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PREFACK TO THE FIRST EDITION.

Tae following chapters are based on the courses of instruction
given during my tenure of the Newmarch Lectureship in Statistics
at University College, London, in the sessions 1902-1909. The
variety of illustrations and examples has, however, been increased
to render the book more suitable for the use of biologists and
others besides those interested in economic and vital statistics,
and some of the more difficult parts of the subject have been
treated in greater detail than was possible in a sessional course
of some thirty lectures. For the rest, the chapters follow closely
the arrangement of the course, the three parts into which the
volume is divided corresponding approximately to the work of
the three terms. To enable the student to proceed further with
the subject, fairly detailed lists of references to the original
memoirs have been given at the end of each chapter: exercises
have also been added for the benefit, mere especially, of the
student who is working without the assistance of a teacher.

The volume represents an attempt to work out a systematic
introductory course on statistical methods—the methods available
for discussing, as distinet from collecting, statistical data—suited
to those who possess only a limited knowledge of mathematics :
an acquaintance with algebra up to the binomial theorem,
together with such elements of co-ordinate geometry as are now
generally included therewith, is all that is assumed. I hope that
it may prove of some service to the students of the diverse
sciences in which statistical methods are now employed.

My most grateful thanks are due to Mr R. H. Hooker not only
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2 THEORY OF STATISTICS.

statistical writers have added a view of the principal epochas of the
history of each country.”

3. Within the next few years the words were adopted by several
writers, notably by Sir John Sinclair, the editor and organiser of the
first Statistical dccount of Scotland,! to whom, indeed, their intro-
duction has been frequently ascribed. In the circular letter to the
Clergy of the Church of Scotland issued in May 1790,% he states
that in Germany ‘*Statistical Inquiries,” as they are called, have
been carried to a very great extent,” and adds an explanatory
footnote to the phrase “Statistical Inquiries”—‘“or inquiries
respecting the population, the political circumstances, the pro-
ductions of a country, and other matters of state.” In the
“ History of the Origin and Progress”3 of the work, he tells us,
“ Many people were at first surprised at my using the new words,
Statistics and Statistical, as it was supposed that some term in our
own language might have expressed the same meaning. But in
the course of a very extensive tour, through the northern parts of
Europe, which I happened to take in 1786, I found that in
Germany they were engaged in a species of political enquiry,
to which they had given the name of Statisties;* . . .. as 1
thought that a new word might attract more public attention,
I resolved on adopting it, and I hope that it is now completely
naturalised and incorporated with our language.” This hope
was certainly justified, but the meaning of the word underwent
rapid development during the half century or so following its
introduction.

4. “Statistics” (statistik), as the term is used by German
writers of the eighteenth century, by Zimmermann and by Sir
John Sinclair, meant simply the exposition of the noteworthy
characteristics of a state, the mode of exposition being—almost
inevitably at that time—preponderantly verbal. The conciseness
and definite character of numerical data were recognised at a
comparatively early period—more particularly by English writers
—but trustworthy figures were scarce. After the commencement
of the nineteenth century, however, the growth of official data
was continuous, and numerical statements, accordingly, began
more and more to displace the verbal descriptions of earlier days.
“Statistics ” thus insensibly acquired a narrower signification, viz.,

I Twenty-one vols., 1791-99.

2 Statistical Account, vol. xx., Appendix to ‘‘ The History of the Origin and
Progress . . . .” given at the end of the volume.

3 Loc. cit., p. xiii.

4 The Abriss der Statswissenschaft der Europaischen Reiche (1749) of Gottfried
Achenwall, Professor of Politics at Gottingen, is the volume in which the word
‘¢ statistik ” appears to be first employed, but the adjective ‘‘statisticus”
occurs at a somewhat earlier date in works written in Latin.
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the exposition of the characteristics of a State by numerical
methods. It is difficult to say at what epoch the word came
definitely to bear this quantitative meaning, but the transition
appears to have been only half accomplished even after the founda-
tion of the Royal Statistical Society in 1834. The articles in the
first volume of the Journal, issued in 1838-9, are for the most
part of a numerical character, but the official definition has no
reference to method. * Statistics,” we read, *“may be said, in the
words of the prospectus of this Society, to be the ascertain-
ing and bringing together of those facts which are calculated to
illustrate the condition and prospects of society.”? It is, however,
admitted that “the statist commonly prefers to employ figures
and tabular exhibitions.” :

5. Once, however, the first change of meaning was accomplished,
further changes followed. From the name of a science or art of
state-description by numerical methods, the word was transferred to
those series of figures with which it operated, as we speak of vital
statistics, poor-law statistics, and so forth. But similar data
occur in many connections ; in meteorology, for instance, in anthro-
pology, ete. Such collections of numerical data were also termed
“statistics,” and consequently, at the present day, the word is
held to cover a collection of numerical data, analogous to those
which were originally formed for the study of the state, on almost
any subject whatever. We not only read of rainfall ‘statistics,”
but of ‘“statistics” showing the growth of an organisation for
recording rainfall.? We find a chapter headed ‘Statistics” in a
book on psychology,? and the author, writing of *statistics con-
cerning the mental characteristics of man,” ¢ statistics of children,
under the headings bright—average—dull.”¢* We are informed
that, in a book on Latin verse, the characteristics of the Virgilian
hexameter “are examined carefully with statistics.” 3

6. The development in meaning of the adjective ¢ statistical”
was naturally similar, The methods applied to the study of
numerical data concerning the state were still termed “statistical
methods,” even when applied to data from other sources. Thus
we read of the inheritance of genius being treated ““in a statistical
manner,”® and we have now ‘“a journal for the statistical
study of biological problems.”” Such phrases as “the statistical

L Jour. Stat. Soc., vol. 1.

- Symons’ British Rmnfall for 1899, p. 15.

3 E W. Scnpture The New Psychology, 1897, chap. ii.

4 Op. cit.

5 Athenazum Oct. 3, 1903,

8 Francis Ga]ton Hereditary Qenius (Macmillan, 1869), preface.

7 Biometrika, Cambrldge Univ. Press, the first number issued in 1901.
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investigation of the motion of molecules”? have become part of
the ordinary language of physicists. We find a work entitled
‘““the principles of statistical mechanics,”? and the Bakerian
lecture for 1909, by Sir J. Larmor, was on ‘“the statistical and
thermodynamical relations of radiant energy.”

7. It 1s unnecessary to multiply such instances to show that the
words ‘“statistics,” ‘“statistical,” no longer bear any necessary
reference to * matters of state.” They are applied indifferently in
physics, biology, anthropology, and meteorology, as well as in the
social sciences. Diverse though these cases are, there must be
some community of character between them, or the same terms
and the same methods would not be applied. What, then, is this
common character

8. Let us turn to social science, as the parent of the methods
termed “ statistical,” for a moment, and consider its characteristics
as compared, say, with physics or chemistry. One characteristic
stands out so markedly that attention has been repeatedly
directed to it by ‘‘ statistical” writers as the source of the peculiar
difficulties of their science—the observer of soctal facts cannot ex-
periment, but must deal with circumstances as they occur, apart
Jrrom hts control. Now the object of experiment is to replace the
complex systems of causation usually occurring in nature by
simple systems in which only one causal circumstance is permitted
to vary at a time. This simplification being impossible, the
observer has, in general, to deal with highly complicated cases of
multiple causation—-cases in which a given rcsult may be due to
any one of a number of alternative causes or to a number of
different causes acting conjointly.

9. A little consideration will show, however, that this is also
precisely the characteristic of the observations in other fields to
which statistical methods are applied. The meteorologist, for
example, is in almost precisely the same position as the student
of social science. He can experiment on minor points, but the
records of the barometer, thermometer, and rain gauge have to be
treated as they stand. With the biologist, matters are in some-
what better case. He can and does apply experimental methods
to a very large extent, but frequently cannot approximate
closely to the experimental ideal ; the internal circumstances of
animals and plants too eastly evade complete control. Hence a
large field (notably the study of variation and heredity) is left,
in which statistical methods have either to aid or to replace the
methods of experiment. The physicist and chemist, finally,

1 Clerk Maxwell, “Theory of Heat” (1871), and ‘ On Boltzmanun’s

Theorem ” (1878), Camb. Phil. Trans., vol. xii.
2 By J. Willard Gibbs (Macmillan, 1902).
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stand at the other extremity of the scale. Theirs are the
sciences in which experiment has been brought to its greatest
perfection. But even so, statistical methods still find application.
In the first place, the methods available for eliminating the effect
of disturbing circumstances, though continually improved, are not,
and cannot be, absolutely perfect. The observer himself, as well
as the observing instrument, is a source of error; the effects of
changes of temperature, or of moisture, of pressure, draughts, vibra-
tion, cannot be completely eliminated. Further, in the problems
of molecular physics, referred to in the last sentences of § 6,
multiplicity of causes is of the essence of the case. The motion
of an atom or of a molecule in the middle of a swarm is dependent
on that of every other atom or molecule in the swarm.

10. In the light of this discussion, we may accordingly give the
following definitions :—

By statistics we mean quantitative data affected to a marked
extent by a multiplicity of causes.

By statistical methods we mean methods specially adapted to
the elucidation of quantitative data affected by a multiplicity of
causes.

By theory of statistics we mean the exposition of statistical
methods.

The insertion in the first definition of some such words as ‘“to
a marked extent ” is necessary, since the term ‘“statistics ” is not
usually applied to data, like those of the physicist, which are
affected only by a relatively small residuum of disturbing causes.
At the same time, ““statistical methods” are applicable to all such
cases, whether the influence of many causes be large or not.

REFERENCES.

The History of the Words “ Statistics,” “ Statistical”

(1) JomN, V., Der Name Statistik ; Weiss, Berne, 1883. A translation in
Jour. Roy. Stat. Soc. for same year.
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p. 891.

The History of Statistics in General.

(3) JomN, V., Geschichte der Statistik, 1te Teil, bis auf Quetelet ; Enke,
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(4) MoHL, ROBERT VON, Geschichle und Lilteratur der Staatswissenschaften,
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principally latter half of vol. iii.)






PART L.—THE THEORY OF ATTRIBUTES.

CHAPTER I
NOTATION AND TERMINOLOGY.

1-2. Statistics of attributes and statistics of variables : fundamental character
of the former—3-5. Classification by dichotomy—6-7. Notation for
single attributes and for combinations—8. The class-frequency—9.
Positive and negative attributes, contraries—10. The order of a class—
11. The aggregate—12. The arrangement of classes by order and
aggregate—13-14. Sufficiency of the tabulation of the ultimate class-
frequencies—15~17. Or, better, of the positive class-frequencies—18.
The class-frequencies chosen in the census for tabulation of statistics
of infirmities—19. Inclusive and exclusive notationsand terminologies.

1. THE methods of statistics, as defined in the Introduction,
deal with quantitative data alone. The quantitative character
may, however, arise in two different ways.

In the first place, the observer may note only the presence or
absence of some attribute in a series of objects or individuals, and
count how many do or do not possess it. Thus, in a given
population, we may count the number of the blind and seeing,
the dumb and speaking, or the insane and sane. The quantitative
character, in such cases, arises solely in the counting.

In the second place, the observer may note or measure the
actual magnitude of some variable character for each of the
objects or individuals observed. He may record, for instance, the
ages of persons at death, the prices of different samples of a
commodity, the statures of men, the numbers of petals in flowers.
The observations in these cases are quantitative abd ¢nitio.

2. The methods applicable to the former kind of observations,
which may be termed statistics of attributes, are also applicable
to the latter, or statistics of variables. A record of statures of
men, for example, may be treated by simply counting all measure-
ments as fall that exceed a certain limit, neglecting the magnitude
of excess or defect, and stating the numbers of ¢tall and short (or

7
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more strictly not-tall) on the basis of this classification. Similarly,
the methods that are specially adapted to the treatment of
statistics of variables, making use of each value recorded, arc
available to a greater extent than might at first sight seem possible
for dealing with statistics of attributes. For cxample, we may
-treat the presence or absence of the attribute as correspending to
the changes of a variable which can only possess two values, say
0 and 1. Or, we may assume that we have really to do with a
variable character which has been crudely classitied, as suggested
above, and we may be able, by auxiliary hypotheses as to the
nature of this variable, to draw further conclusions. But the
methods and principles developed for the case in which the observer
only notes the presence or absence of attributes are the simplest
and most fundamental, and are best considered first. This and
the next three chapters (Chapters I.-IV.) are accordingly devoted
to the Theory of Attributes.

3. The objects or individuals that possess the attribute, and
those that do not possess it, may be said to be members of two
distinct classes, the observer classifying the objects or individuals
observed. In the simplest case, where attention is paid to one
attribute alone, only two mutually exclusive classes are formed.
If several attributes are noted, the process of classification may,
however, be continued indefinitely. Those that do and do not
possess the first attribute may be reclassified according as they o
or do not possess the second, the members of each of the sub-
classes so formed according as they do or do not possess the
third, and so on, every class being divided into two at each step.
Thus the members of the population of any district may be
classified into males and females; the members of each sex into
sane and insane ; the insane males, sane males, insane females,
and sane females into blind and seeing. If we were dealing with
a number of peas (Piswm sativwm) of different varieties, they
might be classified as tall or dwarf, with green seeds or yellow
seeds, with wrinkled seeds or round seeds, so that we would have
eight classes—tall with round green seeds, tall with round yellow
seeds, tall with wrinkled green seeds, tall with wrinkled yellow
seeds, and four similar classes of dwarf plants.

4. It may be noticed that the fact of classification does not
necessarily imply the existence of either a natural or a clearly
defined boundary between the two classes. The boundary may
be wholly arbitrary, e.g. where prices are classified as above or
below some special value, barometer readings as above or below
some particular height. The division may also be vague and
uncertain : sanity and insanity, sight and blindness, pass
into each other by such fine gradations that judgments may
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differ as to the class in which a given individual should be
entered. The possibility of uncertainties of this kind should
always be borne in mind in considering statistics of attributes:
whatever the nature of the classification, however, natural or
artificial, definite or uncertain, the final judgment must be de-
cisive ; any one object or individual must be held either to possess®
the given attribute or not.

5. A classification of the simple kind considered, in which each
class is divided into two sub-classes and no more, has been termed
by logicians classification, or, to use the more strictly applicable
term, division by dichotomy (cutting in two). The classifica-
tions of most statistics are not dichotomous, for most usually a

class is divided into more than two sub-classes, but dichotomy is *

the fundamental case. In Chapter V. the relation of dichotomy
to more elaborate (manifold, instead of twofold or dichotomous)
processes of classification, and the methods applicable to some
such cases, are dealt with briefly.

6. For theoretical purposes it is necessary to have some simple
notation for the classes formed, and for the numbers of observa-
tions assigned to each,

The capitals 4, B, C, . . . will be used to denote the several
attributes. An object or individual possessing the attribute 4
will be termed simply 4. The class, all the members of which
possess the attribute 4, will be termed the class 4. It is con-
venient to use single symbols also to denote the abdsence of the
attributes 4, B, €, . . . We shall employ the Greek letters, a,
£y v, - .. Thus if A represents the attribute b&lendness, a
represents sitght, 7.e. non-blindness; if B stands for deafness, 8
stands for hearing. Generally “a” is equivalent to “non-4,” or
an object or individual not possessing the attribute 4 ; the class a
is equivalent to the class none of the members of which possess the
attribute 4.

7. Combinations of attributes will be represented by juxta-
positions of letters. Thus if, as above, 4 represents bléndness, B
deafness, AB represents the combination blendness and deafness.
If the presence and absence of these attributes be noted, the four
classes so formed, viz. 4B, 483, oB, of3, include respectively the
blind and deaf, the blind but not-deaf, the deaf but not-blind, and
the nedther blind nor deaf. 1If a third attribute be noted, e.g. in-
sanity, denoted say by C, the class 4BC, includes those who are
at once deaf, blind, and insane, A By those who are deaf.and blind
but not tnsane, and so on.

Any letter or combination of letters like 4, AB, aB, 4By, by
means of which we specify the characters of the members of a class,
may be termed a class symbol.
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8. The number of observations assigned to any class is termed,
for brevity, the frequency of the class, or the class-frequency.
Class-frequencies will be denoted by enclosing the corresponding
class-symbols in brackets, Thus—

'sA) denotes number of 4's,  1.e. objects possessing attribute A
Y )

a " ” as, » DO » 2

(4B) - - AB's, ' possessing attributes 4 and B

(aB) " alls, o0 - " B but not A4

(480 ,, » ABC's, " » " 4, B, and ¢

(aBC) ,, ® aBC's, » »” s B and C but not 4
(aBC) ,, » aBC's, o0 o n € but nefther 4 nor B

and so on for any number of attributes. If 4 represent, as in
the illustration above, blindness, B deafness, C' insanity, the
symbols given stand for the numbers of the blind, the not-blind,
the dlind and deaf, the deaf but not blind, the blind, deaf, and in-
sane, the deaf and insane but not blind, and the wnsane but nevther
blind nor deaf, respectively.

9. The attributes denoted by capitals 4BC, . .. may be
termed positive attributes, and their contraries donoted by Greck
letters negative attributes. If a class-symbol include only
capital letters, the class may be termed a positive class; if only
Greek letters, a negative class. Thus the classes 4, 4B, ABC
are positive classes ; the classes a, af3, aBy, negative classcs.

If two classes are such that every attribute in the symbol for
the one is the negative or contrary of the corresponding attribute
in the symbol for the other, they may be termed contrary classes
and their frequencies contrary frequencies; e¢.g. 48 and of3, 48
and aB, ABC and aBy, are pairs of contraries.

10. The classes obtained by noting say = attributes fall into
natural groups according to the numbers of attributes used to
specify the respective classes, and these natural groups should be
borne in mind in tabulating the class-frequencies. A class
specified by 7 attributes may be spoken of as a class of the rth
order and its frequency as a frequency of the rth order. Thus 45,
AC, BC are classes of the second order; (4), (46), (eBC),
(AByD), class-frequencies of the first, second, third, and fourth
orders respectively.

11. The classes of one and the same order fall into further
groups according to the actual attributes specified. Thus if three
attributes 4, B, C' have been noted, the classes of the second order
may be specified by any one of the pairs of attributes 45, AC, or
BC (and their contraries). The series of classes or class-frequen-
cies given by any one positive class and the classes whose symbols
are derived therefrom by substituting Greek letters for one or
more of the italic capital letters in every possible way will be
termed an aggregate. Thus (4B) (48) (aB) (of3) form an aggre-
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termed the ultimate classes and their frequencies the ultimate
frequencies. Hence we may say that ¢t ¢s never necessary to
enumerate more than the ultimate frequencies. All the others can
be obtained from these by simple addition.

Example i.—(See reference 5 at the end of the chapter.)
A number of school children were examined for the presonce
or absence of certain defects of which three chief descriptions
were noted, 4 development defects, B nerve signs, C low
nutrition.

Given the following ultimate frequencies, find the frequencies
of the positive classes, including the whole number of obser-
vations .

(4BC) 57 (aBC) 78
(4By) 281 (aBy) 670
(4B8C) 86 (aC) 65
(4By) 453 («fly) 8310

The whole number of observations & is equal to the grand
total : & =10,000.

The frequency of any first-order class, e.g. (4) is given by the
total of the four third-order frequencies, the class-symbols for
which contain the same letter—

(ABC) + (ABy) + (4BC) + (ABy) = (4) = 87T7.

Similarly, the frequency of any second-order class, e.g. (4B), is
given by the total of the two third-order frequencies, the class-
symbols for which both contain the same pair of letters—

(ABC) + (4By) = (4B) = 338.

The complete results are—

N 10,000 (4B) 338
(4) 877 (AC) 143
(B) 1,086 (BC) 135
(€) 286 (4BC) BT

14. The number of ultimate frequencies in the general case of
n attributes, or the number of classes in an aggregate of the nth
order, is given by considering that each letter of the class-symbol
may be written in two ways (4 or e, B or B, C or v), and that
either way of writing one letter may be combined with either
way of writing another. Hence the whole number of ways in
which the class-symbol may be written, ¢.e. the number of
classes, iIs—

2x2x2x2.... =2
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The ultimate frequencies form one natural set in terms of which
the data are completely given, but any other set containing the
same number of algebralcally independent frequencies, viz. 2%,
may be chosen instead.

15. The positive class-frequencies, including under this head the
total number of observations &, form one such set. They are alge-
braically independent ; no one positive class-frequency can be ex-
pressed wholly in terms of the others. Their number is, moreover,
2" as may be readily seen from the fact that if the Greek letters
are struck out of the symbols for the ultimate classes, they become
the symbols for the positive classes, with the exception of afSy

. for which & must be substituted. Otherwise the number
is made up as follows :—

Order 0. (The whole number of observations) o ° d 1
Order 1. (The number of attributes noted)
~1)
Order 2. (The number of combinations of n things 2 together) 'n(711 = .
14 2
Order 3. (The number of combinations of » things 3 together) i Imf)

and so on. But the series

('n 1) n(n 1(n - 2)

LERORE = 12.3

is the binomial expansion of (1+1)* or 27 therefore the total
number of positive classes is 2"

16. The set of positive class-frequencies is a most convenient
one for both theoretical and practical purposes.

Compare, for instance, the two forms of statement, in terms of
the ultimate and the positive classes respectively, as given in
Example i., § 13. The latter gives directly the whole number of
observations and the totals of 4’s, B’s, and C’s. The former gives
none of these fundamentally important figures without the perfor-
mance of more or less lengthy additions. TFurther, the latter gives
the second-order frequencies (4.8), (4 ('), and (BC), which are neces-
sary for discussing the relations subsisting between 4, B, and C, but
are only indirectly given by the frequencies of the ultimate classes.

17. The expression of any class-frequency in terms of the
positive frequencies is most easily obtained by a process of step-
by-step substitution ; thus—

(ap) —(a) (aB)
~A)=BY+AB) . . . ...
(a/37)=(a ) = (aBC
=N — (4) - (B) + (4.B) = (a0) + (aBC)
N —(4) = (B) - (C)+(4B) + (AC) +(BC) - (45C)  (4)

\/

I
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Arithmetical work, however, should be executed from frst
principles, and not by quoting formule like the above,

Ezample i.—Check the work of Kxample 1., § 13, by finding the
frequencies of the ultimate classes from the frequencies of the
positive classes.

(A By)=(4B) - (4BC) =338 - 57 = 281
(ABY) %Aw %13’72 (A> (AC> (4By)
(aBy) —(Bv) (4By) =X - (B) (C>+(B0> (4By)
000 — 1086 — 286 + 135 — 4
_10135-1825 8310

and so on,

18. Examples of statistics of precisely the kind now under
consideration are afforded by the census returns, e.g., of 1891 or
1901, for England and Wales, of persons suffering from different
“infirmities,” any individual who is deaf and dumb, blind or
mentally deranged (lunatic, imbecile, or idiot) being required to
be returned as such on the schedule. The classes chosen for
tabulation are, however, neither the positive nor the ultimate
classes, but the following (neglecting minor distinctions amongst
the mentally deranged and the returns of persons who arc deaf
but not dumb):—Dumb, blind, mentally deranged ; dumb and
blind but not deranged; dumb and deranged but not blind;
blind and deranged but not dumb ; blind, dumb, and deranged.
If, in the symbolic notation, deaf-mutism be denoted by 4, blind-
ness by B, and mental dera.ngement by C, the class—frequenmes
thus given are (4), (B), (C), (4By), (48C), (aBC), (4BC) (cf.
Census of England and Wales, 1891, vol. iii., tables 15 and 16,
p- Ivii.  Census of 1901, Sumwuzry Tables, table xlix.). Thisset of
frequencies does not appear to possess any special advantages.

19. The symbols of our notation are, it should be remarked,
used in an inclusive sense, the symbol 4, for example, signifying
an object or individual possessing the attribute 4 with or without
others. This seems to be the only natural use of the symbol,
but at least one notation has been constructed on an exclusive
basis (¢f. ref. 5), the symbol 4 denoting that the object or in-
dividual possesses the attribute 4, but not 3 or € or D, or what-
ever other attributes have been noted. An exclusive notation is
apt to be relatively cumbrous and also ambiguous, for the reader
cannot know what attributes a given symbol excludes until he
has seen the whole list of attributes of which note has been
taken, and this list he must bear in mind. The statement that
the symbol 4 is used exclusively cannot mean, obviously, that the
object referred to possesses only the attribute 4 and no others




I.—NOTATION AND TERMINOLOGY. 15

whatever ; it merely excludes the other attributes noted in the
particular investigation. Adjectives, as well as the symbols which
may represent them, are naturally used in an inclusive sense, and
care should therefore be taken, when classes are verbally described,
that the description is complete, and states what, if anything, is
excluded as well as what is included, in the same way as our
notation. The terminology of the English census has not, in
this respect, been quite clear. The “Blind” includes those who
are “ Blind and Dumb,” or ¢ Blind, Dumb, and Lunatic,” and so
forth. But the heading ¢ Blind and Dumb,” in the table relating
to “combined infirmities,” is used in the sense ““ Blind and Dumb,
but not Lunatic or Imbecile,” ete., and so on for the others. In
the first table the headings are inclusive, in the second exclusive.
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EXERCISES.
1. (Figures from ref. (5).) The following are the numbers of boys observed

with certain classes of defects amongst a number of school-children. A4,
denotes development defects ; B, nerve signs; C, low nutrition.

(4B0) 149 (aBC) 204
(4By) 738 (aBy) 1,762
(4BC) 225 (aBC) 171
(48y) 1,196 («B7) 21,842

Find the frequencies of the positive classes.

i
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instead of the simpler symbols &V (4) (B) (4B). Similarly, the
general relations (2), § 13, Chap. L., using U to denote the common
attributes of all the members of the universe and (U) consequently
the total number of observations &, should in strictness be written
in the form—

%) _(UA)+ Ua) = (UB) + (UB) = etc.
=(U. B)+(UAﬂ) +(UaB) 1 (UaB) =ete.
(UA) =(UAB)+(UAB) = (UAC) 4-{Ud) = cto.
(UAB) =(UABC) + (UABy) = etc.

3. Clearly, however, we might have used any other symbol
instead of U. to denote the attributes common to all the members
of the universe, e.g. 4 or 5 or AB or ABC, writing in the latter
case—

(4BC)=(ABCD)+ (ABCY)

and so on. Hence any atiribute or combination of attributes
common to all the class-symbols vn an equation may be regarded as
specifying the universe within which the equation holds good.
Thus the equation just written may be read in words: ‘The
number of objects or individuals in the universe 45C is equal to
the number of D’s together with the number of not-D’s within
the same universe,” The equation

(4C) =(4BC) +(48C)

may be read : “The number of 4’s is equal to the number of A’s
that are B together with the number of A4’s that are not-B
within the universe C.”

4. The more complex may be derived from the simpler relations
between class-frequencies very readily by the process of specifying
the universe. Thus starting from the simple equation

(@) =0 - (4),
we have, by specifying the universe as 3,

(aB)=(B) - (4B)
= - (4) - (B)+(4B).

Specifying the universe, again, as y, we have

o Ay) — (By) + (A By
( 37)=(7)_ (( 7-)(3() Y)g)(+ A1)9)+(A0)+(BO) (450).

5, Any class-frequencies which have been or might have been
observed within one and the same universe may be said to hbe
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consistent with one another. They conform with one another,
and do not in any way conflict.

The conditions of consistence are some of them simple, but
others are by no means of an intuitive character. Suppose, for
instance, the data are given—

Ny 1000 (4B) 42
(4) 525 (4C) 147
(B) 312 (BC) 86
(C) 470 (4BC) 25

—there is nothing obviously wrong with the figures. Yet they
are certainly inconsistent. They might have been observed at
different times, in different places or on different material, but
they cannot have been observed in one and the same universe.
They imply, in fact, a negative value for (afy)—

(aBy)=1000 - 525 — 312 — 470 4- 42 + 147 + 86 — 25.
=1000 - 1307 + 275 - 25.
= - b7,

Clearly no class-frequency can be negative. If the figures,
consequently, are alleged to be the result of an actual inquiry in
a definite universe, there must have been some miscount or
misprint.

6. Generally, then, we may say that any given class-frequencies
are inconsistent if they imply negative values for any of the
unstated frequencies. Otherwise they are consistent. To test the
consistence of any set of 2” algebraically independent frequencies,
for the case of 7 attributes, we should accordingly calculate
the values of all the unstated frequencies, and so verify the fact
that they are positive. This procedure may, however, be limited
by a simple consideration. If the ultimate class-frequencies are
positive, all others must be so, being derived from the ultimate
frequencies by simple addition. Hence we need only calculate
the values of the ultimate class-frequencies in terms of those
given, and verify the fact that they exceed zero.

7. As we saw in the last chapter, there are two sets of 2°
algebraically independent frequencies of practical importance, viz.
(1) the ultimate, (2) the positive class-frequencies.

It follows from what we have just said that there is only one
condition of consistence for the ultimate frequencies, viz. that
they must all exceed zero. Apart from this, any one frequency of
the set may vary anywhere between 0 and w without becoming
inconsistent with the others.

For the positive class-frequencies, the conditions may be
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expressed symbolically by expanding the ultimate in terms of
the positive frequencies, and writing each such expansion not
less than zero. We will consider the cases of one, two, and
three attributes in turn.

8. If only one attribute be noted, say 4, the positive frequencies
are N and (4). The ultimate frequencies are (4) and (a), where

(a) =N -(4).
The conditions of consistence are therefore simply
)40  F-(4)40
or, more conveniently expressed,
(@) (4)<0 %) WPy . 5 . (1)

These conditions are obvious: the number of 4’s cannot be less
than zero, nor exceed the whole number of observations.

9. If two attributes be noted there are four ultimate frequencies
(4B), (4B8), (aB), (aB). The following conditions are given by
expanding each in terms of the frequencies of positive classes—

(a) (4B)<0 or (AB) would be negative I
(b) (AB){(A)+(B)—N 3 (aﬁ) H] » n (2)
(c) (AB)}(4) » (AB) » o
(d) (AB)}(B) ”» (a.B) ”” ” ’

(a), (c), and (d) are obvious; (&) is perhaps a little less obvious,
and is occasionally forgotten. It is, however, of precisely the
same type as the other three. None of these conditions are
really of a new form, but may be derived at once from (1) (a) and
(1) (b) by specifying the universe as B or as 8 respectively. The
conditions (2) are therefore really covered by (1).

10. But a further point arises as regards such a system of
limits as is given by (2). The conditions (a) and () give lower or
minor limits to the value of (4B); (¢c) and (d) give upper or
major limits. If either major limit be less than either minor limit
the conditions are impossible, and it is necessary to see whether
(4) and (B) can take such values that this may be the case.

Expressing the condition that the major limits must be not less
than the minor, we have—

(4)<0 1 (B)<0 |
(4)B N | ()P )

These are simply the conditions of the form (1). If, therefore,
(4) and (B) fulfil the conditions (1), the conditions (2) must be
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possible. The conditions (1) and (2) therefore give all the con-
ditions of consistence for the case of two attributes, conditions of
an extremely simple and obvious kind.

11. Now consider the case of three attributes. There are
eight ultimate frequencies. Expanding the ultimate in terms of
the positive frequencies, and expressing the condition that each
expansion is not less than zero, we have—

of the freguency givén helow
will be nggative.
(a) (4BC)<0 (4BC)
() ¢ME+M® (4) (4Bv)
() <(4B) +(BC) - (B) (aBy)
@ 006 (©) (@60) | 5
() F(4B) (4 By)
() P(4C) ' (480)
(9) F(BO) (a.BC)
(R) P(4B)+(40)+(BC) - (4) - (B) — (C) + I (af3y)

These, again, are not conditions of a new form. We leave it
as an exercise for the student to show that they may be derived
from (1) (a) and (1) (b) by specifying the universe in turn as
BC, By, BC, and By. The two conditions holding in four universes
give the eight inequalities above.

12. As in the last case, however, these conditions will be im-
possible to fulfil if any one of the major limits (¢)—(%) be less than
any one of the minor limits (a)—(d). The values on the right
must be such as to make no major limit less than a minor.

There are four major and four minor limits, or sixteen compari-
sons in all to be made. But twelve of these, the student will
find, only lead back to conditions of the form (2) for (4.B8), (4C),
and (BC) respectively. The four comparisons of expansions due
to contrary frequencies ( (a) and (%), (6) and (g), (c) and (f), (d)
and (¢) ) alone lead to new conditions, viz.—

(a) (4B)+(4C)+(BC) <t(A) +(B) +(C) - I\
() (4B+U0-(BOr Q) .
(c) (AB)—(AC)+(BC’)1>(B) - AR
(d) ~ (4B) +(4C) + (BC)F(C)

13. These are conditions of a wholly new type, not derivable
in any way from those given under (1) and (2). They are con-
ditions for the consistence of the second-order frequencies witk
each other, whilst the inequalities of the form (2) are only conditions
for the consistence of the second-order frequencies with those of
lower orders. Given any two of the second-order frequencies, e.g.
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Example iii.—In a certain set of 1000 observations (4)= 45,
(B)=23, (C)=14. Show that whatever the percentages of B’s
that are 4 and of C’s that are 4, it cannot be inferred that any B’s
are C.

The conditions (@) and () give the lower limit of (BC), which
is required. We find—

(BC) . (4B) (40) 5
’('I._} ¥ 4 — ¥ N ‘918.
L) (AB) (4A0)
) : L
%) s < 7 " 045.

The first limit is clearly negative. The second must also be
negative, since (4B)/&¥ cannot exceed ‘023 nor (4AC)/N -014.
Hence we cannot conclude that there is any limit to (BC) greater
than 0. This result is indeed immediately obvious when we
consider that, even if all the B’s were 4, and of the remaining
22 A’s 14 were (’s, there would still be 8 A4’s that were neither
B nor C.

14. The student should note the result of the last example, as it
illustrates the sort of result at which one may often arrive by
applying the conditions (4) to practical statistics. For given
values of &, (4), (B), (C), (4B), and (4C), it will often happen
that ary value of (BC) not less than zero (or, more generally, not
less than either of the lower limits (2) (a) and (2) (5) ) will satisfy
the conditions (4), and hence no true inference of a lower limit is
possible. The argument of the type ‘‘So many 4’s are B and
so many B’s are C that we must expect some A’s to be ¢'” must
be used with caution.
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EXERCISES.

1. (For this and similar estimates ¢/. ““Report by Miss Collet on the
Statistics of Employment of Women and Girls ” [C.—7564] 1894). If in the
urban district of Bury, 817 per thousand of the women between 20 and 25
years of age were returned as ‘‘ occupied ” at the census of 1891, and 263 per
thousand as married or widowed, what is the lowest proportion per thousand
of the married or widowed that must have been occupied ?

2. If, in a series of houses actually invaded by small-pox, 70 per cent, of the
inhabitants are attacked and 85 per cent. have been vaccinmted, what is the
lowest percentage of the vaccinated that must have been attacked ?

3. Given that 50 per cent. of the inmates of a workhouse are men, 60 per
cent. are ‘‘ aged ” (over 60), 80 per cent. non-able-bodied, 35 per cent. aged
men, 45 per cent. non-able-bodied men, and 42 per cent. non-able-bodied and
aged, find the greatest and least possible proportions of non-able-bedied aged
men.

4. (Material from ref. 5 of Chap. 1.) The following are the proportions
per 10,000 of boys observed, with certain classes of defects amongst a number
of school-children, 4 =development defects, B=nerve signs, D=mental
dulness.

N =10,000 (D) =789
(4= 877 (4B)=338
(B)= 1,086 (BD)=465

Show that some dull boys do not exhibit development defects, and state how
many at least do not do so.
5. The following are the corresponding figures for girls :—

N =10,000 (D) =689°
(4)— 682 (4B)=248
(By= 850 (BD) =363

Show that some defectively developed girls are not dull, and state how many
at least must be so.

6. Take the syllogism ¢ All 4’s are B, all B's are C, therefore all 4's are
C,” express the premisses in terms of the notation of the preceding chapters,
and deduce the conclusion by the use of the general conditions of consistence.

7. Do the same for the syllogism ‘‘ All 4’sare B, no B’s are C, therefore
no 4’ are €.”

8, Given that (4)=(B)=(C)=4N, and that (4B)/N=(40)/N=p, find
what must be the greatest or least values of p in order that we may infer
that (BC)/N exceeds any given value, say g¢.

9, Show that if

(4) (B)

— - (O)_
== =2 ﬁ—3z
and (A_'B)=(.AQ=(;BQ___
N N N |

the value of neither = nor y can exceed #.
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are independent. ““ Association” cannot be inferred from the
mere fact that some A’s are B’s, however great that proportion ;
this principle is fundamental, and should be always borne
in mind.

6. The greatest possible value of (4B) for given values of
N, (4), and (B) is either (4) or (B) (whichever is the less). When
(4B) attains either of these values, 4 and B may be said to be
completely or perfectly associated. The lowest possible value of
(4B), on the other hand, is either zero or (4)+ (B)— N (which-
ever is the greater). When (4.B) falls to either of these values,
4 and B may be said to be completely disassociated. Complete
association is generally understood to correspond to one or other
of the cases, “All 4’s are B” or “All B’s are 4,” or it may be
more narrowly defined as corresponding only to the case when .
both these statements were true. Complete disassociation may
be similarly taken as corresponding to one or other of the cases.
“No A’s are B,” or “no a’s are B,” or more narrowly to the
case when both these statements are true. The greater the
divergence of (4B) from the value (4)(B)/N towards the limit-
ing value in either direction, the greater, we may say, is the
intensity of association or of disassociation, so that we may speak
of attributes being more or less, highly or slightly associated. This
conception of degrees of association, degrees which may in fact be
measured by certain formule (¢f. § 13), is important.

7. When the association is very slight, ¢.e. where (4.B) only
differs from (4)(B)/N by a few units or by a small proportion, it
may be that such association is not really significant of any
definite relationship. To give an illustration, suppose that a coin
is tossed a number of times, and the tosses noted in pairs; then
100 pairs may give such results as the following (taken from an
actual record) : —

First toss heads and second heads . . . 26
” ” ,  tails . . . 18
First toss tails and second heads . . .
’ ’ 5  tas . . . 29

If we use 4 to denote “ heads” in the first toss, B “heads” in
the second, we have from the above (4)=44, (B)=53. Hence
(A)(B)/N=44_’TO53=23'32, while actually (4B) is 26. Hence
there is a positive association, in the given record, between
the result of the first throw and the result of the second. But it
is fairly certain, from the nature of the case, that such association
cannot indicate any real connection between the results of the
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two throws ; it must therefore be due merely to such a complex
system of causes, impossible to analyse, as leads, for example, to
differences between small samples drawn from the same material.
The conclusion is confirmed by the fact that, of a number of such
records, some give a positive association (like the above), but
others a negative association.

8. An event due, like the above occurrence of positive associa-
tion, to an extremely complex system of causes of the general nature
of which we are aware, but of the detailed operation of which we
are ignorant, is sometimes said to be due to chance, or better to
the chances or fluctuations of sampling.

A little consideration will suggest that such associations due to
the fluctuations of sampling must be met with in all classes of
statistics. To quote, for instance, from § 1, the two illustrations
there given of independent attributes, we know that in any
actual record we would not be likely to find exactly the samec
proportion of abnormally wet seasons in leap years as in ordinary
years, nor exactly the same proportion of male births when the
moon is waxing as when it is waning. But so long as the diver-
gence from independence is not well-marked we must regard such
attributes as practically independent, or dependence as at least
unproved.

The discussion of the question, how great the divergence must
be before we can consider it as ¢ well-marked,” must be postponed
to the chapters dealing with the theory of sampling. At present the
attention of the student can only be directed to the existence of
the difficulty, and to the serious risk of interpreting a *‘chance
agsociation ” as physically significant.

9. The definition of § 5 suggests that we are to test the
existence or the intensity of association between two attributes
by a comparison of the actual value of (4.5) with its independence-
value (as it may be termed) (4)(B)/N. The procedure is from the
theoretical standpoint perhaps the most natural, but it is usual,
in practice, to adopt a method of comparing proportions, e.g. the
proportion of A’s amongst the A’ with the proportion in thes *
universe at large. Such proportions are usually expressed in the . 4
form of percentages or proportions per thousand.

A large number of such comparisons are available for the
purpose, as indicated by the inequalities (4) below, which all
hold good for the case of positive association between 4 and
B. The first two, (a) and (b), follow at once from the definition
of § 5, (¢) and (d) follow from (a) and (4), on multiplying
across and expanding (4) and N in the first case, (B) and &
in the second. The deduction of the remainder is left to the
student.
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this would mean a considerable positive association between
4 and B. But if it were only stated that—

(4B)/(B)="70 (4)/N =67

the association would appear to be small. Yet the two state-
ments are equivalent if (B)/N¥ =09, for then we have—

(A)/N="Tx9+4x1="67

The meaning of (a) or (&), in fact, cannot be fully realised
unless the value of (B)/& (or (4)/X in the second case) is known,
and therefore (c) is to be preferred to (a), and (d) to (b). An
exception may, however, be made in cases where the proportion
of B’s (or 4’s) in the universe is very small, so that (4)/&
approaches closely to (4B3)/(B) or (B)/N to (aB)/(a) (¢f. Example
vi. below).

There still remains the choice between (a) and (b), or between
(c) and (d). This must be decided with reference to the second
principle, ¢.e. with regard to the more important aspect of the
problem under discussion, the exact question to be answered,
or the hypothesis to be tested, as illustrated by the examples
below. Where no definite question has to be answered or
hypothesis tested both pairs of proportions may be tabulated,
as in Example vi. again.

Example v.—Association between sex and death. (Material
from 64th Annual Report Reg. General. [Cd. 1230] 1903.)

Males in England and Wales, 1901 . . 15,773,000
Females 5 ; . 16,848,000
Of the Males dled : : . : . 285,618
Of the Females died . . . . . 265,967

We may denote the number of males by (4), the number of
deaths by (B); then the natural comparison is between (4.8)/(4)
and (aB)/(a), 7. the proportion of males that died and the
proportion of females. We find—

(4B) 285,618

“(4) T 15,773,000
(aB) 265,967
() ~ 16,848,000

=-0181.
=-0158.

Therefore (4B)/(4)>(aB)/(a), and there is positive association
between male-sex and death. It is usual to express proportions
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of deaths, births, marriages, etc., to the population as rates per
thousand ; so that the above figures would be written—

Death-rate among Males . . 181 per thousand.
’ ,, Females . . 158 ®

A comparison of the death-rate among males with the death-
rate for the whole population would be equally valid, but it
should be remembered that the latter depends on the sex-ratio
as well as on the causes that determine the death-rates amongst
males and females. The above figures give—

Death-rate among males . . 181 per thousand.
’ for whole population . 169 ”

This brings out the difference between the death-rates of
males and of the whole population, but is not so clear an indica-
tion of the difference between males and females, which is the
point to be investigated.

A comparison of the form (4) (c) is again wvalid for testing the
association, but the form is not desirable, illustrating very well
the remarks on the opposite page. Statisticians are concerned
with death-rates, and not with the sex-ratios of the living and
the dead: The student should learn, however, to recognise such
forms of statement as the following, as equivalent to the above :—

Proportion of males amongst those )
that died in the year . . o DL T el
Proportion of males amongst those | 483
that did not die in the year o ”

Since (4B)/(B)>(4B)/(B), it follows, as before, that there is
positive association between 4 and B,

Example vi—Deaf-mutism and Imbecility. (Material from
Census of 1901. Summary Tables. [Cd. 1523.])

Total population of England and Wales . . 32,528,000
Number of the imbecile (or feeble-minded) 0 48,882
Number of deaf-mutes . . . 5 ) 15,246
Number of imbecile deaf-mutes . g o 451

Required, to find whether deaf-mutism is associated with
imbecility.

We may denote the number of the imbecile by (4), of deaf-
mutes by (B). One of the comparisons (@) or (&) may very well
be used in this case, seeing that (4)/& and (B)/N differ very
little from (4B)/(8) and (aB)/(a) respectively. The question

3
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whether to give the preference to (a) or to (b) depends on the
nature of the investigation we wish to make. If it is desired to
exhibit the conditions among deaf-mutes (a) may be used :—

Proportion of imbeciles among deaf- | ;5.4
mutes = (4.B)/(B) _ } 296 per thousand.
Proportion of imbeciles in the whole 1 . -
population = (4)/N . . o) ==

If, on the other hand, it is desired to exhibit the conditions
amongst the imbecile, () will be preferable.

Proportion of deaf-mutes amongst
the imbecile (4.8)/(4)

Proportion of deaf-mutes in the o
whole population (B)/N . LR

} 9-2 per thousand.

Either comparison exhibits very clearly the high degree of asso-
ciation between the attributes. It may be pointed out, however,
that census data as to such infirmities are very untrustworthy.

Example vii.—Eye-colour of father and son (material due
to Sir Francis Galton, as given by Professor Karl Pearson, Pkl
Trans., A, vol. cxev. (1900), p. 138 ; the classes 1, 2, and 3 of the
memoir treated as light).

Fathers with light eyes and sons with light eyes (4.5) . 471
y 7 not light ,, (43) . 151
5, Dot lxght 5 light » (aB) . 148
g 5 not light ,, (af3) . 230

Required to find whether the colour of the son’s eyes is
associated with that of the father’s. In cases of this kind the
father is reckoned once for each son ; e.g. a family in which the
father was light-eyed, two sons light-eyed and one not, would be
reckoned as giving two to the class A5 and one to the class 48.

The best comparison here is—

Percentage of light-eyed amongst the sons |
of light-eyed fathers 5 o U P2 CEutE

Percentage of light-eyed amongst the sons | g9
of not-light-eyed fathers .. f

But the following is equally valid—

Percentage of light-eyed amongst the )
fathers of light-eyed sons f 76 per cent

Percentage of light-eyed amongst the } 40
fathers of not-light-eyed sons s f
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(B)=(4B), so that all 4’s are B and also all B’s aro 4. The
three corresponding cases of complete disassociation arec—

) (5) (6)
0 l(AB> (4) (4B)| (48)| (4) | 0 | (48)] (4)
(aB) | (aB) | (a) (aB) | 0 (a) i(aB) 0 (a)
(B) I ® | N (B | B | & i B | B’ | N

It is required to devise some formula which shall give the value
+1 in the first three cases, —1 in the second three, and shall
also be zero where the attributes are independent. Many such
formule may be devised, but perhaps the simplest possible (though
not necessarily the most advantageous) is the expression—

—(4B)(ep) - (4B)(aB)
(4B)(af) + (45)(aB)
_ N3
(4B)(af) +(48)(aB)
—where 8§ is the symbol used in the two last sections for the
difference (4B) — (4B), It is evident that @ is zero when the
attributes are independent, for then 8 is zero: it takes the value +1
when there is complete association, for then the second term in
both numerator and denominator of the first form of the expression
is zero: similarly it is — 1 where there is complete disassociation,
for then the first term in both numerator and denominator is
zero. ) may accordingly be termed a coefficient of association.
As illustrations of the values it will take in certain cases, the
association between deaf-mutism and imbecility, on the basis of
the English census figures (Example vi.) is + 091 ; between light
eye colour in father and in son (Example vii.) + 066 ; between
colour of flower and prickliness of fruit in Datura (Example viii.)
—0-28, an association which, however, as already stated, is
probably of no ptactical significance and due to mere fluctua-
tions of sampling.

The student should note that the value of @ for a given table
is unaltered by multiplying either a row or a column by any
arbitrary number, t.e. the value is independent of the relative
proportions of A’s and o’s included in the table. This property
is of importance, and renders such a meagure of association
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specially adapted to cases (e.g. experiments) in which the propor-
tions are arbitrary. A form possessing the same property but
certain marked advantages over @ is suggested in ref. (3).

The coefficient is only mentioned here to direct the attention
of the student to the possibility of forming such a measure of
association, a measure which serves a similar purpose in the case
of attributes to that served by certain other coefficients in the
cases of manifold classification (¢f. Chap. V.) and of variables
(c¢f. Chap. IX., and the references to Chaps. X. and XVI.). For
further illustrations of the use of this coefficient the reader is
referred to the reference (1) at the end of this chapter; and for a
mode of deducing another coefficient, based on theorems in the
theory of variables, which has come into more general use, though
in the opinion of the present writer its use is of doubtful advan-
tage, to ref. (4). Reference should also be made to the coefficient
described in § 10 of Chap. XI. The question of the best co-
efficient to use as a measure of association is at present the
subject of controversy: for a discussion the student is referred
to ref. (3).

14. In concluding this chapter, it may be well to repeat, for the
sake of emphasis, that (¢f. § 5) the mere fact of 80, 90, or 99 per
cent. of A’s being B implies nothing as to the association of 4
with B; in the absence of information, we can but assume that
80, 90, or 99 per cent. of o’s may also be B. In order to apply
the criterion of independence for two attributes 4 and B, it is
necessary to have information concerning a’s and 3’s as well as
A’s and B’s, or concerning a universe that includes both o’s and
A’s, B’s and B's. Hence an investigation as to the causal
relations of an attribute 4 must not be confined to 4’s, but must
be extended to a’s (unless, of course, the necessary information
as to o’s is already obtainable): no comparison is otherwise
possible. It would be no use to obtain with great pains the
result (¢f. Example vi.), that 29:6 per thousand of deaf-mutes
were imbecile unless we knew that the proportion of imbeciles
in the whole population was only 1'5 per thousand; nor would
it contribute anything to our knowledge of the heredity of deaf-
mutism to find out the proportion of deaf-mutes amongst the
off-spring of deaf-mutes unless the proportions amongst the off-
spring of normal individuals were also investigated or known.
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EXERCISES.

1. At the census of England and Wales in 1901 there were (to the nearest
1000) 15,729,000 males and 16,799,000 females; 3497 males were returncd
as deaf-mutes from childhood, and 3072 females.

State proportions exhibiting the association between deaf-mutism from
childhood and sex. How many of each sex for the same total number would
have been deaf-mutes if there had been no association ¢

2. Show, as briefly as possible, whether 4 and B are independent, posi-
tively associated, or negatively associated in each of the following cases :—

(a) N =5000  (4) =250 (B)=3100 (4B)=1600
(6)  (4) = 490 (4B)= 294  (a) = 570  (aB)= 380
(¢) (4B)= 256 (aB)= 768 (4B)= 48  (aB) = 144

3. (Figures derived from Darwin’s Cross- and Self-fertilisation of Planls,
¢f. ref. 1, p. 294.) The table below gives the numbers of plants of certain
species that were above or below the average height, stating separately those
that were derived from cross-fertilised and from self-fertilised parentage.
Investigate the association between height and cross-fertilisation of parentage,
and draw attention to any special points you notice.

Parentage Cross. fer- Parentage Self-fer-
tilised. Height— tilised. Height—
Species.
Above Below Above Below
Average. | Average. | Average. | Average,
Ipomaa purpures . . 63 10 18 55
Petunia violacea ; . 61 16 13 64
Reseda lutea . : . 25 7 11 21
Reseda odorata . s % 39 16 25 30
Lobelia fulgens . : . 17 17 12 22







CHAPTER IV.

PARTIAL ASSOCIATION.

1-2. Uncertainty in interpretation of an observed association—3-5. Source of
the ambiguity : partial associations—6-8. Illusory association due
to the association of each of two attributes with a third—9. Estima-
tion of the partial associations from the frequencies of the second
order—10-12. The total number of associations for a given number
of attributes—18-14. The case of complete independence.

1. If we find that in any given case
(4B8)> or <(£)—\(_£),

all that is known is that there is a relation of some sort or kind
between 4 and B. The result by itself cannot tell as whether
the relation is direct, whether possibly it is only due to * fluctuations
of sampling” (¢f. Chap. IIL. §§ 7-8), or whether it is of any other
particular kind that we may happen to have in our minds at the
moment. Any interpretation of the meaning of the association is
necessarily hypothetical, and the number of possible alternative
hypotheses is in general considerable.

2. The commonest of all forms of alternative hypothesis is of
this kind : it is argued that the relation between the two attributes
4 and B is not direct, but due, in some way, to the association of
4 with € and of B with C. An illustration or two will make the
matter clearer :—

(1) An association is observed between ¢ vaccination” and
“ exemption from attack by small-pox,” z.e. more of the vaccinated
than of the unvaccinated are exempt from attack. It is argued
that this does not imply a protective effect of vaccination, but is
wholly due to the fact that most of the unvaccinated are drawn from
the lowest classes, living in very unhygienic conditions. Denoting
vacctnation by A, exemption from attack by B, hygienic conditions by
C, the argument is that the observed association between 4 and B
is due to the associations of both with (.

42
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(2) It is observed, at a general election, that a greater
proportion of the candidates who spent more money than their
opponents won their elections than of those who spent less. It
is argued that this does not mean an influence of expenditure on
the result of elections, but is due to the fact that Conservative
principles generally carried the day, and that the Conservatives
generally spent more than the Liberals. Denoting winning by 4,
spending more than the opponent by B, and Conservative by C, the
argument is the same as the above (c¢f. Question 9 at the end of
the chapter).

(3) An association is observed between the presence of some
attribute in the father and its presence in the son; and also
between the presence of the attribute in the grandfather and its °
presence in the grandson. Denoting the presence of the attribute
in son, father, and grandfather by 4, B, and C, the question arises
whether the association between 4 and €' may not be due solely
to the associations between 4 and B, B and C, respectively.

3. The ambiguity in such cases evidently arises from the fact
that the universe of observation, in each case, contains not
merely objects possessing the third attribute alone, or objects
not possessing it, but both.

If the universe were restricted to either class alone the given
ambiguity would not arise, though of course others might remain.

Thus, ‘in the first illustration, if the statistics of vaccination
and attack were drawn from one narrow section of the population
living under approximately the same hygienic conditions, and an
association were still observed between vaccination and exemption
from attack, the supposed argument would be refuted. The fact
would prove that the association between waccination and
exemption could not be wholly due to the association of both with
hygienic conditions.

Again, in the second illustration, if we confine our attention to
the “universe ” of Conservatives (instead of dealing with candidates
of both parties together), and compare the percentages of Conserva-
tives winning elections when they spend more than their opponents
and when they spend less, we shall avoid the possible fallacy. If
the percentage is greater in the former case than in the latter, it
cannot be for the reasons suggested in § 2.

The biological case of the third illustration should be similarly
treated. If the association between 4 and C be observed for
those cases in which all the parents, say, possess the attribute, or
else all do not, and it is still sensible, then the association first
observed between 4 and C for the whole universe cannot have
been (;lue solely to the observed associations between 4 and B, B
and C.
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4. The associations observed between the attributes 4 and /5
in the universe of (’s and the universe of y’s may be termed
partial associations, to distinguish them from the total associations
observed between 4 and B in the universe at large. In terms of
the definition of § 5 of Chap. III., 4 and B will be said to be posi-
tively associated in the universe of C's (¢f. § 4 of Chap. II.) when

(4p0ysWOBO )
- (C)
and negatively associated in the converse case.
As in the simpler case, the association is most simply tested by
a comparison of percentages or proportions (§ 9, Chap. 1IL),
although for some purposes a “coeflicient of association” of
some kind may be useful. Confining our attention to the more
fundamental method, if 4 and B are positively associated within
the universe of C’s, we must have, to quote only the four most
convenient comparisons (cf. (4) (a)~(d), Chap. IIl. p. 31),

(ABC)_ (AC) (ABC) _ (BC)

By > ¢y @ ey = ¢ ¥ )
(ABC)_ (4BC) (4BC) (aBC) N
@) > ®e) D o) T @) W

These inequalities may easily be rewritten for any other case by
making the proper substitutious in the symbols; thus to obtain
the inequalities for testing the association between 4 and € in
the universe of B’s, B must be written for C, 8 for vy, and wece
versd, throughout; it being remembered that the order of the
letters in the class:symbol is immaterial. The remarks of § 10,
Chap. III,, as to the choice of the comparison to be used, apply of
course equally to the present case.

5. Though we shall confine ourselves in the present work lo
the detailed discussion of the case of three attributes, it should be
noticed that precisely similar conceptions and formulwe to the
above apply in the general case where more than three attributes
have been noted, or where the relations of more than three have
to be taken into account. If, when it is observed that 4 and B
are still associated within the universe of (', it is argued that
this is due to the association of both 4 and B with D, the argu-
ment may be tested by still further limiting the field of observa-
tion to the universe CD. If

400> 40D)P0)
")
A and B are positively associated within the universe of C'D’s,
and the association cannot be wholly ascribed to the presence and
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absence of D as suggested, nor to the presence and absence of
¢ and D conjointly. If it be then argued that the presence
and absence of £ is the source of association, the process may
be repeated as before, the association of 4 and B being tested
for the universe CDE, and so on as far as practicable.

Partial associations thus form the basis of discussion for any
case, however complicated. The two following examples will
serve as illustrations for the case of three attributes.

Ezample 1.—(Material from ref. 5 of Chap. I.)

The following are the proportions per 10,000 of boys observed
with certain classes of defects, amongst a number of school
children. (4) denotes the number with development defects, (5)
with nerve-signs, (D) the number of the “dull.” .

¥ 10,000 (4B) 338
(4) 877 (4D) 338
(B) 1,086 (BD) 455
(D) 789 (4BD) 153

The Report from which the figures are drawn concludes that *the
connecting link between defects of body and mental dulness is
the coincident defect of brain which may be known by observation
of abnormal nerve-signs.” Discuss this conclusion.

The phrase ‘““connecting link ” is a little vague, but it may
mean that the mental defects indicated by nervesigns B may
give rise to development-defects 4, and also to mental-dul-
ness D ; 4 and D being thus common effects of the same cause
B (or another attribute necessarily indicated by B), and not
directly influencing each other. The case is thus similar to that
of the first 1llustration of § 2 (liability to small-pox and to non-
vaccination being held to be common effects of the same circum-
stances), and may be similarly treated by investigation of the
partial associations between 4 and D for the universes B and f.
As the ratios (4)/W, (B)/Y, (D)/N are small, comparisons of the
form (4) (a) or (&) of Chap. IIL (p. 31), or (2) (a) (5) above, may
very well be used (cf. the remarks in § 10 of the same chapter,
pp. 31-2). :

The following figures illustrate, then, the association between
4 and D for the whole universe, the B-universe and the S-
universe :—

For the entire material :—
7RG

Proportion of the dull=(D)/N . 5 ' =i5000" 74 per gent

,»  defectively developed who| _ 848 _ ...
were dull=(4D)/(4) . AT w 385 T
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For those exhibiting nerve signs :—

Proportion of the dull=(BD/(B) - . =T4385§= 419 per cent.
,, defectively developed who) _ 153 ...,
were dull=(4BD)/(4B). . T8z T o0
For those not exhibiting nerve signs :—
Proportion of the dull=(8D)/(8) = 833?4 = 387 »
,»  defectively developed who) _ 185 =343
were dull=(48D)/(A48) . T 539

The results arz extremely striking ; the association between A
and D is very high indeed both for the material as a whole (the
universe at large) and for those not exhibiting nerve-signs (the
B-universe), but it is very small for those who do exhibit nerve-
signs (the B-universe).

This result does not appear to be in accord with the conclusion
of the Report, as we have interpreted it, for the association
between 4 and D in the B-universe should in that case have
been very low instead of very high.

Example ii.—Eye-colour of grandparent, parent and child.
(Material from Sir Francis Galton’s Natural Inherstance (1889),
_ table 20, p. 216. The table only gives particulars for 78 large

families with not less than 6 brothers or sisters, so that the
material is hardly entirely representative, but serves as a good
illustration of the method.) The original data are treated as in
Example vii. of the last chapter (p. 34). Denoting a light-eyed
child by 4, parent by B, grandparent by C, every possible line of
descent is taken into account. Thus, taking the following two
lines of the table,

Children Parents Grandparents
A. a. B. B. C
Lighteyed. 15 nO% ) Lighteyed. ;. /1%, Lighteyed. 1y 10F
4 5 1 1 1 3
3 4 1 1 4 0

the first would give 4 x 1 x 1 =4 to the class ABC, 4 x 1 x3=12to
the class ABy, 4 to ABC, 12 to A8y, 5 to aBC, 15 to aBy, b to
af3C, and 15 to afy; the second would give 3 x 1 x 4=12 to the
class ABC, 12 to ABC, 16 to aBC, 16 to aSC, and none to the re-
mainder. The class-frequencies so derived from the whole table are,

(ABC) 1928 (aBC) 303
(A By) 596 (alBy) 225
(48C) 552 (aBC) 395

(4By) 508 (afy) 501
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Grandparents and Grandchildren : Parents not-light-eyed.

