen-
tioned material models. Hereby, an intermediate stress-free state is established
that originates from reversible and irreversible contributions of strains. The main
idea of the proposed model is the superposition of two angled preferred directions,
which are coupled by the isotropic matrix by means of the analytical homoge-
nization. For reasons of simplicity in the present case the homogenization rule of
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6 Conclusion

VOIGT [404] was chosen. Using the already introduced constitutive models, it was
possible to incorporate the mechanism-based damage formulations for both the
matrix as well as the UD material. Thermodynamic consistency is ensured by the
separate derivation of the damage evolution respecting the dissipation inequality.
The approach of numerical implementation of an analytical homogenization tech-
nique with damage formulations in the individual phases in combination with
the large strain formulation has not yet been discussed in literature. However,
the constitutive equations of the presented model are derived without a sufficient
testing of the model response under different load cases. Only two examples show-
ing the kinematic behavior in the event of a load-related change in the preferred
direction and the events during damage evolution were presented. The charm of
such a simple formulation goes hand in hand with a few drawbacks. By ignoring
the inner structure of the weave to a large extent, i.e. the crimp regions and the
waviness of the yarns herein, and assuming a simple superposition in the form of
a parallel connection instead, an important stress concentration region is ignored.
Hence, the results from these models tend to overestimate the elastic moduli and
do not reflect relevant local stress conditions which are important for the correct
prediction of damage initiation. Furthermore, an asymmetry of stiffness under
tension and compression is observed in reality, since the undulated rovings buckle
easily under compression whereas they get pulled straight under tensile load. This
behavior is not considered in the presented model. Reviewing literature in this
regard show alternative homogenization techniques that take into consideration
geometrical conditions in the microstructure. The Mori-Tanaka model for woven
composites of GOMMERS et al. [127] is to be named here as an example for a more
sophisticated model, however formulated in the small strain framework. The
extent to which a change of the homogenization technique is successful must be
investigated in future work.
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Appendix A Data sheets

Appendix A

Data sheets

A.1 Data sheet of PP/GF UD material

CELSTRAN® CFR-TP PP GF70-13 - PP

Description

Celstran® CFR-TP PP GF70-13 is a 70% E-glass fiber by weight PP (polypropylene) continuous fiber (uni-directional) reinforced thermoplastic

composite tape. This material exhibits a high strength-to-weight ratio, excellent toughness and chemical resistance. It is well suited for industrial,

automotive and sporting goods applications where cost and process ability are critical. The material is available in natural and black

colors. Alternate tape widths and thicknesses may be available.

Physical properties Value Unit Test Standard

Density 1660 kg/m³ ISO 1183

Fiber Content 70 % by wt. -

Fiber Volume 45.3 % by vol. -

Tape Thickness 0.25 mm -

Tape Width 305 mm -

Tape Areal Weight 439 g/m² -

Fiber Areal Weight 307 g/m² -

Mechanical properties (Tape) Value Unit Test Standard

Tensile Strength, 0° 931 MPa ASTM D 3039M

Tensile Modulus, 0° 33.9 GPa ASTM D 3039M

Tensile Strain at Failure, 0° 2.99 % ASTM D 3039M

Flexural Strength, 0° 606 MPa ASTM D 790/Tape

Flexural Modulus, 0° 33.2 GPa ASTM D 790/Tape

Flexural Strain at Failure, 0° 2.01 % ASTM D 790/Tape

Thermal properties Value Unit Test Standard

Melting temperature, 10°C/min 173 °C ISO 11357-1/-3

Glass transition temperature, 10°C/min -10 °C ISO 11357-1,-2,-3

CLTE above Tg, parallel 0.1 E-4/°C ISO 11359-2

Start Temp 23 °C ISO 11359-2

End Temp 50 °C ISO 11359-2

CLTE above Tg, normal 0.66 E-4/°C ISO 11359-2

Start Temp 23 °C ISO 11359-2

End Temp 50 °C ISO 11359-2

Thermal conductivity, flow 0.69 W/(m K) ASTM E 1461

Thermal conductivity, crossflow 0.5 W/(m K) ASTM E 1461

Other text information

Compression molding

Celstran® CFR-TP Tape Laminate Processing Guidelines

Celstran® CFR-TP can be molded using a heated platen compression molding press. A hardened steel, aluminum or flexible tooling can be used

depending on the application. The tool should be treated with a mold release prior to molding.

