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PREFACE TO THE SECOND EDITION. 

IT was evident to any observer during recent years that the 
interest taken in the theory of statistics was rapidly increasing; 
nevertheless, it has been an unexpected gratification to find that 
students of the subject were so numerous as to require a second 
edition of the present book in less than twelve months from 
publication. The opportunity has been taken to recast certain 
paragraphs in which the wording appeared to be ambiguous, and 
such errors as were noted in the first edition have been corrected. 
The references and exercises at the ends of the several chapters 
have also been revised, and a substantial addition has been made 
to Chapter X. in the form of a section on the correlation-ratio. 

Many reviews have been most kind and suggestive, and I am 
glad to avail myself of this early opportunity of thanking re-
viewers, friends, and correspondents who have assisted me by 
their suggestions or by directing my attention to errors. I hope 
that the same assistance will be continued. 

G. U. Y. 
February 1912. 





PREFACE TO THE FIRST EDITION. 

THB following chapters are based on the courses of instruction 
given during my tenure of the Newmarch Lectureship in Statistics 
at University College, London, in the sessions 1902-1909. The 
variety of illustrations and examples has, however, been increased 
to render the book more suitable for the use of biologists and 
others besides those interested in economic and vital statistics, 
and some of the more difficult parts of the subject have been 
treated in greater detail than was possible in a sessional course 
of some thirty lectures. For the rest, the chapters follow closely 
the arrangement of the course, the three parts into which the 
volume is divided corresponding approximately to the work of 
the three terms. To enable the student to proceed further with 
the subject, fairly detailed lists of references to the original 
memoirs have been given at the end of each chapter: exercises 
have also been added for the benefit, mere especially, of the 
student who is working without the assistance of a teacher. 

The volume represents an attempt to work out a systematic 
introductory course on statistical methods—the methods available 
for discussing, as distinct from collecting, statistical data—suited 
to those who possess only a limited knowledge of mathematics : 
an acquaintance with algebra up to the binomial theorem, 
together with such elements of co-ordinate geometry as are now 
generally included therewith, is all that is assumed. I hope that 
it may prove of some service to the students of the diverse 
sciences in which statistical methods are now employed. 

My most grateful thanks are due to Mr R. H. Hooker not only 
vii 



Vlll PREFACE. 

for reading the greater part of the manuscript, and the proofs, 
and for making many criticisms and suggestions which have 
been of the greatest service, but also for much friendly help and 
encouragement without which the preparation of the volume, 
often delayed and interrupted by the pressure of other work, 
might never have been completed : my debt to Mr Hooker is 
indeed greater than can well be expressed in a formal preface. 
My thanks are also due to Mr H. D. Vigor for some assistance 
in checking the arithmetic, and my acknowledgments to Professor 
Edgeworth for the example used in § 5 of Chap. XVII. to illustrate 
the influence of the form of the frequency distribution on the 
probable error of the median. 

1 can hardly hope that all errors in the text or in the mass 
of arithmetic involved in' examples and exercises have been 
eliminated, and will feel indebted to any reader who directs 
my attention to any such mistakes, or to any omissions, am-
biguities, or obscurities. 

G. U. Y. 

December 1910. 
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THEORY OF STATISTICS, 

INTRODUCTION. 

1-3. The introduction of the terms "s ta t i s t ics , " " statistical," into the English 
language - 4-6. The change in meaning of these terms during the 
nineteenth century—7-9. The present use of the terms—10. Defini-
tions of "s ta t i s t ics ," "s tat is t ical methods," " t h e o r y of statistics," in 
accordance with present usage. 

1. THE words "statist," "statistics," "statistical," appear to be 
all derived, more or less indirectly, from the Latin status, in the 
sense that it acquired in mediseval Latin of a political state. 

2. The first term is, however, of much earlier date than the two 
others. The word "stat is t" occurs, for instance, in Hamlet 
(1602),1 Cymbeline (1610 or 1611),2 and in Paradise Regained 
(1671).3 "Statistics" and "statistical" seem to have been only 
introduced into English in 1787, the earliest known uses of the 
terms occurring in the preface to A Political Survey of the Present 
State of Europe, by E. A. W, Zimmermann,4 issued in that year. 
" It is about forty years ago," says Zimmermann, " that that branch 
of political knowledge, which has for its object the actual and 
relative power of the several modern states, the power arising 
from their natural advantages, the industry and civilisation of 
their inhabitants, and the wisdom of their governments, has been 
formed, chiefly by German writers, into a separate science. . . . 
By the more convenient form it has now received . . . . this 
science, distinguished by the new-coined name of statistics, is 
become a favourite study in Germany " (p. ii); and again (p. v), 
" To the several articles contained in this work, some respectable 

1 Act v., sc. 2. 2 Act ii., sc. 4. 3 Bk. iv. 
4 Zimmermann's work appears to have been written in English, though he 

was a German, Professor of Natural Philosophy at Brunswick. 
1 
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statistical writers have added a view of the principal epochas of the 
history of each country." 

3. Within the next few years the words were adopted by several 
writers, notably by Sir John Sinclair, the editor and organiser of the 
first Statistical Account of Scotland/ to whom, indeed, their intro-
duction has been frequently ascribed. In the circular letter to the 
Clergy of the Church of Scotland issued in May 1790,2 he states 
that in Germany " ' Statistical Inquiries,' as they are called, have 
been carried to a very great extent," and adds an explanatory 
footnote to the phrase "Statistical Inquiries"—"or inquiries 
respecting the population, the political circumstances, the pro-
ductions of a country, and other matters of state." In the 
" History of the Origin and Progress"3 of the work, he tells us, 
" Many people were at first surprised at my using the new words, 
Statistics and Statistical, as it was supposed that some term in our 
own language might have expressed the same meaning. But in 
the course of a very extensive tour, through the northern parts of 
Europe, which I happened to take in 1786, I found that in 
Germany they were engaged in a species of political enquiry, 
to which they had given the name of Statistics;4 . . . . as I 
thought that a new word might attract more public attention, 
I resolved on adopting it, and I hope that it is now completely 
naturalised and incorporated with our language." This hope 
was certainly justified, but the meaning of the word underwent 
rapid development during the half century or so following its 
introduction. 

4. "Statistics" (statistik), as the term is used by German 
writers of the eighteenth century, by Zimmermann and by Sir 
John Sinclair, meant simply the exposition of the noteworthy 
characteristics of a state, the mode of exposition being—almost 
inevitably at that time—preponderantly verbal. The conciseness 
and definite character of numerical data were recognised at a 
comparatively early period—more particularly by English writers 
— but trustworthy figures were scarce. After the commencement 
of the nineteenth century, however, the growth of official data 
was continuous, and numerical statements, accordingly, began 
more and more to displace the verbal descriptions of earlier days. 
" Statistics " thus insensibly acquired a narrower signification, viz., 

1 Twenty-one vols., 1791-99. 
2 Statistical Account, vol. xx., Appendix to " T h e History of the Origin and 

Progress . . . . " given at the end of the volume. 
3 Loc. cit., p. xiii. 
4 The Abriss der Statswissenschaft der Europaischen Reiche (1749) of Gottfried 

Aehenwall, Professor of Polities a t Gottingen, is the volume in which the word 
" s t a t i s t i k " appears to be first employed, but the adjective " s ta t i s t i cus" 
occurs a t a somewhat earlier date in works written in Latin. 



INTRODUCTION. 3 

the exposition of the characteristics of a State by numerical 
methods. It is difficult to say at what epoch the word came 
definitely to bear this quantitative meaning, but the transition 
appears to have been only half accomplished even after the founda-
tion of the Royal Statistical Society in 1834. The articles in the 
first volume of the Journal, issued in 1838-9, are for the most 
part of a numerical character, but the official definition has no 
reference to method. "Statistics," we read, "may be said, in the 
words of the prospectus of this Society, to be the ascertain-
ing and bringing together of those facts which are calculated to 
illustrate the condition and prospects of society."1 It is, however, 
admitted that " the statist commonly prefers to employ figures 
and tabular exhibitions." 

5. Once, however, the first change of meaning was accomplished, 
further changes followed. From the name of a science or art of 
state-description by numerical methods, the word was transferred to 
those series of figures with which it operated, as we speak of vital 
statistics, poor-law statistics, and so forth. But similar data 
occur in many connections ; in meteorology, for instance, in anthro-
pology, etc. Such collections of numerical data were also termed 
"statistics," and consequently, at the present day, the word is 
held to cover a collection of numerical data, analogous to those 
which were originally formed for the study of the state, on almost 
any subject whatever. We not only read of rainfall "statistics," 
but of " statistics" showing the growth of an organisation for 
recording rainfall.2 We find a chapter headed "Statistics" in a 
book on psychology,3 and the author, writing of "statistics con-
cerning the mental characteristics of man," "statistics of children, 
under the headings bright—average—dull." 4 We are informed 
that, in a book on Latin verse, the characteristics of the Virgilian 
hexameter "are examined carefully with statistics." 6 

6. The development in meaning of the adjective " statistical " 
was naturally similar. The methods applied to the study of 
numerical data concerning the state were still termed " statistical 
methods," even when applied to data from other sources. Thus 
we read of the inheritance of genius being treated "in a statistical 
manner,"6 and we have now " a journal for the statistical 
study of biological problems." 7 Such phrases as " the statistical 

1 Jour. Stat. Soc., vol. i. p. 1. 
- Syraons' British Rainfall for 1899, p. 15. 
3 E. W. Scripture, The New Psychology, 1897, chap. ii. 
4 Op. cit. p. 18. 
6 A thenaium, Oct. 3, 1903. 
8 Francis Galton, Hereditary Genius (Macmillan, 1869), preface. 
7 Biometrika, Cambridge Univ. Press, the first number issued in 1901. 
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investigation of the motion of molecules"1 have become part of 
the ordinary language of physicists. We find a work entitled 
" the principles of statistical mechanics,"2 and the Bakerian 
lecture for 1909, by Sir J. Larmor, was on " the statistical and 
thermodynamical relations of radiant energy." 

7. It is unnecessary to multiply such instances to show that the 
words "statistics," "statistical," no longer bear any necessary 
reference to " matters of state." They are applied indifferently in 
physics, biology, anthropology, and meteorology, as well as in the 
social sciences. Diverse though these cases are, there must be 
some community of character between them, or the same terms 
and the same methods would not be applied. What, then, is this 
common character 1 

8. Let us turn to social science, as the parent of the methods 
termed " statistical," for a moment, and consider its characteristics 
as compared, say, with physics or chemistry. One characteristic 
stands out so markedly that attention has been repeatedly 
directed to it by " statistical" writers as the source of the peculiar 
difficulties of their science—the observer of social facts cannot ex-
periment, but must deal with circumstances as they occur, apart 
from his control. Now the object of experiment is to replace the 
complex systems of causation usually occurring in nature by 
simple systems in which only one causal circumstance is permitted 
to vary at a time. This simplification being impossible, the 
observer has, in general, to deal with highly complicated cases of 
multiple causation—eases in which a given result may be due to 
any one of a number of alternative causes or to a number of 
different causes acting conjointly. 

9. A little consideration will show, however, that this is also 
precisely the characteristic of the observations in other fields to 
which statistical methods are applied. The meteorologist, for 
example, is in almost precisely the same position as the student 
of social science. He can experiment on minor points, but the 
records of the barometer, thermometer, and rain gauge have to be 
treated as they stand. With the biologist, matters are in some-
what better case. He can and does apply experimental methods 
to a very 'large extent, but frequently cannot approximate 
closely to the experimental ideal; the internal circumstances of 
animals and plants too easfly evade complete control. Hence a 
large field (notably the study of variation and heredity) is left, 
in which statistical methods have either to aid or to replace the 
methods of experiment. The physicist and chemist, finally, 

1 Clerk Maxwell, "Theory of H e a t " (1871), and " O n Boltzmann's 
Theorem" (1878), Camb. Phil. Tram., vol. xii. 

2 By J. Willard Gibbs (Maomillan, 1902). 
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stand at the other extremity of the scale. Theirs are the 
sciences in which experiment has been brought to its greatest 
perfection. But even so, statistical methods still find application. 
In the first place, the methods available for eliminating the effect 
of disturbing circumstances, though continually improved, are not, 
and cannot be, absolutely perfect. The observer himself, as well 
as the observing instrument, is a source of error; the effects of 
changes of temperature, or of moisture, of pressure, di-aughts, vibra-
tion, cannot be completely eliminated. Further, in the problems 
of molecular physics, referred to in the last sentences of § 6, 
multiplicity of causes is of the essence of the case. The motion 
of an atom or of a molecule in the middle of a swarm is dependent 
on that of every other atom or molecule in the swarm. 

10. In the light of this discussion, we may accordingly give the 
following definitions :•— 

By statistics we mean quantitative data affected to a marked 
extent by a multiplicity of causes. 

By statistical methods we mean methods specially adapted to 
the elucidation of quantitative data affected by a multiplicity of 
causes. 

By theory of statistics we mean the exposition of statistical 
methods. 

The insertion in the first definition of some such words as " to 
a marked extent " is necessary, since the term "statistics " is not 
usually applied to data, like those of the physicist, which are 
affected only by a relatively small residuum of disturbing causes. 
At the same time, " statistical methods " are applicable to all such 
cases, whether the influence of many causes be large or not. 

REFERENCES. 

The History of the Words " Statistics," " Statistical." 
(1) JOHN, V., Der Name Statistik ; Weiss, Berne, 1883. A translation in 

Jour. Roy. Stat. Soc. for same year. 
(2) YULE, G. U., " T h e Introduction of the Words 'Statistics,1 'Stat is t ical , ' 

into the English Language," Jowr. Roy. Stat. Soc., vol. lxviii., 1905, 
p. 391. 

The History of Statistics in General. 
(3) JOHN, V., Geschichte der Statistik, l t e Teil, bis auf Quetelet ; Enke, 

Stuttgart , 1884. (All published ; the author died in 1900. By far the 
best history of statistics down to the early years of the nineteenth 
century.) 

(4) MOHL, ROBERT VON, Geschichte und Litteratur der Staatswissenschaften, 
3 vols. ; Enke, Erlangen, 1855-58. (For history of statistics see 
principally latter half of vol. iii.) 
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(5) GABAGLIO, ANTONIO, Teoria generate della statistica, 2 vols.; Hoepli, 
Milano, 2nd edn., 1888. (Vol. i., Parte storica.) 

Several works on theory of statistics include short histories, e.g. 
H. Westergaard's Die Grundzilge der Theorie der Statistik (Fischer, 
Jena, 1890), and P. A. Meitzen's Qescliichte, Theorie und Technik der 
Statistik (new edn., 1903 ; American translation by R. P. Falkner, 
1891). There is no detailed history in English, but the article 
" Stat is t ics" in the Encyclopedia Britanniea (11th edn.) gives a very 
slight sketch, and the biographical articles in Palgrave's Dictionary of 
Political Economy are useful. For its importance as regards the English 
school of political arithmetic, reference may also bo made to— 

(6) HULL, C. H. , The Economic Writings of Sir William Petty, together 
with the Observations on the Bills of Mortality more probably by Captain 
John Oraunt, Cambridge University Press, 2 vols., 1899. 

History of Theory of Statistics. 
Somewhat slight information is given in the general works cited. 

From the purely mathematical side the following is impor tant :— 
(7) TODIIUNTER, I. , A History of the Mathematical Theory of Probability 

from the time of Pascal to that of Laplace ; Macmillan, 1865. 

History of Official Statistics. 
(8) BERTILLON, J . , Corns iUmenJtaire de statistique; Soci6t<5 d'^ditions 

scientifiques, 1895. (Gives an exceedingly useful outline of the history 
of official statistics in different countries.) 



PART I.—THE THEORY OF ATTRIBUTES. 

CHAPTER I. 

NOTATION AND TERMINOLOGY. 

1-2. Statistics of attributes and statistics of variables : fundamental character 
of the former—3-5. Classification by dichotomy—6-7. Notation for 
single attributes and for combinations—8. The class-frequency—9. 
Positive and negative attributes, contraries—10. The order of a class— 
11. The aggregate—12. The arrangement of classes by order and 
aggregate—13-14. Sufficiency of the tabulation of the ultimate class-
frequencies—15-17. Or, better, of the positive class-frequencies—18. 
The class-frequencies chosen in the census for tabulation of statistics 
of infirmities—19. Inclusive and exclusive notations and terminologies. 

1. THE methods of statistics, as defined in the Introduction, 
deal with quantitative data alone. The quantitative character 
may, however, arise in two different ways. 

In the first place, the observer may note only the presence or 
absence of some attribute in a series of objects or individuals, and 
count how many do or do not possess it. Thus, in a given 
population, we may count the number of the blind and seeing, 
the dumb and speaking, or the insane and sane. The quantitative 
character, in such cases, arises solely in the counting. 

In the second place, the observer may note or measure the 
actual magnitude of some variable character for each of the 
objects or individuals observed. He may record, for instance, the 
ages of persons at death, the prices of different samples of a 
commodity, the statures of men, the numbers of petals in flowers. 
The observations in these cases are quantitative ab initio. 

2. The methods applicable to the former kind of observations, 
which may be termed statistics of attributes, are also applicable 
to the latter, or statistics of variables. A record of statures of 
men, for example, may be treated by simply counting all measure-
ments as tall that exceed a certain limit, neglecting the magnitude 
of excess or defeot, and stating the numbers of tall and short (or 

7 
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more strictly not-tall) on the basis of this classification. Similarly, 
the methods that are specially adapted to the treatment of 
statistics of variables, making use of each value recorded, are 
available to a greater extent than might at first sight seem possible 
for dealing with statistics of attributes. For example, we may 
• treat the presence or absence of the attribute as corresponding to 
the changes of a variable which can only possess two values, say 
0 and 1. Or, we may assume that we have really to do with a 
variable character which has been crudely classified, as suggested 
above, and we may be able, by auxiliary hypotheses as to tho 
nature of this variable, to draw further conclusions. But the 
methods and principles developed for the case in which the observer 
only notes the presence or absence of attributes are the simplest 
and most fundamental, and are best considered first. This and 
the next three chapters (Chapters I.-IV.) are accordingly devoted 
to the Theory of Attributes. 

3. The objects or individuals that possess the attribute, and 
those that do not possess it, may be said to be members of two 
distinct classes, the observer classifying the objects or individuals 
observed. In the simplest case, where attention is paid to one 
attribute alone, only two mutually exclusive classes are formed. 
If several attributes are noted, the process of classification may, 
however, be continued indefinitely. Those that do and do not 
possess the first attribute may be reclassified according as they do 
or do not possess the second, the members of each of the sub-
classes so formed according as they do or do not possess the 
third, and so on, every class being divided into two at each step. 
Thus the members of the population of any district may be 
classified into males and females; the members of each sex into 
sane and insane; the insane males, sane males, insane females, 
and sane females into blind and seeing. If we were dealing with 
a number of peas (Pisurn sativum) of different varieties, they 
might be classified as tall or dwarf, with green seeds or yellow 
seeds, with wrinkled seeds or round seeds, so that we would have 
eight classes—tall with round green seeds, tall with round yellow 
seeds, tall with wrinkled green seeds, tall with wrinkled yellow 
seeds, and four similar classes of dwarf plants. 

4. It may be noticed that the fact of classification does not 
necessarily imply the existence of either a natural or a clearly 
defined boundary between the two classes. The boundary may 
be wholly arbitrary, e.g. where prices are classified as above or 
below some special value, barometer readings as above or below 
some particular height. The division may also be vague and 
uncertain: sanity and insanity, sight and blindness, pass 
into each other by such fine gradations that judgments may 
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differ as to the class in which a given individual should be 
entered. The possibility of uncertainties of this kind should 
always be borne in mind in considering statistics of attributes : 
whatever the nature of the classification, however, natural or 
artificial, definite or uncertain, the final judgment must be de-
cisive; any one object or individual must be held either to possess* 
the given attribute or not. 