Proportion of light-eyed amongst the (4 5
grandchildren of hght eyed grnnd l Y 80) g—‘4?—=58'3 per cent.
parents . | 80)

Proportion of light-eyed amongst the’ A
grandchildren of not- Ilght eyed 1 L 1500089
grandparents I (87)

=003

In both cases the partlal association is quite well-marked and
positive ; the total association between grandparents and grand-
children cannot, then, be due wholly to the total associations
between grandparents and parents, parents and children, re-
spectively. There is an ancestral heredity, as it is termed, as
well as a parental heredity.

We need not discuss the partial association between children and
parents, as it is comparatively of little consequence. It may be
noted, however, as regards the above results, that the most
important feature may be brought out by stating three ratios
only.

If 4 and B are positively associated, (4B)/(B)>(4)/.

If 4 and C are positively associated in the universe of B’s,
(4BC)[(BC)>(4AB)/(B). Hence(4)/N,(4B)/(B),and( A]J’C)/(BC)
form an ascending series. Thus we have from the given data

Proportion of light-eyed amongst]
children in general T (AN
Proportion of light-eyed a.mongst thel _ = G
children of light-eyed parents = R L
Proportion of light-eyed amongst the)
children of light-eyed parents and } = =(4BC)[(BC)=86'4 ,,
grandparents . .J

=716 per cent. .

If the great-grandparents, etc., etc., were also known, the series
might be continued, giving (ABCD /(BCI)) (ABCD/«’)/(])’C‘D]*
and so forth. The series would probably ascend contmuously
though with smaller intervals, 4 and D being positively associated
in the universe of BC’s, 4 and ¥ in the universe of BCD’s, ete.

6. The above examples will serve to illustrate the practical
application of partial associations to concrete cases. The general
nature of the fallacies involved in interpreting associations
between two attributes as if they were necessarily due to the
most obvious form of direct causation is more clearly exhibited
by the following theorem :—

If 4 and B are mdependent within the universe of (s and also
within the universe of v's, they will nevertheless be associated
within the universe at large, unless C vs independent of either A
or B or both.
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the mingling of records, e.g. respecting the two sexes, which a
careful worker would keep distinct.

Take the following case, for example. Suppose there have been
200 patients in a hospital, 100 males and 100 females, suffering
from some diseage. Suppose, further, that the death-rate for males
(the case mortality) has been 30 per cent., for females 60 per cent.
A new treatment is tried on 80 per cent. of the males and 40 per
cent. of the females, and the results published without distinction
of sex. The three attributes, with the relations of which we are
here concerned, are death, treatment and male sex, The data show
that more males were treated than females, and more females
died than males; therefore the first attribute is associated nega-
tively, the second positively, with the third. It follows that there
will be an illusory negative association between the first two—
death and treatment. If the treatment were completely inefficient
we would, in fact, have the following results :—

Males. Females. Total.

Treated and died . . 5 24 24 48
,, and did not die . 56 16 72
Not treated and died . : 6 36 42
” and did not die . 14 24 38

z.e. of the treated, only 48/120 =40 per cent. died, while of those
not treated 42/80 =525 per cent. died. If this result were stated
without any reference to the fact of the mixture of the sexes, to
the different proportions of the two that were treated and to the
different death-rates under normal treatment, then some value in
the new treatment would appear to be suggested. To make
a fair return, either the results for the two sexes should be
stated separately, or the same proportion of the two sexes
must receive the experimental treatment. Further, care would
have to be taken in such a case to see that there was no
selection (perhaps unconscious) of the less severe cases for treat-
ment, thus introducing another source of fallacy (death positively
associated with severity, ¢reatment negatively associated with
severity, giving rise to illusory negative association hetween
treatment and death).

A misleading association between the characters of parent and
offspring might similarly be created if the records for male-male
and female-female lines of descent were mixed. Thus suppose 50
per cent. of males and 10 per cent. of females exhibit some
attribute for which there is no association in either line, then we
would have for each line and for a mixed record of equal
numbers—
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Male line, Female line. Mixed record.

Parents with attribute and |
children with ; } 25 percent. 1 per cent. 13 per cent.

Parents with attribute and |

children without . 3 ff B, 9 17 &
Parents without attribute

and children with } e % S 3

53

Parents without attribute %5 81
and children without . } ?

Here 13/30 =43 per cent. of the offspring of parents with the
attribute possess the attribute themselves, but ouly 17/70=24
per cent. of the offspring of parents without the attribute. The
association between atéribute wn parent and attribute vn offspring
is, however, due solely to the association of "both with male sex.
The student will see that if records for male-female and female-
male lines were mixed, the illusory association would be negative,
and that if all four lines were combined there would be no illusory
association at all.

8. Illusory associations may also arise in a different way
through the personality of the observer or observers. If the
observer’s attention fluctuates, he may be more likely to notice
the presence of 4 when he notices the presence of B, and wice
wversd ; in such a case 4 and B (so far as the record goes) will both
be associated with the observer’s attention C, and consequently
an illusory association will be created. Again, if the attributes
are not well defined, one observer may be more generous than
another in deciding when to record the presence of 4 and also
the presence of B, and even one observer may fluctuate in the
generosity of his marking. In this case the recording of 4 and
the recording of B will both be associated with the generosity
of the observer in recording their presence, C, and an illusory
association between A4 and B will consequently arise, as
before.

9. It is important to notice that, though we cannot actually
determine the partial associations unless the third-order frequency
(4BC) is given, we can make some conjecture as to their sign
from the values of the second-order frequencies.

Suppose, for instance, that—

)= 490 |

o et ()
(4By) = (A‘Y()(JB‘Y) 2]
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so that 8 and 8, are positive or negative according as 4 and B
are positively or negatively associated in the universes of (' and
v respectively. Then we have by addition—

_(4C)(BC)  (4y)(By)
(AB) ===+ 7:_3)7+81+82 .. (6)

Hence if the value of (4B) exceed the value given by the first
two terms (i.e. if 8 + 8, be positive), 4 and B must be positively
associated either in the universe of C's, the universe of y’s, or
both. If, on the other hand, (4.B) fall short of the value given by
the first two terms, 4 and B must be negatively associated in
the universe of C(’s, the universe of ¢’s, or both. Finally, if
(AB) be equal to the value of the first two terms, 4 and B must
be positively associated in the one partial universe and negatively
in the other, or else independent in both.

The expression (6) may often be used in the following form,
obtained by dividing through by, say, (B)—

(4B) (4C) (BO)  (dy) (By) 8+5,
B-© B Te »te - O

In using this expression we make use solely of proportions or
percentages, and judge of the sign of the partial associations
between 4 and B accordingly. A concrete case, as in Example iii.
below, is perhaps clearer than the general formula.

Example iii.—(Figures compiled from Supplement to the Fifty-
fifth Annual Report of the Registrar-Gemeral [C.—8503), 1897.)
The following are the death-rates per thousand per annum, and the
proportions over 65 years of age, of occupied males in general,
farmers, textile workers, and glass workers (over 15 years of age
in each case) during the decade 1891-1900 in England and Wales.

Proportion
Death-rate per thousand
per thousand. over 65 Years
of Age.

Occupied males over 15 . 158 46
Farmers s » . . 196 132
Textile workers, males over 15. 159 34
Glass workers ’ »y - 166 16

Would farming, textile working, and glass working seem to be
relatively healthy or unhealthy occupations, given that the death-
rates among occupied males from 15-65 and over 65 years of age
are 11'5 and 102-3 per thousand respectively ?

If A denote death, B the given occupation, (' old age, we have
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to apply the principle of equation (7). Calculate what would be
the death-rate for each occupation on the supposition that the
death-rates for occupied males in general (115, 102'3) apply to
each of its separate age-groups (under 65, over 65), and see
whether the total death-rate so calculated exceeds or falls short
of the actual death-rate. If it exceeds the actual rate, the
occupation must on the whole be healthy ; if it falls short, un-
healthy. Thus we have the following calculated death-rates:—

Farmers . . . 11'5x:868+102:3 x 132=23"5.
Textile workers . 115 %966 +102:3 x *034 = 14-6.
Glass workers . . 11:5x 984 +102-:3 x 016 =13-0.

The calculated rate for farmers largely exceeds the actual rate ;
farming, then, must on the whole, as one would expect, be
a healthy occupation. The death-rate for either young farmers
or old farmers, or both, must be less than for occupied males in
general (the last is actually the case); the high death-rate
observed is due solely to the large proportion of the aged. Textile
working, on the other hand, appears to be unhealthy (146 <159),
and glass working still more so (13:0<16-6) ; the actual low total
death-rates are due merely to low proportions of the aged.

It is evident that age-distributions vary so largely from one
occupation to another that total death-rates are liable to be very
misleading—so misleading, in fact, that they are not tabulated at all
by the Registrar-General ; only death-rates for narrow limits of age
(b or 10 year age-classes) are worked out. Similar fallacies are
liable to occur in comparisons of local death-rates, owing to
variations not only in the relative proportions of the old, but also
in the relative proportions of the two sexes.

It is hardly necessary to observe that as age is a variable quantity,
the above procedure for calculating the comparative death-rates
is extremely rough. The death-rate of those engaged in any occu-
pation depends not only on the mere proportions over and under
65, but on the relative numbers at every single year of age. The
simpler procedure brings out, however, better than a more complex
one, the nature of the fallacy involved in assuming that crude death-
rates are measures of healthiness. [See also Chap. XI. §§ 17-19.]

Ezample iv.—Eye-colour in grandparent, parent and child.
(The figures are those of Example ii.)

4, light-eyed child ; B, light-eyed parent ; C, licht-eyed grand-
pareut.

N =5008 (4B)=2524
(4) = 3584 (AC)=2480
(B) = 3052 (BC)=2231

(C)=3178
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Given only the above data, investigate whether there is probably
a partial association between child and grandparent.
If there were no partial association we would have—

AB)(BC) (4B8)BC
9594 x 9231 1060 x 947
T 3062 T 1986
— 18450 +513-2
— 93582,

Actually (4C)=2480; there must, then, be partial association
cither in the B-universe, the S-universe, or both. In the absence
of any reason to the contrary, it would be natural to suppose there
is a partial association in both; #e that there is a partial
association with the grandparent whether the line of descent
passes through “light-eyed ” or * not-light-eyed ” parents, but this
could not be proved without a knowledge of the class-frequency
(4B0C).

10. The total possible number of associations to be derived from
n attributes grows so rapidly with the value of = that the evalua-
tion of them all for any case in which = is greater than four
becomes almost unmanageable. For three attributes there are 9
possible associations—three totals, three partials in positive
universes, and three partials in negative universes. Ior four
attributes, the number of possible associations rises to 54,
for there are 6 pairs to be formed from four attributes, and
we can find 9 associations for each pair (1 total, 4 partials
with the universe specified by one attribute, and 4 partials
with the universe specified by two). For five attributes the
student will find that there are no less than 270, and for six
attributes 1215 associations.

As suggested by Examples i. and ii. above, however, it is not
necessary in any actual case to investigate all the associations
that are theoretically possible ; the nature of the problem indicates
those that are required.

In Ezample i., for instance, the total and partial associations
between 4 and D were alone investigated ; the associations between
4 and B, B and D were not essential for answering the question
that was asked. In Example ii., again, the three total associations
and the partial association between 4 and C were worked out,
but the partial associations between 4 and B, B and C' were
omitted as unnecessary. Practical considerations of this kind will
always lessen the amount of necessary labour.
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11. It might appear, at first sight, that theoretical considera-
tions would enable us to lessen it still further. As we saw in
Chapter I, all class-frequencies can be expressed in terms of those
of the positive classes, of which there are 2" in the case of n
attributes. For given values of the n+ 1 frequencies &, (4), (B),
(C), . . .of order lower than the second, assigned values of the
positive class-frequencies of the second and higher orders must
therefore correspond to determinate values of all the possible
associations. But the number of these positive class-frequencies
of the second and higher orders is only 2" —n+1 ; therefore the
number of algebraically independent associations that can be
derived from = attributes is only 2" -m+41. For successive
values of » this gives—

™ —n+1
1 -

4

11

26

57

SOt Who

Hence if we give data, in any form, that determine four
associations in the case of three attributes, eleven in the case of
four attributes, and so on, in addition to ¥ and the class-frequencies
of the first order, we have done all that is theoretically necessary.
The remaining associations can be deduced.

12. Practically, however, the mere fact that they can be deduced
is of little help unless such deduction can be effected simply,
indeed almost directly, by mere mental arithmetic almost, and
this is not the case. The relations that exist between the ratios
or differences, such as (4.B) — (4.5),, that indicate the associations
are, in fact, so complex that an unknown association cannot be
determined from those that are given without more or less lengthy
work ; it is not possible to infer even its sign by any simple
process of inspection. We have, for instance, from (5), by the
process used in obtaining (4) for the special case of § 6—

(4yXBy) | _ -y - =
_(AB'r)--—W)—J—[(AB)—(AB)o] 0y (49 ~ (ACYI(BC) — (BCYo]

(AL5(50)

(8]

which gives us the difference of (4By) from the value it would
have if 4 and B were independent in the universe of y’s in terms
of the difference of (4B5C) from the value it would have if 4 and
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B were independent in the universe of C’s, and the corresponding
differences for the frequencies (4.8), (4C), and (BC). The four
quantities in the brackets on the right represent, say, the four
known associations, the bracket on the left the unknown association.
Clearly, the relation is not of such a simple kind that the term on
the left can be, in general, mentally evaluated. Hence in con-
sidering the choice and number of associations to be actaally
tabulated, regard must be had to practical considerations rather
than to theoretical relations.

13. The particular case in which all the 2" —n + 1 given associa-
tions are zero is worth some special investigation.

It follows, in the first place, that all other possible associations
must be zero, t.e. that a state of complete independence, as we
may term it, exists. Suppose, for instance, that we are given—

o A)(E) i (AE)
(A7) =t (A= 7

(ACY(BC) _ (4)(BYC)
(@) :

(B(?’)—%q) (ABC)~

Then it follows at once that we have also—
]J’)(BC) (ABYAC)
(B (4)

t.e. 4 and C are independent in the universe of B’s, and B and ¢
in the universe of 4’s. Again,

(480)=“42)

(4By)=(4B) - (4BC) = <A><B> (4)(B)(C)

N2
_(4)B)() (A*/)(B*/)
e ™

Therefore 4 and B are independent in the universe of ¥’s.
Similarly, it may be shown that 4 and C' are independent in the
universe of 3’s, B and C in the universe of a’s.

In the next place it is evident from the above that relations of
the general form (to write the equation symmetrically)

(4B0) (4) (B) () )
N N NN S s/
must hold for every class-frequency. This relation is the general

form of the equation of independence, (2) (d), Chap. I1I. (p. 26).
14. It must be noted, however, that (8) is not a criterion for the
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EXERCISES.

1. Take the following figures for girls corresponding to those for boys in
Example i, p. 45, and discuss them similarly, but not necessarily using
exactly the same comparisons, to see whether the conclusion that * the
connecting link between defects of body and mental dulness is the coincident
defect of brain which may be known by observation of abnormal nerve signs”
seems to hold good.

4, development defects. B, nerve signs. D, mental dulness

N 10,000 (4B) 9248
(4) 682 {(4D) 307
(B) 850 (BD) 363
(D) 689 (4BD) 128

2. (Material from Census of England and Wales, 1891, vol. iii.) The
following figures give the numbers of those suffering from single or combined
infirmities : (1) for all males, (2) for males of 55 years of age and over.

4, Blindness, B, Mental derangement. ¢, Deaf-mutism.

(1) 2) (1) (2)

All Males. Males 55— All Males. Males 55
N 14,053,000 1,377,000 (4B) 183 65
(4) 12,281 5,538 (40) 51 14
(B) 45,392 10,309 (BO) 299 47
(%)) 7,707 746 (4B0C) 11 3

Tabulate proportions per thousand, exhibiting the total association between
blindness and mental derangement, and the partial association between the
same two infirmities among deaf-mutes, (1) for males in general, (2) for those
of 55 years of age or over. Give a short verbal statement of the results, and
contrast them with those of Question 1.

3. (Material from supplement to 55th Annual Report Reg.-Genl. )

The death-rate from cancer for occupied males in general (over 15) is
0685 per thousand per annum, and for farmers 1-20.

The death-rates from cancer for occupied males under and over 45 respec-
tively are 0°13 and 225 respectively. Of the farmers 46°1 per cent. are over
45.

Would you say that farmers were peculiarly liable to cancer?

4. A population of males over 15 years of age consists of 7 per cent. over 65
years of age and 93 per cent. under. The death-rates are 12 per thousand per
annum in the younger class and 110 in the older, or 1886 in the whole
population. The death-rate of males (over 15) engaged in & certain industry
is 267 per thousand.

If the industry be not unhealthy, what must be the approximate proportion
of those over 65 engaged in it (neglecting minor differences of age
distribution) ?

5. Show that if 4 and B are independent, while 4 and C, B and C are
associated, 4 and B must be disassociated either in the universe of (s,
the universe of 4’s, or both.

6. As an illustration of Question 5, show that if the following were actual
data, there would be a slight disassociation between the eye-colours of
husband and wife (father and mother) for the parents either of light-eyed
sons or not-light-eyed sons, or both, although there is a slight positive
association for parents at large.







CHAPTER V.

MANIFOLD CLASSIFICATION.

1. The general principle of a manifold classification—2-4. The table of
double-entry or contingency table and its treatment by fundamental
methods—5-8. The coefficient of contingency—9-10. Analysis of
acontingency table by tetrads—11-13. Isotropic and anisotropic
distributions—14-15. Homogeneity of the classifications dealt with
in this and the preceding chapters : heterogeneous classifications.

1. CrassiFicaTioN by dichotomy is, as was briefly pointed out in
Chap. I. § 5, a simpler form of classification than usually occurs
in the tabulation of practical statistics. It may be regarded as
a special case of a more general form in which the individuals or
objects observed are first divided under, say, s heads, 4, 4, . . ..
4, each of the classes so obtained then subdivided under ¢ heads,
By, By . ... DB, each of these under w heads, C;, C, .. .. C,, and
80 on, thus giving rise to s. ¢. w. . . .. ultimate classes altogether.

2. The general theory of such a manifold as distinct from a
twofold or dichotomous classification, in the case of = attributes
or characters ABC . ... &, would be extremely complex: in the
present chapter the discussion will be confined to the case of two
characters, 4 and B, only. If the classification of the 4’8 be s-
fold and of the B’s #-fold, the frequencies of the st classes of the
second order may be most simply given by forming a table with
s columns headed 4. to 4, and ¢ rows headed B; to B, The
number of the objects or individuals possessing any combination
of the two characters, say 4,, and B,, <.e. the frequency of the
class 4,,8,, is entered in the compartment common to the mth
column and the nth row, the st compartments thus giving all
the second-order frequencies. The totals at the ends of rows
and the feet of columns give the first-order frequencies, z.e. the
numbers of 4,’s and B,’s, and finally the grand total at the
right-hand bottom corner gives the whole number of observations.
Tables I. and II. below will serve as illustrations of such tables
of double-entry or contingency tables, as they have been termed
by Professor Pearson (ref. 1).

60
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read similarly to the last. Taking the first row, it tells us that
there were 2811 men with blue eyes noted, of whom 1768 had
fair hair, 807 brown hair, 189 black hair, and 47 red hair.
Similarly, from the first column, there were 2829 men with fair
hair, of whom 1768 had blue eyes, 946 grey or green eyes, and
115 brown eyes. The tables are a generalised form of the four-
fold (2 x 2-fold) tables in § 13, Chap. IIL.

4. For the purpose of discussing the nature of the relation
between the 4’s and the B’s, any such table may be treated on
the principles of the preceding chapters by reducing it in different
ways to 2 X 2-fold form. It then becomes possible to trace the
association between any one or more of the 4’s and any one or
more of the B's, either in the universe at large or in universes
limited by the omission of one or more of the 4’s, of the B’s, or
of both. Taking Table I, for example, trace the association
between the erection of houses and the urban character of a
district. Adding together the first two rows—z.e. pooling London
and the other urban districts together—and similarly adding the
first two columns, so as to make no distinction between inhabited
and uninhabited houses as long as they are completed, we find—

Proportion of all houses which )
are in course of erection in }- 50/5010 =10 per thousand.
urban districts . .
Proportion of all houses which )
are in course of erection in % 12/1761= 7 »
rural districts

There is therefore, as might be expected, a distinct positive
association, a larger proportion of houses being in course of
erection in urban than in rural districts.

If, as another illustration, it be desired to trace the association
between the ‘“ uninhabitedness ” of houses and the urban character
of the district, the procedure will be rather different. Rows 1
and 2 may be added together as before, but column 3 may be
omitted altogether, as the houses which are only in course of
erection do not enter into the question. We then have—

Proportion of all houses which )
are uninhabited in urban » 325/4960=66 per thousand.
districts .
Proportion of all houses whlch)
are uninhabited in rural - 124/1749=71 .,
districts :
The association is therefore negatlve, the proportion of houses
uninhabited being greater in rural than in urban districts.
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The eye- and hair-colour data of Table IT. may be treated in a
precisely similar fashion. If, e.g., we desire to trace the associa-
tion between a lack of pigmentation in eyes and in hair, rows 1
and 2 may be pooled together as representing the least pigmenta-
tion of the eyes, and columns 2, 3, and 4 may be pooled together
as representing hair with a more or less marked degree of
pigmentation. We then have—

Proportion of light-eyed with | 2714/5943 = 46 per cent.
fair hair ) p

Proportion of bI‘OWl-l eyecll with } 115/857 =13

fair hair »

The association is therefore well-marked. For comparison we -
may trace the corresponding association between the most marked
degree of pigmentation in eyes and hair, z.e. brown eyes and
black hair. Here we must add together rows 1 and 2 as before,
and columns 1, 2, and 4—the column for red being really mis-
placed, as red represents a comparatively slight degree of pigmenta-
tion. The figures are—

Proportion of brown-eyed with -
black hair . : } 288/857 =34 per cent.

Proportion of llght—eyed with 5
black hair . } sabeeg=te e,

The association is again positive and well-marked, but the
difference between the two percentages is rather less than in the
last case.

5. The mode of treatment adopted in the preceding section rests
on first principles, and, if fully carried out, it gives the most detailed
information possible with regard to the relations of the two attri-
butes. At the same time a distinct need is felt in practical work for
some more summary method—a method which will enable a single
and definite answer to be given to such a question as—Are the
4’s on the whole distinctly dependent on the B’s; and if so, is this
dependence very close, or the reverse? The subject of coefficients
of association, which affords the answer to this question in the
case of a dichotomous classification, was only dealt with briefly
and incidentally, for it is still the subject of some controversy :
further, where there are only four classes of the second order
to be considered the matter is not nearly so complex as where
the number is, say, twenty-five or more, and the need for
any summary coefficient is not so often nor so keenly felt. The
ideas on which Professor Pearson’s general measure of de-
pendence, the “coefficient of contingency,” is based, are, more-
over, quite simple and fundamental, and the mode of calculation
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is therefore given in full in the following section. The advanced
student should refer to the original memoir (ref. 1) for a completer
treatment of the theory of the coefficient, and of its relation to
the theory of variables.

6. Generalising slightly the notation of the preceding chapters,
let the frequency of 4,’s be denoted by (d4,.), the frequency of
B.’s by (B,), and the frequency of objects or individuals possessing
both characters by (4,,B,). Then, if the 4’s and B’s be com-
pletely independent in the universe at large, we must have for all
values of m and n—

(AmBn) - (ﬁ%@ = (AmBn)o . . . (1)

If, however, 4 and B are not completely independent, (4,,B,) and
(A,.B,), will not be identical for all values of m and n Let
the difference be given by

Smn = (AmBﬂ) = (Am-Bn)o ° o ° (2)

A coefficient such as we are seeking may evidently be based in
some way on these values of 8. It will not do, however, simply to
add them together, for the sum of all the values of 8§, some of
which are negative and others positive, must be zero in any case,
the sum of both the (4B8)’s and the (4B),’s being equal to the
whole number of observations N. It is necessary, therefore, to
get rid of the signs, and this may be done in two simple ways: (1)
by neglecting them and forming the arithmetical instead of the
algebraical sum of the differences 8§, or (2) by squaring the differ-
ences and then summing the squares. The first process is the
shorter, but the second the better, as it leads to a coefficient
eagily treated by algebraical methods, which the first process
does not: as the student will see later, squaring is very
ugefully and very frequently employed for the purpose of elimin-
ating algebraical signs. Suppose, then,  that every 8 is calculated,
and also.the ratio of its square to the corresponding value of
(AB);, and that the sum of all such ratios is, say, x2: or, in
symbols, using Z to denote the sum of all quantities like ” :—

X =3(~ 7 J) A : . (3
Being the sum of a series of squares, y* is necessarily positive,
and if 4 and B be independent it is zero, because every & is zevo.

If, then, we form a coefficient C' given by the relation

G=u X
Vi
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this coeflicient is zero if the characters 4 and B are completely
independent, and approaches more and more nearly towards
unity as x? increases. In general, no sign should be attached
to the root, for the coefficient simply shows whether the two
characters are or are not independent, and nothing more, but in
some cases a conventional sign may be used. Thus in Table II.
slight pigmentation of eyes and of hair appear to go together,
and the contingency may be regarded as definitely positive. If
slight pigmentation of eyes had been associated with marked
pigmentation of hair, the contingency might have been regarded
as negative. (' is Professor Pearson’s mean square contingency
coefficient.!

7. The coefficient, in the simple form (4), has one disadvantage,
viz. that coeflicients calculated on different systems of classi-
fication are not comparable with each other.. It is clearly desir-
able for practical purposes that two coefficients calculated from
the same data classified in two different ways should be, at least
approximately, identical. With the present coefficient this is not
the case: if certain data be classified in, say, (1) 6 x 6-fold, (2)
3 x 3-fold form, the coefficient in the latter form tends to be the
least. The greatest possible value of the coeflicient, is, in fact,
only unity if the number of classes be infinitely great; for any
finite number of classes the limiting value of € is the smaller the
smaller the number of classes. This may be briefly illustrated as
follows. Replacing 8, in equation (3) by its value in terms of
(d,.055.) and (4,,B,), we have—

s_s JELBPL o
X==1(4.8 ) N e = )

and therefore, denoting the expression in brackets by S,

C'=\//ij;—,:\—r < ; ; ()

Now suppose we have to deal with a ¢x ¢-fold classification in
which (4,)=(B,,) for all values of m ; and suppose, further, that
the association between 4,, and B,, is perfect, so that (4,B,)=
(4,,) = (B,,) for all values of m, the remaining frequencies of the
second order being zero; all the frequency is then concentrated
in the diagonal compartments of the table, and each contributes

1 Professor Pearson (ref. 1) terms § a sub-contingency ; x2 the square contin-
gency ; the ratio x?/, which he denotes by ¢? the mean square contingency ;
and the sum of all the &’s of one sign only, on which a different coefficient can
be based, the mean contingency.
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than, less than, or equal to the ratio (4,B,.,)/(4,118,41). The
whole of the contingency table can be analysed into a series of
elementary groups of four frequencies like the above, each one
overlapping its neighbours so that an #s-fold table contains
(r—1) (s - 1) such “tetrads,” and the associations in them all can
be very quickly determined by simply tabulating the ratios like
(A, BN B, (4,Be1)/(4y11B,yy), ete,, or perhaps better,
the proportions (4,.8,)/{(A.B,)+ (4d,4.B.)}, ete., for every pair
of columns or of rows, as may be most convenient. Taking the
figures of Table II. as an illustration, and working from the
rows, the proportions run as follows :—

For rows 1 and 2. For rows 2 and 3.
1768/2714 0651 946/1061 0-892
807/2194 0-368 1387/1825 0-760
189/935 0202 746/1034 0721
47/100 0:470 53/69 0-768

In both cases the first three ratios form descending series, but
the fourth ratio is greater than the second. The signs of the
agsociations in the six tetrads are accordingly—

+ + -
+ + -

The negative sign in the two tetrads on the right is striking,
the more so as other tables for hair- and eye-colour, arranged in
the same way, exhibit just the same characteristic. But the
peculiarity will be removed at once if the fourth column be placed
immediately after the first: if this be done, 7.e. if “red ” be placed
between “fair” and * brown ” instead of at the end of the colour-
series, the sign of the association in all the elementary tetrads
will be the same. The colours will then run fair, red, brown,
black, and this would seem to be the more natural order, consider-
ing the depth of the pigmentation.

11. A distribution of frequency of such a kind that the
association in every elementary tetrad is of the same sign
possesses several useful and interesting properties, as shown in
the following theorems. It will be termed an isotropic dis-
tribution.

(1) In an dsotropic distribution the sign of the assoctation s
the same mot only for every elementary tetrad of adjacent frequem-
cies, but for every set of four frequencies in the compariments
common to two rows and two columns, e.g. (4.85,), (4d,i.B.)

(AmBﬂ'HI)’ (A‘"H'P‘B"‘HI)'
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For suppose that the sign of association in the elementary
tetrads is positive, so that—

(AmBn)(Am+an+1)>(Am+1-Bn)(AmBn+l) o . (1)
and similarly,

(Ami1Bo)(AmirBrr1) > (AmpeB)(AiaaBors) - - (2
Then multiplying up and cancelling we have
(Am-Bn)(Am+2-Bn+1) > (Am+2Bn)(AmBn+1) - * (3)

That is to say, the association is still positive though the two
columns 4,, and 4,,,, are no longer adjacent.
(2) An dsotropic distribution remains isotropic in whatever way
it may be condensed by grouping together adjacent rows or columns.
Thus from (1) and (3) we have, adding—

(A B)(AmirBusr) + (Ao Brsr)] > (A B (AmsaBn) + (AmyaBa))s

that is to say, the sign of the elementary association is unaffected
by throwing the (m + 1)th and (m + 2)th columns into one.

(3) As the extreme case of the preceding theorem, we may
suppose both rows and columns grouped and regrouped until
only a 2 x 2-fold table is left ; we then have the theorem—

If an isotropic distridbution be reduced to a fourfold distribution
i any way whatever, by addition of adjacent rows and columns,
the sign of the association tn such fourfold table is the same as in
the elementary tetrads of the original table.

The case of complete independence is a special case of isotropy.
For if

(AmBﬂ) = (AM)(-Bn)/N

for all valucs of m and n, the association is evidently zero for
every tetrad. Therefore the distribution remains independent
in whatever way the table be grouped, or in whatever way the
universe be limited by the omission of rows or columns. The
expression ‘“complete independence ” is therefore justified.

From the work of the preceding section we may say that Table
II. is not isotropic as it stands, but may be regarded as a dis-
arrangement of an isotropic distribution. It is best to rearrange
such a table in isotropic order, as otherwise different reductions
to fourfold form may lead to associations of different sign, though
of course they need not necessarily do so.

12. The following will serve as an illustration of a table that
1s not isotropic, and cannot be rendered isotropic by any rearrange-
ment of the order of rows and columns.
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the great majority of the tables, and accordingly its origin
demands explanation. Were such a table treated by the method
of the contingency coefficient, or a similar summary method,
alone, the peculiarity might not be remarked.

13. It may be noted, in concluding this part of the subject,
that in the case of complete independence the distribution of
frequency in every row is similar to the distribution in the row
of totals, and the distribution in every column similar to that in
the column of totals ; for in, say, the column A4, the frequencies
are given by the relations —

(4,8 = 2By, (4,5) =4 (B,), (4,B) =L ),

and so on. This property is of special importance in the theory
of variables.

14. The classifications both of this and of the preceding chapters
have one important characteristic in common, viz. that they
are, 80 to speak, ‘“homogeneous”—the principle of division
being the same for all the sub-classes of any one class. Thus
A’s and a’s are both subdivided into B’s and B’s, 4,’s, 4,5 .. ..
4/s into B)’s, By's. ... B/s, and so on. Clearly this is necessary
in order to render possible those comparisons on which the
discussions of associations and contingencies depend. If we
only know that amongst the A’s there is a certain percentage
of B’s, and amongst the a’s a certain percentage of C’s, there
are no data for any conclusion.

Many classifications are, however, essentially of a heterogeneous
character, e.g. biological classifications into orders, genera, and
species; the classifications of the causes of death in vital
statistics, and of occupations in the census. To take the last
case as an illustration, the first “order ” in the list of occupations
is ““General or Local Government of the Country,” subdivided
under the headings (1) National Government, (2) Local Govern-
ment. The next order is * Defence of the Country,” with the sub-
headings (1) Army, (2) Navy and Marines—not (1) National
and (2) Local Government again—the sub-heads are necessarily
distinct. Similarly, the third order is “ Professional Occupations
and their Subordinate Services,” with the fresh sub-heads (1)
Clerical, (2) Legal, (3) Medical, (4) Teaching, (5) Literary and
Scientific, (6) Engineers and Surveyors, (7) Art, Music, Drama,
(8) Exhibitions, Games, ete. The number of sub-heads under
each main heading is, in such a case, arbitrary and variable,
and different for each main heading; but so long as the
classification remains purely heterogeneous, however complex
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it may become, there is no opportunity for any discussion
of causation within the limits of the matter so derived. It is
only when a homogeneous division is in some way introduced
that we can begin to speak of associations and contingencies.

15. This may be done in various ways according to the
nature of the case. Thus the relative fregquencies of different
botanical families, genera, or species may be discussed in
connection with the topographical characters of their habitats—
desert, marsh, or moor—and we may observe statistical associa-
tions between given genera and situations of a given topographical
type. The causes of death may be classified according to sex,
or age, or occupation, and it then becomes possible to discuss
the association of a given cause of death with one or other
of the two sexes, with a given age-group, or with a given
occupation. Again, the classifications of deaths and of occupations
are repeated at successive intervals of time; and if they have
remained strictly the same, it is also possible to discuss the
association of a given occupation or a given cause of dcath with
the earlier or later year of observation—i.e. to see whether the
numbers of those engaged in the given occupation or succumbing
to the given cause of death have increased or decreased. But
in such circumstances the greatest care must be taken to see
that the necessary condition as to the identity of the classifications
at the two periods is fulfilled, and unfortunately it very
seldom is fulfilled. All practical schemes of classification arc
subject to alteration and improvement from time to time, and
these alterations, however desirable in themselves, render a
certain number of comparisons impossible. Kven where a
classification has remained verbally the same, it is not necessarily
really the same; thus, in the case of the causes of death,
improved methods of diagnosis may transfer many deaths from
one heading to another without any change in the incidence
of the disease, and so bring about a virtual change in the
classification. In any case, heterogeneous classification should
be regarded only as a partial process, incomplete until a
homogeneous division is introduced either directly or indirectly,
e.g. by repetition.
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EXERCISES.

(1) (Data from Karl Pearson, ‘“ On the Inheritance of the Mental and Moral
Characters in Man,” Jour. of the Anthrop. Inst., vol. xxxiil., and Biometrika,
vol. iii.) Find the coefficient of contingency (coefficient of mean square
contingency) for the two tables below, showing the resemblance between
brothers for athletic capacity and belween sisters for temper. Show that
neither table is even remotely isotropic. {As stated in § 7, the coeflicient of
contingency should not as a rule be used for tables smaller than 5 x 5-fold:
these small tables are given to illustrate the method, while avoiding lengthy
arithmetic. )






PART II.-THE THEORY OF VARIABLES.

CHAPTER VI

THE FREQUENCY-DISTRIBUTION.

1. Introductory—2. Necessity for classification of observations: the frequency
distribution—3. Illustrations—4. Method of forming the table—5.
Magnitude of class-interval—6. Position of intervals—7. Process of
classification—8. Treatment of intermediate observations—9. Tabula-
tion—10. Tables with unequal intervals—11. Graphical representa-
tion of the frequency-distribution—12. Ideal frequency-distributions
—13. The symmetrical distribution—14. The moderately asymmetri-
cal distribution—15. The extremely asymmetrical or J-shaped dis-
tribution—16. The U-shaped distribution.

1. THE methods described in Chaps. 1.-V. are applicable to all
observations, whether qualitative or quantitative ; we have now
to proceed to the consideration of specialised processes, definitely
adapted to the treatment of quantitative measurements, but not
as a rule available (with some important exceptions, as suggested
by Chap. I. § 2) for the discussion of purely qualitative observa-
tions. Since numerical measurement is applied only in the case
of a quantity that can present more than one numerical value,
that is, a varying quantity, or more shortly a variable, this section
of the work may be termed the theory of variables. As common
examples of such variables that are subject to statistical treat-
ment may be cited birth- or death-rates, prices, wages, barometer
readings, rainfall records, and measurements or enumerations (e.g.
of glands, spines, or petals) on animals or plants.

2. If some hundreds or thousands of values of a variable have
been noted merely in the arbitrary order in which they happened
to occur, the mind cannot properly grasp the significance of the
record : the observations must be ranked or classified in some
way before the characteristics of the series can be comprehended,
and those comparisons, on which arguments as to causation
depend, can be made with other series. The dichotomous classi-

76



76 THEORY OF STATISTICS.

fication, considered in Chaps. I.-IV., is too crude: if the values are
merely classified as A’s or o’s according as they exceed or fall
short, of some fixed value, a large part of the information given
by the original record is lost. A manifold classification, however
(¢f. Chap. V.), avoids the orudity of the dichotomous form, since
the classes may be made as numerous as we please, and numerical
measurements lend thewmselves with peculiar readiness to a
manifold classification, for the class limits can be conveniently
and precisely defined by assigned values of tho variable. For
convenience, the values of the variable chosen to define the
successive classes should be equidistant, so that the numbers of
observations in the different classes (the class-frequencies) may be
comparable. Thus for measurcments of stature the interval
chosen for classifying (the class-interval, as it may be termed)
might be 1 inch, or 2 centimetres, the numbers of individuals
being counted whose statures fall within each successive inch, or
each successive 2 centimetres, of the scale; returns of birth- or
decath-rates might be grouped to the ncarest unit per thousand
of the population; returns of wages might be classified to the
nearest shilling, or, if desired to obtain a more condensed table,
by intervals of five shillings or ten shillings, and so on. When
the variation is discontinuous, as for example in enumerations
of numbers of children in families or of petals on flowers, the
unit is naturally taken as the class-interval unless the range of
variation is very great. The manner in which the obscrvations
arc distributed over the successive equal intervals of the scale is
spoken of as the frequency-distribution of the variable.

3. A few illustrations will make clearer the nature of such
frequency-distributions, and the service which they render in
summarising a long and complex record :—

(a) Table I. In this illustration the mean annual death-rates,
expressed as proportions per thousand of the population per
annum, of the 632 registration districts of England and Wales,
for the decade 1881-90, have been classified to the nearest unit ;
i.e. the numbers of districts have been counted in which the
death-rate was over 12:6 but under 13:5, over 13'5 but under
145, and so on. The frequency-distribution is shown by the
following table.

[TaBLE I.
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The numbers of rays range from 6 to 20,—12, 13, or 14 rays
being the most usual.

4. To expand slightly the brief description given in § 2, tables
like the preceding are formed in the following way :—(1) The
magnitude of the class-interval, z.e. the number of units to each
interval, is first fixed ; one unit was chosen in the case of Tables
1. and IIL, five units in the case of Table II. (2) The position or
origin of the intervals must then be determined, e.g. in Table I.
we must decide whether to take as intervals 12-13, 13-14, 1415,
etc., or 12-5-135, 13:5-14'5, 14'5-15'5, etc. (3) This choice
having been made, the complete scale of intervals is fixed, and the
observations are classified accordingly. (4) The process of
classification being finished, a table is drawn up on the general
lines of Tables I.-III., showing the total numbers of observations
in each class-interval Some remarks may be made on each of
these heads. :

5. Magnitude of Class-Interval.—As already remarked, in cases
where the variation proceeds by discrete steps of considerable
magnitude as compared with the range of variation, there is very
little choice as regards the magnitude of the class-interval. The
unit will in general have to serve. But if the variation be
continuous, or at least take place by discrete steps which are
small in comparison with the whole range of variation, there is
no such natural class-interval, and its choice is a matter for
judgment.

The two conditions which guide the choice are these: (a) we
desire to be able to treat all the values assigned to any one class,
without serious error, as if they were equal to the mid-value
of the class-interval, e.g. as if the death-rate of every district in
the first class of Table I. were exactly 13-0, the death-rate of
every district in the second class 140, and so on; () for con-
venience and brevity we desire to make the interval as large as
possible, subject to the first condition. These conditions will
generally be fulfilled if the interval be so chosen that the whole
number of classes lies between 15 and 25. A number of classes
less than, say, ten leads in general to very appreciable inaccuracy,
and a number over, say, thirty makes a somewhat unwieldy
table. A preliminary inspection of the record should accordingly
be made and the highest and lowest values be picked out.
Dividing the difference between these by, say, five and twenty, we
have an approximate value for the interval. The actual value
should be the nearest integer or simple fraction.

6. Positvon of Intervals.—The position or starting-point of the
intervals is, as a rule, more or less indifferent, but in general it
is fixed either so that the limits of intervals are integers, or, as in
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Tables I. and II., so that the mid-values are integers. It may,
however, be chosen, for simplicity in classification, so that no
limit corresponds exactly to any recorded value (¢f. § 8 below). In
some exceptional cases, moreover, the observations exhibit a marked
clustering round certain values, e.g. tens, or tens and fives. This
is generally the case, for instance, in age rcturns, owing to the
tendency to state a round number where the true age is uuknown.
Under such circumstances, the values round which there is a
marked tendency to cluster should preferably be made mid-values
of intervals, in order to avoid sensible error in the assumption
that the mid-value is approximately representative of the values
in the class. Thus, in the case of ages, since the clustering is
chiefly round tens, 25 and under 35,” ““ 35 and under 45,” ete., the
classification of the English census, is a better grouping than 20
and under 30,” “ 30 and under 40,” and so on. Where there is
any probability of a clustering of this kind occurring, it is as well
to subject the raw material to a close examination before finally
fizxing the classification.

1. Classification.—The scale of intervals having been fixed, the
observations may be classified. If the number of observations is
not large, it will be sufficient to mark the limits of successive
intervals in a column down the left-hand side of a sheet of paper,
and transfer the entries of the original record to this sheet by
marking a 1 on the line corresponding to any class for each entry
assigned thereto. It saves time in subsequent totalling if each
fifth entry in a class is marked by a diagonal across the preceding
four, or by leaving a space.

The disadvantage in this process is that it offers no facilities for
checking : if a repetition of the classification leads to a different
result, there is no means of tracing the error. If the number of
observations is at all considerable and accuracy is essential, it is
accordingly better to enter the values observed on cards, one to
each observation. These are then dealt out into packs according
to their classes, and the whole work checked by running through
the pack corresponding to each class, and verifying that no cards
have been wrongly sorted.

8. In some cases difficulties may arise in classifying, owing to
the occurrence of observed values corresponding to class-limits.
Thus, in compiling Table 1., some districts will have been noted
with death-rates entered in the Registrar-General’s returns as
165, 17-5, or 185, any one of which might at first sight have
been apparently assigned indifferently to either of two adjacent
clagsses. In such a case, however, where the original figures for
numbers of deaths and population are available, the difficulty may
be readily surmounted by working out the rate to another place
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of decimals : if the rate stated to be 1650 proves to be 16:502, it
will be sorted to the class 16-5-17'5; if 16498, to the class
15-56-16'5. Death-rates that work out to half-units exactly do
not occur in this example, and so there is no real difficulty. In
the case of Table II., again, there is no difficulty : if the year of
birth and death alone are given, the age at death is only calcul-
able to the nearest unit; if the actual day of birth and death be
cited, half-years still cannot occur in the age at death, because
there is an odd number of days in the year. The difficulty may
always be avoided if it be borne in mind in fixing the limits
to class-intervals, these being carried to a further place of decimals,
or a smaller fraction, than the values in the original record. Thus
if statures are measured to the nearest centimetre, the class-
intervals may be taken as 150:5-1515, 1561°56-1562°5, etc. ; if to
the nearest eighth of an inch, the intervals may be 59]3—6017;,
601561213, and so on.

If the difficulty is not evaded in any of these ways, it is
usual to assign one-half of an intermediate observation to each
adjacent class, with the result that half-units occur in the
class-frequencies (¢f. Tables VIL, p. 90, X,, p. 96, and XI,,
p. 96). The procedure is rough, but probably good enough for
practical purposes; it would be slightly better, but a good deal
more laborious, to assign the intermediate observations to the
adjacent classes in proportion to the numbers of other observations
falling into the two classes.

9. Tabulation.—As regards the actual drafting of the final
table, there is little to be said, except that care should be taken
to express the class-limits clearly, and, if necessary, to state the
manner in which the difficulty of intermediate values has been
met or evaded. The classlimits are perhaps best given as in
Tables I. and II., but may be more briefly indicated by the mid-
values of the class-intervals. Thus Table I. might have been
given in the form—

Death-rate per 1000 Number of
per annum to the Districts with
Nearest Unit. said Death-rate.
13 5
14 16
15 61
16 112
ete. ete.

A common mode of defining the class-intervals is to state the
limits in the form “z and less than %.” In the case of measure-
ments of stature, for example, the table might run—

6
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Number of
Observations.

57 and less than 58 2

Stature in Inches.

58 - , 99 4
59 ' ,, 60 14
ete. ete.

—the statement “ 57 and less than 58,” etc., being often abbreviated
to 57—, 58—, 59—, ete. (¢f. Table VI., p. 88), The mode of grouping
is, in effect, that described in the last paragraph as of service in
avoiding intermediate observations, but it should be noted that the
form of statement leaves the class-limits uncertain unless the degree
of accuracy of the measurements is also given. Thus, il measure-
ments were taken to the nearest eighth of an inch, the class-
limits are really 5613-571%, B71E-b581L ete.; if they were
only taken to the nearest quarter of an inch, the limits are 567
-b57L, B75-58T, etec. With such a form of tabulation a state-
ment as to the number of significant figures in the original
record is therefore essential. It is better, perhaps, to state the
true class-limits and avoid ambiguity.

10. The rule that class-intervals should be all equal is one
that is very frequently broken in official statistical publications,
principally in order to condense an otherwise unwieldy table,
thus not only saving space in printing but also considerable
expense in compilation, or possibly, in the case of confidential
figures, to avoid giving a class which would contain only one or
two observations, the identity of which might be guessed. It
would hardly be legitimate, for example, to give a return of
incomes relating to a limited district in such a form that the
income of the two or three wealthiest men in the district would
be clear to any intelligent reader with local knowledge. If the
intervals be made unequal, the application of many statistical
methods is rendered awkward, or even impossible, and the
relative values of the frequencies are at first sight misleading, so
that the table is not perspicuous. Thus, consider the first two
columns of Table IV., showing the numbers of dwelling-houses
of different annual values, assessed to inhabited house duty. On
running the eye down the column headed “number of houses” it
is at once caught by the two striking irregularitics at the classes
“£60 and under £80,” and *“£100 and under £150.” Dut these
have no real significance ; they are merely due to changes from
a £10 to a £20, and then to a £50 interval. Morcover, the
intervals after £150 go on continuously increasing, but attention
is not directed thereto by any marked changes in the frequencies.
To make the latter really comparable inter se, they must first be
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giving the distribution of head-breadths for 1000 men, will serve
as an example.

TABLE V.—Showing the Frequency-distribution of Head-breadths for Students
at Cambridge. Measurements taken to the nearest tenth of an inch
(Cited from W. R. Macdonell, Biometrika, i., 1902, p. 220.)

Head-breadth
in Inches.

Number of
Men with said
Head-breadth.

Head-breadth
in Inches,

Number of
Men with said
Head-breadth.

55 3 6°3 99
56 12 64 37
57 43 65 15
58 80 66 12
59 131 67 3
60 236 68 2
61 185 —_
62 142 Total 1000

Taking a piece of squared paper ruled, say, in inches and tenths,
mark off along a horizontal base-line a scale representing class-
intervals; a half-inch to the class-interval would be suitable.
Then choose a vertical scale for the class-frequencies, say 50
observations per interval to the inch, and mark off, on the
verticals or ordinates through the points marked 55, 56, b7

. at the centres of the class-intervals on the base-line, heights
representing on this scale the class-frequencies 3, 12, 43. . . .
The diagram may then be completed in one of two ways: (1)
as a frequency-polygon, by joining up the marks on the ver-
ticals by straight lines, the last points at each end being joined
down to the base at the centre of the next class-interval (fig. 1) ;
or (2) as a column diagram or histogram (to use a term sug-
gested by Professor Pearson, ref, 1), short horizontals being drawn
through the marks on the verticals (fig. 2), which now form the
central axes of a series of rectangles representing the class-
frequencies. The student should note that in any such diagram,
of either form, a certain area represents a given number of
observations. On the scales sugerested, 1 inch on the horizontal
represents 2 intervals, and 1 inch on the vertical represents b0
observations per interval: 1 square inch therefore represents
50 x 2=100 observations. The diagrams are, however, con-
ventional : the whole area of the figure is correct in either case,
but the area over each interval is not correct in the case of the
frequency-polygon, and the frequency of each fraction of any
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to the maximum that a histogram is, on the whole, the better re-
presentation of the distribution of frequency, and in such a
distribution as that of Table IV. the use of the histogram is
almost imperative.

12. If the class-interval be made smaller and smaller, and at
the same time the number of observations be proportionately in-
creased, so that the class-frequencies may remain finite, the
polygon and the histogram will approach more and more closely
to a smooth curve. Such an ideal limit to the frequency-polygon
or histogram is termed a frequency-curve. In this ideal frequency-
curve the area between any two ordinates whatever is strictly
proportional to the number of observations falling between the
corresponding values of the variable. Thus the number of
observations falling between the values #; and x. of the variable
in fig. 4 will be proportional to the area of the shaded strip in the
figure; the number of observed values greater than z, will
similarly be given by the area of the curve to the right of the
ordinate through x,, and so on. When, in any actual case, the
number of observations is considerable—say a thousand at least
—the run of the class-frequencies is generally sufficiently
smooth to give a good notion of the form of the ideal distri-
bution ; with small numbers the frequencies may present all
kinds of irregularities, which, most probably, have very little
significance (¢f. Chap. XV. § 15, and § 18, Ex. iv.). The forms
presented by smoothly running sets of numerous observations
present an almost endless variety, but amongst these we notice
a small number of comparatively simple types, from which many
at least of the more complex distributions may be conceived as
compounded. For elementary purposes it is sufficient to consider
these fundamental simple types as four in number, the symmetri-
cal distribution, the moderately asymmetrical distribution, the
extremely asymmetrical or J-shaped distribution, and the U-shaped
distribution.

13. The symmetrical distribution, the class-frequencies decreas-
ing to zero symmetrically on either side of a central maximum.
Fig. 5 illustrates the ideal form of the distribution.

Being a special case of the more general type described under
the second heading, this form of distribution is comparatively rare
under any circumstances, and very exceptional indeed in economic
statistics. It occurs more frequently in the case of biometric, more
especially anthropometric, measurements, from which the following
illustrations are drawn, and is important in much theoretical work.
Table VI. shows the frequency-distribution of statures for adult
males in the British Isles, from data published by a British
Association Committee in 1883, the figures being given separately
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the distribution, in such a way as to suggest that the ideal
curve is tangential to the base. Cases of greater asymmetry,
suggesting an ideal curve that meets the base (at one end) at n
finite angle, even a right angle, asin fig. 9 (b), are less frequent,
but occur occasionally. The distribution of deaths from diphtheria,
according to age, affords one such example of a more asymmetrical
kind. The actual figures for this case are given in Table XII., and
illustrated by fig. 14 ; and it will be seen that the frequency of
deaths reaches a maximum for children aged “3 and under 4,”
the number rising very rapidly to the maximum, and thence
falling so slowly that there is still an appreciable frequency for
persons over 60 or 70 years of age.

TaBLE XII.—Showing the Numbers of Deaths from Diphtheria at Different
Ages tn England and Wales during the Ten Years 1891-1900. (Swupple-
ment to 65th Annwal Report of the Registrar-General, 1891-1900, p. 3.)
See Fig. 14.

Number of
Age in Years Deaths between Number
- Given Limits per Annumn.
of Age.

Under 1 year 4,186 4,186
1- 10,491 10,491

9- 11,218 11,218

3- 12,390 12,390

4— 11,194 11,194

5— 23,348 4,670

10- 4,092 818

15— 1,123 225

20~ 585 117

25— 786 79

35— 512 51

45— 324 32

55— 260 26

65— 127 13

75 and upwards 35 ?
Total 80,671 —

15. The extremely asymmetrical, or ““ J-shaped,” dvstribution, the
class-frequencies running up to a maximum at one end of the
range, as in fig. 16.

This may be regarded as the extreme form of the last distribution,
from which it cannot always be distinguished by elementary
methods if the original data are not available. If, for instance,
the frequencies of Table XIT. had been given by five-year intervals
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range, it is very close indeed thereto. Official returns do not
usually give the necessary analysis of the frequencies at the
lower end of the range to enable the exact position of the maximum
to be determined ; and for this reason the data on which Table
XIIL is founded, though of course very unreliable, are of some
interest. It will be seen from the table and fig. 16 that with the
given classification the distribution appears clearly assignable to
the present type, the number of estates between zero and £100
in annual value being more than six times as great as the number
between £100 and £200 in annual value, and the frequency
continuously falling as the value increases. A close analysis of
the first class suggests, however, that the greatest frequency does
not occur actually at zero, but that there is a true maximumn
frequency for estates of about £1 15 O in annual value. The
distribution might therefore be more correctly assigned to the
second type, but the position of the greatest frequency indicates a

TaBLE XIII.—Showing the Numbers and Annual Values of the Estates of
those who had taken part in the Jacobite Rising of 1715. (Compiled from
Cosin’s Names of the Roman Catholics, Nonjurors, and others who refused
to take the Oaths to his late Majesty King George, efc. ; London, 1745,
Figures of very doubtful absolute value. See a note in Southey’s
Commonplace Book, vol. 1. p. 573, quoted frum the Memoirs of T, Hollis.)

See Fig. 16.

\éz?l?;:alln Number of \‘}aﬁﬁgalln Number of
£100. Estates. £100. Estates.
0-1 1726°5 17-18 1
1- 2 280 — —
2- 3 140°5 20-21 4
3- 4 87 21-22 1
4-- 5 46°5 22-23 1
5- 6 425 23-24 1
6- 7 29-5 — —
7- 8 255 27-28 2
8-9 185 — —
9-10 21 21-32 1
10-11 115 — —
11-12 95 39-40 1
12-13 4 — =
13-14 35 45-46 1
14-15 8 — —
15-16 3 48-49 1

16-17 5
Total 2476
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distribution of deaf-mutism amongst the offspring of parents one
of whom at least was a deaf-mute. In general less than one-fifth
of the children are deaf-mutes : at the other end of the range the
cases in which over 80 per cent. of the children are deaf-mutes are
nearly three times as many as those in which the percentage lies
between 60 and 80. The numbers are, however, too small to form
a very satisfactory illustration.
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The first three memoirs above are mathematical memoirs on the theory
of ideal frequency-curves, the first being the fundamental memoir, and
the second and third supplementary. The elementary student may,
however, refer to them with advantage, on acconnt of the large collection
of frequency-distributions which is given, and from which some of the
illustrations in the preceding chapter have been cited. = Without
attempting to follow the mathematics, he may also note that each of
our rough empirical types may be divided into several sub-types, the
theoretical division into types being made on different grounds.

The fourth work is cited on account of the author’s discussion of the
distribution of wealth in a community, to which reference was made in
§15.

EXERCISES.

1. If the diagram fig. 6 is redrawn to scales of 300 observations per interval
to the inch and 4 inches of stature to the inch, what is the scale of observa-
tions to the square inch ?

If the scales are 100 observations per interval to the centimetre and 2 inches
of stature to the centimetre, what is the scale of observations to the
square centimetre ?

2. If fig. 10 is redrawn to scales of 25 observations per interval to the inch
and 2 per cent. to the inch, what is the scale of observations to the
square inch ?

If the scales are 10 observations per interval to the centimetre and 1 per
cent. to the centimetre, what is the scale of observations to the square
centimetre ?

3. If a frequency-polygon be drawn to represent the data of Table I., what
number of observations will the polygon show between death-rates of
16°5 and 175 per thousand, instead of the true number 159 ?

4. If a frequency-polygon be drawn to represent the data of Table V.,
what number of observations will the polygon show between head-breadths
595 and 6°05, instead of the true number 236 ?



CHAPTER VII.

AVERAGES.

1. Necessity for quantitative definition of the characters of a frequeney-
distribution—2. Measures of position (averages)and of dispersion—3.
The dimensions of an average the same as those of the variable—4.
Desirable properties for an average to possess—5. The commoner forms
of average—6-13. Thearithmeticmean : its definition, calculation, and
simpler properties—14-18. The median : its definition, calculation, and
simpler properties—19-20. The mode: its definition and relation to
mean and median—21. Summary comparison of the preceding forms
of average—22-26. The geometric mean : its definition, simpler pro-
perties, and the cases in which it is specially applicable—27. The
harmonic mean : its definition and calculation.

1. Ix § 2 of the last chapter it was pointed out that a classification
of the observations in any long series is the first step necessary
to make the observations comprehensible, and to render possible
those comparisons with other series which are essential for any
discussion of causation. Very little experience, however, would
show that classification alone is not an adequate method, seeing
that it only enables qualitative or verbal comparisons to be made.
The next step that it is desirable to take is the quantitative
definition of the characters of the frequency-distribution, so that
quantitative comparisons may be made between the corresponding
characters of two or more series. It might seem at first sight
that very difficult cases of comparison could arise in which, for
example, we had to contrast a symmetrical distribution with a ““J-
shaped ” distribution. As a matter of practice, however, we seldom
have to deal with such a case; distributions drawn from similar
material are, in general, of similar form. When we have to
compare the frequency-distributions of stature in two races of
man, of the death-rates in English registration districts in two
successive decades, of the numbers of petals in two races of the
same species of Ranunculus, we have only to compare with each
other two distributions of the same or nearly the same type.

2. Confining our attention, then, to this simple case, there are
two fundamental characteristics in which such distributions may
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4. (a) In the first place, it almost goes without saying that an
average should be rigidlydefined, and not left to the mere estimation
of the observer. An average that was merely estimated would
depend too largely on the observer as well as the data. (&) An
average should be based on all the observations made. 1If not,
it is not really a characteristic of the whole distribution. (¢) It
is desirable that the average should possess some simple and
obvious properties to render its general nature readily compre-
hensible : an average should not be of too abstract a mathematical
character. (d) It is, of course, desirable that an average should
be calculated with reasonable ease and rapidity. Other things
being equal, the easier calculated is the better of two forms of
average. At the same time too great weight must not be attached
to mere ease of calculation, to the neglect of other factors. (e)
It is desirable that the average should be as little affected as
may be possible by what we have termed fluctuations of sampliny.
If different samples be drawn from the same material, however
carefully they may be taken, the averages of the different samples
will rarely be quite the same, but one form of average may show
much greater differences than another. Of the two forms, the
more stable is the better. The full discussion of this condition
must, however, be postponed to a later section of this work
(Chap. XVIL). (/) Finally, by far the most important desideratum
is this, that the measure chosen shall lend itself readily to
algebraical treatment. If, e.g., two or more series of observations
on similar material are given, the average of the combined series
should be readily expressed in terms of the averages of the
component series : if a variable may be expressed as the sum of
two or more others, the average of the whole should be readily
expressed in terms of the averages of its parts. A measure for
which simple relations of this kind cannot be readily determined
is likely to prove of somewhat limited application.