The molding cycle consists of the following steps: 

1. The platens should be heated above the polymer matrix melt temperature.

2. The individual lamina should be constructed and placed in the tool to achieve the desired laminate reinforcement orientation.

3. The tool is placed between the platens and the platens are closed to achieve a contact pressure on the tool less than 30 psi (2 bar).

4. The tool is allowed to rise in temperature until stabilizing at the initial temperature the platens were set to.

5. The pressure is increased to the desired amount and held for a recommended time.

6. Air and/or water cooling is initiated until the material reaches a temperature sufficiently below the melt and peak crystallization temperatures

wherein the pressure is reduced to a contact pressure less than 15 psi (1 bar).

7. The tool is continually cooled until reaching a temperature, typically at or below the glass transition point, at which the pressure is completely

removed and the part de-molded from the tool. It should be noted that the choice of tooling, geometry and heating/cooling mechanisms will greatly

dictate processing conditions, and thus, optimization specific to the individual molders’ capabilities is necessary. Additionally, the resin is what

dictates the molding temperatures, whereas the sample thickness is what determines the time. As the thickness increases, the time at melt should

also increase to account for the time for heat to conduct to the center of the laminate.

Page: 1/2Created: 11.May.2016 Source: www.materialdatacenter.com
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A.2 Data sheet of PP/GF Weave material

A.2 Data sheet of PP/GF Weave material

 
 

 

Material Data Sheet 

 
TEPEX® dynalite 104-RG600(x)/47% 

Roving Glass – PP Consolidated Composite Laminate 

 

Property Method ISO Units Longitudinal Transverse 

  
roving glass 

twill 2/2 
600 

 

 
Reinforcement 

 

 
Fibres 
Fabric 
Area weight 
Yarn 
Weight rate 

 
 
 

g/m2 
tex 
% 

1200 
50 

1200 
50 

  
Polymer 
 

 
Polymer 

  
PP 
 

  

  
Laminate 

 

 
Density 
Fibre content 
Thickness per layer 
 

 
g/cm3 
% vol. 

mm 

 
1,68 
47 
0,5 

 

  
Tensile Modulus 
 Strength 
 Elongation 
 Poisson’s ratio 

 
527-4/5 
527-4/5 
527-4/5 
527-4/5 

 
GPa 
MPa 
% 
 

 
20,5 
400 

- 
- 

 
20,1 
390 

- 
- 

  
Flexural Modulus 
 Ultimate stress* 
 

 
178 
178 

 
GPa 
MPa 

 
17,5 
370 

 

 
17,0 
365 

 

  

  
Charpy impact strength 23°C 
unnotched -30°C 
 

 
179/1eU 

 
kJ/m2 
kJ/m2 

 
- 
- 
 

 
- 
- 
 

 
163 

- 
158 

- 
- 

- 
- 

  

  
Melting Temperature per DSC 
Glass transition temperature per DSC 
Heat deflection temperature 1,80 MPa 
Coefficient of thermal expansion -30°C to 23°C 
 23°C to 80°C 
Relative temperature index 20.000 h 
 

 
3146 
3146 
75-1/2 
ASTM E831 
 
IEC 216/1 

 
°C 
°C 
°C 

E-6 1/K 
 

°C 
 

90 

* 3-Point loading, span-to-depth ratio 16 to 1 

 
 

These values are for this specific composition only, the characteristics of composites depend on the reinforcement level and the fibre orienta-
tion. Non-standard thickness may also alter some or all of these properties. The data listed here fall within the normal range of product 
properties, but they should not be used to establish specification limits nor used alone as basis of design. 

This information corresponds to our current knowledge on subject. It is offered solely to provide possible suggestions for your own experimentations. It is not intended, however; to substi-
tute for any testing you may need to conduct to determine for yourself the suitability of our products for your particular purposes. This information may be subject to revision as new 
knowledge and experience becomes available. Since we cannot anticipate all variations in actual end-use conditions. Bond-Laminates makes no warranties and assumes no liability in 
connection with any use of this information. Nothing in this publication is to be considered as a licence to operate under or a recommendation to infringe any patent right.  
Caution: Do not use this product in medical applications involving permanent implantation in human body.  