5. A classification of the simple kind considered, in which each 
class is divided into two sub-classes and no more, has been termed 
by logicians classification, or, to use the more strictly applicable 
term, division by dichotomy (cutting in two). The classifica-
tions of most statistics are not dichotomous, for most usually a 
class is divided into more than two sub-classes, but dichotomy is 
the fundamental case. In Chapter V. the relation of dichotomy 
to more elaborate (manifold, instead of twofold or dichotomous) 
processes of classification, and the methods applicable to some 
such cases, are dealt with briefly. 

6. For theoretical purposes it is necessary to have some simple 
notation for the classes formed, and for the numbers of observa-
tions assigned to each. 

The capitals A, B, C, . . . will be used to denote the several 
attributes. An object or individual possessing the attribute A 
will be termed simply A. The class, all the members of which 
possess the attribute A, will be termed the class A. It is con-
venient to use single symbols also to denote the absence of the 
attributes A, B, C, . . . We shall employ the Greek letters, a, 

y, . . . Thus if A represents the attribute blindness, a 
represents sight, i.e. non-blindness; if B stands for deafness, (3 
stands for hearing. Generally " a " is equivalent to "non-^.," or 
an object or individual not possessing the attribute A ; the class a 
is equivalent to the class none of the members of which possess the 
attribute A. 

7. Combinations of attributes will be represented by juxta-
positions of letters. Thus if, as above, A represents blindness, B 
deafness, AB represents the combination blindness and deafness. 
If the presence and absence of these attributes be noted, the four 
classes so formed, viz. AB, A/3, aB, a/3, include respectively the 
blind and deaf, the blind but not-deaf, the deaf but not-blind, and 
the neither blind nor deaf. If a third attribute be noted, e.g. in-
sanity, denoted say by C, the class ABC, includes those who are 
at once deaf, blind, and insane, A By those who are deaf and blind 
but not insane, and so on. 

Any letter or combination of letters like A, AB, aB, ABy, by 
means of which we specify the characters of the members of a class, 
may be termed a class symbol. 
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8. The number of observations assigned to any class is termed, 
for brevity, the frequency of the class, or the class-frequency. 
Class-frequencies will be denoted by enclosing the corresponding 
class-symbols in brackets. Thus— 

, ( ' t ) denotes number of A's, i.e. objects possessing a t t r i bu t e A 
( a ) ,i ,, a ' s , ,, no t ,, ,, A 
(AB) ,, „ AB'b, ,, possessing a t t r ibu te s A and B 
("-S) „ „ ufi 's, ,, ,, B b u t no t A 
WSC) „ „ ABC's, „ „ „ A, B, and C 
(O-BC) „ „ OLBC'S, „ „ B and C but no t A 
(10C) „ „ o/SCa, ,, „ ,, C b u t ne i ther A nor B 

and so on for any number of attributes. If A represent, as in 
the illustration above, blindness, B deafness, C insanity, the 
symbols given stand for the numbers of the blind, the not-blind, 
the blind and deaf, the deaf but not blind, the blind, deaf, and in-
sane, the deaf and insane but not blind, and the insane but neither 
blind nor deaf, respectively. 

9. The attributes denoted by capitals ABC, . . . may be 
termed positive attributes, and their contraries denoted by Greek 
letters negative attributes. If a class-symbol include only 
capital letters, the class may be termed a positive class; if only 
Greek letters, a negative class. Thus the classes A, AB, ABC 
are positive classes; the classes a, a/3, a/3y, negative classcs. 

If two classes are such that every attribute in the symbol for 
the one is the negative or contrary of the corresponding attribute 
in the symbol for the other, they may be termed contrary classes 
and their frequencies contrary frequencies; e.g. AB and a/3, A/3 
and aB, A/3C and aBy, are pairs of contraries. 

10. The classes obtained by noting say n attributes fall into 
natural groups according to the numbers of attributes used to 
specify the respective classes, and these natural groups should be 
borne in mind in tabulating the class-frequencies. A class 
specified by r attributes may be spoken of as a class of the rth 
order and its frequency as a frequency of the rth order. Thus AB, 
AC, BC are classes of the second order; (.4), (A/3), (aBC), 
(AByD), class-frequencies of the first, second, third, and fourth 
orders respectively. 

11. The classes of one and the same order fall into further 
groups according to the actual attributes specified. Thus if three 
attributes A, B, C have been noted, the classes of the second order 
may be specified by any one of the pairs of attributes AB, AC, or 
BC (and their contraries). The series of classes or class-frequen-
cies given by any one positive class and the classes whose symbols 
are derived therefrom by substituting Greek letters for one or 
more of the italic capital letters in every possible way will be 
termed an aggregate. Thus (AB) (A/3) (aB) (a/3) form an aggre-
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gate of frequencies of the second order, and the twelve classes of 
the second order which can be formed where three attributes 
have been noted may be grouped into three such aggregates. 

12. Class-frequencies should, in tabulating, be arranged so that 
frequencies of the same order and frequencies belonging to the 
same aggregate are kept together. Thus the frequencies for the 
case of three attributes should be grouped as given below ; the 
whole number of observations denoted by the letter N being 
reckoned as a frequency of order zero, since no attributes are 
specified:— 

Order 0. N 
Order 1. U) (S) (C) 

(a) (y3) (r) 
Order 2. (AB) (AC) (BC) 

(M) (Ay) • (By) 
(aB) (aC) 08(7) 
(«j8) <«?) m 

Order 3. (ABC) (aBC) 
(ABy) (aBy) 
(A [36') (o./3C) 
(APy) 

13. In such a complete table for the case of three attributes, 
twenty-seven distinct frequencies are given :—1 of order zero, 6 
of the first order, 12 of the second, and 8 of the third. It 
is, however, in no case necessary to give such a complete 
statement. 

The whole number of observations must clearly be equal to the 
number of A's together with the number of as, the number of 
.4's to the number of .4's that are B together with the number of 
,4's that are not B ; and so on,—i.e. any class-frequency can always 
be expressed in terms of class-frequencies of higher order. Thus— 

N= (A) + (a) = (B) + (f3) = etc. 
= (AB) + (A/3) + (aB) + (a/3) = etc. 

(A) = (AB) + (A/3) — (AC) + (Ay) = etc. 
(AB) = (ABC) + (ABy) = etc. 

Hence, instead of enumerating all the frequencies as under (1), 
no more need be given, for the case of three attributes, than 
the eight frequencies of the third order. If four attributes had 
been noted it would be sufficient to give the sixteen frequencies of 
the fourth order. 

The classes specified by all the attributes noted in any case, 
i.e. classes of the nth order in the case of n attributes, may be 
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termed the ultimate classes and their frequencies the ultimate 
frequencies. Hence we may say that it is never necessary to 
enumerate more than the ultimate frequencies. All the others can 
be obtained from these by simple addition. 

Example i.—(See reference 5 at the end of the chapter.) 
A number of school children were examined for the presonce 
or absence of certain defects of which three chief descriptions 
were noted, A development defects, B nerve signs, C low 
nutrition. 

Given the following ultimate frequencies, find the frequencies 
of the positive classes, including the whole number of obser-
vations JY. 

(ABC) 57 (aBC) 78 
(ABy) 281 (aBy) 670 
(A/3C) 86 (a(3C) 65 
<APy) 453 8310 

The whole number of observations JV is equal to the grand 
total: F = 10,000. 

The frequency of any first-order class, e.g. (-4) is given by the 
total of the four third-order frequencies, the class-symbols for 
which contain the same letter— 

(ABC) + (ABy) + (APC) + (A/3y) = (A) = 877. 

Similarly, the frequency of any second-order class, e.g. (AB), is 
given by the total of the two third-order frequencies, the class-
symbols for which both contain the same pair of letters— 

(ABC) + (ABy) = (AB) = 338. 

The complete results are— 

N 10,000 (AB) 
(AC) 

338 
877 

(AB) 
(AC) 143 

1,086 (BC) 135 
(C) 286 (ABC) 57 

14. The number of ultimate frequencies in the general case of 
n attributes, or the number of classes in an aggregate of the rath 
order, is given by considering that each letter of the class-symbol 
may be written in two ways (A or a, B or f}, C or y), and that 
either way of writing one letter may be combined with either 
way of writing another. Hence the whole number of ways in 
which the class-symbol may be written, i.e. the number of 
classes, is— 

2 x 2 x 2 x 2 . . . . =2". 
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The ultimate frequencies form one natural set in terms of which 
the data are completely given, but any other set containing the 
same number of algebraically independent frequencies, viz. 2", 
may be chosen instead. 

15. The positive class-frequencies, including under this head the 
total number of observations N, form one such set. They are alge-
braically independent; no one positive class-frequency can be ex-
pressed wholly in terms of the others. Their number is, moreover, 
2", as may be readily seen from the fact that if the Greek letters 
are struck out of the symbols for the ultimate classes, they become 
the symbols for the positive classes, with the exception of afiy 
. . . . for which N must be substituted. Otherwise the number 
is made up as follows :— 

Order 0. (The whole number of observations) . . . 1 
Order 1. (The number of attributes noted) . . . . n 

Order 2. (The number of combinations of re things 2 together) ^ 

Order 3. (The number of combinations of n things 3 together) V^JL.™ ^ 

and so on. But the series 

1 , „ , n ( n ~ l ) , n ( n - ! )(" ~ 2) | I + n + L 2 + 1 2 3 + . . . . 

is the binomial expansion of (1 + 1)" or 2", therefore the total 
number of positive classes is 2". 

16. The set of positive class-frequencies is a most convenient 
one for both theoretical and practical purposes. 

Compare, for instance, the two forms of statement, in terms of 
the ultimate and the positive classes respectively, as given in 
Example i., § 13. The latter gives directly the whole number of 
observations and the totals of -4's, B's, and C's. The former gives 
none of these fundamentally important figures without the perfor-
mance of more or less lengthy additions. Further, the latter gives 
the second-order frequencies {AB), (AG), and (BC), which are neces-
sary for discussing the relations subsisting between A, B, and G, but 
are only indirectly given by the frequencies of the ultimate classes. 

17. The expression of any class-frequency in terms of the 
positive frequencies is most easily obtained by a process of step-
by-step substitution ; thus— 

(a/3) =(a ) - (a2J ) 
= N-(A)-(B) + (AB) (3) 

(a/3y) = (a/3)-(a(3C) 
= N-(A)- (B) + (AB) - (aC) + (aBC) 
= N- (A).- (B) - (C) + (AB) + (AC) + (BC) - (ABC) (4) 
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Arithmetical work, however, should be executed from first 
principles, and not by quoting formulae like the above. 

Example ii.—Check the work of Example i., § 13, by finding the 
frequencies of the ultimate classes from the frequencies of the 
positive classes. 

(ABy) = {AB) - (ABC) = 338 - 57 = 281 
(Apy) = (Ay) - (ABy) = (A) - (AC) - (ABy, 

= 877 - 143-281 =453 
(apy) = (Py) - (APy) = N - (B) - (C) + (BC) - (Apy) 

= 10,000 - 1086 - 286 + 135 - 453 
= 10,135- 1825 = 8310 

and so on. 
18. Examples of statistics of precisely the kind now under 

consideration are afforded by the census returns, e.g., of 1891 or 
1901, for England and Wales, of persons suffering from different 
" infirmities," any individual who is deaf and dumb, blind or 
mentally deranged (lunatic, imbecile, or idiot) being required to 
be returned as such on the schedule. The classes chosen for 
tabulation are, however, neither the positive nor the ultimate 
classes, but the following (neglecting minor distinctions amongst 
the mentally deranged and the returns of persons who are deaf 
but not dumb):—Dumb, blind, mentally deranged; dumb and 
blind but not deranged; dumb and deranged but not blind; 
blind and deranged but not dumb; blind, dumb, and deranged. 
If, in the symbolic notation, deaf-mutism be denoted by A, blind-
ness by B, and mental derangement by C, the class-frequencies 
thus given are (A), (B), (C), (ABy), (ApC), (aBC), (ABC) (cf. 
Census of England and Wales, 1891, vol. iii., tables 15 and 16, 
p. lvii. Census of 1901, Summary Tables, table xlix.). This set of 
frequencies does not appear to possess any special advantages. 

19. The symbols of our notation are, it should be remarked, 
used in an inclusive sense, the symbol A, for example, signifying 
an object or individual possessing the attribute A with or without 
others. This seems to be the only natural use of the symbol, 
but at least one notation has been constructed on an exclusive 
basis (cf. ref. 5), the symbol A denoting that the object or in-
dividual possesses the attribute A, but not B or C or D, or what-
ever other attributes have been noted. An exclusive notation is 
apt to be relatively cumbrous and also ambiguous, for the reader 
cannot know what attributes a given symbol excludes until lie 
has seen the whole list of attributes of which note has been 
taken, and this list he must bear in mind. The statement that 
the symbol A is used exclusively cannot mean, obviously, that the 
object referred to possesses only the attribute A and no others 
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whatever; it merely excludes the other attributes noted in the 
particular investigation. Adjectives, as well as the symbols which 
may represent them, are naturally used in an inclusive sense, and 
care should therefore be taken, when classes are verbally described, 
that the description is complete, and states what, if anything, is 
excluded as well as what is included, in the same way as our 
notation. The terminology of the English census has not, in 
this respect, been quite clear. The "Blind" includes those who 
are " Blind and Dumb," or " Blind, Dumb, and Lunatic," and so 
forth. But the heading " Blind and Dumb," in the table relating 
to "combined infirmities," is used in the sense "Blind and Dumb, 
but not Lunatic or Imbecile," etc., and so on for the others. In 
the first table the headings are inclusive, in the second exclusive. 

(1) JEVONS, W. STANLEY, " O n a General System of Numerically Definite 
Reasoning," Memoirs of the Manchester Lit. and Phil. Soc., 1870. 
Reprinted in Pure Logic and other Minor Works-, Macmillan, 1890. 
(The method used in these chapters is that of Jevons, with the notation 
slightly modified to that employed in the next three memoirs cited.) 

(2) YULK, G. U., " On the Association of Attributes in Statistics, eta.," Phil. 
Trans. Roy. Soc., Series A, vol. cxciv., 1900, p. 257. 

(3) YULE, G. U., " O n the Theory of Consistence of Logical Class-frequencies 
and its Geometrical Representation," Phil. Trans. Roy. Soc., Series A, 
vol. cxcvii., 1901, p. 91. 

(4) YULE, G. U., " N o t e s on the Theory of Association of Attributes in 
Statistics," Biometrika, vol. ii., 1903, p. 121. (The first three sections 
of (4) are an abstract of (2) and (3). The remarks made as regards the 
tabulation of class-frequencies at the end of (2) should be read in con-
nection with the remarks made at the beginning of (3) and in this 
chapter : cf. footnote on p. 94 of (3). 

Material has been cited from, and reference made to the notation used in— 
(5) WARNER, F., and others, " Report on the Scientific Study of the Mental and 

Physical Conditions of Childhood" ; published by the Committee, 
Parkes Museum, 1895. 

(6) WARNER, F., "Menta l and Physical Conditions among Fifty Thousand 
Children, etc.," Jour. Roy. Stat. Soc., vol. lix., 1896, p. 125. 

1. (Figures from ref. (5).) The following are the numbers of boys observed 
with certain classes of defects amongst a number of school-children. A, 
denotes development defects ; B, nerve signs ; C, low nutrition. 

REFERENCES. 

EXERCISES. 

CABC) 149 
{ABy) 738 
(ApC) 225 
(Apy) 1,196 

(a£C) 204 
(aBy) 1,762 
(a/3 C) 171 
(aPy) 21,842 

Find the frequencies of the positive classes. 
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2. (Figures from ref. (5).) The following are the frequencies of the 
positive classes for the girls in the same investigation :— 

N 23,713 (AS) 587 
(A) 1,618 (AC) 428 
(-B) 2,015 (BC) 335 
(C) 770 (ABC) 156 

Find the frequencies of the ultimate classes. 
3. (Figures from Census, England and Wales, 1S91, vol. iii.) Convert the 

census statement as below into a statement in terms of (a) the positive, (b) 
the ultimate class-frequencies. A= blindness, B=deaf-mutism, (7= mental 
derangement. 

N 29,002,525 (ABy) 82 
(A) 23,467 (ARC) 3S0 
(B) 14,192 (aBO) 500 
(CO 97,383 (ABC) 25 

4. (Cf. Mill's Logic, bk. iii., eh. xvii., and ref. (1).) Show that if A 
occurs in a larger proportion of the cases where B is than where B is not, 
then will B occur in a larger proportion of the cases where A is than where 
A is n o t : i.e. given (A£)l(B)->{A$)/(i8), show tha t (A B)l(A)>(aB)fta). 

5. (Cf. De Morgan, Formal Logic, p. 163, and ref. (1).) Most B's are A's, 
most B's are Cs: find the least number of A's tha t are C's, i.e. the lowest 
possible value of (AC). 

6. Given tha t 
(A) = (a) = (B) = (f}) = hN, 

show that 
(AB) = (aS), (Ap)-(aB). 

7. (Cf. ref. (2), § 9, "Case of equality of contraries.") Given that 

(A) = (a) = (B) = (l3)=(C) = (y) = lN, 
and also that 

(AJBO)=(aPy), 
show tha t 

2 ( A B C ) = ( A B ) + (AC) + (BO-\N.. 

8. Measurements are made on a thousand husbands and a thousand wives. 
If the measurements of the husbands exceed the measurements of the wives in 
800 cases for one measurement, in 700 cases for another, and in 660 cases for 
both measurements, in how many cases will both measurements on the wife 
exceed the measurements on the husband ? 



C H A P T E R I I . 

CONSISTENCE. 

1-3. The field of observation or universe and its specification by symbols— 
4. Derivation of complex from simple relations by specifying the 
universe—5-6. Consistence—7-10. Conditions of consistence for one 
and for two attributes—11-14. Conditions- of consistence for three 
attributes. 

1. ANY statistical inquiry is necessarily confined to a certain 
time, space, or material. An investigation on the prevalence of 
insanity, for instance, may be limited to England, to England in 
1901, to English males in 1901, or even to English males over 60 
years of age in 1901, and so on. 

For actual work on any given subject, no term is required to 
denote the material to which the work is so confined : the limits 
are specified, and that is sufficient. But for theoretical purposes 
some term is almost essential to avoid circumlocution. The ex-
pression the universe of discourse, or simply the universe, used 
in this sense by writers on logic, may be adopted as familiar and 
convenient. 

2. The universe, like any class, may be considered as specified 
by an enumeration of the attributes common to all its members, 
e.g. to take the illustration of § 1, those implied by the predicates 
English, male, over 60 years of age, living in 1901. It is not, in 
general, necessary to introduce a special letter into the class-
symbols to denote the attributes common to all members of the 
universe. We know that' such attributes must exist, and the 
common symbol can be understood. 

In strictness, however, the symbol ought to be written : if, say, 
U denote the combination of attributes, English—male—over 60 
—living in 1901, A insanity, B blindness, we should strictly use 
the symbols— 

(P) = Number of English males over 60 living in 1901, 
(UA) = ,, insane English males over 60 living in 1901, 
(UB) = ,, blind 
(UAB) = . ,, blind and insane English males over 60 living in 1901, 

17 2 
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instead of the simpler symbols N (4) (B) (AB). Similarly, the 
general relations (2), § 13, Chap. I., using U to denote the common 
attributes of all the members of the universe and (U) consequently 
the total number of observations N, should in strictness be written 
in the form— 

(TJ) ~ (UA) + (Ua) = (UB) + (U/3) = etc. 
= (UAB) + (UA/3) + (UaB) + (Uaf3) = etc. 

(UA) =(UAB) + (UA/3) = (UAG) + (UAy) = etc. 
(UAB) = (UABC) + (UABy) = etc. 