5. There are three forms of average in common use, the
arithmetic mean, the median, and the mode, the first named being
by far the most widely used in general statistical work. To
these may be added the geometric mean and the harmonic mean,
more rarely used, but of service in special cases. We will con-
sider these in the order named.

6. The arithmetic mean.—The arithmetic mean, of a series of
values of a variable X, X,, X, . .. X,, NV in number, is the
quotient of the sum of the values by their number. That is to
say, if M be the arithmetic mean,

1
M=T(X1+X2+Xa+ ..+ X)),
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or, to express it more briefly by using the symbol 3 to denote
“the sum of all quantities like,”

J/=:,:[.\') el

The word mean or average alone, without qualification, is very
generally used to denote this particular form of average: that
is to say, when anyone speaks of “the mean ” or “the average”
of a series of observations, it may, as a rule, be assumed that the
arithmetic mean is meant. It is evident that the arithmetic
mean fulfils the conditions laid down in (a) and () of § 4, for it
is rigidly defined and based on all the observations made.
Further, it fulfils condition (c), for its general nature is readily
comprehensible. If the wages-bill for N workmen is £P, the
arithmetic mean wage, P/ pounds, is the amount that each
would receive if the whole sum available were divided equally
between them : conversely, if we are told that the mean wage
is £M, we know this means that the wages-bill is ¥.4 pounds.
Similarly, if & families possess a total of €' children, the mean
number of children per family is C/N—the number that each
family would possess if the children were shared uniformly.
Conversely, if the mean number of children per family is 2/, the
total number of children in ¥ families is &.M/. The arithmetic
mean expresses, in fact, a simple relation between the whole
and its parts.

7. As regards simplicity of calculation, the mean takes a high
position. In the cases just cited, it will be noted that the mean
is actually determined without even the necessity of determining
or noting all the individual values of the variable: to get the
mean wage we need not know the wages of every hand, but only
the wages-bill ; to get the mean number of children per family
we need not know the number in each family, but only the total.
If this total is not given, but we have to deal with a moderate
number of observations—so few (say 30 or 40) that it is hardly
worth while compiling the frequency-distribution—the arithmetic
mean is calculated directly as suggested by the definition, z.e.
all the values observed are added together and the total divided
by the number of observations. But if the number of observations
be large, this®direct process becomes a little lengthy. It may
be shortened considerably by forming the frequency-table and
treating all the values in each class as if they were identical with
the mid-value of the class-interval, a process which in general
gives an approximation that is quite sufficiently exact for prac-
tical purposes if the class-interval has been taken moderately
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small (¢f. Chap. VI. § 5). Iu this process each class-frequency
is multiplied by the mid-value of the intcrval, the products added
together, and the total divided by the number of observatious.
If f denote the frequency of any class, X the mid-value of the
corresponding class-interval, the value of the mean so obtained
may be written—

M=13fX) . . . ()

8. But this procedure is still further abbreviated in practice
by the following artifices:—(1) The class-interval is treated
as the unit of measurement throughout the arithmetic; (2) the
difference between the mean and the mid-value of some arbi
trarily chosen class-interval is computed instead of the absolute
value of the mean.

If 4 be the arbitrarily chosen value and

X=A+¢. . . : G
S(fX)=3(f.4)+=2(f.%),

or, since 4 is a constant,

M=A+%E(f.$). N O

then

The calculation of 3(f.X) is therefore replaced by the calcula-
tion of 3(f.£). The advantage of this is that the class-frequencies
need only be multiplied by small integral numbers; for A4
being the mid-value of a class-interval, and X the mid-value of
another, and the class-interval being treated as a unit, the &s
must be a series of integers proceeding from zero at the arbitrary
origin 4. To keep the values of £ as small as possible, 4 should
be chosen near the middle of the range.

It may be mentioned here that Z(£), or 3(f.¢) for the grouped
distribution, is sometimes termed the first moment of the distribu-
tion about the arbitrary origin 4: we shall not, however, make
use of this term,

9. The process is illustrated by the following example, using
the frequency-distribution of Table VIII, Chap. VI. The
arbitrary origin A is taken at 35 per cent., the middle of the
sixth class-interval from the top of the table, and & little nearer
than the middle of the range to the estimated position of the
mean. The consequent values of ¢ are then written down as in
column (3) of the table, against the corresponding frequencies, the
values starting, of course, from zero opposite 3'5 per cent. Each
frequency f is then multiplied by its £ and the products entered
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It is evident that an absolute check on tho arithmetic of any
such calculation may be effected by taking a different arbitrary
origin for the deviations: all the figures of col. (4) will be changed,
but the value ultimately obtained for the mean must be the
same. The student should note that a classification by unequal
intervals is, at best, a hindrance to this simple form of calculation,
and the use of an indefinite interval for the extremity of the
distribution renders the exact calculation of the mean impossible
(¢f. Chap. VI. § 10).

11. We return again below (§ 13) to the question of the
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by verticals drawn through the corresponding points on the base, for the
distribution of pauperism of fig. 10, p. 92.
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errors caused by the assumption that all values within the same
interval may be treated as approxzimately the mid-value of the
interval. Tt is sufficient to say here that the error is in general
very small and of uncertain sign for a distribution of the
symmetrical or only moderately asymmetrical type, provided of
course the class-interval is not large (Chap. VI. § 5). In the case
of the “J-shaped” or extremely asymmetrical distribution, how-
ever, the error is evidently of definite sign, for in all the intervals
the frequency is piled up at the limit lying towards the greatest
frequency, i.e. the lower end of the range in the case of the illustra-
tions given in Chap. VI, and is not evenly distributed over the

8
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interval. In distributions of such a type the intervals must be
made very small indeed to secure an approximately accurate value
for the mean. The student should test for himself the effect of
different groupings in two or three different cases, so as to get
some idea of the degree of inaccuracy to be expected.

12. If a diagram has been drawn representing the frequency-
distribution, the position of the mean may conveniently be
indicated by a vertical through the corresponding point on the
base. Thus fig. 21 (a reproduction of fig. 10) shows the frequency-
polygon for our first illustration, and the vertical MM indicates
the mean. In a moderately asymmetrical distribution at all of
this form the mean lies, as in the present example, on the side of
the greatest frequency towards the longer “ tail” of the distribu-

'

~.
/ *

\

\

N

Mo M M

Fra. 22.—Mean M, Median Mz, and Mode Mo, of the ideal moderately
asymmetrical distribution,

tion: M in fig. 22 shows similarly the position of the mean in
an ideal distribution. In a symmetrical distribution the mean
coincides with the centre of symmetry. The student should mark
the position of the mean in the diagram of every frequency dis-
tribution that he draws, and so accustom himself to thinking of
the mean, not as an abstraction, but always in relation to the
frequency-distribution of the variahble concerned.

13. The following examples give important properties of the
arithmetic mean, and at the same time illustrate the facility of its
algebraic treatment :—

(2) The sum of the deviations from the mean, taken with their
proper signs, is zero.

This follows at once from equation (4): for if M and A are
identical, evidently =(7.£) must be zero.
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That is, if A, M, I, be the respective means,
M=M+ M, . . . . (8

Evidently the form of this result is again quite general, so that
if

X=X +X,+ .... +X,
M=M+ M+ . ... +M, 9)

As a useful illustration of equation (8), consider the case of
measurements of any kind that are subject (as indced all
measures must be) to greater or less errors, The actual measure-
ment X in any such case is the algebraic sum of the true
measurement X, and an error X,. The mean of the actual
measurements J is therefore the sum of the true mean M}, and
the arithmetic mean of the errors M, If, and only if, the
latter be zero, will the observed mean be identical with the true
mean. Errors of grouping (§ 11) are a case in point.

14. The median.—The median may be defined as the middie-
most or central value of the variable when the values are runged
in order of magnitude, or as the value such that greater and
smaller values occur with equal frequency. In the case of a
frequency-curve, the median may be defined as that value of the
variable the vertical through which divides the area of the curve
into two equal parts, as the vertical through M7 in fig. 22.

The median, like the mean, fulfils the conditions (6) and (c)
of § 4, seeing that it is based on all the observations made, and
that it possesses the simple property of being the central or
middlemost value, so that its nature is obvious. But the defini-
tion does not necessarily lead in all cases to a determinate value.
If there be an odd number of different values of X. observed, say
2n+1, the (n+1)th in order of magnitude is the only value
fulfilling the definition. But if there be an even number, say
2n different values, any value between the =nth and (n+ 1)th
fulfils the conditions. In such a case it appears to be usual to
take the mean of the mth and (z+ 1)th values as the median,
but this is a convention supplementary to the definition. It
should also be noted that in the case of a discontinuous variable
the second form of the definition in general breaks down: if we
range the values in order there is always a middlemost value
(provided the number of observations be odd), but there is not, as a
rule, any value such that greater and less values occur with equal
frequency. Thus in Table III., § 3 of Chap. VI., we see that 45 per
cent. of the poppy capsules had 12 or fewer stigmatic rays, 55
per cent. had 13 or more ; similarly 61 per cent. had 13 or fewer
rays, 39 per cent. had 14 or more. There is no number of rays
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such that the frequencies in excess and defect are equal.
In the case of the buttercups of Table XIV. (Chap. VI. § 15)
there is no number of petals that even remotely fulfils the
required condition. An analogous difficulty may arise, it may
be remarked, even in the case of an odd number of observations
of a continuous variable if the number of observations be small
and several of the observed values identical. The median is
therefore a form of average of most uncertain meaning in cases
of strictly discontinuous variation, for it may be exceeded by
5, 10, 15, or 20 per cent. only of the observed values, instead of
by 50 per cent.: its use in such cases is to be deprecated, and
is perhaps best avoided in any case, whether the variation be
continuous or discontinuous, in which small series of observations
have to be dealt with.

15. When a table showing the frequency-distribution for a
long series of observations of a continuous variable is given, no
difficulty arises, as a sufficiently approximate value of the median
can be readily determined by simple interpolation on the hypo-
thesis that the values in each class are uniformly distributed
throughout the interval. Thus, taking the figures in our first
illustration of the method of calculating the mean, the total
number of observations (registration districts) is 632, of which
the half is 316. Looking down the table, we see that there are
227 districts with not more than 2:75 per cent. of the population
in receipt of relief, and 100 more with between 2-:75 and 3'25
per cent. But only 89 are required to make up the total of 316 ;
hence the value of the median is taken as

95 + S0 | 1 =975+ 0-445
r 100" 2~ +
=3195 per cent.

The mean being 3-29, the median is slightly less ; its position
is indicated by Mz in fig. 21,

The value of the median stature of males may be similarly
calculated from the data of the second illustration. The work
may be indicated thus:—

Half the total number of observations (8585)=4292'5

Total frequency under 6613 inches . . =3589
Difference . . ] . = 7035
Frequency in next interval J . . =1329

TO3:5
1925

=67'47 inches.

Therefore median = 6615 +




118 THEORY OF STATISTICS.

The difference between median and mean in this case is
therefore only about one-hundredth of an inch, the smallness
of the difference arising from the approximate symmetry of
the distribution. In an absolutely symmetrical distribution
it is evident that mean and median must coincide.

16. Graphical interpolation may, if desired, be substituted
for arithmetical interpolation. Taking, again, the figures of
Example i., the number of districts with pauperism not exceeding
2-25 is 138 ; not exceeding 2-75, 227 ; not exceeding 3-25, 327 ;
and not exceeding 3'75, 417. Plot the numbers of districts
with pauperism not exceeding each value X to the corresponding
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F1a. 23. —Determination of the median by graphical interpolation.

value of X on squared paper, to a good large scale, as in fig. 23,
and draw a smooth curve through the points thus obhtained,
preferably with the aid of one of the “curves,” splines, or flexible
curves sold by instrument-makers for the purpose. The point
in which the smooth curve so obtained cuts the horizontal line
corresponding to a total frequency N/2 =316 gives the median.
In general the curve is so flat that the value obtained by this
graphical method does not differ appreciably from that calculated
arithmetically (the arithmetical process assuming that the
curve is a straight line between the points on either side of
the median); if the curvature is considerable, the graphical
value—assuming, of course, careful and accurate draughtsmanship
—is to be preferred to the arithmetical value, as it does not
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involve the crude assumption that the frequency is wuniformly
distributed over the interval in which the median lies.

17. A comparison of the calculations for the mean and
for the median respectively will show that on the score of
brevity of calculation the median has a distinct advantage.
When, however, the ease of algebraical treatment of the two
forms of average is compared, the superiority lies wholly on
the side of the mean. As was shown in § 13, when several series
of observations are combined into a single series, the mean of
the resultant distribution can be simply expressed in terms
of the means of the components. The expression of the
median of the resultant distribution in terms of the medians
of the components is, however, not merely complex and difficult,
but impossible: the value of the resultant median depends on
the forms of the component distributions, and not on their
medians alone. If two symmetrical distributions of the same
form ard with the same numbers of observations, but with
different medians, be combined, the resultant median must
evidently (from symmetry) coincide with the resultant mean, ..
lie halfway between the means of the components. But if the
two components be asymmetrical, or (whatever their form)
if the degrees of dispersion or numbers of observations in the
two series be different, the resultant median will not coincide
with the resultant mean, nor with any other simply assignable
value. It is impossible, therefore, to give any theorem for
medians analogous to equations () and (6) for means. It is
equally impossible to give any theorem analogous to equations
(8) and (9) of § 13. The median of the sum or difference of
pairs of corresponding observations in two series is not,
in general, equal to the sum or difference of the medians of
the two series ; the median value of a measurement subject to
error is not necessarily identical with the true median, even
if the median error be zero, <.e. if positive and negative errors
be equally frequent.

18. These limitations render the applications of the median in
any work in which theoretical considerations are necessary com-
paratively circumseribed. On the other hand, the median may
have an advantage over the mean for special reasons. (a) It is
very readily calculated ; a factor to which, however, as already
stated, too much weight ought not to be attached. (&) It is
readily obtained, without the necessity of measuring all the
objects to be observed, in any case in which they can be arranged
by eye in order of magnitude. If, for instance, a number of men
be ranked in order of stature, the stature of the middlemost is
the median, and he alone need be measured. (On the other hand
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it is useless in the cases cited at the end of § 6 ; the median wage
cannot be found from the total of the wages-bill, and the total
of the wages-bill is not known when the median is given.) (¢) It
is sometimes useful as a makeshift, when the observations are so
given that the calculation of the mean is impossible, owing, e.g., to
a final indefinite class, as in Table IV. (Chap. VI. § 10). (d) The
median may sometimes be preferable to the mean, owing to its
being less affected by abnormally large or small values of the
variable. The stature of a giant would have no more influence
on the median stature of a number of men than the stature of
any other man whose height is only just greater than the median.
If a number of men enjoy incomes closely clustering round a
median of £500 a year, the median will be no more affected by
the addition to the group of a man with the income of £50,000
than by the addition of a man with an income of £5000, or even
£600. If observations of any kind are liable to present occasional
greatly outlying values of this sort (whether real, or due to
errors or blunders), the median will be more stable and less
affected by fluctuations of sampling than the arithmetlic mean.
(In general the mean is the less affected.) The point is discussed
more fully later (Chap. XVIL). (¢) It may be added that the
median is, in a certain sense, a particularly real and natural
form of average, for the object or individual that is the median
object or individual on any one system of measuring the charactor
with which we are concerned will remain the median on any
other method of measurement which leaves the objects in the
same relative order. Thus a batch of eggs ropresenting cggs
of the median price, when prices are reckoned at so much per
dozen, will remain a batch representing the median price when
prices are reckoned at so many eggs to the shilling.

19. The Mode.—The mode is the value of the variable corre-
sponding to the maximum of the ideal frequency-curve which
gives the closest possible fit to the actual distribution.

It is evident that in an ideal symmetrical distribution mean,
median and mode coincide with the centre of symmetry. If,
however, the distribution be asymmetrical, as in fig. 22, the three
forms of average are distinct, Mo being the mode, M7 the median,
and M the mean. Clearly, the mode is an important form of
average in the cases of skew distributions, though the term is of
recent introduction (Pearson, ref. 11). It represents the value
which is most frequent or typical, the value which is in fact the
fashion (la mode). But a difficulty at once arises on attempting
to determine this value for such distributions as occur in practice.
It is no use giving merely the mid-value of the class-interval into
which the greatest frequency falls, for this is entirely dependent
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on the choice of the scale of class-intervals. It is no use making
the class-intervals very small to avoid error on that account, for
the class-frequencies will then become small and the distribution
irregular. What we want to arrive at is the mid-value of the
interval for which the frequency would be a maximum, if the
intervals could be made indefinitely small and at the same time
the number of observations be so increaged that the class-frequen-
cies should run smoothly. As the observations cannot, in a
practical case, be indefinitely increased, it is evident that some
process of smoothing out the irregularities that occur in the
actual distribution must be adopted, in order to ascertain the
approximate value of the mode. But there is only one smoothing
process that is really satisfactory, in so far as every observation
can be taken into account in the determination, and that is the
method of fitting an ideal frequency-curve of given equation to
the actual figures. The value of the variable.corresponding to the
maximum of the fitted curve is then taken as the mode, in
accordance with our definition. Mo in fig. 21 is the value of the
mode so determined for the distribution of pauperism, the value
2:99 being, as it happens, very nearly coincident with the centre
of the interval in which the greatest frequency’lies. The deter-
mination of the mode by this—the only strictly satisfactory—
method must, however, be left to the more advanced student.

20. At the same time there is an approximate relation between
mean, median, and mode that appears to hold good with surprising
closeness for moderately asymmetrical distributions, approaching
the ideal type of fig. 9, and it is one that should be borne in
mind as giving—roughly, at all events—the relative values of
these three averages for a great many cases with which the
student will have to deal. It is expressed by the equation—

Mode = Mean — 3(Mean — Median).

That is to say, the median lies one-third of the distance from the
mean towards the mode (compare figs. 21 and 22). For the dis-
tribution of pauperism we have, taking the mean to three places of
decimals,—

Mean . o . . . 3289
Median . . 0 . 3195
Difference . ] . . 0094
Hence approximate mode = 3289 — 3 x 0:094
= 3007,

or 301 to the second place of decimals, which is sufficient accuracy
for the final result, though three decimal places must be retained
for the calculation. The true mode, found by fitting an ideal
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distribution, is 2'99. As further illustrations of the closeness
with which the relation may be expected to hold in difforent cases,
we give below the results for the distributions of pauperism in
the unions of England and Wales in the years 1850, 1860, 1870,
1881, and 1891 (the last being the illustration taken above),
- and also the results for the distribution of barometer heights at
Southampton (Table XI., Chap. VI. § 14), and similar distribu-
tions at four other stations.

Comparison of the Approximate and True Modes in the Case of Five Dis-
tributions of Pauperism (Percentages of the Population in receipt of
Relief) in the Univns of England and Wales. (Yule, Jowr. Roy. Stat.
Soc., vol. lix., 1896.)

Year. Mean. Median. Ap};\lir::;:mte True Mode.
1850 6508 6261 5°767 5815
1860 5°195 5000 4°610 4°657
1870 5451 5-380 5238 5:038
1881 3676 3:523 3217 3240
1891 3-289 3°195 3007 2-987

Comparison of the Approximate and True Modes in the Case of Five Dis-
tributions of the Height of the Bavometer for Duily Observations at the
Stations named. (Distributions given by Kar] Pearson and Alice Leo.
Phil. Trans., A, vol. cxc. (1897), p. 428.)

Station. Mean. Median. Appﬁj ETRE True Mode.
ode.
Southampton . 29981 30000 © 30038 30039
Londonderry . 29-891 29915 29°963 29:960
Carmarthen . 29°952 29974 30-018 30013
Glasgow . . 29 886 29°906 29°946 29967
Dundee . 1 29870 29890 29930 29 951

It will be seen that in the case of the pauperism figures the
approximate mode only diverges markedly from the true value
in the year 1870, a year in which the frequency-distribution was
very irregular. In all the other years the difference between the
true and avproximate values of the mode is hardly greater than
the alteration that might be caused in the true mode itself by
slight variations in the method of fitting the curve to the actual
distribution. Similar remarks apply to the second series of illus-
trations ; the true and approximate values are extremely close,
except in the case of Dundec and Glasgow, where the divergence
reaches two-hundredths of an inch.

21. Summing up the preceding paragraphs, we may say that
the mean is the form of average to use for all general purposcs ;
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it is simply calculated, its value is always determinate, its
algebraic treatment is particularly easy, and in most cases it is
rather less affected than the median by errors of sampling. The
median is, it is true, somewhat more easily calculated from a given
frequency-distribution than is the mean ; it is sometimes a useful
makeshift, and in a certain class of cases it is more and not less
stable than the mean ; but its use is undesirable in cases of discon-
tinuous variation, its value may be indeterminate, and its algebraic
treatment 1s difficult and often impossible. The mode, finally,
is a form of average hardly suitable for elementary use, owing
to the difficulty of its determination, but at the same time it
represents an important value of the variable. The arithmetic
mean should invariably be employed unless there is some very
definite reason for the choice of another form of average, and the
elementary student will do very well if he limits himself to its
use. Objection is sometimes taken to the use of the mean in the
case of asymmetrical frequency-distributions, on the ground that
the mean is not the mode, and that its value is consequently
misleading. But no one in the least degree familiar with the
manifold forms taken by frequency-distributions would regard the
two as in general identical ; and while the importance of the mode
is a good reason for stating its value in addition to that of the
mean, it cannot replace the latter. The objection, it may be noted,
would apply with almost equal force to the median, for, as we have
seen (§ 20), the difference between mode and median is usually
about two-thirds of the difference between mode and mean.

22. The Geometric Mean.—The geometric mean G of a series of
values X;, X,, X, . . . . X, is defined by the relation

O=(X,. X, X, . ... X). . . (10)

The definition may also be expressed in terms of logarithms,
log G=L3(og X) . . . (1)

that is to say, the logarithm of the geometric mean of a series of
values is the arithmetic mean of their logarithms.

The geometric mean of a given series of quantities is always
less than their arithmetic mean - the student will find a proof in
most text-books of algebra, and in ref. 10. The magnitude of
the difference depends largely on the amount of dispersion of the
variable in proportion to the magnitude of the mean (¢f. Chap.
VIII, Question 8). It is necessarily zero, it should be noticed, if
even a single value of X is zero, and it may become imaginary if
negative values oceur. Excluding these cases, the value of the
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geometric mean is always determinate and is rigidly defined. The
computation is a little long, owing to the necessity of taking
logarithms : it is hardly necessary to give an example, as the
method is simply that of finding the arithmetic mean of the
logarithms of X (instead of the values of X) in accordance with
equation (11). If there are many obscrvations, a table should be
drawn up giving the frequency-distribution of log X, and the
mean should be calculated as in Examples i. and ii. of §§ 9 and 10.
The geometric mean has never come into general use as a repre-
sentative average, partly, no doubt, on account of its rather
troublesome computation, but principally on account of its some-
what abstract mathematical character (¢f. § 4 (c)): the geometric
mean does not possess any simple and obvious properties which
render its general nature readily comprehensible.

23. At the same time, as the following examples show, the
mean possesses some important properties, and is readily treated
algebraically in certain cases.

(a) If the series of observations X consist of » component
series, there being 1, observations in the first, &V, in the second,
and so on, the geometric mecan @ of the whole series can be
readily expressed in terms of the geometric means @, @,, ctc., of
the component series. For evidently we have at once (as in § 13
(5))—

NlogG=N log G+ NylogGy+ . ... +N.log@, . (12)

(6) The geometric mean of the ratios of corresponding observa-
tions in two series is equal to the ratio of their geometric means.
For if

X=X,/X,
log X =log X, —log X,,
then summing for all pairs of X;’s and X,
G=G,/a, g . o . (13)

(¢) Similarly, if a variable X is given as the product of any
number of others, z.e. if

X=X, X, X,....Z%,

X, X, .... X, denoting corresponding observations in r
different series, the geometric mean G of X is expressed in termns
of the geometric means G, G,, . . . . G, of X, X,, . . . . X, by
the relation

G=6.6G0,. ... 0 . . . (14

That is to say, the geometric mean of the product is the product
of the geometric means.
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i.e. the geometric mean of the numbers given by the two censuses.
This result must, however, be used with discretion. The rate of
increase of population is not necessarily, or even usually, constant
over any considerable period of time: if it were so, a curve
representing the growth of population as in fig. 24 would be
continuously convex to the base, whether the population were
increasing or decreasing. In the diagram it will be seen that
the curves are frequently concave towards the base, and similar
results will often be found for districts in which the population is
not increasing very rapidly, and from which there is much
emigration. Further, the assumption is not self-consistent in any
case in which the rate of increase is not uniform over the entire
area—and almost any area can be analysed into parts which are not
similar in this respect. For if in one part of the area considered
the initial population is P, and the common ratio &, and in the
remainder of the area the initial population is p, and the common
ratio r, the population in year n is given by
P.+p,=PyR*+p,r
This does not represent a constant rate of increase unless B=r.
If then, for example, a constant percentage rate of increase be
assumed for England and Wales as a whole, it cannot be assumed
for the Counties: if it be assumed for the Counties, it cannot be
assumed for the country as a whole. The student is referred to
refs. 14, 15 for a discussion of methods that may be used for the
consistent estimation of populations under such circumstances.
25. The property of the geometric mean illustrated by equation
(13) renders it, in some respects, a peculiarly convenient form of
average in dealing with ratios, ¢.e. *“index-numbers,” as they are
termed, of prices. Let

i PO X,
XX X e X
X'y X' X7 X,

denote the prices of & commodities in the years 0,1, 2 . . ..
Further, let ¥;,= X /X, and so on, 80 that
Y Yltlo’ yl:llo’ S 47
a0 Yoo Yigp - o o Ty

represent the ratios of the prices of the several commodities in years
1, 2, . . . to their prices in year 0. These ratios, in practice
multiplied by 100, are termed ¢ndex-numoers of the prices of the
several commodities, on the year ¢ as base. Evidently some
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form of average of the Y’s for any given year will afford an
indication of the general level of prices for that year, provided the
commodities chosen are sufficiently numerous and representative.
The question is, what form of average to choose. If the geometric
mean be chosen, and &,, G, denote the geometric means of the
Y’s for the years I and 2 respectively, we have

A il i b T\

G \T, T X T [
(X Xy X X an
- ¥ 7 T) l
=Yy Y Y o . Yoy

From the first form of this equation we see that the ratio of the
geometric mean index-number in year 2 to that in year 7 is
identical with the geometric mean of the ratios for the index-
numbers of the several commodities. A similar property does
not hold for any other form of average: the ratio of the arithmetic
mean index-numbers is not the same as the arithmetic mean of
the ratios, nor is the ratio of the medians the median of the
ratios. From the second and third forms of the equation it
appears further that the ratio of the geometric mean index-
number in year 2 to that in year 7 is independent of the prices in
the year first chosen as base (i.e. year 0), and is identical with the
geometric mean of the index-numbers for year 2, on year I as
base. Again, a similar property does not hold for any other form
of average. If arithmetic means of the index-numbers be taken,
for example, the ratio of the mean in year 2 to the mean in year
1 will vary with the year taken as base, and will differ more or
less from the arithmetic mean ratio of the prices in year 2 to the
prices of the same commodities in year 7 ; the same statement is
true if medians be used. The results given by the use of the
geometric mean possess, therefore, a certain consistency that is
not exhibited if other forms of average are employed. It was
used in a classical paper by Jevons (ref. 4), though not on quite
the same grounds, but has never been at all generally employed.
26. The general use of the geometric mean has been suggested
on another ground, namely, that the magnitudes of deviations
appear, as a rule, to be dependent in some degree on the magni-
tude of the average; thus the length of a mouse varies less than
the stature of a man, and the height of a shrub less than that of
a tree. Hence, it is argued, variations in such cases should be
measured rather by their ratio to, than their difference from, the
average ; and if this is done, the geometric mean is the natural
average to use. If deviations be measured in this way, a
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deviation G/r will be regarded as the equivalent of a deviation .G,
instead of a deviation —« as the equivalent of a deviation +a.
If a distribution take the simplest possible form when relative
deviations are regarded as equivalents, the frequency of deviations
between (/s and G/r will be equal to the frequency of deviations
between .G and s.G. The frequency-curve will then be sym-
metrical round log @ if plotted to log X as base, and if there be
a single mode, log G will be that mode—a logarithmic or geometric
mode, as it might be termed : @& will not be the mode if the distri-
bution be plotted in the ordinary way to values of X as base.
The theory of such a distribution has been discussed by more than
one author (refs. 2, 8,9). The general applicability of the assump-
tion made does not, however, appear to have been very widely
tested, and the reasons assigned have not sufficed to bring the
geometric mean into common use. It may be noted that, as the
geometric mean is always less than the arithmetic mean, the
fundamental assumption which would justify the use of the former
clearly does not hold where the (arithmetic) mode is greater than
the arithmetic mean, as in Tables X. and XI. of the last chapter.

27. The Harmonic Mean.—The harmonic mean of a series of
quantities is the reciprocal of the arithmetic mean of their
reciprocals, that is, if & be the harmonic mean,

NN
=z - - - .

The following illustration, the result of which is required for an
example in a later chapter (Chap. XIII, § 11), will serve to show
the method of calculation.

The table gives the number of litters of mice, in certain
breeding experiments, with given numbers (X) in the litter. (Data
from A. D. Darbishire, Biometrika, iii. pp. 30, 31.)

Number in | Number of
Litter. Litters, JIX.

X. ya

1 7 7-000
2 11 5500
3 16 5333
4 17 4:250
5 26 5200
6 31 5167
7 11 1571
8 1 0-125
9 1 0111
— 121 34257
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Whence, 1/H=0-2831, /=3:532. The arithmetic mean is 4-587,
or more than a unit greater.

If the prices of a commodity at different places or times are
stated in the form ‘“so much for a unit of money,” and an average
price obtained by taking the arithmetic mean of the quantities
sold for a unit of money, the result is equivalent to the harmonic
mean of prices stated in the ordinary way. Thus retail prices of
eggs are usually quoted in England as “so many to the shilling.”
Supposing we had 100 returns of retail prices of eggs, 50 returns
showing twelve eggs to the shilling, 30 fourteen to the shilling,
and 20 ten to the shilling; then the mean number per shilling
would be 12-2, equivalent to a price of 0:984d. per egg. But
if the prices had been quoted in the form usual for other com-
modities, we should have had 50 returns showing a price of Id.
per egg, 30 showing a price of 0-857d., and 20 a price of 1-2d.:
arithmetic mean 0-997d., a slightly greater walue than the har-
monic mean of 0:984. The official returns of prices in India were,
until 1907, given in the form of “Sers (2:057 Ibs.) per rupee.”
The average annual price of a commodity was based on half-
monthly prices stated in this form, and ‘index-numbers” were
calculated from such annual averages. In the issues of * Prices
and Wages in India” for 1908 and later years the prices have
been stated in terms of ‘“rupees per maund (82-286 1bs.).” The
change, it will be seen, amounts to a replacement of the harmonic
by the arithmetic mean price.

The harmonic mean of a series of quantities is always lower
than the geometric mean of the same quantities, and, a fortior,
lower than the arithmetic mean, the amount of difference depend-
ing largely on the magnitude of the dispersion relatively to the
magnitude of the mean. (Cf. Question 9, Chap. VIII.)
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EXERCISES.

1. Verify the following means and medians from the data of Table VI.,
Chap. VI., p. 88.
Stature in Inches for Adult Males in—
England. Scotland.  Wales. Ireland.
Mean . 5 . 67381 68°55 66°62 6778
Median . b . 6735 6848 66°56 6769

In the calculation of the means, use the same arbitrary origin as in Example
ii., and check your work by the method of § 13 ().

2. Find the mean weight of adult males in the United Kingdom from the
data in the last column of Table IX., Chap VI., p. 95. Also find the median
weight, and hence the approximate mode, by the method of § 20.

3. Similarly, find the mean, median, and approximate value of the mode
for the distribution of fecundity in race-horses, Table X., Chap. V1., p. 96.

4. Using a graphical method, find the median annual value of houses
assessed to inhabited house duty in the financial year 1885-6 from the data
of Table IV., Chap. VL., p. 83.

5. (Data from Sauerbeck, Jour. Roy. Stat. Soc., March 1909.) The figures
in columns 1 and 2 of the small table below show the index-numbers (or per-
centages) of prices of certain animal foods in the years 1898 and 1908, on
their average prices during the years 1867-77. In column 3 have been added
the ratios of the index-numbers in 1908 to the index-numbers in 1898, the
latter being taken as 100.

Find the average ratio of prices in 1908 to prices in 1898, taken as 100 :—

(1) From the arithmetic mean of the ratios in col. 3.

(2) ¥rom the ratio of the arithmetic means of cols, 1 and 2.

(8) From the ratio of the geometric means of cols, 1 and 2.

(4) From the geometric mean of the ratios in col. 3.

Note that, by § 25, the last two methods must give the same result.

Index- number of price in Ratio
Commodity. 1898, 1908, 08/98.
1. 2. 3.

1. Beef, prime , 5 - 78 88 1128
2. Bee!, middling . . . 72 90 125°0
3. Mutton, prime . . - 84 92 1095
4. Mutton, middling . ‘ 67 95 1418
5. Pork . . . o : 87 83 954
6. Bacon . . . . 78 84 1077
7. Butter o 0 . o 76 91 1197







CHAPTER VIIL

MEASURES OF DISPERSION, ETC.

1. Inadequacy of the range as a measure of dispersion—2-13. The standard
deviation : its definition, calculation, and properties—14-19. The
mean deviation : its definition, calculation, aud properties—20-24. The
quartile deviation or semi-interquartile ringe-—-25. Measures of
relative dispersion—26. Measures of asymmetry or skewness—27-30.
The method of grades or percentiles.

1. THE simplest possible measure of the dispersion of a series of
values of a variable is the actual range, ¢.e. the difference between
the greatest and least values observed. While this is frequently
quoted, it is as a rule the worst of all possible measures for any
serious purpose. There are seldom real upper and lower limits
to the possible values of the variable, very large or very small
values being only more or less infrequent : the range is therefore
subject to meaningless fluctuations of considerable magnitude
according as values of greater or less infrequency happen to
have been actually observed. Note, for instance, the figures of
Table IX., Chap. VI. p. 95, showing the frequency distributions of
weights of adult males in the several parts of the United King-
dom. In Wales, one individual was observed with a weight of
over 280 lbs., the next heaviest being under 260 Ibs. The
addition of the one very exceptional individual has increased the
range by some 30 lbs., or about one-fifth. A measure subject to
erratic alterations by casual influences in this way is clearly not
of much use for comparative purposes. Moreover, the measure
takes no account of the form of the distribution within the limits
of the range; it might well happen that, of two distributions
covering precisely the same range of variation, the one showed
the observations for the most part closely clustered round the
average, while the other exhibited an almost even distribution of
frequency over the whole range. Clearly we should not regard
two such distributions as exhibiting the same dispersion, though
they exhibit the same range. Some sort of measure of dispersion
is therefore required, based, like the averages discussed in the last
133
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chapter, on all the observations made, so that no single ohservation
can have an unduly preponderant eftect on its magnitude ; indeed,
the measure should possess all the properties laid down as desir-
able for an average in § 4 of Chap. VII. There are three such
measures in common use—the standard deviation, the mean
deviation, and the quartile deviation or semi-interquartile range,
of which the first is the most important.

2. The Standard Deviation.—The standard deviation is the
square root of the arithmetic mean of the squares of all deviations,
deviations being measured from the arithmetic mean of the
observations. If the standard deviation be denoted by o, and a
deviation from the arithmetic mean by #, as in the last chapter,
then the standard deviation is given by the equation

1
0'2=—,:;Zw-'1 o o . . (D

To square all the deviations may seem at first sight an artificial
procedure, but it must be remembered that it would be useless to
take the mere sum of the deviations, in order to obtain a measure
of dispersion, since this sum is necessarily zero if deviations be
taken from the mean. In order to obtain some quantity that
shall vary with the dispersion it is necessary to average the
deviations by a process that treats them as if they were all of the
same sign, and squaring is the simplest process for eliminating
signs which leads to results of algebraical convenience.

3. A quantity analogous to the standard deviation may be
defined in more general terms. Let 4 be any arbitrary value of
X, and let £ (as in Chap. VII. § 8) denote the deviation of X
from 4 ; 4.e. let

E=X-4A.

Then we may define the root-mean-square deviation s from the
origin 4 by the equation
-°""=—1‘—.2|‘(5"'1 . o . . +(2)

In terms of this definition the standard deviation is the root-
mean-square deviation from the mean. There is a very simple
relation between the standard deviation and the root-mean-square
deviation from any other origin. Let

M-Ad=d. . . . . 3
so that t=z+d
Then =22+ 2z.d+d?,
3(£2) = 2(x%) + 2d.3(z) + N.d%
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The figures dealt with in this illustration are estimates of the
weekly earnings of the agricultural labourers, ¢.e. they include
allowances for gifts in kind, such as coal, potatoes, cider, etc. The
estimated weekly money wages are, however, also given in the
same Report, and we are thus enabled to make an interesting
comparison of the dispersions of the two. It might be expected
that earnings would vary less than wages, as his earnings and not
the mere money wages he receives are the important matter to
the labourer, and as a fact we find

Standard deviation of weekly earnings . . 20-5d.
i} 13} 1] wages o 260d

The arithmetic mean wage is 13s. 5d.

6. If we have to deal with a grouped frequency-distribution,
the same artifices and approximations are used as in the calculation
of the mean (Chap. VIL. § 8, 9, 10). The mid-value of one of
the class-intervals is chosen as the arbitrary origin 4 from which
to measure the deviations & the class-interval is treated as a
unit throughout the arithmetic, and all the observations within
any one class-interval are treated as if they were identical with
the mid-value of the interval. If, as before, we denote the
frequency in any one interval by f, these f observations con-
tribute f¢2 to the sum of the squares of deviations and we
have—

The standard deviation is then calculated from equation (4).

7. The whole of the work proceeds naturally as an extension of
that necessary for calculating the mean, and we accordingly use
the same illustrations as in the last chapter. Thus in Example
ii. below, cols. 1, 2, 3, and 4 are the same as those we have already
given in Example i. of Chap. VIL for the calculation of the mean.
Column 5 gives the figures necessary for calculating the standard
deviation, and is derived directly from col. 4 by multiplying the
figures of that column again by & Thus 90 x 5=450, 192 x 4 =
768, and so on. The work is therefore done very rapidly. The
remaining steps of the arithmetic are given below the table ; the
student must be careful to remember the final conversion, if
necessary, from the class-interval as unit to the natural unit
of measurement. In this case the value found is 2:48 class-
intervals, and the class-interval being half a unit, that is 1-24
per cent.
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Means and Standard Deviations of the Distyibutions of Pauperism (Percentage
of the Population in receipt of Poor-law Relief) in the Unions of England
and Wales since 1850. (From Yule, Jour. Roy. Stat. Soc., vol. lix..
1896, figures slightly amended. )

Percentage of the Population
in receipt of Relief.
Year.
Arithmetic Standard
Mean. Deviation.
1850 6°51 250
1860 5°20 207
1870 545 202
1881 368 136
1891 329 124

8. In the table given on p. 141 (lixample iii.), the calculation of
the standard deviation is similarly shown for the distribution of
the statures of adult males in the British Isles, the work being
continued from the stage which it reached for the calculation of
the mean in Example ii. of Chap. VII. The steps of the arith-
metic hardly call for further explanation, but it may be noted that
the class-interval being a unit in this case, no conversion of
the standard deviation from class-intervals to units is required.

9. The student must remember, as in the case of the calculation
of the mean, that the treatment of all values within each class-
interval as if they were identical with the mid-value of the interval
is an approximation and no more (¢f. Chap. VIIL. § 11), though,
for a distribution of the symmetrical or moderately asymmetrical
type with a class-interval not greater than one-twenticth or so
of the range, the approximation may be a very close one. Dut
while the value of the arithmetic mean may be either increascd
or decreased by grouping, in the case of distributions which are
not more than slightly asymmetrical, the standard deviation of
such distributions tends to be increased, and the increase is the
greater the cruder the grouping. We give an approximate
correction for this effect later (Chap. XI. § 4). The student is
recommended to test for himself the effect of grouping in two
or three cases.

10. It is a useful empirical rule to remember that a range of
six times the standard deviation usually includes 99 per cent. or
more of all the observations in the case of distributions of the
symmetrical or moderately asymmetrical type. Thus in Example
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give a more definite and concrete meaning to the standard
deviation, and also to check arithmetical work to some extent—
sufficiently, that is to say, to guard against very gross blunders.
It must not be expected to hold for short series of observations :
in Example i., for instance, the actual range is a good deal less
than six times the standard deviation.

11. The standard deviation is the measure of dispersion which
it is most easy to treat by algebraical methods, resembling in this
respect the arithmetic mean amongst measures of position. The
majority of illustrations of its treatment must be postponed to a
later stage (Chap. X1.), but the work of § 3 has already served as
one example, and we may take another by continuing the work of
§ 13 (6), Chap. VII. In that section it was shown that if a series
of observations of which the mean is 4/ consist of two component
series, of which the means are f; and M, respectively,

N.M=N, M, + N, M,

N, and ¥, being the numbers of observations in the two com-
ponent series, and &V =1, + &, the number in the entire series.
Similarly, the standard deviation o of the whole serics may be
expressed in terms of the standard deviations o; and o, of the
components and their respective means. Let

M- M=d,
M- M~d,

Then the mean-square deviations of the component series about
the mean M are, by equation (4), 0,2 +d.* and ¢,2+d,? respec-
tively. Therefore, for the whole series,

Not=N(o2+d?)+ Nyo2+d2 . . (b)

If the numbers of observations in the component series be equal
and the means be coincident, we have as a special case—

o?=1(02+a,?) . . ! . (6)

so that in this cage the square of the standard deviation of the
whole series is the arithmetic mean of the squares of the standard
deviations of its components.

It is evident that the form of the relation (5) is quite general :
if a series of observations consists of r component series with
standard deviations oy, oy, . . . ¢, and means diverging from the
general mean of the whole series by d,, d,, . . . d,, the standard
deviation o of the whole series is given (using m to denote any
subscript) by the equation—

Noo?=S(Npord) +3(Nnd,2) . . . (7)
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Again, as in § 13 of Chap. VIIL, it is convenient to note, for the
checking of arithmetic, that if the same arbitrary origin be used
for the calculation of the standard deviations in a number of
component distributions we must have

(A =3(AED+3dDt - . 438D . ()

12. As another useful illustration, let us find the standard
deviation of the first & natural numbers. The mean in this case
is evidently (¥ +1)/2. Further, as is shown in any elementary
Algebra, the sum of the squares of the first V' natural numbers is

NN+ DN +1)
———————

The standard deviation o is therefore given by the equation—
=N+ 1)2N+1)- (N +1)3

that is, o?=1(N2-1) . , . o . (9
This result is of service if the relative merit of, or the relative
intensity of some character in, the different individuals of a series
is recorded not by means of measurements, ¢.g. marks awarded on
some system of examination, but merely by means of their
respective positions when ranked in order as regards the character,
in the same way as boys are numbered in a class. With &
individuals there are always XN ranks, as they are termed,
whatever the character, and the standard deviation is therefore
always that given by equation (9).

Another useful result follows at once from equation (9), namely,
the standard deviation of a frequency-distribution in which all
values of X within a range +/7/2 on either side of the mean are
equally frequent, values outside these limits not occurring, so that
the frequency-distribution may be represented by a rectangle. The
base / may be supposed divided into a very large number ¥ of equal
elements, and the standard deviation reduces to that of the first ¥V
natural numbers when & is made indefinitely large. The single
unit then becomes negligible compared with &, and consequently

P
of=13 0 o o . (10

13. It will be seen from the preceding paragraphs that the
standard deviation possesses the majority at least of the properties
which are desirable in a measure of dispersion as in an average
(Chap. VII. § 4). It is rigidly defined; it is based on all the
observations made ; it is calculated with reasonable ease ; it lends
itself readily to algebraical treatment ; and we may add, though the
student will have to take the statement on trust for the present,
that it is, as a rule, the measure least affected by fluctuations of
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sampling. On the other hand, it may be said that its general
nature is not very readily comprehended, and that the process of
squaring deviations and then taking the square root of the mean
seems a little involved. The student will, however, soon surmount
this feeling after a little practice in the calculation and use of the
constant, and will realise, as he advances further, the advantages
that it possesses. Such root-mean-square quantities, it may be
added, frequently occur in other branches of science. The
standard deviation should always be used as the measure of disper-
sion, unless there is some very definite reason for preferring another
measure, just as the arithmetic mean should be used as the measure
of position. It may Lo added here that the student will meet with
the standard deviation under many different names, of which we
have adopted the most recent (due to Dearson, ref. 2): many of
the earlier names are hardly adapted to general use, as they bear
evidence of their derivation from the theory of errors of observation.
Thus the terms “mean error” (Gauss), “error of mean square”
(Airy), and “mean square error” have all been used in the same
sense. The square of the standard deviation, and also twice the
square, have been termed the *‘fluctuation” (lidgeworth): the
standard deviation multiplied by the square root of 2, the
“modulus” (Airy),—the student will see later the reason for
the adoption of the factor. The reciprocal of the modulus hay
been termed the “precision” (Lexis).

14. The Mean Deviation.—The mean deviation of a series of
values of a variable is the arithmetic mean of their deviations
from some average, taken without regard to their sign. 'The
deviations may be measured either from the arithmetic mean or
from the median, but the latter is the natural origin to use. Just
as the root-mean-square deviation is least when deviations are
measured from the arithmetic mean, so the mean deviation is
least when deviations are measured from the median. Ifor
suppose that, for some origin exceeded by m values out of &, the
mean deviation has a value A. Let the origin be displaced by
an amount ¢ until it is just exceeded by m — 1 of the values only,
t.e. until it coincides with the mth value from the upper end of
the series. By this displacement of the origin the sum of devia-
tions in excess of the mean is reduced by m.c, while the sum of
deviations in defect of the mean is increased by (¥ -m)e. The
new mean deviation is therefore

(N —m)e —me
A e

1
=A+ A,(JV—— 2m)e.
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The new mean deviation is accordingly less than the old so long as
m =Y.

That is to say, if ¥ be even, the mean deviation is constant for
all origins within the range between the &/2th and the (/2 + 1)th
observations, and this value is the least: if & be odd, the mean
deviation is lowest when the origin coincides with the (& + 1)/2th
observation. The mean deviation is therefore a minimum when
deviations are measured from the median or, if the latter be
indeterminate, from an origin within the range in which it lies.

15. The calculation of the mean deviation either from the mean
or from the median for a series of ungrouped observations is very
simple. Take the figures of Example i. (p. 137) as an illustration.
We have already found the mean (15s. 11d. to the nearest penny),
and the deviations from the mean are written down in column 3.
Adding up this column without respect to the sign of the devi-
ations we find a total of 590. The mean deviation from the mean
is therefore 590/38=15'563d. The mean deviation from the
median is calculated in precisely the same way, but the median
replaces the mean as the origin from which deviations are measured.
The median is 15s. 6d. The deviations in pence run 63, 57, 50,
36, and so on; their sum is 570; and, accordingly, the mean
deviation from the median is 15d. exactly.

16. In the case of a grouped frequency-distribution, the sum
of deviations should be calculated first from the centre of the
class-interval in which the mean (or median) lies, and then
reduced to the mean as origin. Thus in the case of Example ii.
the mean is 3-29 per cent. and lies in the class-interval centring
round 3'5 per cent. We have already found that the sum of
deviations in defect of 3'5 per cent. is 776, and of deviations in
excess 509 : total (without regard to sign) 1285,—the unit of
nieasurement being, of course, as it is necessary to remember, the
class-interval. If the number of observations below the mean is
&, and above the mean ,, and 3 — 4 =d, as before, we have to
add ¥,.d to the sum found and subtract ¥,d. In the present
case N, =327 and N,=305, while d= —0'42 class-intervals,
therefore

AV, - Ny)= -042x 22 =~ 92,

and the sum of deviations from the mean is 1285 - 9-2=12758.
Hence the mean deviation from the mean is 1275'8/632 =2019
class-intervals, or 1:01 per cent.

17. The mean deviation from the median should be found in
precisely similar fashion, but the mid-value of the interval in
which the median (instead of the mean) lies should, for con-

10
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venience, be taken ag origin. Thus in Example ii. the median is
(Chap. VII. § 15) 3-195 per cent. Hence 3-0 per cent. should be
taken as the origin, d= +0 39 intervals, N, =327, ¥,= 305. The
deviation-sum with 3-0 as origin is found to be 1263, and the
correction is +039x22= +86. Hence the mean deviation
from the median is 2:012 intervals, or again 101 per cent. The
value is really smaller than that of the mean deviation from the
arithmetic mean, but the difference is too slight to affect the
second place of decimals.

It should be noted that, as in the case of the standard deviation,
this method of calculation implies the assumption that all the
values of X within any one class-interval may be treated as if
they were the mid-value of that interval. This is, of course, an
approximation, but as a rule gives results of amply sufficient
accuracy for practice if the class-interval be kept reasonably small
(¢f> again Chap. VI. § 5). We have left it as an exercise to the
student to find the correction to be applied if the values in each
interval are treated as if they were evenly distributed over the
interval, instead of concentrated at its centre (Question 7).

18. The mean deviation, it will be seen, can be calculated rather
more rapidly than the standard deviation, though in the case of a
grouped distribution the difference in ease of calculation is not
great. It is not, on the other hand, a convenient magnitude for
algebraical treatment ; for example, the mean deviation of a dis-
tribution obtained by combining several others cannot in general
be expressed in terms of the mean deviations of the component
distributions, but depends upon their forms. As a rule, it is more
affected by fluctuations of sampling than is the standard deviation,
but may be less affected if large and erratic deviations lying
somewhat beyond the bulk of the distribution are liable to ocenr.
This may happen, for example, in some forms of experimental
work, and in such cases the use of the mean deviation may be
slightly preferable to that of the standard deviation.

19. Tt is a useful empirical rule for the student to remember
that for symmetrical or only moderately asymmetrical distri-
butions, approaching the ideal forms of figs. 5 and 9, the mean
deviation is usually very nearly four-fifths of the standard devia-
tion. Thus for the distribution of pauperism we have

mean deviation  1-01
standard deviation 1-24

In the case of the distribution of male statures in the British
Isles, Example iii., the ratio found is 0-80. For a short series of
observations like the wage statistics of Example i. a regular result
could hardly be expected: the actual ratio is 15:0/20:56=0-73.

— 0'81.
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We pointed out in § 10 that in distributions of the simple forms
referred to, a range of six times the standard deviation contains
over 99 per cent. of all the observations. If the mean deviation
be employed as the measure of dispersion, we must substitute a
range of 71 times this measure.

20. The Quartile Deviation or Semi-interquariile Range.—If a
value @), of the variable be determined of such magnitude that
one-quarter of all the values observed are less than ¢; and three-
quarters greater, then @, is termed the lower quartile. Similarly,
if a value @, be determined such that three-quarters of all the
values observed are less than (), and one-quarter only greater,
then @, is termed the upper quartile. The two quartiles and the
median divide the observed values of the variable into four
classes of equal frequency. If M7 be the value of the median, in
a symmetrical distribution

Mi— Q=@ - M,
and the difference may be taken as a measure of dispersion. But

as no distribution is rigidly symmetrical, it is usual to take as the
measure

and ¢ is termed the quartile deviation, or better, the semi-
interquartile range—it is not a measure of the deviation from
any particular average: the old name probable error should be
confined to the theory of sampling (Chap. XV. § 17).

21. In the case of a short series of ungrouped observations
the quartiles are determined, like the median, by inspection.
In the wage statistics of Example i., for instance, there are
38 observations, and 38/4=9'5: What is the lower quartile?
The student may be tempted to take it halfway between the
ninth and tenth observations from the bottom of the list ;
but this would be wrong, for then there would be nine
observations only below the value chosen instead of 9'5. The
quartile must be taken as given by the tenth observation
itself, which may be regarded as divided by the quartile, and
falling half above it and half below. Therefore

Lower quartile ¢, =14s. 10d.
Upper quartile Q,=16s. 11d.

and Q= Q“: @ _ 12-5d.
22. In the case of a grouped distribution, the quartiles, like
the median, are determined by simple arithmetical or by
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graphical interpolation (¢f. Chap. VII. §§15, 16). Thus for the
distribution of pauperism, Example ii., we have

632 +4=158
Total frequency under 225 per cent. =138

Difference = 20

Frequency in interval 2:25 - 2-75 = 89

Whence @, =225 +Z—g x 0-5 = 2:362 per cent.
Similarly we find @, =4-130 a
Hende Q=""_"_0g84

It is left to the student to check the value by graphical
interpolation.

23. For distributions approaching the ideal forms of figs.
b and 9, the semi-interquartile range is usually about two-thirds
of the standard deviation. Thus for Example ii. we find

€ 0834 071

s 124 7
The distribution of statures, Example iii., gives the ratio 0-68.
The short series of wage statistics in Example i. could not be
expected to give a result in very strict conformity with the
rule, but the actual ratio, viz. 0-61, does not diverge greatly.
It follows from this ratio that a range of nine times the semi-
interquartile range, approximately, is required to cover the same
proportion of the total frequency (99 per cent. or more) as a range
of six times the standard deviation.

24. Of the three measures of dispersion, the semi-interquartile
range has the most clear and simple meaning. It is calculated,
like the median, with great ease, and the quartiles may be found,
if necessary, by measuring two individuals only. If, e.g., the
dispersion as well as the average stature of a group of men
is required to be determined with the least possible expenditure
of time, they may be simply ranked in order of height, and the
three men picked out for measurement who stand in the centre
and one-quarter from either end of the rank. This measure of
dispersion may also be useful as a makeshift if the calculation
of the standard deviation has been rendered difficult or impossible
owing to the employment of an irregular classification of the
frequency or of an indefinite terminal class. Such uses are,
however, a little exceptional, and, generally speaking, the
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semi-interquartile range as a measure of dispersion is not to be
recommended, unless simplicity of meaning is of primary im-
portance, owing to the lack of algebraical convenience which
it shares with the median. Further, it is obvious that the
quartile, like the median, may become indeterminate, and that
the use of this measure of dispersion is undesirable in cases of
discontinuous variation : the student should refer again to the
discussion of the similar disadvantage in the case of the median,
Chap. VII. § 14. It has, however, been largely used in the past,
particularly for anthropometric work.

25. Measures of Relative Dispersion.—As was pointed out in
Chapter VII. § 26, if relative size is regarded as influencing not only
the average, but also deviations from the average, the geometric
mean seems the natural form of average to use, and deviations
should be measured by their ratios to the geometric mean. As
already stated, however, this method of measuring deviations, with
its accompanying employment of the geometric mean, has never
come into general use. It is a much more simple matter to allow
for the influence of size by taking the ratio of the measure of
absolute dispersion (e.g. standard deviation, mean deviation, or
quartile deviation) to the average (mean or median) from which
the deviations were measured, Pearson has termed the quantity

v= ll'u':._TP
2.e. the percentage ratio of the standard deviation to the arithmetic
mean, the coefficient of variation (ref. 6), and has used it, for
example, in comparing the relative variations of corresponding
organs or characters in the two sexes: the ratio of the quartile
deviation to the median has also been suggested (Verschaeffelt,
ref. 7). Such a measure of relative dispersion is evidently a mere
number, and its magnitude is independent of the units of
measurement, employed.

26. Measures of Asymmetry or Skewness.—1If we have to compare
a series of distributions of varying degrees of asymmetry, or skew-
ness, as Pearson has termed it, some numerical measure of this
character is desirable. Such a measure of skewness should
obviously be independent of the units in which we measure the
variable—e.g. the skewness of the distribution of the weights of a
given set of men should not be dependent on our choice of the
pound, the stone, or the kilogramme as the unit of weight—and
the measure should accordingly be a mere number. Thus the
difference between the deviations of the two quartiles on either
side of the median #ndicates the existence of skewness, but to
measure the degree of skewness we should take the ratio of this
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difference to some quantity of the same dimensions, e.g. the semi-
interquartile range. Our measure would then be, taking the
skewness to be positive if the longer tail of the distribution runs
in the direction of high values of X

(@ —2) - (M- Q) Q+Q,— 20
@ B Q

This would not be a bad measure if we were using the quartile
deviation as a measure of dispersion : its lowest value is zero,
when the distribution is symmetrical ; and while its highest possible
value is 2, it would rarely in practice attain higher numerical
values than +1. A similar measure might be based on the mean
deviations in excess and in defect of the mean. There is, however,
only one generally recognised measure of skewness, and that is
Pearson’s measure (ref. 8)—

skewness = (11}%

mean — mode
skewness = — ‘ . (12)
standard deviation

This is evidently zero for a symmetrical distribution, in which
mode and mean coincide. No upper limit to the ratio is appuarent
from the formula, but, as a fact, the value does not excced unity for
frequency-distributions resembling generally the ideal distributions
of fig. 9. As the mode is a difficult form of average to determine
by elementary methods, it may be noted that the numerator of the
above fraction may, in the case of frequency-distributions of the
forms referred to, be replaced approximately by 3(mean — median),
(¢f. Chap. VII. §20). The measure (12) is much more sensitive
than (11) for moderate degrees of asymmetry.

27. The Method of Percentiles.—We may conclude this chapter
by describing briefly a method that has been largely used in the
past in lieu of the methods dealt with in Chapters VI. and VII.,
and the preceding paragraphs of this chapter, for summarising
such statistics as we have been considering. If the values of the
variable (variates, as they are sometimes termed) be ranged in
order of magnitude, and a value P of the variable be determined
such that a percentage p of the total frequency lies below it and
100 - p above, then P is termed a percentile. If a series of per-
centiles be determined for short intervals, e.y. 5 per cent. or 10
per cent., they suffice by themselves to show the general form
of the distribution. This is Sir Francis Galton’s method of
percentiles, The deciles, or values of the variable which divide
the total frequency into ten equal parts, form a natural and
convenient series of percentiles to use. The fifth decile, or value
of the variable which has 50 per cent. of the observed values
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may be readily obtained from such a curve by dividing the
terminal ordinate into ten equal parts, and projecting the points
so obtained horizontally across to the curve and then vertically
down to the base. The construction is indicated on the figure for
the fourth decile, the value of which is approximately 2:88 per cent.

29. The curve of fig. 26 may be drawn in a different way by
taking a horizontal base divided into ten or a huudred cqual
parts (grades, as Sir Francis Galton has termed them), #ud erecting
at each point so obtained a vertical proportional to the cor-
responding percentile. This gives the curve of fig. 27, which was
obtained by merely redrafting fig. 26. The curve is of so-called
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Fic. 27.—The curve of Fig. 26 redrawn so as to give the Pauperism
corresponding to each grade: Galton’s *‘ Ogive.”

ogive form. The ogive curve for the distribution of statures
(Example iii.) is shown for comparigon in fig. 28. Tt will be noticed
that the ogive curve does not bring out the asymmetry of the
distribution of pauperism nearly so clearly as the frequency-
polygon, fig. 10, p. 92.

30. The method of percentiles has some advantages as a method
of representation, as the meaning of the various percentiles is 8o
simple and readily understood. An extension of the method to
the treatment of non-measurable characters has also become of
some importance. For example, the capacity of the different boys
in a class as regards some school subject cannot be directly
measured, but it may not be very difficult for the master to
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of the one set running vertically and the other horizontally, and
the difference has no statistical significance, the word array
has been suggested as a convenient term to denote either a row
or a column. If the values of X in one array are associated
with values of ¥ between the limits ¥, -8 and I',+ 8, ¥, may be
termed the type of the array. (Pearson, ref. 6.) The special
kind of contingency tables with which we are now concerned
are called correlation tables, to distinguish them from tables
based on unmeasured qualities and so forth.