Version: 07-01-2009 ® Bond-Laminates registered trademark 
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Appendix B

Material modeling

B.1 Determination of adjustment parameter Am

In order to find the suitable value for Am that returns a macro damage value d
such that Eq. (4.47) is fulfilled, a virtual thought experiment in form of a uniaxial
tension test has to be conducted locally (i.e. in each integration point of the
element). Therefore, a uniaxial (trial) stress state is assumed (displayed here in
Voigt notation)

σUN
0 =


σUN

0,11

0
0
0
0
0

 , (B.1)

yielding
σUN

11 = (1− d)σUN
0,11 (B.2)

and all other entries of σUN zero. Hence, we can rewrite the rate of energy dissipa-
tion per unit volume

∂Λ(σUN)

∂dσ
= Λ0(σUN) (B.3)

and

∂dσ
∂r

=
∂dσ
∂d

∂d

∂r

=
1

(1− d)2

Amr

r2
exp (Am(1− r)) .

(B.4)

Finally, the damage criterion in case of just reached uniaxial failure reads then as
follows

F d,UN =
(σ0,11)2

XcXt
+ σ0,11

(Xc −Xt)

XcXt
− r = 0 (B.5)

and therefore, solving for the critical trial stress σ0,11

σUN,crit
0,11 =

(Xt −Xc) +
√

(Xc −Xt)2 + 4XcXtr

2
. (B.6)

Note that the criterion for damage onset has been defined regarding the trial
stresses σ0. With the above given information we can rewrite the integral for the
dissipated energy per unit volume (dissipated energy density) ψD for the uniaxial
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B.1 Determination of adjustment parameter Am

case

ψD,UN =

∫ ∞
1

∂Λ
(
σUN,crit

11

)
∂dσ

∂dσ
∂d

∂d

∂r
dr =

Gf

le

=

∫ ∞
1

(
Λ0

(
σUN,crit

0,11

) ∂dσ
∂d

∂d

∂r

)
dr

(B.7)

Equation (B.7) is solved numerically using the secant method and the definition of
damage Eq. (4.46) in order to find the adjustment parameter Am. This procedure
is followed according to MAIMÌ et al. [245]. For geometrically linear calculations
Am has to be computed only once (at the first appearance of damage for each
integration point), since the volume of the element is not changing. Non-linear
calculations requires the computation in each time increment as the volume does
not stay constant and hence le differs.
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Appendix C

Formulation of periodic boundary conditions

Periodic boundary conditions are a frequently used measure when it comes to
modeling of repetitive or periodic microstructures. Hereby, representative volume
elements are used primarily. In order to allow a straightforward definition within
the commercial FE-tool Abaqus (cf. [355]) the corresponding equations are given
here. These equations are additional boundary conditions that are considered
during calculation of the deformation. The exact formulations can be found by
constructing the kinematical relations occurring during the classical six cases
of deformation of a representative volume (cf. Fig. C.1) which are divided in
three normal and three shear cases. The resulting set of fully three-dimensional

𝑧
𝑥

𝑦

𝑍𝑍

𝑋𝑋

𝑌𝑌

𝑌𝑋/𝑋𝑌

𝑍𝑌/𝑌𝑍

𝑋𝑍/𝑍𝑋

𝑅𝑃𝑇

𝑅𝑃𝑆1

(𝑅𝑃𝑆2)

Figure C.1: Depiction of the six classical load cases (three normal tension/compression (XX, YY,
ZZ) and three shear load cases (YX/XY, ZY/YZ, XZ/ZX)) that build the basis for the derivation of the
periodic boundary conditions. The three displayed reference points provide six additional degrees
of freedom that allow the kinematic control of the RVE. Depending on the internal microstructure
of the RVE, fluctuating boundaries will form.

equations for cubical RVEs as well as for RVEs with a in-plane periodicity are given
in Appendices C.1 and C.2 using the notation of a Abaqus input-file. The used
nomenclature for vertices, edges and faces is demonstrated in Fig. C.2. The used
vertices, edges and faces must be defined as element sets, since the corresponding

182



XMYPZP

XMYPZM XPYPZM

XPYPZP

XMYMZP

XMYMZM XPYMZM

XPYMZP

𝑧
𝑥

𝑦

YMZP

YMZM

YPZP

YPZM

XPZM

XPZP

XMZM

XMZP

YP

YM

XPXM

ZP

ZM

Figure C.2: Nomenclature of vertices, edges and faces of a cubical RVE. P= plus and M= minus
indicate together with the coordinate X/Y/Z the exact location of the respective entity.

equations are evaluated node-wise. Since the introduced equations correspond
to a relative connection between opposing sides of the RVE, one point must be
encastred. By definition the vertex with the coordinate XPYPZP is chosen for
that purpose. The user-defined deformation can be controlled by the insertion of

Table C.1: Assignment of controlling degree of freedoms of reference points.