3. Clearly, however, we might have used any other symbol 
instead of U to denote the attributes common to all the members 
of the universe, e.g. A or B or AB or ABC, writing in the latter 
case— 

(ABC) = (ABCD) + (ABCS) 

and so on. Hence any attribute or combination of attributes 
common to all the class-symbols in an equation may be regarded as 
specifying the universe within which the equation holds good. 
Thus the equation just written may be read in words : " The 
number of objects or individuals in the universe ABC is equal to 
the number of D's together with the number of not-i)'s within 
the same universe." The equation 

(AC) = (ABC) + (A/3C) 

may be read : "The number of A's is equal to the number of yl's 
that are B together with the number of ,4's that are not--B 
within the universe C." 

4. The more complex may be derived from the simpler relations 
between class-frequencies very readily by the process of specifying 
the universe. Thus starting from the simple equation 

(a) = N — (A), 

we have, by specifying the universe as /?, 

(a(3) = (/3)-(A/3) 
= N-(A)- (B) + (AB). 

Specifying the universe, again, as y, we have 

(af3y) = (y)-(Ay)-(By) + (ABy) = N- (A) - (B) - (C) + (AB) + (AG) + (BC) - (ABC). 

5. Any class-frequencies which have been or might have been 
observed within one and the same universe may be said to be 
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consistent with one another. They conform with one another, 
and do not in any way conflict. 

The conditions of consistence are some of them simple, but 
others are by no means of an intuitive character. Suppose, for 
instance, the data are given— 

—there is nothing obviously wrong with the figures. Yet they 
are certainly inconsistent. They might have been observed at 
different times, in different places or on different material, but 
they cannot have been observed in one and the same universe. 
They imply, in fact, a negative value for (a/?y)— 

Clearly no class-frequency can be negative. If the figures, 
consequently, are alleged to be the result of an actual inquiry in 
a definite universe, there must have been some miscount or 
misprint. 

6. Generally, then, we may say that any given class-frequencies 
are inconsistent if they imply negative values for any of the 
unstated frequencies. Otherwise they are consistent. To test the 
consistence of any set of 2" algebraically independent frequencies, 
for the case of n attributes, we should accordingly calculate 
the values of all the unstated frequencies, and so verify the fact 
that they are positive. This procedure may, however, be limited 
by a simple consideration. If the ultimate class-frequencies are 
positive, all others must be so, being derived from the ultimate 
frequencies by simple addition. Hence we need only calculate 
the values of the ultimate class-frequencies in terms of those 
given, and verify the fact that they exceed zero. 

7. As we saw in the last chapter, there are two sets of 2" 
algebraically independent frequencies of practical importance, viz. 
(1) the ultimate, (2) the positive class-frequencies. 

It follows from what we have just said that there is only one 
condition of consistence for the ultimate frequencies, viz. that 
they must all exceed zero. Apart from this, any one frequency of 
the set may vary anywhere between 0 and oo without becoming 
inconsistent with the others. 

For the positive class-frequencies, the conditions may be 

N 1000 
(.4) 525 
(B) 312 

470 

(AB) 42 
(AC) 147 
(BC) 86 
(ABC) 25 

(a/3y) = 1000 - 525 - 312 - 470 + 42 + 147 + 86 - 25. 
= 1000- 1307 + 275 - 25. 
= - 5 7 . 
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expressed symbolically by expanding the ultimate in terms of 
the positive frequencies, and writing each such expansion not 
less than zero. We will consider the cases of one, two, and 
three attributes in turn. 

8. If only one attribute be noted, say A, the positive frequencies 
are JV and (.4). The ultimate frequencies are (.4) and (a), where 

(a)=ir-(A). 

The conditions of consistence are therefore simply 

( ^ K 0 N - ( A ) ^ 0 

or, more conveniently expressed, 

(a) ( A ) ^ 0 (b) . . . (1) 

These conditions are obvious : the number of .4's cannot be less 
than zero, nor exceed the whole number of observations. 

9. If two attributes be noted there are four ultimate frequencies 
(AB), (A 13), (aB), (a/3). The following conditions are given by 
expanding each in terms of the frequencies of positive classes— 

(a) (>45)<t:0 or (AB) would be negative \ 
(b) (AB)^(A) + (B)-N „ (a/3) „ „ ( 
(c) (AB)>(A) „ (A/3) „ „ ( 
(d) (AB)^(B) „ (aB) „ „ ) 

(2) 

(a), (c), and (d) are obvious; (b) is perhaps a little less obvious, 
and is occasionally forgotten. It is, however, of precisely the 
same type as the other three. None of these conditions are 
really of a new form, but may be derived at once from (1) (a) and 
(1) (b) by specifying the universe as B or as /3 respectively. The 
conditions (2) are therefore really covered by (1). 

10. But a further point arises as regards such a system of 
limits as is given by (2). The conditions (a) and (b) give lower or 
minor limits to the value of (AB); (c) and (d) give upper or 
major limits. If either major limit be less than either minor limit 
the conditions are impossible, and it is necessary to see whether 
(A) and (B) can take such values that this may be the case. 

Expressing the condition that the major limits must be not less 
than the minor, we have— 

C4)<t0 I (2?K0 I 

These are simply the conditions of the form (1). If, therefore, 
(.4) and (B) fulfil the conditions (1), the conditions (2) must be 
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possible. The conditions (1) and (2) therefore give all the con-
ditions of consistence for the case of two attributes, conditions of 
an extremely simple and obvious kind. 

11. Now consider the case of three attributes. There are 
eight ultimate frequencies. Expanding the ultimate in terms of 
the positive frequencies, and expressing the condition that each 
expansion is not less than zero, we have— 

will be negative. 

(a) (ABC)^0 (ABC)] 
(b) <{AB) + (A(J)-(A) (APy) 
(c) <t (AB) + (BC) - (B) (aBy) 
(d) ^(AC) + (BC)-(C) (apC) 
(e) S?(AB) (ABy) 
i f ) >(AC) (APC) 
(g) >{BC) (aBC) 
(h) 1>(AB) + (AC) + (BC)-(A)-(B) -(C) + N(at3y) 

(3) 

These, again, are not conditions of a new form. "We leave it 
as an exercise for the student to show that they may be derived 
from (1) (a) and (1) (b) by specifying the universe in turn as 
BC, By, fiC, and /3y. The two conditions holding in fowr universes 
give the eight inequalities above. 

12. As in the last case, however, these conditions will be im-
possible to fulfil if any one of the major limits (e)-(h) be less than 
any one of the minor limits (a)-(d). The values on the right 
must be such as to make no major limit less than a minor. 

There are four major and four minor limits, or sixteen compari-
sons in all to be made. But twelve of these, the student will 
find, only lead back to conditions of the form (2) for (AB), (AC), 
and (BC) respectively. The four comparisons of expansions due 
to contrary frequencies ( (a) and (h), (b) and (g), (c) and ( f ) , (d) 
and (e) ) alone lead to new conditions, viz.— 

(a) (AB) + (AC) + (BC)<t (A) + (B) + (C) - N\ 
(b) (AB) + (AC)-(BC)^(A) 
(c) (AB)-(AC) + (BC)MB) 
(d) - (AB) + (AC) + (BC)>(C) 

13. These are conditions of a wholly new type, not derivable 
in any way from those given under (1) and (2). They are con-
ditions for the consistence of the second-order frequencies with 
each other, whilst the inequalities of the form (2) are only conditions 
for the consistence of the second-order frequencies with those of 
lower orders. Given any two of the second-order frequencies, e.g. 
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(AB) and (AC), the conditions (4) give limits for the third, viz. 
(BC). They thus replace, for statistical purposes, the ordinary 
rules of syllogistic inference. From data of the syllogistic form, 
they would, of course, lead to the same conclusion, though in a 
somewhat cumbrous fashion; one or two cases are suggested as 
exercises for the student (Questions 6 and 7). The following 
will serve as illustrations of the statistical uses of the con-
ditions :— 

Example i.—Given that (A) = (B) = (C) = ^JV and 80 per cent, 
of the J.'s are B, 75 per cent, of ,4's are C, find the limits to the 
percentage of B's that are C. The data are— 

and the conditions give— 

(a) - 0 -8 -0-75 

(b) <fcO'8 + 0 - 7 5 - 1 
(c) > 1 -0 -8 +0-75 
(d) > 1 +0-8 -0-75 

(a) gives a negative limit and (d) a limit greater than unity; 
hence they may be disregarded. From (b) and (c) we have— 

—that is to say, not less than 55 per cent, nor more than 95 per 
cent, of the B's can be C. 

Example ii.-—If a report give the following frequencies as 
actually observed, show that there must be a misprint or mistake 
of some sort, and that possibly the misprint consists in the 
dropping of a 1 before the 85 given as the frequency (BC). 

N 1000 
(A) 510 (AB) 189 
(B) 490 (AC) 140 
(C) 427 (BC) 85 

From (4) (a) we have— 

(BC) <510 + 490 + 427 - 1000 - 189 - 1 4 0 
<£98. 

But 85 <98, therefore it cannot be the correct value of (BC). 
If we read 185 for 85 all the conditions are fulfilled. 
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Example iii.—In a certain set of 1000 observations (A) = 45, 
(B) = 23, (C) = 14. Show that whatever the percentages of _S's 
that are A and of C's that are A, it cannot be inferred that any B's 
are C. 

The conditions (a) and (b) give the lower limit of (BC), which 
is required. We find— 

m T + t t " ' 0 4 5 ' 

The first limit is clearly negative. The second must also be 
negative, since (AB)/N cannot exceed '023 nor (AC)/N '014. 
Hence we cannot conclude that there is an^ limit to (BC) greater 
than 0. This result is indeed immediately obvious when we 
consider that, even if all the .B's were A, and of the remaining 
22 J.'s 14 were C's, there would still be 8 ,4's that were neither 
B nor C. 

14. The student should note the result of the last example, as it 
illustrates the sort of result at which one may often arrive by 
applying the conditions (4) to practical statistics. For given 
values of JV, (A), (B), (C), (AB), and (AC), it will often happen 
that any value of (BC) not less than zero (or, more generally, not 
less than either of the lower limits (2) (a) and (2) (b)) will satisfy 
the conditions (4), and hence no true inference of a lower limit is 
possible. The argument of the type "So many ^ ' s are B and 
so many B's are C that we must expect some .4's to be C " must 
be used with caution. 
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on account of their special notation, and, in the case of Boole's work, 
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(3) YTJLE, G. U., " O n the Theory of Consistence of Logical Class-frequencies 
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(1901), p. 91. (Deals at length with the theory of consistence for 
any number of attributes, using the notation of the present chapters.) 



2 4 THEORY OF STATISTICS. 

EXERCISES. 

1. (For this and similar estimates cf. ' 'Repor t by Miss Collet on tlio 
Statistics of Employment of Women and Girls " [C.—7564] 1894). If, in tho 
urban district of Bury, 817 per thousand of the women between 20 and 25 
years of age were returned as " occupied" at the census of 1891, and 263 per 
thousand as married or widowed, what is the lowest proportion per thousand 
of the married or widowed tha t must have been occupied ? 

2. If, in a series of houses actually invaded by small-pox, 70 per cent, of the 
inhabi tants are attacked and 85 per cent, have been vaccinated, what is the 
lowest percentage of the vaccinated tha t must have been attacked 1 

3. Given tha t 50 per cent, of the inmates of a workhouse are men, 60 per 
cent, are " aged " (over 60), 80 per cent, non-able-bodied, 35 per cent, aged 
men, 45 per cent, non-able-bodied men, and 42 per cent, non-able-bodied and 
aged, find the greatest and least possible proportions of non-able-bodied aged 
men. 

4. (Material from ref. 5 of Chap. I . ) The following are the proportions 
per 10,000 of boys observed, with certain classes of defects amongst a number 
of school-children. A = development defects, B=nerve signs, D=mental 
dulness. 

iV =10 ,100 (D) =789 
(A)= 877 (AB)=338 
( .S)= 1,086 {BD) = 455 

Show tha t some dull boys do not exhibit development defects, and state how 
many a t least do not do so. 

5. The following are the corresponding figures for gir ls :— 

N =10,000 (_D) = 6 8 9 ' 
(A)- 682 (AB) = 248 
(B)= 850 (BD) = 363 

Show t h a t some defectively developed girls are not dull, and state how many 
at least must be so. 

6. Take the syllogism " All A's are B, all B's are C, therefore all A's are 
O," express the premisses in terms of the notation of the preceding chapters, 
and deduce the conclusion by the use of the general conditions of consistence. 

7. Do the same for the syllogism " A l l A's are B, no -B's are C, therefore 
no A's are C." 

8. Given tha t (A) = {B)=(C)=\N, and tha t ( A B ) / N = { A C T ) / N = p , find 
what mus t be the greatest or least values of p in order t ha t we may infer 
t ha t ( B C ) I N exceeds any given value, say q. 

9. Show tha t if 
{ § = 2Z <g = S» N N N 

, (AB)_(AO)JBO) a n d ~ i r - ^ r - ~ { r - y > 

the value of neither x nor y can exceed J . 
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ASSOCIATION. 

1-4. The criterion of independence.—5-10. The conception of association and 
testing for the same by the comparison of percentages—11-12. 
Numerical equality of the differences between the four second-order 
frequencies and their independence values—13. Coefficients of associa-
tion—14. Necessity for an investigation into the causation of an 
attribute A being extended to include non-^ 's . 

1. IF there is no sort of relationship, of any kind, between two 
attributes A and B, we expect to find the same proportion of .4's 
amongst the B's as amongst the non-_S's. We may anticipate, 
for instance, the same proportion of abnormally wet seasons in 
leap years as in ordinary years, the same proportion of male to 
total births when the moon is waxing as when it is waning, the 
same proportion of heads whether a coin be tossed with the right 
hand or the left. 

Two such unrelated attributes may be termed independent, and 
we have accordingly as the criterion of independence for A and B— 

(B) 03) w 

If this relation hold good, the corresponding relations 

(«B)_(«£) 
(B) (/}) 

(AB)_(aB) 
(A) (a) 

(Ap)_(afi) 
(A) (a) * 

must also hold. For it follows at once from (1) that— 
(B)-(AB)_(/3)-(Ap) 

( B ) ( P ) ' 

25 
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t h a t is ( a f t j a f t 

( f t ( f t ' 

and the other two identities may be similarly deduced. 
2. The criterion may, however, be put into a somewhat 

different and theoretically more convenient form. The equation 
(1) expresses (Aft in terms of (B), ( f t , and a second-order fre-
quency (Aft ; eliminating this second-order frequency we have— 

(AB) (AB) + (Aft _ (A) 
(B) (B) + ( f t N> 

i.e. in words, " the proportion of 4's amongst the B's is the same 
as in the universe at large." The student should learn to recog-
nise this equation at sight in any of the forms— 

(AB) (A) 
JV ( f t 

(Aft J ft 
(A) N 

(AB) = (A)(B) 
N 

(AB)_(A) ( f t 
N N ' N 

(a) 

(b) 

(•) 

(d) 

(2) 

The equation (d) gives the important fundamental rule : If the 
attributes A and B are independent, the proportion of AB's in the 
universe is equal to the proportion of A's multiplied by the propor-
tion of B's. 

The advantage of the forms (2) over the form (1) is that they 
give expressions for the second-order frequency in terms of the 
frequencies of the first order and the whole number of observa-
tions alone; the form (1) does not. 

Example i.—If there are 144 ,4's and 384 B's in 1024 observa-
tions, how many AB's will there be, A and B being independent 1 

144 x 384 
1024 = 54. 

There will therefore be 54 AB's. 
Example ii.—If the 4's are 60 per cent., the B's 35 per cent., of 

the whole number of observations, what must be the percentage 
of AB's in order that we may conclude that A and B are 
independent? 

6 0 x 3 5 
T O O " ' 
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and therefore there must be 21 per cent, (more or less closely, cf. 
§§ 7, 8 below) of AB's in the universe to justify the conclusion 
that A and B are independent. 

3. It follows from § 1 that if the relation (2) holds for any one 
of the four second-order frequencies, e.g. (AB), similar relations 
must hold for the remaining three. Thus we have directly 
from (1)— 

(A/3)_(AB) + (A/3)_(A) 

giving 

And again, 

which gives 

m - u p . 

(aB) (a/3) (aB) + (a/3) (a) 
(B) (/3) (B) + (/3) _ N' 

( a B ) J ^ , ( a f t - m . 

Example iii.—In Example i. above, what would be the number 
of a/3's, A and B being independent 1 

(a) = 1024-144 = 880 
03) = 1024- 384 = 640 

, 880x640 
^ = 1024 = 

The theorem is an important one, and the result may be 
deduced more directly from first principles, replacing (AB) by 
its value (A)(B)/N in the expansions— 

(aB)=(B)-(AB). 
(A/3)=(A)-(AB). 
(a/3) = (R)-(A)-(B) + (AB). 

This is left as an exercise for the student. 
4. Finally, the criterion of independence may be expressed in 

yet a third form, viz. in terms of the second-order frequencies 
alone. If A and B are independent, it follows at once from 
equation (2) and the work of the preceding section that— 

( A B X a f t J A i m m . 

And evidently (aB)(A/3) is equal to the same fraction. 



2 8 THEORY OF STATISTICS. 

Therefore— 
(AB)(a[3) = (aB)(Aft (a)' 

(AB) _ (Aft ( 
(aB) (aft W 

i ^ 8 ) - />\ 
(Aft ~ (aft W 

(3 ) 

The equation (b) may be read " The ratio of A's to a's amongst 
the B's is equal to the ratio of .4's to a's amongst the f3's," and 
(c) similarly. 

This form of criterion is a convenient one if all the four 
second-order frequencies are given, enabling one to recognise 
almost at a glance whether or not the two attributes are 
independent. 

Example iv.—If the second-order frequencies have the following 
values, are A and B independent or not 1 

(AB) = 110 (a5) = 90 (Aft = 290 (a/3) = 510. 

Clearly (AB) (a/3) > (aB)(aft, 

so A and B are not independent. 
5. Suppose now that A and B are not independent, but related 

in some way or other, however complicated. 

Then if ( A B ) > ( ^ X 

A and B are said to be positively associated, or sometimes simpily 
associated. If, on the other hand, 

A and B are said to be negatively associated or, more briefly, 
disassociated. 

The student should notice that these words are not used 
exactly in their ordinary senses, but in a technical sense. When 
A and B are said to be associated, it is not meant merely that 
some ,4's are B's, but that the number of -4's which are B's exceeds 
the number to be expected if A and B are independent. Similarly, 
when A and B are said to be negatively associated or disassociated, 
it is not meant that no ,4's are B's, but that the number of A's 
which are B's falls short of the number to be expected if A and B 
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are independent. "Association" cannot be inferred from the 
mere fact that some .4's are B's, however great that proportion ; 
this principle is fundamental, and should be always borne 
in mind. 

6. The greatest possible value of (AB) for given values of 
N, (A), and (B) is either (4) or (B) (whichever is the less). When 
(AB) attains either of these values, A and B may be said to be 
completely or perfectly associated. The lowest possible value of 
(AB), on the other hand, is either zero or (J.) + (B) - N (which-
ever is the greater). When (AB) falls to either of these values, 
A and B may be said to be completely disassociated. Complete 
association is generally understood to correspond to one or other 
of the cases, "All .4's are B" or "All B'b are A," or it may be 
more narrowly defined as corresponding only to the case when 
both these statements were true. Complete disassociation may 
be similarly taken as corresponding to one or other of the cases. 
"No A's are B," or "no a's are /?," or more narrowly to the 
case when both these statements are true. The greater the 
divergence of (AB) from the value (A)(B)/N towards the limit-
ing value in either direction, the greater, we may say, is the 
intensity of association or of disassociation, so that we may speak 
of attributes being more or less, highly or slightly associated. This 
conception of degrees of association, degrees which may in fact be 
measured by certain formulae (cf. § 13), is important. 