3. Nothing need be added to what was said in Chapter VI. as
regards the choice of magnitude and position of class-intervals.
When these have been fixed, the table is readily compiled by
taking a large sheet ruled with rows and columns properly
headed in the same way as the final table and entering a dot,
stroke, or small cross in the corresponding confpartment for each
pair of recorded observations. If facility of checking be of
great importance, each pair of recorded values may be entered
on a geparate card and these dealt into little packs on a board
ruled in squares, or into a divided tray; each pack can then be
run through to see that no card has been mis-sorted. The
difficulty as to the intermediate observations—values of the
variables corresponding to divisions between class-intervals—will
be met in the same way as before if the value of one variable
alone be intermediate, the unit of frequency being divided
between two adjacent compartments. If both values of the pair
be intermediates, the observation must be divided between four
adjacent compartments, and thus quarters as well as halves may
occur in the table, as, e.g., in Table III. In this case the statures
of fathers and sons were measured to the nearest quarter-
inch and subsequently grouped by l-inch intervals: a pair in
which the recorded stature of the father is 605 in. and that of
the son 62-5 in. is accordingly entered as 0:25 to each of the
four compartments under the columns 59-6-60-5, 60'5-61°5, and
the rows 61:5-62'5, 62:5-63'5. Workers will generally form
their own methods for entering such fractional frequencies
during the process of compiling, but one convenient method is
to use a small x to denote a unit and a dot for a quarter; the
four dots should be placed in the position of the four points
of the x and joined when complete. It is best to choose the
limits of class-intervals, where possible, in such a way as to avoid
fractional frequencies.

4. The distribution of frequency for two variables may be
represented by a surface or solid in the same way as the frequency-
distribution of a single variable may be represented by a plane
figure. We may imagine the surface to be obtained by erecting
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at the centre of every compartment of the correlation-table a
vertical of length proportionate to the frequency in that com-
partment, and joining up the tops of the verticals. If the
compartments were made smaller and smaller while the class-
frequencies remained finite, the irregular figure so obtained would
approximate more and more closely towards a continuous curved
surface—a frequency-surface—corresponding to the frequency-
curves for single variables of Chapter VI. The volume of the
frequency-solid over any area drawn on its base gives the
frequency of pairs of values falling within that area, just as the
area of the frequency-curve over any interval of the base-line gives
the frequency of observations within that interval. Models of
actual distributions may be constructed by drawing the frequency-
distributions for all arrays of the one variable, to the same scale,
on sheets of caglboard, and erecting the cards vertically on a
base-board at equal distances apart, or by marking out a base-
board in squares corresponding to the compartments of the
correlation-table, and erecting on each square a rod of wood of
height proportionate to the frequency. Such solid representations
of frequency-distributions for two variables are sometimes termed
stereograms,

5. It is impossible, however, to group the majority of
frequency-surfaces, in the same way as the frequency-curves,
under a few simple types: the forms are too varied. The simplest
ideal type is one in which every section of the surface is a sym-
metrical curve—the first type of Chap. VI. (fig. 5, p. 89). Like
the symmetrical distribution for the single variable, this is a very
rare form of distribution in economic statistics, but approximate
illustrations may be drawn from anthropometry. Fig. 29 shows
the ideal form of the surface, somewhat truncated, and fig.
30 the distribution of Table III., which approximates to the same
type,—the difference in steepness is, of course, merely a matter of
scale. The maximum frequency occurs in the centre of the
whole distribution, and the surface is symmetrical round the
vertical through the maximum, equal frequencies occurring at
equal distances from the mode on opposite sides. The next
simplest type of surface corresponds to the second type of
frequency-curve—the moderately asymmetrical. Most, if not all,
of the distributions of arrays are asymmetrical, and like the dis-
tribution of fig. 9, p. 92: the surface is consequently asymmetrical,
and the maximum does not lie in the centre of the distribution.
This form is fairly common, and illustrations might be drawn
from a variety of sources—economics, meteorology, anthropometry,
ete. The data of Table II. will serve as an example. The total
distributions and the distributions of the majority of the arrays

I
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are asymmetrical, the skewness being positive for the rows at
the top of the table (the mode being lower than the mean), and
negative for the rows at the foot, the more central rows being
nearly symmetrical. The maximum frequency lies towards the
upper end of the table in the compartment under the row and
column headed “30~". The frequency falls off very rapidly
towards the lower ages, and slowly in the direction of old age.
Outside these two forms, it seems impossible to delimit empirically
any simple types. Tables V. and VI. are given simply as illus-
trations of two very divergent forms. Fig. 31 gives a graphical
representation of the former by the method corresponding to the
histogram of Chapter VI., the frequency in each compartment
being represented by a square pillar. The distribution of
frequency is very characteristic, and quite different from that
of any of the Tables I., IT,, IT1., or IV.

6. It is clear that such tables may be treated by any of the
methods discussed in Chapter V., which are applicable to all
contingency-tables, however formed. The distribution may be
investigated in detail by such methods as those of § 4, or tested
for isotropy (§ 11), or the coefficient of contingency can be
calculated*(§§ 5-8). In applying any of these methods, however,
it is desirable to use a coarser classification than is suited to the
methods tb be presently discussed, and it is not necessary to
retain the constancy of the class-interval. The -classification
should, on the contrary, be arranged simply with a view to avoiding
many scattered units or very small frequencies, A few examples
should be worked as exercises by the student (Question 3).

7. But the coefficient of contingency merely tells us whether,
and if so, how closely, the two variables are related, and much
more ipformation than this can be obtained from the correlation-
table, seeing that the measures of Chapters VII. and VIII. can be
applied to the arrays as well as to the total distributions. If the
two varables are independent, the distributions of all parallel
arrays are similar (Chap. V. § 13); hence their averages and
dispersions, e.g. means and standard deviations, must be the same.
In general they are not the same, and the relation between the
mean or standard deviation of the array and its type requires
investigation. Of the two constants, the mean is, in general, the
more important, and our attention will for the present be con-
fined to it. The majority of the questions of practical statistics
relate solely to averages: the most important and fundamental
question is whether, on an average, high values of the one variable
show any tendency to be associated with high (or with low)
values of the other. If possible, we also desire to know how great a
divergence of the one variable from its average value is associated
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with a unit divergence of the other, and to obtain some idea as to
the closeness with which this relation is usually fulfilled.

8. Suppose a diagram (fig. 32) to be drawn representing the
values of means of arrays. Let OX, OY be the scales of the two
variables, .e. the scales at the head and side of the table, 01, 12,
etc., being successive class-intervals. Let Af; be the mean value
of X, and A7, the mean value of Y. If the two variables bo
absolutely independent, the distributions of frequency in all
parallel arrays are similar (Chap. V. § 13), and the means of arrays
must lie on the vertical and horizontal lines MM, M, M, the

oo 7 2 30, 4 5 6X

M-+ ==+
M

Fia, 32.

small circles denoting means of rows and the small crosses means
of columns. (In any actual case, of course, the means would not
lie so regularly, but, if the independence were almost complete,
would only fluctuate slightly to the one side and the other of the
two lines.)

The cages with which the experimentalist, e.g. the chemist or
physicist, has to deal, where the observations are all crowded
closely round a single line, lie at the opposite extreme from
independence. The entries fall into a few compartments only of
each array, and the means of rows and of columns lie approximately
on one and the same curve, like the line RE of fig. 33.

The ordinary cases of statistics are intermediate between these
two extremes, the lines of means being neither at right angles as
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Hence the sons of fathers of deviation # from the mean of all fathers
have an average deviation of only 0-522 from the mean of all sons
i.e. they step back or ““ regress” towards the general mean, and 0'52
may be termed the ‘“ratio of regression.” In general, however,
the idea of a “stepping back” or ‘“regression” towards a more
or less stationary mean is quite inapplicable—obviously so where
the variables are different in kind, as in Tables V. and VI.—
and the term ““ coefficient of regression ” should be regarded simply
as a convenient name for the coefficients 4, and 6,, ER and CC
are generally termed the “lines of regression,” and equations (6)
the “regression equations.” The expressions ‘‘ characteristic lines,”
“ characteristic equations” (Yule, ref. 8) would perhaps be better.
Where the actual means of arrays appear to be given, to a satis-
factory degree of approximation, by straight lines, we may say
that the regresston s lenear. It is not safe, however, to assume
that such linearity extends beyond the limits of observation.
14. The two standard deviations

s,=0, A1 12 8,— o, N1 =2

are of considerable importance. It follows from (7) that s, is the
standard deviation of (z—,.y), and similarly s, is the standard
deviation of (y—&,.x). Hence we may regard s, and s, as the
standard errors (root mean square errors) made in estimating x
from y and y from z by the respective characteristic relations

=5y y=b,z.

8, may also be regarded as a kind of average standard deviation of
a row about RE, and s, as an average standard deviation of a
column about CC. In an ideal case, where the regression is
truly linear and the standard deviations of all parallel arrays are
equal, a case to which thedistribution of Table III. is a rough
approximation, s, is the standard deviation of the ax-array and s,
the standard deviation of the g-array (¢f. Chap. X. § 19 (3)).
Hence s, and s, are sometimes termed the *“standard deviations
of arrays.”

15. Proceeding now to the arithmetical work, the only new
expression that has to be calculated in order to determine 7, &,, b,,
s, and s, is the product sum S(zy) or the mean product p. Asin
the cases of means and standard deviations, the form of the
arithmetic is slightly different according as the observations are
few and ungrouped, or sufficient to justify the formation of a
correlation-table. In the first case, as in Example i. below, the
work is quite straightforward.

Ezample 1., Table VII.—The variables are (1) X—the estimated
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The equation (b) tells us therefore that a rise of 2s. in earnings
in passing from one district to another means on the average a
fall of 1 in the percentage in receipt of relief. A natural con-
clusion would be that this means a direct effect of the higher
earnings in diminishing the necessity for relief, but such a
conclusion cannot be accepted offhand. Equation (a) indicates,
for instance, that every rise of a unit in the percentage re-
lieved corresponds to a fall of 0-87 shillings, or 104d. in earnings:
this might mean that the giving of relief tends to depress wages.
Which is the correct interpretation of the facts? The above

-
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F1c. 40.—Correlation between Pauperism and Average Earnings ot Aericultural
Labourers for certain districts of England (data of Table VII.): 2R,
CC, lines of regression : = — 0'66.

regression equations alone cannot tell us this, and it is in the
discussion of such questions that most of the difticulties of statisti-
cal arguments arise.

As a check on the whole of the arithmetical work, and to test
whether the correlation coefficient is unduly affected by a few out-
lying observations, or, perhaps, by the regression not being lincar,
it is always as well to draw a diagram representing the results
obtained. Take scales along two axes at right angles (fig. 40)
representing the variables, and insert a dot (better, for clearness,
a small circle or a cross) at the point determined by each observed
pair of z and y. Complete the diagram by inserting the two lines
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RR and CC given by the regression equations (a) and (). In
doing this it is as well to determine a point at each end of both
lines, and then to check the work by seeing that they meet in the
mean of the whole distribution. Thus RZ is determined from (a)
by the points ¥=0, X=1913 and Y=6, X=1391: CC is
determined from () by the points X=12, ¥Y=564 and X =21,
Y =1-14. Marking in these points, and drawing the lines, they
will be found to meet in the mean, X=1594, ¥Y=367. The
diagram gives a very clear idea of the distribution; clearly the
regression is as nearly linear as may be with so very scattered a
distribution, and there are no very exceptional observations. The
most exceptional districts are Brixworth and St Neots with rather
low earnings but very low pauperism, and Glendale and Wigton
with the highest earnings but a pauperism well above the lowest—
over 2 per cent. .

16. When a classified correlation-table is to be dealt with, the
procedure is of precisely the same kind as was used in the calcula-
tion of a standard deviation, the same artifices being used to shorten
the work, That is to say, (1) the product-sum is calculated in the
first instance with respect to an arbitrary origin, and is afterwards
reduced to the value it would have with respect to the mean ; (2)
the arbitrary origin is taken at the centre of a class-interval ; (3)
the class-interval is treated as the unit of measurement throughout
the arithmetic.

Let deviations from the arbitrary origin be denoted by £, and
let £7 be the co-ordinates of the mean. Then

E= +§ n=y+7
En=xy+&y+ x4+ &

Therefore, summing, since the second and third sums on the
right vanish, being the sums of deviations from the mean,

S(&n)=2(vy)+ V&,
or bringing 2(zy) to the left,
S(ay) = 2(&) — V&7

That is, in terms of mecan-products, using »’ to denote the mean-
product for the arbitrary origin,

p=p -&.

In any case where the origin from which deviations have been
measured is not the mean, this correction must be used. It will
sometimes give a sensible correction even for work in the form of
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Example i., and in that case, of course, the standard deviations
will also require reduction to the mean.

As the arithmetical process of calculating the correlation co-
efficient from a grouped table is of great importance, we give two
illustrations, the first economie, the second biological.

Example ii., Table VIII.—The two variables are (1) X, the
percentage of males over 65 years of age in receipt of Poor-law
relief in 235 unions of a mainly rural character in England and
Wales ; (2) Y, the ratio of the numbers of persons given relief “out-
doors” (in their own homes) to one ““indoors” (in the workhouse).
The figures refer to a one-day count (Ist August 1890, No. 36,
1890), and the table is one of a series that were drawn up with
the view to discussing the influence of administrative methods on
pauperism. (Economic Jowrnal, vol. vi., 1896, p. 613.)

The arbitrary origin for X was taken at the centre of the fourth
column, or at 17-5 per cent.; for ¥ at the centre of the fourth
row, or 3-5. The following are the values found for the constants
of the single distributions :—

&= - 01532 intervals= — 0'77 per cent., whence M, =
16-73 per cent.

o, =1-29 intervals= 645 per cent.

%= + 036 intervals or units, whence I/, = 3:86.

o, = 2'98 units.

To calculate 3(&p), the value of & is first written in every
compartment of the table against the corresponding frequency,
treating the class-interval as the unit: these are the figures in
heavy type in Table VIII. In making these entries the sign of
the product may be neglected, but it must be remembered that
this sign will be positive in the upper left-hand and lower right-
hand quadrants, negative in the two others. The frequencies are
then collected as shown in columns 2 and 3 of Table VIIIa,,
being grouped according to the value and sign of £&. Thus for
&én=1, the total frequency in the positive quadrants is 13+ 85
=21'5, in the negative 14 +6=20: for &=2, 10+45+1+45
=20 in the positive quadrants, 5+2+1+35=11"5 in the
negative, and so on. When columns 2 and 3 are completed, they
should first of all be checked to see that no frequency has been
dropped, which may be readily done by adding together the totals
of these two columns together with the frequency in row 4 and
column 4 of Table VIIL. (the row and column for which &n=0),
being careful not to count twice the frequency in the compartment
common to the two; this grand total must clearly be equal to the
total number of observations &, or 235 in the present case. The
algebraic sum of the frequencies in each line of columns 2 and 3 is
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4034 x 6:45/2:98 = 0-74, and the regression equation accordingly
z=074y, or
X=139+074Y,

the standard error made in using the equation for estimating X
from ¥ being oz &/1 —72=6-07.

This is the equation of greatest practical interest, telling us
that, as we pass from one district to another, a rise of 1 in the
ratio of the numbers relieved in their own homes to the numbers
relieved in the workhouse corresponds on an average to a rise of
0-74 in the percentage in receipt of relief. The result is such as
to create a presumption in favour of the view that the giving of
out-relief tends to increase the numbers relieved, and this can be
taken as a working hypothesis for further investigation.

The student should work out the second regression equation,
and check both by calculating the means of the principal rows
and columns, and drawing a diagram like figs. 36, 37, and 38.

Ezample iii., Table IX.—(Unpublished data ; measurements by
G. U. Yule.) The two variables are (1) X, the length of a mother-
frond of duckweed (Zemna minor); (2) Y, the length of the
daughter-frond. The motherfrond was measured when the
daughter-frond separated from it, and the daughter-frond when
its first daughterfrond separated. Measures were taken from
camera drawings made with the Zeiss-Abbé camera under a low
power, the actual magnification being 24 : 1. The units of length
in the tabulated measurements are millimetres on the drawings.

The arbitrary origin for both X and ¥ was taken at 105 mm.
The following are the values found for the constants of the single
distributions :—

f= -1'058 intervals= — 6'3 mm. M= 987 mm. on drawing.
= 4°'11 mm. actual.
oz= 2'828 intervals= 17°0 mm. on drawing= 0707 mm. actual.
7= -0'203 vy =- 12 mm. 1/;=103'8 mm. on drawing.
= 4'32 mm. actual,
oy= 3°084 ys = 18'5 mm. on drawing= 0°771 mm. actual.

The values of &én are entered in every compartment of the
table as before, and the frequencies then collected, according to
the magnitude and sign of &, in columns 2 and 3 of Table IXa.
The entries in these two columns are next checked by adding to
the totals the frequency in the row and column for which & is
zero, and seeing that it gives the total number of observations
(266).. The numbers in column 4 are given by deducting the
entries in column 3 from those in column 2. The totals so
obtained are multiplied by & (column 1) and the products entered












IX.—CORRELATION. 187

The regression of daughter-frond on mother-frond is 069 (a
value which will not be altered by altering the units of measure-
ment for both mother- and daughter-fronds, as such an alteration
will affect both standard deviations equally). Hence the re-
gression equation giving the average actual length (in millimetres)
of daughter-fronds for mother-fronds of actual length X is

Y=148+069X.

We again leave it to the student to work out the second
regression equation giving the average length of mother-fronds
for daughter-fronds of length Y, and to check the whole work
by a diagram showing the lines of regression and the means of
arrays for the central portion of the table.

17. The student should be careful to remember the following
points in working:— -

(1) To give p and & their correct signs in finding the true
mean deviation-produet p.

(2) To express o, and oy, in terms of the class-interval as a
unit, in the value of r=p/o, o, for these are the units in terms
of which p has been calculated.

(3) To use the proper units for the standard deviations (not
class-intervals in general) in calculating the -coefficients of
regression : in forming the regression equation in terms of the
absolute values of the variables, for example, as above, the work
will be wrong unless means and standard deviations are ex-
pressed in the same units.

Further, it must always be remembered that correlation
coefficients, like all other statistical measures, are subject to
fluctuations of sampling (¢f. Chap. IIL §§ 7, 8). If we write
on cards a series of pairs of strictly independent values of z and
y and then work out the correlation coefficient for samples of,
say, 40 or 50 cards taken at random, we are very unlikely ever
to find »=0 absolutely, but will find a series of positive and
negative values centring round 0. No great stress can therefore
be laid on small, or even on moderately large, values of r as
indicating a true correlation if the numbers of observations be
small. For instance, if ¥ =36, a value of r= +0'5 may be
merely a chance result (though a very infrequent one); if
N=100, r= £0'3 may similarly be a mere fluctuation of
sampling, though again an infrequent one. If ¥ =900, a value
of r— + 0°'1 might occur as a fluctuation of sampling of the same
degree of infrequency. The student must therefore be careful in
interpreting his coefficients. (See Chap. XVIIL. § 15.)

Finally, it should be borne in mind that any coefficient, e.g. the
coefficient of correlation or the coefficient of contingency, gives
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only a part of the information afforded by the original data o
the correlation table. The correlation table itself, or the original
data if no correlation table has been compiled, should always be
given, unless considerations of space or of expense absolutely
preclude the adoption of such a course.
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CHAPTER X.

CORRELATION: ILLUSTRATIONS AND PRACTICAL
METHODS.

1. Necessity for careful choice of variables before proceeding to calculate r—
2-8. Illustration 1i.: Causation of pauperism—9-10. Illustration
il.: Inheritance of fertility—11-13. Illustration iii.: The weather
and the crops—I14. Correlation between the movements of two
variables:—(a) Non-periodic movements: Illustration iv.: Changes
in infantile and general mortality—15-17. (b) Quasi-periodic move-
ments : Illustration v.: The marriage-rate and foreign trade—
18. Elementary methods of dealing with cases of non-linear regression
—19. Certain rough methods of approximating to the correlation
coefficient—20-22, The correlation ratio.

1. Tae student—especially the student of economic statistics, to
whom this chapter is principally addressed—should be careful to
note that the coefficient of correlation, like an average or a
measure of dispersion, only exhibits in a summary and compre-
hensible form one particular aspect of the facts on which it is
based, and the real difficulties arise in the interpretation of the
coefficient when obtained. The value of the coefficient may be
consistent with some given hypothesis, but it may be equally
consistent with others; and not only are care and judgment
essential for the discussion of such possible hypotheses, but also
a thorough knowledge of the facts in all other possible aspects.
Further, care should be exercised from the commencement in the
selection of the variables between which the correlation shall be
determined. The variables should be defined in such a way as
to render the correlations as readily interpretable as possible,
and, if several are to be dealt with, they should afford the answers
to specific and definite questions. Unfortunately, the field of
choice is frequently very much limited, by deficiencies in the
available data and so forth, and consequently practical possibilities
ag well as ideal requirements have to be taken into account. No
general rules can be laid down, but the following are given as
illustrations of the sort of points that have to be considered.
191
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2. IMustration i. —It is required to throw some light on the
variations of pauperism in the unions (unions of parishes) of
England. (Cf. Yule, ref. 2.)

One table (Table VIIL.) bearing on a part of this question, viz.
the influence of the giving of out-relief on the proportion of the
aged in receipt of relief, was given in Chap. IX. (p. 183). The
question was treated by correlating the percentage of the aged
relieved in different districts with the ratio of numbers relieved
outdoors to the numbers in the workhouse. Is such a method
the best possible?

On the whole, it would seem better to correlate ckanges in
pauperism with ckanges in various possible factors. If we say
that a high rate of pauperism in some district is due to lax
administration, we presumably mean that as administration
became lax, pauperism rose, or that if administration were more
strict, pauperism would decrease ; if we say that the high pauper-
ism is due to the depressed condition of industry, we mean that
when industry recovers, pauperism will fall. When we say, in
fact, that any one variable is a factor of pauperism, we mean
that ckanges in that variable are accompanied by ckanges in the
percentage of the population in reccipt of relief, either in the
same or the reverse direction. It will be better, therefore, to
deal with changes in pauperism and possible factors. The next
question is what factors to choose.

3. The possible factors may be grouped under three heads : —

(a) Administration.—Changes in the method or strictness of
administration of the law.

(8) Environment.—Changes in economic conditions (wages,
prices, employment), social conditions (residential or industrial
character of the district, density of population, nationality of
population), or moral conditions (as illustrated, e.g., by the statis-
tics of crime).

(c) Age Distribution.—the percentage of the population between
given age-limits in receipt of relief increases very rapidly with old
age, the actual figures given by one of the only two then existing
returns of the age of paupers being—2 per cent. under age 16,
1 per cent. over 16 but under 65, 20 per cent. over 65. (Rteturn
36, 1890.)

Tt is practically impossible to deal with more than three factors,
one from each of the above groups, or four variables alto-
gether, including the pauperism itself. What shall we take, then,
as representative variables, and how shall we best measure
“ pauperism "}

4. Pauperism.—The returns give (@) cost, () numbers relieved.
It seems better to deal with (¢) (as in the illustration of Table
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VIII., Chap. IX.), as numbers are more important than cost from
the standpoint of the moral effect of relief on the population.
The returns, however, generally include both lunatics and vagrants
in the totals of persons relieved ; and as the administrative methods
of dealing with these two classes differ entirely from the methods
applicable to ordinary pauperism, it seems better to alter the
official total by excluding them. Returns are available giving
the numbers in receipt of relief on 1st January and Ist July;
there does not seem to be any special reason for taking the one
return rather than the other, but the return for 1st January was
actually used. The percentage of the population in receipt of
relief on 1st January 1871, 1881, and 1891 (the three census
years), less lunatics and vagrants, was therefore tabulated for each
union. (The investigation was carried out in 1898.)

5. Admanistration.—The most important point here, and one
that lends itself readily to statistical treatmeht, is the relative
proportion of indoor and outdoor relief (relief in the workhouse
and relief in the applicant’s home). The first question is,
again, shall we measure this proportion by cost or by numbers?
The latter seems, as before, the simpler and more important ratio
for the present purpose, though some writers have preferred the
statement in terms of expenditure (e.g. Mr Charles Booth, 4ged
Poor— Condition, 1894). If we decide on the statement in terms
of numbers, we still have the choice of expressing the proportion (1)
as the ratio of numbers given out-relief to numbers in the work-
house, or (2) as the percentage of numbers given out-relief on
the total number relieved. The former method was chosen,
partly on the simple ground that it had already been used in an
earlier investigation, partly on the ground that the use of the
ratio separates the higher proportions of out-relief more clearly
from each other, and these differences seem to have significance.
Thus a union with a ratio of 15 outdoor paupers to one indoor
seems to be materially different from one with a ratio of, say, 10
to 1; but if we take, instead of the ratios, the percentages of
outdoor to total paupers, the figures are 94 per cent. and 91 per
cent. respectively, which are so close that they will probably fall
into the same array. The ratio of numbers in receipt of outdoor
relief to the numbers in the workhouse, in every union, was
therefore tabulated for Ist January in the census years 1871, 1881,
1891.

6. Enwironment.—This is the most difficult factor of all to deal
with. In Mr Booth’s work the factors tabulated were (1) persons
per acre ; (2) percentage of population living two or more to a
room,.e. ‘‘overcrowding” ; (3) rateable value per head (dged Poor—
Condition). The data relating to overcrowding were first collected

13
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at the census of 1891, and are not available for earlier years.
Some trial was made of rateable value per head, but with not
very satisfactory results. For any given year, and for a group of
unions of somewhat similar character, e.g. rural, the rateable value
per head appears to be highly (negatively) correlated with the
pauperism, but changes in the two are not very highly correlated :
probably the movements of assessments are sluggish and irregular,
especially in the case of falling assessments in rural unions, and
do not correspond at all accurately with the real changes in the
value of agricultural land. After some consideration, it was
decided to use a very simple index to the changing fortunes of a
district, viz. the movement of the population itself. If the
population of a district is increasing at a rate above the average,
this is primd facie evidence that its industries are prospering ; if
the population is decreasing, or not increasing as fast as the
average, this strongly suggests that the industries are suffering
from a temporary lack of prosperity or permanent decay. The
population of every union was therefore tabulated for the censuses
of 1871, 1881, 1891.

7. Age Distribution.—As already stated, the figures that are
known clearly indicate a very rapid rise of the percentage relieved
after 65 years of age. The percentage of the population over 65
.years of age was therefore worked out for every union and tabu-
lated from the same three censuses. This is not, of course,
at all a complete index to the composition of the population as
affecting the rate of pauperism, which is sensibly dependent on
the proportion of the two sexes, and the numbers of children as
well. As the percentage in receipt of relief was, however, 20 per
cent. for those over 65, and only 1-2 per cent. for those under that
age, it is evidently a most important index. (A more complete
method might have been used by correcting the observed rate of
pauperism to the basis of a standard population with given num-
bers of each age and sex. . (Cf. below, Chap. XI. pp. 223-25.)

8. The changes in each of the four quantities that had been
tabulated for every union were then measured by working out the
ratios for the intercensal decades 1871-81 and 1881-91, taking
the value in the earlier year as 100 in cach case. The percentage
ratios so obtained were taken as the four variables. Further, as
the conditions are and were very different for rural and for urban
unions, it seemed very desirable to separate the unions into groups
according to their character. But this cannot be done with any
exactness: the majority of unions are of a mixed character, con-
sisting, say, of a small town with a considerable extent of the
surrounding country. It might seem best to base the classification
on returns of occupations, e.g. the proportions of the population

A
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engaged in agriculture, but the statistics of occupations are not,
given in the census for individual unions. Finally, it was decided
to use a classification by density of population, the grouping used
being—Rural, 0:3 person per acre or less: Mixed, more than
0°3 but not more than 1 person per acre: Urban, more than 1 person
per acre. The metropolitan unions were also treated by them-
selves. The limit 03 for rural unions was suggested by the
density of those agricultural unions the conditions in which
were investigated by the Labour Commission (the unions of
Table VII., Chap. IX.): the average density of these was 0-25,
and 34 of the 38 were under 0-3. The lower limit of density for
urban unions—1 per acre—was suggested by a grouping of Mr
Booth’s (group xiv.): of course 1 person per acre is not a density
associated with an urban district in the ordinary sense of the
term, but a country district cannot reach this density unless it
include a small town or portion of a town, Z. unless a large
proportion of its inhabitants live under urban conditions.

The method by which the relations between four variables are
discussed is fully described in Chapter XIL : at the present stage
it can only be stated that the discussion is based on the correlations
between all the possible (6) pairs that can be formed from the four
variables.

9. 1llustration ii.—The subject of investigation is the inheritance-

of fertility in man. (C. Pearson and others, ref. 3.) One table,
from the memoir cited, was given as an example in the last chapter
(Table IV.).

Fertility in man (7.e. the number of children born to a given pair)
is very largely influenced by the age of husband and wife at
marriage (especially the latter), and by the duration of marriage.
1t is desired to find whether it is also influenced by the heritable
constitution of the parents, 7.e. whether, allowance being made for
the effect of such disturbing causes as age and duration of marriage,
fertility is itself a heritable character.

The effect of duration of marriage may be largely eliminated
by excluding all marriages which have not lasted, say, 15 years
at least. This will rather heavily reduce the number of records
available, but will leave a sufficient- number for discussion. It
would be desirable to eliminate the effect of late marriages in
the same way by excluding all cases in which, say, husband was
over 30 years of age or wife over 25 (or even less) at the time
of marriage. But, unfortunately, this is impossible ; the age of
the wife—the most important factor—is only exceptionally given
in peerages, family histories, and similar works, from which the
data must be compiled. All marriages must therefore be
included, whatever the age of the parents at marriage, and the
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effect of the varying age at marriage must be estimated
afterwards.

10. Bug the correlation between (1) number of children of a
woman and (2) number of children of her daughter will be further
affected according as we include in the record all her available
daughters or only one. Suppose, e.¢., the number of children in
the first generation is 5 (say the mother and her brothers and
sisters), and that she has three daughters with 0, 2, and 4
children respectively: are we to enter all three pairs (5, 0),
(5, 2), (b, 4) in the correlation-table, or only one pair? If the
latter, which pair? For theoretical simplicity the second process
is distinctly the best (though it still further limits the available
data). If it be adopted, some regular rule will have to be made
for the selection of the daughter whose fertility shall be entered
in the table, so as to avoid bias: the first daughter married
for whom data are given, and who fulfils the conditions as to
duration of marriage, may, for instance, be taken in every case.
(For a much more detailed discussion of the problem, and the
allied problems regarding the inheritance of fertility in the horse,
the student is referred to the original.)

11. Illustration iii.—The subject for investigation is the
relation between the bulk of a crop (wheat and other cereals,
turnips and other root crops, hay, etc.), and the weather. (Cf.
Hooker, ref. 6.)

Produce-statistics for the more important crops of Great
Britain have been issued by the Board of Agriculture since
1885 : the figures are based on estimates of the yield furnished
by official local estimators all over the country. Estimates arc
published for separate counties and for groups of counties
(divisions). But the climatic conditions vary so much over the
United Kingdom that it is better to deal with a smaller area,
more homogeneous from the meteorological standpoint.  On the
other hand, the area should not be too small ; it should be large
enough to present a representative variety of soil. The group
of eastern counties, consisting of Lincoln, Hunts, Cambridge,
Norfolk, Suffolk, Essex, Bedford, and Hertford, was selected as
fulfilling these conditions. The group includes the county with
the largest acrcage of each of the ten crops investigated, with
the single exception of permanent grass.

12. The produce of a crop is dependent on the weather of
a long preceding period, and it is naturally desired to find the
influence of the weather at all successive stages during this
period, and to determine, for each crop, which period of the
year is of most critical importance as regards weather. It must
be remembered, however, that the times of both sowing and
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harvest are themselves very largely dependent on the weather,
and consequently, on an average of many years, the limits of
the critical period will not be very well defined. If, therefore,
we correlate the produce of the crop (X) with the characteristics
of the weather (Y) during successive intervals of the year, it
will be as well not to make these intervals too short. It was
accordingly decided to take successive groups of 8 weeks, over-
lapping each other by 4 weeks, d.e. weeks 1-8, 5-12, ete.
Correlation coeflicients were thus obtained at 4-weeks intervals,
but based on 8 weeks’ weather.

13. It remains to be decided what characteristics of the weather
are to be taken into account. The rainfall is clearly one factor
of great importance, temperature is another, and these two will
afford quite enough labour for a first investigation. The weekly
rainfalls were averaged for eight stations within the area, and
the average taken as the first characteristic of the weather.
Temperatures were taken from the records of the same stations.
The average temperatures, however, do not give quite the sort
of information that is required: at temperatures below a certain
limit (about 42° Fahr.) there is very little growth, and the
growth increases in rapidity as the temperature rises above this
point (within limits). It was therefore decided to utilise the
figures for “accumulated temperatures above 42° Fahr.,” 7.e.
the total number of day-degrees above 42° during each of the
8-weekly periods, as the second characteristic of the weather;
these “accumulated temperatures,” moreover, show much larger
variations than mean temperatures.

The student should refer to the original for the full dis-
cussion as to data. The method of treating the correlations
between three variables, based on the three possible correlations
between them, is deseribed in Chapter XII.

14. Problems of a somewhat special kind arise when dealing
with the relations between simultaneous values of two variables
which have been observed during a considerable period of time,
for the more rapid movements will often exhibit a fairly close
consilience, while the slower changes show no similarity. The two
following examples will serve as illustrations of two methods which
are generally applicable to such cases.

Illustration iv.—Fig. 41 exhibits the movements of (1) the
infantile mortality (deaths of infants under 1 year of age per 1000
births in the same year); (2) the general mortality (deaths at all
ages per 1000 living) in England and Wales during the period
1838-1904. A very cursory inspection of the figure shows that
when the infantile mortality rose from one year to the next
the general mortality also rose, as a rule ; and similarly, when the
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infantile mortality fell, the general mortality also fell. There
were, in fact, only five or six exceptions to this rule during the
whole period under review. The correlation between the annual
values of the two mortalities would nevertheless not be very high,
as the general mortality has been falling more or less steadily since
1875 or thereabouts, while the infantile mortality attained almost
a record value in 1899. During a long period of time the correla-
tion between annual values may, indeed, very well vanish, for the
two mortalities are affected by causes which are to a large extent
different in the two cases. To exhibit, thercfore, the closeness of
the relation between infantile and general mortality, for such
causes as show marked changes between one year and the next, it
will be best to proceed by correlating the annual ckanges, and not
the annual values. The work would be arranged in the following
form (only sufficient years being given to exhibit the principle of
the process), and the correlation worked out between the figures of
columns 3 and b.

1, 2 3. 4. 5,
Infantile Increase or General Increase or
Year Mortality Decrease Mortality Decrease
: per 1000 from Year per 1000 from Yeur
Births. before. living. before.
1838 159 - 22°4 -
1839 151 ~8 21°8 -0'6
1840 154 +3 22°9 +1-1
1841 145 -9 21'6 -13
1842 152 +7 217 +0°1
1843 150 -2 21-2 -05

For the period to which the diagram refers, viz. 1838-1904, the
following constants were found by this method :—

Infantile mortality, mean annual change - 0°21
standard deviation 963

General mortality, mean annual change — 009
standard deviation 1'14
Coefficient of correlation 4+ 0-77.

This is a much higher correlation than would arise from the
mere fact that the deaths of infants form part of the general
mortality, and consequently there must be a high correlation
between the annual changes in the mortality of those who arc over
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ever, of a much more regular kind than that of mortality,
resembling a series of ‘“waves” superposed on a steady general
trend, and it is the ‘“ waves” in the two variables—the short-period
movements, not the slower trends—which are so clearly related.

16. It is not difficult, moreover, to separate the short-period
oscillations, more or less approximately, from the slower movement,
Suppose the marriage-rate for each year replaced by the average
of an odd number of years of which it is the centre, the number
being as near as may be the same as the period of the * waves”—
e.g. nine years. If these short-period averages were plotted on
the diagram instead of the rates of the individual years, we should
evidently obtain a smoother curve which would clearly exhibit
the trend and be practically free from the conspicuous waves.
The excess or defect of each annual rate above or below the
trend, if plotted separately, would therefore give the ‘waves”
apart from the slower changes. The figures for foreign trade
may be treated in the same way as the marriage-rate, and we
can accordingly work out the correlation between the waves or
rapid fluctuations, undisturbed by the movements of longer period,
however great they may be. The arithmetic may be carried out
in the form of the following table, and the correlation worked out
in the ordinary way between the figures of columns 4 and 7.

1. 2. 3. 4. 5. 6. 7.
Marriage- Exports +
rate Nine 2 Imports, Nine v
Year. | (England | Years’ Dl £'Is per Years’ lezer-
and JAverage. e head Average. i
Wales). (U.K.).
1855 16-2 —_ 9-36 —
1856 167 = E 3 1114 —
1857 16°5 - 1185 —_ —
1858 160 — — 10+78 — =
1859 170 165 +0°5 1172 12°15 -0'43
1860 171 16 6 +05 1303 12-94 +0°09
1861 163 167 -04 13°01 1352 - 051
1862 16°1 168 0-7 1340 1417 -077
1863 168 169 -01 1513 1481 +0-32
1864 172 — — 1643 — —
1865 175 = = 16°37 = —
1866 175 — — 17°72 — —
1867 165 — —_ 1647 = =

17. Fig. 43 is drawn from the figures of columns 4 and 7, and
shows very well how closely the oscillations of the marriage-rate
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theory or by previous experience, it may be possible to throw
that relation into the form

Y=A4+ B.¢(X),

where A and B are the only unknown constants to be determined.
If a correlation-table be then drawn up between 1™ and ¢(X)
instead of ¥ and X, the regression will be approxzimately linear.
Thus in Table V. of the last chapter, .if X be the rate of
discount and Y the percentage of reserves on deposits, a
diagram of the curves of regression, or curves on which the
means of arrays lie, suggests that the relation between X and Y
is approximately of the form

X(Y - B)=4,
4 and B being constants ; that is,
XY=A4A+BX.
Or, if we make XY a new variable, say Z,
; Z=4+BX.

Hence, if we draw up a new correlation-table between X and Z
the regression will probably be much more closely linear.
If the relation between the variables be of the form

‘ Y=AB*
we have
log Y=log 4 + X. log B,

and hence the relation between log ¥ and X is linear. Similarly,
if the relation be of the form

X"Y=4
we have
log Y =log 4 — n. log X,

and so the relation hetween log Y and log X is linear By
means of such artifices for obtaining correlation-tables in
which the regression is linear, it may be possible to do a good
deal in difficult cases whilst using elementary methods only.
The advanced student should refer to ref. 12 for a different
method of treatment.

19. The only strict method of calculating the correlation
coefficient is that described in Chapter IX. from the formula

3(zy)
=

N . Approximations to this value may, however, be
20109



X.—CORRELATION : ILLUSTRATIONS AND METHODS. 208

found in various ways, for the most part dependent either (1)
on the formulse for the two regressions 'r— and 'r— or (2) on

the formule for the standard deviations of the arra.ys o1 =72
and o, /1 —72.  Such approximate methods are not recommended
for ordinary use, as they will lead to different results in different
hands, but a few may be given here, as being occasionally useful
for estimating the value of the correlation in cases where the
data are not given in such a shape as to permit of the proper
calculation of the coefficient.

(1) The means of rows and columns are plotted on a diagram,
and lines fitted to the points by eye, say by shifting about
a stretched black thread until it seems to run as near as may
be to all the points. If &,, &, be the slopes of these two lines
to the vertical and the horizontal respectively,

r= /6,5,

Hence the value of 7 may be estimated from any such diagram
as figs. 36-40 in Chapter IX, in the absence of the original
table.  Further, if a correlation-table be not grouped by
equal intervals, it may be difficult to calculate the product
sum, but it may still be possible to plot approximately a diagram
of the two lines of regression, and so determine roughly the
value of 7. Similarly, if only the means of two rows and
two columns, or of one row and one column in addition to the
means of the two variables, are known, it will still be possible
to estimate the slopes of ££ and CC, and hence the correlation
coefficient.

(2) The means of one set of arrays only, say the rows, are
calculated, and also the two standard-deviations o, and o,. The
means are then plotted on a diagram, using the standard-deviation
of each variable as the unit of measurement, and a line fitted by
eye. The slope of this line to the vertical is 7. If the standard
deviations be not used as the units of measurement in plotting,
the slope of the line to the vertical is r o,/o,, and hence r will be
obtained by dividing the slope by the ratio of the standard-
deviations.

This method, or some variation of it, is often useful as a
makeshift when the data are too incomplete to permit of the
proper calculation of the correlation, only one line of regression
and the ratio of the dispersions of the two variables being required :
the ratio of the quartile deviations, or other simple measures of
dispersion, will serve quite well for rough purposes in lieu of the
ratio of standard-deviations. As a special case, we may note that
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if the two dispersions are approximately the same, the slope of
RER to the vertical is r.

Plotting the medians of arrays on a diagram with the quartile
deviations as units, and measuring the slope of the line, was the
method of determining the correlation coeflicient (‘‘Galton’s
function ””) used by Sir Francis Galton, to whom the introduction
of such a coefficient is due. (Refs. 2-4 of Chap. IX. p. 188.)

(3) If s, be the standard-deviation of errors of estimate like
x —b,.y, we have from Chap. IX. § 11—

s2=a,2(1 —72),
and hence

But if the dispersions of arrays do not differ largely, and the
regression is nearly linear, the value of s, may be estimated from
the average of the standard-deviations of a few rows, and r deter-
mined—or rather estimated—accordingly. Thus in Table IIL,
Chap. IX,, the standard-deviations of the ten columns headed
62:5-63', 63:5~-64'5, etc., are—

2-56 226
2-11 226
255 245
224 2:33
223 —_—

2:60 Mean 2:359

The standard-deviation of the stature of all sons is 2'75: hence

approximately
2:359
\/ o ( 275 )

=0514.

This is the same as the value found by the product-sum method
to the second decimal place. It would be better to take an
average by counting the square of each standard-deviation
once for each observation in the column (or * weighting”
it with the number of observations in the column), but in the
present case this would only lead to a very slightly different
result, viz. ¢ =2-362, r=0512,

20. The Correlation Ratio.—The method clearly would not
give an approximation to the correlation coefficient, however, in
the case of such tables as V. and VI. of Chap. IX,, in which the
means of successive arrays do not lie closely round straight lines.
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In such cases it would always tend to give a value for » markedly
higher than that given by the product-sum method. The
product-sum method gives in fact a value based on the standard-
deviation round the line of regression; the method used above
gives a value dependent on the standard-deviation round a line
which sweeps through all the means of arrays, and the second
standard-deviation is necessarily less than the first. We reach,
therefore, a generalised coefficient which measures the approach
towards a curvilinear line of regression of any form.

Let s,. denote the standard-deviation of any array of X’s, and
let 7, as before, be the number of observations in this array (Chap.
IX, § 11), and further let

a'az2= E(n : Sa.tz)/N - p : 0 (1)‘

Then o,, is an average of the standard-deviations of the arrays
obtained as suggested at the end of the last section. Now let

o=l -2 . . . )
or
2 T :
Ney” = 1- :—7 . g o 3 (3)

Then 7,, is termed by Professor Pearson a correlation-ratio (ref.
13). As there are clearly two correlation-ratios for any one table,
it should be distinguished as the correlation-ratio of X on Y : it
measures the approach of values of X associated with given
values of ¥ to a single-valued relationship of any form. The
calculation would be exceedingly laborious if we had actually to
evaluate o,, but this may be avoided and the work greatly
simplified by the following consideration. If 4/, denote the mean
of all X’s, m, the mean of an array, then we have by the general
relation given in § 11 of Chap. VIIL. (p. 142)

No2=3Zn(s, 2+ M, —m.]%).
Or, using o,,, to denote the standard-deviation of m,,
Tr=0. "t 0wt . 2 : . @
Hence, substituting in (3)
Noy= —— - o : 5 . (5)
o-z
The correlation-ratio of X on Y is therefore determined when we
have found, in addition to the standard-deviation of X, the
standard-deviation of the means of its arrays,
21. The correlation-ratio of X on Y cannot be less than the
correlation-coefficient for X and Y, and 7,2 - 7% is a measure of
the divergence of the regression of X on Y from linearity. For



206 THEORY OF STATISTICS.

if d denote, as in Chap. IX., the deviation of the mean of an
array of A’s from the line of regression, we have by the relation
of Chap. IX,, § 11, p. 172

(1l -r)=0,2+0.2. . ; . (6)
Substituting for o, from (2), that is,
o= (n,t -3 . . 0 . (D

But o, is necessarily positive, and therefore 7., is not less than r.
The magnitude of o, and therefore of 7’ —7? measures the
divergence of the actual line through the means of arrays from
the line of regression.

It should be noted that, owing to the fluctuations of sampling,
7 and 7 are almost certain to differ slightly, even though the
regression may be truly linear. The observed value of 7~ 72
must be compared with the values that may arise owing to
fluctuations of sampling alone, before a definite significance can
be ascribed to it (¢f. Pearson, ref. 14, Blakeman, ref. 16, and the
formule cited therefrom on p. 352 below).

22. The following table illustrates the form of the arithmetic
for the calculation of the correlation-ratio of son’s stature on
father’s stature (Table ITI. of Chap. IX., p. 160). In the first
column is given the type of the array (stature of father); in the
second, the mean stature of sons for that array; in the third, the
difference of the mean of the array from the mean stature of all
sons. In the fourth column these differences are squared, and in
the sixth they are multiplied by the frequency of the array, two
decimal places only having been retained as suflicient for thc
present purpose. The sum total of the last column divided by
the number of observations (1078) gives o,,,2= 2058, or ¢, = 143,
As the standard-deviation of the sons’ stature is 275 in. (¢f.
Chap. IX., question 3), 7, =052. Before taking the differences
for the third column of such a table, it is as well to check the
means of the arrays by recalculating from them the mean of the
whole distribution, .. multiplying each array-mean by its fre-
quency, summing, and dividing by the number of observations.
The form of the arithmetic may be varied, if desired, by working
from zero as origin, instead of taking differences from the true
mean. The square of the mean must then be subtracted from
2(f-m2)/N to give 0,2

If the second correlation-ratio for this table be worked out in
the same way, the value will be found to be the same to the
second place of decimals: the two correlation-ratios for this table
are, therefore, very nearly identical, and only slightly greater
than the correlation-coefficient (0-51). Both regressions, it
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CHAPTER XI.

MISCELLANEOUS THEOREMS INVOLVING THE USE OF
THE CORRELATION-COEFFICIENT.

1. Introductory—2. Standard-deviation of a sum or difference—3-5. In-
fluence of errors of observation and of grouping on the standard-
deviation—6-7. Influence of errors of observation on the correlation-
coetlicient (Spearman’s theorems)—8. Mean and standard-doeviation
of an index—9. Correlation between indices —10. Correlation-
coefficient for a two- x two-fold table—11. Correlation-coefficient
for all possible pairs of N values of a variable—12. Correlation due
to heterogeneity of materiul —13. .Reduction of correlation due to
mingling of uncorrelated with correlated material — 14-17. The
weighted mean—18-19. Application of weighling to the correction
of death-rates, ete., for varying sex and age-distributions—20. The
weighting of forms of average other than the arithmetic mean.

1. It has already been pointed out that a statistical measure, if
it is to be widely useful, should lend itself readily to algebraical
trecatment. The arithmetic mean and the standard-deviation
derive their importance largely from the fact that they fulfil this
requirement better than any other averages or measures of dis-
persion ; and the following illustrations, while giving a number of
results that are of value in one branch or another of statistical
work, suffice to show that the correlation-cocfficient can be treated
with the same facility. This might indecd be expected, seeing
that the coefficient is derived, like the mean and standard-devia-
tion, by a straightforward process of summation.

2. To find the Standard-deviation of the sum or difference Z of
corresponding values of two variables X, und X,

Let 2, #,, z, denote deviations of the several variables from
their arithmetic means. Then if

Z=X,+ X,
evidently

3=, = T

210
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Squaring both sides of the equation and summing,
S(22) = 3(w,2) + (xa*) £ 2B (i a1,).
That is, if » be the correlation between @, and z,, and o, o, o
the respective standard-deviations,
o?l=a2+ 0,2+ 2r.0.0, : = . (M
If x, and z. are uncorrelated, we have the important special case
o?=0%+ a0y’ : : : . (2)

The student should notice that in this case the standard-
deviation of the sum of corresponding values of the two variables
is the same as the standard-deviation of their difference.

The same process will evidently give the standard-deviation of a
linear function of any number of variables. For the sum of a

series of variables X,, X, . . . . X, we must have
cl=clt o+ . ...+ +2r00,4 275000,
+ ...+ 2rp 005+ . -

7, being the correlation beween X, and X, r, the correlation
between X, and X;, and so on.

3. Influence of Ervors of Observation on the Standard-deviation.
—The results of § 2 may be applied to the theory of errors of
observation. Let us suppose that, if any value of X be observed
a large number of times, the arithmetic mean of the observations
is approximately the true value, the arithmetic mean error being
zero. Then, the arithmetic mean error being zero for all values
of X, the error, say §, is uncorrelated with X. TIn this case if ; be
an observed deviation from the arithmetic mean, x the true devia-
tion, we have from the preceding

ol =0,2+ a5’ . : . . (3)

The effect of errors of observation is, consequently, to increase the
standard-deviation above its true value. The student should
notice that the assumption made does not imply the complete in-
dependence of X and 8: he is quite at liberty to suppose that
errors fluctuate more, for example, with large than with small
values of X, as might very probably happen. In that case the
contingency-coefficient between X and 8 would not be zero,
although the correlation-coefficient might still vanish as supposed.

4. Influence of Grouping on the Stundard-deviation.—The
consequence of grouping observations to form the frequency
distribution is to introduce errors that arc, in effect, errors of
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measurement. Instead of assigning to any observation its true
value X, we assign to it the value X, corresponding to the centie
of the class-interval, thercby making an error 8, where

X,=X+38.

To deduce from this equation a formula showing the nature of
the influence of grouping on the standard-deviation we must know
the correlation between the error 8 and X or X,. If the original
distribution were a histogram, X; and 8 would be uncorrelated,
the mean value of & being zero for every value of .Y, : further, the
standard-deviation of & would be ¢?/12, where ¢ is the class-
interval (Chap. VIIL § 12, eqn. (10)). Hence, if o; be the
standard-deviation of the grouped values X, and o the standard-
deviation of the true values X,

o2
12”

But the true frequency distribution is rarely or never a
histogram, and trial on any frequency distribution approximating
to the symmetrical or slightly asymmetrical forms of fig. 5, p. 89,
or fig. 9 (a), p. 92, shows that grouping tends to increase rather
than reduce the standard-deviation. If we assume, as in § 3, that
the correlation between & and X, instead of 8 and X, is appreciably
zero and that the standard-deviation of 8 may be taken as c?/12,
as before (the values of 8 being to a first approximation uniformly
distributed over the class-interval when all the intervals are
considered together), then we have

P |r|"' ]

-9
2

0'2=0'1‘—i2 - . . . (4)

This is a formula of correction for grouping (Sheppard’s correcc-
tion, refs. 1 to 4) that is very frequently used, and that trial
(ref. 1) shows to give very good results for a curve approximating
closely to the form of fig. b, p. 89. The strict proof of the
formula lies outside the scope of an elementary work : it is based
on two assumptions: (1) that the distribution of frequency is
continuous, (2) that the frequency tapers off gradually to zero
in both directions. The formula would not give accurate results
in the case of such a distribution as that of fig. 9 (4), p. 92, or
fig. 14, p. 97, neither is it applicable at all to the more divergent
forms such as those of figs. 15, et seq.

b. If certain observations be repeated so that we have in every
case two measures 2, and z, of the same deviation #, it is possible
to obtain the true standard-deviation o, if the further assumption
is legitimate that the errors 8, and 8, are uncorrelated with each
other. On this assumption
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whole, to be safer, for it eliminates the assumption that the errors
in z and in g, in the same series of observations, are uncorrelated.
An insufficient though partial test of the correctness of the
assumptions may be made hy correlating , —», with ¢, — g, : this
correlation should vanish. Evidently, however, it may vanish
from symmetry without thereby implying that all the correlations
of the errors are zero.

8. Mean and Standard-deviation of an Index.—(Ref.10.) The
means and standard-deviations of non-linear functions of two or
more variables can in general only be expressed in terms of the
means and standard-deviations of the original variables to a first
approximation, on the assumption that deviations are small
compared with the mean values of the variables. Thus let it be
required to find the mean and standard-deviation of a ratio or
tndex Z =X, [X,, in terms of the constants for X] and X,. Let /
be the mean of Z, M, and M, the means of X and X,. Then

] >, 18 ] ‘”I & N Ty 1o
< i e i e
NAX)TN Mo N M)
Expand the second bracket by the binomial theorem, assuming

that x,/4f, is so small that powers higher than the second can
be neglected. Then to this approximation

| A
N M

I=

| ]
= R = 5
2w x4 e |-
MM ™2 M7 -

I= N-

That is, if 7 be the correlation between #; and x,, and if v, = o/,
0'2/1112,

I=yl-muton . . @
If s be the standard-deviation of Z we have
ey L
N KXZ)
1 x P Ya N
SN T )\ )

Expanding the second bracket again by the binomial theoren,
and neglecting terms of all orders above the second,

1 .
2 2 .-
ot VJ/"‘<]+P1>< “u,t 111'

11/ : i
A (1 + 1 Loy, + 3v)°)

)
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any, correlation between their absolute errors. But if the errors
be expressed as percentages of the magnitude observed, there
may be considerable correlation. It does not follow of necessity
that the correlations between indices or ratios are misleading.
If the indices are uncorrelated, there will be a similar “spurious”
correlation between the absolute measurements Z,. X;=2X, and
Zy.Xy=X,, and the answer to the question whether the correlation
between indices or that between absolute measures is misleading
depends on the further question whether the indices or the
absolute measures are the quantities directly determined by the
causes under investigation (cf. ref. 12).

The case considered, where X, X, X, are uncorrelated, is only
a special one ; for the general discussion ¢f. ref. 10.

10. The Correlation-coefficient for a two- x two-fold Table.—The
correlation-coeflicient is in general only calculated for a table with
a considerable number of rows and columns, such as those given
in Chapter IX. In some cases, however, a theoretical value is
obtainable for the coeflicient, which holds good even for the limiting
case when there are only two values possible for each variable (e.g.
0 and 1) and consequently two rows and two columns (cf. one
illustration in § 11, and for others the references given in
questions 11 and 12). It is therefore of some interest to obtain
an expression for the coefficient in this case in terms of the class-
frequencies.

Using the notation of Chapters I.-IV. the table may be written
in the form

Values of [ Values of First Variable,

Second
Variable. X | X Total
Xy (4 B) ak) (B)

X'y (48) (aB) (8)

Total (4) (a) N

Taking the centre of the table as arbitrary origin and the
class-interval, as usual, as the unit, the co-ordinates of the
mean are

- 15 ¢
=Ll ()
7= i'e-'a". (B)}.
o .
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The standard-deviations oy, o, are given by
72 =025 — & = (A4)(a)/V?
oy2= 025 7% = (B)(B)/ V™.
S(ey) =3{(4B) + (aB) - (4B) - (e B)} - V&7,
(4B) - (4)(B)/N =3

(as in Chap. IIL. §§ 11-12) and replacing & % by their values,
this reduces to

Finally,

Writing

S(xy)=24.
Whence
N

"= J@)(@)(B)(B)’

This value of = can be used as a coefficient of association, but,
unlike the association-coefficient of Chap. III. § 13, which is
unity if either (4B8)=(4) or (4B)=(B), r only becomes unity if
(AB)=(4)=(B). This is the only case in which both frequencies
(aB) and (48) can vanish so that (4B) and (of3) correspond to
the frequencies of two points X, ¥;, X, 1, on a line. Obviously
this alone renders the numerical values of the two coefficients
quite incomparable with each other. But further, while the
association coefficient is the same for all tables derived from one
another by multiplying rows or columns by arbitrary coeflicients,
the correlation coefficient (12) is greatest when (4)=(a) and
(B)=(B), i.e. when the table is symmetrical, and its value is
lowered when the symmetrical table is rendered asymmetrical by
increasing or reducing the number of 4’s or B’s. For moderate
degrees of association, the association coefficient gives much the
larger values. The two coefficients possess, in fact, essentjally
different properties, and are different measures of association in
the same sense that the geometric and arithmetic means are
different forms of average, or the interquartile range and the
standard-deviation different measures of dispersion.

The student is again referred to ref. 3 of Chap. III. for a
general discussion .of various measures of association, including
these and others, that have been proposed.

11. The Correlation-coefficient for all possible pairs of N values
of a Variable.—In certain cases a correlation-table is formed by
combining N observations in pairs in all possible ways. If, for
example, a table is being formed to illustrate, say, the correlation
between brothers for stature, and there are three brothers in

(12)



218 THEORY OF STATISTICS.

one family with statures 5 ft. 9, 5 ft. 10, and 5 ft. 11, these are
regarded as giving the six pairs

5 ft. 9 with 5 ft. 10 5 ft. 10 with 5 ft. 9
W, Bt 1l 5f. 11 ,,
5ft. 10 ,, N N ., 5t 10

which may be entered into the table. The entire table will be
formed from the aggregate of such subsidiary tables, each due to
one family. Let it be required to find the correlation-coeflicient,
however, for a single subsidiary table, due to a family with &
members, the numbers of pairs being therefore N(& — 1).

As ea.ch observed value of the variable occurs N —1 times,
i.e. once in combination with every other value, the means and
standard-deviations of the totals of the correlation-table are the
same as for the original & observations, say &/ and o If z. ,
Zy . . . . be the observed deviations, the product sum may be
written

I S
-+~ :I"'i 3 r‘.._! L w +
b oy + ZeXy + o, .
+ a o a 5 0
=2 {3(x) — 2} + 2, {3(2) = 2} + 2y {3(x) — 2} + . . ..
=—zl-zl-z?— .... =-No}

whence, there being N(& — 1) pairs,

_ et 1 13

= N V-De F¥=1- - - 19

For ¥=2, 3, 4. . . . this gives the successive values of r= — 1,
-4, —1. ... Itis clear that the first value is right, for two

values =, x, only determine the two pomts (”17 z,) and (z,, a,),
and the slope of the line joining them is negative.

The student should notice that a corresponding negative
association will arise between the first and second member of the
pair if all possible pairs are formed in a mixture of 4’s and a's.
Looking at the association, in fact, from the standpoint of § 10,
the equation (13) still holds, even if the variables can only assume
two values, e.g. 0 and 1. This result is utilised in § 14 of Chapter
X1V,

12. Correlation due to Heterogeneity of Material.—The following
theorem offers some analogy with the thecorem of Chap. IV.
§ 6 for attributes.—If X and Y are wncorrelated in euch of two
records, they will nevertheless exhibit some correlution when the
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that, in a proportion (r. —2,)/r, of all the pairs, the bones do
not really belong to the same skeleton, and have been virtually
paired at random. (For a more general form of the theorem cf.
again ref. 18.)

14. The Weighted Mean.—The arithmetic mean Af of a series
of values of a variable X was defined as the quotient of the sum
of those values by their number ¥, or

M=3(X)/N.

If, on the other hand, we multiply each several observed
value of X by some numerical coefficient or weight 1, the
quotient of the suin of such products by the sumn of the weights
is defined as a weighted mean of X, and may be denoted by if’
so that

M =3(W.X)/S(W).