DOF RPT RPS1 RPS2

1 XX YX XY

2 YY ZY YZ

3 ZZ XZ ZX

additional degree of freedoms (DOF) which is done by inserting three reference
points, RPT, RPS1, and RPS2. Each reference points has three DOFs. An overview
of the assigned load cases is given in Table C.1. In such a way nine additional
degrees of freedom are defined which yields a statically indeterminate system
and the number of DOFs has to be reduced. This is done by constraining the
double assigned shear degrees. By setting RPSi2 = 0∀ i ∈ [1, 3], the simple shear
cases are obtained. RPSi2 =RPSi1 yields the diagonal shear cases. Carefully note,
that for the latter case the specified deformation is uniformly distributed in both
shear directions. By constraining several DOFs of the reference points (by a
certain value or as free), a superposition of deformation boundary conditions is
defined and the RVE moves accordingly. Hereby, the inserted equations cause
the opposite entities to stay parallel. This yields a deformation that is equal to a
behavior of an infinite medium, hence forming fluctuating boundaries, depending
on the inhomogeneities in the inside of the RVE. Figure C.3a shows two possible
configurations of the deformation of a RVE under simple YX-shear. The dashed
line corresponds to the deformation that would occur if no inhomogeneities are
present in the RVE. The boundaries marked by the full line show fluctuations
caused by inclusions in the inner of the RVE. Figure C.3b shows an example of a
unidirectionally reinforced SRVE under YX/XY-shear using the below-mentioned
periodic boundary conditions.
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Appendix C Formulation of periodic boundary conditions

a

x

y

b

Figure C.3: (a) Two-dimensional RVE deformed under simple YX-shear. The dashed line corre-
sponds to the deformed configuration if no inclusions are present in the volume that could cause
perturbations on the boundaries. The full lines show the deformation including the perturbation
due to inclusions, hence perturbing the deformation field, finally yielding fluctuations on the
boundaries. (b) Example of the deformation of a UD-SRVE (vf = 63%) under YX/XY-shear.

C.1 Three-dimensional periodic boundary conditions

1 ** Vertices
2 **
3 *Equation
4 5
5 SET_XMYMZM, 1, 1.,
6 SET_XPYPZP, 1, -1.,
7 SET_RPT, 1, -1.,
8 SET_RPS_1, 1, -1.,
9 SET_RPS_2, 3, -1.

10 *Equation
11 5
12 SET_XMYMZM, 2, 1.,
13 SET_XPYPZP, 2, -1.,
14 SET_RPS_2, 1, -1.,
15 SET_RPT, 2, -1.,
16 SET_RPS_1, 2, -1.
17 *Equation
18 5
19 SET_XMYMZM, 3, 1.,
20 SET_XPYPZP, 3, -1.,
21 SET_RPS_1, 3, -1.,
22 SET_RPS_2, 2, -1.,
23 SET_RPT, 3, -1.
24 *Equation
25 5
26 SET_XMYPZP, 1, 1.,
27 SET_XPYMZM, 1, -1.,
28 SET_RPT, 1, -1.,
29 SET_RPS_1, 1, 1.,
30 SET_RPS_2, 3, 1.
31 *Equation
32 5
33 SET_XMYPZP, 2, -1.,
34 SET_XPYMZM, 2, 1.,
35 SET_RPS_2, 1, 1.,
36 SET_RPT, 2, -1.,
37 SET_RPS_1, 2, -1.
38 *Equation
39 5
40 SET_XMYPZP, 3, -1.,
41 SET_XPYMZM, 3, 1.,
42 SET_RPS_1, 3, 1.,
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C.1 Three-dimensional periodic boundary conditions