7. When the association is very slight, i.e. where (AB) only 
differs from (A)(B)/IF by a few units or by a small proportion, it 
may be that such association is not really significant of any 
definite relationship. To give an illustration, suppose that a coin 
is tossed a number of times, and the tosses noted in pairs ; then 
100 pairs may give such results as the following (taken from an 
actual record): — 

First toss heads and second heads . . . 2 6 
„ „ „ tails . . . 1 8 

First toss tails and second heads . . . 2 7 
j) j j 55 tails • • . 29 

If we use A to denote " heads " in the first toss, B " heads " in 
the second, we have from the above (A) = 44, (B) = 53. Hence 

44 x 53 
(A)(B)IN= A ~ p = 23-32, while actually (AB) is 26. Hence 

there is a positive association, in the given record, between 
the result of the first throw and the result of the second. But it 
is fairly certain, from the nature of the case, that such association 
cannot indicate any real connection between the results of the 
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two throws; it must therefore be due merely to such a complex 
system of causes, impossible to analyse, as leads, for example, to 
differences between small samples drawn from the same material. 
The conclusion is confirmed by the fact that, of a number of such 
records, some give a positive association (like the above), but 
others a negative association. 

8. An event due, like the above occurrence of positive associa-
tion, to an extremely complex system of causes of the general nature 
of which we are aware, but of the detailed operation of which we 
are ignorant, is sometimes said to be due to chance, or better to 
the chances or fluctuations of sampling. 

A little consideration will suggest that such associations due to 
the fluctuations of sampling must be met with in all classes of 
statistics. To quote, for instance, from § 1, the two illustrations 
there given of independent attributes, we know that in any 
actual record we would not be likely to find exactly tfye same 
proportion of abnormally wet seasons in leap years as in ordinary 
years, nor exactly the same proportion of male births when the 
moon is waxing as when it is waning. But so long as the diver-
gence from independence is not well-marked we must regard such 
attributes as practically independent, or dependence as at least 
unproved. 

The discussion of the question, how great the divergence n^ust 
be before we can consider it as " well-marked," must be postponed 
to the chapters dealing with the theory of sampling. At present the 
attention of the student can only be directed to the existence of 
the difficulty, and to the serious risk of interpreting a "chance 
association " as physically significant. 

9. The definition of § 5 suggests that we are to test the 
existence or the intensity of association between two attributes 
by a comparison of the actual value of (AB) with its independence-
value (as it may be termed) (A)(B) /N . The procedure is from the 
theoretical standpoint perhaps the most natural, but it is usual, 
in practice, to adopt a method of comparing •proportions, e.g. the 
proportion of -4's amongst the B's with the proportion in the* 
universe at large. Such proportions are usually expressed in the 
form of percentages or proportions per thousand. 

A large number of such comparisons are available for the 
purpose, as indicated by the inequalities (4) below, which all 
hold good for the case of positive association between A and 
B. The first two, (a) and (b), follow at once from the definition 
of § 5, (c) and (d) follow from (a) and (b), on multiplying 
across and expanding (A) and iV in the first case, (B) and N 
in the second. The deduction of the remainder is left to the 
student. 
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(AB) (A) 
(B) N 

(a) 
(AB) (B) 
(A) > N (5) 

(AB) (Aft 
( f t ( f t (o) 

(AB) (aB) 
(A) > (a) (d) 

(Aft^(A) 
( f t * 

(«) (Aft ^ ( f t 
(A) < N (/) 

(aB) (a) 
( f t N (9) 

(aB) (B) 
(a) < N (h) 

(aft (a) 
( f t > N (J) (a) > N (h) 

(aft (aB) 
( f t ( f t (0 

(aft (Aft 
(a) > (A) H 

The question arises then, which is the best comparison to adopt 1 
10. Two principles should decide this point: (1) of any two 

comparisons, that is the better which brings out the more clearly 
the degree of association; (2) of any two comparisons, that is 
the better which illustrates the more important aspect of the 
problem under discussion. 

The second condition will generally exclude all the comparisons 
(e)^(m), for the capital letters will naturally be used to denote 
the important aspect of the character. We will generally be 
concerned, for instance, with the proportion of -4's amongst the 
B's as compared with the /3's (as in (c)), and not with the propor-
tion of the a's in those two universes (as in (I)); or with the 
proportion of .4's amongst the B's as compared with the whole 
universe (a), and not with the proportion of a's amongst the 
/3's as compared with the whole universe (J). That is simply the 
natural method of using the notation. We may confine our 
attention accordingly to the comparisons (a)-(d). Of these 
four, (c) or (d) is generally to be preferred to (a) or (b), for the 
reason that either of the latter may give a misleading impression 
as to the intensity of the association. We have in fact— 

(A) (AB) ( f t (Aft ( f t 
N ( B ) ' N ( f t ' N' 

Hence if (B)/N be large compared with ( f t / N , (A)/N will 
approach the value (AB)/(B) and the association will appear 
to be very small, even though (AB)/(B) and ( A f t / ( f t differ 
considerably. Suppose, for example, in some given case, for a 
considerable number of observations— 

(AB)/(B) = - 70 ( A f t / ( f t = -4:0 
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this would mean a considerable positive association between 
A and B. But if it were only stated that— 

the association would appear to be small. Yet the two state-
ments are equivalent if (_8)/#=0'9, for then we have— 

(£)\N= -7 x -9 + -4 x T = -67 

The meaning of (a) or (b), in fact, cannot be fully realised 
unless the value of (B)/]V (or (A)/JV in the second case) is known, 
and therefore (c) is to be preferred to (a), and (d) to (b). An 
exception may, however, be made in cases where the proportion 
of B's (or .A's) in the universe is very small, so that (A)/JY 
approaches closely to (A/3)/(/3) or (B)/IY to (aB)/(a) (cf. Example 
vi. below). 

There still remains the choice between (a) and (b), or between 
(c) and (d). This must be decided with reference to the second 
principle, i.e. with regard to the more important aspect of the 
problem under discussion, the exact question to be answered, 
or the hypothesis to be tested, as illustrated by the examples 
below. Where no definite question has to be answered or 
hypothesis tested both pairs of proportions may be tabulated, 
as in Example vi. again. 

Example v.—Association between sex and death. (Material 
from 64th Annual Report Reg. General. [Cd. 1230] 1903.) 

Males in England and Wales, 1901 . . 15,773,000 

Of the Females died 265,967 

We may denote the number of males by (A), the number of 
deaths by (B); then the natural comparison is between (AB)/(A) 
and (aB)/(a), i.e. the proportion of males that died and the 
proportion of females. We find— 

(AB)/(B) = -70 (A)jN= -67 

Females ,, 
Of the Males died 

16,848,000 
285,618 

(AB) _ 285,618 
= •0181. (A) "15,773,000 

(*B)_ 265,967 
(a) ~ 16,848,000 = •0158. 

Therefore (AB)/(A)>(aB)/(a), and there is positive association 
between male-sex and death. It is usual to express proportions 
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of deaths, births, marriages, etc., to the population as rates per 
thousand ; so that the above figures would be written— 

Death-rate among Males . . 18T per thousand. 
„ „ Females . . 15'8 ,, 

A comparison of the death-rate among males with the death-
rate for the whole population would be equally valid, but it 
should be remembered that the latter depends on the sex-ratio 
as well as on the causes that determine the death-rates amongst 
males and females. The above figures give— 

Death-rate among males . . 18'1 per thousand. 
,, for whole population . 16 9 „ 

This brings out the difference between the death-rates of 
males and of the whole population, but is not so clear an indica-
tion of the difference between males and females, which is the 
point to be investigated. 

A comparison of the form (4) (c) is again valid for testing the 
association, but the form is not desirable, illustrating very well 
the remarks on the opposite page. Statisticians are concerned 
with death-rates, and not with the sex-ratios of the living and 
the dead-. The student should learn, however, to recognise such 
forms of statement as the following, as equivalent to the above :— 

Proportion of males amongst those I K1 a ,, ,] , r i • (i /Olo per thousand, that died in the year . . . | c 

Proportion of males amongst those I ^gg 
that did not die in the year . J " 

Since (AB)/(B)>(A/3)/( f3) , it follows, as before, that there is 
positive association between A and B. 

Example vi.—Deaf-mutism and Imbecility. (Material from 
Census of 1901. Summary Tables. [Cd. 1523.]) 

Total population of England and Wales . . 32,528,000 
Number of the imbecile (or feeble-minded) . 48,882 
Number of deaf-mutes . . . . . 15,246 
Number of imbecile deaf-mutes . . . 451 
Piequired, to find whether deaf-mutism is associated with 

imbecility. 

We may denote the number of the imbecile by (A), of deaf-
mutes by (B). One of the comparisons (a) or (b) may very well 
be used in this case, seeing that (A)IN and ( B ) / N differ very 
little from (A/3)l((3) and (aB)/(a) respectively. The question 

3 
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whether to give the preference to (a) or to (b) depends on the 
nature of the investigation we wish to make. If it is desired to 
exhibit the conditions among deaf-mutes (a) may be used :— 

Proportion of imbeciles among deaf-) or,.,, ,, , 
mutes = (AB)/(B) . T . | per onousana. 

Proportion of imbeciles in the whole ) , -
population = (A)/N . . . J 

If, on the other hand, it is desired to exhibit the conditions 
amongst the imbecile, (b) will be preferable. 

Proportion of deaf-mutes amongst I n n ,, , 
the imbecile (AB)/(A) . . f9'2 P6r th(™d-

Proportion of deaf-mutes in the L , 
whole population (B)/N . . J 

Either comparison exhibits very clearly the high degree of asso-
ciation between the attributes. It may be pointed out, however, 
that census data as to such infirmities are very untrustworthy. 

Example vii.—Eye-colour of father and son (material due 
to Sir Francis Galton, as given by Professor Karl Pearson, Phil. 
Trans., A, vol. cxcv. (1900), p. 138; the classes 1, 2, and 3 of the 
memoir treated as light). 

Fathers with light eyes and sons with light eyes (AB) . 471 
not light „ (A/3) . 151 

„ not light „ light „ (aB) . 148 
not light „ (a/3) . 230 

Required to find whether the colour of the son's eyes is 
associated with that of the father's. In cases of this kind the 
father is reckoned once for each son ; e.g. a family in which the 
father was light-eyed, two sons lighf^eyed and one not, would be 
reckoned as giving two to the class AB and one to the class A (3. 

The best comparison here is— 
Percentage of light-eyed amongst the sons I yg e r c g n t 

of light-eyed fathers . . . . j P6 r ° 6 n ' 
Percentage of light-eyed amongst the sons I gg 

of not-light-eyed fathers . . . ) " 
But the following is equally valid— 

Percentage of light-eyed amongst the 1 7 g c e n t 
fathers of light-eyed sons . . j * ' 

Percentage of light-eyed amongst the ) ^^ 
fathers of not-light-eyed sons . . j " 
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The reason why the former comparison is preferable is, that we 
usually wish to estimate the character of offspring from that of 
the parents, and define heredity in terms of the resemblance of 
offspring to parents. We do not, as a rule, want to make use of 
the power of estimating the character of parents from that of their 
offspring, nor do we define heredity in terms of the resemblance 
of parents to offspring. Both modes of statement, however, 
indicate equally clearly the tendency to resemblance between 
father and son. 

11. The values that the four second-order frequencies take in 
the case of independence, viz.— 

(AX£) (aXft (A)(ft (am 
N ' N ' N .' N ' 

are of such great theoretical importance, and of so much use as 
reference-values for comparing with the actual values of the 
frequencies (AB) (aB) (Aft and (a/3), that it is often desirable to 
employ single symbols to denote them. We shall use the symbols— 

If 8 denote the excess of (AB) over (AB)0, then we have— 
(aB) = (B)-(AB) = (B)-(AB)0-S 

[N-(A)\B) 
N 

= (aB)0-S. 
(AB)-(AB)0 = (aB)0-(aB). 

Similarly it may be shown that— 

(Aft = (Aft0-8. 
(a/3) = (a/3)0 +8 . 

Therefore, quite generally we have— 

(AB) - (AB), = (a/3) - (a/3)0 = (A/3)0 - (Aft = (aB)0 - (aB). 

Supposing, for example, 
i \ r = 1 0 0 (A) = 60 (B) = 45 

then 
(AB)0 = 27 (aB), = 18 (Aft0 = 33 (a/3)0 = 22. 
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If, now, A and B are positively associated, and (AB) = say 35, 
then (aB) = 45 - 35 = 10, (A,3) = 60 - 35 = 25, (a/3) = 100 - 60 - 45 
+ 35 = 30, and we have— 

3 5 - 2 7 = 30 - 22 = 1 8 - 10 = 3 3 - 2 5 = 8. 

Similarly, if A and B be disassociated and (AB) = say 19, the student 
will find that—-

(AS) = 19 (aB) = 26 (A/3) = 41 (a/3) = 14 
and 19 - 27 = 14 - 22 = 18 - 26 = 33 - 41 = - 8. 

12. The value of this common difference 8 may be expressed 
in a form that it is useful to note. Wo have by definition— 

^ ( A B ) - ( A B ) ^ ( A B ) - W f > . 

Bring the terms on the right to a common denominator, and 
express all the frequencies of the numerator iu terms of those of 
the second order; then we have — 

8 = 1 1 (AB)[(AB) + (aB) + (Af3) + (a/3)] 1 
N 1 -l(AB) + (A(3)\(AB) + (aB)] | 

= i { ( A 5 ) ( a / 3 ) - ( a 7 ? ) ( ^ ) i . 

That is to say, the common difference is equal to l/vFth of the 
difference of the "cross products" (AB)(af3) and (aB)(A/3); e.y. 
taking the examples of § 11, we have 

| 35 x 3 0 - 25 x 10 j. = 8 

and 8 = y ^ | 19 x 1 4 - 2 6 x 4 1 j. = - 8 . 

It is evident that the difference of the cross-products may be 
very large if N be large, although 8 is really very small. In 
using the difference of the cross-products to test mentally the 
sign of the association in a case where all the four second-order 
frequencies are given, this should be remembered : the difference 
should be compared with N, or it will be liable to suggest a higher 
degree of association than actually exists. 

Example viii.—The following data were observed for hybrids of 
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Datura (W. Bateson and Miss Saunders, Report to the Evolution 
Committee of the Royal Society, 1902) :— 

Flowers violet, fruits prickly (AB) . . 4 7 
,, „ smooth (A/3) . . 1 2 

Flowers white, ,, prickly (aB) . . 21 
„ „ smooth (a/3) . . 3 

Investigate the association between colour of flower and char-
acter of fruit. 

Since 3 x 47 = 141, 12x 21 = 252, i.e. (AB) (a/3)<(aB) (A/3), 
there is clearly a negative association; 2 5 2 - 141 = 111, and at 
first sight this considerable difference is apt to suggest a consider-
able association. But 8= 111/83 = 1'3 only, so that in point of 
fact the association is small, so small that no stress can be laid 
on it as indicating anything but a fluctuation of sampling. 
Working out the percentages we have— 

Percentage of violetflowered plants with I „„ • l i p - . /*• oo per cent, prickly fruits . . . . . j 1 

Percentage of white-flowered plants with I g^ 
prickly fruits . . . . . 1 " 

13. While the methods used in the preceding pages suffice for 
most practical purposes, it is often very convenient to measure 
the intensities of association in different cases by means of some 
formula or " coefficient," so devised as to be zero when the attributes 
are independent, + 1 when they are completely associated, and 
- 1 when they are completely disassociated, in the sense of § 6. If 
we use the term "complete association" in the wider sense there 
defined, we have, grouping the frequencies in a small table in a 
way that is sometimes convenient, the three cases of complete 
association:— 

(1) (2) (3) 

(AB) 0 (A) 

(aB) (a0) (a) 

(B) (0) N 

(AB) ( M ) (A) 

0 (a ) 

(B) N 

(AB) 0 (A) 

• 0 w 

(•») ' ;/3) N 

In the first case all A's are B, and so (A/3) = 0 ; in the second 
all B's, are A and so (aB) = 0 ; and in the third case we have (A) = 
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(B) = (AB), so that all A's are B and also all B's are A. The 
three corresponding cases of complete disassociation are—• 

(4) (5) (6) 

0 (AB) U ) 

(aB) (aB) («) 

(B) 03) N 

(AB) (AB) (A) 

(«B) 0 («) 

(B) (0) N 

0 UB) (A) 

(aB) 0 («) 

(B) (P) jsr 

It is required to devise some formula which shall give the value 
+ 1 in the first three cases, — 1 in the second three, and shall 
also be zero where the attributes are independent. Many such 
formulae may be devised, but perhaps the simplest possible (though 
not necessarily the most advantageous) is the expression— 

0_(AB)(af1)-(A(3)(aB)  
1 (AB)(a(3) + (Af3)(aB) 

= M 
(AB){a/3) + (A/3)(a/i) 

—where 8 is the symbol used in the two last sections for the 
difference (AB) - (AB)0. It is evident that Q is zero when the 
attributes are independent, for then 8 is zero: it takes the value + 1 
when there is complete association, for then the second term in 
both numerator and denominator of the first form of the expression 
is zero : similarly it is — 1 where there is complete disassociation, 
for then the first term in both numerator and denominator is 
zero. Q may accordingly be termed a coefficient of association. 
As illustrations of the values it will take in certain cases, the 
association between deaf-mutism and imbecility, on the basis of 
the English census figures (Example vi.) is -t-0'91 ; between light 
eye colour in father and in son (Example vii.) + 0'66 ; between 
colour of flower and prickliness of fruit in Datwra (Example viii.) 
-0 '28 , an association which, however, as already stated, is 
probably of no practical significance and due to mere fluctua-
tions of sampling. 

The student should note that the value of Q for a given table 
is unaltered by multiplying either a row or a column by any 
arbitrary number, i.e. the value is independent of the relative 
proportions of A's and a's included in the table. This property 
is of importance, and renders such a measure of association 
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specially adapted to cases (e.g. experiments) in which the propor-
tions are arbitrary. A form possessing the same property but 
certain marked advantages over Q is suggested in ref. (3). 

The coefficient is only mentioned here to direct the attention 
of the student to the possibility of forming such a measure of 
association, a measure which serves a similar purpose in the case 
of attributes to that served by certain other coefficients in the 
cases of manifold classification (cf. Chap. V.) and of variables 
(cf Chap. IX., and the references to Chaps. X. and XVI.). For 
further illustrations of the use of this coefficient the reader is 
referred to the reference (1) at the end of this chapter; and for a 
mode of deducing another coefficient, based on theorems in the 
theory of variables, which has come into more general use, though 
in the opinion of the present writer its use is of doubtful advan-
tage, to ref. (4). Reference should also be made to the coefficient 
described in § 10 of Chap. XI. The question of the best co-
efficient to use as a measure of association is at present the 
subject of controversy : for a discussion the student is referred 
to ref. (3). 

14. In concluding this chapter, it may be well to repeat, for the 
sake of emphasis, that (cf. § 5) the mere fact of 80, 90, or 99 per 
cent, of A's being B implies nothing as to the association of A 
with B ; in the absence of information, we can but assume that 
80, 90, or 99 per cent, of a's may also be B. In order to apply 
the criterion of independence for two attributes A and B, it is 
necessary to have information concerning a's and /3's as well as 
A's and B's, or concerning a universe that includes both a's and 
A's, jS's and B's. Hence an investigation as to the causal 
relations of an attribute A must not be confined to A's, but must 
be extended to a's (unless, of course, the necessary information 
as to a's is already obtainable): no comparison is otherwise 
possible. I t would be no use to obtain with great pains the 
result (cf. Example vi.), that 29'6 per thousand of deaf-mutes 
were imbecile unless we knew that the proportion of imbeciles 
in the whole population was only 1-5 per thousand; nor would 
it contribute anything to our knowledge of the heredity of deaf-
mutism to find out the proportion of deaf-mutes amongst the 
off-spring of deaf-mutes unless the proportions amongst the off-
spring of normal individuals were also investigated or known. 
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EXERCISES. 

1. At the census of England and Wales in 1901 there were (to tho nearest 
1000) 15,729,000 males and 16,799,000 females; 3497 males were returned 
as deaf-mutes from childhood, and 3072 females. 