The distinction between ¢ weighted ” and ““ unweighted ” ineans
is, it should be noted, very often formal rather than essential,
for the ‘“weights” may be regarded as actual, estimated, or
virtual frequencies. The weighted mean then becomes simply
an arithmetic mean, in which some new yuantity is regarded
as the unit. Thus if we are given the means A7, A, 4/, .. ..
M, of » series of observations, but do not know the number
of observations in every series, we may forin a general average
by taking the arithmetic mean of all the means, viz. Z(J/)/r,
treating the series as the unit. But if we know the number
of observations in every series it will be better to formn the
werghted mean I(NM)/2(N), weighting each mean in proportion
to the number of observations in the series on which it is based.
The second form of average would be quite correctly spoken
of as a weighted mean of the means of the several series: at
the same time it is simply the arithmetic mean of all the
series pooled together, <. the arithmetic mean obtained by
treating the observation and not the series as the unit.
(Chap. VII. § 13.)

15. To give an arithmetical illustration, if a commodity is sold
at different prices in different markets, it will be better to form
an average price, not by taking the arithmetic mean of the several
market prices, treating the market as the unit, but by weighting
each price in proportion to the quantity sold at that price, if
known, i.e. treating the unit of quantity as the unit of frequency.
Thus if wheat has been sold in market 4 at an average price of
29s. Id. per quarter, in market B at an average price of 27s. 7d.,
and in market C' at an average price of 28s. 4d., we may, if no
statement is made as to the quantities sold at these prices (as very
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often happens in the case of statements as to market prices), take
the arithmetic mean (28s. 4d.) as the general average. But if we
know that 23,930 qrs. were sold at 4, only 26 grs. at B, and 3933
qrs. at C, it will be better to take the weighted mean

(29s. 1d. x 23,930) + (27s. Td. x 26) + (28s. 4d. x 3933)
27889 :

to the nearest penny. = This is appreciably higher than the
arithmetic mean price, which is lowered by the undue importance
attached to the small markets B and C.

In the case of index-numbers for exhibiting the changes in
average prices from year to year (¢f. Chap. VIL § 25), it may
make a sensible difference whether we take the simple arithmetic
mean of the index-numbers for different commodities in any one
year as representing the price-level in that year, or weight the
index-numbers for the several commodities according to their
importance from some point of view ; and much has been written
as to the weights to be chosen. If, for example, our standpoint
be that of some average consumer, we may take as the weight for
each commodity the sum which he spends on that commodity in
an average year, so that the frequency of each commodity is
taken as the number of shillings or pounds spent thereon instead
of simply as unity.

Rates or ratios like the birth-, death-, or marriage-rates of a
country may he regarded as weighted means. For, treating the
rate for simplicity as a fraction, and not as a rate per 1000 of the
population,

2095

total birth
Birth-rate of whole country = ‘o ta(.)l E;)op:la t:on

_ 3(birth-rate in each district x population in that district)
J S(population of each district)

i.e. the rate for the whole country is the mean of the rates in the
different districts, weighting each in proportion to its population.
We use the weighted and unweighted means of such rates as
illustrations in §17 below.

16. It is evident that any weighted mean will in general differ
from the unweighted mean of the same quantities, and it is
required to find an expression for this difference. If r be the
correlation between weights and variables, ¢,, and o, the standard-
deviations, and w the mean weight, we have at once

S(W.X)=NM.w+ ro,o,),
whence M =M +ro,22, . (15)
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That is to say, if the weights and variables are positively correlated,
the weighted mean is the greater ; if negatively, theless. In some
cases 7 is very small, and then weighting makes little difference,
but in others the difference is large and important, » having a
sensible value and o,0,./w a large value.

17. The difference between weighted and unweighted means
of death-rates, birth-rates or other rates on the population in
different districts is, for instance, nearly always of importance.
Thus we have the following figures for rates of pauperism
(Jour. Stat. Soc., vol. lix. (1896), p. 349).

Percentages of the Population in
receipt of Relief.
January 1.
Arithmetic Mean | England and
of Rates in Wales as a
different Districts. whole.
1850 651 580
1860 520 426
1870 545 477
1881 368 3-12
1891 329 2469

In this case the weighted mcan is markedly the less, and the
correlation between the population of a district and its pauperism
must therefore be negative, the larger (on the whole urban) dis-
tricts having the lower percentage in reccipt of relief. On the
other hand, for the decade 1881-90 the average birth-rate for
England and Wales was 3234 per thousand, the arithmetic
mean of the rates for the different districts 30-34 only. The
weighted mean was therefore the greater, the birth-rate being
higher in the more populous (urban) districts, in which there is
a greater proportion of young married persons.

For the year 1891 the average population of a Poor-law district
was found to be roughly 45,900 and the standard-deviation o,
56,400 (populations ranging from under 2000 to over half a
million). The standard-deviation o, of the percentages of the
population in receipt of relief was 1:24. We have therefore,
for the correlation between pauperism and population,

3-29 - 269 . 459
124 ~ " 564
= —0-39.

e
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and D’ and A will be comparable as regards age-distribution.
There is obviously no difficulty in taking sex into account as well
as age if necessary. The death-rates must be noted for each sex
separately in every age-class and averaged with a system of
weights based on the standard population. The method is also
of importance for comparing death-rates in different classes of the
population, e.g. those engaged in given occupations, as well as in
different districts, and is used for both these purposes in the
Decennial Supplements to the Reports of the Registrar General
for England and Wales (ref. 14).

19. Difficulty may arise in practical cases from the fact that
the death-rates d, d, d, . . . . are not known for the districts or
classes which it is desired to compare with the standard popula-
tion, but only the crude rates D and the fractional populations
of the age-classes p; p, p; . . . . The difficulty may be partially
obviated (¢f. Chap. IV. § 9, pp. 51-3) by forming what may be
termed a potential or standard death-rate A’ for the class or
district, A" being given by

A'=30p) . . . . (19

.. the rates of the standard population averaged with the
weights of the district population. It is the crude death-rate
that there would be in the district if the rate in every age-
class were the same as in the standard population. An
approximate corrected death-rate for the district or class is
then given by

D'=Dxz .. .. (20)

D" is not necessarily, nor generally, the same as D'. It can
only be the same if
3(d.m) 3(8.m)

3(d.p) Z2(p)

This will hold good if, e.g., the death-rates in the standard
population and the district stand to one another in the same
ratio in all age-classes, z.e. 8,/d; = 8,/d, = 8,/d,=etc. This method
of correction is used in the Annual Sumimaries of the Registrar
General for England and Wales.

Both methods of correction—that of § 18 and that of the
present section—are of great and growing importance. They
are obviously applicable to other rates besides death-rates, e.g.
birth-rates (¢f. refs. 15, 16). Further, they may readily be
extended into quite different fields. Thus it has been suggested
(ref. 17) that corrected average heights or corrected average weights
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of the children in different schools might be obtained on the
basis of a standard school population of given age and sex
composition, or indeed of given composition as regards hair and
eye-colour as well.

20. In §§ 14-17 we have dealt only with the theory of
the weighted arithmetic mean, but it should be noted that
any form of average can be weighted. Thus a weighted median
can be formed by finding the value of the variable such that
the sum of the weights of lesser values is equal to the sum
of the weights of greater values. A weighted mode could be
formed by finding the value of the variable for which the sum
of the weights was greatest, allowing for the smoothing of
casual fluctuations. Similarly, a weighted geometric mean could
be calculated by weighting the logarithms of every value of the
variable before taking the arithmetic mean, <.e.

(V. log X)

=

log @,= STy
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Home Environment on the Intelligence of School Children,” Fugenics
Laboratory Memotrs, viii., Dulau & Co., London, 1910.

Miscellaneous.

(18) PEARsoN, KamL, Arice Luw, and L. BRAMLEY-MoORE, ‘‘Genetic
(reproductive) Selection : Inheritance of Fertility in Man and of
Fecundity in Thoroughbred Race-horses,” Phil. Trams. Roy. Soc.,
Series A, vol. cxeii., 1899, p. 257.

(A number of theorems of general application are given in the intro-
ductory part of this inemoir, some of which have been utilised in §§ 12~
13 of the preceding chapter. )

EXERCISES.

1. Find the values obtained for the standard-deviations in Examples ii.
(p- 189) and iii, (p. 141) of Chapter VIIL on applying Sheppard’s correction
for grouping,

2. Show that if a range of six times the standard-deviation covers at least 18
class-intervals (¢f. Chap. VI. § 5), Sheppard’s correction will make a difference
of less than 0°5 per cent. in the rough value of the standard-deviation.

3. (Data from the decennial supplements to the Annual Reports of the
Registrar-General for England and Wales.) The following particulars are
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found for 36 small registration districts in which the number of births in &
decade ranged between 1500 and 2500 :—

Proportion of Male Births
per 1000 of all Births,
Decade.
Standard-
s deviation.
1881-1890 d v 5081 1280
1891-1900 . s 508°4- 1037
Both decades B 5078'25 | 11T65

It is believed, however, that a great part of the observed standard-deviation
is due to mere ‘‘ fluctuations of sampling ” of no real significance.

Given that the correlation between the proportions of male births in a
district in the two decades is+ 036, estimate (1) the true standard-deviation
freed from such fluctuations of sampling ; (2) thestandard-deviation of fluctua-
tions of sampling, 7.e. of the errors produced by such fluctuations in the observed
proportions of male births.

4. (Data from Pearson, ref. 10.) The coefficients of variation for breadth,
height, and length of certain skulls are 3-89, 350, and 324 per cent. respec-
tively. Find the ‘‘spurious correlation” between the breadth/length and
height/length indices, absolute measures being combined at random so that
they are uncorrelated.

5. (Data from Boas, communicated to Pearson: ¢f. Fawcett and Pearson,
Proc. Roy. Soc., vol. Ixii. p. 413.) From short series of measurements on
American Indians the mean coefficient of correlation found between father and
son, and father and daughter, for cephalic index, is 0'14 ; between mother and
son, and mother and daughter 0°33. Assuming these coefficients should be
the same if it were not for the looseness of family relations, find the proportion
of children not due to the reputed father.

6. Find the correlation between' X; + X, and X,+ X5 ; X, X, and X, being
uncorrelated.

7. Find the correlation between X, and «X,+bX., X; and X, being
uncorrelated.

8. (Referring to illustration iv., § 14, Chap. X.) Use the answer to
question 7 to estimate, very roughly, the correlation that would be found
between annual movements in infantile and general mortality if the mortality
of those under and over 1 year of age were uncorrelated. Note that—

births
population
+ deaths over one year per 1000 of population.

geriggag&o;aﬁl;gg:ﬁ} =infantile mortality per 1000 births x

and treat the ratio of births to population as if it were constant at a rough
average value, say 0'033. The standard-deviation of annual movements in
infantile mortality is (foc. cit.) 9'6, and that of annual movements in mortality
other than infantile may be taken as sensibly the same as that of general
mortality, or say 1 unit.
9. If the relation
.2 +b.%y+ .23 =0
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holds for all values of ®,, z, and =z (which are, in our usual notation,
deviations from their respective arithmetic means), find the correlations
between ,;, x, and z; in terms of their standard-deviations and the values of
@, band c.

10. What is the effect on a weighted mean of errors in the weights or the
quantities weighted, such errors being uncorrelated with each other, with the
weights, or with the variables—(1) if the arithmetic mean values of the errors
are zero ; (2) if the arithmetic mean values of the errors are not zero ?

11. Cf. (Pearson, ‘*On a Generalised Theory of Alternative Inleritance,”
Phril. Trans., vol. cciil., A, 1904, p. 53). If we consider the correlation
between number of recessive couplets in parent and in offspring, in a
Mendelian population breeding at random (such as would ultimately result
from an initial cross between a pure dominant and a pure recessive), the
correlation is found to be 1/3 for a total number of couplets n. If n=1, the
only possible numbers of recessive couplets are 0 and 1, and the correlation
table between parent and offspring reduces to the form

Parent.
Offspring. ‘
0 1 Total
0 5 1 6
1 1 1 2
Total 6 2 8

Verify the correlation, and work out the association coefficient Q.

12. (Cf. the above, and also Snow, Proc. Roy. Soc., vol. Ixxxiii,, B, 1910,
Table III., p. 42.) For a similar population the corrclation between
brothers, assuming a practically infinite size of family, is 5/12. The table is

First Brother.
Second
Brother. 0 1 | Total
0 41 7 48
1 7 9 16
Total 48 16 64

Verify the correlation, and work out the association coefficient Q.
13. Referring to the notation of § 10, show that we have the following
expressions for the regressions in a fourfold table :—
#1 N.5_ _(4B)_(48)
oy (B)B) (B) (B)
05 N _(4B) (aB)

@) () (@)
Verify on the tables of questions 11 and 12.



CHAPTER XII.

PARTIAL CORRELATION.

1-2. Introductory explanation—38. Direct deduction of the formula for two
variables—4. Special notation for the general case : generalised re-
gressions—5. Generalised correlations—6. Generalised deviations and
standard-deviations—7-8. Theorems concerning the generalised pro-
duct-sums—9. Direct interpretation of the generalised regressions—
10-11. Reduction of the generalised standard-deviation—12. Redue-
tion of the generalised regression—13. Reduction of the generalised
correlation-coefficient—14. Arithmetical work : Example i, : Example
ii.—15. Geometrical representation of correlation between three
variables by means of a model—16. The coefficient of n-fold correlation
—17. Expression of regressions and correlations of lower in terms of
those of higher order—18. Limiting inequalities between the values of
correlation-coefficients necessary for consistence—19. Fallacies.

1. In Chapters IX.~XI. the theory of the correlation-coefficient for
a single pair of variables has been developed and its applications
illustrated. But in the case of statistics of attributes we found
it necessary to proceed from the theory of simple association for
a single pair of attributes to the theory of association for several
attributes, in order to be able to deal with the complex causation
characteristic of statistics; and similarly the student will find it
impossible to advance very far in the discussion of many problems
in correlation without some knowledge of the theory of mulizple
correlation, or correlation between several variables. In such a
problem as that of illustration i., Chap. X., for instance, it might
be found that changes in pauperism were highly correlated
(positively) with changes in the out-relief ratio, and also with
changes in the proportion of old ; and the question might arise how
far the first correlation was due merely to a tendency to give out-
relief more freely to the old than the young, 7.e. to a correlation
between changes in out-relief and changes in proportion of old.
The question could not at the present stage be answered by work-
ing out the correlation-coefficient between the last pair of variables,
for we have as yet no guide as to how far a correlation between
229
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the variables 1 and 2 can be accounted for by corrclations
between 1 and 3 and 2 and 3. Again, in the case of illustration iii.,
Chap. X., a marked positive correlation might be observed between,
say, the bulk of a crop and the rainfall during a certain period, and
practically no correlation between the crop and the accumulated
temperature during the same period ; and the question might arise
whether the last result might not be due merely to a negative
correlation between rain and accumulated temperature, the crop
being favourably affected Ly an increase of accumulated temper-
ature if other things were equal, but failing as a rule to obtain this
benefit owing to the concomitant deficiency of rain. In the prob-
lem of inheritance in a population, the corresponding problem is
of great importance, as already indicated in Chapter V. Tt is
essential for the discussion of possible hypotheses to know whether
an observed correlation bLetween, say, grandson and grandparent
can or cannot be accounted for solely by observed correlations
between grandson and parent, parent and grandparent.

2. Problems of this type, in which it is necessary to consider
simultaneously the relations between at least threc variables, and
possibly more, may be treated by a simple and natural extension
of the method used in the case of two variables. The latter casc
was discussed by forming linear cquations betwcen the two
variables, assigning such values to the constants as to make the
sum of the squares of the errors of estimate as low as possible :
the more complicated case may be discussed by forming linear
equations between any one of the n variables involved, taking
each in turn, and the = — 1 others, again assigning such values to
the constants as to make the sum of the squares of the errors of
estimate a minimum. If the variables are X; X, X, . . .. X,
the equation will be of the form

Xi=a+b, Xo+0,. X+ . ... +0,.4X,

If in such a generalised regression or characteristic equation we
find a sensible positive value for any one coctlicient such as by,
we know that there must be a positive correlation between X
and X, that cannot be accounted for by mere correlations of X,
and X, with X, X, or X,, for the cffects of changes in these
variables are allowed for in the remaining terms on the right.
The magnitude of b, gives, in fact, the mean change in X
associated with a unit change in X, when all the remaining
variables are kept constant. The corrclation between X, and
X, indicated by &, may be termed a partial correlation, as
corresponding with the partial association of Chapter IV., and it
is required to deduce from the values of the cocfficients &, which
may be termed partial regressions, partial coefficients of corre-
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lation giving the correlation between X, and X, or other pair of
variables when the remaining variables X, . . . . X, are kept
constant, or when changes in these variables are corrected or allowed
for, so far as this may be done with a linear equation. For examples
of such generalised regression-equations the student may turn to
the illustrations worked out below (pp. 239-247).

3. With this explanatory introduction, we may now proceed to
the algebraic theory of such generalised regression-equations and
of multiple correlation in general. It will first, however, be as
well to revert briefly to the case of two variables. In Chapter IX.,
to obtain the greatest possible simplicity of treatment, the value
of the coefficient’ r=p/o o, was deduced on the special assump-
tion that the means of all arrays were strictly collinear, and the
meaning of the coefficient in the more general case was sub-
sequently investigated. Such a process is not conveniently
applicable when a number of variables§ are to be taken into
account, and the problem has to be faced directly: i.e. required,
to determine the coefficients and constant term, if any, tn a
regression-equation, so as to make the sum of the squares of the
errors of estimate a minimum. We will take this problem first
for the case of two variables, introducing a notation that can be
conveniently adapted to more. Let us take the arithmetic
means of the variables as origins of measurement, and let z;, z,
denote deviations of the two variables from their respective
means. Then it is required to determine a; and &, in the re-
gression-equation

0y = @ + b7, . . 5 . ()

so as to make 3(®; —a.+b,,)% for all associated pairs of
deviations x, and z,, the least possible. Put more briefly, if
we write

Nosio=2(m, —ay. + 010.205)* . 5 . (D)
so that s, , is the root-mean-square value of the errors of estimate
in using regression-equation (a) (¢f. Chap. IX. § 14), it is required
to make s, a minimum. Suppose any value whatever to be
assigned to 6,,, and a series of values of a; to be tried, s, , being
calculated for each. Evidently s;, would be very large for
values of a, that erred greatly either in excess or defect of the
best value (for the given value of 4,,), and would continuously
decrease as this best value was approached ; the value of s, , could
never become negative, though possibly, but exceptionally, zero.
If therefore the values of s, , were plotted to the values of a; on
a diagram, a curve would be obtained more or less like that
of fig. 44. The best value of a,, for which s, attained its
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which is the value found by the previous indirect method of
Chapter IX. From the fact that &, is determined so as to
make the value of Z(a, — b,2,)? the least possible, the method
of determination is sometimes called the method of least squares.
Evidently all the remaining results of Chapter IX. follow from
this, and notably we have for oy, the minimum value of s,
the standard-deviation of errors of estimate

ot =01 -my?) . ] 0 - (D)

4. Now apply the same method to the regression-equation
for n variables, Writing the eguation in terms of deviations,
it follows from reasoning precisely similar to that given above
that no constant term need be entered on the right-hand
side. For the partial regression-coefficients (the coefficients of
the #’s on the right) a special notation will be used in order
that the exact position of each coefficient may be rendered quite
definite. The first subscript affixed to the letter & (which will
always be used to denote a regression) will be the subscript of
the z on the left (the dependent variable), and the second will
be the subscript of the # to which it is attached ; these may
be called the primary subscripts. After the primary subscripts,
and separated from them by a point, are placed the subscripts
of all the remaining variables on the right-hand side as secondary
subscripts. The regression-equation will therefore be written
in the form

B =bpgy .,  neFotbga, ne®gt o F 00 o1t 1)

The order in which the secondary subscripts are written is,
it should be noted, quite indifferent, but the order of the
primary subsecripts is material; e.g. by .., and by, . .
denote quite distinct coefficients, ; being the dependent variable
in the first case and z, in the second. A coefficient with p
secondary subscripts may be termed a regression of the pth order.
The regressions b,,, by, b5 bgy, €tc., in the case of two variables
may be regarded as of order zero, and may be termed total as
distinct from partial regressions.

5. In the case of two variables, the correlation-coefficient 7,
may be regarded as defined by the equation

71g=1{b1a.0n)""
We shall generalise this equation in the form

Tl2.84....n=(612.3{....ﬂ.'bQI..’M....n)! . . (2)

This is at present a pure definition of a new symbol, and it
remains to be shown that 7,5 . , may really be regarded as,
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and possesses all the properties of, a correlation-coefficient ; the
name may, however, be applied to it, pending the proof. A
correlation-coetticient with p secondary subscripts will be termed
a correlation of order p. Evidently, in the case of a correlation-
coefficient, the order in which both primary and secondary
subscripts is written is indifferent, for the right-hand side of
equation (2) is unaltered by writing 2 for 1 and 1 for 2. The
correlations 7y, 74, etc., may be regarded as of order zero, and
spoken of as total, as distinet from partial, correlations.

6. If the regressions dyygy . .. . s bizuy . .. . a ©EC., be assigned the
‘““best ” values, as determined by the method of least squares, the
difference between the actual value of 2. and the value assigned
by the right-hand side of the regression-equation (1), that is, the
error of estimate, will be denoted by x5, .  ,; ve as a defini-
tion we have

..._bln.'.’s...(n—l]'xn . (3)

where z. z. . . . . z_ are assigned any one set of observed values.
Such an error (or residual, as it is sometimes called) denoted by a
symbol with p secondary suffixes, will be termed a deviation of the
pth order. Finally, we will define a generalised standard-deviation
» by the equation

N.aiy n=2(‘7)¥.‘.‘.3 A n) . . . (4')

Ly, .n— %~ Vieu...n- Ly *513.24...7.-%3

& being, as usual, the number of observations. A standard-
deviation denoted by a symbol with p secondary suffixes will be
termed a standard-deviation of the pth order, the standard-
deviations o, o, etc., being regarded as of order zero, the standard-
deviations o, 0y, ete., (¢f. eqn. (d) of § 3) of the first order, and
80 on.

7. From the reasoning of § 3 it follows that the “least-square”
values of the partial regressions &, . . ., etc., will be given by
equations of the form

2(-t1_blz.34 T o R
=3y~ (bigas ..+ )Tyt - o A by )
8 being very small. That is, neglecting the term in 8,
3xy(w) — bz . a-%pt o Fba ey 5,) =0,
or, more briefly, in terms of the notation of equation (3),
S(2y. 2105 . ... a)=0. . . . (®)

There are a large number of these equations, (r - 1) for determin-
ing the coefficients &y5 . . . a etc., (n— 1) again for deterrining
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9. We have now from §§ 7 and 8—

0=2(x2.34....n'xl.234....n)
=325 . . al® ~byy .. n.%,—terms in z, to z,)
=3(2) - Zags . ... w)—Dua. . n S Tam . w)
=3(Fg .0 Ry .n)—blm....,.E(wﬁ.m....,.)‘
That is
1, =2(x1.34....n--'lf'z.u....n) shy
1284 ... n 2(.’1“._'--‘,_'__,,) . . Ly

But this is the value that would have been obtained by taking a
regression-equation of the form

i, .on— Oy . a-Tom .. a
and determining by,4 .., by the method of least-squares, z.e.
biggy . . .. . is the regression of @4 . ,Onayg .. ., 1t follows
at once from (2) that 7,5 -, , is the correlation hetween
Zig ... nand @y ., and from (4) that we may write
3 = J13¢ . ... n
Vet ... .n— %1284 . ..., . . (8)
T234 . ... n

an equation identical with the familiar relation ov..=7,0 /0y,
with the secondary suffixes 34 . . . . n added throughout.

To illustrate the meaning of the equation by the simplest case,
if we had three variables only, x;, #,, and x,, the value of b,,, or
795 could be determined (1) by finding the corrclations r;; and
19 and the corresponding regressions &;, and by, ; (2) working out
the residuals @, — b;5.2; and z, — by, for all associated deviations ;
(8) working out the correlation between the residuals associated
with the same values of ;. The method would not, however, be
a practical one, as the arithmetic would be extremely lengthy,
much more lengthy than the method given below for expressing
a correlation of order p in terms of correlations of order p — 1.

10. Any standard-deviation of order p may be expressed in terms
of a standard-deviation of order p — 1 and a correlation of order p — 1.
For,

(@103, .. n) = Z\Wrgs. . (ne1)e Fros... n)

= E(xl.%‘ ..(n—-l))(‘rl — 123, .. 1Ty — termsinx, to xﬂ-l)
= 3(@ias., ., (ﬂ—l)) —bipm. . ne1) 2T nery e T (11—1))
or, dividing through by the number of observations,

Tia. ... a=Vm. ... (n—l)(l ~ bz . (n—l)-bm.za N (n—l))

=@k | o m—x;(l —7m . wen) - . - (9
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This is again the relation of the familiar form—
aia=0i(l - %)

with the secondary suffixes 23 . . . . (n—1) added throughout.
It is clear from (9) that 7,5, . (a_1p like any correlation of order
zero, cannot be numerically greater than unity. It also follows
at once that if we have been estimating z, from z,, z, . . . . x,_,
x, will not increase the accuracy of estimate unless 71,05 . . oy
(not ry,) differ from zero. This condition is somewhat interesting,
as it leads to rather unexpected results. For example, if r,,= + 0°8,
ry3= +04, rys= + 05, it will not be possible to estimate 2, w1th
any greater accuracy from xz, and x; than from , alone, for the
value of 7, , is zero (see below, § 13).

11. It should be noted that, in equation (9), any other subscrlpt
can be eliminated in the same way as subscript » from the suffix of
Tyas ... . n S0 that a standard-deviation of order p can be expressed
in p ways in terms of standard-deviations of the next lower order.
This is useful as affording an independent check on arithmetic.
Further, ay55. ... ny ¢an be expressed in the same way in terms
of oy ., . . n2p 804 80 on, 50 that we must have

01, =011 —15)(1 =135} (1 = 7842) .- . (1 =7nns...n-n) - (10)

This is an extremely convenient expression for arithmetical use ;
the arithmetic can again be subjected to an absolute check by
elimmating the subscripts in a different, say the inverse, order.
Apart from the algebraic proof, it is obvious that the values must
be identical ; for if we are estimating one variable from = others, it
is clearly indifferent in what order the latter are taken into account.

12. Any regression of order p may be expressed in terms of
regressions of order p —1. For we have

Z(2134. .. 0 T234.. . n) = Z(T134. .. (=11 - T234... m)
=Z134. .. (n—1(To— b2n.34 ... (n-1)  Xp — terms in g to 2n_1)
=2(@134. .. (n—1)-L2.34. .. (i=1)) — D2n34. . (n—1)Z(X134. .. (n=1). Ln.34. . . (n—1]}s
Replacing byusi. .. noty DY Onost...-1): O2s4. . . o1y Tmss . . . (um1p
we have
blos.. neoost...n=b12ss. .. (n=1)- 0234 .. ;n=1)= O1n.34 .. . (n=1) Br2.34 .. (n—1)- T2 . . (1],
or, from (9),

A bl'.’.34 e (=TI blﬂ.34 s L (="T)Ee bn2.34 .y« (n—1) 1
Y1234 .. .. (1 )

L—lonat. . tn-ne Onoa . ... ooy
The student should note that this is an expression of the form
bm . bln z bn2

R D S
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with the subseripts 34 . . . . (»—1) added throughout. The
coefficient &y, . ., may therefore be regarded as determined
from a regression-equation of the form

Tis... (- = broge. . .- Toag ... -yt Binss . . Lin=1 - Tnsa ... (n-1p

t.e. it is the partial regression of @4, 1y 00 @yay . . . (e
Zus . ... -y being given. As any other secondary suffix might
have been eliminated in lien of », we might also regard it as
the partial regression of @;,5 | , 0N @y . n, Tsgs .. .. . DEIDZ
given, and so on.

13. From equation (11) we may readily obtain a corresponding
equation for correlations. For (11) may be written

7, _Tmst e T s =y Tunat L iml) VL84 (),

(VRN n

T =g, . (n—1) Cogi, ... (n=1)

Hence, writing down the corresponding expression for b,
and taking the square root

_Tesd o tn-) TTin3 w1 Tensd L ) (12)
(1 —Tinm ... (n—l))‘ (1 —Tonss. ... (n—l))‘ .

This is, similarly, the expression for three variables

70 01 =

Ty =Ty~ Ta;

= (T2 (1 — )

with the secondary subscripts added throughout, and 7. . .
can be assigned interpretations corresponding to those of by, q, .,
above. Evidently equation (12) permits of an absolute check on
the arithmetic in the calculation of all partial coefficients of an
order higher than the first, for any one of the secondary suffixes
of 753 . ... » can be eliminated so as to obtain another equation of
the same form as (12), and the value obtained for 7,5 ., by
inserting the values of the coefficients of lower order in the
expression on the right must be the same in eack case.

14. The equations now obtained provide all that is necessary
for the arithmetical solution of problems in multiple correlation.
The best mode of procedure on the whole, having calculated all
the correlations and standard-deviations of order zero, is (1) to
calculate the correlations of higher order by successive applications
of equation (12); (2) to calculate any required standard.deviations
by equation (10); (3) to calculate any required regressions by
equation (8): the use of equation (11) for calculating the
regressions of successive orders directly from each other is com-
paratively clumsy. We will give two illustrations, the first for
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of the denominators from those of the numerators we have the
logarithms of the correlations of the first-order. It is also as well
to calculate at once, for reference in the calculation of standard-
deviations .of the second-order, the values of log /1 — 7~ for the
first-order coefficients (col. 9).

Having obtained the correlations we can now proceed to the
regressions. If we wish to find all the regression-equations, we
shall have six regressions to calculate from cquations of the form

B12.g="133- T1/Tsg

These will involve all the six standard-deviations of the first
order @, o3 09 0Ogs etc. But the standard-deviations of
the first-order are not in themselves of much interest, and the
standard-deviations of the second-order are so, as being the
standard-errors or root-mean-square errors of estimate made in
using the regression-equations of the second-order. We may
save needless arithmetic, therefore, by replacing the standard-
deviations of the first-order by those of the second, omitting the
former entirely, and transforming the above equation for &,,
to the form

bio8="104" T1.08/T218.
This transformation is a useful one and should be noted by the
student. The values of each ¢ may be calculated twice inde-
pendently by the formulz of the form
T3 =0y(1 - 7'?2)* (I- 7',:I,s.2)*
=0,(1 — i)t (1 —75,)
so as to check the arithmetic; the work is rapidly done if the
values of log /1 —72 have been tabulated. The values found are

log oy 5, =0'06146 oy95=115

log 0y, =1:84584 Tyqa=070
g 0213 213

log 05,,=034571 Og19=222

From these and the logarithms of the 7’s we have
log 6,03 =008116, by, = —1-21 : log b3, =1-36174, b5, = +023
log by, 5 =164993, b, ;= — 045 : log by, =1-33917, by, = +0°22
log by ,=1:93024, by ,= + 085 : log vy, =0-33891, b5y, = +2°18
That is, the regression-equations are

(1) ;=-1212,+0°23 z,

(2) y= —045 2,+022 z,

(8) #;= +085 ; +2:18 z,
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or, transferring the origins to zero,

(1) Barnings X,=+190-1-21 X,4+ 023 X,
(2) Pauperism X,=+955-0'45 X, +022 X,
(3) Outrelief ratio X,= — 157+ 085 X, +2'18 X,

The units are throughout one shilling for the earnings X, 1
per cent. for the pauperism X,, and 1 for the out-relief ratio X;.

The first and second regression-equations are those of most
practical importance. The argument has been advanced that
the giving of out-relief tends to lower earnings, and the total
coefficient (r;;= ~0-13) between earnings (X,) and out-relief
(X,), though very small (¢f. Chap. IX. § 17), does not seem,
inconsistent with such a hypothesis. ~The partial correlation
coefficient (r,,= +0'44) and the regression-equation (1), how-
ever, indicate that in unions with a given percentage of the
population in receipt of relief (X,) the earnings are highest where
the proportion of out-relief is highest; and this is, in so far,
against the hypothesis of a tendency to lower wages. It remains
possible, of course, that out-relief may adversely affect the posstbil-
ity of ‘earning, e.g. by limiting the employment of the old. As
regards pauperism, the argument might be advanced that the
observed correlation (r,,= 4 0'60) between pauperism and out-
relief was in part due to the negative correlation (r,= —0-13)
between earnings and out-relief. Such a hypothesis would have
little to support it in view of the smallness and doubtful signifi-
cance of 7, and is definitely contradicted by the positive partial
correlation r,,, = + 069, and the second regression-equation. The
third regression-equation shows that the proportion of out-relief is
on the whole highest where earnings are highest and pauperism
greatest. It should be noticed, however, that a negative ratio is
clearly impossible, and consequently the relation cannot be strictly
linear ; but the third equation gives possible (positive) average
ratios for all the combinations of pauperism and earnings that
actually occur.

Ezxample ii.—(Four variables.) As an illustration of the form
of the work in the case of four variables, we will take a portion
of the data from another investigation into the causation of
pauperism, viz. that described in the first illustration of Chapter X.,
to which the student should refer for details. The variables are
the ratios of the values in 1891 to the values in 1881 (taken as
100) of—

1. The percentage of the population in receipt of relief,

2. The ratio of the numbers given outdeor relief to the numbers
relieved in the workhouse,

3. The percentage of the population over 65 years of age,

16
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4. The population itself,
in the metropolitan group of 32 unions, and the fundamental
constants (means, standard-deviations and correlations) are as
follows :—

TanLe L
1, 2. 3. 4,
Standard- Correlation- %
e deviations. coefficient. log A/1-

1 1047 1 29°2 12 +0-52 1-93154
2 906 2 417 13 +0-41 1-96003
3 1077 3 55 14 -0°14 199570
4 111-3 4 23°8 23 +0-49 194038
— — — 24 +0-23 1:98820
— - 34 +0°25 1-98598

It is seen that the average changes are not great; the per-
centages of the population in receipt of relief have increased on
an average by 47 per cent., the out-relief ratio has dropped by
9:4 per cent., and the percentage of old has increased by 7-7
per cent., at the same time as the population of the unions has
risen on the average by 11'3 per cent. At the same time the
standard-deviations of the first, second, and fourth variables are
very large. As a matter of fact, while in one union the
pauperism decreased by nearly 50 per cent. and in others by
20 per cent.,, in some there were increases of 60, 80, and 90
per cent. ; similarly, in the case of the out-relief, in several unions
the ratio was decreased by 40 to 60 per cent., a consistent
anti-out-relief policy having been enforced; in others the ratio
was doubled, and more than doubled. As regards population,
the more central districts show decreases ranging up to 20 and
25 per cent., the circumferential districts increases of 45 to 80
per cent. The correlations of order zero are not large, the
changes in the rate of pauperism exhibiting the highest correlation
with changes in the out-relief ratio, slightly less with changes
in the proportion of old, and very little with changes in
population.

The correlations of the second order are obtained in two steps.
In the first place, the six coefficients of order zero are grouped in
four sets of three, corresponding to the four sets of three variables
formed by omitting each one of the four variables in turn (Table
IT. col. 1). Each of these sets of three coefficients is then
treated in the same manner as in the last example, and so the
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correlations of the first order (Table II. col. 4) are obtained.
The first-order coefficients are then regrouped iu sets of three,
with the same secondary suffix (Table III. col. 1), and these
are treated precisely in the same way as the coefficients of order
zero. In this way, it will be seen, the value of each coefficient
of the second order is arrived at in two ways independently, and
so the arithmetic is checked: 7,,, occurs in the first and fourth
lines, for instance, 7,4, in the second and seventh, and so on.
Of course slight differences may occur in the last digit if a
sufficient number of digits is not retained, and for this reason the
intermediate work should be carried to a greater degree of
accuracy than is necessary in the final result; thus four places
of decimals were retained throughout in the intermediate work of
this example, and three in the final result. If he carries out an
independent calculation, the student may differ slightly from
the logarithms given in this and the following work, if more or
fewer figures are retained.

Having obtained the correlations, the regressions can be caleu
lated from the third-order standard-deviations by equations of the
form (as in the last example),

61930 = ’112-:<14i1'%l ,
9134
80 the standard-deviations of lower orders need not be evaluated.
Using equations of the form

01034 = 0'1(1 - r?2)5(1 - ﬁs.ﬂ)i(l - ”':17'4.23)l

=ori(1 =1 = miw (L = miag)}

we find
log o 05, =135740 01.05=22°8
log g5, = 150597 Ty134=232°1
log oy 104=0'65773 aq 1.,4=4'55
log 0, 193=132914 Oy 10=213

All the twelve regressions of the second order can be readily
calculated, given these standard deviations and the correlations,
but we may confine ourselves to the equation giving the changes
in pauperism (X)) in terms of other variables as the most impor-
tant. It will be found to be

2, = 0325, + 1'383z, — 0-383z,,

or, transferring the origins and expressing the equation in terms of
percentage-ratios,

X,= —31'1+0:325X, + 1383X, - 0-383X,,
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or, again, in terms of percentage-changes (ratio - 100): —
Percentage change in pauperism

= + 14 per cent.
+ 0325 times the change in out-relief ratio.
+1-383 - ,»  proportion of old.
- 0-383 o » population.

These results render the interpretation of the total coefficients,
which might be equally consistent with several hypotheses, more
clear and definite. The questions would arise, for instance,
whether the correlation of changes in pauperism with changes in
out-relief might not be due to correlation of the latter with the®
other factors introduced, and whether the negative correlation with
changes in population might not be due solely to the correlation
of the latter with changes in the proportion of old. As a matter
of fact, the partial correlations of changes in pauperism with
changes in out-relief and in proportion of old are slightly less than
the total correlations, but the partial correlation with changes in
population is numerically greater, the figures being

r= +0'52 Tigga= + 046
ri3= +041 Tiggq= +028
= - 0'14 rryg= - 036

So far, then, a8 we have taken the factors of the case into
account, there appears to be a true correlation between changes
in pauperism and changes in out-relief, proportion of old, and
population—the latter serving, of course, as some index to
changes in general prosperity. The relative influences of the
three factors are indicated by the regression-equation above.
[For the full discussion of the case cf. Jowr. Roy. Stat. Soc.,
vol. lxii., 1899.]

15. The correlation between pauperism and labourers’ earnings
exhibited by the figures of Example i. was illustrated by a diagram
{fig. 40, p. 180), in which scales of “pauperism” and “earnings”
were taken along two axzes at right angles, and every observed
pair of values was entered by marking the corresponding point
with a small circle: the diagram was completed by drawing in
the lines of regression. In precisely the same way the correlation
between three variables may be represented by a model showing the
distribution of points in space ; for any set of observed values X,
X,, X; may be regarded as determining a point in space, just as
any pair of values X, and X, may be regarded as determining a
point in a plane. Fig. 45 is drawn from such a model, constructed
from the data of Examplei. Four pieces of wood are fixed together
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scale starting from zero, as very small values of pauperism occur :
a scale of out-relief ratio is taken along the angle between the
back and bottom of the box, starting from zero at the left : finally,
the scale of earnings is drawn out towards the observer along the
angle between the left-hand side and the bottom, but as earnings
lower than 12s. do not occur, the scale may start from 12s. at the
corner. Suitable scales are: pauperism, 1 in.=1 per cent.; out-
relief ratio, 1 in.=1 unit; earnings, 1 in.=1s.; and the inside
measures of the model may then be 17 in. x 10 in. x 8 in. high,
the dimensions of the model constructed. Given these three
scales, any set of observed values determine a point within the
“box.” The earnings and out-relief ratio for some one union are
noted first, and the corresponding point marked on the baseboards;
a steel wire is then inserted vertically in the base at this point
and cut off at the height corresponding, on the scale chosen, to
the pauperism in the same union, being finally capped with a
small ball or knob to mark the “point” clearly. The model
shows very well the general tendency of the pauperism to be the
higher the lower the wages and the higher the out-relief, for the
highest points lie towards the back and right-hand side of the
model. If some representation of all three equations of regression
were to be inserted in the model, the result would be rather
confusing ; so the most important equation, viz. the second, giving
the average rate of pauperism in terms of the other variables, may
be chosen. This equation represents a plane : the lines in which
it cuts the right- and left-hand sides of the “box” should be
marked, holes drilled at equal intervals on these lines on the
opposite sides of the box (the holes facing each other), and threads
stretched through these holes, thus outlining the plane as shown
in the figure. In the actual model the correlation-diagrams (like
fig. 40) corresponding to the three pairs of variables were drawn
on the back sides and base: they represent, of course, the eleva-
tions and plan of the points.

The student possessing some skill in handicraft would find it
worth while to make such a model for some case of interest to
himself, and to study on it thoroughly the nature of the plane of
regression, and the relations of the partial and total correlations.

16. If we write

’-"? . (P ""’f“ = -}'.flilp_':. . ety . o (13)

it may be shown that R, .. ., is the correlation between
z; and the expression on the right-hand side of the regression-
equation, say €, .; . .. ., Where

€. =0pa.  n Tyt O Tyt i F Oy # o (14)
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For we have

S S g 2
LI Y S n):"'ll<xl_‘zl.23 o ot n): e U 1 n)
and also
X/ ,2 SN — 2
“(61.23 B n)—“(% — %oz ... 11)2'—*7V(0-I_ T3 . ... u)
whence the correlation between x; and e,,, . , is

7y

v.e. the value of Ryp . given by (13). The value of R is
accordingly a useful datum as indicating how closcly z; can
be expressed in terms of a linear function of @y, ;. ... z,, and
the values of the regressions may be regarded as determined
by the condition that £ shall be a maximum. Its value is
essentially positive as the product-sum Z(w,.e 05 . . . ) is positive.
R may be termed a coefficient of (n —1)-fold (or double, triple,
ete.) correlation ; for m variables there are » such correlations,
but in the limiting case of two variables the two are identical.
The value may be readily calculated, either from o4 » and
o, or directly from the equation

1= dugs. = (1 =rH)(1 = 5e)(1 —v3gs) oo - (L= 7Tns.. o) (1)

It is obvious from this equation that since every bracket on
the right is not greater than unity,

1-Rig .. . nPl-rh

Hence B,y . . . . » cannot be numerically less than r,. For the
same reason, rewriting (15) in every possible form, Ry .
cannot be numerically less than 7y , .... 7, 2.6 any one
of the possible constituent coefficients of order zero. Further,
for similar reasons, X, ,, . .. , cannot be numerically less than
any possible constituent coeflicient of any higher order. That
is to say, Ry ., . . is not numerically less than the greatest
of all the possible constituent coefficients, and is usually, though
not always, markedly greater. Thus in Example i, /Ay
(the coefficient of double correlation between pauperism on
the one hand, out-relief and labourers’ earnings on the other)
is 0-839, and the numerically greatest of the possible constituent
coefficients is 7,,= —0'73. Again, in Example ii., f;q is
0-626, and the numerically greatest of the possible constituent
coefficients is 7, , = + 0-573.

The student should notice that R is necessarily positive.
Further, even if all the variables X, X,, . ... X, were strictly
uncorrelated in the original universe as a whole, we should expect
199 T13.9 T14.22) €0C., 10 exhibit values (whether positive or negative)
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The student should notice that the set of three coefficients of
order zero and value unity are only consistent if either one only,
or all three, are positive, z.e. +1, +1, +1,0or -1, -1, +1; but
not —1, —1, —1. On the other hand, the set of three coefficients
of the first order and value unity are only consistent if one only,
or all three, are negative: the only consistent sets are +1, +1,
—land —1, —1, —1. The values of the two given 7’s need to
be very high if even the sign of the third can be inferred; if the
two are equal, they must be at least equal to +/05 or “707 . . . .
Finally, it may be noted that no two values for the known
coefficients ever permit an inference of the value zero for the
third ; the fact that 1 and 2, 1 and 3 are uncorrelated, pair and
pair, permits no inference of any kind as to the correlation
between 2 and 3, which may lie anywhere between +1 and —1.

19. We do not think it necessary to add to this chapter a
detailed discussion of the nature of fallacies on which the theory
of multiple correlation throws much light. The general nature of
such fallacies is the same as for the case of attributes, and was
discussed fully in Chap. IV. § 1-8. It suffices to point out the
principal sources of fallacy which are suggested at once by the
form of the partial correlation

Mo =T V3 ] . (a)

37 0 =1 - 1%)

and from the form of the corresponding expression for 7, in terms
of the partial coefficients

_ Ty 0.0 Fya e Vo
W L S e e
S Wl = (L =iy
From the form of the numerator of (a) it is evident (1) that even
if 7, be zero, ,; will not be zero unless either r,, or 7y, or
both, are zero. If », and r,, are of the same sign the partial
association will be positive ; if of opposite sign, negative. Thus
the quantity of a crop might appear to be unaffected, say, by
the amount of rainfall during some period preceding harvest:
this might be due merely to a correlation between rain and low
temperature, the partial correlation between crop and rainfall
being positive and important. We may thus easily misinterpret
a coefficient of correlation which is zero. (2) r,,, may be, indeed
often is, of opposite sign to ), and this may lead to still more
serious errors of interpretation.

From the form of the numerator of (8), on the other hand, we
see that, conversely, r;, will not be zero even though r,, is zero,
unless either ), or 75, , is zero. This corresponds to the theorem
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of Chap. IV. § 6, and indicates a source of fallacies similar to
those there discussed.

20. We have seen (§ 9) that r, 4 is the correlation between
and z,, and that we might determine the value of this partial
correlation by drawing up the actual correlation table for the two
residuals in question. Suppose, however, that instead of drawing
up a single table we drew up a series of tables for values of &,
and z,, associated with values of &, lying within successive
class-intervals of its range. In general the value of 7, would
not be the same (or approximately the same) for all such tables,
but would exhibit some systematic change as the value of a,
increased. Hence 7,4 should be regarded, in general, as of the
nature of an average correlation : the cases in which it measures
the correlation between x,, and x,, for every value of z, (cf.
Chap. XVI.) are probably exceptional. The process for deter-
mining partial associations (¢f. Chap. IV.) is, it will be remembered,
thorough and complete, as we always obtain the actual tables
exhibiting the association between, say, 4 and B in the universe
of C’s and the universe of y’s: that these two associations may
differ materially, is illustrated by Example i. of Chap. IV.
(pp. 45-6). It might sometimes serve as a useful check on
partial-correlation work to reclassify the observations by the
fundamental methods of that chapter,
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PART IIIL—THEORY OF SAMPLING.

CHAPTER XITII.

SIMPLE SAMPLING OF ATTRIBUTES.

1. The problem of the present Part—2, The two chief divisions of the theory
of sampling—3. Limitation of the discussion to the case of simple
sampling—4. Definition of the chance of success or failure of a given
event—5. Determination of the mean and standard-deviation of the
number of successes in n events—6. The same for the proportion of
successes in 7 events: the standard-deviation of simple sampling as a
measure of unreliability, or its reciprocal as a measure of precision—7,
Verification of the theoretical results by experiment—8. More detailed
discussion of the assumptions on which the formula for the standard-
deviation of simple sampling is based—9-10. Biological cases to
which the theory is directly applicable—11. Standard-deviation of
simple sampling when the numbers of observations in the samples
vary—12. Approximate value of the standard-deviation of simple
sampling, and relation between mean and standard-deviation, when
the chance of success or failure is very small—13. Use of the standard-
deviation of simple sampling, or standard error, for checking and
controlling the interpretation of statistical results,

1. Ox several occasions in the preceding chapters it has been
pointed out that small differences between statistical measures like
percentages, averages, measures of dispersion and so forth cannot
in general be assumed to indicate the action ef definite and assign-
able causes. Small differences may easily arise from indefinite
and highly complex causation such as determines' the fluctuating
proportions of heads and tails in tossing a coin, of black balls in
drawing samples from a bag containing a mixture of black and
white balls, or of cards bearing measurements within some given
class-interval in drawing cards, say, from an anthropometric record.
In 100 throws of a coin, for example, we may have noted 56 heads
and only 44 tails, but we cannot conclude that the coin is biassed :
on repeating our throws we may get only 48 hcads and 52 tails.
Similarly, if on measuring the statures of 1000 men in each of
two nations we find that the mean stature is slightly greater for
254
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nation A than for nation B, we cannot necessarily conclude that
the real mean stature is greaterin the case of nation 4 : possibly
if the observations were repeated on different samples of 1000
men the ratio might be reversed.

9. The theory of such fluctuations may be termed the theory
of sampling, and there are two chief sections of the theory corre-
sponding to the' theory of attributes and the theory of variables
respectively. In tossing a coin we only classify the results of the
tosses as heads or tails; in drawing balls from a mixture of black
and white balls, we only classify the balls drawn as black or as
white. These cases correspond to the theory of attributes, and
the general case may be represented as the drawing of a sample
from a universe containing both 4’s and o’s, the number or
proportion of A’s in successive samples being observed. If, on the
other hand, we put in a bag a number of cards bearing different
values of some variable X and draw sample batches of cards, we
can form averages and measures of dispersion for the successive
batches, and these averages and measures of dispersion will vary
slightly from one batch to another. If associated measures of
two variables X and ¥ are recorded on each card, we can also form
correlation-coefficients for the different batches, and these will vary
in a similar manner. These cases correspond to the theory of
variables, and it is the function of the theory of sampling for such
cases to inform us as to the fluctuations to be expected in the
averages, measures of dispersion, correlation-coefficients, etc., in
successive samples. In the present and the three following
chapters the theory of sampling is dealt with for the case of
attributes alone. The theory is of great importance and interest,
not only from its applications to the checking and control of
statistical results, but also from the theoretical forms of frequency-
distribution to which it leads. Finally, in Chapter XVII. one or
two of the more important cases of the theory of sampling for
variables are briefly treated, the greater part of the theory, owing
to its difficulty, lying somewhat outside the limits of this work.

3. The theory of sampling attains its greatest simplicity if
every observatioh contributed to the sample may be regarded as
independent of every other. This condition of independence
holds good, e.g., for the tossing of a coin or the throwing of a die :
the result of any one throw or toss does not affect, and is un-
affected by, the results of the preceding and following tosses.
It does not hold good, on the other hand, for the drawing of balls
from a bag: if a ball be drawn from a bag containing 3 black
and 3 white balls, the remainder may be either 2 black and 3
white, or 2 white and 3 black, according as the first ball was
black or white. The result of drawing a second ball is therefore
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dependent on the result of drawing the first. The disturbance
can only be eliminated by drawing from a bag containing a
number of balls that is infinitely large compared with the
total number drawn, or by returning each ball to the bag before
drawing the next. In this chapter our attention will be confined
to the case of independent sampling, as in coin-tossing or dice-
throwing—the simplest cases of an artificial kind suitable for
theoretical study and experimental verification. For brevity, we
may refer to such cases of sampling as simple sampling : the
implied conditions are discussed more fully in § 8 below,

4. If we may regard an ideal coin as a uniform, homogeneous
circular dise, there is nothing which can make it tend to fall more
often on the one side than on the other; we may expect, there-
fore, that in any long series of throws the coin will fall with
either face uppermost an approximately equal number of times,
or with, say, heads uppermost approximately half the times.
Similarly, if we may regard the ideal die as a perfect homogeneous
cube, it will tend, in any long series of throws, to fall with each
of its six faces uppermost an approximately equal number of
times, or with any given face uppermost one-sixth of the whole
number of times. These results are sometimes expressed by
saying that the chance of throwing heads (or tails) with a coin is
1/2, and the chance of throwing six (or any other face) with a die
is 1/6. To avoid speaking of such particular instances as coins
or dice, we shall in future, using terms which have become
conventional, refer to an event the chance of success of which is p
and the chance of failure ¢. Obviously p+¢=1.

5. Suppose we take & samples with n events in each. What
will be the values towards which the mean and standard-deviation
of the number of successes in a sample will tend ¢ The mean is
given at once, for there are N.n events, of which approximately
pNn will be successes, and the mean number of successes in a
sample will therefore tend towards pn. As regards the standard-
deviation, consider first the single event (n=1). The single
event may give either no successes or one success, and will tend
to give the former ¢, the latter pX, times in X trials. Take
this frequency-distribution and work out the standard-deviation
of the number of successes for the single event, as in the case of
an arithmetical example :—

Frequency f, Successes £. JE. . JE
qV 0
N 1 N pN

N — pN f}N
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We have therefore 4/ =p, and
ai=p—p?=pq.

But the number of successes in a group of n such events is the
sumn of successes for the single events of which it is composed,
and, all the events being independent, we have therefore, by the
usual rule for the standard-deviation of the sum of independent
variables (Chap. XI. § 2, equation (2)), o, being the standard-
deviation of the number of successes in 7 events,

Ta=npy . ] u . . (D)
This is an equation of fundamental importance in the theory of
sampling. The student should particularly bear in mind that,
the standard-deviation of the number of successes, due to
fluctuations of simple sampling alone, in a group of n events
varies, not directly as », but as the square root of n.

6. In lieu of recording the absolute number of successes in each
sample of n events, we might have recorded the proportion of
such successes, ¢.e. 1/nth of the number in each sample. As this
would amount to merely dividing all the figures of the original
record by n, the mean proportion of successes—or rather the value
towards which the mean tends to approach—must be p, and the
standard-deviation of the proportion of successes s, be given by

ss=o, /i =pg/n . . . . (2)
The standard-deviation of the proportion of successes in samples
of such independent events varies therefore inversely as the square
root of the number on which the proportion is calculated. Now
if we regard the observed proportion in any one sample as a
more or less unreliable determination of the true proportion in
a very large sample from the same material, the standard-devia-
tion of sampling may fairly be taken as a measure of the
unreliabilety of the determination—the greater the standard-
deviation, the greater the fluctuations of the observed proportion,
although the true proportion is the same throughout. The
reciprocal of the standard-deviation (1/s), on the other hand, may
be regarded as a measure of reliability, or, as it is sometimes
termed, precision, and -consequently the reliability or precision of
an observed proportion varies as the square root of the number of
observations on which it is based. This is again a very important
rule with many practical applications, but the limitations of the
case to which it applies, and the exact conditions from which it
has been deduced, should be borne in mind. We return to this
point again below (§ 8 and Chap. XIV.).
7. Experiments in coin tossing, dice throwing, and so forth
have been carried out by various persons in order to obtain ex-

17
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perimental verification of these results. The following will serve
as illustrations, but the student is strongly recommended to
carry out a few series of such experiments personally, in order to
acquire confidence in the use of the theory. It may be as well
to remark that if ordinary commercial dice are to be used for the
trials, care should be taken to see that they are fairly true cubes,
and the marks not cut very deeply. Cheap dice are generally
very much out of truth, and if the marks are deeply cut the
balance of the die may be sensibly affected. A convenient mode
of throwing a number of dice, suggested, we believe, by the late
Professor Weldon, is to roll them down an inclined gutter of
corrugated paper, so that they roll across the corrugations.

(1) (W. F. R. Weldon, cited by Professor F. Y. Edgeworth,
Encycl. Brit., 11th edn., vol. xxii. p. 394, Totals of the columns
in the table there given.)

Twelve dice were thrown 4096 times ; a throw of 4, 5, or 6 points
reckoned a success, therefore p =¢=05. Theoretical mean A/ — 6 ;
theoretical value of the standard-deviation o, = NJOBx0b x12=
1-732.

The following was the frequency-distribution observed : —

Successes. Frequency. Successes.  Frequency.
0 — 7 847
1 7 8 536
9 60 9 957
3 198 10 71
4 430 11 11
5 731 12 _
6 948 Total 4096

Mean M= 6-139, standard-deviation o =1-712. The proportion of
successes is 6°139/12=0-512 instead of 0.

(2) (W. F. R. Weldon, loc. cit., p. 400. Totals of columns of
the table given.)

Twelve dice were thrown 4096 times; only a throw of 6 was
counted a success, so p—1/6, ¢=5/6. Theoretical mean M =2,
standard-deviation o= ~/1/6 x 5/6 x 12=1291.

The following was the observed frequency-distribution :—

Successes, Frequency. Successes. Frequency.
0 447 5 115
1 1145 6 24
2 1181 7 7
3 796 8 1
4 380

Total 4096
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Mean M = 2-000, standard-deviation o = 1:296. Actual proportion
of successes 2:00/12 =0-1667, agreeing with the theoretical value
to the fourth place of decimals. Of course such very close
agreement is accidental, and not to be always expected.

(3) (G. U. Yule.) The following may be taken as an illustra-
tion based on a smaller number of observations. Three dice were
thrown 648 times, and the numbers of 5’s or 6’s noted at
each throw. p=1/3, ¢=2/3. Theoretical mean 1. Standard-
deviation, 0-816.

Frequency-distribution observed :—

Successes. Frequency.
0 179
1 298
2 141
3 30
Total 648

M=1'034, 0=0'823. Actual proportion of successes 0:345.

For other illustrations, some of which are cited in the questions
at the end of this chapter, the student may be referred to the
list of references on p. 273. The student should notice that in
all the distributions given a range of six times the standard-
deviation includes either all, or the great bulk of, the observations,
as in most frequency-distributions of the same general form. We
shall make use of this rule below, § 13.

8. In deducing the formulee (1) and (2) for the standard-
deviations of simple sampling in the cases with which we have
been dealing, only one condition has been explicitly laid down as
necessary, viz. the independence of the several drawings, tossings,
or other events composing the sample. But in point of fact this
is not the only nor the most fundamental condition which has
been explicitly or implicitly assumed, and it is necessary to realise
all the conditions in order to grasp the limitations under which
alone the formula arrived at will hold. Supposing, for example,
that we observe among groups of 1000 persons, at different times
or in different localities, various percentages of individuals
possessing certain characteristics—dark hair, or blindness, or
insanity, and so forth. Under what conditions should we
expect ‘he observed percentages to obey the law of sampling
that we have found, and show a standard-deviation given by
equation (2)?

(2) In the first place we have tacitly assumed throughout the
preceding work that our dice or our coins were the same set or
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identically similar throughout the experiment, so that the chance
of throwing “heads” with the coins or, say, “six” with the dice
was the same throughout: we did not commence an cxperiment
with dice loaded in one way and later on take a fresh sct of dice
loaded in another way. Consequently if formula (2) is to hold
good in our practical case of sampling there must not be a
difference in any essential respect—z.e. in any character that can
affect the proportion observed—between the localities from which
the observations are drawn, nor, if the observations have been
made at different epochs, must any essential change have taken
place during the period over which the observations are spread.
Where the causation of the character observed is more or less
unknown, it may, of course, be difficult or impossible to say what
differences or changes are to be regarded as essential, but, where
we have more knowledge, the condition laid down enables us to
exclude certain cases at once from the possible applications of
formula (1) or (2). Thus it is obvious that the theory of simple
sampling cannot apply to the variations of the death-rate in
localities with populations of different age and sex compositions,
nor to death-rates in a mixture of healthy and unhealthy districts,
nor to death-rates in successive years during a period of con-
tinuously improving sanitation. In all such cases variations
due to definite causes are superposed on the fluctuations of
sampling.

() In the second place, we have also tacitly assumed not
only that we were using the same set of coins or dice throughout,
so that the chances p and ¢ were the same at every trial, but
also that all the coins and dice in the set used were identically
similar, so that the chances p and ¢ were the same for every coin
or die. Consequently, if our formulee are to apply in the practical
case of sampling, the conditions that regulate the appearance of
the character observed must not only be the same for every
sample, but also for every individual in every sample. This is
again a very marked limitation. To revert to the case of death-
rates, formule (1) and (2) would not apply to the numbers of
persons dying in a series of samples of 1000 persons, even if these
samples were all of the same age and sex composition, and living
under the same sanitary conditions, unless, further, each sample
only contained persons of one sex and one age. Ior if each
sample included persons of both sexes and different ages, the
condition would be broken, the chance of death during a given
period not being the same for the two sexes, nor for the young
and the old. The groups would not be homogeneous in the sense
required by the conditions from which our formule have been
deduced. Similarly, if we were observing hair-colours, our formnle
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would not apply if the samples were compounded by always
taking one person from district 4, another from district B, and
50 on, these districts not being similar as regards the distribution
of hair-colour.