43 SET_RPS_2, 2, -1.,
44 SET_RPT, 3, -1.
45 *Equation
46 5
47 SET_XMYPZM, 1, 1.,
48 SET_XPYMZP, 1, -1.,
49 SET_RPT, 1, -1.,
50 SET_RPS_1, 1, 1.,
51 SET_RPS_2, 3, -1.
52 *Equation
53 5
54 SET_XMYPZM, 2, 1.,
55 SET_XPYMZP, 2, -1.,
56 SET_RPS_2, 1, -1.,
57 SET_RPT, 2, 1.,
58 SET_RPS_1, 2, -1.
59 *Equation
60 5
61 SET_XMYPZM, 3, 1.,
62 SET_XPYMZP, 3, -1.,
63 SET_RPS_1, 3, -1.,
64 SET_RPS_2, 2, 1.,
65 SET_RPT, 3, -1.
66 *Equation
67 5
68 SET_XMYMZP, 1, 1.,
69 SET_XPYPZM, 1, -1.,
70 SET_RPT, 1, -1.,
71 SET_RPS_1, 1, -1.,
72 SET_RPS_2, 3, 1.
73 *Equation
74 5
75 SET_XMYMZP, 2, 1.,
76 SET_XPYPZM, 2, -1.,
77 SET_RPS_2, 1, -1.,
78 SET_RPT, 2, -1.,
79 SET_RPS_1, 2, 1.
80 *Equation
81 5
82 SET_XMYMZP, 3, 1.,
83 SET_XPYPZM, 3, -1.,
84 SET_RPS_1, 3, -1.,
85 SET_RPS_2, 2, -1.,
86 SET_RPT, 3, 1.
87 *Equation
88 3
89 SET_XPYMZP, 1, 1.,
90 SET_XPYMZM, 1, -1.,
91 SET_RPS_2, 3, 1.
92 *Equation
93 3
94 SET_XPYMZP, 2, 1.,
95 SET_XPYMZM, 2, -1.,
96 SET_RPS_1, 2, 1.
97 *Equation
98 3
99 SET_XPYMZP, 3, 1.,

100 SET_XPYMZM, 3, -1.,
101 SET_RPT, 3, 1.
102 *Equation
103 3
104 SET_XPYMZM, 1, 1.,
105 SET_XPYPZM, 1, -1,
106 SET_RPS_1, 1, -1.
107 *Equation
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Appendix C Formulation of periodic boundary conditions

108 3
109 SET_XPYMZM, 2, 1.,
110 SET_XPYPZM, 2, -1,
111 SET_RPT, 2, -1.
112 *Equation
113 3
114 SET_XPYMZM, 3, 1.,
115 SET_XPYPZM, 3, -1,
116 SET_RPS_2, 2, -1.
117 *Equation
118 3
119 SET_XPYPZM, 1, 1.,
120 SET_XPYPZP, 1, -1.,
121 SET_RPS_2, 3, -1.
122 *Equation
123 3
124 SET_XPYPZM, 2, 1.,
125 SET_XPYPZP, 2, -1.,
126 SET_RPS_1, 2, -1.
127 *Equation
128 3
129 SET_XPYPZM, 3, 1.,
130 SET_XPYPZP, 3, -1.,
131 SET_RPT, 3, -1.
132 **********************************
133 ** Edges
134 **
135 *Equation
136 4
137 SET_XMYM, 1, 1.,
138 SET_XPYP, 1, -1.,
139 SET_RPT, 1, -1.,
140 SET_RPS_1, 1, -1.
141 *Equation
142 4
143 SET_XMYM, 2, 1.,
144 SET_XPYP, 2, -1.,
145 SET_RPT, 2, -1.,
146 SET_RPS_2, 1, -1.
147 *Equation
148 4
149 SET_XMYM, 3, 1.,
150 SET_XPYP, 3, -1.,
151 SET_RPS_1, 3, -1.,
152 SET_RPS_2, 2, -1.
153 *Equation
154 3
155 SET_XPYP, 1, 1.,
156 SET_XPYM, 1, -1.,
157 SET_RPS_1, 1, 1.
158 *Equation
159 3
160 SET_XPYP, 2, 1.,
161 SET_XPYM, 2, -1.,
162 SET_RPT, 2, 1.
163 *Equation
164 3
165 SET_XPYP, 3, 1.,
166 SET_XPYM, 3, -1.,
167 SET_RPS_2, 2, 1.
168 *Equation
169 4
170 SET_XMZM, 1, 1.,
171 SET_XPZP, 1, -1.,
172 SET_RPT, 1, -1.,
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C.1 Three-dimensional periodic boundary conditions