State proportions exhibiting the association between deaf-mutism from 
childhood and sex. How many of each sex for the same total number would 
have been deaf-mutes if there had been no association ? 

2. Show, as briefly as possible, whether A and B are independent, posi-
tively associated, or negatively associated in each of the following cases :— 

(a) N =5000 (A) =2350 (B) =3100 M-B) = 1600 
(V) (A) = 490 ( A B ) = 294 (a) = 570 (aB) = 380 
(c) (AB)= 256 (aB)= 768 (A0)= 48 (a/3) = 144 

3. (Figures derived from Darwin's Cross- and Self-fertilisation of Plants, 
cf. ref. 1, p. 294.) The table below gives the numbers of plants of certain 
species tha t were above or below the average height, stating separately those 
tha t were derived from cross-fertilised and from self-fertilised parentage. 
Investigate the association between height and cross-fertilisation of parentage, 
and draw attention to any special points you notice. 

Parentage Cross fer- Parentage Self-fer-
tilised. Height— tilised. Height— 

Species. Species. 
Above Below Above Below 

Average. Average. Average. Average. 

Ipomaea purpurea 63 10 18 65 
Petunia violacea 61 18 13 64 
Reseda lutea 25 7 11 21 
Reseda odorata . 39 16 25 30 
Lobelia fulgens. 17 17 12 . 22 
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4. (Figures from same source as Example vii. p. 34, but, material differently 
grouped ; classes 7 and 8 of the memoir treated as " dark.") Investigate the 
association between darkness of eye-colour in father and son from the following 
data:— 

Fathers with dark eyes and sons with dark eyes (AB) . 50 
„ ,, ,, not-dark eyes (A0) . 79 

Fathers with not-dark eyes and sons with dark eyes (aB) . 89 
„ „ ,, not-dark eyes (a/3) . 782 

Also tabulate for comparison the frequencies tha t would have been observed 
had there been no heredity, i.e. the values of (AB)0, (AfS)0, etc. (§ I I ) . 

5. (Figures from same source as above.) Investigate the association between 
eye colour of husband and eye colour of wife ("assortative mat ing") from 
the data given below. 

Husbands with light eyes and wives with light eyes (AB) . -309 
,, ,, ,, not-light eyes (A$). 214 

Husbands with not-light eyes and wives with light eyes (aB) . 132 
,, ,, ,, not-light eyes (a/3) . 119 

Also tabulate for comparison the frequencies that'would have been observed 
had there been strict independence between eye colour of husband and eye 
colour of wife, i.e. the values of (AB)0, etc., as in question 4. 

6. (Figures from the Census of England and Wales, 1891, vol. iii. : the data 
cannot be regarded as trustworthy.) The figures given below show the 
number of males in successive age groups, together with the number of the 
blind (A), of the mentally-deranged (B), and the blind mentally-deranged 
(AB). Trace the association between blindness and mental derangement 
from childhood to old age, tabulating the proportions of insane amongst the 
whole population and amongst the blind, and also the association coefficient 
Q of § 13. Give a short verbal statement of your results. 

6- 15- 25- 35- 46- 65- 65- 75 and 
upwards. 

N 
W 
CG> 

(AB) 

3,304,230 
844 

2,820 
17 

2,712,521 
1,184 
6,225 

19 

2,089,010 
1,165 
8,482 

19 

1,611,077 
1,501 
9,214 

31 

1,191,789 
1.752 
8,187 

32 

770,124 
1,905 
6,799 

34 

444,896 
1,932 
3,412 

22 

161,692 
1,701 
1,098 

9 

7. Show tha t if 
(AB), (aB), (Afi\ (a/8)! 
(AB)2 (aB), (Af})2 (a$)2 

be two aggregates corresponding to the same values of (A), (B), (a), and (/3), 
(AB), - (AB\=(«B\ - (aB), = (Afi)2 - (Afl), = (afi), - (a/S), 

8. Show that if 
S = (AB)-(AB) 0 

(ABf + (af}?- (aB? -(AfS? = [(A)- (a)I(-B) - (/8)] + 2N. 5. 
9. The existence of association may be tested either by comparison of pro-

portions (e.g. (AB)I(B) with (A$)/(p)), as in §§ 9, 10, or by the value of 5, as 
in §§ 11, 12. Show that 

.(B)(I3)((AB) (AfS)\ 
N I (B) (13) J 

_(A)(a)l(AB) ( g J g) \ 
W I (A) (a) I 



CHAPTER IV. 

PARTIAL ASSOCIATION. 

1-2. Uncertainty in interpretation of an observed association—3-5. Source of 
the ambiguity : partial associations—6-8. Illusory association duo 
to the association of each of two attributes with a third—9. Estima-
tion of the partial associations from the frequencies of the second 
order—10-12. The total number of associations for a given number 
of attributes—13-14. The case of complete independence. 

1. If we find that in any given case 

(A*» or <W1, 

all that is known is that there is a relation of some sort or kind 
between A and B. The result by itself cannot tell as whether 
the relation is direct, whether possibly it is only due to " fluctuations 
of sampling " (cf. Chap. III. §§ 7-8), or whether it is of any other 
particular kind that we may happen to have in our minds at the 
moment. Any interpretation of the meaning of the association is 
necessarily hypothetical, and the number of possible alternative 
hypotheses is in general considerable. 

2. The commonest of all forms of alternative hypothesis is of 
this kind: it is argued that the relation between the two attributes 
A and B is not direct, but due, in some way, to the association of 
A with G and of B with G. An illustration or two will make the 
matter clearer:— 

(1) An association is observed between "vaccination" and 
" exemption from attack by small-pox," i.e. more of the vaccinated 
than of the unvaccinated are exempt from attack. It is argued 
that this does not imply a protective effect of vaccination, but is 
wholly due to the fact that most of the unvaccinated are drawn from 
the lowest classes, living in very unhygienic conditions. Denoting 
vaccination by A, exemption from attack by B, hygienic conditions by 
C, the argument is that the observed association between A and B 
is due to the associations of both with G. 

42 
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(2) It is observed, at a general election, that a greater 
proportion of the candidates who spent more money than their 
opponents won their elections than of those who spent less. It 
is argued that this does not mean an influence of expenditure on 
the result of elections, but is due to the fact that Conservative 
principles generally carried the day, and that the Conservatives 
generally spent more than the Liberals. Denoting winning by A, 
spending more than the opponent by B, and Conservative by C, the 
argument is the same as the above (cf. Question 9 at the end of 
the chapter). 

(3) An association is observed between the presence of some 
attribute in the father and its presence in the son; and also 
between the presence of the attribute in the grandfather and its 
presence in the grandson. Denoting the presence of the attribute 
in son, father, and grandfather by A, B, and. C, the question arises 
whether the association between A and C may not be due solely 
to the associations between A and B, B and C, respectively. 

3. The ambiguity in such cases evidently arises from the fact 
that the universe of observation, in each case, contains not 
merely objects possessing the third attribute alone, or objects 
not possessing it, but both. 

If the universe were restricted to either class alone the given 
ambiguity would not arise, though of course others might remain. 

Thus, in the first illustration, if the statistics of vaccination 
and attack were drawn from one narrow section of the population 
living under approximately the same hygienic conditions, and an 
association were still observed between vaccination and exemption 
from attack, the supposed argument would be refuted. The fact 
would prove that the association between vaccination and 
exemption could not be wholly due to the association of both with 
hygienic conditions. 

Again, in the second illustration, if we confine our attention to 
the " universe " of Conservatives (instead of dealing with candidates 
of both parties together), and compare the percentages of Conserva-
tives winning elections when they spend more than their opponents 
and when they spend less, we shall avoid the possible fallacy. If 
the percentage is greater in the former case than in the latter, it 
cannot be for the reasons suggested in § 2. 

The biological case of the third illustration should be similarly 
treated. If the association between A and C be observed for 
those cases in which all the parents, say, possess the attribute, or 
else all do not, and it is still sensible, then the association first 
observed between A and C for the whole universe cannot have 
been due solely to the observed associations between A and B, B 
and C. 
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4. The associations observed between the attributes A and B 
in the universe of C's and the universe of y's may be termed 
partial associations, to distinguish them from the total associations 
observed between A and B in the universe at large. In terms of 
the definition of § 5 of Chap. III., A and B will be said to be posi-
tively associated in the universe of C's (cf. § 4 of Chap. II.) when 

. . . . (1) 

and negatively associated in the converse case. 
As in the simpler case, the association is most simply tested by 

a comparison of percentages or proportions (§ 9, Chap. III.), 
although for some purposes a " coefficient of association" of 
some kind may be useful. Confining our attention to the more 
fundamental method, if A and B are positively associated within 
the universe of C's, we must have, to quote only the four most 
convenient comparisons (cf. (4) (a)-(d), Chap. III. p. 31), 

(ABC) (AC) (ABC) (BC) 
(BC) > (C) W (AC) > (C) W 

(ABC) (AfSC) (ABC) (.BC) 
> mr<\ [C> . t A fr\ > i„r<\ W 

(2) 

(BC) " (pC) w • (AC) " (aC) 
These inequalities may easily be rewritten for any other case by 

making the proper substitutions in the symbols; thus to obtain 
the inequalities for testing the association between A and C in 
the universe of B's, B must be written for C, /3 for y, and vice 
versci, throughout; it being remembered that the order of the 
letters in the class symbol is immaterial. The remarks of § 10, 
Chap. III., as to the choice of the comparison to be used, apply of 
course equally to the present case. 

5. Though we shall confine ourselves in the present work to 
the detailed discussion of the case of three attributes, it should be 
noticed that precisely similar conceptions and formula; to the 
above apply in the general case where more than three attributes 
have been noted, or where the relations of more than three have 
to be taken into account. If, when it is observed that A and B 
are still associated within the universe of C's, it is argued that 
this is due to the association of both A and B with D, the argu-
ment may be tested by still further limiting the field of observa-
tion to the universe CD. If 

( A B C D ) > ( * W p , 

A and B are positively associated within the universe of CD's, 
and the association cannot be wholly ascribed to the presence and 
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absence of D as suggested, nor to the presence and absence of 
C and D conjointly. If it be then argued that the presence 
and absence of E is the source of association, the process may 
be repeated as before, the association of A and B being tested 
for the universe CDE, and so on as far as practicable. 

Partial associations thus form the basis of discussion for any 
case, however complicated. The two following examples will 
serve as illustrations for the case of three attributes. 

Example i.—(Material from ref. 5 of Chap. I.) 
The following are the proportions per 10,000 of boys observed 

with certain classes of defects, amongst a number of school 
children. (A) denotes the number with development defects, (B) 
with nerve-signs, (Z>) the number of the " dull." 

The Report from which the figures are drawn concludes that " the 
connecting link between defects of body and mental dulness is 
the coincident defect of brain which may be known by observation 
of abnormal nerve-signs." Discuss this conclusion. 

The phrase " connecting l ink" is a little vague, but it may 
mean that the mental defects indicated by nerve-signs B may 
give rise to development-defects A, and also to mental-dul-
ness D; A and D being thus common effects of the same cause 
B (or another attribute necessarily indicated by B), and not 
directly influencing each other. The case is thus similar to that 
of the first illustration of § 2 (liability to small-pox and to non-
vaccination being held to be common effects of the same circum-
stances), and may be similarly treated by investigation of the 
partial associations between A and D for the universes B and /3. 
As the ratios (A) /N , (B)/JV., (D)/JV are small, comparisons of the 
form (4) (a) or (b) of Chap. III. (p. 31), or (2) (a) (b) above, may 
very well be used (cf. the remarks in § 10 of the same chapter, 

The following figures illustrate, then, the association between 
A and D for the whole universe, the _B-universe and the (3-
universe:— 

For the entire material:— 

N 10,000 
(A) 877 
(B) 1,086 
(D) 789 

(AB) 338 
(Ai>) 338 
(BD) 455 

(ABD) 153 

pp. 31-2). 

Proportion of the dull = (D)/JV . 

,, ,, ueieouveij 
were dull = (AD)!(A) . 

defectively developed who 
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For those exhibiting nerve signs :— 
Proportion of the dull={B£>/(B) . . = 4 5 5 = 4 1 ' 9 per cen t 

1,086 
,, ,, defectively developed who \ _ 153 . , „ 

were dull = (ABD)/(AB). . . . J~~338 " 

For those not exhibiting nerve signs :— 
Proportion of the dull = (0.»)/(/3) . . = 3 3 4 = 3'7 

8 ,914 " 

,, ,, defectively developed w h o \ _ 185 _ „ , „ 
were duU = (Af>D)/(Af}) . . . . / 539- - d 4 J 

The results are extremely striking; the association between A 
and D is very high indeed both for the material as a whole (the 
universe at large) and for those not exhibiting nerve-signs (the 
/3-universe), but it is very small for those who do exhibit nerve-
signs (the i?-universe). 

This result does not appear to be in accord with the conclusion 
of the Report, as we have interpreted it, for the association 
between A and D in the /3-universe should in that case have 
been very low instead of very high. 

Example ii.—Eye-colour of grandparent, parent and child. 
(Material from Sir Francis Galton's Natural Inheritance (1889), 
table 20, p. 216. The table only gives particulars for 78 large 
families with not less than 6 brothers or sisters, so that the 
material is hardly entirely representative, but serves as a good 
illustration of the method.) The original data are treated as in 
Example vii. of the last chapter (p. 34). Denoting a light-eyed 
child by A, parent by B, grandparent by C, every possible line of 
descent is taken into account. Thus, taking the following two 
lines of the table, 

Children Parents Grandparents 
A. a. B. 5. C. 7 

Light-eyed. L l g ^ y e d . Light-eyed. Light-eyed. L ^ y ' e d . 

4 5 1 1 1 3 
3 4 1 1 4 0 

the first would give 4 x 1 x 1 = 4 to the class ABC, 4 x 1 x 3 = 12 to 
the class ABy, 4 to AfSC, 12 to A(3y, 5 to aBC, 15 to aBy, 5 to 
a/3C, and 15 to a/3y; the second would give 3 x 1 x 4 = 12 to the 
class ABC, 12 to A/3C, 16 to aBC, 16 to a/3C, and none to the re-
mainder. The class-frequencies so derived from the whole table are, 

(ABC) 1928 (aBC) 303 
(ABy) 596 (aBy) 225 
(ApC) 552 (apC) 395 
( A f t ) 508 501 



IV .—PARTIAL ASSOCIATION. 4 7 

The following comparisons indicate the association between 
grandparents and parents, parents and children, and grand-
parents and grandchildren, respectively :— 

Grandparents and Parents. 
Proportion of l ight -eyed amongst the \ = ( ^ = | 2 | 1 = 7 0 . 2 n t 

children of light-eyed g randparen t s J (O) 3178 
Proportion of light-eyed amongst the "I (By) 821 

children of not-l ight-eyed grand- j- = -j—r = Jggg = 44 '9 , , 
parents . . . . . ) 

Parents and Children. 
Proportion of l ight-eyed amongst the \ _ (AB) _ 2524 _ ^ c e n j 

children of l ight-eyed parents . J (B) 3052 1 

Proportion of l igh t -eyed amongst the \ 
children of not-l ight-eyed pa ren t s . J (0) 1956 " 

In both the above cases we are really dealing with the 
association between parent and offspring, and consequently the 
intensity of association is, as might be expected, approximately 
the same; in the next case it is naturally lower :— 

Grandparents and Grandchildren. 
Proportion of l ight-eyed amongst the"! (AO) 2480 

grandchi ldren of l ight-eyed grand- J- = 7777-= = P e r c e n t -
parents J (.0) 

Proportion of l ight-eyed amongst t h e ( A y ) 1104 
grandchildren of not-l ight-eyed J - = - t - t - = t ^ t = 60 -3 ,, 
grandparents . . . . J 

We proceed now to test the partial associations between grand-
parents and grandchildren, as distinct from the total associations 
given above, in order to throw light on the real nature of the 
resemblance. There are two such partial associations to be 
tested: (1) where the parents are light-eyed, (2) where they are 
not-light-eyed. The following are the comparisons :— 

Grandparents and Grandchildren: Parents light-eyed. 
Proportion of l ight-eyed amongst the ) (ABO) 1928 

grandchi ldren o f l igh t -eyed grand- [ = , = • „ , . = 8 6 ' 4 per cent, 
parents ) 

Proportion of light-eyed amongst the "j (ABy) 596 
grandchildren of not-l ight-eyed V = "TTT^r = o s r - 7 2 ' 6 „ 
grandparents . . . . J ^ 
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Grandparents and Grandchildren: Parents not-light-eyed. 
Proportion of light-eyed amongst the 

grandchildren of light-eyed grand-
parents 

Proportion of light-eyed amongst the 
grandchildren of not-light-eyed 
grandparents . . . . 

In both cases the partial association is quite well-marked and 
positive ; the total association between grandparents and grand-
children cannot, then, be due wholly to the total associations 
between grandparents and parents, parents and children, re-
spectively. There is an ancestral heredity, as it is termed, as 
well as a parental heredity. 

We need not discuss the partial association between children and 
parents, as it is comparatively of little consequence. It may be 
noted, however, as regards the above results, that the most 
important feature may be brought out by stating three ratios 
only. 

If A and B are positively associated, (AB)/(B) > (A)/W. 
If A and G are positively associated in the universe of B's, 

(ABC)/(BC) > (AB)!(B). Hence (A)/N, (AB)/(B), and (ABC)/(BG) 
form an ascending series. Thus we have from the given data— 

- 4» 
per cent. ^ 

"H 

If the great-grandparents, etc., etc., were also known, the ;;ories 
might be continued, giving (ABCD)j(BCD), (ABC DE)j(BCDE), 
and so forth. The series would probably ascend continuously 
though with smaller intervals, A and D being positively associated 
in the universe of BC's, A and E in the universe of BCD's, etc. 

6. The above examples will serve to illustrate the practical 
application of partial associations to concrete cases. The general 
nature of the fallacies involved in interpreting associations 
between two attributes aB if they were necessarily due to the 
most obvious form of direct causation is more clearly exhibited 
by the following theorem :— 

If A and B are independent within the universe of C's and also 
within the universe of y's, they will nevertheless be associated 
within the universe at large, unless C is independent of either A 
or B or both. 

_(A$C) _ 552 
(0 0) 947 -jtt7- = 58'3 per cent. 

JA0y)_ MS 
(07) "1009 6 0 d 

Proportion of light-eyed amongst l _ [A)IN = 71'G 
children in general . . . / " 

Proportion of light-eyed amongst the \ _ / j ^ m i i m _ 32-7 
children of light-eyed parents . / * >l\ ) 

Proportion of light-eyed amongst the "1 
children of light-eyed parents and V =(ABO)/(£C) = 8B-i 
grandparents . , J 
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The two data give— 

(AO)(BC) (ABC) = 
(0) 

(Ay)(By) _[(A)-(AC)][(B)-(BC)]\ (3) 

w - T r - ® - ; - . (T) 

Adding them together we have— 

(AB)=^)f[N(AC!){B0)-(A)(0)(B0)-(B)(0)(AC) + (A)(B)(0)j 

Write, as in § 11 of Chap. III. (p. 35)— 

( A B ^ W l , ( A ^ J M p , 

subtract (AB)0 from both sides of the above equation, simplify, 
and we have 

(AB)-(AB)0 = ̂ [(AC)-(AC)0][(BC)-(BC)0] , (4) 

This proves the theorem; for the right-hand side will not be 
2fero unless either (AC) = (AC)0 or (BC) = (BC)0. 

7. The result indicates that, while no degree of heterogeneity 
irl the universe can influence the association between A and B 
if all other attributes are independent of either A or B or both, 
an illusory or misleading association may arise in any case where 
there exists in the given universe a third attribute C with which 
both A and B are associated (positively or negatively). If both 
associations are of the same sign, the resulting illusory association 
between A and B will be positive ; if of opposite sign, negative. 
The three illustrations of § 2 are all of the first kind. In (1) it 
is argued that the positive associations between vaccination and 
hygienic conditions, exemption from attach and hygienic conditions, 
give rise to an illusory positive association between vaccination 
and exemption from attach. In (2) it is argued that the positive 
associations between conservative and winning, conservative and 
spending more, give rise to an illusory positive association between 
winning and spending more. In (3) the question is raised whether 
the positive association between grandparent and grandchild may 
not be due solely to the positive associations between grandparent 
and parent, parent and child. 