The above conditions were only tacitly assumed in our previous
work, and consequently it has been necessary to emphasise them
specially. The third condition was explicitly stated: (c) The
individual ‘““events,” or appearances of the character observed,
must be completely independent of one another, like the throws
of a die, or sensibly so, like the drawings of balls from a bag
containing a number of balls that is very large compared with
the number drawn. Reverting to the illustration of a death-rate,
our formulee would not apply even if the sample populations
were composed of persons of one age and one sex, if we were
dealing, for example, with deaths from an infectious or contagious
disease. For if one person in a certain sample has contracted
the disease in question, he has increased the possibility of others
doing so, and hence of dying from the disease. The same thing
holds good for certain classes of deaths from accident, e.g. railway
accidents due to derailment, and explosions in mines: if such an
accident is fatal to one person it is probably fatal to others also,
and consequently the annual returns show large and more or
less erratic variations.

When we speak of simple sampling in the following pages, the
term is intended to imply the fulfilment of all the conditions {(a),
(), and (c), all the samples and all the individual contributions to
each sample being taken under precisely the same conditions,
and the individual ““events” or appearances of the character being
quite independent. It may be as well expressly to note that we
need not make any assumption as to the conditions that determine
p unless we have to estimate ~/mpg a priori. If we draw a
sample and observe in it the actual proportion of, say. 4’s:
draw another sample under precisely the same conditions, and
observe the proportion of 4’s in the two samples together: add
to these a third sample, and so on, we will find that p approaches
—not continuously, but with some fluctuations—closer and closer
to some limiting value. It is this limiting value which is to be
used in our formulse—the value of p that would be observed in
a very large sample. The standard-deviation of the number of
sixes thrown with » dice, on this understanding, may be ~/npg,
even if the dice be out of truth or loaded so that p is no longer
1/6. Similarly, the standard-deviation of the number of black
balls in samples of » drawn from an infinitely large mixture of

black and white balls in equal proportions may be /npg even
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if p is, say, 1/3, and not 1/2 owing to the black balls, for some
reas)on, tending to slip through our fingers. (Cf. Chap. XIV.
§ 4.

9. It is evident that these conditions very much limit the
field of practical cases of an economic or sociological character
to which formule (1) and (2) can apply without considerable
modification. The formulee appear, however, to hold to a high
degree of approximation in certain biological cases, notably in
the proportions of offspring of different types obtained on crossing
hybrids, and, with some limitations, to the proportions of the
two sexes at birth. It is possible, accordingly, that in these cases
all the necessary conditions are fulfilled, but this is not a necessary
inference from the mere applicability of the formulee (¢f. Chap.
XIV. § 15). In the case of the sex-ratio at birth, it seems
doubtful whether the rule applies to the frequency of the sexes in
individual families of given numbers (ref. 9), but it does apply
fairly closely to the sex-ratios of births in different localities,
and still more closely to the ratios in one locality during
successive periods. That is to say, if we note the number of
males in a series of groups of # births each, the standard-deviation
of that number is approximately «/mpg, where p is the chance
of a male birth ; or, otherwise, Jpq/n is the standard-deviation
of the proportion of male births. We are not able to assign an
a priori value to the chance p as in the case of dice-throwing,
but it is quite sufficiently accurate for practical purposes to use
the proportion of male births actually observed if that proportion
be based on a moderately large number of observations.

10. In Table VI. of Chap. IX. (p. 163) was given a correlation-
table between the total numbers of births in the registrationdistricts
of England and Wales during the decade 1881-90 and the pro-
portion of male births. The table below gives some similar figures,
based on the same data, for a few isolated groups of districts con-
taining not less than 30 to 40 districts each. In both tables tha
drop in dispersion as we pass from the small to the large districts
is extremely striking. The actual standard-deviations, and the
standard-deviations of simple sampling corresponding to the mid-
numbers of births, are given at the foot of the table, and it will
be seen that the two agree, on the whole, with surprising closeness,
considering the small numbers of observations. The actual
standard-deviation is, however, the larger of the two in every case
but one. The corresponding standard-deviations for Table VI. of
Chap. IX. are given in Qu. 7 at the end of this chapter, and show
the same general agreement with the standard-deviations of simple
sampling ; the actual standard-deviations are, however, again, as
a rule, slightly in excess of the theoretical values.
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The student should note that in both cases the standard-devia-
tions given are standard-deviations of the proportion of male
births per 1000 of all births, that is, 1000 times the values given
by equation (2). These values are given by simply substituting
the proportions per 1000 for p and ¢ in the formula. Thus for
the first column of Table I. the proportion of males is 508 per
1000 births, the mid-number of births 2000, and therefore—

FoU8 x 492

= “gnss _}"_n-:'_

11. In the above illustration the difficulty due to the wide
variation in the number of births » in ditferent districts has been
surmounted by grouping these districts in limited class intervals,
and assuming that it would be sufticiently accurate for practical
purposes to treat all the districts in one class as if the sex-ratios
had been based on the mid-numbers of births. Given a sufticiently
large number of observations, such a process does well cnough,
though it is not very good. But if the number of observations
does not exceed, perhaps, 50 or 60 altogether, grouping is
obviously out of the question, and some other procedure must be
adopted.

Suppose, then, that a series of samples have been taken from
the same material, f; samples containing », individuals or observa-
tions each, f, containing =, f, containing m, and so on: What
would be the standard-deviation of the observed proportions in
these samples? Evidently the square of the standard-deviation
in the first group would be pg/n;, in the second pq/n,, and so on:
therefore, as the means tend to the same values in all the groups,
we must have for the whole series—

V&2 {' o e
VoS —= (41 2y day
I\ " Ty /
sut if A be the harmonie mean of u, 2
N f fo S
1[ (] J i
and :u't'rll'f“rla.’]_'f
- P
RSl e (3)

That is to say, where the number of observations varies from one
sample to another, the harmonic mean number of observations in
a sample must be substituted for # in equation (2).

Thus the following percentages (taken to the ncarcst unit) of
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The frequency-distribution of the number of deaths per army
COrps per annum was

Deaths. Frequency.
0 109
1 65
2 22
3 3
4 1
whence
a?=0'6079
a=0"78

—an almost exact agreement with the standard-deviation of simple
sampling.

13. We may now turn from these verifications of the theoretical
results for various special cases, to the use of the formule for
checking and controlling the interpretation of statistical results,
If we observe, in a statistical sample, a certain proportion of
objects or individuals possessing some given character—say 4’s—
this proportion differing more or less from the proportion which
for some reason we expected, the question always arises whether
the difference may be due to the fluctuations of simple sampling
only, or may be indjcative of definite differences between the
conditions in the universe from which the sample has been drawn
and the assumed conditions on which we based our expectation.
Similarly, if we observe a different proportion in one sample from
that which we have observed in another, the guestion again arises
whether this difference may be due to fluctuations of simple
sampling alone, or whether it indicates a difference between the
conditions subsisting in the universes from which the two samples
were drawn : in the latter case the difference is often said to be
significant. These questions can be answered, though only more
or less roughly at present, by comparing the observed difference
with the standard-deviation of simple sampling. We know
roughly that the great bulk at least of the fluctuations of samp-
ling lie within a range of + three times the standard-deviation ;
and if an observed difference from a theoretical result greatly
exceeds these limits it cannot be ascribed to a fluctuation of
“simple sampling ” as defined in § 8 : it may therefore be signifi-
cant. The “standard-deviation of simple sampling” being the
basis of all such work, it is convenient to refer to it by a shorter
name. The observed proportions of A’s in given samples being
regarded as differing by larger or smaller errors from the true
proportion in a very large sample from the same material, the
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Working from the observed proportion of green seeds, viz, 0-2532
instead of the theoretical 0:25, we have

s= /025 x 0-75/7125 = 0-0051,

and similarly the divergence from theory is only some 3/5 of the
standard error, as before.

It should be noted that this method must not be used as a test
of association by comparing the difference of (45) from (4)(B)/N
with a standard error calculated from the latter value as a
“theoretical number,” for it is not a theoretical number given
a preore as in the above illustrations, and 4 and B are themselves
liable to errors of sampling. If we formed an association-tablc
between the results of tossing two coins . times, o= /¥.}. §
would be the standard error for the divergence of (45) from the
a preori value n/4, not the standard error for differences of (4.5)
from (4)(B)/N, (4) and (B) being the numbers of heads thrown
in the case of the first and the second coin respectively.

Case 1I.—Two samples from distinect materials or different
universes give proportions of A’s p; and p, the numbers of
observations in the samples being z; and =, respectively. (a) Can
the difference between the two proportions have arisen merely as a
fluctuation of simple sampling, the two universes being really
similar as regards the proportion of A’s therein? () If the
difference indicated were a real one, might it vanish, owing to
fluctuations of sampling, in other samples taken in preciscly the
same way? This case corresponds to the testing of an associatioh
which is indicated by a comparison of the proportion of 4’s amongst
B’s and f3’s.

(a) We have no theoretical expectation in this case as to the
proportion of A’s in the universe from which either sample has
been taken.

Let us find, however, whether the observed difference between p,
and p, may not have arisen solely as a fluctuation of simple
sampling, the proportion of A’s being really the same in both cases,
and given, let us say, by the (weighted) mean proportion in our
two samples together, z.e. by

7y + 7y

Py =
(the best guide that we have).
Let ¢, €, be the standard errors in the two samples, then
e PilalNy € P

If the samples are simple samples in the sense of the previous
work, then the mean difference between p; and p, will be zero,
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sampling ”? The proportion of plants above average height in the
two classes (cross- and self-fertilised) together is 29/68. The
standard-deviation of the differences due to simple sampling
between the proportions of *tall” plants in two samples of 34
observations each is therefore

29 39 a9\ o
""(68*68" Th Al
or 12:0 per cent. The actual proportions observed are 50 per
cent. and 35 per cent.—difference 15 per cent. As this difference
is only slightly in excess of the standard error of the difference,
for samples of 34 observations drawn from identical material, no
definite significance could be attached to it—if it stood alone.

The student will notice, however, that all the other cases cited
from Darwin in the question referred to show an association of
the same sign, but rather more marked. Hence the difference
observed may be a real one, or perhaps the real difference may be
greater and may be partially masked by a fluctuation of sampling.
1f 50 per cent. and 35 per cent. were the true proportiouns in the
two classes, the standard error of the percentage difference would
be, by equation (6),

50 x50 35 x 65
‘12=< 38 T
and consequently the actual difference might not infrequently be
completely masked by fluctuations of sampling, so long as experi-
ments were only conducted on the same small scale.

Ezxample iv.—(Data from J. Gray, Memoir on the Pigmentation
Survey of Scotland, Jour. of the Royal Anthropological Institute,
vol. xxxvii,, 1907.) The following are extracted from the tables
relating to hair-colour of girls at Edinburgh and Glasgow :—

) =119 per cent.,

Of Medium Total Ver cent,

Hair-colour. observed. Medium,
Edinburgh . . 4,008 9,743 411
Glasgow : . 17,529 39,764 441

Can the difference observed in the percentage of girls of medium
hair-colour have arisen solely through fluctuations of sampling ?

In the two towns together the percentage of girls with medium
hair-colour is 43'5 per cent. If this were the true percentage,
the standard error of sampling for the difference between per-
centages observed in samples of the above sizes would bhe—

1 I
pra(toe Re <T’:Z3 39 364>
=0-56 per cent.






272 THEORY OF STATISTICS.

It will be observed that if n, be very small compared with
7y, €, approaches, as it should, the standard error for a sample
of n, observations.

We omit, in this case, the allied problem whether, if the
difference between p, and p, indicated by the samples were
real, it might be wiped out in other samples of the same size
by fluctuations of simple sampling alone. The solution is a
little complex as we no longer have &=pg,/(n, +n,).

Ezample v.—Taking the data of Example iii., suppose that
we compare the proportion of tall plants amongst the offspring
resulting from cross-fertilisations (viz. 50 per cent.) with the
proportion amongst all offspring (viz. 29/68, or 42:6 per cent.).
As, in this case, both the subsamples have the same number
of observations, 7, =n,= 34, and

€ { — W W= '| — (OBO

or 6 per cent. Asin the working of Example iii., the observed
difference is only 1'25 times the standard error of the difference,
and consequently it may have arisen as a mere fluctuation
of sampling.

Ezxample vi.—Taking now the figures of Example iv., suppose
that we had compared the proportion of girls of medium hair-
colour in Edinburgh with the proportion in Glasgow and
Edinburgh together. The former is 411 per cent., the latter
43'5 per cent., difference 2'4 per cent. The standard error of
the difference between the percentages observed in the sub-
sample of 9743 observations and the entire sample of 49,507
observations is therefore

(A5 e Be 39764 \
€n (43 % 969) 19507 > I‘:].’:_b

=045 per cent.

The actual difference is over five times this (the ratio must, of
course, be the same as in Example iv.), and could not have occurred
as a mere error of sampling.
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CHAPTER XIV

SIMPLE SAMPLING CONTINUED: EFFECT OF
REMOVING THE LIMITATIONS OF SIMPLE SAMPLING,

1. Warning as to the assumption that three times the standard error gives the
range for the majority of fluctuations of simple sampling of either sign
—2. Warning as to the use of the observed for the true value of p in
the formula for the standard error—3. The inverse standard error, or
standard error of the true proportion for a given observed proportion :
equivalence of the direct and inverse standard errors when = is large—
4-8. The importance of errors other than fluctuations of ‘‘simple
sampling ” in practice: unrepresentative or biassed samples—9-10.
Effect of divergences from the conditions of simple sumpling: ()
ellect of variation in p and ¢ for the several universes from which the
samples are drawn—11-12. (b) Eflect of variation in p and ¢ from one
sub-class to another within each universe—13-14. (c) Effect of u
correlation between the results of the several events—106. Summary.

1. Tuere are two warnings as regards the methods adopted in
the examples in the concluding section of the last chapter
which the student should note, as they may become of importance
when the number of observations is small. In the first place, he
should remember that, while we have taken three times the
standard error as giving the limits within which the great
majority of errors of sampling of either sign are contained,
the limits are not, as a rule, strictly the same for positive and
for negative errors. As is evident from the examples of actual
distributions in § 7, Chap. XIIL, the distribution of errors is not
strictly symmetrical unless p=¢=05. No theoretical rule as
to the limits can be given, but it appears from the examples
referred to and from the calculated distributions in Chap. XV.
§ 3, that a range of three times the standard error includes
the great majority of the deviations in the direction of the
longer “tail” of the distribution, while the same range on the
shorter side may extend beyond the limits of the distribution
altogether. If, therefore, p be less than 05, our assumed range
may be greater than is possible for negative errors, or if p be
276
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greater than 05, greater than is possible for positive errors. The
assumption is not, however, likely as a rule to lead to a serious
mistake ; as stated at the commencement of this paragraph, the
point is of importance only when = is small, for when » is large the
distribution tends to become sensibly symmetrical even for values
of p differing considerably from 0-5. (Cf. Chap. XV. for the
properties of the limiting form of distribution.)

2. In the second place, the student should note that, where we
were unable to assign any a prior: value to p, we have assumed
that it is sufficiently accurate to replace p in the formula for the
standard error by the proportion actually observed, say .
Where = is large so that the standard error of p becomes small
relatively to the product pg the assumption is justifiable, and no
serious error is possible. If, however, » be small, the use of the
observed value = may lead to an under- or over-estimation of the
standard error which cannot be neglected. To get some rough
idea of the possible importance of such effects, the approximate
standard. error € may first be calculated as usual from the
observed proportion m, and then fresh values recalculated, replac-
ing # by w+3e. It should be remembered that the maximum
value of the product pg is given by p=¢=05, and hence these
values, if within the limits of fluctuations of sampling, will give
one limiting value for the standard error. The procedure is by
no means exact, but may serve to give a useful warning.

Thus in Example iii. of Chap. XIII. the observed proportion of
tall plants is 29/68, or, say, 43 per cent. The standard error of
this proportion is 6 per cent., and a true proportion of 50 per
cent. i8 therefore well within the limits of fluctuations of sampling.
The maximum value of the standard error is therefore

ol aln A
( : ) =6:06 per cent,
His

On the other hand, the standard error is unlikely to be lower
than that based on a proportion of 43 — 18 =25 per cent.,

(20w TOXY. =
1 a8 ) =J'=i per cenl,

3. The two difficulties mentioned in § 1 and 2 arise when =,
the number of cases in the sample, is small. The interpretation
of the value of the standard error is also more limited in this
case than when n is large. Suppose a large number of observa-
tions to be made, by means of samples of n observations each, on
different masses of material, or in different universes, for each of
which the true value of » is known. On these data we could
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form a correlation-table between the true proportion p in a given
universe and the observed proportion = in a sample of 2 obscrva-
tions drawn therefrom. What we have found from the work of
the last chapter is that the standard-deviation of an array of ar's
associated with a certain true value p, in this table, is (pg/n)i;
but the question may be asked —What is the standard-deviation
of the array at right angles to this, 7.e. the array of p’s associated
with a certain observed proportion =? In other words, given an
observed proportion s, what is the standard-deviation of the true
proportions? This is the inverse of the problem with which we
have been dealing, and it is a much more difficult problem.
On general principles, however, we can see that if = be large,
the two standard-deviations will tend, on the average of all
values of p, to be nearly the same, while if » be small the standard-
deviation of the array of «’s will tend to be appreciably the
greater of the two. For if #=p+3, & is uncorrelated with p,
and therefore if o, be the standard-deviation of p in all the
universes from which samples are drawn, o, the standard-
deviation of observed proportions in the samples, and os the
standard-deviation of the differences,

o=, AT .

But o varies inversely as ». Hence if » become very large, os
becomes very small, o, becomes sensibly equal to o, and thereforc
the standard-deviations of the arrays, on an average, are also
sensibly equal. If = be large, therefore, [x(l —=)/n]' may be
taken as giving, with sufficient exactness, the standard-deviation
of the true proportion p for a given observed proportion =. But
if = be small, o5 cannot be neglected in comparison with e, o, is
therefore appreciably greater than o, and the standard-deviation
of the array of ’s is, on an average of all arrays, correspondingly
greater than the standard deviation of the array of p's—the state-
ment is not true for every pair of corresponding arrays, especially
for extreme values of p near 0 and 1. Further, it should be
noticed that, while the regression of = on p is unity—z.e. the
mean of the array of #’s is identical with p, the type of the
array—the regression of p on = is less than unity. If we as-
sume, therefore, that a tabulation of all possible chances, observed
for every conceivable subject, would give a distribution of p
ranging uniformly between 0 and 1, or indeed grouped symmetri-
cally in any way round 0'5, any observed value = greater than
05 will probably correspond to a true value of p slightly lower
than =, and conversely. We have already referred to the use of
the inverse standard error in § 13 of Chap. XIII. (Case IL., p. 269).
If we determine, for example, the standard error of the difference
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between two observed proportions by equation (6) of that chapter,
this may be taken, provided = be large, as approximately the
standard-deviation of true differences for the given observed
difference.

4. The use of standard errors must be exercised with care. It
is very necessary to remember the limited assumptions on which
the theory of simple sampling is based, and to bear in mind that
it covers those fluctuations alone which exist when all the assumed
conditions are fulfilled. The formule obtained for the standard
errors of proportions and of their differences have no bearing
except on the one question, whether an observed divergence of a
certain proportion from a certain other proportion that might be
observed in a more extended series of observations, or that has
actually been observed in some other series, might or might not
be due to fluctuations of simple sampling alone. Their use is
thus quite restricted, for in many cases of practical sampling this
is not the principal question at issue. The principal question in
many such cases concerns quite a different point, viz. whether the
observed proportion m in the sample may not diverge from the
proportion p existing in the universe from which it was drawn,
owing to the nature of the conditions under which the sample was
taken, = tending to be definitely greater or definitely less than
p. Such divergence between 7 and p might arise in two distinet
ways, (1) owing to variations of classification in sorting the
4’s and a’s, the characters not being well defined—a source of
error which we need not further discuss, but one which may lead
to serious results [cf. ref. 5 of Chap. V.]. (2) Owing to either 4’s
or o’s tending to escape the attentions of the sampler. To give
an illustration from artificial chance, if on drawing samples from
a bag containing a very large number of black and white balls
the observed proportion of black balls was 7, we could not
necessarily infer that the proportion of black balls in the bag was
approximately =, even though the standard error were small, and
we knew that the proportions in successive samples were subject
to the law of simple sampling. For the black balls might be,
say, much more highly polished than the white ones, so as to
tend to escape the fingers of the sampler, or they might be re-
presented by a number of lively black insects sheltering amongst
white stones: in neither case would the ratio of black balls to
white, or of insects to stones, be represented in their proper pro-
portions. Clearly, in any parallel case, inferences as to the
material from which the sample is drawn are of a very doubtful
and uncertain kind, and it is this uncertainty whether the chance
of inclusion in the sample 18 the same for A’s and a’s, far more
than the mere divergences between different samples drawn in
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the same way, which renders many statistical results based on
samples so dubious.

5. Thus in collecting returns as to family income and cxpendi-
ture from working-class households, the families with lower
incomes are almost certain to be under-represented ; they largely
‘“escape the sampler’s fingers” from their simple lack of ability
to keep the necessary accounts. It is almost impossible to say,
however, to what extent they are under-represented, or to form
any estimate as to the possible error when two such samples
taken by different persons at different times, or in different places,
are compared. Again, if estimates as to crop-production arc
formed on the basis of a limited number of voluntary returns,
the estimates are likely to err in excess, as the persons who
make the returns will probably include an undue proportion
of the more intelligent farmers whose crops will tend to be
above average. Whilst voluntary returns are in this way liable
to lead to more or less unrepresentative samples, compulsory
sampling does not evade the difficulty. Compulsion could not cn-
sure equally accurate and trustworthy returns from illiterate
and well-educated workmen, from intelligent and unintelligent
farmers. The following of some definite rule in drawing the
sample may also produce unrepresentative samples: if samples
of fruit were taken solely from the top layers of baskets exposed
for sale, the results might be unduly favourable; if from the
bottom layer, unduly unfavourable.

6. In such cases we can see that any sample, taken in the
way supposed, is likely to be definitely beassed, in the sense
that it will not tend to include, even in the long run, equal
proportions of the 4’s and o’s in the original material. In other
cases there may be no obvious reason for presuming such ébias,
but, on the other hand, no certainty that it does not exist. Thus
if we noted the hair-colours of the children in, say, one
school in ten in a large town, the question would arise whether
this method would tend to give an unbiassed sample of all the
children. No assured answer could be given: conjectures on
the matter would be based in part on the way in which the
schools were selected, e.g. the voluntecring of teachers for the work
might in itself introduce an element of bias. Again, if say
10,000 herrings were measured as landed at various North Sea
ports, and the question were raised whether the sample was
likely to be an unbiassed sample of North Sea herrings, no
assured answer could be given. There may be no definite reason
for expecting definite bias in either case, but it may exist, and
no mere examination of the sample itself can give any informa-
tion as to whether it exists or no.
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7. Such an examination may be of service, however, as
indicating one possible source of bias, viz. great heterogeneity in
the original material. If, for example, in the first illustration,
the hair-colours of the children differed largely in the different
schools—much more largely than would be accounted for by
fluctuations of simple sampling—it would be obvious that one
school would tend to give an unrepresentative sample, and
questionable therefore whether the five, ten or fifteen schools
observed might not also have given an unrepresentative sample.
Similarly, if the herrings in different catches varied largely, it
would, again, be difficult to get a representative sample for a
large area. But while the dissimilarity of subsamples would
then be evidence as to the difficulty of obtaining a representative
sample, the similarity of subsamples would, of course, be no
evidence that the sample was representative, for some very
different material which should have been represented might
have been missed or overlooked.

8. The student must therefore be very careful to remember
that even if some observed difference exceed the limits of fluctua-
tion in simple sampling, it does not follow that it exceeds the
limits of fluctuation due to what the practical man would regard —
and quite rightly regard—as the chances of sampling. Further,
he must remember that if the standard error be small, it by no
means follows that the result is necessarily trustworthy: the
smallness of the standard error only indicates that it is not
untrustworthy owing to the magnitude of fluctuations of simple
sampling. It mway be quite untrustworthy for other reasons:
owing to bias in taking the sample, for instance, or owing to definite
errors in classifying the 4'sand o’s.  On the other hand, of course,
it should also be borne in mind that an observed proportion is not
necessarily incorrect, but merely to a greater or less extent
untrustworthy if the standard error be large. Similarly, if an
observed proportion w; in a sample drawn from one universe be
greater than an observed proportion m, in a sample drawn from
another universe, but =, — 7, is considerably less than three times
the standard error of the difference, it does not, of course, follow
that the true proportion for the given universes, p, and p,, are
most probably equal. On the contrary, p; most likely exceeds p, ;
the standard error only warns us that this coneclusion is more or
less uncertain, and that possibly p, may even exceed p,. 0

9. Let us now consider the effect, on the standard-deviation of
sampling, of divergences from the conditions of simple sampling
which were laid down in § 8 of Chap. XIII.

First suppose the condition (a) to break down, so that there is
some essential difference between the localities from which, or the
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conditions under which, samples are drawn, or that some essential
change has taken place during the period of sampling. We may
represent such circumstances in a case of artificial chance by
supposing that for the first f; throws of n dice the chance of
success for each die is p), for the next f, throws p,, for the next f,
throws pg, and so on, the chance of success varying from time to
time, just as the chance of death, even for individuals of the same
age and sex, varies from district to district. Suppose, now, that
the records of all these throws are pooled together. The mecan
number of successes per throw of the n dice is given by

M= lziv(flpl + opetfopy+ - oL )=np,

where V=2(7) is the whole number of throws and p, is the mean
value 2(fp)/V of the varying chance p. To find the standard-
deviation of the number of successes at each throw consider that
the first set of throws contributes to the sum of the squares of
deviations an amount

Folaemr, 4=n2(n — 2
_i!'."'.':l”l.'l L il P

n.p,q, being the square of the standard-deviation for these throws,
and n(p, —p,) the difference between the mean number of
successes for the first setand the mean for all the sets together.
Hence the standard-deviation o of the whole distribution is given
by the sum of all quantities like the above, or

No?=nZ(fpg) +n? Zf(p - p,)*.

Let o, be the standard-deviation of p, then the last sum is
N.n%%, and substituting 1 — p for ¢, we have

0% = 1y — i~ n 1
=npgo+ n(n— 1)o; . . . . (D)

This is the formula corresponding to equation (1) of Chap.
XIII.: if we deal with the standard-deviation of the proportion
of successes, instead of that of the absolute number, we have,
dividing through by =% the formula corresponding to equation
(2) of Chap. XIIL., viz.—
=4 ;L*Uf, ‘nn- g )
10. If » be large and s, be the standard-deviation calculated
from the mean proportion of successes py. equation (2) is sensibly
of the form

=0t 0m
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certain registration districts of England, in § 10 of Chap. XIIL
p- 263. It will be seen that in the first group of small districts
there appears to be a significant standard-deviation of some 6
units in the proportion of male births per thousand, but in tho
more urban districts this falls to 1 or 2 units; in one case only
does s fall short of s,. In the table on p. 283 arc given some
different data relating to the deaths of women in childbirth in the
same groups of districts, and in this case the effect of definite
causes is relatively larger, as one might expect. The values of
/8% — s; suggest an almost uniform significant standard-deviation
o,=0°8 in the deaths of women per thousand births, five out of
the eight values being very close to this average. The figurcs of
this case also bring out clearly one important consequence of (2),
viz. that if we make n large s becomes sensibly equal to o, while
if we make n small s becomes more nearly equal to pyg,/n. Henco
if we want to know the significant standard-deviation of the pro-
portion p—the measure of its fluctuation owing to definite causes
—n should be made as large as possible ; if, on the other hand, we
want to obtain good illustrations of the theory of simple sampling
n should be made small. If » be very large the actual standard-
deviation may evidently become almost indefinitcly large com-
parcd with the standard-deviation of sampling. Thus during the
20 years 185574 the death-rate in England and Wales fluctuated
round a mean value of 222 per thousand with a standard-devia-
tion of 0-86. Taking the mean population as roughl, 21 millions,
the standard-deviation of sampling is approximately

[ 22 % Y78
N 2]« 108
This is only about one twenty-seventh of the actual value.

11. Now consider the effect of altering the second condition
of simple sampling, given in § 8 (4) of Chapter XIIIL., viz. the
condition that the chances p and ¢ shall be the same for every
die or coin in the set, or the circumstances that regulate the
appearance of the character observed the same for every individual
or every sub-class in each of the universes from which samples
are drawn. Suppose that in the group of n dice thrown the
chances for m, dice are p, ¢,; for m, dice, p, ¢, and so on,
the chances varying for different dice, but being constant
throughout the experiment. The case differs from the last, as
in that the chances were the same for every die, at any one
throw, but varied from one throw to another: now they are con-
stant from throw to throw, but differ from one die to another as
they would in any ordinary set of badly made dice. Required to
find the effect of these differing chances.

0032,
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variation on the standard-deviation of simple sampling is quite
small, for, as calculated from equation (4),
§2= l(18 x 982 - 900)

s=130//n

as compared with 133//n.

13. We have finally to pass to the third condition (c) of § 8, Chap.
XIII., and to discuss the effect of a certain amount of dependence
between the several ‘ events” in each sample. We shall suppose,
however, that the two other conditions (a) and () are fulfilled,
the chances p and ¢ being the same for every event at every trial,
and constant throughout the experiment. The problem is again
most simply treated on the lines of § 5 of the last chapter. The
standard-deviation for each event is (pg)! as before, but the events
are no longer independent: instead, therefore, of the simple
expression

o* =n.pg,
we must have (¢f. Chap. XI. § 2)
oP=npg+2pq(rp+rgt .yt ),

where, 7,, 7,5, etc. are the correlations between the results of the
first and second, first and third events, and so on—correlations
for variables (number of successes) which can only take the
values 0 and 1, but may nevertheless, of course, be treated as
ordinary variables (¢f. Chap. XI. § 10). There are n(n-—1)/2
‘correlation-coefficients, and if, therefore, 7 is the arithmetic mean
of the correlations we may write

a?=npg[l +r(n—1)]. . . ()

The standard-deviation of simple sampling will therefore be
increased or diminished according as the average correlation
between the results of the single events is positive or negative,
and the effect may be considerable, as o may be reduced to zero
or increased to n(pg)t. For the standard deviation of the propor-
tion of successes in each sample we have the equation

2=14rm-1] . . . . (6

It should be noted that, as the means and standard-deviations
for our variables are all identical, = is the correlation-coeflicient
for a table formed by taking all possible pairs of results in the
n events of each sample.
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It should also be noted that the case when r is positive covers
the departure from the rules of simple sampling discussed in
$§ 9-10: for if we draw successive samples from different records,
this introduces the positive correlation at once, even although the
results of the events af eack trial are quite independent of one
another. Similarly, the case discussed in §§ 11-12 is covered by
the case when 7 is negative : for if the chances are not the same
for every event at each trial, and the chance of success for some
one event is above the average, the mean chance of success for the
remainder must be below it. The cases (@), (¢) and (c) are, how-
ever, best kept distinet, since a positive or negative correlation
may arise for reasons quite different from those discussed in
S 9-12.
: 14. As a simple illustration, consider the important case of
sampling from a limited universe, eg. of drawing = balls in
succession from the whole number = in a bag containing pw white
balls and gw black balls. On repeating such drawings a large
number of times, we are evidently equally likely to get a white
ball or a black ball for the first, second, or nth ball of the sample :
the correlation-table formed from all possible pairs of every sample
will therefore tend in the long run to give just the same form of
distribution as the correlation-table formed from all possible pairs
of the w balls in the bag. But from Chap. XI. § 11 we
know that the correlation-coefficient for this table is —1/(w - 1),

whence
r (1 T~ l)
===y -
¢ P 20 —1

h w-"n
=y 7 i .

If n=1, we have the obviously correct result that o= (pg)}, as
in drawing from unlimited material: if, on the other hand, n =w,
o becomes zero as it should, and the formula is thus checked for
simple cases. For drawing 2 balls out of 4, ¢ becomes 0-816
(npq)t ; for drawing 5 balls out of 10, 0745 (npg)t; in the case
of drawing half the balls out of a very large number, it approxi-
mates to (0-5.npg)}, or 0707 (npg)t.

In the case of contagious or infectious diseases, or of certain
forms of accident that are apt, if fatal at all, to result in whole-
sale deaths, r is positive, and if = be large (as it usually is in such
cases) a very small value of 7 may easily lead to a very great increase
in the observed standard-deviation. It is difficult to give a really
good example from actual statistics, as the conditions are hardly
ever constant from one year to another, but the following will
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serve to illustrate the point. During the twenty years 1887-1906
there were 2107 deaths from explosions of firedamp or coal-dust
in the coal-mines of the United Kingdom, or an average of 105
deaths per annum. From § 12 of Chap. XIII. it follows that this
should be the square of the standard-deviation of simple sampling,
or the standard-deviation itself approximately 10-3. But the
square of the actual standard-deviation is 7178, or its value 84:7,
the numbers of deaths ranging between 14 (in 1903) and 317
(in 1894). This large standard-deviation, to judge from the
figures, is partly, though not wholly, due to a general tendency to
decrease in the numbers of deaths from explosions in spite of a
large increase in the number of persons employed ; but even if we
ignore this, the magnitude of the standard-deviation can be
accounted for by a very small value of the correlation r, expressive
of the fact that if an explogion is sufficiently serious to be fatal to-
one individual, it will probably be fatal to others also. For if o,
denote the standard-deviation of simple sampling, o the standard

deviation of sampling given by equation (5), we have

o — a9

VS o Tye?

Whence, from the above data, taking the numbers of persons
employed underground at a rough average of 560,000,

7073

e 9
= 560000 x 105 ~ T 000012

7

15. Summarising the preceding paragraphs, §§ 9-14, we see
that if the chances p and ¢ differ for the various universes,
districts, years, materials, or whatever they may be from which
the samples are drawn, the standard-deviation observed will be
greater than the standard-deviation of simple sampling, as
calculated from the average values of the chances : if the average
chances are the same for each universe from which a sample is
drawn, but vary from individual to individual or from oue sub-
class to another within the universe, the standard-deviation
observed will be less than the standard-deviation of simple
sampling as calculated from the mean values of the chances:
finally, if »p and ¢ are constant, but the events are no longer
independent, the observed standard-deviation will he greater or
less than the simplest theoretical value according as the corre-
lation between the results of the single events is positive or
negative. These conclusions further emphasise the need for
caution in the use of standard errors. If we find that the
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standard-deviation in some case of sampling exceeds the standard-
deviation of simple sampling, two interpretations are possible :
etther that p and ¢ are different in the various universes from
which samples have been drawn (i.e. that the variations are
more or less definitely significant in the sense of § 13, Chap. XIII.),
or that the results of the events are positively correlated inter
se, If the actual standard-deviation fall short of the standard-
deviation of simple sampling two interpretations are again
possible, esther that the chances p» and ¢ vary for different
individuals or sub-classes in each universe, while approzimately
constant from one universe to another, or that the results of
the events are negatively correlated enter se. Even if the
actual standard-deviation approaches closely to the standard-
deviation of simple sampling, it is only a conjectural and not
a necessary inference that all the conditions of *“ simple sampling ”
as defined in § 8 of the last chapter are fulfilled. Possibly, for
example, there may be a positive correlation r between the
results of the different events, masked by a variation of the
chances p and ¢ in sub-classes of each universe.

Sampling which fulfils the conditions laid down in § 8 of
Chap. XIII., simple sampling as we have called it, is generally
spoken of as random sampling. We have thought it better to
avoid this term, as the condition that the sampling shall be
random—haphazard—is not the only condition tacitly assumed.
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(1) PEArsoN, KARL, ““On certain Properties of the Hypergeometrical Series,
and on the fitting of such Series to Observation Polygonsin the Theory of
Chance,” Philosophical Magazine, 5th Series, vol. xlvii., 1899, p. 236.
(An expansion of one section of ref. 10 of Chap. XIII., dealing with the
first problem of our § 14, 7.e. drawing samples from a bag containing
a limited number of white and black balls, from the standpoint of the
frequency-distribution of the number of white or black balls in the
samples. )

EXERCISES.

1. Referring to Question 7 of Chap. XIIIL., work out the values of the
significant standard-deviation oy (as in § 10) for each row or group of rows
there given, but taking row 5 with rows 6 and 7.

2. For all the districts in England and Wales included in the same table
(Table VI., Chap. IX.) the standard-deviation of the proportion of male births
per 1000 of all births is 7-46 and the mean proportion of male births 509-2.
The harmonic mean number of births in a district is 5070.  Find the significant
standard-deviation ay.
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CHAPTER XV.

THE BINOMIAL DISTRIBUTION AND THE
NORMAL CURVE.

1-2. Determination of the frequency-distributiqn for the number of successes
in n events: the binomial distribution—3. Dependence of the form
of the distribution on p, ¢ and n—4-5. Graphical and mechanical
methods of forming representations of the binomial distribution—
6. Direct calculation of the mean and the standard-deviation from
the distribution—7-8. Necessity of deducing, for use in many
practical cases, a continuous curve giving approximately, for large
values of n, the terms of the binomial series—9. Deduction of the
normal curve as a limit to the symmetrical binomial—10-11. The
value of the central ordinate—12. Comparison with a binomial dis-
tribution for a moderate value of »—13. Outline of the more general
conditions from which the curve can be deduced by advanced methods—
14. Fitting the curve to an actual series of observations—15. Difficulty
of a complete test of fit by elementary methods—16. The table of areas
of the normal curve and its use—17. The guartile deviation and the
¢¢ probable error’—18. Illustrations of the application of the normal
curve and of the table of areas.

1. Iy Chapters XIII. and XIV. the standard-deviation of the
number of successes in n events was determined for the several
more important cases, and the applications of the results indicated.
For the simpler cases of artificial chance it is possible, however, to
go much further, and determine not merely the standard-deviation
but the entire frequency-distribution of the number of *“successes.”
This we propose to do for the case of ““simple sampling,” in which
all the events are completely independent, and the chances p and
g the same for each event and constant throughout the trials.
The case corresponds to the tossing of ideally perfect coins (homo-
geneous circular discs), or the throwing of ideally perfect dice
(homogeneous cubes).

2. If we deal with one event only, we expect in A trials, Ng
failures and Np successes. Suppose we now combine with the
results of this first event the results of a second. The two events
are quite independent, and therefore, according to the rule of
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independence, of the Vg failures of the first event (¥g)g will be
associated (on an average) with failures of the second event, and
(Vq)p with successes of the second event (¢f. row 2 of the scheme
on p. 292). Similarly of the Np successful first events, (¥p)q will
be associated (on an average) with failures of the second event
and (Np)p with successes. In trials of two events we would
therefore expect approximately Vg¢? cases of no success, 2Npg
cases of one success and one failure, and Vp? cases of two successes,
as in row 3 of the scheme. The results of a third event may be
combined with those of the first two in precisely the same way.
Of the Ng? cases in which both the first two events failed, (Ng?)q
will be associated (on an average) with failure of the third also,
(N¥g%)p with success of the third. Of the 2/Npg cases of one
success and one failure, (28pg)g will be associated with failure
of the third event and (2/pg)p with success, and similarly for
the &p? cases in which both the first two events succeeded. The
result is that in V. trials of three events we should expect Ng®
cases of no success, 3 Npq? cases of one success, 3 Vp?g cases of two
successes, and Np3 cases of three successes, as in row 5 of the
scheme. The scheme is continued for the results of a fourth
event, and it is evident that all the results are included under a

very simple rule: the frequencies of 0, 1, 2 . . . . successes are
given

for one event by the binomial expansion of ¥(q + p)

for two events 5 ,, N(g +p)?

for three events ix & Nig+p)?

for four events S ,, N{g +p)t

and soon. Quite generally, in fact :—tke frequenciesof 0, 1,2 . . . .
successes tn IV: trials of n events are given by the successive terms
in the binomial expansion of N{(q+p)", viz.—
n(n — 1)(n—

2)1;-—33 ]
2.3 ¢ Pty

qelor — 1)

N{q"+n-q"“p+——, TP

This is the first theoretical expression that we have obtained for
the form of a frequency-distribution.

3. The general form of the distributions given by such
binomial series will have been evident from the experimental
examples given in Chapter XIII., 7.. they are distributions
of greater or less asymmetry, tailing off in either direction
from the mode. The distribution is, however, of so much
importance that it is worth while considering the form in
greater detail. This form evidently depends (1) om the values
of ¢ and p, (2) on the value of the exponent 7. If p and ¢
are equal, evidently the distribution must be symmetrical, for
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» and ¢ may be interchanged without altering the value of
any  term, and consequently terms equidistant from eithev
end of the series are equal. If » and ¢ are unequal, on the
other hand, the distribution is asymmetrical, and the more
asymmetrical, for the same value of n, the greater the inequality
of the chances. The following table shows the calculated
distributions for =20 and values of p, proceeding by 0.1,
from 0.1 to 0.5. When p=0.1, cases of two successes are the

A.—Terms of the Binomial Series 10,000 (¢+p)? for Values of p
from 0-1 o 0°5. (Figures given to the nearest unit.)

Number of p=01 p=02 p=03 p=04 p=0
Successes. q=09 7=08 g=07 =06 g=05
0 1216 115 8 - =
1 2702 576 68 5 —
2 2862 1369 278 31 2
3 1901 2054 716 123 11
4 898 2182 1304 350 46
5 319 1746 1789 746 148
6 89 1091 1916 1244 370
7 20 545 1643 1659 739
8 4 222 1144 1797 1201
9 1 74 654 1597 1602
10 20 308 1171 1762
11 5 120 710 1602
12 = 1 39 355 1201
13 — 10 146 739
14 — — 2 49 370
15 — = — 13 148
16 - - — 3 46
17 = — = = 11
18 — = — 2
19 - _
20 — — — —

most frequent, but cases of one success almost equally frequent :
even nine successes may, however, occur about once in 10,000
trials. As p is increased, the position of the maximum
frequency gradually advances, and the two tails of the distribution
become more nearly equal, until p=0.5, when the distribution
is symmetrical. Of course, if the table were continued, the
distribution for »—0.6 would be similar to that for ¢=0.6,
but reversed end for end, and so on. Since the standard-
deviation is (npg)! and the maximum value of pg is given by
p=gq, the symmetrical distribution has the greatest dispersion.
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The square of the standard-deviation is given by the sum of

the terms in col. (4) less the square of the mean, that is,
(n—1)Yn-2
o'~—np<(g" 14+2(n -1 p+ 38— & )(n ) o Bl s }—n~p5.

But the serics in the bracket is the binomial series (¢ +p)"~!
with the successive terms multiplied by 1, 2, 3, . It therefore
gives the difference of the mean of the said binomial from — 1,
and its sum is therefore (n—1)p+1. Therefore

=np{(n—1)p+1} —n'p?
=np — np?=mnpq.

7. The terms of the binomial series thus afford a means of
completely describing a certain class of frequency-distributions—
t.e. of giving not merely the mean and standard-deviation in
each case, but of describing the whole form of the distribution.
If & samples of n cards each be drawn from an indefinitely large
record of cards marked with 4 or a, the proportion of A-cards
in the record being p, then the successive terms of the series
N(g+p)" give the frequencies to be expected in the long run of
0,1, 2, ... A-cards in the sample, the actual frequencies only
deviating from these by errors which are themselves fluctuations
of sampling, The three constants &V, p, n, therefore, determine
the average or smoothed form of the distribution to which actual
distributions will more or less closely approximate.

Considered, however, as a formula which may be generally
useful for describing frequency-distributions, the binomial series
suffers from a serious limitation, viz. that it only applies to a
strictly discontinuous distribution like that of the number of
A-cards drawn from a record containing 4’s and «’s, or the number
of heads thrown in tossing a coin. The question arises whether
we can pass from this discontinuous formula to an equation
suitable for representing a continuous distribution of frequency.

8. Such an equation becomes, indeed, almost a necessity for
certain cases with which we have already dealt. Consider, for
example, the frequency-distribution of the number of male births
in batches of 10,000 births, the mean number being, say, 5100.
The distribution will be given by the terms of the series
(0-49 4+ 0-51)10000 and the standard-deviation is, in round numbers,
50 births. The distribution will therefore extend to some 150
births or more on either side of the mean number, and in order
to obtain it we should have to calculate some 300 terms of a
binomial series with an exponent of 10,000! This would not
only be practically impossible without the use of certain methods
of approximation, but it would give the distribution in quite
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Now let us approximate by assuming, as suggested in § 8, that
k is very large, and indeed large compared with z, so that (z/k)?
may be neglected compared with (x/k). This assumption does
not involve any difficulty, for we need not consider values of =
much greater than three times the standard-deviation or 3 Jk/?,
and the ratio of this to % is 3/ J2k, which is necessarily small if %
be large. On this assumption we may apply the logarithmic
series
8% &% &t

ol ot -

log,(1 +8)=8- J

<)

to every bracket in the fraction (3), and neglect all terms beyond
the first. To this degree of approximation,

k k
=
Therefore, finally, :
- k - 2;;,2 o a « - (4)

where, in the last expression, the constant % has been replaced by
the standard-deviation o, for o?=17%/2.

The curve represented by this equation is symmetrical about
the point # =0, which gives the greatest ordinate y =7, Mean,
median, and mode therefore coincide, and the curve is, in fact, that
drawn in fig, 5, p. 89, and taken as the ideal form of the symmetri-
cal frequency-distribution in Chap. VI. The curve is generally
known as the normal curve of errors or of frequency, or the law
of error.

10. A normal curve is evidently defined completely by giving
the values of y, and o and assigning the origin of = If we
desire to make a normal curve fit some given distribution as near
as may be, the last two data are given by the standard-deviation
and the mean respectively ; the value of y, will be given by the
fact that the areas of the two distributions, or the numbers of
observations which these areas represent, must be the same.

This condition does not, however, lead in any simple and
elementary algebraic way to an expression for g, though such
a value could be found arithmetically to any desired degree
of approximation. For it is evident that (1) any alteration in
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Stirling (1730). If » be large, we have, to a high degree of

approximation,
(g

n
ln— Nonm —

Applying Stirling’s theorem to the factorials in equation (1) we
have

N N h
Wk e 0 v O®

The complete expression for the normal carve is therefore

Y = e . . ) . (B)
A ZT.o

The exponent may be written #%/c? where c¢= N2.0, and this is
the origin of the use of /2 x o (the “modulus”) as a measure
of dispersion, of 1/ &/2.0 as a measure of “precision,” and of 2¢?
as “the fluctuation” (¢f. Chap. VIIL § 13). The use of the factor
2 or /2 becomes meaningless if the distribution be not normal.

Another rule cited in Chap. VIIIL,, viz. that the mean deviation
is approximately 4/ of the standard-deviation, is strictly true
for the normal curve only. For this distribution the mean
deviation=o ~/2/r=079788. ... o: the proof cannot be given
within the limitations of the present work. The rule that a
range of 6 times the standard-deviation includes the great
majority of the observations and that the quartile deviation is
about 2/3 of the standard-deviation were also suggested by the
properties of this curve (see below §§ 16, 17).

12. In the proof of § 9 the assumption was made that % (the
half of the exponent of the binomial) was very large compared
with 2z (any deviation that had to be considered). In point
of fact, however, the normal curve gives the terms of the
symmetrical binomial surprisingly closely even for moderate
values of n. Thus if n=64, k=32, and the standard-deviation
is 4. Deviations  have therefore to be considered up to +12
or more, which is over 1/3 of £ As will be seen, however, from
the annexed table, the ordinates of the normal curve agree with
those of the binomial to the nearest unit (in 10,000 observations)
up to = £15. The closeness of approximation is partly due
to the fact that, in applying the logarithmic series to the
fraction on the right of equation (3), the terms of the second
order in expansions of corresponding brackets in numerator and
denominator cancel each other: these terms, therefore, do not
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accumulate, but only the terms of the third order. There is
only one second-order term that has been neglected, viz. that due
to the last bracket in the denominator. Even for much lower
values of » than that chosen for the illustration—e.g. 10 or 12
(cf. Qu. 4 at the end of this chapter)—the normal curve still
gives a very fair approximation.

TABLE showing (1) Ordinates of the Binomial Series 10,000 (3+ )% and

. 10,000 ~ 33
(2) Corresponding Ordinates of the Normal Curve Y=g or el =
« T
Binomial Normal Binomial | Normal,
Term. Series. Curve. Term. Series. Curve.
32 993 997 24 and 40 136 135
31 and 33 963 967 23 ,, 41 80 79
30 ,, 34 878 880 22 | 42 44 44
29 , 35 753 753 21 ,, 43 23 23
28 ,, 36 606 605 20 ,, 44 11 11
97 .. 37 459 457 19 ,, 45 5 5
26 ,, 38 326 324 18 ,, 46 2 2
25 ,. 39 217 216 17 ,, 47 1 1

13. But if the normal curve were limited in its application to
distributions which were certainly of binomial type, its use in
practice (apart from its theoretical applications to many cases of
the theory of sampling) would be very restricted. As suggested,
however, by the illustrations given in Chap. VI, a certain, though
not a large, number of distributions—more particularly among
those relating to measurements on man and other animals—are
approximately of normal form, even although such distributions
have not obviously originated in the same way as a binomial
distribution. Take, for example, the distribution of statures in
the United Kingdom (Chap. VI., Table VI.). The mean stature
is 6746 inches, the standard-deviation 2'67 inches (the values are
worked out in the illustrations of Chaps. VII. and VIIL.), and the
number of observations 85685. This gives y,=1333, and all the
data necessary for plotting a normal curve of the same mean and
standard-deviation (the process of fitting is dealt with at greater
length in § 14 below).. The two distributions are shown together
in fig. 49, the continuous curve being the normal curve, and the
small circles showing the observed frequencies. It is evident that
they agree very closely. Other body measurements, e.g. skull
measurements, etc., also follow the normal law ; it also applies to
certain characters in plants (¢.g. number of seeds per capsule in

20
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Lotus, Pearl, American Naturalist, Nov. 1906). The question
arises, therefore, why, in such cases, the distribution should bo
approximately normal, a form of distribution which we have only
shown to arise if the variable is the sum of a large number of
elements, each of which can take the values 0 and 1 (or other two
constant values), these values occurring independently, and with
equal frequency.

In the first place, it should be stated that the conditions of the
deduction given in § 9 were made a little unnecessarily restricted,

1500

1200 / \

SO0 |

per tneh interval

;
cO0 ! \

SFLCA

r V(!UL-N
-

Fr

B

(711} !j( \
\
N
= x
(7] =

H6 S8 60 2 64 68 68 0o 12 7 g 78 &0
Statware tin inches.

Fic, 49.—The Distribution of Stature for Adult Males in the British Isles
(fig. 6, p. 89), fitted with a Normal Curve: to avoid confusing the
figure, the frequency-polygon has not been drawn in, the tops of the
ordinates being shown by smal] circles,

with a view to securing simplicity of algebra. The deduction
may be generalised, whilst retaining the same type of proof, by
assuming that » and ¢ are unequal (provided p—g¢ be small
compared with npg, of. § 3), that p and ¢ are not quite the
same for all the events, that all the events are not quite inde-
pendent, or that » is not large, but that some sort of continuous
variation is possible in the values of the elementary variables,
these being no longer restricted to 0 and 1, or two other discrete
values. (Cf. the deduction given by Pearson in ref. 12.) Pro-
ceeding further from this last idea, the deduction may be rendered
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more general still, without introducing the conception of the
binomial at all, by founding the curve on more or less complex
cases of the theory of sampling for variables instead of for attri-
butes. If a variable is the sum (or, within limits, some slightly
more complicated function) of a large number of other variables,
then the distribution of the compound or resultant variable is
normal, provided that the elementary variables are independent,
or nearly so (¢f. ref. 6). The forms of the frequency-distribu-
tions of the elementary variables affect the final distribution less
and less as their number is increased: only if their number is
moderate, and the distributions all exhibit a comparatively high
degree of asymmetry of uniform sign, will the same sign of
asymmetry be sensibly evident in the distribution of the compound
variable. On this sort of hypothesis, the expectation of normality
in the case of stature may be based on the fact that it is a highly
compound character-~depending on the, sizes of the bones of the
head, the vertebral column, and the legs, the thickness of the
intervening cartilage, and the curvature of the spine—the elements
of which it is composed being at least to some extent independent,
i.e. by no means perfectly correlated with each other, and their
frequency-distributions exhibiting no very high degree of asym-
metry of one and the same sign. The comparative rarity of
normal distributions in economic statistics is probably due in part
to the fact that in most cases, while the entire causation is
certainly complex, relatively few causes have a largely predominant
influence (hence also the frequent occurrence of irregular
distributions in this field of work), and in part also to a high
degree of asymmetry in the distributions of the elements on which
the compound variable depends. Errors of observation may in
general be regarded as compounded of a number of elements, due
to various causes, and it was in this connection that the normal
curve was first deduced, and received its name of the curve of
errors, or law of error.

14. If it be desired to compare some actual distribution
with the normal distribution, the two distributions should be
superposed on one diagram, as in fig. 49, though, of course, on
a much larger scale. When the mean and standard-deviation
of the actual distribution have been determined, y, is given by
equation (5); the fit will probably be slightly closer if the
standard-deviation is adjusted by Sheppard’s correction (Chap.
XI. § 4). The normal curve is then most readily drawn by plot-
ting a scale showing fifths of the standard-deviation along the
base line of the frequency diagram, taking the mean as origin,
and marking over these points the ordinates given by the figures
of the table on p. 303, multiplied in each case by 7,. The curve
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can be drawn freehand, or by aid of a curve ruler, through the
tops of the ordinates so determined. The logarithms of y in the
table on p. 303 are given to facilitate the multiplication. The only
point in which the student is likely to find any difliculty is
in the use of the scales: he must be careful to remember
that the standard-deviation must be expressed un terms of the
class-interval as a wnit in order to obtain for y, a number of
observations per tnterval comparable with the frequencies of his
table.

The process may be varied by keeping the normal curve
drawn to one scale, and redrawing the actual distribution
so as to make the area, mean, and standard-deviation the
same. Thus suppose a diagram of a normal curve was printed
once for all to a scale, say, of y,=5 inches, o=1 inch, and
it were required to fit the distribution of stature to it.
Since the standard-deviation is 257 inches of stature, the
scale of stature is 1 inch =257 inch of stature, or 0:389 inches
=1 inch of stature ; this scale must be drawn on the base of the
normal-curve diagram, being so placed that the mean falls
at 67-46. As regards the scale of frequency-per-interval, this
is given by the fact that the whole area of the polygon showing
the actual distribution must be equal to the arca of the
normal curve, that is 5 o/2r=1253 square inches, If, therefore,
the scale required is n observations per interval to the inch,
we have, the number of observations being 8585,

<257 1%
which gives n =266-6.

Though the second method saves curve drawing, the first,
on the whole, involves the least arithmetic and the simplest
plotting.

15. Any plotting of a diagram, or the equivalent arithmetical
comparison of actual frequencies with those given by the
fitted normal distribution, affords, of course, in itself, only a
rough test, of a practical kind, of the normality of the given
distribution. The question whether all the observed differences
between actual and calculated frequencies, taken together,
may have arisen merely as fluctuations of sampling, so that the
actual distribution may be regarded as strictly normal, neglecting
such errors, is a question of a kind that cannot be answered in
an elementary work (¢f. ref. 21). At present the student is in
a position to compare the divergences of actual from calculated
frequencies with fluctuations of sampling in the case of single
class-intervals, or single groups of class-intervals only. If the
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expected theoretical frequency in a certain interval is £, the
standard error of sampling is /AN —#)/N ; and if the divergence
of the observed from the theoretical frequency exceed some
three times this standard crror, the divergence is unlikely to
have occurred as a mere fluctuation of sampling.

It should be noted, however, that the ordinate of the normal
curve at the middle of an interval does not give accurately the
area of that interval, or the number of observations within it: it
would only do so if the curve were sensibly straight. To deal
strictly with problems as to fluctuations of sampling in the
frequencies of single intervals or groups of intervals, we require,
accordingly, some convenient means of obtaining the number of
observations, in a given normal distribution, lying between any
two values of the variable.

16. If an ordinate be erected at a distance z/o from the mean,
in a normal curve, it divides the whole area into two parts, the
ratio of which is evidently, from the mode of construction of the
curve, independent of the values of , and of o. The calculation
of these fractions of area for given values of z/o, though a long
and tedious matter, can thus be done once for all, and a table
giving the results is useful for the purpose suggested in § 15 and
in many other ways. References to complete tables are cited at
the end of this work (list of tables, pp. 357-8), the short table below
being given only for illustrative purposes. The table shows the
greater fraction of the area lying on one side of any given ordinate ;
e.g. 0:'53983 of the whole area lies on one side of an ordinate at
0-lo from the mean, and 046017 on the other side. It will be
seen that an ordinate drawn at a distance from the mean equal to
the standard-deviation cuts off some 16 per cent. of the whole
area on one side ; some 68 per cent. of the area will therefore be
contained between ordinates at +o¢. An ordinate at twice the
standard-deviation cuts off only 2-3 per cent., and therefore some
95°4 per cent. of the whole area lies within a range of +2¢. As
three times the standard-deviation the fraction of area cut off is
reduced to 135 parts in 100,000, leaving 997 per cent. within a
range of +3¢. This is the basis of our rough rule that a range
of 6 times the standard-deviation will in general include the
great bulk of the observations: the rule is founded on, and is only
strictly true for, the normal distribution. For other forms of
distribution it need not hold good, though experience suggests
that it more often holds than not. The binomial distribution,
especially if p and ¢ be uneqgual, only becomes approximately normal
when n is large, and thislimitation must be remembered in applying
the table given, or similar more complete tables, to cases in which
the distribution is strictly binomial.
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unreliability of observed statistical results, and the term probable
error is given to this quantity. It should be noted that the word
¢ probable” is hardly used in its usual sense in this connection:
the probable error is merely a quantity such that we may expect
greater and less errors of simple sampling with about equal
frequency, provided always that the distribution of errors is
normal. On the whole, the use of the “probable error” has little
advantage compared with the standard, and consequently little
stress is laid on it in the present work ; but the term is in constant
use, and the student must be familiar with it.

It is true that the  probable error ” has a simpler and more direct
significance than the standard error, but this advantage is lost as
soon as we come to deal with multiples of the probable error.
Further, the best modern tables of the ordinates and area of the
normal curve are given in terms of the standard-deviation or
standard error, not in terms of the probable error, and the mul-
tiplication of the former by 0-6745, to obtain the probable error,
is not justified unless the distribution is normal. For very large
samples the distribution is approximately normal, even though p
and ¢ are unequal - but this is not so for small samples, such as
often ocecur in practice. In the case of small samples the use of
the ¢ probable error” is consequently of doubtful value, while the
standard error retains its significance as a measure of dispersion.
The “ probable error,” it may be mentioned, is often stated after
an observed proportion with the * sign before it; a percentage
given as 205+ 2-3 signifying “20-5 per cent., with a probable
error of 2°3 per cent.”

If an error or deviation in, say, a certain proportion p only just
exceed the probable error, it is as likely as not to occur in simple
sampling : if it exceed twice the probable error (in either direction),
it is likely to occur as a deviation of simple sampling about 18
times in 100 trials—or the odds are about 4'6 to 1 against its
occurring at any one trial. For a range of three times the probable
error the odds are about 22 to 1, and for a range of four times the
probable error 142 to 1. Until a deviation exceeds, then, 4 times
the probable error, we cannot feel any great confidence that it is
likely to be * significant.” Itis simpler to work with the standard
error and take + 3 times the standard error as the critical range:
for this range the odds are about 370 to 1 against such a devia-
tion occurring in simple sampling at any one trial.

18. The following are a few miscellaneous examples of the use
of the normal curve and the table of areas.

Ezample .—A hundred coins are thrown a number of times.
How often approximately in 10,000 throws may (1) exactly 65
heads, (2) 65 heads or more, be expected ?
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The standard-deviation is auU®x 05x100=5. Taking tho
distribution as normal, y,="797-9.