173 SET_RPS_2, 3, -1.
174 *Equation
175 4
176 SET_XMZM, 2, 1.,
177 SET_XPZP, 2, -1.,
178 SET_RPS_1, 2, -1.,
179 SET_RPS_2, 1, -1.
180 *Equation
181 4
182 SET_XMZM, 3, 1.,
183 SET_XPZP, 3, -1.,
184 SET_RPT, 3, -1.,
185 SET_RPS_1, 3, -1.
186 *Equation
187 3
188 SET_XPZP, 1, 1.,
189 SET_XMZP, 1, -1.,
190 SET_RPT, 1, 1.
191 *Equation
192 3
193 SET_XPZP, 2, 1.,
194 SET_XMZP, 2, -1.,
195 SET_RPS_2, 1, 1.
196 *Equation
197 3
198 SET_XPZP, 3, 1.,
199 SET_XMZP, 3, -1.,
200 SET_RPS_1, 3, 1.
201 *Equation
202 4
203 SET_YMZM, 1, 1.,
204 SET_YPZP, 1, -1.,
205 SET_RPS_1, 1, -1.,
206 SET_RPS_2, 3, -1.
207 *Equation
208 4
209 SET_YMZM, 2, 1.,
210 SET_YPZP, 2, -1.,
211 SET_RPT, 2, -1.,
212 SET_RPS_1, 2, -1.
213 *Equation
214 4
215 SET_YMZM, 3, 1.,
216 SET_YPZP, 3, -1.,
217 SET_RPT, 3, -1.,
218 SET_RPS_2, 2, -1.
219 *Equation
220 3
221 SET_YPZP, 1, 1.,
222 SET_YPZM, 1, -1.,
223 SET_RPS_2, 3, 1.
224 *Equation
225 3
226 SET_YPZP, 2, 1.,
227 SET_YPZM, 2, -1.,
228 SET_RPS_1, 2, 1.
229 *Equation
230 3
231 SET_YPZP, 3, 1.,
232 SET_YPZM, 3, -1.,
233 SET_RPT, 3, 1.
234 *Equation
235 4
236 SET_XMYP, 1, 1.,
237 SET_XPYM, 1, -1.,
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238 SET_RPT, 1, -1.,
239 SET_RPS_1, 1, 1.
240 *Equation
241 4
242 SET_XMYP, 2, 1.,
243 SET_XPYM, 2, -1.,
244 SET_RPS_2, 1, -1.,
245 SET_RPT, 2, 1.
246 *Equation
247 4
248 SET_XMYP, 3, 1.,
249 SET_XPYM, 3, -1.,
250 SET_RPS_1, 3, -1.,
251 SET_RPS_2, 2, 1.
252 *Equation
253 4
254 SET_YMZP, 1, 1.,
255 SET_YPZM, 1, -1.,
256 SET_RPS_1, 1, -1.,
257 SET_RPS_2, 3, 1.
258 *Equation
259 4
260 SET_YMZP, 2, 1.,
261 SET_YPZM, 2, -1.,
262 SET_RPT, 2, -1.,
263 SET_RPS_1, 2, 1.
264 *Equation
265 4
266 SET_YMZP, 3, 1.,
267 SET_YPZM, 3, -1.,
268 SET_RPS_2, 2, -1.,
269 SET_RPT, 3, 1.
270 *Equation
271 4
272 SET_XMZP, 1, 1.,
273 SET_XPZM, 1, -1.,
274 SET_RPT, 1, -1.,
275 SET_RPS_2, 3, 1.
276 *Equation
277 4
278 SET_XMZP, 2, 1.,
279 SET_XPZM, 2, -1.,
280 SET_RPS_2, 1, -1.,
281 SET_RPS_1, 2, 1.
282 *Equation
283 4
284 SET_XMZP, 3, 1.,
285 SET_XPZM, 3, -1.,
286 SET_RPS_1, 3, -1.,
287 SET_RPT, 3, 1.
288 **********************************
289 ** Faces
290 **
291 *Equation
292 3
293 SET_XM, 1, 1.,
294 SET_XP, 1, -1.,
295 SET_RPT, 1, -1.
296 *Equation
297 3
298 SET_XM, 2, 1.,
299 SET_XP, 2, -1.,
300 SET_RPS_2, 1, -1.
301 *Equation
302 3
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303 SET_XM, 3, 1.,
304 SET_XP, 3, -1.,
305 SET_RPS_1, 3, -1.
306 *Equation
307 3
308 SET_YM, 1, 1.,
309 SET_YP, 1, -1.,
310 SET_RPS_1, 1, -1.
311 *Equation
312 3
313 SET_YM, 2, 1.,
314 SET_YP, 2, -1.,
315 SET_RPT, 2, -1.
316 *Equation
317 3
318 SET_YM, 3, 1.,
319 SET_YP, 3, -1.,
320 SET_RPS_2, 2, -1.
321 *Equation
322 3
323 SET_ZM, 1, 1.,
324 SET_ZP, 1, -1.,
325 SET_RPS_2, 3, -1.
326 *Equation
327 3
328 SET_ZM, 2, 1.,
329 SET_ZP, 2, -1.,
330 SET_RPS_1, 2, -1.
331 *Equation
332 3
333 SET_ZM, 3, 1.,
334 SET_ZP, 3, -1.,
335 SET_RPT, 3, -1.
336 **********************************