Misleading associations of this kind may easily arise through 
4 
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the mingling of records, e.g. respecting the two sexes, which a 
careful worker would keep distinct. 

Take the following case, for example. Suppose there have been 
200 patients in a hospital, 100 males and 100 females, suffering 
from some disease. Suppose, further, that the death-rate for males 
(the case mortality) has been 30 per cent., for females 60 per cent. 
A new treatment is tried on 80 per cent, of the males and 40 per 
cent, of the females, and the results published without distinction 
of sex. The three attributes, with the relations of which we are 
here concerned, are death, treatment and male sex. The data show 
that more males were treated than females, and more females 
died than males; therefore the first attribute is associated nega-
tively, the second positively, with the third. It follows that there 
will be an illusory negative association between the first two — 
death and treatment. If the treatment were completely inefficient 
we would, in fact, have the following results :— 

Males. Females. Total. 
Treated and died . . . 24 24 48 

,, and did not die 56 16 72 
Not treated and died 6 36 42 

„ and did not die . 14 24 38 

i.e. of the treated, only 48/120 = 40 per cent, died, while of those 
not treated 42/80 = 52'5 per cent. died. If this result were stated 
without any reference to the fact of the mixture of the sexes, to 
the different proportions of the two that were treated and to the 
different death-rates under normal treatment, then some value in 
the new treatment would appear to be suggested. To make 
a fair return, either the results for the two sexes should be 
stated separately, or the same proportion of the two sexes 
must receive the experimental treatment. Further, care would 
have to be taken in such a case to see that there was no 
selection (perhaps unconscious) of the less severe cases for treat-
ment, thus introducing another source of fallacy (death positively 
associated with severity, treatment negatively associated with 
severity, giving rise to illusory negative association between 
treatment and death). 

A misleading association between the characters of parent and 
offspring might similarly be created if the records for male-male 
and female-female lines of descent were mixed. Thus suppose 50 
per cent, of males and 10 per cent, of females exhibit some 
attribute for which there is no association in either line, then we 
would have for each line and for a mixed record of equal 
numbers— 



IV.—PARTIAL ASSOCIATION. 5 1 

J' 2 5 ,, 9 33 17 

1 2 5 „ 9 53 17 

1 2 5 „ 8 1 3 J 5 3 

Male line. Female line. Mixed record. 
Parents with attribute and ) , -, . 1 0 j. .., >25 per cent. 1 per cent. 13 per cent, children with . . j r r r 

Parents with attribute and 
children without . 

Parents without attribute 
and children with 

Parents without attribute 
and children without . 

Here 13/30 = 43 per cent, of the offspring of parents with the 
attribute possess the attribute themselves, but only 17/70 = 24 
per cent, of the offspring of parents without the attribute. The 
association between attribute in parent and attribute in offspring 
is, however, due solely to the association of 'both with male sex. 
The student will see that if records for male-female and female-
male lines were mixed, the illusory association would be negative, 
and that if all four lines were combined there would be no illusory 
association at all. 

8. Illusory associations may also arise in a different way 
through the personality of the observer or observers. If the 
observer's attention fluctuates, he may be more likely to notice 
the presence of A when he notices the presence of B, and vice 
versd; in such a case A and B (so far as the record goes) will both 
be associated with the observer's attention C, and consequently 
an illusory association will be created. Again, if the attributes 
are not well defined, one observer may be more generous than 
another in deciding when to record the presence of A and also 
the presence of B, and even one observer may fluctuate in the 
generosity of his marking. In this case the recording of A and 
the recording of B will both be associated with the generosity 
of the observer in recording their presence, C, and an illusory 
association between A and B will consequently arise, as 
before. 

9. It is important to notice that, though we cannot actually 
determine the partial associations unless the third-order frequency 
(ABC) is given, we can make some conjecture as to their sign 
from the values of the second-order frequencies. 

Suppose, for instance, that— 

{ABG)JAC)(BC)+ K 

\ u ) 
( ^ y ) = ( M M + 8 2 

(5 ) 
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so that 8j and 82 are positive or negative according as A and B 
are positively or negatively associated in the universes of C and 
y respectively. Then we have by addition— 

( A B ) I M ^ + ( M ^ + 8 i + S3 . . (6) 

Hence if the value of (AB) exceed the value given by the first 
two terms (i.e. if 8L + S2 be positive), A and B must be positively 
associated either in the universe of C's, the universe of y's, or 
both. If, on the other hand, (AB) fall short of the value given by 
the first two terms, A and B must be negatively associated in 
the universe of C's, the universe of y's, or both. Finally, if 
(AB) be equal to the value of the first two terms, A and B must 
be positively associated in the one partial universe and negatively 
in the other, or else independent in both. 

The expression (6) may often be used in the following form, 
obtained by dividing through by, say, (B)— 

(AB)_(AG) (BC) (Ay) (By) m 

(B) - (C) " (B) + (y) ' (B) + (B) ' • { l ) 

In using this expression we make use solely of proportions or 
percentages, and judge of the sign of the partial associations 
between A and B accordingly. A concrete case, as in Example iii. 
below, is perhaps clearer than the general formula. 

Example iii.—(Figures compiled from Supplement to the Fifty-
fifth Annual Report of the Reyistrar-Ceneral [C.—8503], 1897.) 
The following are the death-rates per thousand per annum, and the 
proportions over 65 years of age, of occupied males in general, 
farmers, textile workers, and glass workers (over 15 years of age 
in each case) during the decade 1891-1900 in England and Wales. 

Proportion 
Death-rate per thousand 

per thousand. over 65 Years 
of Age. 

Occupied males over 15 15'8 46 
Farmers „ „ 19 6 132 
Textile workers, males over 15 . 15'9 34 
Glass workers „ „ . 16'6 16 

Would farming, textile working, and glass working seem to be 
relatively healthy or unhealthy occupations, given that the death-
rates among occupied males from 15-65 and over 65 years of age 
are 1T5 and 102'3 per thousand respectively? 

If A denote death, B the given occupation, C old age, we have 
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to apply the principle of equation (7). Calculate what would be 
the death-rate for each occupation on the supposition that the 
death-rates for occupied males in general (1T5, 102-3) apply to 
each of its separate age-groups (under 65, over 65), and see 
whether the total death-rate so calculated exceeds or falls short 
of the actual death-rate. If it exceeds the actual rate, the 
occupation must on the whole be healthy; if it falls short, un-
healthy. Thus we have the following calculated death-rates :— 

Farmers . . . 11-5 x "868 + 102-3 x -132 = 23-5. 
Textile workers . 11 "5 x -966 + 102-3 x '034 - 14'6. 
Glass workers . . 11-5 x -984 + 102-3 x -016 = 13-0. 

The calculated rate for farmers largely exceeds the actual rate; 
farming, then, must on the whole, as one would expect, be 
a healthy occupation. The death-rate for either young farmers 
or old farmers, or both, must be less than for occupied males in 
general (the last is actually the case); the high death-rate 
observed is due solely to the large proportion of the aged. Textile 
working, on the other hand, appears to be unhealthy (14'6 < 15'9), 
and glass working still more so (13-0<16'6); the actual low total 
death-rates are due merely to low proportions of the aged. 

It is evident that age-distributions vary so largely from one 
occupation to another that total death-rates are liable to be very 
misleading—so misleading, in fact, that they are not tabulated at all 
by the Registrar-General; only death-rates for narrow limits of age 
(5 or 10 year age-classes) are worked out. Similar fallacies are 
liable to occur in comparisons of local death-rates, owing to 
variations not only in the relative proportions of the old, but also 
in the relative proportions of the two sexes. 

It is hardly necessary to observe that as age is a variable quantity, 
the above procedure for calculating the comparative death-rates 
is extremely rough. The death-rate of those engaged in any occu-
pation depends not only on the mere proportions over and under 
65, but on the relative numbers at every single year of age. The 
simpler procedure brings out, however, better than a more complex 
one, the nature of the fallacy involved in assuming that crude death-
rates are measures of healthiness. [See also Chap. XI. §§ 17-19.] 

Example iv.—Eye-colour in grandparent, parent and child. 
(The figures are those of Example ii.) 

A, light-eyed child; B, light-eyed parent; C, light-eyed grand-
parent. 

N = 5008 {AB) = 2524 
(A) = 3584 (AC) = 2480 
(B) = 3052 (BC) = 2231 
(C) = 3178 
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Given only the above data, investigate whether there is probably 
a partial association between child and grandparent. 

If there were no partial association we would have— 

(AB)(BC) (Af3)(/3C) 
(AC) ^ ^ 

_ 2524 x 2231 1060 x 947 
3052 + 1956 

= 1845-0+ 513-2 
= 2358-2. 

Actually (AC) = 2480; there must, then, be partial association 
either in the 5-universe, the /3-universe, or both. In the absence 
of any reason to the contrary, it would be natural to suppose there 
is a partial association in both; i.e. that there is a partial 
association with the grandparent whether the line of descent 
passes through "light-eyed" or " not-light-eyed " parents, but this 
could not be proved without a knowledge of the class-frequency 
(ABC). 

10. The total possible number of associations to be derived from 
n attributes grows so rapidly with the value of n that the evalua-
tion of them all for any case in which n is greater than four 
becomes almost unmanageable. For three attributes there are 9 
possible associations—three totals, three partials in positive 
universes, and three partials in negative universes. For four 
attributes, the number of possible associations rises to 54, 
for there are 6 pairs to be formed from four attributes, and 
we can find 9 associations for each pair (1 total, 4 partials 
with the universe specified by one attribute, and 4 partials 
with the universe specified by two). For five attributes the 
student will find that there are no less than 270, and for six 
attributes 1215 associations. 

As suggested by Examples i. and ii. above, however, it is not 
necessary in any actual case to investigate all the associations 
that are theoretically possible; the nature of the problem indicates 
those that are required. 

In Example i., for instance, the total and partial associations 
between A and D were alone investigated; the associations between 
A and B, B and D were not essential for answering the question 
that was asked. In Example ii., again, the three total associations 
and the partial association between A and C were worked out, 
but the partial associations between A and B, B and C were 
omitted as unnecessary. Practical considerations of this kind will 
always lessen the amount of necessary labour. 
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11. It might appear, at first sight, that theoretical considera-
tions would enable us to lessen it still further. As we saw in 
Chapter I., all class-frequencies can be expressed in terms of those 
of the positive classes, of which there are 2" in the case of n 
attributes. For given values of the n + 1 frequencies JV, (A), (B), 
(C), . . . of order lower than the second, assigned values of the 
positive class-frequencies of the second and higher orders must 
therefore correspond to determinate values of all the possible 
associations. But the number of these positive class-frequencies 
of the second and higher orders is only 2" -n+1 ; therefore the 
number of algebraically independent associations that can be 
derived from n attributes is only 2n-n+\. For successive 
values of n this gives— 

Hence if we give data, in any form, that determine four 
associations in the case of three attributes, eleven in the case of 
four attributes, and so on, in addition to A^and the class-frequencies 
of the first order, we have done all that is theoretically necessary. 
The remaining associations can be deduced. 

12. Practically, however, the mere fact that they can be deduced 
is of little help unless such deduction can be effected simply, 
indeed almost directly, by mere mental arithmetic almost, and 
this is not the case. The relations that exist between the ratios 
or differences, such as (AB) — (AB),, that indicate the associations 
are, in fact, so complex that an unknown association cannot be 
determined from those that are given without more or less lengthy 
work; it is not possible to infer even its sign by any simple 
process of inspection. We have, for instance, from (5), by the 
process used in obtaining (4) for the special case of § 6— 

n 2 " - n + 1 
2 
3 
4 
5 
6 

1 
4 

11 
26 
57 

(ABy) - (Ay)(By)" 
(7) 

= [(AB) - (AB)0~] - ^ } [ ( A C ) - (AO)0I(BO) - (BG)0] 

which gives us the difference of (ABy) from the value it would 
have if A and B were independent in the universe of y's in terms 
of the difference of (ABC) from the value it would have if A and 
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B were independent in the universe of C's, and the corresponding 
differences for the frequencies (AB), (AC), and (BC). The four 
quantities in the brackets on the right represent, say, the four 
known associations, the bracket on the left the unknown association. 
Clearly, the relation is not of such a simple kind that the term on 
the left can be, in general, mentally evaluated. Hence in con-
sidering the choice and number of associations to be actually 
tabulated, regard must be had to practical considerations rather 
than to theoretical relations. 

13. The particular case in which all the 2" - n + 1 given associa-
tions are zero is worth some special investigation. 

It follows, in the first place, that all other possible associations 
must be zero, i.e. that a state of complete independence, as we 
may term it, exists. Suppose, for instance, that we are given— 

(BC) - i^M (ABC) - (AC)(BG) - ( A ) V m 

Then it follows at once that we have also—• 

(ABn.AAWBC) (AB)(AC) (ABC)- {B) - ( J ) , 

i.e. A and C are independent in the universe of B's, and B and C 
in the universe of A's. Again, 

(ABy) = ( A B ) - ( A B C ) J - ^ J M ^ 

(A)(B)(y) (Ay)(By) 
N* (y) • 

Therefore A and B are independent in the universe of y's. 
Similarly, it may be shown that A and C are independent in the 
universe of /3's, B and C in the universe of a's. 

In the next place it is evident from the above that relations of 
the general form (to write the equation symmetrically) 

(ABC) (A) (B) (C) 
Ar N " N ' N ' ' " w 

must hold for every class-frequency. This relation is the general 
form of the equation of independence, (2) (d), Chap. III. (p. 26). 

14. It must be noted, however, that (8) is not a criterion for the 
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complete independence of A, B, and C in the sense that the 
equation 

(AB) = (A) (B) 
N N ' N 

is a criterion for the complete independence of A and B. If we 
are given N, (A), and (B), and the last relation quoted holds 
good, we know that similar relations must hold for (A/3), (aB), 
and (a/3). If N, (A), (B), and (C) be given, however, and the 
equation (8) hold good, we can draw no conclusion without 
further information; the data are insufficient. There are eight 
algebraically independent class-frequencies in the case of three 
attributes, while N, (A), (B), (G) are only four : the equation (8) 
must therefore be shown to hold good for four frequencies of the 
third order before the conclusion can be drawn that it holds good 
for the remainder, i.e. that a state of complete independence 
subsists. The direct verification of this result is left for the 
student. 

Quite generally, if N, (A), (B), (G), . . . . be given, the relation 

(ABC )__(A) (B) (C± 
N N ' N ' N y ' 

must be shown to hold good for 2" - n + 1 of the nth order classes 
before it may be assumed to hold good for the remainder. It is 
only because 

2" - = 1 

when n = 2 that the relation 

(AB)JA) (B) 
N N ' N' 

may be treated as a criterion for the independence of A and B. 
If all the n (n > 2) attributes are completely independent, the 
relation (9) holds good; but it does not follow that if the relation 
(9) hold good they are all independent. 
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mixing of records.) 
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E X E R C I S E S . 

1. Take the following figures for girls corresponding to those for boys in 
Example i , p. 45, and discuss them similarly, bu t not necessarily using 
exactly the same comparisons, to see whether the conclusion t h a t " the 
connecting l ink between defects of body and menta l dulness is the coincident 
defect of brain which may be known by observation of abnormal nerve s i g n s " 
seems to hold good. 

A, development defects. B, nerve signs. D, mental dulness 

N 10,000 (AB) 248 
(A) 682 (AD) 307 
m 850 (BD) 363 
(D) 689 (ABD) 128 

2. (Material from Census of England and Wales, 1891, vol. iii.) The 
following figures give the numbers of those suffering from single or combined 
infirmities : (1) for all males, (2) for males of 55 years of ago and over. 

A, Blindness. B, Mental derangement. C, Deaf-mutism. 

(1) (2) (1) (2) 
All Males. Males 55- All Males. Males 55 

N 14,053,000 1,377,000 (AB) 183 65 
M ) 12,281 5,538 (AC) 51 14 
(-B) 45,392 10,309 (BC) 299 47 
(C) 7,707 746 (ABC) 11 8 

Tabula te proportions per thousand, exhibi t ing the total association between 
blindness and menta l derangement , and the part ial association between the 
same two infirmities among deaf-mutes, (1) for males in general, (2) for those 
of 55 years of age or over. Give a shor t verbal s ta tement of the results, and 
contras t them with those of Question 1. 

3. (Material from supplement to 55th Annual Report Reg.-Genl.) 
The death-rate f rom cancer for occupied males in general (over 15) is 

0'685 per thousand per annum, and for farmers 1 "20. 
The death-rates from cancer for occupied males under and over 45 respec-

tively are 0 '13 and 2 '25 respectively. Of the farmers 46 '1 per cent, are over 
45. 

Would you say t h a t farmers were peculiarly liable to cancer ? 
4. A populat ion of males over 15 years of age consists of 7 per cent, over 65 

years of age and 93 per cent, under . The death-rates are 12 per thousand per 
a n n u m in the younger class and 110 in the older, or 18'86 in the whole 
population. The death-rate of males (over 15) engaged in a certain indus t ry 
is 26'7 per thousand. 

If the indus t ry be not unhea l thy , wha t must be the approximate proportion 
of those over 65 engaged in i t (neglecting minor differences of age 
distr ibut ion) ? 

5. Show t h a t if A and B are independent , while A and C, B and C are 
associated, A and B mus t be disassociated either in the universe of C's, 
t h e universe of 7's, or both. 

6. As an i l lustration of Question 5, show t h a t if the following were actual 
da ta , there would be a sl ight disassociation between the eye-colours of 
husband and wife (father and mother) for the parents either of light-eyed 
sons or not-light-eyed sons, or both, a l though there is a s l ight positive 
association for parents a t large. 
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A light-eye colour in husband, B in wife, C in son— 

N 1000 
(A) 622 
(.B) 558 
(C) 617 

(.AB) 358 
(ACT) 471 
(BO) 419 

7. Show that if (ABO)=(apy), (aBC)=(A0y), and so on (the case of 
"complete equality of contrary frequencies" of Question 7, Chap. I.), A, B, 
and C are completely independent if A and B, A and 0, B and C are inde-
pendent pair and pair. 

8. If, in the same case of complete equality of contraries, 

show that 

(AB)-N/i = S1 
(AC) - JT/4 = S» 
(BC) -N/4 = 83 

(ABC) (AC)(BC) 
(C) 

= 2 (ABy)- (Ay)(By) 
(T) 

45,8. 
N 

so tha t the partial associations between A and B in the universes C and y are 
positive or negative according as 

a >48A 

9. In the simple contests of a general election (contests in which one 
Conservative opposed one Liberal and there were no other candidates) 66 per 
cent, of the winning candidates (according to the returns) spent more money 
than their opponents. Given tha t 63 per cent, of the winners were Con-
servatives, and tha t the Conservative expenditure exceeded the Liberal in 80 
per cent, of the contests, find the percentages of elections won by Conservatives 
(1) when they spent more and (2) when they spent less than their opponents, 
and hence say whether you consider the above figures evidence of the influence 
of expenditure on election results or no. (Note that if the one candidate in a 
contest be a Conservcttive-winner-who spends more than his opponent—the 
other must necessarily be a Liberal-loser-who spends less — and so forth. 
Hence the case is one of complete equality of contraries.) 

10. Given tha t (A)JN=(B)IN=(C)IN=x, and that (AB)/N=(AO)/N=y, 
find the major and minor limits to y tha t enable one to infer positive associa-
tion between B and C, i.e. (BC)/N>x2. 

Draw a diagram on squared paper to illustrate your answer, taking x and y 
as co-ordinates, and shading the limits within which y must lie in order to 
permit of the above inference. Point out the peculiarities in the case of in-
ferring a positive association from two negative associations. 