The mean number of heads being 50, 65—-50=30. The
frequency of a deviation of 3¢ is given at once by the table (p. 303)
as 797-9 x ‘0111 . . . . =8:86, or nearly 9 throws in 10,000. A
throw of 65 heads will therefore be expected about 9 times.

The frequency of throws of 65 heads or more is given by the
area table (p. 310), but a little caution must now be used, owing
to the discontinuity of the distribution. A throw of 65 heads is
equivalent to a range of 64:5-655 on the continuous scale of the
normal curve, the division between 64 and 65 coming at 64°5.
646 — 50 = + 290, and a deviation of + 2'9.0 or more, will only
occur, as given by the table, 187 times in 100,000 throws, or, say,
19 times in 10,000.

Example ii.—Taking the data of the stature-distribution of fig.
49 (mean 67-46, standard-deviation 2'57 in.), what proportion of
all the individuals will be within a range of * 1 inch of the
mean ?

1 inch =0-389¢. Simple interpolation in the table of p. 310
gives 0:65129 of the arca below this deviation, or a more extended
table the more accurate value 065136, Within a range of
+ 0:389¢ the fraction of the whole area is therefore 0:30272, or the
statures of about 303 per thousand of the given population will lie
within a range of +1 inch from the mean.

Example 1ii.—In a case of crossing a Mendelian recessive by a
heterozygote the expectation of recessive offspring is 50 per cent.
(1) How often would 30 recessives or more be expected amongst 50
offspring owing simply to fluctuations of sampling? (2) How many
offspring would have to be obtained in order to reduce the probable
error to 1 per cent. ?

The standard error of the percentage of recessives for 50
observations is 50 8/1/50=7'07. Thirty recessives in fifty is
a deviation of 5 from the mean, or, if we talke thirty as representing
295 or more, 4'5 from the mean; that is, 0:636.c. A positive
deviation of this amount or more occurs about 262 times in 1000,
so that 30 recessives or more would be expected in more than a
quarter of the batches of 50 offspring. We have assurncd
normality for rather a small value of n, but the result is sufficiently
accurate for practical purposes.

As regards the second part of the question we are to have

6745 x 50 A/1/n=1,

n being the number of offspring. This gives »—1137 to the
nearest unit.
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Example iv.—The diagram of fig. 49 shows that the number of
statures recorded in the group “62 in. and less than 637 is
markedly less than the theoretical value. Could such a difference
occur owing to fluctuations of simple sampling ; and if so, how
often might it happen ?

The actual frequency recorded is 169. To obtain the theoreti-
cal frequency we may either take it as given roughly by the
ordinate in the centre of the interval, or, better, use the integral
table. Remembering that statures were only recorded to the
nearest ¢ in., the true limits of the interval are 61;5-621%, or
61-:94-62-94, mid-value 6244. This is a deviation from the
mean (67°46) of 5-02. Calculating the ordinate of the normal
curve directly we find the frequency 197-8. This is certainly; as
is evident from the form of the curve, a little too small. The
interval actually lies between deviations of 452 in. and 5-52
in., that is, 1-:769¢ and 2'1480. The corresponding fractions of
area are 0°96071 and 0'98418, difference, or fraction of area
between the two ordinates, 0°02347. Multiplying this by the
whole number of observations (8585) we have the theoretical
frequency 201-5.

The difference of theoretical and observed frequencies is therefore
32'5. But the proportion of observations which should fall into
the given class is 0023, the proportion falling into other classes
0-977, and the standard error of the class frequency is accordingly
~0:023 x 0977 x 8585 =14'0. As the actual deviation is only
2:32 times this, it could certainly have occurred as a fluctuation of
sampling.

The question how often it might have occurred can only be
answered if we assume the distribution of fluctuations of sampling
to be approximately normal. It is true that p and g are very
unequal, but then 7 is very large (8585)—so large that the
difference of the chances is fairly small compared with /mpg
(about one-fifteenth). Hence we may take the distribution of
errors as roughly normal to a first approximation, though a
first approximation only. The tables give 0:990 of the area
below a deviation of 2'32¢, so we would expect an equal or
greater deficiency to occur about 10 times in 1000 trials, or once
in a hundred.
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sampling,” Phil. Mayg., 5th Series, vol. 1., 1900, p. 157.

(22) Prarson, KARL, ““On the Probability that Two Independent Distribu-
tions of Frequency are really Samples from the same Population,”
Biometrika, vol. viii., 1911, p. 250.

EXERCISES.

1. Calculate the theoretical distributions for the three experimental cases
(1), (2), and (3) cited in § 7 of Chapter XTII.

2. Show that if np be a whole number, the mean of the binomial coincides
with the greatest term.

3. Show that if two symmetrical binomial distributions of degree n (and
of the same number of observations) are so superposed that the rth term of
the one coincides with the (r+1)th term of the other, the distribntion
formed by adding superposed terms is a symmetrical binomial of degree n + 1.

[Note: it follows that if two normal distributions of the same area and
standard-deviation are superposed so that the difference between the means is
small compared with the standard-deviation, the compound curve is very
nearly normal. ]

4. Calculate the ordinates of the binomial 1024 (0:5+0°5)!, and compare
them with those of the normal curve.

5. Draw a diagram showing the distribution of statures of Cambridge
Students (Chap. VI., Table VII.), and a normal curve of the same area,
mean, and standard-deviation superposed thereon.

6. Compare the values of the semi-interquartile range for the stature
distributions of male adults in the United Kingdom and Cambridge Students,
(1) as found directly, (2) as calculated from the standard-deviation, on the
assumption that the distribution is normal.

7. Taking the mean stature for the British Isles as 67°46 in. (the dis-
tribution of fig. 49), the mean for Cambridge students as 6885 in., and the
common standard-deviation as 256 in., what percentage of Cambridge students
exceed the British mean in stature, assuming the distribution normal ?






CHAPTER XVI.

NORMAL CORRELATION.

1-3, Deduction of the general expression for the normal correlation surface
from the case of independence—4. Constancy of the standard-
deviations of parallel arrays and linearity of the regression—5. The
contour lines: a series of concentric and similar ellipses—6. The
normal surface for two correlated variables regarded as a normal
surface for uncorrelated variables rotated with respect to the axes of
measurement : arrays taken at any angle across the surface are normal
distributions with constant standard-deviation : distribution of and
correlation between linear functions of two normally correlated
variables are normal: principal axes—7, Standard-deviations round
the principal axes—8-11. Investigation of Table III., Chap. IX., to
test normality : linearity of regression, constancy of standard-deviation
of arrays, normality of distribution obtained by diagonal addition,
contour lines—12-13. Isotropy of the normal distribution for two
variables—14, Outline of the principal properties of the normal dis-
tribution for n variables.

1. Trr expression that we have obtained for the “normal” dis-
tribution of a single variable may readily be made to yield a
corresponding expression for the distribution of frequency of pairs
of values of two variables. This normal distribution for two
variables, or ““normal correlation surface,” is of great historical
importance, as the earlier work on correlation is, almost with-
out exception, based on the assumption of such a distribution ;
though when it was recognised that the properties of the correla-
tion-coefficient could be deduced, as in Chap. IX., without reference
to the form of the distribution of frequency, a knowledge of
this special type of frequency-surface ceased to be so essential.
But the generalised normal law is of importance in the theory of
sampling : it serves to describe very approximately certain actual
distributions (e.g. of measurements on man); and if it can be
assumed to hold good, some of the expressions in the theory of
correlation, notably the standard-deviations of arrays (and, if
more than two variables are involved, the partial correlation-
coefficients), can be assigned more simple and definite meanings
than in the general case. The student should, therefore, be
familiar with the more fundamental properties of the distribution.
317
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2. Consider first the case in which the two variables are com-
pletely independent. Let the distributions of frequency for the
two variables #; and =,, singly, be

l : )

Yo= 1l

Then, assuming independence, the frequency-distribution of pairs
of values must, by the rule of independence, be given by

$2 I.z
49
W= CHRCD)
where .
Yv¥a _ N (.3)
N Ir.oy0y [ : Y

Y

Equation (2) gives a normal correlation surface for one special
case, the correlation-coefficient being zero. If we put z,=a con-
stant, we see that every section of the surface by a vertical plane
parallel to the «, axis, 7.c. the distribution of any array of ay’s, is
a normal distribution, with the same mean and standard-deviation
as the total distribution of x,’s, and a similar statement holds for
the array of a,’s; these properties must hold good, of course, as
the two variables are assumed independent (¢f. Chap. V. § 13),
The contour lines of the surface, that is to say, lines drawn on
the surface at a constant height, are a series of similar ellipses
with major and minor axes parallel to the axes of z; and z, and
proportional to o and o, the equations to the contour lines being
of the general form

e

:'2+'£=O? N )

Pairs of values of ; and z, related by an equation of this form
are, therefore, equally frequent.

3. To pass from this special case of independence to the general
case of two correlated variables, remember (Chap. XII. § &)
that if

P g, = bya s

Ty =Ty = by,

z, and z,,, as also #, and x,, are uncorrelated. If they are not
merely uncorrelated but completely independent, and if the dis-
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array of z; or of «, in its mean, and as the distribution of every
array is symmetrical about its mean, RR must bisect every
horizontal chord and CC every vertical chord, as illustrated
by the two chords shown by dotted lines: it also follows that
RR cuts all the ellipses in the points of contact of the horizontal
tangents to the ellipses, and CC in the points of contact of
the vertical tangents. The surface or solid itself, somewhat
truncated, is shown in fig. 29, p. 166.

6. Since, as we see from fig. 50, a normal surface for two
correlated variables may be regarded merely as a certain surface
for which = is zero turned round through some angle, and since
for every angle through which it is turned the distributions of all
2, arrays and z, arrays are normal, it follows that every section
of a normal surface by a vertical plane is a normal curve, ¢.e. the
distributions of arrays taken at any angle across the surface are
normal. It also follows that, since the total distributions of z;
and x, must be normal for every angle though which the surface
is turned, the distributions of totals given by slices or arrays
taken at any angle across a normal surface must be normal
distributions. But these would give the distributions of functions
like a.z; +b.2, and consequently (1) the distribution of any
linear function of two normally distributed variables z; and =z,
must also be normal; (2) the correlation between any two linear
functions of two normally distributed variables must be normal
correlation.

To find the angle § through which the surface has been turned,
from the position for which the correlation is zero to the position
for which the coefficient has some assigned value r, we must use
a little trigonometry. The major and minor axes of the ellipses
are sometimes termed the principal axes. If ¢,. £ be the co-
ordinates referred to the principal axes (the £-axis being the
x; axis in its new position) we have for the relation between &£,
&, @y, z,, the angle 6 being taken as positive for a rotation of
the z;-axis which will make it, if continued through 90°, coincide
in direction and sense with the z,-axs,

& =x;. cos 0+, sin 0 ) 8)
&=, cos §—z. sin 6 § C - = X

But, since &, £, are uncorrelated, 2(¢,¢,)=0. Hence, multiplying
together equations (8) and summing,

0= (03 - 0}) sin 20 + 270,05 cos 26

e tritra

tan 29=~;.1,: S - : . (9
21
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It should be noticed that if we define the principal axes of any
distribution for two variables as being a pair of axes at right
angles for which the variables &, & are uncorrelated, equation
(9) gives the angle that they make with the axes of measurement
whether the distribution be normal or no.

7. The two standard-deviations, say I, and 2, about the
principal axes are of some interest, for evidently from § 2 the
major and minor axes of the contour-ellipses are proportional
to these two standard-deviations. They may be wost readily
determined as follows. Squaring the two transformation equations
(8), summing and adding, we have

B+P=oltel . . . . (10)

Referring the surface to the axes of measurement, we have for
the central ordinate by equation (7)

gl N

ym—?nr(rl(rz(l v

Referring it to the principal axes, by equation (3)

Y
Y1=or33;

But these two values of the central ordinate must be equal,
therefore
2,2, = oy0y(1 —15) . . . (11)

(10) and (11) are a pair of simultaneous equations from which
2, and %, may be very simply obtained in any arithmetical case.
Care must, however, be taken to give the correct signs to the
square root in solving. 2.+ 2, is necessarily positive, and 2 - 2,
also if = is positive, the major axes of the ellipses lying along &, :
but if » be negative, 2, ~ 3, 1s also negative. It should be noted
that, while we have deduced (11) from a simple consideration
depending on the normality of the distribution, it is really of
general application (like equation 10), and may be obtained at
somewhat greater length from the equations for transforming
co-ordinates.

8. As stated in Chap. XV. § 13, the frequency-distribution
for any variable may be expected to be approximately normal
if that variable may be regarded as the sum (or, within limits,
some slightly more complex function) of a large number of other
variables, provided that these elementary component variables
are independent, or nearly so. Similarly, the correlation between
two variables may be expected to be approximately normal if
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each of the two variables may be regarded as the sum, or some
slightly more complex function, of a large number of elementary
component variables, the intensity of correlation depending on
the proportion of the components common to the two variables.

Stature is-a highly compound character of this kind, and we
have seen that, in one instance at least, the distribution of stature
for a number of adults is given approximately by the normal
curve. We can now utilise Table ITI., Chap. IX., p. 160, showing
the correlation between stature of father and son, to test, as far
as we can by elementary methods, whether the normal surface
will fit the distribution of the same character in pairs of indi-
viduals : we leave it to the student to test, as far as he can do so
by simple graphical methods, the approximate normality of the
total distributions for this table. The first important property
of the normal distribution is the linearity of the regression.
This was well illustrated in fig. 37, p.-174, and the closeness of
the regression to linearity was confirmed by the values of
the correlation-ratios (p. 206), viz., 0-52 in each case as com-
pared with a correlation of 0:61. Subject to some investiga-
tion as to the possibility of the deviations that do occur
arising as fluctuations of simple sampling, when drawing
samples from a record for which the regression is strictly
linear, we may conclude that the regression is appreciably
linear.

9. The second important property of the normal distribution
for two variables is the constancy of the standard-deviation for
all parallel arrays. We gave in Chap. X. p. 204 the standard-
deviations of ten of the columns of the present table, from the
column headed 62:5~63-5 onwards ; these were—

2:56 2:60
2:11 2:26
2:55 226
224 245
2:23 2-33

the mean being 2-36. The standard-deviations again only fluctuate
irregularly round their mean value. The mean of the first five
is 2:34, of the second five 2:38, a difference of only 0:04 : of the
first group, two are greater and three are less than the mean,
and the same is true of the second group. There does not seem
to be any indication of a general tendency for the standard-
deviation to increase or decrease as we pass from one end of the
table to the other. We are not yet in a position to test how
far the differences from the average standard-deviation might
arise in sampling from a record in which the distribution was
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strictly normal, but, as a fact, a rough test suggests that they
might have done so.

10. Next we note that the distributions of all arrays of a
normal surface should themselves be normal. Owing, however,
to the small numbers of observations in any array, the distributions
of arrays are very irregular, and their normality cannot be tested
in any very satisfactory way: we can only say that they do not
exhibit any marked or regular asymmetry. But we can test the
allied property of a normal correlation-table, viz. that the totals
of arrays must give a normal distribution even if the arrays be
taken diagonally across the surface, and not parallel to either
axis of measurement (¢f. § 6). From an ordinary correlation-
table we cannot find the totals of such diagonal arrays exactly,
but the totals of arrays at an angle of 45° will be given with
sufficient accuracy for our present purpose by the totals of lines
of diagonally adjacent compartments. Referring again to Table
IT1.,, Chap. IX., and forming the totals of such diagonals (running
up from left to right), we find, starting at the top left-hand
corner of the table, the following distribution —

0:25 7875

2 81:25

3.256 675

6:25 59-25

8 42-95

9-75 30-75
17 29-25
345 19
41 1075
4625 7
605 4-25
67-5 35
8575 175
87-25 1
78 0:25
94-25

Total 1078

The mean of this distribution is at 0:368 of an interval above the
centre of the interval with frequency 78: its standard-deviation
is 4'7565 intervals, or, remembering that the interval is 1/ ,/2 of
an inch, 3-362 inches. (This value may be checked directly from
the constants for the table given in Chap. IX., Question 3, p. 189,
for we have from the first of the transformation equations (8),

)

0§ = 07. cos* 4 0% 8in” 6 + 271,010, sin 6 cos 6,
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reduced, of course, from the original drawing, one of the squares
shown representing a squarc inch on the original. The actual
contour lines for the same frequencies are shown by the irregular
polygons superposed on the ellipses, the points on these polygons
having been obtained by simple graphical interpolation between
the frequencies in each row and each column—diagonal interpola-
tion between the frequencies in a row and the frequencies in a
column not being used. It will be seen that the fit of the two
lower contours is, on the whole, fair, especially considering the
high standard errors. In the case of the central contour, y= 20,
the fit looks very poor to the eye, but if the ellipse be compared
carefully with the table, the figures suggest that here again we
have only to deal with the effects of fluctuations of sampling.
For father’s stature=66 in.. son’s stature=70 in., there is
a frequency of 1875, and an increase in this much less than the
standard error would bring the actual contour outside the ellipse.
Again, for father’s stature=68 in., son’s stature="71 in., there
is a frequency of 19, and an increase of a single unit would give
a point on the actual contour below the ellipse. Taking the
results as a whole, the fit must be regarded as quite as good as
we could expect with such small frequencies. It is perhaps of
historical interest to note that Sir Francis (zalton, working with-
out a knowledge of the theory of normal corrclation, suggested
that the contour lines of a similar table for the inheritance of
stature seemed to be closely represented by a series of concentric
and similar ellipses (ref. 2): the suggestion was confirmed when
he handed the problem, in abstract terms, to a mathematician,
Mr J. D. Hamilton Dickson (ref. 4), asking him to investigate
‘“the Surface of Frequency of Lrror that would result from
these data, and the various shapes and other particulars of its
sections that were made by horizontal planes” (ref. 3, p. 102).

12. The normal distribution of frequency for two variables is
an isotropic distribution, to which all the theorems of Chap. V.
§§ 11-12 apply. For if we isolate the four compartments of the
correlation-table common to the rows and columns centring
round values of the variables x;, ,, #;, #,, we have for the ratio
of the cross-products (frequency of x, z, multiplied by frequency
of z,, z,, divided by frequency of #; z, multiplied by frequency of
x, @,),

(xy=iy ) x4
o1 90
e 1.292.1

Assuming that z; — z; has been taken of the same sign as x, — z,,
the exponent is of the same sign as 7,,. Hence the association for
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this group of four frequencies is also of the same sign as »;,, the
ratio of the cross-products being unity, or the association zero,
if 7, is zero. Ina normal distribution, the association is therefore
of the same sign—the sign of 7;,—for every tetrad of frequencies
in the compartments common to two rows and two columns ; that
is to say, the distribution is isotropic. It follows that every
grouping of a normal distribution is isotropic whether the class-
intervals are equal or unequal, large or small, and the sign of the
association for a normal distribution grouped down to 2- x 2-fold
form must always be the same whatever the axes of division
chosen,

These theprems are of importance in the applications of the
theory of normal correlation to the treatment of qualitative
characters which are subjected to a manifold classification. The
contingency tables for such characters are sometimes regarded as
groupings of a normal distribution of frequency, and the coefficient
of correlation is determined on this hypothesis by a rather lengthy
procedure (ref. 14). Before applying this procedure it is well,
therefore, to see whether the distribution of frequency may be
regarded as approximately isotropic, or reducible to isotropic form
by some alteration in the order of rows and columns (Chap. V.
§§ 9-10). If only reducible to isotropic form by some rearrange-
ment, this rearrangement should be effected before grouping the
table to 2- x 2-fold form for the calculation of the correlation
coefficient by the process referred to. If the table is not reducible
to isotropic form by any rearrangement, the process of calculating
the coefficient of correlation on the assumption of normality is to
be avoided. Clearly, even if the table be isotropic it need not be
normal, but at least the test for isotropy affords a rapid and
simple means for excluding certain distributions which are not
even remotely normal. Table IT. of Chap. V. might possibly be
regarded as a grouping of normally distributed frequency if re-
arranged as suggested in § 10 of the same chapter—it would be
worth the investigator’s while to proceed further and compare
the actual distribution with a fitted normal distribution—but
Table 1V. could not be regarded as normal, and could not be
rearranged so as to give a grouping of normally distributed
frequency.

13. If the frequencies in a contingency-table be not large, and
also if the contingency or correlation be small, the influence
of casual irregularities due to fluctuations of sampling may
render it difficult to say whether the distribution may be regarded
as essentially isotropic or no. In such cases some further con-
densation of the table by grouping together adjacent rows and
columns, or some process of “smoothing” by averaging the
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values be assigned to w,,, and all the following deviations, the
correlation between x, and x,, on expanding z,,, is, as we have
seen, normal correlation. Similarly, it any fixed values be
assigned to x;, to .., and all the following deviations, on
reducing x4, to the second order we shall find that the correla-
tion between «,, and xy, is normal corrclation, the correlation
coefticient being 7,,,, and so on. That is to say, using % to
denote any group of secondary suftixes, (1) the correlation between
any two deviations &, and x,, , 18 normal correlation ; (2) the correla-
tion between the said deviations s 7,,, whatever the particular
Sixed values assigned to the remavning deviations. The latter
conclusion, it will be seen, renders the meaning of partial
correlation coeflicients much more definite in the case of normal
correlation than in the general case. In the general case 7,
represents merely the average correlation, so to speak, between
Zp, . and x,,: in the normal case 7,,,, is constant for all the sub-
groups corresponding to particular assigned values of the other
variables. Thus in the case of three variables which are normally
correlated, if we assign any given value to a4, the correlation
between the associated values of #; and z, is ry,,: in the general
case 74 if actually worked out for the various sub-groups
corresponding, say, to increasing values of x,, would probably
exhibit some continuous change, increasing or decreasing as the
case might be. Finally, we have to note that if, in the expression
(15) for ¢, we assign fixed values, say %, A, etc., to all the
deviations except x;, and then throw ¢ into the form of a perfect
square (as in § 4 for the case of two variables), we obtain a normal
distribution for #; in which the mean is displaced by

O123...n (71.23...nh T123...n

7
e RS ST S T oy,
~n.

2
g+ T3, .,

T1934. . .0 n
0213...n Vg12,..n

12...{n=1

But this is a linear function of 4,, A, etc., therefore in the case of
normal correlation the regression of any one variable on any or all
of the others ts strictly limear. The expressions 7,4 . . .. 4,

Ois . .. nfT21s....m €bc. are of course the partial regressions
ba .. .. w ete
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CHAPTER XVIL

THE SIMPLER CASES OF SAMPLING FOR VARIABLES:
PERCENTILES AND MEAN. =

1-2. The problem of sampling for variables; the conditions assumed—
3. Standard error of a percentile—4. Special values for the percentiles
of a normal distribution—5. Effect of the form of the distribution
generally—6. Simplified formula for the case of a grouped frequency-
distribution—7. Correlation between errors in two percentiles of the
same distribution—8. Standard error of the interquartile range for the
normal curve—9. Effect of removing the restrictions of simple sampling,
and limitations of interpretation—10. Standard error of the arithmetic
mean—11. Relative stability of mean and median in sampling—12.
Standard error of the difference between two means—13. The tendency
to normality of a distribution of means—14. Effect of removing the re-
strictions of simple sampling—15. Statement of the standard errors of
standard-deviation, coefficient of variation, correlation coeflicient and
regression, correlation-ratio and criterion for linearity of regression—16.
Restatement of the limitations of interpretation if the sample be small.

I. In Chapters XIII.-XVI. we have been concerned solely with
the theory of sampling for the case of attributes and the frequency-
distributions appropriate to that case. We now proceed to
consider some of the simpler theorems for the case of variables
(¢f. Chap. XIIL. § 2). Suppose that we have a bag containing a
practically infinite number of tickets or cards bearing the recorded
values of some variable X, and that we draw a ticket from this
bag, note the value that it bears, draw another, and so on until
we have drawn = cards (a number small compared with the whole
number in the bag). Let us continue this process until we have
& such samples of n cards each, and then work out the mean,
standard-deviation, median, ete., for each of the samples. No one
of these measures will prove to be absolutely the same for every
sample, and our problem is to determine the standard-deviation
that each such measure will exhibit.

2. In solving this problem, we must be careful to define
precisely the conditions which are assumed to subsist, so as to
realise the limitations of any solution obtained. These conditions

335
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were discussed very fully for the case of attributes (Chap. XIII.
§ 8), and we would refer the student to the discussion then given.
Here it is sufficient to state the assumptions briefly, using the
letters (a), (6) and (¢) to denote the corresponding assumptions
indicated by the same letters in the section cited.

() We assume that we are drawing from precisely the same
record throughout the experiment, so that the chance of drawing
a card with any given value of X, or a value within any assigned
limits, is the same at each sampling.

(b) We assume not only that we are drawing from the same
record throughout, but that eack of our cards at each drawing
may be regarded quite strictly as drawn from the same record (or
from identically similar records): e.g. if our card-record is con-
tained in a series of bundles, we must not make it a practice lo
take the first card from bundle number I, the second card from
bundle number 2, and so on, or else the chance of drawing a
card with a given value of X, or a value within assigned limits,
may not be the same for each individnal card at each drawing,

(c) We assume that the drawing of cach card is entirely
independent of that of every other, so that the value of X recorded
on card 1, at each drawing, is uncorrelated with the value of X
recorded on card 2, 3, 4, and so on. It is for this reason that we
spoke of the record, in § 1, as containing a practically infinite
number of cards, for otherwise the successive drawings at each
sampling would not be independent: if the bag contain ten
tickets only, bearing the numbers 1 to 10, and we draw the card
bearing 1, the average of the following cards drawn will be higher
than the mean of all cards drawn ; if, on the other hand, we draw
the 10, the average of the following cards will be lowerthan the mean
of all cards—¢.e. there will be a negative correlation between the
number on the card taken at any one drawing and the card taken
at any other drawing. Without making the number of cards in
the bag indefinitely large, we can, as already pointed out for the
case of attributes (Chap. XIII. § 3), eliminate this correlation by
replacing each card before drawing the next

Sampling conducted under these conditions we shall, as before,
speak of as stmple sampling. We do not, it should be noticed,
make the further assumption that the sample is unbiassed, z.e.
that the chance of inclusion in the sample is independent of the
value of X recorded on the card (¢f. the last paragraph in § 8,
Chap. XIII., and the discussion in §§ 4-8, Chap. XIV.). This
assumption is unnecessary. If it be true, the interpretation of
our results becomes simpler and more straightforward, for we
can substitute for such phrases as ‘“the standard-deviation of X
in a very large sample,” “the form of the frequency-distribution
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wn a very large sample,” the phrases “the standard-deviation of
X in the original record,” “the form of the frequency-distribution
in the original record” : but in very many, perhaps the majority
of, practical cases the very question at issue is the nature of the
relation between the distribution of the sample and the distribu-
tion of the record from which it is drawn. As has already been
emphasised in the passages to which reference is made above, no
examination of samples drawn under the same conditions can
give any evidence on this head.

3. Standard Error of a Percentile.—Let us consider first the
fluctuations of sampling for a given percentile. as the problem is
intimately related to that of Chaps. XIII.-XIV, ;

Let X, be a value of X such that p&¥ of the values of X in
an indefinitely large sample drawn under the same conditions lie
above it and ¢V below it. .

If we note the proportions of observations above X, in samples
of n drawn from the record, we know that these observed values
will tend to centre round p as mean, with a standard-deviation
Npg/n. 1f now at each drawing, as well as observing the pro-
portion of X's above X, say p + 8, for the sample, we also proceed
to note the adjustment e required in X, to make the proportion
of observations above X,+e¢ in the sample pn, the standard-
deviation of € will bear to the standard-deviation of & the same
ratio that ¢ on an average bears to 8. But this ratio is quite
simply determinable if the number of observations in the sample
is sufficiently large to justify us in assuming that 8 is small—so
small that we may regard the element of the frequency curve
(for a very large sample) over which X, + e ranges as approximately
a rectangle, If this assumption be made, and we denote the
standard-deviation of X in a very large sample by o, and the
ordinate of the frequency curve at X, when drawn with unit area
and unit standard-deviation by z,,

i =
e=—.0

i/
o R

Therefore for the standard-deviation of ¢ or of the percentile
corresponding to a proportion p we have

[ia _/',irrlr
i U (1)

4. If the frequency-distribution for the very large sample be a
normal curve, the values of g, for the principal percentiles may be
taken from the published tahles, A table calculated by Mr
Sheppard (Table IV., ref. 15, in Appendix 1.), gives the values

22
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directly, and these have been utilised for the following: the
student can estimate the values roughly by a combined use of the
area and ordinate tables for the normal curve given in Chapter
XV., remembering to divide the ordinates given in that, table by
/2% so as to make the area unity—

Value of yp

Median . . . : ; . 0-3989423
Deciles 4 and 6 : - . 0-3863425
» Sand 7 . . 03476926

s 2and 8 : . 02799619

» land9 . . , . 01754983
Quartiles . : . 03177766

Inserting these values of y, in equation (1), we have the
following values for the standard errors of the median, deciles,
etc., and the values given in the second column for their probable
errors (Chap. XV. § 17), which the student may sometimes find
useful :—

Standard error is Probable error is
o/Nn multiplicd by o/Nn multiplied by
Median . 1:26331 084535
Deciles 4 and 6 . . 1-:26804 0-85528
” 3and 7 . . 1:31800 0:88897
= 2and 8 . . 1-43877 096369
v land 9 . . 170942 1:15298
Quartiles . " . 1-36263 091908

It will be seen that the influence of fluctuations of sampling on
the several percentiles increases as we depart from the median:
the standard error of the quartiles is nearly one-tenth greater than
that of the median, and the standard error of the first or ninth
deciles more than one-third greater.

5. Consider further the influence of the form of the frequency-
distribution on the standard error of the median, as this is an
important form of average. For a distribution with a given
number of observations and a given standard-deviation the
standard error varies inversely as y,. Hence for a distribution in
which g, is small, for example a U-shaped distribution like that
of fig. 18 or fig. 19, the standard error of the median will be
relatively high, and it will, in so far, be an undesirable form of
average to employ. On the other hand, in the case of a distribu-
tion which has a high peak in the centre, so as to exhibit a value
of g, large compared with the standard-deviation, the standard
error of the median will be relatively low. We can create such a
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But this gives at once for the standard error empressed in terms
of the class-enterval as unat
Jnpg

e U )
As an example in which we can compare the results given by
the two different formule (1) and (2), take the distribution of
stature used as an illustration in Chaps. VII. and VIII. and in
§§ 13, 14 of Chap. XV. The number of observations is 8585,
and the standard-deviation 257 in., the distribution being
approximately normal : o/,/n=0'027737, and, multiplying by the
factor 1:253 . . . . given in the table in § 4, this gives 0:0348
as the standard error of the median, on the assumptior of
normality of the distribution. Using the direct method of
equation (2), we find the median to be 67-47 (Chap. VII. § 15),
which is very nearly at the centre’ of the interval with a
frequency 1329. Taking this as being, with sufficient accuracy
for our present purpose, the frequency per interval at the median,

the standard error is
. /8585
41399~ 0-0349.

As we should expect, the value is practically the same as that
obtained from the value of the standard-deviation on the assump-
tion of normality.

Let us find the standard error of the first and ninth deciles
as another illustration. On the assumption that the distribu-
tion is normal, these standard errors are the same, and equal tp
0:027737 x 1-70942=0-0474. Using the direct method, we
find by simple interpolation the approximate frequencies per
interval at the first and ninth deciles respectively to be 590 and
570, giving standard errors of 0:0471 and 0:0488, mean 0-0479,
slightly in excess of that found on the assumption that the fre-
quency is given by the normal curve. The student should notice
that the class-interval is, in this case, identical with the unit of
measurement, and consequently the answer given by equation (2)
does not require to be multiplied by the magnitude of the
interval.

In the case of the distribution of pauperism (Chap. VII,
Example i.), the fact that the class-interval is not a unit must
be remembered. The frequency at the median (3:195 per cent.)
is approximately 96, and this gives for the standard error of the
median by (2) (the number of observations being 632) 0:1309
intervals, that is 0:0655 per cent.

7. In finding the standard error of the difference between two
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percentiles in the same distribution, the student must be care-
ful to note that the errors in two such percentiles are not
independent. Consider the two percentiles, for which the values
of p and ¢ are p; ¢, p, g, respectively, the first-named being the
lower of the two percentiles. These two percentiles divide the
whole area of the frequency curve into three parts, the areas of
which are proportional to ¢, 1 - ¢; —p,, and p,. Further, since
the errors in the first percentile are directly proportional to the
errors in ¢y, and the errors in the second percentile are directly
proportional but of opposite sign to the errors in p, the corre-
lation between errors in the two percentiles will be the same as
the correlation between errors in ¢; and p, but of opposite sign,
But if there be a deficiency of observations below the lower
percentile, producing an error 8. in ¢, the missing observations
will tend to be sprcad over the two other sections of the curve
in proportion to their respective areas, and will therefore tend to
produce an error

= —=2.3,

2 7
in p,. If then 7 be the correlation between errors in ¢; and p,
€, and ¢, their respective standard errors, we have

R Fa
Sl y23

(4

Or, inserting the values of the standard errors,

- _ \/ Pt

VY a
The correlation between the percentiles is the same in magni-
tude but opposite insign : it is obviously positive, and consequently

correlation between errors 1 _ VUt A
in two percentiles rm. . A

If the two percentiles approach very close together, ¢, and ¢,
p, and p, become sensibly equal to one another, and the correla-
tion becomes unity, as we should expect.

8. Let us apply the above value of the correlation between
percentiles to find the standard error of the semi-interquartile
range for the normal curve. Inserting ¢,=p,— 4 qo=p; =%, we
find »=1. Hence the standard error of the interquartile range
is, applying the ordinary formula for the standard-deviation of a

difference, 2/,/3 times the standard error of either quartile, or
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the standard error of the sema-interquartile range 1/,/3 times
the standard error of a quartile. Taking the value of the
standard error of a quartile from the table in § 4, we have, finally,

standard error of the semt- ) @
interquartile range ina - =078672 7~ . . (3
normal distribution J 5

Of course the standard-deviation of the inter-quartile, or semi-
interquartile, range can readily be worked out in any particular
case, using equation (2) and the value of the correlation
given above: it is best to work out such standard errors
from first principles, applying the usual formula for the standard
deviation of the difference of two correlated variables (Chap. XI.
§ 2, equation (1)).

9. If there is any failure of the conditions of simple sampling,
the formulee of the preceding sections cease, of course, to hold
good. We need not, however, enter again into a discussion of
the effect of removing the several restrictions, for the effect on
the standard error of p was considered in detail in §§ 9-14 of
Chap. XIV., and the standard error of any percentile is directly
proportional to the standard error of p (¢f. § 3). Further, the
student may be reminded that the standard error of any per-
centile measures solely the fluctuations that may be expected in
that percentile owing to the errors of simple sampling alone: it
has no bearing, therefore, save on the one question, whether an
observed divergence of the percentile, from a certain value that
might be expected to be yielded by a more extended series of
observations or that had actually been observed in some other
series, might or might not be due to fluctuations of simple
sampling alone. It cannot and does not give any indication of
the possibility of the sample being biassed or unrepresentative of
the material from which it has been drawn, nor can it give any
indication of the magnitude or influence of definite errors of
observation—errors which may conceivably be of greater im-
portance than errors of sampling. In the case of the distribution
of statures, for instance, the standard error almost certainly gives
quite a misleading idea as to the accuracy attained in determining
the average stature for the United Kingdom : the sample is not
representative, the several parts of the kingdom not contributing
in their true proportions. The student should refer again to the
discussion of these points in §§ 4—8 of Chap. XIV. Finally, we
may note that the standard error of a percentile cannot be
evaluated unless the number of observations is fairly large—large
enough to determine f, (eqn. 2) with reasonable accuracy, or



344 THEORY OF STATISTICS.

to test whether we may treat the distribution as approximately
normal (cf. also § 16 below).

(As regards the theory of sampling for the median and per-
centiles generally, cf. ref. 13, Laplace, Supplement II (standard
error of the median), Ldgeworth, refs. 5, 6, 7, and Sheppard, ref.
23: the preceding sections have been based on the work of
Edgeworth and Sheppard.)

10. Standard Error of the Arithmetic Mean.—Let us now pass
to a fresh problem, and determine the standard error of the
arithmetic mean.

This is very readily obtained. Suppose we note scparately at
each drawing the value recorded on the first, second, third . . . .
and nth card of our sample. The standard-deviation of the values
on each separate card will tend in the long run to be the same,
and identical with the standard-deviation ¢ of @ in an indefinitely
large sample, drawn under the same conditions. Further, the
value recorded on each card is (as we assume) uncorrelated with
that on every other. The standard-deviation of the sum of the
values recorded on the = cards is therefore &/m.c, and the
standard-deviation of the mean of the sample is consequently
1/nth of this; or,

a
Gy= . . . . . (5

This is a most important and frequently cited formula, and the
student should note that it has been obtained without any
reference to the size of the sample or to the form of the frequency-
distribution. Tt is therefore of perfectly general application, if
o be known. We can verify it against our formula for the
standard-deviation of sampling in the case of attributes. The
standard-deviation of the number of successes in a sample of m
observations is /m.pg: the standard-deviation of the total
number of successes in n samples of m observations each is there-
fore /mm.pg: dividing by n we have the standurd-deviation of
the mean number of successes in the n samples, viz. Jmpr]'/../n,
agreeing with equation (5).

11. For a normal curve the standard error of the mean is to
the standard error of the median approximately as 100 to 125
(cf. § 4), and in general the standard errors of the two stand in
a somewhat similar ratio for a distribution not differing largely
from the normal form. For the distribution of statures used as
an illustration in § 6 the standard error of the median was found
to be 0:0349: the standard error of the mean is only 0-0277,
The distribution being very approximately normal, the ratio of
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the two standard errors, viz. 1-26, assumes almost exactly the theo-
retical magnitude. In the case of the asymmetrical distribution of
rates of pauperism, also used as an illustration in § 6, the standard
error of the median was found to be 00655 per cent. The
standard error of the mean is only 0:0493 per cent., which bears
to the standard error of the median a ratio of 1 to 1:33. As
such cases as these seem on the whole to be the more common
and typical, we stated in Chap. VII. § 18 that the mean is in
general less affected than the median by errors of sampling. At
the same time we also indicated the exceptional cases in which
the median might be the more stuble—cases in which the mean
might, for example, be affected considerally by small groups of
widely outlying observations, or in which the frequency-distri-
bution assumed a formn resembling fig. 53, but even more
exaggerated as regards the height of the central ““peak” and the
relative length of the “tails.” Such distributions are not un-
common in some economic statistics, and they might be expected
to characterise some forms of experimental error. If, in these
cases, the greater stability of the median is sufficiently marked
to outweigh its disadvantages in other respects, the median
may be the better form of average to use. Fig. 53 represents
a distribution in which the standard errors of the mean and of the
median are the same. Further, in some experimental cases it is
conceivable that the median may be less affected by definite
experimental errors, the average of which does not tend to be
zero, than is the mean,—this is, of course, a point quite distinct
from that of errors of sampling.

12. If two quite independent samples of n, and . observations
respectively be drawn from a record, evidently e, the standard
error of the difference of their means is given by

1 1
‘?z=0'"<;+772> . o . . (6)

1

If an observed difference exceed three times the value of ¢,
given by this formula it can hardly be ascribed to fluctuations
of sampling. I, in a practical case, the value of ¢ is not known
@ priori, we must substitute an observed value, and it would seem
natural to take as this value the standard-deviation in the two
samples thrown together. If, however, the standard-deviations
of the two samples themselves differ more than can be accounted
for on the basis of fluctuations of sampling alone (see below, § 15),
we evidently cannot assume that both samples have been drawn
from the same record: the one sample must have been drawn
from a record or a universe exhibiting a greater standard-deviation
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than the other. If two samples be drawn quite independently
from different universes, indefinitely large samples from which
exhibit the standard-deviations o, and o,, the standard error of
the difference of their means will be given by

2
S 2ietei Wity NN . (T)

n o My

This is, indeed, the formula usually employed for testing the
significance of the difference between two means in any case:
seeing that the standard error of the mean depends on the
standard-deviation only, and not on the mean, of the distribution,
we can inquire whether the two universes from which samples
have been drawn differ in mean apart from any difference n
dispersion.

If two quite independent samples be drawn from the same
universe, but instead of comparing the mean of the one with the
mean of the other we compare the mean m, of the first with the
mean m, of both samples together, the use of (6) or (7) is not
justified, for errors in the mean of the one sample are correlated
with errors in the mean of the two together. Following precisely
the lines of the similar problem in § 13, Chap. XIIL., case [II., we

find that this correlation is A/n,/(n; + n,), and hence

) Ty o

(For a complete treatment of this problem in the case of samples
drawn from two different universes ¢f. ref. 20.)

13. The distribution of means of samples drawn under the
conditions of simple sampling will always be more symmetrical
than the distribution of the original record, and the symmectry
will be the greater the greater the number of observations in the
sample. Further, the distribution of means (and thercfore also of
the differences between means) tends to become not merely sym-
metrical but normal. We can only illustrate, not prove, the
point here ; but if the student will refer to§ 13, Chap. XV., he will
see that the genesis of the normal curve in this case is in accord-
ance with what we then stated, viz. that the distribution tends to
be normal whenever the variable may be regarded as the sum
(or some slightly more complex function) of a number of other
variables. In the present instance this condition is strictly ful-
filled. The mean of the sample of n observations is the sum of
the values in the sample each divided by =, and we should expect
the distribution to be the more nearly normal the larger n. As
an illustration of the approach to symmetry even for small values
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of n, we may take the following case. If the student will turn to
the caleulated binomials, given as illustrations of the forms of
binomial distributions in Chap. XV. § 3, he will find there the
distribution of the number of successes for twenty events when
7=09, p=01: the distribution is extremely skew, starting at
zero, rising to high frequencies for 1 and 2 successes, and thence
tailing off to 20 cases of 7 successes in 10,000 throws, 4 cases of 8
successes and 1 case of 9 successes. But now find the distribu-
tion for the mean number of successes in groups of five throws,
under the same conditions. This will be equivalent to finding
the distribution of the number of successes for 100 such events,
and then dividing the observed number of successes by five—the
last process making no difference to the form of the distribution,
but only to its scale. But the distribution of the number of
successes for 100 events when ¢=0'9, p=0-1, is also given in
Chap. XV. § 3, and it will be seen that, while it is appreciably
asymmetrical, the divergence from symmetry is comparatively
small: the distribution has gained very greatly in symmetry
though only five observations have been taken to the sample.
We may therefore reasonably assume, if our sample is large,
that the distribution of means is approximately a normal dis-
tribution, and we may calculate, on that assumption, the fre-
quency with which any given deviation from a theoretical value
or a value observed in some other series, in an observed mean, will
arise from fluctuations of simple sampling alone.

The warning is necessary, however, that the approach to
normality is only rapid if the condition that the several drawings
for each sample shall be independent is strictly fulfilled. 1f the
observations are not independent, but are to sonie extent positively
correlated with each other, even a fairly large sample may con-
tinue to reflect any asymmetry existing in the original distribution
(cf. ref. 26 and the record of sampling there cited).

If the original distribution be normal, the distribution of
means, even of small samples, is strictly normal. This follows at
once from the fact that any linear function of normally distributed
variables is it:elf normally distributed (Chap, XVI. § 6). The
distribution wili not in general, however, be normal if the
deviation of the mean of each sample is expressed in terms of the
standard-deviation of that sample (cf. ref. 24).

14, Let us consider briefly the effect on the standard error of
the mean if the conditions of simple sampling as laid down in
§ 2 cease to apply.

(n) If we do not draw from the same record all the time, but
first draw a series of samples from one record, then another
series from another record with a somewhat different mean and
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standard-deviation, and so on, or if we draw the successive
samples from essentially different parts of the same record, the
standard error will be greatly increased. TFor suppose we draw
f, samples from the first record, for which the standard-deviation
(in an indefinitely large sample) is oy, and the mean differs by
d, from the mean of all the records together (as ascertained by
large samples in numbers proportionate to those now taken); &,
samples from the second record, for which the standard-deviation
is 0y, and the mean difters by d, from the mean of all the records
together, and so on. Then for the samples drawn from the first
record the standard error of the mean will be oy/\/n, but the
distribution will centre round a value differing by d, from the
mean for all the records together: and so on for the samples
drawn from the other records. Hence, if o, be the standard error
of the mean, & the total number of samples,

N o = o § '-'r-:.\ T

N.at, —(.L“ } 2( ).
But the standard-deviation & for all the records together is given
by

N.op= 2(ko") + Z(Fd™)

Hence, writing Z(kd?) = N.s%,

op -1,
Oy ="}

n T
This equation corresponds preeisely to equation (2) of § 9, Chap.
XIV. The standard error of the mean, if our samples are drawn
from different records or from essentially different parts of the
entire record, may be increased indefinitely as compared with the
value it would have in the case of simple sampling. If, for
example, we take the statures of samples of » men in a number
of different districts of England, and the standard-deviation of all
the statures observed is oy, the standard-deviation of the means
for the different districts will not be oy/s/n, but will have some
greater value, dependent on the real variation in mean stature
from district to district.

(b) If we are drawing from the same record throughout, but
always draw the first card from one part of that record, the
second card from another part, and so on, and these parts differ
more or less, the standard error of the mean will be decreased.
For if, in large samples drawn from the subsidiary parts of the
record from which the several cards are taken, the standard-
deviations are oy, oy . . . . 0, and the means differ by d,, d,,
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. . . . d,from the mean for a large sample from the entire record,
we have

L., g .
2 — C ety =2,
o=, ')+ (@)

Hence

. . (10}

The last equation again corresponds precisely with that given for
the same departure from the rules of simple sampling in the case
of attributes (Chap. XIV. § 11., eqn. 4). If, to vary our previous
illustration, we had measured the statures of men in each of =
different districts, and then proceeded.to form a set of samples
by taking one man from each district for the first sample, one
man from each district for the second sample, and so on, the
standard-deviation of the means of the samples so formed would
be appreciably less than the standard error of simple sampling
oo/nn.  As a limiting case, it is evident that if the men in each
district were all of precisely the same stature, the means of all the
samples so compounded would be identical : in such a case, in fact,
0y =8,, and consequently o,,=0. To give another illustration, if
the cards from which we were drawing samples had been arranged
in order of the magnitude of X recorded on each, we would get
a much more stable sample by drawing one card from each
successive mth part of the record than by taking the sample
according to our previous rules—e.g. shaking them up in a bag
and taking out cards blindfold, or using some equivalent process.

The result is perhaps of some practical interest. It shows that,
if we are actually taking samples from a large area, different
districts of which exhibit markedly different means for the
variable under consideration, and are limited to a sample of n
observations ; if we break up the whole area into » sub-districts,
each as homogoeneous as possible, and take a contribution to the
sample from each, we will obtain a more stable mean by this
orderly procedure than will be given, for the same number of
observations, by any process of selecting the districts from which
samples shall be taken by chance. There may, however, be a
greater risk of biassed error. The conclusions seem in accord
with common-sense.

(c) Finally, suppose that, while our conditions (@) and (5) of § 2
hold good, the magnitude of the variable recorded on one card
drawn is no longer independent of the magnitude recorded on
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another card, e.g. that if the first card drawn at any sampling
bears a high value, the next and following cards of the same
sample are likely to bear high values also. Under these circum-
stances, if 7, denote the correlation between the values on the
first and second cards, and so on,

o

o
sf,,=; Fo5(rotret . oL F Tt L L)

There are n(n—1)/2 correlations; and if, thercfore, r is the
arithmetic mean of them all, we may write

r I +#in ]|‘| . . (L)

As the means and standard-deviations of #,. x,, . . . . z, arc all
identical, » may more simply be regarded as the correlation
coefficient for a table formed by taking all possible pairs of the
n values in every sample. If this correlation be positive, the
stahdard error of the mean will be increased, and for a given
value of » the increase will be the greater, the greater the size of
the samples. If » be negative, on the other hand, the standard
error will be diminished. Equation (11) corresponds precisely to
equation (6), § 13, of Chap. XIV.

As was pointed out in that chapter, the case when » is positive
covers the case discussed under (a): for if we draw successive
samples from different records, such a positive correlation is at
once introduced, although the drawings of the several cards at
eack sampling are quite independent of one another. Similarly,
the case discussed under (b) is covered by the case of negative
correlation, for if each card is always drawn from a separate and
distinct part of the record, the correlation between any two «’s will
on the average be negative : if some one card be always drawn
from a part of the record containing low values of the variable,
the others must on an average be drawn from parts containing
relatively high values. It is as well, however, to keep the cases
(a), (b), and (c¢) distinct, since a positive or negative correlation
may arise for reasons quite different from those considered under
(a) and (b).

15. With this discussion of the standard error of the arithmetic
mean we must bring the present work to a close. To indicate
briefly our reasons for not proceeding further with the discussion
of standard errors, we must remind the student that in order to
express the standard error of the mean we require to know, in
addition to the mean itself, the standard-deviation about the mean,
or, in other words, the mean (deviation)? with respect to the mean.
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Similarly, to express the standard error of the standard-deviation
we require to know, in the general case, the mean (deviation)*
with respect to the mean. Either, then, we must find this quantity
for the given distribution—and this would entail entering on a
field of work which hitherto we have intentionally avoided—or we
must, if that be possible, assume the distribution to be of such a
form that we can express the mean (deviation)* in terms of the
mean (deviation)?. This can be done, as a fact, for the normal
distribution, but the proof would again take us rather beyond
the limits that we have set ourselves. To deal with the standard
error of the correlation coefficient would take us still further
afield, and the proof would be laborious and difficult, if not
impossible, without the use of the differential and integral cal-
culus. We must content ourselves, therefore, with a simple
statement of the standard errors of some of the more important
constants. .
Standard-deviation.—If the distribution be normal,

standard error of the ) -
standard-deviation in > = —— | . (12)
a normal distribution | N

This is generally given as the standard error in all cases: it is,
however, by no means exact : the general expression is

standard error of the standard- s 3
deviation in a distribution » =, /2. TF2 (13)
of any form ] s m

where p, is the mean (deviaticn)i—deviations being, of course,
measured from the mean—and w. the mean (deviation)? or the
square of the standard-deviation: n is assumed sufficiently large
to make the errors in the standard-deviation small compared with
that quantity itself. Equation (13) may in some cases give
values considerably greater—twice as great or more—than (12).
(Cf. ref. 15.) If, however, the distribution be normal, equation
(12) gives the standard error not merely of standard-deviations of
order zero, to use the terminology of Chap. XII., but of standard-
deviations of any order (ref. 27). It will be noticed, on reference
to equation (4) above, § 8, that the standard error of the standard-
deviation is less than that of the semi-interquartile range for a
normal distribution.
Yor a normal distribution, again, we have—

standard error of the co-1 ¢ 3
efficient of variation v | = /25
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The expression in the bracket is usually very nearly unity, for
a normal distribution, and in that case may be neglected.
Correlation coefficrent.—If the distribution be normal,

standard error of the cor-1 ;7 _ .

relation coefficient for > = . . (15)
a normal distribution } N

This is the value always given : the use of a more general formula
which would entail the use of higher moments does not appear
to have been attempted. As regards the case of small samples,
cf. ref. 25. Equation (15) gives the standard error of a coefficient
of any order, total or partial (ref. 27). For the standard error of
the correlation-coefficient for a fourfold table (Chap. XI., § 10),
see ref. 28: the formula (15) does not apply.
Coefficrent of regression.—If the distribution be normal,

standard error of the co- Vi e
efficient of regression by, » =71 = Tt (16)
for a normal distribution | Ty Nn Ty Nn

This formula again applies to a regression coefficient of any order,
total or partial: z.e. in terms of our general notation, £ denoting
any collection of secondary subseripts other than 1 or 2,

standard error of &,,, for 1 O 1.0k

a normal distribution | = ¢,, A/n.

Correlation ratio.—The general expression for the standard
error of the correlation-ratio is a somewhat complex expression
(cf. Professor Pearson’s original memoir on the correlation-ratio,
ref. 13, Chap. X.). In general, however, it may be taken ag
given sufficiently closely by the above expression for the standard
error of the correlation coefficient, that is to say,

standard error of correlation-1 1-17- e
ratio approximately [ = An © )

As was pointed out in Chap. X, § 21, the value of {=7%~-1+2is a
test for linearity of regression. Very approximately (Blakeman,
ref. 1),

standard error of Z=2\/7—CL JA-m2-(1 -722+1. (18)

For rough work the value of the second square root may be
taken as nearly unity, and we have then the simple expression,

Iy
standard error of  roughly =2 . /% o . (19)
fl
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To convert any standard error to the probable error multiply by
the constant 0-674489 ., . | .

16. We need hardly restate once more the warnings given in
Chap. XIV., and repeated in § 9 above, that a standard error can
give no evidence as to the biassed or representative character of
a sample, nor as to the magnitude of errors of observation, but
we may, in conclusion, again emphasise the warnings given
in §§ 1-3, Chap. XIV., as to the use of standard errors when
the number of observations in the sample is small.

In the first place, if the sample be small, we cannot in general
assume that the distribution of errors is approximately normal:
it would only be normal in the case of the median (for which
p and ¢ are equal) and in the case of the mean of a normal
distribution, Consequently, if # be small, the rule that a
range of three times the standard error includes the majority
of the fluctuations of simple sampling of either sign does not
strictly apply, and the ‘probable error” becomes of doubtful
significance.

Secondly, it will be noted that the values of o and g, in (1), of

fpin (2), and of o in (4) and (5), 7.c. the values that would be

given for these constants by an indefinitely large sample drawn
under the same conditions, or the values that they possess in
the original record if the sample is unbiassed, are assumed to be
known a priori. But this is only the case in dealing with the
problems of artificial chance: in practical cases we have to use
the values given us by the sample itself. If this sample is based
on a considerable number of observations, the procedure is safe
enough, but if it be only a small sample we may possibly mis-
estimate the standard error to a serious extent. Following the
procedure suggested in Chap. XIV., some rough idea as to the
possible extent of under-estimation or over-estimation may be
obtained, e.g. in the case of the mean, by first working out the
standard error of ¢ on the assumption that the values for the
necessary moments are correct, and then replacing o in the
expression for the standard error of the mean by o + three times
its standard errnr so obtained.

Finally, it will be remembered that unless the number of
observations is large, we cannot interpret the standard error of
any constant in the inverse sense, <.e. the standard error ceases
to measure with reasonable accuracy the standard-deviation of
true values of the constant round the observed value (Chap.
XIV. § 3). If the sample be large, the direct and inverse
standard errors are approximately the same.

23
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EXERCISES.

1. For the data in the last column of Table IX., Chap. VI. p. 95, find
the standard error of the median (154°7 Ibs.).

2. For the same distribution, find the standard errors of the two quartiles
(1425 lbs., 168°4 1bs.).

3, For the same distribution, find the standard error of the semi-inter-
quartile range.

4, The standard-deviation of the same distribution is 213 lbs. Find the
standard error of the mean, and compare its magnitude with that of the
standard error of the median (Qn. 1).

5. Work out the standard error of the standard deviation for the distribu-
tion of statures used as an illustration in § 6, (Standard-deviation 2°57 in. ;
8585 observations.) Compare the ratio of standard error of standard-
deviation to the standard-deviation, with the ratio of the standard error of
the semi-interquartile range to the semi-interquartile range, assuming the
distribution normal.

6. Calculate a small table giving the standard errors of the correlation
coefficient, based on (1) 100, (2) 1000 observations, for values of r=0, 0°2, 0°4,
0°6, 0°8, assuming the distribution normal.



APPENDIX I.

TABLES FOR FACILITATING STATISTICAL WORK.
A, CALCULATING TABLES.

For heavy arithmetical work an arithmometer is, of course,
invaluable ; but, owing to their cost, arithmetic machines are, as a
rule, beyond the reach of the student. For a great deal of simple
work, especially work not intended for publication, the student
will find a slide-rule exceedingly useful: particulars and prices
will be found in any instrument maker’s catalogue. A plain
25-cm. rule will serve for most ordinary purposes, or if greater
accuracy is desired, a 50-cm. rule, a Fuller spiral rule, or one of
Hannyngton-pattern rules (Aston & Mander, London), in which
the scale is broken up into a number of parallel segments, may be
preferred. For greater exactness in multiplying or dividing,
logarithms are almost essential : five-figure tables suffice if answers
are only desired true to five digits ;" if greater accuracy is needed,
seven-figure tables must be used. It is hardly necessary to cite
special editions of tables of logarithms here, but attention may
perhaps be directed to the recently issued eight-figure tables of
Bauschinger and Peters (W. Engelmann, Leipzig, and Asher & Co.,
London, 1910 ; vol. i. containing logarithms of all numbers from
1 to 200,000, price 18s. 6d. net.; vol. ii. containing logs. of
trigonometric functions).

If it is desired to avoid logarithms, extended multiplication
tables are very useful. There are many of these, and four of
different forms are cited below. Zimmermann’s tables are inex-
pensive and recommended for the elementary student, Cotsworth’s,
Crelle’s, or Peters’ tables for more advanced work. Barlow’s tables
are invaluable for calculating standard-deviations of ungrouped
observations and similar work.

(1) Banvrow’s Tables of Squares, Cubes, Square-roots, Cube-roots, and Recip-
rocals of all Integer Numbers wp fo 10,000; E & F. N. Spon,
London and New York ; stereotype edition, price 4s.
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(2) CotswortH, M. B., The Direct Calculator, Series 0. (Product table to
1000 x 1000.) M‘Corquodale & Co., London ; price with thumb index,
925s. ; without index, 21s.

(8) CRELLE, A, L., Rechentafeln. (Multiplication table giving all products up
to 1000 x 1000.) Can be obtained with explanatory introduction in
German or in English. G. Reimer, Berlin ; price 15s.

(4) ELDERTON, W. P. *‘Tables of Powers of Natural Numbers, and of the
Sums of Powers of the Natural Numbers from 1 to 100 (gives
powers up to seventh), Biometrika, vol. ii. p. 474.

(5) PETERS, J., Neue Rechentafeln fur Multiplikation und Division. (Gives
products up to 100 x 10,000 : more convenjent than Crelle for forming
four-figure products. Introduction in English, French or German.)
G. Reimer, Berlin ; price 15s.

(6) ZIMMERMANN, H., Rechentafel, nebst Sammlung haufig gebrauchter
Zahlenwerthe. (Products of all numbers up to 100 x 1000 : subsidiary
tables of squares, cubes, square-roots, cube-roots and reciprocals,setc.
for all numbers up to 1000 at the foot of the page.) W. Ernst & Son,
Berlin ; price 5s. ; English edition, Asher & Co., London, 6s.

B. SPECIAL TABLES OF FUNCTIONS, ETC.

Several tables of service will be found in the works cited in
Appendix II, eg., a table of Gamma Functions in Elderton’s
book (12) and a table of six-figure logarithms of the factorials
of all numbers from 1 to 1100 in De Morgan’s treatise (11).

(7) DaveEnvorr, C. B., Statistical Methods, with especial reference o Bio-
logical Variation; New York, John Wiley; London, Chapman &
Hall ; second edition, 1904. (Tables of area and ordinates of the
normal curve, gamma functions, probable errors of the coefficient of
correlation, powers, logarithms, etc.)

(8) DUFFELL, J. H., ‘‘Tables of the Gamma. function,” Biometrika, vol. vii.,
1909, p. 438. (Seven-figure logarithms of the function, proceeding by
differences of 0-001 of the argument.)

(9) ELpErToN, W. P., ““ Tables for Testing the Goodness of Fit of Theory to
Observation,” Biometrika, vol. 1., 1902, p. 155.

(10) EvEriTT, P. F., ‘“Tables of the Tetrachoric Functions for Four-
fold Correlation Tables,” Biometrika, vol. vii., 1910, p. 437, and vol.
viii., 1912, p. 385. (Tables for facilitating the calculation of the cor-
relation coefficient of a fourfold table by Pearson’s method on the
assumption that it is a grouping of a normally distributed table ; ¢f.
ref. 14 of Chap. XVL)

(11) GiBsoN, WINIFRED, ‘‘ Tables for Facilitating the Computation of Prob-
able Errors,” Biometrika, vol. iv., 1906, p. 385.