C.2 In-plane periodic boundary conditions

1 ** Vertices
2 **
3 *Equation
4 4
5 SET_XMYMZP, 1, 1.,
6 SET_XPYPZP, 1, -1.,
7 SET_RPT, 1, -1.,
8 SET_RPS_1, 1, -1.
9 *Equation

10 4
11 SET_XMYMZP, 2, 1.,
12 SET_XPYPZP, 2, -1.,
13 SET_RPT, 2, -1.,
14 SET_RPS_2, 1, -1.
15 *Equation
16 4
17 SET_XMYPZP, 1, 1.,
18 SET_XPYMZP, 1, -1.,
19 SET_RPT, 1, -1.,
20 SET_RPS_1, 1, 1.
21 *Equation
22 4
23 SET_XMYPZP, 2, 1.,
24 SET_XPYMZP, 2, -1.,
25 SET_RPT, 2, 1.,
26 SET_RPS_2, 1, -1.
27 *Equation
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28 4
29 SET_XMYMZM, 1, 1.,
30 SET_XPYPZM, 1, -1.,
31 SET_RPT, 1, -1.,
32 SET_RPS_1, 1, -1.
33 *Equation
34 4
35 SET_XMYMZM, 2, 1.,
36 SET_XPYPZM, 2, -1.,
37 SET_RPT, 2, -1.,
38 SET_RPS_2, 1, -1.
39 *Equation
40 4
41 SET_XMYPZM, 1, 1.,
42 SET_XPYMZM, 1, -1.,
43 SET_RPT, 1, -1.,
44 SET_RPS_1, 1, 1.
45 *Equation
46 4
47 SET_XMYPZM, 2, 1.,
48 SET_XPYMZM, 2, -1.,
49 SET_RPT, 2, 1.,
50 SET_RPS_2, 1, -1.
51 *Equation
52 3
53 SET_XPYMZP, 1, 1.,
54 SET_XPYPZP, 1, -1.,
55 SET_RPS_1, 1, -1.
56 *Equation
57 3
58 SET_XPYMZP, 2, 1.,
59 SET_XPYPZP, 2, -1.,
60 SET_RPT, 2, -1.
61 *Equation
62 3
63 SET_XPYMZM, 1, 1.,
64 SET_XPYPZM, 1, -1.,
65 SET_RPS_1, 1, -1.
66 *Equation
67 3
68 SET_XPYMZM, 2, 1.,
69 SET_XPYPZM, 2, -1.,
70 SET_RPT, 2, -1.
71 **********************************
72 ** Edges
73 **
74 *Equation
75 3
76 SET_XMZP, 1, 1.,
77 SET_XPZP, 1, -1.,
78 SET_RPT, 1, -1.
79 *Equation
80 3
81 SET_XMZP, 2, 1.,
82 SET_XPZP, 2, -1.,
83 SET_RPS_2, 1, -1.
84 *Equation
85 3
86 SET_XMZM, 1, 1.,
87 SET_XPZM, 1, -1.,
88 SET_RPT, 1, -1.
89 *Equation
90 3
91 SET_XMZM, 2, 1.,
92 SET_XPZM, 2, -1.,
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93 SET_RPS_2, 1, -1.
94 *Equation
95 4
96 SET_XMYM, 1, 1.,
97 SET_XPYP, 1, -1.,
98 SET_RPT, 1, -1.,
99 SET_RPS_1, 1, -1.