11. Discuss similarly the more complex case (A)/N= x, (B)/N= 2x, (C)/N= 
3SK:— 

(1) for inferring positive association between B and C given (AB)/N= 
(AC)/N=y. 

(2) for inferring positive association between A and C given (AB)/N= 
(BO)/N=y. 

(3) for inferring positive association between A and B given ( A G ) / N = 
(BO)/N= y. 



CHAPTER V. 

MANIFOLD CLASSIFICATION. 

1. The general principle of a manifold classification—2-4. The table of 
double-entry or contingency table and its treatment by fundamental 
methods—5-8. The coefficient of contingency—9-10. Analysis of 
a contingency table by tetrads—11-13. Isotropic and anisotropic 
distributions—14-15. Homogeneity of the classifications dealt with 
in this and the preceding chapters : heterogeneous classifications. 

1. CLASSIFICATION by dichotomy is, as was briefly pointed out in 
Chap. I. § 5, a simpler form of classification than usually occurs 
in the tabulation of practical statistics. It may be regarded as 
a special case of a more general form in which the individuals or 
objects observed are first divided under, say, s heads, A1 At . . . . 
As, each of the classes so obtained then subdivided under t heads, 
Bv B2 . . . . B„ each of these under u heads, Cv C2 . . . . C„, and 
so on, thus giving rise to s. t. w ultimate classes altogether. 

2. The general theory of such a manifold as distinct from a 
twofold or dichotomous classification, in the case of n attributes 
or characters ABC . . . . N, would be extremely complex: in the 
present chapter the discussion will be confined to the case of two 
characters, A and B, only. If the classification of the A's be s-
fold and of the B's i-fold, the frequencies of the st classes of the 
second order may be most simply given by forming a table with 
s columns headed to As, and t rows headed B1 to Bt. The 
number of the objects or individuals possessing any combination 
of the two characters, say Am and B„, i.e. the frequency of the 
class AmBn, is entered in the compartment common to the mtli 
column and the nth row, the st compartments thus giving all 
the second-order frequencies. The totals at the ends of rows 
and the feet of columns give the first-order frequencies, i.e. the 
numbers of -4m's and Bn's, and finally the grand total at the 
right-hand bottom corner gives the whole number of observations. 
Tables I. and II. below will serve as illustrations of such tables 
of double-entry or contingency tables, as they have been termed 
by Professor Pearson (ref. 1). 

60 
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3. In Table I. the division is 3 x 3-fold : the houses in England 
and Wales are divided into those which are in (1) London, (2) 
other urban districts, (3) rural districts, and the houses in each 
of these divisions are again classified into (1) inhabited houses, 
(2) uninhabited but completed houses, (3) houses that are 
" building," i.e. in course of erection. Thus from the first row 
we see that there were in London, in round numbers, 616,000 
houses, of which 571,000 were inhabited, 40,000 uninhabited, 
and 5000 in course of erection: from the first column, there 
were 6,260,000 inhabited houses in England and Wales, of which 
571,000 were in London, 4,064,000 in other urban districts, and 
1,625,000 in rural districts. 

TABLE I .—Houses in England and Wales. (Census of 1901. 
Summary Table X.) (000's omitted.) 

Inhabi ted . Unin-
habited. Building. Total . 

Adm. County of London 
Other urban districts 
Rural districts 

Total for England and Wales 

571 
4064 
1625 

40 
285 
124 

5 
45 
12 

616 
4394 
1761 

Adm. County of London 
Other urban districts 
Rural districts 

Total for England and Wales 6260 449 62 6771 

In Table II., on the other hand, the classification is 3 x 4-fold : 
the eye-colours are classed under the three heads " blue," " grev or 
green," and "brown," while the hair-colours are classed under 
four heads, "fair," "brown," "black," and "red." The table is 

TABLE I I . — H a i r - and Eye-Colours of 6800 Males in Baden. 
(Ammon, Zur Anthropologie der Badener.) 

Hair-colour. 

Eye-colour. Total . 
Fair . Brown. Black. Red. 

Blue . . . . 1768 807 189 47 2811 
Grey or Green 946 1387 746 53 3132 
Brown . . . . 115 438 288 16 857 

Total 2829 2632 1223 116 6800 
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read similarly to the last. Taking the first row, it tells us that 
there were 2811 men with blue eyes noted, of whom 1768 had 
fair hair, 807 brown hair, 189 black hair, and 47 red hair. 
Similarly, from the first column, there were 2829 men with fair 
hair, of whom 1768 had blue eyes, 946 grey or green eyes, and 
115 brown eyes. The tables are a generalised form of the four-
fold (2 x 2-fold) tables in § 13, Chap.' III. 

4. For the purpose of discussing the nature of the relation 
between the A's and the B's, any such table may be treated on 
the principles of the preceding chapters by reducing it in different 
ways to 2 X 2-fold form. It then becomes possible to trace the 
association between any one or more of the A's and any one or 
more of the B's, either in the universe at large or in universes 
limited by the omission of one or more of the A's, of the B's, or 
of both. Taking Table I., for example, trace the association 
between the erection of houses and the urban character of a 
district. Adding together the first two rows—i.e. pooling London 
and the other urban districts together—and similarly adding the 
first two columns, so as to make no distinction between inhabited 
and uninhabited houses as long as they are completed, we find— 

Proportion of all houses which 1 
are in course of erection in 50/5010 = 10 per thousand, 
urban districts . . . ) 

Proportion of all houses which I 
are in course of erection in 12/1761= 7 „ 
rural districts . ) 

There is therefore, as might be expected, a distinct positive 
association, a larger proportion of houses being in course of 
erection in urban than in rural districts. 

If, as another illustration, it be desired to trace the association 
between the " uninhabitedness " of houses and the urban character 
of the district, the procedure will be rather different. Rows 1 
and 2 may be added together as before, but column 3 may be 
omitted altogether, as the houses which are only in course of 
erection do not enter into the question. We then have— 

Proportion of all houses which ) 
are uninhabited in urban > 325/4960 = 66 per thousand, 
districts . . . . ) 

Proportion of all houses which 1 
are uninhabited in rural > 124/1749 = 71 „ 
districts . . . . ) 

The association is therefore negative, the proportion of houses 
uninhabited being greater in rural than in urban districts. 
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The eye- and hair-colour data of Table II. may be treated in a 
precisely similar fashion. If, e.g., we desire to trace the associa-
tion between a lack of pigmentation in eyes and in hair, rows 1 
and 2 may be pooled together as representing the least pigmenta-
tion of the eyes, and columns 2, 3, and 4 may be pooled together 
as representing hair with a more or less marked degree of 
pigmentation. We then have— 

Proportion of light-eyed with I 2 7 1 4 / 5 9 4 3 = 4 6 p e r cent, 
fair hair . J ' r 

Proportion of brown-eyed with I 115/357 = jg 
fair hair . . . . / ' " 

The association is therefore well-marked. For comparison we 
may trace the corresponding association between the most marked 
degree of pigmentation in eyes and hair, i.e. brown eyes and 
black hair. Here we must add together rotvs 1 and 2 as before, 
and columns 1, 2, and 4—the column for red being really mis-
placed, as red represents a comparatively slight degree of pigmenta-
tion. The figures are— 

Pr0bkck°hai0rf b r 0 W D " e y e d W l t h } 288/857 = 34 per cent. 

^ b k A h L i f H g h t " e y e d W i t h } 935/5943 = 16 „ 
The association is again positive and well-marked, but the 
difference between the two percentages is rather less than in the 
last case. 

5. The mode of treatment adopted in the preceding section rests 
on first principles, and, if fully carried out, it gives the most detailed 
information possible with regard to the relations of the two attri-
butes. At the same time a distinct need is felt in practical work for 
some more summary method—a method which will enable a single 
and definite answer to be given to such a question as—Are the 
A's on the whole distinctly dependent on the B's; and if so, is this 
dependence very close, or the reverse 1 The subject of coefficients 
of association, which affords the answer to this question in the 
case of a dichotomous classification, was only dealt with briefly 
and incidentally, for it is still the subject of some controversy : 
further, where there are only four classes of the second order 
to be considered the matter is not nearly so complex as where 
the number is, say, twenty-five or more, and the need for 
any summary coefficient is not so often nor so keenly felt. The 
ideas on which Professor Pearson's general measure of de-
pendence, the " coefficient of contingency," is based, are, more-
over, quite simple and fundamental, and the mode of calculation 
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is therefore given in full in the following section. The advanced 
student should refer to the original memoir (ref. 1) for a completer 
treatment of the theory of the coefficient, and of its relation to 
the theory of variables. 

6. Generalising slightly the notation of the preceding chapters, 
let the frequency of A„,'s be denoted by (Am), the frequency of 
Bn's by (Bn), and the frequency of objects or individuals possessing 
both characters by (AmB„). Then, if the A's and B'a be com-
pletely independent in the universe at large, we must have for all 
values of m and n— 

( A m B n ) J - ^ ^ * - = (AmB,\ . . . (1) 

If, however, A and B are not completely independent, (AmB„) and 
(AmBn)0 will not be identical for all values of m and n. Let 
the difference be given by 

Snn = (AmBn)-(AmBn)0 . . . (2) 

A coefficient such as we are seeking may evidently be based in 
some way on these values of S. I t will not do, however, simply to 
add them together, for the sum of all the values of S, some of 
which are negative and others positive, must be zero in any case, 
the sum of both the (AB)'s and the (AB)0'b being equal to the 
whole number of observations N. I t is necessary, therefore, to 
get rid of the signs, and this may be done in two simple ways : (1) 
by neglecting them and forming the arithmetical instead of the 
algebraical sum of the differences 8, or (2) by squaring the differ-
ences and then summing the squares. The first process is the 
shorter, but the second the better, as it leads to a coefficient 
easily treated by algebraical methods, which the first process 
does not: as the student will see later, squaring is very 
usefully and very frequently employed for the purpose of elimin-
ating algebraical signs. Suppose, then,' that every 8 is calculated, 
and also the ratio of its square to the corresponding value of 
(AB)G, and that the sum of all such ratios is, say, X2 or, in 
symbols, using 2 to denote " the sum of all quantities liko " :— 

• • • • (3) 

Being the sum of a series of squares, x2 necessarily positive, 
and if A and B be independent it is zero, because every 8 is zero. 
If, then, we form a coefficient C given by the relation 
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this coefficient is zero if the characters A and B are completely 
independent, and approaches more and more nearly towards 
unity as x2 increases. In general, no sign should be attached 
to the root, for the coefficient simply shows whether the two 
characters are or are not independent, and nothing more, but in 
some cases a conventional sign may be used. Thus in Table II. 
slight pigmentation of eyes and of hair appear to go together, 
and the contingency may be regarded as definitely positive. If 
slight pigmentation of eyes had been associated with marked 
pigmentation of hair, the contingency might have been regarded 
as negative. C is Professor Pearson's mean square contingency 
coefficient.1 

7. The coefficient, in the simple form (4), has one disadvantage, 
viz. that coefficients calculated on different systems of classi-
fication are not comparable with each other.. I t is clearly desir-
able for practical purposes that two coefficients calculated from 
the same data classified in two different ways should be, at least 
approximately, identical. With the present coefficient this is not 
the case : if certain data be classified in, say, (1) 6 x 6-fold, (2) 
3 x 3-fold form, the coefficient in the latter form tends to be the 
least. The greatest possible value of the coefficient is, in fact, 
only unity if the number of classes be infinitely great; for any 
finite number of classes the limiting value of C is the smaller the 
smaller the number of classes. This may be briefly illustrated as 
follows. Replacing Sm„ in equation (3) by its value in terms of 

and (AmB„)0 we h a v e -

Now suppose we have to deal with » f x i-fold classification in 
which (Am) = (Bm) for all values of m; and suppose, further, that 
the association between Am and Bm is perfect, so that (AmBm) = 
(Am) = (Bm) for all values of m, the remaining frequencies of the 
second order being zero; all the frequency is then concentrated 
in the diagonal compartments of the table, and each contributes 

1 Professor Pearson (ref. 1) terms S a sub-contingency ; x 2 the square contin-
gency ; the ratio j f / N , which he denotes by the mean square contingency ; 
and the sum of all the 5's of one sign only, on which a different coefficient can 
be based, the mean contingency. 

and therefore, denoting the expression in brackets by S, 
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iV to the sum S. The total value of S is accordingly tJY, and the 
value of C— 

This is the greatest possible value of C for a symmetrical t x i-fold 
classification, and therefore, in such a table, for— 

t = 2 C cannot exceed 0-707 
t = 3 „ 0-816 
t= 0-866 
t = 5 0-894 
t= 6 0-913 
< = 7 0-926 
t = « 0-935 
« = 9 0-943 
« = 10 0-949 

It is as well, therefore, to restrict the use of the " coefficient of 
contingency " to 5 x 5-fold or finer classifications. At the same 
time the classification must not be made too fine, or else the value 
of the coefficient is largely affected by casual irregularities of no 
physical significance in the class-frequencies (cf. the remarks in 
Chap. III. §§ 7-8). 

TABLE III .—Independence- Values of the Frequencies for Table I I . 

Eye-colour. Fair. Brown. Black. Red. 

Blue 1169 1088 506 48-0 
Grey or Green . . . . . 1303 1212 563 5 3 4 
Brown . . . . . . 357 332 154 14-6 

8. As the classification of Table II. is only 3 x 4-fold, it is rather 
crude for the purpose of calculating the coefficient, but will serve 
simply as an illustration of the form of the arithmetic. In Table 
III. are given the values of the independence frequencies, 2829 x 
2811/6800 = 1169 and so on. The value of x2 is more readily 
calculated from equation (5) than from (3):— 
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(1768)2/1169 2673-9 
(946Wl 303 686-8 
(115)2/357 37-0 
(807)2/1088 598-6 

(1387)2/1212 1587-3 
(438W332 577-8 
(189)2/506 70-6 
(746W563 988-5 
(288)2/154 538-6 

(47)2/48-0 46-0 
(53)2/53-4 52-6 
(16)2/14-6 17-5 

Total = S = 7875-2 
6800 

S-]y= 1075-2 

The squares in such work may conveniently be taken from 
Barlow's Tables of Squares, Cubes, etc. (see list of tables on 
p. 356), or logarithms may be used throughout—five-figure 
logarithms are quite sufficient. 

9. While such a coefficient of contingency, in some form or 
other, is a great convenience in many fields of work, its use 
should not lead to a neglect of those details which a treatment by 
the elementary methods of § 4 would have revealed. Whether 
the coefficient be calculated or no, every table should always bo 
examined with care to see if it exhibit any apparently significant 
peculiarities in the distribution of frequency, e.g. in the associa-
tions subsisting between Am and Bn in limited universes. A good 
deal of caution must be used in order not to be misled by casual 
irregularities due to paucity of observations in some compartments 
of the table, but important points that would otherwise be over-
looked will often be revealed by such a detailed examination. 

10. Suppose, for example, that any four adjacent frequencies, 
say— 

(.AmBn) (Am+lBn) . 
(AmB„+1) (Am+1Bn+1) 

are extracted from the general contingency table. Considering 
these as a table exhibiting the association between Am and Bn in 
a universe limited to AmAm+1 BnBn+1 alone, the association is 
positive, negative, or zero according as (AmB,)l(Am+1B„) is greater 
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than, less than, or equal to the ratio (AmBn+1)/Slm+lBn+1). The 
whole of the contingency table can be analysed into a series of 
elementary groups of four frequencies like the above, each one 
overlapping its neighbours so that an rs-fold table contains 
(r - 1) (s - 1) such " tetrads," and the associations in them all can 
be very quickly determined by simply tabulating the ratios like 

{AmBn+1)l(Am+xBn+1), etc., or perhaps better, 
the proportions (AmBn)/{(kmBn) + (Am+1Bn)}, etc., for every pair 
of columns or of rows, as may be most convenient. Taking the 
figures of Table II. as an illustration, and working from the 
rows, the proportions run as follows :— 

In both cases the first three ratios form descending series, but 
the fourth ratio is greater than the second. The signs of the 
associations in the six tetrads are accordingly— 

The negative sign in the two tetrads on the right is striking, 
the more so as other tables for hair- and eye-colour, arranged in 
the same way, exhibit just the same characteristic. But the 
peculiarity will be removed at once if the fourth column be placed 
immediately after the first: if this be done, i.e. if " red " be placed 
between " fa i r " and "brown " instead of at the end of the colour-
series, the sign of the association in all the elementary tetrads 
will be the same. The colours will then run fair, red, brown, 
black, and this would seem to be the more natural order, consider-
ing the depth of the pigmentation. 

11. A distribution of frequency of such a kind that the 
association in every elementary tetrad is of the same sign 
possesses several useful and interesting properties, as shown in 
the following theorems. It will be termed an isotropic dis-
tribution. 

(1) In an isotropic distribution the sign of the association is 
the same not only for every elementary tetrad of adjacent frequen-
cies, but for every set of four frequencies in the compartments 
common to two rows and two columns, e.g. (AmBn), (AmJrVB„), 
(AmB„+q), (Am+pBn+g). 

For rows 1 and 2. For rows 2 and 3. 

1 7 6 8 / 2 7 1 4 0 - 6 5 1 
8 0 7 / 2 1 9 4 0 - 3 6 8 
1 8 9 / 9 3 5 0 - 2 0 2 

4 7 / 1 0 0 0 - 4 7 0 

9 4 6 / 1 0 6 1 0 - 8 9 2 
1 3 8 7 / 1 8 2 5 0 - 7 6 0 

7 4 6 / 1 0 3 4 0 - 7 2 1 
5 3 / 6 9 0 - 7 6 8 

+ + + + 
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For suppose that the sign of association in the elementary 
tetrads is positive, so that— 

(AmBn)(Am+1Bn+1) > {Am+lBn){AmBn+l) . . (1) 
and similarly, 

(Am+1Bn)(Am+2Bn+1)>(Am+2B„)(Am+lBn+1) . . (2) 

Then multiplying up and cancelling we have 

(AmBn)(Am+2Bn+1)>(Am+2B„)(AmBn+1) . . (3) 

That is to say, the association is still positive though the two 
columns Am and Am+2 are no longer adjacent. 

(2) An isotropic distribution remains isotropic in whatever way 
it may be condensed by grouping together adjacent rows or columns. 

Thus from (1) and (3) we have, adding— 

(AmB„)[(An+1Bn+1) + (Am+2Bn+1)] > (AmBn+1)[(Am+1B„) + (Am+2Bn)], 

that is to say, the sign of the elementary association is unaffected 
by throwing the (m+ l)th and (»i + 2)th columns into one. 

(3) As the extreme case of the preceding theorem, we may 
suppose both rows and columns grouped and regrouped until 
only a 2 x 2-fold table is left; we then have the theorem— 

If an isotropic distribution be reduced to a fourfold distribution 
in any way whatever, by addition of adjacent rows and columns, 
the sign of the association in such fourfold table is the same as in 
the elementary tetrads of the original table. 

The case of complete independence is a special case of isotropy. 
For if 

(AmBn) = (Am)(Bn)IN 

for all values of m and n, the association is evidently zero for 
every tetrad. Therefore the distribution remains independent 
in whatever way the table be grouped, or in whatever way the 
universe be limited by the omission of rows or columns. The 
expression "complete independence " is therefore justified. 

From the work of the preceding section we may say that Table 
II. is not isotropic as it stands, but may be regarded as a dis-
arrangement of an isotropic distribution. It is best to rearrange 
such a table in isotropic order, as otherwise different reductions 
to fourfold form may lead to associations of different sign, though 
of course they need not necessarily do so. 

12. The following will serve as an illustration of a table that 
is not isotropic, and cannot be rendered isotropic by any rearrange-
ment of the order of rows and columns. 
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TABLE IV.—Showing the Frequencies of Different Combinations of 
Eye-colours in Father and Son. 

(Data of Sir F. Galton, from Karl Pearson, Phil. Trans., A, vol. exev. 
(1900), p. 1 3 8 ; classification condensed.) 