(12) HERON, D., “An Abac to determine the Probable Errors of Correlation
Coefficients,” Biomeirika, vol. vii., 1910, p. 411. (A diagram giving
the probable error for any number of observations up to 1000.)

(13) LEE, ALICE, ‘‘ Tables of F(r, v) and H{r, y) Functions,” British A4ssocia-
tion Report, 1899. (Functions occurring in connection with Professor
Pearson’s frequency curves. )

(14) REIND, A., ‘‘ Tables for Facilitating the Computation of Probable Errors
of the Chief Constants of Skew Krequency-distributions,” Biometrika,
vol. vii., 1909-10, p. 127 and p. 386.
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SHORT LIST OF WORKS ON THE MATHEMATICAL
THEORY OF STATISTICS AND THE THEORY OF
PROBABILITY. :

TeE student may find the following short list of service, as
supplementing the lists of references given at the ends of the
several chapters, the latter containing, as a rule, original memoirs
only. The economic student who wishes to know more of the
practical side of statistics may be referred to Mr A. L. Bowley's
“Elements” (6 below), to An Elementary Manual of Statistics
(Macdonald & Evans, London, 1910), by the same writer (useful
as a general guide to English statistics), and to M. Jacques
Bertillon’s Cours elementaire de statistique (Societé d’editions
scientifiques, 1895 : international in scope). Dr A. Newsbolme’s
Vital Statistics (Swan Sonnenschein, 3rd edn., 1899) will also be
of service to students of that subject.

The great majority of the works mentioned in the following
list, with others which it has not been thought necessary to
include, are in the library of the Royal Statistical Society.

(1) A1ry, Sir G. B., On the Algebraical and Numerical Theory of Errors of
Observations ; 1st edn., 1861 ; 3rd edn., 1879.

(2) BERNOULLY, J., Ars conjectandi, opus posthumum : Accedit traclatus de
seriebus infinitis, et epistola gallicé scripta de ludo pilae reticularis,
1713. (A German translation in Ostwald’s Klassiker der exakten
Wissenschaften, Nos. 107, 108.)

(8) BERTRAND, J. L. F., Calcul des probabilités ; Gauthier-Villars, Paris, 1889.

(4) BeTz, W., Ueber Korrelation; Beihefte zur Zeitschrift fur ang. Psych.
und psych. Sammelforschung; J. A. Barth, Leipzig, 1911. (Applica-
tions to psychology. )

(5) BOREL, K., Eléments de la théorie des probabilités; Hermann, Paris, 1909.

(6) BowLEY, A. L., Elements of Statistics; P. S. King, London ; 1st edn.,
1901 ; 3rd edn., 1907.

(7) Browx, W., The Essentials of Mental Measurement ; Cambridge Uni-
versity Press, 1911. (Part 2 on the theory of correlation : applications
to experimental psychology.)

(8) Bruns, H., Wahkrscheinlichkeitsrechnung wund Kollektivimasslehre ;
Teubner, Leipzig, 1906.
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(9) COgRNOT, A. A., Exposition de la théorie des chances et des probabilitds,
1843.

(10) CzunERr, E., Wahkrscheinlichkeitsrechnung und ihre Anwendung anf
Fehlerausgleichung, Statistik und Lebensversicherung ; Teubner,
Leipzig, 2nd edn., vol. i., 1908-10.

(11) DE MoRreAN, A., Treatise on the Theory of Probabilities (extracted from
the Encyclopedia Metropolitana), 1837.

(12) ELpkrTOoN, W. P., Frequency Curves and Correlation ; C. & E. Layton,
London, 1906. (Deals with Professor Pearson’s fxequency curves and
corre]atlon with illustrations chiefly of actuarial interest.)

(13) FECHNER, G. T., Kollektivmassichre (posthumously published ; edited
by G. F. Llpps) Engelmann, Leipzig, 1897.

(14) GaLroway, T., Treatise on Probability (republished from the 7th edn.
of the Encyclopwdw Britannica), 1839.

(15) Gauss, C. F., Méthode des moindres carrés: Mémotires sur la combinaison
des observations, traduits par J. Bertrand, 1855.

(16) JoHANNSEN, W., Elemente der exaktcn Erblichkeitslehre ; Fischer, Jena,
1909. (Very lurgely concerned with an exposition of the statistical
methods. )

(17) LaprAcE, PIERRE SiMoN, Marquis de, Essai philosophique sur les
probabzlzte’s 1814. The mtroguction to 18, separately printed with
some modifications, )

(18) LarPrLACE, PIERRE SIMON, Marquis de, Théoriec analytique des probabilités ;
2nd edn., 1814, with supplements 1 to 4.

(19) Lexis, W., 4dbhandlungen zur Theorie der Bevolkcrungs- und Moral-
statistik ; Fischer, Jena, 1908.

(20) Porxcare, H., Calcul des probabilités ; Gauthier-Villare, Paris, 1896.

(21) PorssoN, S. D., Recherches sur la probabilité des jugements en mutiere
criminelle el en maliere civile, precéddes des régles générales du calcul
des probabilités, 1837. (German translation by C. H. Schnuse, 1841.)

(22) QUETELET, L. A. J., Letires sur la théorie des probabilités, appliquée aux
sciences morales et politigues, 1846. (English translation by 0. G.
Downes, 1849.)

(23) THORNDIKE, E, L., 4n Introduction to the Theory of Mental and Svcial
Measurements, Science Press, New York, 1904.

(24) VENN, J., The Logic of Chance: an Essay on the Foundations and
Province of the Theory of Probabilily, with especial reference lo its
Logical Bearings and ils Application to Moral and Social Science and to
Statistics ; 3rd edn., Macmillan, London, 1888.

(26) WESTERGAARD, H., Die Grundziige der Theorie der Statistik ; Fischer,
Jena, 1890,
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CHAPTER III.

1. Deaf-mutes from childhood per million among males 222 ; among
females 183 ; there is therefore positive association between deaf-mutism and
male sex : if there had been no association between deaf-mutism and sex, there
would have been 3176 male and 3393 female deaf-mutes.

2. (a) positive association, since (4.B),=1457.

(b) negative association, since 294/490=23/5, 380/570=2/3.
(c) independence, since 256/768=1/3, 48/144=1/3,

3. Percentage of Plants above the Average Height.
Parentage Crossed. Self-fertilised.
Ipomea purpurea. 86 per cent. 25 per cent.
Petunia violacea . . 79 s 17 ..
Reseda lutea : . 78

1 34 tR}
Reseda odorata - .71 " 45 e
Lobelia fulgens . ; . 50 35

The association is much less for the species at the end than for those at the
beginning of the list.

4. Percentage of dark-eyed amongst the sons of dark-eyed fathers 89 per
cent.

Percentage of dark-eyed amongst the sons of not dark-eyed fathers 10 per
cent,

If there had been no heredity, the frequencies to the nearest unit would
have been (4.B), 18, (4B), 111, (aB), 121, (aB), 750.

5. Percentage of light-eyed amongst the wives of light-eyed husbands 59
per cent,

Percentage of light-eyed amongst the wives of not light-eyed husbands 53
per cent,

If there had been no association : (4B),=298, (A8),=225, (aB);=143, (aB),
=108.

6. The following are the proportions of the insane per thousand in
successive age groups :—

In general population: 09, 2-3, 41, 57, 69, 75, 77, 68
Amongst the blind : 201, 16°0, 163, 20°7, 18-3, 178, 114, 5°3.

Note the diminishing association, which is especially clear in the age-group
65—, and the negative association in the last age-group. The association
coefficient gives the values below, which decrease continuously :—

Association coefficient : +0°'92, +0'75, +061, +0'57, +0'46, +041,

+0°20, —0-18.
CHAPTER 1V,
1. (D)/N = 6°9 per cent. (4)/N = 68 per cent.
(AD)[(4) =450 (ADY(D) =446 |,

(BD)/(B) = 36
(4BD)j(48) =412

(BD)(B) =427 .
(ABD)/(AB)=516

The above give two legitimate comparisons.

(4B)(B) = 47
(ABD)/(8D) =549
(AB)/(B) =292
(ABD)/(BD)=853

The general results are the same
as for the boys, 4.e. a very small association between development-defects and
dulness amongst those exhibiting nerve-signs, as compared with those who do
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not exhibit nerve-signs, or with the girls in general. As the association
amongst those who do not exhibit nerve-signs is quite as high as for the girls
in general, the *‘ conclusion ” quoted does not seem valid.

2. (1) 2) (1) (2)
per per per per

thousand. thousand. thousand. thousand.
(B)/N 32 7'5 (4)/N) 09 40
(ABY(4) 149 117 (4B)/(B) 40 63
(BOY(C) 388 630 (4OWO) 66 188
(ABO)(AC) 216 214 (4BC)(BC) 368 638

The above give the two simplest comparisons, either of which is sufficient to
show that there is a high association between blindness and mental derange-
ment amongst the deaf-mutes as well as in the general population ; amongst
the old, the association is, in fact, small for the general population, but well-
marked for deaf-mutes. This result stands in direct contrast with thaf of
Qu. 1, where the association between the two defects 4 and D was much
smaller in the defective universe 8 than in the universe at large. As previously
stated, no great reliance can be placed on the census data as to these infirmities,

3. If the cancer death-rates for farmers over 45 and under 45 respectively
were the same as for the population at large, the rate for all farmers 15—
would be 1'11. This is slightly less than the actual rate 1:20, but the excess
would not justify the statement that ‘‘ farmers were peculiarly liable to cancer.”
It is, in point of fact, due to the further differences of age-distribution that we
have neglected, e.g. amongst those over 45 there are more over 55 amongst
farmers than amongst the general population, and so on.

4. 15 per cent.

6. If 4 and B were independent in both €' and  universes, we would have
(4 B) equal to

471 x419  151x139
L —_— = E
617 ssg o4
Actually (4 B) only=358. Therefore 4 and B must be disassociated in one or
both partial universes.

9. (1) 68°1 per cent. (2) 425 per cent. The fallacy discussed in § 2 is
now avoided, and there seems no reason for declining to consider this as evidence
of the effect of expenditure on election results.

10. The limits to y are—

y<$(Brx—2°-1)
>3z +a?),

subject to the conditions y}z, y<{0, y<{2x~1. No inference of a positive
association from two negatives is possible unless z lies between the limits
382 ..., 618 .. ..
11. The iimits to y are :—
1) y<3(6x—6x%—1)
> 4(x+ 622),
subject to conditions y<¢0, <4z -1, pz.

An inference is only possible from positive associations of 4Band 4C if 23>
4 ; an inference is only possible from two negative associationsif « lies between

211 . . . . and °274. . . . Note that = cannot exceed 3.
(2) y<3(6z — 322 1)
> 4(22 + 322),

subject to conditions y<{0, 46z -1, ¥
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No inference is possible from positive associations of 45 and BC.
An inference is only possible from negative associations if x lie between

183 . . . .and 215 .. .. Note that cannot exceed }.
(3) y<3(6x—22%2-1)
> 4(3x+ 227),

subject to the conditions y<0, 45z 1, 0.

As in (2), no inference is possible from positive associations of 4C and BC;
an inference is possible from negative associations if x lie between 177 . . . .
and 224 . . .. Note that x cannot excced }.

CHAPTER V.
1. 4,068 B, 036

CHAPTER VI

1. 1200; 200. 2. 100; 20. 3. 146°25, 4. 2165,

CHAPTER VII.

2. Mean, 15673 1b. Median, 15467 1b. Mode (approx.) 1506 1b. (Note
that the mean and the median should be taken to a place of decimals further
than is desired for the mode: the true mode, found by fitting a theoretical
frequency curve, is 1511 1b.)

3. Mean, 0°6330. Median, 0'6391. Mode (approx.), 0:651, (True mode
is 0°653.)

4. £35'5 approximately.

5. (1) 116'0. (2) Means 77°4, 89°0, ratio 114°9. (3) Geometrical means 772,
889, ratio 115°2. (4) 115°2.

6. (1) 921,507. (2) 916,963.

7. 1st qual. 10s. 63d. 2nd qual. 9s. 23d.

8. m.p. Ifthe terms of the given binomial series are multiplied by 0, 1, 2, 3

, note that the resulting series is also a binomial when a common factor
is removed. [The full proof is given in Chapter XV. § 6.]

CHAPTER VIIL

2. Standard deviation 21°3 1b. Mean deviation 16-4 1b. Lower quartile
142°5, upper quartile 1684 ; whence @=12'95. Ratios: m.d./s.d. =077,
@fs.d.=0'61. Skewness, 0:29, . :

3. Approximately lower quartile=£26'1, upper quartile=£54'6, ninth
decile — £94.

5. (1) M=732, o=178, (2) M=782, a=17'5. (3) M=73"2, =18°0.
(Note that while the mean is unaffected in the second place of decimals, the
standard deviation is the higher the coarser the grouping.)

6. a/n.pg. The proofis given in Chapter XV. § 6. .

7. The assumption that observations are evenly distributed over the
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2. 715 33= +0°680, 7)3.0,= + 0803, 7y,.55= +0'397.
Togyg= — 0438, 7pe1q= — 0°553, Tgp1p= — 0149,
010234 =9°17, 0195 =49°2, 07g10,=12"5, oy 109=105"4.

X,=53+0"127 X, + 0'587 X +0°0345 X .

3. The correlation of the pth order is 7/(1 +pr). Hence if = be negative, the
correlation of order »—2 cannot be numerically greater than unity and »
cannot exceed (numerically) 1/(n — 1).

| Yt

5. Pigg= =1, 15y =795, = +1.

9 . —_ 1
b Ty —Tige— o3 =~ Ly

CHAPTER XIII.

. Theo. M=6, d=1732 : Actual M =6'116, ¢ =1732,
2. (@) Theo. M=2'5, =1'118 : Actual =248, ¢=114,
(& ,, M=8, ¢=122: ,, M=2'97, ¢=126.
(¢) ., M=35,0=1323: ., M=347, ¢=140.

3. Theo. M =50, =5 : Actual ¥=50"11, ¢ =523,

4. The standard deviation of the proportion is 0'00179, and the actual
divergence is 5°4 times this, and therefore almost certainly significant.

5. The standard deviation of the number drawn is 32, and the actual
difference from expectation 18. There is no significance.

6. p=1-o2/M, n=Mp : p=0510, n.=12'0 : p=0°454, n=110"4.

8. Standard deviation of simple sampling 23'0 per cent. The actual
standard-deviation does not, therefore, seem to indicate any real variation, but
only fluctuations of sampling.

9. Ditference from expectation 7°5 : standard error 10°0. The difference
might therefore occur frequently as a fluctuation of sampling.

10. The test can be applied either by the formule of Case II. or Case III.
Case IT. is taken as the simplest.

(@) (AB)/(B)=691 per cent.: (4B)/(B)=800 per cent. Difference 10-9
per cent. (4)/N=711 per cent. and thence €,=12'9 per cent. The actual
difference is less than this, and would frequently occur as a fluctuation of
simple sampling.

(0) (4B)[(B)=70"1 per cent.: (48)/(8)=643 per cent. Difference 5'8 per
cent. (A)/N=67-6 per cent., and thence ;=340 per cent. The actual
difference is 1'7 times this, and might, rather infrequently, oceur as a fluctua-
tion of simple sampling.

—

CHAPTER XIV.

1. Row. Group of Rows. ape
1 31 5, 6,and 7 18
2 21 8,9 10, and 11 16
3 17 12, 18, and 14 12
4 2 15 and upwards 11

op is given in units per 1000 births, as s and s,

2. $,=7'02, and ¢p=2°5 units.

3. o2—n.pq as if the chance of success were p in all cases (but the mean is
n/2 not p.n).

4. Mean number of deaths per annum = g*=680,

a2=566,582. 7=0000029.









INDEX.

[The references are to pages. The subject matter of the Exercises given at
the ends of the chapters has been indexed only when such exercises (or
the answers thereto) give the constants for statistical tables in the text,
or theoretical results of general interest; in sll such cases the number of
the question cited is given. In the case of authors’ names, citations in
the text are given first, followed by citations of the authors’ papers or

books in the lists of references.]

ACCIDENT, deaths from (law of small
chances), 265-266.

Achenwall, Gottfried, Abriss der
Staatswissenschaft, 2.

Ages, at death of certain women
(table), 78 ; of husband and wife
(correlation), 159 ; diagram, 173;
constants (qu. 3), 189.

Aggregate, of classes, 10-11.

Agricultural labourers’ earnings. See
Earnings.

Airy, Sir G. B., use of terms ‘¢ error
of mean square” and ‘‘modulus,”
144. Refs., Theory of Errors of
Observation, 359.

Ammon, O., hair and eye-colour data
cited from, 61.

Annual value of dwelling-houses
(table), 83; of estates in 1715,
table 100, diagram, 101.

Arithmetic mean. See Mean, arith-
metic.

Array, def., 164 ; standard-deviation
of, 177, 204-205, 236-237, in
normal correlation, 319-321.

Association, generally, 25-59; def.,
28 ; degrees of, 29-30; testing by
comparison of percentages, 30-35;
constancy of difference from in-
dependence values for the second-
order frequencies, 35-36; co-
efficients of, 37-39; illusory or

misleading, 48-51; total possible
number of, for » attributes, 54-56 ;
case of complete independence,
56-57 ; use of ordinary correlation-
coefficient as measure of association,
216-217 ; Pearson’s coefficient based
on normal correlation (refs.), 40,
333 ; refs., 15, 39-40, 333,

Association, partial, generally, 42-59 ;
the problem, 42-43 ; total and par-
tial, def., 44 ; arithmetical treat-
ment, 44-48 ; testing, in ignorance
of third-order frequencies, 51-54 ;
refs., 57.

examples : deaths and sex, 32-
33 ; deaths and occupation, 52-53 ;
deaf-mutism and imbecility, 83-84 ;
eye-colour of father and son, 34-35 ;
eye-colour of grandparent, parent,
and offspring, 46-48, 53-54 ; colour
and prickliness of Datura fruits, 36—
37; defects in school-children, 45-46.

Asymmetrical frequency-distributions,
90-102 ; relative positions of mean,
median and mode in, 121-122,
diagrams, 113-114. See also Fre-
quency-distributions.

Asymmetry in frequency-distribu-
tions, measures of, 107, 149-50.
Attributes, theory of, generally, 1-59 ;
def., 7; notation, 9-10, 14-15;
positive and negative, 10 ; order and

369
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aggregate of classes, 10-11; ulti-
mate classes, 12; positive classes,
13-14; consistence of -class-fre-
quencies, 17-24 (see Consistence);
association of, 25-59 (see Associa-
tion) ; sampling of, 254-334 (see
Sampling of attributes).

Averages, generally, 106-32; def.,
107 ; desirable properties of, 107-
108 ; forms of, 108; average in
sense of arithmetic mean, 109 ;
refs., 129-130. See Mean, Median,
Mode.

Axes, principal, in correlation, 321-
322,

Barrow, P., tables of squares, ete.,
67. Refs,, 356.

Barometer heights, table, 96; dia-
gram, 97; means, medians, and
modes, 122,

Bateman, H., refs.,
chances, 273.

Bateson, W,, data cited from, 37.

Beeton, Miss M., data cited from, 78.

Bernoulli, J., refs., Ars Conjectandi,
359,

Bertillon, J., ref., Cours dlémentaire
de statistique, 6, 359.

Bertrand, J. L. F., refs., Calcul des
probabilités, 359.

Betz, W., ref., Ueber Korrelation, 359,

Bias in sampling, 261-262, 279-281,
336-337, 343, 353.

Binomial series, 291-300 ; genesis of,
in sampling of attributes, 291-293 ;
calculated series for different values
of p and n, 294, 295 ; experimental
illustrations of, 258, 259 (qu. 1
and qu. 2), 274 ; graphic method of
forming a representation of series,
295-297 ; mechanical method of
forming a representation of series,
297-299, refs., 313 ; direct deter-
mination of mean and standard-
deviation, 299-300; deduction of
normal curve from, 301-302 ; refs.,
314.

Blakeman, J., refs., tests for linearity
of regression, 209, 354 ; probable
error of contingency coeflicient, 354.

Boole, G., refs., Laws of Thought, 23.

Booth, Charles, on pauperism, 193,
195.

Borel, E., refs.,, Théorie des proba-
bilités, 359,

law of small

STATISTICS.

Bortkewitsch, L. von., refs., law of
small chances, 273.

Bowley, A. L., refs., effect of errors
on an average, 355; on sampling,
354 ; Measurement of Groups and
Seres, 354 ; Elements of Statistics,
359 ; Elementary Manual of Sta-
tistics, 359.

Bravais, A., refs,, correlation, 188, 332.

British Association, data cited from,
stature, 88 ; weight, 95, see Stature,
Weight; Reports on index-num-
bers; refs., 130-131. Address by
A. L. Bowley on sampling, 354.

Brown, W., refs., effect of experi-
mental errors on the correlation-
coefficient, 226 ; The Essentials of
Mental Measurement, 359.

Bruns, H., refs., Wahrscheinlich-
keitsrechnung und Kollektivmass-
lehre, 359.

Cexnsus (England and Wales), tabu-
lation of infirmities in, 14-15 ; data
as to infirmities cited from, 33-34 ;
classification of occupations, as
example of a heterogeneous classi-
fication, 72; data as to ages of
husbands and wives cited from, 159.

Chance, in sense of complex causation,
80; of success or fuilure of an
event, 256.

Chances, law of small, 265-266 ; refs.,
273

78.

Charlier, C. V. L., refs, theory of
frequency curves, resolution of a
compound normal curve, 314, 315.

Childbirth, deaths in, application of
theory of sampling, 282-284.

Class, in theory of attributes, 8;
class-symbol, 9; class-frequency,
10 ; positive and negative classes,
10 ; ultimate classes, 12 ; order of
a class, 10.

Classification, generally, 8 ; by dicho-
tomy, def., 9 ; manifold, 60-74, 76 ;
homogeneous and heterogeneous,
71-72; of a variable for frequency-
distribution or correlation table,
76, 80-81, 157, 164,

Class-interval, def., 76; choice of
magnitude and position, 79-80 ;
desirability of equality of intervals,
76, 82-83 ; influence of magnitude
on mean, 113-114, 115, 116; on
standard-deviation, 140, 212.
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Cloudiness at Breslan frequency dis-
tribution, 103 ; diagram, 104.

Coefficient, of association, 37-39; of
contingency, 64-67 ; of variation,
149, standard error, 351; of cor-
relation, see Correlation.

Consistence, of class-frequencies for
attributes, generally, 17-24; def.,
18-19; conditions, for one or two
attributes, 20 ; for three attributes,
21-22 ; refs., 23.

Consistence of correlation-coefficients,

250-251.

Contingency tables, def., 60; treat-
ment of, by elementary methods,
61-63 ; isotropy, 68-71, 328-331.

—— coefficient of, 64-67; applica-
tion to correlation tables, 167, (qu.
3)189 ; standard error of (refs. ), 354.

Contrary classes and frequencies (for
attributes), 10 ; case of equality of
contrary frequencies (qu. 6, 7, 8),
16 ; (qu. 8), 24 ; (qu. 7, 8, 9), 59.

Correction of death-rates, etc., for

age and sex-distribution, 223-225 ;
refs., 226.

—— of standard-deviation for group-

ing of observations, 211-212; refs.
(including correction of moments
generally), 225.

—— of correlation-coefficient for

errors of observation, 213-214;
refs., 225-226.

Correlation, generally, 157-253 ; con-

struction of tables, 164 ; represen-
tation of frequency-distribution by
surface, 165-167; treatment of
table by coefficient of contingency,
167 ; correlation-coefficient, 170-
174, def. 174, direct deduction,
231-233; regressions, 175-177,
def. 175; standard-deviations of
arrays, 177, 204, 205 ; calculation of
coefficient for ungrouped data, 177~
181, for a grouped table, 181-188;
between movements of two variables,
197-201 ; elementary methods for
cases of non-linear regression, 201~
202 ; rough methods for estimating
coefficient, 202-204; correlation-
ratio, 204-207 ; effect of errors of
observation on the coefficient, 213-
214; correlation between indices,
215-216 ; coefficient for a fourfold
table, direct, 216-217, on assump-
tion of normal correlation (Pearson’s

coefficient) (refs.), 40, 333 ; for all
possible pairs of & values, 217-
218 ; correlation due to hetero-
geneity of material, 218-219 ; effect
of adding uncorrelated pairs to a
given table, 219-220; application
to theory of weighted mean, 221-
223 ; correlation in theory of sam-
pling, 271, 286-289, 342, 349-350 ;
standard error of coefficient, 352.
Refs., 188, 208-209, 225-226. For
Illustrations, Normal, Partial, Ratio,
see below,

Correlation, Illustrations and Ex-

amples, correlation between: —

Two diameters of a shell (Pecten),
158 ; constants (qu. 3), 189,

Ages of husband and wife, 159 ;
diagram, 173 ; constants (qu. 3),
189.

Statures of father and son, 160 ;
diagrams, facing 166,174 ; constants
(qu. 3), 189; -correlation-ratios,
206-207 ; testing normality of table,
322-328 ; diagram of diagonal dis-
tribution, 325; of contour-lines
fitted with ellipses of normal sur-
face, 327.

Fertility of mother and daughter,
161, 195-196 ; diagram, 175 ; con-
stants (qu. 3), 189,

Discount rates and percentage of
reserves on deposits, 162 ; diagram,
facing 166.

Sex-ratio and numbers of births
in different districts, 163, 175;
diagram, 176; constants (qu. 3),
189; correlation - ratios, 207 ;
standard-deviations of arrays and
comparison with theory of samp-
ling, (qu. 7) 275 and (qu. 1) 289.

Earnings of agricultural labour-
ers, pauperism and out-reliet, 177~
181 ; constants, (qu. 2) 189, 239;
correlation-ratios, 207 ; treatment
by partial correlation, 239-241;
geometricalrepresentation, 245-247.

Old-age pauperism and out-relief,
182-185,

Changes in pauperism, out-relief,
proportion of old and population,
192-195; partial correlation, 241
245.

Lengths of mother- and daughter-
frond in Zemna Minor, 185-187.

‘Weather and crops, 196-197.
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Movements of infantile and

general mortality, 197-199.
Movements of marriage-rate and
foreign trade, 199-201.

Correlation, normal, 317-334 ; deduc-
tion of expression for two variables,
318-319; constancy of standard-
deviation of arrays and linearity
of regression, 319-320; contour
lines, 320-321 ; normality of linear
functions of two normally distri-
buted variables, 321; prineipal
axes, 321-322; testing for normality
of correlation table for stature,
322-328 ; isotropy of normal cor-
relation table, 328-331; outline
of theory for any number of
variables, 331-332; coefficient for
a normal distribution grouped to
fourfold form round medians
(Sheppard’s theorem), (qu. 4) 334 ;
applications to theory of qualitative

observations (refs.), 333. Refs.,
332-333.
—— partial, 229-253; the pro-

blem, partial regressions and cor-
relations, 229-231; notation and
definitions, 233-234 ; normal equa-
tions, fundamental theorems on
product-sums, 234-235; signifi-
cance of generalised regressions
and correlations, 236; reduction
of standard-deviation, 236-237, of
regression, 237-238, of correlation,
238 ; arithmetical treatment, 238-
245 ; representation by a model,
245-247 ; coefficient of n-fold cor-
relation, 247-249; expression of
correlations and regressions in terms
of those of higher order, 249-250 ;
consistence of coefficients, 250-251 ;
fallacies, 251-252; limitations in
interpretation of the partial correla-
tion-coefficient, partial association
and partial correlation, 252; par-
tial correlation in case of normal
distribution of frequency, 331-332.
Refs., 252-253, 332-333.

— ratio, 204-207 ; standard error,
352 ; refs., 208.

Cosin, values of estates in 1715, 100.
Cotsworth, M. B., refs., multiplica-
tion table, 357.
Cournot, A. A.,

probability, 360.
Crawford, G. E., refs., proof that

refs., theory of

STATISTICS.

arithmetic mean exceeds geometric,
130.
Crelle, A. L.,
table, 357.
Crops and weather, correlation, 196-
197.

Cunningham, E., ref., omega-functions,
314.

Czuber, E., refs.,
keitsrechnung, 360,

refs,, multiplication

Wahrscheinlich-

DARBISHIRE, A. D., data cited from,
128, 265. Refs., illustrations of
correlation, 188, 273.

Darwin, Charles, data cited from,
269-270.

Datura, association between colour
and prickliness of fruit, 37, 38,
(qu. 10) 275.

Davenport, C. B., data as to Pecton
cited from, 158. Refs,, statistical
tables, 357.

Deaf-mutism, association with im-
becility, 33-34, 38; frequency
amongst oflspring of deaf-inutes,
table, 104.

Deaths, death-rates, association with
sex, 32-33 ; with occupation (partial
correction for age - distribution),
52-53; in England and Wales,
1881-1890, table, 77 ; from diph-
theria, table, 98, diagram, 97 ; in-
fantile and general, correlation of
movements, 197-199 ; correction of|,
for age and sex-distribution, 52-53,
223-225, refs., 226; applications
of theory of sampling—deaths from
accident, 265-266, deaths in child-
birth, 282-284, deaths from ex-
plosions in mines, 287-288; in-
applicability of the theory of simple
sampling, 260-261, 282-284, 285-
286, 287-288.

Deciles, 150-152; standard error of,
337-341.

Defects; in school-children, associa-
tion of, 12, 45-46, refs., 15 ; census
tabulation of, 14-15.

De Morgan, A., refs., Formal Logic,
23 ; Theory of Probabilities, 360.
Deviation, mean, 134; generally,
144-147 ; def., '144 ; 18 least round
the median, 144-145; calculation
of, 145-14¢6, (qu. 7) 155-156 ; com-
parison of advantages with stan-
dard-deviation, 146 ; of magnitude
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with standard-deviation, 146-147;
of normal curve, 304.

Deviation, quartile, See Quartiles.

root-mean-square.  See Devia-

tion, standard.

standard, 134-144; def. 134;
relation to root-mean-square devi-
ation from any origin, 134-135;
is the least possible root-mean-
square deviation, 135 ; little affected
by small errors in the mean, 135 ;
calculation for ungrouped data,
135-137, for a grouped distribu-
tion, 138-141 ; influence of group-
ing, 140, 211-212; range of six times
the s.d. contains the bulk of the
observations, 140-142, 309; of a
series compounded of others, 142-
143; of N consecutive natural
numbers, 143 ; of a rectangle, 143 ;
of arrays in theory of correlation,
177, 204, 205, 319-320 ; of general-
ised deviations (arrays), 234, 236-
237 ; othernames for, 144 ; of a sum
or difference, 210-211; effect of
errors of observation on, 211 ; of an
index, 214-215 ; of binomial series,
299-300. For standard-deviations
of sampling, see Error, standard.

De Vries, H., data cited from, 102.

Dice, records of throwing, 258-259,
(qu. 1, 2, 3) 274; testing for
significance ‘of divergence from
theory, 267 ; refs., 273,

Dickson, J. D. Hamilton, normal
correlation surface, 328. Refs.,
normal correlation, 333.

Diphtheria, ages at death from, table,
98 ; diagram, 97.

Discounts and reserves in American
banks, table, 162 ; diagram, facing
166.

Dispersion, measures of, 107, 133-
156 ; unsuitability of range as
a measure, 133; relative, 149;
refs., 164. See Deviation, mean ;
Deviation, standard ; Quartiles.

Distribution of Frequency. See Fre
quency-distribution.

Duckweed, correlation between mother-
and daughter-frond, 185-187.

Duffell, J. H., ref., tables of gamma-
function, 357.

Duncker, G., relation between geo-
metric and arithmetic mean (qu. 9)
156.

373

Earnixcgs of agricultural labourers ;
calculation of standard -deviation,
135-137 ; mean deviation, 145;
quartiles, 147; correlation with
pauperism and out-relief, 177-181,
constants, (qu. 2) 189, 239 ; dia-
gram, 180; by partial correlation,
239-247 ; diagram of model, 246.

Edgeworth, F. Y., terms for measures
of dispersion, 144 ; dice-throwings
(Weldon), 258; probable error of
median, ete., 344. Refs., Index-
numbers, 130-131; correlation,
188, 252, 333 ; law of error (normal
law), 273, 314 ; theory of sampling,
probable errors, etc., 273, 354;
dissection of normal curve, 315.

Elderton, W. Palin, refs., calculation
of moments, 154 ; table of powers,
357.; tables for testing fit, 354,
357 5 Frequency Curves and Cor-
relation, 154, 360.

Error, law of ; errors, curve of. See
Normal curve.

—— mean, 144.

—— mean square, 144,

—— of mean square, 144.

—— probable, in sense of semi-inter-
quartile range, 147 ; in theory of
sampling, 310-311. For general
references, see Error, standard.

standard, def., 267 ; of number

or proportion of successes in =
events, 256-257, when numbers in
samples vary, 264~265, when chance

of success or failure is small, 265-

266 ; of percentiles (median, quar-

tiles, etc.), 337-341 ; of arithmetic

mean, 344-350 ; of standard-devia-
tion and coefficient of variation,

351 ; of coefficicnts of correlation

and regression, 352 ; of correlation-

ratio and test for linearity of re-

gression, 352 ; refs., 273, 354-355,

See also Sampling, theory of.

——, theory of, See Sampling,
theory of,
Estates, annual value of. See Value.

Everitt, P. F., refs., tables for cal-
culating Pearson’s coefficient for a
fourfold table, 357,

Exclusive and inclusive notations for
statistics of attributes, 14-15.

Explosions in coal-mines, deaths from,
as illustrating theory of sampling,
288.
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Eye-colour, association between father
and son, 34-35, 38, 70-71 ; associa-
tion between grandparent, parent,
and child, 46-48, 53-54; con-
tingency with hair-colour, 61, 63,
66-68 ; non-isotropy of contingency
table, for futher and son, 70-71

FALKNER, R. P., refs., translation of
Meitzen’s Theorie der Stutistik, 6.
Fallacies, in interpreting associations
—theorem on, 48-49, illustrations,
49-51 ; owing to changes of classi-
fication, actual or virtual, 72; in
interpreting correlations— ** spuri
ous ” correlation between indices,
215-216 ; correlation due to hetero-
geneity of material, 218-219 ; dif
ference of sign of total and partial
correlations, 251-252.

THEORY OF STATISTICS.

(ref.), 289; normal curve, 301-
313 ; theoretical forms, refs., 289-
314. See Binomial series ; Normal
curve ; Correlation, normal.
Frequency-distributions, illustrations :
of death-rates in England and
Wales, 77; of ages at death of
certain women, 78; of stigmatic
rays on poppies, 78; of annual
values of dwelling-houses in Great
Britain, 83; of hecadbreadths of
Cambridge students, 84 ; of statures
of males in the U.K., 88, 90; of
pauperism in different districts of
England and Wales, 93 ; of weights
of males in the U.K., 95; of
fecundity of brood - mares, 96 ; of
barometer heights at Southampton,
96 ; of agesat death from diphtheria,
98 ; ofannual values of estates, 100 ;

Fay, E. A., data cited from Mar- of petals in Ranunculus bulbosus,
riages of the Deaf in America, 102; of degrees of cloudiness at
104. Breslau, 103; of percentages of

Fechner, G. T., refs,, frequency-dis- deaf-mutes in offspring of deaf-
tributions, averages, measures of mutes, 104. Sec also Correlation,
dispersion, ete., 129, 154; XKol- illustrations and examples.
lektivmassiehre, 129, 314, 360. Frequency-polygon, construction of,

Fecundity of brood-mares, table, 96 ; 84,

diagram, 94 ; mean, median, and | Frequency-surface, forms and ex-
mode, (qu. 3) 131 ; inheritance amples of, 164-167; diagrams
(ref.), 208, 226. 166, facing 166 ; normal, diagram,
Fertility of mother and daughter, 166. See Correlation, normal.
correlation, 161, 195-196; dia-
gram, 175 ; constants, (qu. 3) 189 ; | GABAGLIO, A., refi, Tcoria gemerale

ref., 208, 226. della statistica, 6.
Filon, L. N. G., ref., probable errors, | Galton, Sir Francis, Hereditary
354. Gentus, 3; frequency-distribution
Fit of a theoretical to an actual fre- of consumptivity, 104; grades and
quency-distribution, testing (ref.), percentiles, 150, 152; regression,
315 ; tables for, 357. 176 ; Galton’s function (correlation-
Fluctuation, measure of dispersion, coefficient), 204 ; binomial machine,
144. 299 ; normal correlation, 328;
Fountain, H., ref,, index-numbers of data cited from, 34, 46, 70. Refs.
prices, 131. —geometric mean, 130; percentiles,
Frequency of a class, 10, 76. 154 ; correlation, 188, 332; cor-
Frequency-curve, def., 87 : ideal forms relation between indices, 226;
of, 87-105; normal curve (g.v.), binomial machine, 313; Natural
301-313 ; refs., 105, 314. Inheritance, 154, 313, 332.
Frequency-distributions, 76 ; forma- | Gauss, C. F., use of term ‘‘mean
tion of, 79-83; graphic represen- error,” 144. Refs., normal curve,

tation of, 83-87 : 1ideal forms— 314 ; method of least squares, 360.
symmetrical, 87-90, moderately | Geiger, H., refs., law of small chances,
asymmetrical, 90-98, extremely | 269.

asymmetrical (J-shaped), 98-102, | Geometric mean. See Mean, geo-
U-shaped, 102-105; binomial series, metric.

291-300: hypergeometrical series | Geometric (logarithmic) mode, 128,
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Gibbs, J. Willard, Principles of
Statistical Mechanics, 4.

Gibson, Winifred, refs., tables for
computing probable errors, 354, 357.

Grades, 152, 153,

Graphic method, of representing fre-
quency distributions, 83-87; of
interpolation for median or per-
centiles, 118, 151-152; of repre-
senting correlation between two
variables, 180~181 ; of estimating
correlation coefficient, 203-204 ; of
forming one binomial polygon from
another, 295-297.

Graunt, John, Observations on the
Bills of Mortality, 6.

Gray, John, data cited from, 270.

Grouping of observations to form
frequency-distribution, choice of
class-interval, 79-80 ; influence on
mean, 113-114, 115, 116 ; influence
on standard-deviation, 140, 212,

Halr-coLour: and eye-colour, ex-
ample of contingency, 61, 63, 66—
67 ; non-isotropy, 68, 69 ; theory of
sampling applied to certain data,
270-271, 279,

Harmonic mean. See Mean, har-
monic.

Harris, J. A., refs., short method
of calculating coefficient of cor-
relation, 209.

Head-breadths of Cambridge students,
table, 84 ; diagram, 85.

Helguero, F. de, refs., dissecting
compound normal curve, 315.

Heron, D., refs., relation between
fertility and social status, 208 ;
defective physique and intelli-
gence, application of correction
for age-distribution, etc., 226 ;
abac giving probable errors of
correlation coefficient, 354, 357 ;
probable error of a partial correla-
tion coefficient, 354.

Histogram, construction of, 84.

Hollis, T., cited re Cosin’s Names of
the Roman Catholics, etc., 100,

Hooker, R. H., correlation between
weather and crops, 196 ; between
movements of two variables, 201.
Refs., correlation between move-
ments of two variables, 208;
weather and crops, 208, 253;
theory of partial correlation, 252.
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Houses, inhabited and uninhabited,
in rural and urban districts, 61—
62 ; annual value of, table, 83;
median, (qu. 4) 131; quartiles,
(qu. 3)155.

Hull, C. H., ref, The Economic
Writings of Sir William Petty,
together with the Observations on
the Bills of Mortality more probably
by Captain John Graunt, 6.

Husbands and wives, correlation be-
tween ages, table, 159; diagram,
173 ; constants, (qu. 3) 189.

Hypergeometrical Series, ref., 289.

ILLUSORY associations, 48-51. .

Imbecility, association with deaf-
mutism, 33-34, 38.

Inclusive and exclusive notations for
statistics of attributes, 14-15,

Independence, criterion of, for attri-
butes, 25-28; case of complete, for
attributes, 56-57 ; form of contin-
gency or correlation table in case
of, 71.

Index-numbers of prices, def., 126 ;
use of geometric mean for, 126-127 ;
use of harmonic mean, 129 ; refs.,
130-131.

Indices, correlation between,
216 ; refs., 222.

Infirmities, census tabulation of, 14~
15 ; association between deaf-mutism
and imbecility, 33-34, 38.

Intermediate observations, in a
frequency-distribution, classifica-
tion of, 80~-81 ; in correlation table,
164.

Isotropy, def., 68 ; generally, 67-71 ;
of normal correlation table, 328-
331 ; refs., 73.

215~

Jacos, S. M., ref,, crops and rainfall,
208, 226.

Jevons, W. Stanley, use of geometric
mean, 127, Refs, system of
numerically  definite  reasoning
(theory of attributes), 15; index-
numbers, 130; Pure Logic and
other Minor Works, 15 ; Investiga-
tions in Currency and Finance,
130.

Johannsen, W., Elemente der exakten
Erblichkeitslehre, 360.

John, V., refs.,, Geschichte der Sta-
tistik, 5.
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J-shaped frequency-distributions, 98-
102,

KapTEYN, J. C., refs., Skew Fre-
quency-curves in Biology and Stat-
sties, 130, 314,

Kick of a horse, deaths from, follow-
ing law of small chances, 265-266.

LABOURERS, earnings of agricultural.
See Earnings.

Laplace, Pierre Simon, Marquis de,
probable error of median, 344
Refs,, normal curve, 314; mean
deviation least about the median,
154 ; Théoric analytique des pro-
babilités, 154, 354, 360 ; Essai philo-
sophique, 360,

Larmor, Sir J., use of word ‘‘statis-
tical,” 4.

Lee, Alice, data cited from, 96, 122,
160, 161. Refs., inheritance of
fertility and fecundity, 208, 226.

Lemna Minor, corrclation between
lengths of mother- and daughter-
frond, 185-187.

Lexis, W., use of term ‘ precision,”
144, Refs., Theoric der Massen-
erschetnungen, 273 ; Abhandlungen
zur Theorie der Bevolkerungs und
Moral-statistik, 273, 360,

Linearity of regression, test for, 205-
206, 352.

Lipps, G. F., refs., measures of
dependence (association, correla-
tion, contingency, etc.), 40;
Fechner’s Kollcktivmasslehre, 129,
360.

Little, W., data as to agricultural
labourers’ carnings cited from, 137.

Lobelia, application of theory of
sampling to certain data, 269-270,
272,

Logarithmic increase of population,
125-126 ; logarithmic mode, 128.

113

MacarisTer, Sir DoNaLp, ref,, law
of geometric mean, 130, 314.

Macdonell, W. R., data cited from,
84, 90.

Marriage-rate and trade, correlation
of movements, 199-201.

Maxwell, Clerk, use of word *‘stat-
istical,” 4.

Mean, arithmetic, generally, 108-116 ;
def., 108-109 ; nature of, 109 ; cal-

STATISTICS.

culation of, for a grouped distribu-
tion, 109-113 ; inlluence of group-
ing, 113-114, 115, 116; position
relatively to mode and median, 121-
122, diagrams, 113, 114 ; sum of
deviations from, is zero, 114; of
series compounded of others, 115 ; of
sum or difterence, 115-116 ; com-
parison with median, 119; sum-
mary comparison with median and
mode, mean is the best for all
general purposes, 122-123 ; weight-
ing of, 220-225 ; of binomial serics,
299 ; standard error of, 344-350.

Mecan deviation. See Deviation, mean,

error, 144, See Error, standard;
Deviation, standard.

—— geometric, 108; genernally,
123-128 ; def., 123; -calculation,
124 ; less than arithmetic mean,
123 ; differcnce from arithmetic
mean in terms of dispersion, (qu. 8)
156; of series compounded of
others, 124; of series of ratios or
products, 124 ; in estimating inter-
censal populations, 125-126; con-
venience for index-numbers, 126-
127 ; use on ground that deviations
vary with absolute magnitude, 127-
128 ; weighting of, 225.

—— harmonic, 108 ; generally, 128-
129 ; def., 128 ; calculation, 128 ;
is less than arithmetic and geo-
metric means, 129 ; diflerence from
arithmetic mean in terms of dis-
persion, (qu. 9) 156 ; use in averag-
ing prices or index-numbers, 129 ; in
theory of sampling. when numbers
in samples vary, 264-265.

—— square error, 144,

—— weighted, 220-225; def., 220;
difference between weighted and
unweighted means, 221-223 ; ap-
plication of weighting to correction
of death-rates, etc., forage and sex-
distribution, 223-225 ; refs., 226.

Median, 108; generally, 116-120;
def., 116 ; indeterminate in certain
cases, 116-117 ; unsuited to dis-
continuous observations and small
series, 116-117 ; calculation of,
117 ; graphical determination of,
118 ; comparison with arithmetic
mean, 119 ; advantages in special
cases, 119-120; slight influence of
outlying values on, 120; position
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relatively to mean and mode, 121-
122, diagrams, 113, 114 ; weighting
of, 225 ; standard error of, 337-341.

Meitzen, P. A., refs., Geschichte,
Theoricund Technik der Statistik, 6.

Mendelian breeding experiments as
illustrations, 37, 38, 128, 264-265,
267-268.

Methods, statistical, purport of, 3-5,
def., 5.

Mice, numbers in litters, harmonic
mean, 128-129; proportions of
albinos in litters, fluctuations com-
pared with theory of sampling, 264—
265.

Milton, John, use of word ‘‘statist,” 1.

Mode, 108 ; generally, 120-123 ; def.,
120 ; approximate determination,
from mean and median, 121-122;
diagrams showing position re-
latively to mean and median, 113,
114 ; logarithmic or geometric mode,
128 ; weighting of, 225 ; refs., 130.

Modulus, as measure of dispersion,
144; origin from normal curve,
304.

Mohl, Robert von, refs., Geschichie
und Literatur der Staatswissen-
schaften, 5.

Moment, first, def., 110 ; second and
general, def., 135; calculation of
moments (ref.), 154.

Moore, L. Bramley, data cited from,
96, 161. Ref., inheritance of fer-
tility and fecundity, 208, 226.

Mortality. Sce Death-rates.

Movements, correlation of, in two
variables, methods, 197-201 ; refs.,
208.

NEcATIVE classes and attributes, 10.

Newsholme, A., refs., birth-rates, cor-
rection for age-distribution, etc.,
226 ; Vital Statistics, 359.

Normal curve of errors: deduction
from binomial series, 301-302;
value of central ordinate, 304 ;
table of ordinates, 303; mean
deviation and modulus, 304;
comparison with binomial series
for moderate value of », 304-305;
outline of more general methods
of deduction, 305-307 ; fitting to
a given distribution, 307-308 ; the
table of areas, 310, and its use,
309-310; quartile deviation and

probable error, 810-311 ; numerical
examples of use of tables, 311-313 ;
normality in fluctuations of sam-
pling of the mean, 346-347. Refs.,
general, 314; dissection of com-
pound curve, 315 ; tables, 357-358.
For normal correlation, see Correla-
tion, normal.

Norton, J. P., data cited from, 162.
Ref., Statistical Studies in the New
Yorl Money Market, 208.

ORDER, of a class, 10; of generalised
correlations, regressions, deviations,
and standard-deviations, 233-234.

Parcravr, Sir R. H. 1., Dictionary
of Political Economy, 6.

Pareto, V., refs., Cours d’éeonomie
politigue, 105,

Partial association. See Association,
partial.

Partial correlation. See Correlation,
partial.

Pauperism, in England and Wales,
table, 93 ; diagrams, 92, 113 ; cal-
culation of mean, 111 ; of median,
117, 118 ; means, medians, and
modes for other years, 122 ; stand-
ard-deviation, 138-~140; mean
deviation, 145-146;  quartiles,
148 ; percentiles, 1561-152.

correlation with out-relief, 182-
185 ; with earnings and out-relief,
177-181, (qu. 2) 189, 239-241, 245-
247 ; with out-relief, proportion of
aged, etc., 192-195, 241-245.

Pear], Raymond, normal distribution
of number of seeds in Lotus, 306.
Ref., probable errars, 354.

Pearson, Karl, contingency, 63, 65;
mode, 120; standard-deviation,
144 ; coefficient of variation, 149 ;
skewness, 149; inheritance of
fertility, 195 ; spurious correlation
between indices, 215; binomial
apparatus, 299; deduction of
normal curve, 306 ; data cited from,
70, 78, 90, 96, 122, 160, 161.
Refs., correlation of characters not
quantitatively measurable, 40,
333; contingency, etc., 72-73,
333 ; frequency curves, 105, 130,
154, 273, 289, 314, 315, 354;
binomial distribution and machine,
314 ; hypergeometrical series, 289 ;
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dissection of compound normal
curve, 315 ; calculation of moments,
225 ; general methods of curve-
fitting, 208, 209; testing fit of
theoretical to actual distribution,
315 : correlation, 188, 208, 209,
252, 833 ; fitting of principal axes
and planes, 333; correlation be-
tween indices, 226 ; inheritance of
fertility, 226 ; weighted mean, re-
productive selection, 226 ; probable
errors, 354, 355.

Peas, applications of theory of
sampling to experiments in cross-
ing, 267-268.

Pecten, correlation between two
diameters of shell, 158 ; constants,
(qu. 3) 189,

Percentage, standard error of, 256-
257 ; when numbers in samples
vary, 264-265.  See also Sampling
of attributes.

Percentiles, 150-153 ; def., 150 ; de-
termination, 151-152; advantages
and disadvantages, 152-153; use
for unmeasured characters, 152-
153, refs., 333; standard errors
of, 337-341; correlation between
errors of sampling in, 341-342;
refs., 154,

Perozzo, L., ref., applications of
theory of probability to correlation
of ages at marriage, 314.

Petals of Ranunculus bulbosus, fre-
quency of, 102; unsuitability of
median in case of such a distribu-
tion, 117,

Peters, J., refs., multiplication table,
357.

Petty, Sir W.,
Writings, 6.
Poincare, H., refs., Calcul des pro-

babilités, 360.

Poisson, S. D., refs., sex-ratio, 273;
Recherches sur la probabilitd des
jugements, 273, 360.

Poppies, stigmatic rays on, frequency,
78 ; unsuitability of median in
such a distribution, 116.

Population, estimation of between
censuses, 125-126 ; refs., 130, 253.

Positive classes and attributes, def.,
10 ; number of positive classes, 13 ;
sufficiency of for tabulation, 13;
expression of other frequencies, in
terms of, 13-14.

refs., Eeonomac

STATISTICS.

Precision. 144, 257, 304.

Prices, index-numbers of, 126 ; use of
geometric mean, 126 ; of harmonic
mean, 129 ; refs., 130-131.

Principal axes, in correlution, 321-
322 ; ref., 333.

QUARTILE deviation. See Quartiles.

Quartiles, quartile deviation and semi-
interquartile range, 134 ; generally,
147-149 ; defs., 147 ; determina-
tion, 147-148; ratio of g.d. to
standard-deviation, 148, 310; ad-
vantages of q.d. as a measure of
dispersion, 148-149 ; difference be-
tween deviations of quartiles from
median as measure of skewness,
149-150 ; ratio of q.d. to median as
measure of relative dispersion, 149 ;
q.d. of normal curve, 310 ; standard
errors, 337-341, 341-343.

Quetelet, L. A, J., refs., Lettres sur
la théorie des probabilités, 273, 360,

Raxpom sampling, in sense of simple
sampling, 289,

Range, unsuitability of, as a measure
of dispersion, 133.

Ranks, 143, 153 ; methods of corre-
lation based on (refs.), 333.

Ranunculus, frequency of petals, 102 ;
unsuitability of median for such
distributions, 117.

Registrar-General: correction of death-
rates, 224, refs., 226 ; estimates of
population, refs., 130 ; data cited
from Reports, 32-33, 52-53, 77,
98, 163, 197-199, 199-201, 222,
263, 283, 284, 285-286.

Regressions, generally, 175-177; def.,
175 ; total and partial, 233 ; stan-
dard errors of, 352; non-linear,
201-202, 205-206, 352, refs. 208-
209.

Relative dispersion, 149.

Reserves and discounts in American
banks, correlation, 162; diagram,
facing 166.

Rhind, A., ref,, tables for comput-
ing probable errors, 355, 357.

Rutherford, E., ref., law of small
chances, 273.

SAMPLING, theory of, generally, 254-
855 ; the problem, 254-256; refs.,
273, 289, 313-315, 354-855.
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Sampling of attributes: conditions
assumed in simple sampling, 255-
256, 259-262 ; random in sense of
simple sampling, 289 ; standard-
deviation of number or proportion of
successes in # events, 256-257, 299—
300; examples from artificial chance,
258-259 ; application to sex-ratio,
262-264 ; when numbers in samples
vary, 264-265; when chance of
success or failure is small, 265-266 ;
standard error def., 267 ; compar-
ing a sample with theory, 267-268 ;
comparing one sample with another
independent therefrom, 268-271 ;
comparing one sample with another
combined with it, 271-272 ; limita-
tions to interpretation of standard
error when 7 is small, inverse in-
terpretation, 276-279; limits as a
measure of untrustworthiness, 279-
281 ; effect of removing conditions
of simple sampling, 281-289 ; sam-
pling from limited material, 287 :

binomial distribution, 291-300;
normal curve, 300-313; normal
correlation, 317-334. See also

Binomial ceries; Hypergeometrical
series ; Normal curve; Correlation,
normal.

of variables, conditions assumed
in simple sampling, 335-337;
standard errors of percentiles
(median and quartiles), 337-341 ;
dependence of standard error of
median on the form of the distribu-
tion, 338-340; of difference between
two percentiles, 341-343 ; of arith-
metic mean, 344-350; of difference
between two means, 345-346 ; nor-
mality of distribution of mean,
346-347 ; effect of removing con-
ditions of simple sampling on
standard error of mean, 347-350;
standard error of standard-devia-
tion and coefficient of variation,
351 ; of coefficients of correlation
and regression, 352 ; of correlation-
ratio and test for linearity of re-
gression, 352.

Saunders, Miss E. R., data cited
from, 37.

Scheibner, W., difference between
arithmetic and geowetric, arith-
metic and harmonic means, (qu. 8
and qu. 9) 156.
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Scripture, E. W., use of word
‘¢ statistics,” 3.

Semi-interquartile range. See Quar-

tiles.

Sex-ratio of births: correlation with
total births, 163, 175, 207 diagram,
176 ; constants, (qu. 3) 189;
application of the theory of samp-
ling to, 262-264, (qu. 7) 275, (qu.
1, 2) 289, refs., 273; standard
error of ratio male to femala births,
(qu. 11) 275.

Shakespeare, W.,

‘““statist,” 1.

Sheppard, W. F., correction of the
standard-deviation for grouping,
212, 307 ; theorem on correlation
of a normal distribution grouped
round medians, (qu. 4) 334;
normal curve tables, 337 ; standard

use of word

errors of percentiles, 344. Refs.,
calculation and correction of
moments, 225; normal curve

and correlation, theory of samp-
ling, 314, 333, 3855; tables of
normal function and its integral,
358.

Significant differences, 266.

Sinclair, Sir John, use of words
‘¢ statistics,” ¢ statistical,” 2.

Skew or asymmetrical frequency-
distributions, 90-102. See also

Frequency-distributions.

Skewness of frequency-distributions,
107 ; measures of, 149-150,

Snow, E. C., refs., estimates of popu-
lation, 130, 253 ; lines and planes
of closest fit, 209.

Southey, Robert, cited e Cosin’s

Names of the Roman Catholics,
etc., 100.
Spearman, C., effect of errors of

observation on the standard-devia-
tion and coefficient of correlation,
213-214. Refs,, effect of errors of
observation, 225, 333 ; rank method
of correlation, 333.

Standard-deviation.
standard.

Statist, occurrence of the word in
Shakespeare and in Milton, 1.

Statistical, introduction and develop-
ment in the meaning of the word,
1-5; S. Aecount of Scotland, 2;
Royal S. Society, 3 ; methods, pur-
port of, 3~5, def. 5.

See Deviation,
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Statistics, introduction and develop-
ment in meaning of word, 1-5
def., 5 ; theory of, def., 5.

Statures of males in U.K., tables, 88,
90 ; diagrams, 89, 91 ; calculation
of mean, 112 ; means and medians,
117, (qu. 1) 131 ; standard-devia-
tion, 141 ; percentiles, 153 ; stan-
dard-deviation, mean deviation and
quartiles, (qu. 1) 155 ; distribution
fitted to normal curve, 305-306,
307-308, diagram, 306 ; standard
errors of mean and median, of first
and ninth deciles, 341, 343, 344-
345, of standard - deviation and

STATISTICS.

UrriMaTk classes and frequencies,
def., 12; sufficiency of, for tabula-
tion, 12-13.

Universe, def., 17 ; specification of,
17, 18.

U-shaped frequency distributious,
102-105.

VALUE, annual, of dwelling-houses,
table, 83: median, (qu. 4) 131;
quartiles, (qu. 3) 155.

—— of estates, in 1715, table, 100 ;
diagram, 101.

Variables, theory of, generally, 75-
253 ; def., 7, 75.

semi-interquartile range, (qu. 5) | Variates, def., 150.

355.

—— correlation of, for father and
son, 160; diagrams, facing 166,
174 ; constants, (qu. 3) 189 ; test-
ing for normality, 322-328; for
isotropy, 329-331; diagram of
diagonal distribution, 325, of fitted
contour lines, 327.

Stevenson, T. H. C., refs., birth-
rates, correction of, for age-dis-
tribution, 226.

Stigmatic rays on poppies, frequency,
78 ; unsuitability of median for
such distributions, 116.

Stirling, James, expression for fac-
torials of large numbers, 304.

“Student” (pseudonym), refs., law
of small chances, 273; probable
errors, 355.

Symmetrical frequency-distributions,
87-90. See also Frequency-dis-
tributions ; Normal curve.

Symons, G. J., use of word *sta-
tistics” in British Rainfall, 3.

TABULATION, of statistics of attri-
butes, 11-14, 37 ; of a frequency-
distribution, 81-83 ; of a correlation
table, 164.

Tatham, John, refs., correction of
death-rates, 226.

Thorndike, E, L., refs., methods of
measuring correlation, 333 ; Theory
of Mental and Social Measurements,
360.

Todhunter, I., refs., History of
the Mathematical Theory of Prob-
ability, G.

Type of array, def., 164.

Variation, coefficient of, 149 ; stan-
dard error of, 351-352.

Venn, John, refs., Logic of Chance,
sex-ratio, 273, 360.

Verschaeffelt, E., relative dispersion,
149. Refs., measure of relative dis-
persion, 154,

Vigor, H. D., data cited from, 163.
Refs., sex-ratio, 273,

WacEs, of agricultural labourers, sce
Earnings.

Warner, F., refs., study of defects in
school-children, notation for stat-
istics of attributes, 15.

Waters, A. C., refs., estimating in-
tercensal populations, 130.

Weather and crops, correlation, 196-
197.

Weighted Mean, see Mean, weighted ;
also Mean, geometric; Median ;
Mode.

Weights of males in U.K., table, 95 ;
diagram, 94; mean, median, and
mode, {(qu. 2) 131 ; standard-devia-
tion, mean deviation and quartiles,
(qu. 2) 155.

Weldon, W. F. R., dicc-throwing
experiments, 258-259,

Westergaard, H., refs., Theorie der
Statistik, 6, 273, 360.

YuLE, G. U., use of term character-
istic lines (lines of regression), 177 ;
problem of pauperism, 192; data
cited from, 78, 93, 122, 140, 165,
185, facing 186, 259. Refs., history
of words, ““statistics,” ‘‘statistical,”
5 ; attributes, association, consist-

ence, ete., 15, 23, 39, 40, 57;





