100 *Equation
101 4
102 SET_XMYM, 2, 1.,
103 SET_XPYP, 2, -1.,
104 SET_RPT, 2, -1.,
105 SET_RPS_2, 1, -1.
106 *Equation
107 4
108 SET_XMYP, 1, 1.,
109 SET_XPYM, 1, -1.,
110 SET_RPT, 1, -1.,
111 SET_RPS_1, 1, 1.
112 *Equation
113 4
114 SET_XMYP, 2, 1.,
115 SET_XPYM, 2, -1.,
116 SET_RPT, 2, 1.,
117 SET_RPS_2, 1, -1.
118 *Equation
119 3
120 SET_YMZP, 1, 1.,
121 SET_YPZP, 1, -1.,
122 SET_RPS_1, 1, -1.
123 *Equation
124 3
125 SET_YMZP, 2, 1.,
126 SET_YPZP, 2, -1.,
127 SET_RPT, 2, -1.
128 *Equation
129 3
130 SET_YMZM, 1, 1.,
131 SET_YPZM, 1, -1.,
132 SET_RPS_1, 1, -1.
133 *Equation
134 3
135 SET_YMZM, 2, 1.,
136 SET_YPZM, 2, -1.,
137 SET_RPT, 2, -1.
138 *Equation
139 3
140 SET_XPYM, 1, 1.,
141 SET_XPYP, 1, -1.,
142 SET_RPS_1, 1, -1.,
143 *Equation
144 3
145 SET_XPYM, 2, 1.,
146 SET_XPYP, 2, -1.,
147 SET_RPT, 2, -1.
148 **********************************
149 ** Faces
150 **
151 *Equation
152 3
153 SET_XM, 1, 1.,
154 SET_XP, 1, -1.,
155 SET_RPT, 1, -1.
156 *Equation
157 3
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158 SET_XM, 2, 1.,
159 SET_XP, 2, -1.,
160 SET_RPS_2, 1, -1.
161 *Equation
162 3
163 SET_YM, 1, 1.,
164 SET_YP, 1, -1.,
165 SET_RPS_1, 1, -1.
166 *Equation
167 3
168 SET_YM, 2, 1.,
169 SET_YP, 2, -1.,
170 SET_RPT, 2, -1.
171 **
172 *Equation
173 2
174 SET_XMYPZP, 3, 1.,
175 SET_XMYMZP, 3, -1.
176 *Equation
177 2
178 SET_XMYMZP, 3, 1.,
179 SET_XPYMZP, 3, -1.
180 *Equation
181 2
182 SET_XPYMZP, 3, 1.,
183 SET_XPYPZP, 3, -1.
184 *Equation
185 2
186 SET_XMYPZM, 3, 1.,
187 SET_XMYMZM, 3, -1.
188 *Equation
189 2
190 SET_XMYMZM, 3, 1.,
191 SET_XPYMZM, 3, -1.
192 *Equation
193 2
194 SET_XPYMZM, 3, 1.,
195 SET_XPYPZM, 3, -1.
196 *Equation
197 2
198 SET_XMZP, 3, 1.,
199 SET_XPZP, 3, -1.
200 *Equation
201 2
202 SET_YMZP, 3, 1.,
203 SET_YPZP, 3, -1.
204 *Equation
205 2
206 SET_XMZM, 3, 1.,
207 SET_XPZM, 3, -1.
208 *Equation
209 2
210 SET_YMZM, 3, 1.,
211 SET_YPZM, 3, -1.
212 *Equation
213 2
214 SET_XMYM, 3, 1.,
215 SET_XPYM, 3, -1.
216 *Equation
217 2
218 SET_XPYM, 3, 1.,
219 SET_XPYP, 3, -1.
220 *Equation
221 2
222 SET_XPYP, 3, 1.,
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223 SET_XMYP, 3, -1.
224 *Equation
225 2
226 SET_XM, 3, 1.,
227 SET_XP, 3, -1.
228 *Equation
229 2
230 SET_YM, 3, 1.,
231 SET_YP, 3, -1.
232 **********************************
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