1. Blue. 2. Blue-green, grey. 3. Dark grey, hazel. 4. Brown. 

FATHER'S EYE-COLOUR. 

1. 2. 3. 4. Total . 

1 194 70 41 30 335 
2 83 124 41 36 284 
3 25 34 55 23 137 
4 66 36 43 109 244 

Total 358 264 180 198 1000 

The following are the ratios of the frequency in column m to 
the sum of the frequencies in columns m and in + 1 :— 

COLUMNS 

1 and 2. 2 and 3. 3 and 4. 
0 - 7 3 5 0 - 6 3 1 0 - 5 7 7 
0 - 4 0 1 0 - 7 5 2 0 - 5 3 2 
0 - 4 2 4 0 - 3 8 2 0 - 7 0 5 
0 - 6 0 9 0 - 4 5 6 0 - 2 8 3 

The order in which the ratios run is different for each pair of 
columns, and it is accordingly impossible to make the table 
isotropic. The distribution of signs of association in the several 
tetrads is— 

+ - + 
+ 

- - + 

The distribution is a curious one, the associations in tetrads 
round the diagonal of the whole table being so markedly positive 
and those in the immediately adjacent tetrads equally markedly 
negative. Neglecting the other signs, this is the effect that 
would be produced by taking an isotropic distribution and then 
increasing the frequencies in the diagonal compartments by a 
sufficient percentage. Comparison of the given table with others 
from the same source shows that the peculiarity is common to 
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the great majority of the tables, and accordingly its origin 
demands explanation. Were such a table treated by the method 
of the contingency coefficient, or a similar summary method, 
alone, the peculiarity might not be remarked. 

13. It may be noted, in concluding this part of the subject, 
that in the case of complete independence the distribution of 
frequency in every row is similar to the distribution in the row 
of totals, and the distribution in every column similar to that in 
the column of totals ; for in, say, the column A„ the frequencies 
are given by the relations — 

(A.BJ = { A n B , ) J ^ ( B , ) , ( A ^ J - ^ i B ) , , 

and so on. This property is of special importance in the theory 
of variables. 

14. The classifications both of this and of the preceding chapters 
have one important characteristic in common, viz. that they 
are, so to speak, "homogeneous"—the principle of division 
being the same for all the sub-classes of any one class. Thus 
A's and a's are both subdivided into B's and (3's, Aj's, A2's . . . . 
As's into B-ls, i?2's . . . . B,'s, and so on. Clearly this is necessary 
in order to render possible those comparisons on which the 
discussions of associations and contingencies depend. If we 
only know that amongst the A's there is a certain percentage 
of JB'S, and amongst the a's a certain percentage of C's, there 
are no data for any conclusion. 

Many classifications are, however, essentially of a heterogeneous 
character, e.g. biological classifications into orders, genera, and 
species; the classifications of the causes of death in vital 
statistics, and of occupations in the census. To take the last 
case as an illustration, the first " order " in the list of occupations 
is "General or Local Government of the Country," subdivided 
under the headings (1) National Government, (2) Local Govern-
ment. The next order is " Defence of the Country," with the sub-
headings (1) Army, (2) Navy and Marines—not (1) National 
and (2) Local Government again—the sub-heads are necessarily 
distinct. Similarly, the third order is " Professional Occupations 
and their Subordinate Services," with the fresh sub-heads (1) 
Clerical, (2) Legal, (3) Medical, (4) Teaching, (5) Literary and 
Scientific, (6) Engineers and Surveyors, (7) Art, Music, Drama, 
(8) Exhibitions, Games, etc. The number of sub-heads under 
each main heading is, in such a case, arbitrary and variable, 
and different for each main heading; but so long as the 
classification remains purely heterogeneous, however complex 
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it may become, there is no opportunity for any discussion 
of causation within the limits of the matter so derived. It is 
only when a homogeneous division is in some way introduced 
that we can begin to speak of associations and contingencies. 

15. This may be done in various ways according to the 
nature of the case. Thus the relative frequencies of different 
botanical families, genera, or species may be discussed in 
connection with the topographical characters of their habitats— 
desert, marsh, or moor—and we may observe statistical associa-
tions between given genera and situations of a given topographical 
type. The causes of death may be classified according to sex, 
or age, or occupation, and it then becomes possible to discuss 
the association of a given cause of death with one or other 
of the two sexes, with a given age-group, or with a given 
occupation. Again, the classifications of deaths and of occupations 
are repeated at successive intervals of time ; and if they have 
remained strictly the same, it is also possible to discuss the 
association of a given occupation or a given cause of death with 
the earlier or later year of observation—i.e. to see whether the 
numbers of those engaged in the given occupation or succumbing 
to the given cause of death have increased or decreased. But 
in such circumstances the greatest care must be taken to see 
that the necessary condition as to the identity of the classifications 
at the two periods is fulfilled, and unfortunately it very 
seldom is fulfilled. All practical schemes of classification are 
subject to alteration and improvement from time to time, and 
these alterations, however desirable in themselves, render a 
certain number of comparisons impossible. Even where a 
classification has remained verbally the same, it is not necessarily 
really the same; thus, in the case of the causes of death, 
improved methods of diagnosis may transfer many deaths'from 
one heading to another without any change in the incidence 
of the disease, and so bring about a virtual change in the 
classification. In any case, heterogeneous classification should 
be regarded only as a partial process, incomplete until a 
homogeneous division is introduced either directly or indirectly, 
e.g. by repetition. 
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(6) PEARSON, KARL, " O n a New Method of Determining Correlation between 

a Measured Character A and a Character B of which only the Percentage 
of Cases wherein B exceeds (or falls short of) a given Intensity is recorded 
for each Grade of A" Biometrika, vol. vii., 1909, p. 96. (Deals w i t h a 
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tingency tables for unmeasured characters and the correlation table 
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EXERCISES. 

(1) (Data from Karl Pearson, " On the Inheritance of the Mental and Moral 
Characters in Man," Jour, of the Anthrop. Inst., vol. xxxiii., and Biometrika, 
vol. iii.) Find the coefficient of contingency (coefficient of mean square 
contingency) for the two tables below, showing the resemblance between 
brothers for athletic capacity and between sisters for temper. Show tha t 
neither table is even remotely isotropic. (As stated in § 7, the coefficient of 
contingency should not as a rule be used for tables smaller than 5 x 5-fold : 
these small tables are given to illustrate the method, while avoiding lengthy 
arithmetic.) 
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A . ATHLETIC CAPACITY. 

First Brother. 

Athletic. Betwixt. Non-
athletic. Total. 

Athletic 
Betwixt 
Non-athletic . 

Total 

906 
20 

140 

20 
76 

9 

140 
9 

370 

1066 
105 
519 

Athletic 
Betwixt 
Non-athletic . 

Total 1066 105 519 1690 

B . T E M P E R . 

First Sister. 

Quick. Good-
natured. Sullen. Total. 

Quick . . . . 
Good-natured 
Sullen . . . . 

Total 

198 
177 
77 

177 
996 
165 

77 
165 
120 

452 
1338 

362 

Quick . . . . 
Good-natured 
Sullen . . . . 

Total 452 1338 362 2152 



PART II.—THE THEORY OF VARIABLES. 

CHAPTER VI. 

THE FREQUENCY-DISTRIBUTION. 

1. Introductory—2. Necessity for classification of observations: the frequency 
distribution—3. Illustrations—4. Method of forming the table—5. 
Magnitude of class-interval—6. Position of intervals—7. Process of 
classification—8. Treatment of intermediate observations—9. Tabula-
tion—10. Tables with unequal intervals—11. Graphical representa-
tion of the frequency-distribution—12. Ideal frequency-distributions 
—13. The symmetrical distribution—14. The moderately asymmetri-
cal distribution—15. The extremely asymmetrical or J-shaped dis-
tribution—16. The U-shaped distribution. 

1. THE methods described in Chaps. I.-V. are applicable to all 
observations, whether qualitative or quantitative ; we have now 
to proceed to the consideration of specialised processes, definitely 
adapted to the treatment of quantitative measurements, but not 
as a rule available (with some important exceptions, as suggested 
by Chap. I. § 2) for the discussion of purely qualitative observa-
tions. Since numerical measurement is applied only in the case 
of a quantity that can present more than one numerical value, 
that is, a varying quantity, or more shortly a variable, this section 
of the work may be termed the theory of variables. As common 
examples of such variables that are subject to statistical treat-
ment may be cited birth- or death-rates, prices, wages, barometer 
readings, rainfall records, and measurements or enumerations {e.g. 
of glands, spines, or petals) on animals or plants. 

2. If some hundreds or thousands of values of a variable have 
been noted merely in the arbitrary order in which they happened 
to occur, the mind cannot properly grasp the significance of the 
record : the observations must be ranked or classified in some 
way before the characteristics of the series can be comprehended, 
and those comparisons, on which arguments as to causation 
depend, can be made with other series. The dichotomous classi-

75 
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fication, considered in Chaps. I.-IV., is too crude: if the values are 
merely classified as A's or a's according as they exceed or fall 
short of some fixed value, a large part of the information given 
by the original record is lost. A manifold classification, however 
(cf. Chap. V.), avoids the orudity of the dichotomous form, since 
the classes may be made as numerous as we please, and numerical 
measurements lend themselves with peculiar readiness to a 
manifold classification, for the class limits can be conveniently 
and precisely defined by assigned values of the variable. For 
convenience, the values of the variable chosen to define the 
successive classes should be equidistant, so that the numbers of 
observations in the different classes (the class-frequencies) may be 
comparable. Thus for measurements of stature the interval 
chosen for classifying (the class-interval, as it may be termed) 
might be 1 inch, or 2 centimetres, the numbers of individuals 
being counted whose statures fall within each successive inch, or 
each successive 2 centimetres, of the scale; returns of birth- or 
death-rates might be grouped to the nearest unit per thousand 
of the population; returns of wages might be classified to the 
nearest shilling, or, if desired to obtain a more condensed table, 
by intervals of five shillings or ten shillings, and so on. When 
the variation is discontinuous, as for example in enumerations 
of numbers of children in families or of petals on flowers, the 
unit is naturally taken as the class-interval unless the range of 
variation is very great. The manner in which the observations 
are distributed over the successive equal intervals of the scale is 
spoken of as the frequency-distribution of the variable. 

3. A few illustrations will make clearer the nature of such 
frequency-distributions, and the service which they render in 
summarising a long and complex record :— 

(a) Table I. In this illustration the mean annual death-rates, 
expressed as proportions per thousand of the population per 
annum, of the 632 registration districts of England and Wales, 
for the decade 1881-90, have been classified to the nearest unit ; 
i.e. the numbers of districts have been counted in which the 
death-rate was over 12'5 but under 13-5, over 13'5 but under 
14'5, and so on. The frequency-distribution is shown by the 
following table. 

[ T A B L E 1. 
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TABLE I .—Showing the Numbers of Registration Districts in England and 
Wales with Different mean Death-rates per Thousand of the Population 

per Annum for the Ten Years 1881-90. (Material from the Supplement 
to the 55th Annual Report of the Registrar-General for England and 
Wales [C.—7769] 1895.) 

Number of Number of 

Mean Annual 
Death-rate. 

Districts with 
Death-rate 

between Limits 
stated. 

Mean Annual 
Death-rate. 

Distr icts wi th 
Death-rate 

between Limits 
stated. 

12-5-13-5 5 23-5-24-5 e 
13-5-14-5 16 24-5-25-5 3 
14-5-15-5 61 25-5-26-5 1 
15-5-16-5 112 26-5-27-5 1 
16-5-17-5 159 27-5-28-5' 2 
17-5-18-5 104 28-5-29-5 
18-5-19-5 67 29-5-30-5 
19-5-20-5 42 30-5-31-5 2 
20-5-21-5 25 31-5-32-5 
21-5-22-5 18 32-5-33-5 i 
22-5-23-5 g 22-5-23-5 

Total 632 

Whilst a glance through the original returns fails to convey 
any very definite impression, owing to the large and erratic 
differences between the death-rates in successive districts, a brief 
inspection of the above table brings out a number of important 
points. Thus we see that the death-rates range, in round 
numbers, from 13 to 33 per thousand per annum, but in the 
great majority of districts lie nearer the lower limit than the 
upper; that the death-rates in some 60 per cent, of the districts 
lie within the narrow limits 15-5 to 18'5, the rates being most 
frequent near 17 per thousand, and so forth. 

(5) Table II. The ages at death, in years, of the married 
women in certain Quaker families were recorded and classified in 
5-year groups according as they were over 17"5 but under 22'5, 
over 22'5 but under 27'5, and so on. The frequency-distribution 
was as follows :— 

[ T A B L E I I . 
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TABLE II.-—Showing the Numbers of Married Women, in certain Quaker 
Families, Dying at Different Ages. (Cited from Proc. Roy. Soc., vol. lxvii. 
(1900), p. 172. On the Correlation between Duration of Life and Number 
of Offspring, by Miss M. Beeton, Karl Pearson, and G. U. Yule.) 

Age at Death, 
Years. 

Number of 
Women Dying 

between 
said Years 

of Age. 

Age a t Death, 
Years. 

Number of 
Women Dying 

between 
said Years 

of Age. 

W
C

flM
c

o
^

tw
m

©
 

1 
1 1 1 l 

1 1 1 l 
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iO
iQ

lC
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iO
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W
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M
n

N
C

O
M
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JlO

 

29 
87 
99 

109 
90 
87 
64 
64 
69 

62-5- 67-5 
67-5- 72'5 
72-5- 77'5 
77 '5 - 82-5 
82-5- 87-5 
87 '5 - 92-5 
92-5- 97 
97 '5-102 '5 

73 
83 
77 
78 
59 
26 

7 
4 
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1 
1 1 1 l 

1 1 1 l 
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N
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JlO

 

29 
87 
99 

109 
90 
87 
64 
64 
69 

Total 1095 

The distribution is somewhat more irregular than in the last 
case; the commencement is abrupt; a maximum frequency is 
attained in the fourth class (age at death 32'5 to 37'5), and then 
there is a slow fall to the age-class 52'5-57'5. After this class 
the frequency rises again and attains a secondary maximum in 
the age-class 67'5-72'5. 

(c) Table III. The numbers of stigmatic rays on a number 
of Shirley poppies were counted. As the range of variation is 
not great, the unit is taken as the class-interval. The frequency-
distribution is given by the following table. 

TABLE I I I .—Showing the Frequencies of Seed Capsules on certain Shirley 
Poppies, with Different Numbers of Stigmatic Rays. (Cited from 
Biometrika, ii. p. 89, 1902.) 

Number of Number of 
Number of Capsules Number of Capsules 
Stigmatic with said Stigmatic with said 

Rays. Number of Rays. Number of Rays. 
Stigmatic Rays. 

Rays. 
Stigmatic Ravs. 

6 3 14 302 
7 11 15 234 
8 38 16 128 
9 106 17 50 

10 152 18 19 
11 238 19 3 
12 305 20 1 
13 315 13 315 

Total 1905 
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The numbers of rays range from 6 to 20,—12, 13, or 14 rays 
being the most usual. 

4. To expand slightly the brief description given in § 2, tables 
like the preceding are formed in the following way :—(1) The 
magnitude of the class-interval, i.e. the number of units to each 
interval, is first fixed ; one unit was chosen in the case of Tables 
I. and III., five units in the case of Table II. (2) The position or 
origin of the intervals must then be determined, e.g. in Table I. 
we must decide whether to take as intervals 12-13, 13-14, 14-15, 
etc., or 12-5-13-5, 13-5-14-5, 14-5-15-5, etc. (3) This choice 
having been made, the complete scale of intervals is fixed, and the 
observations are classified accordingly. (4) The process of 
classification being finished, a table is drawn up on the general 
lines of Tables I.-III., showing the total numbers of observations 
in each class-interval. Some remarks may be made on each of 
these heads. 

5. Magnitude of Glass-Interval.—As already remarked, in cases 
where the variation proceeds by discrete steps of considerable 
magnitude as compared with the range of variation, there is very 
little choice as regards the magnitude of the class-interval. The 
unit will in general have to serve. But if the variation be 
continuous, or at least take place by discrete steps which are 
small in comparison with the whole range of variation, there is 
no such natural class-interval, and its choice is a matter for 
judgment. 

The two conditions which guide the choice are these : (a) we 
desire to be able to treat all the values assigned to any one class, 
without serious error, as if they were equal to the mid-value 
of the class-interval, e.g. as if the death-rate of every district in 
the first class of Table I. were exactly 13'0, the death-rate of 
every district in the second class 14'0, and so on; (b) for con-
venience and brevity we desire to make the interval as large as 
possible, subject to the first condition. These conditions will 
generally be fulfilled if the interval be so chosen that the whole 
number of classes lies between 15 and 25. A number of classes 
less than, say, ten leads in general to very appreciable inaccuracy, 
and a number over, say, thirty makes a somewhat unwieldy 
table. A preliminary inspection of the record should accordingly 
be made and the highest and lowest values be picked out. 
Dividing the difference between these by, say, five and twenty, we 
have an approximate value for the interval. The actual value 
should be the nearest integer or simple fraction. 

6. Position of Intervals.—The position or starting-point of the 
intervals is, as a rule, more or less indifferent, but in general it 
is fixed either so that the limits of intervals are integers, or, as in 
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Tables I. and II., so that the mid-values are integers. It may, 
however, be chosen, for simplicity in classification, so that no 
limit corresponds exactly to any recorded value (cf. § 8 below). In 
some exceptional cases, moreover, the observations exhibit a marked 
clustering round certain values, e.g. tens, or tens and fives. This 
is generally the case, for instance, in age returns, owing to the 
tendency to state a round number where the true age is unknown. 
Under such circumstances, the values round which there is a 
marked tendency to cluster should preferably be made mid-values 
of intervals, in order to avoid sensible error in the assumption 
that the mid-value is approximately representative of the values 
in the class. Thus, in the case of ages, since the clustering is 
chiefly round tens, " 25 and under 35," " 35 and under 45," etc., the 
classification of the English census, is a better grouping than " 20 
and under 30," "30 and under 40," and so on. Where there is 
any probability of a clustering of this kind occurring, it is as well 
to subject the raw material to a close examination before finally 
fixing the classification. 

7. Classification. —-The scale of intervals having been fixed, the 
observations may be classified. If the number of observations is 
not large, it will be sufficient to mark the limits of successive 
intervals in a column down the left-hand side of a sheet of paper, 
and transfer the entries of the original record to this sheet by 
marking a 1 on the line corresponding to any class for each entry 
assigned thereto. It saves time in subsequent totalling if each 
fifth entry in a class is marked by a diagonal across the preceding 
four, or by leaving a space. 

The disadvantage in this process is that it offers no facilities for 
checking: if a repetition of the classification leads to a different 
result, there is no means of tracing the error. If the number of 
observations is at all considerable and accuracy is essential, it is 
accordingly better to enter the values observed on cards, one to 
each observation. These are then dealt out into packs according 
to their classes, and the whole work checked by running through 
the pack corresponding to each class, and verifying that no cards 
have been wrongly sorted. 

8. In some cases difficulties may arise in classifying, owing to 
the occurrence of observed values corresponding to class-limits. 
Thus, in compiling Table I., some districts will have been noted 
with death-rates entered in the Registrar-General's returns as 
16-5, 17'5, or 18-5, any one of which might at first sight have 
been apparently assigned indifferently to either of two adjacent 
classes. In such a case, however, where the original figures for 
numbers of deaths and population are available, the difficulty may 
be readily surmounted by working out the rate to another place 
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of decimals: if the rate stated to be 16-50 proves to be 16-502, it 
will be sorted to the class 16-5-17'5 ; if 16-498, to the class 
15'5-16-5. Death-rates that work out to half-units exactly do 
not occur in this example, and so there is no real difficulty. In 
the case of Table II., again, there is no difficulty : if the year of 
birth and death alone are given, the age at death is only calcul-
able to the nearest unit; if the actual day of birth and death be 
cited, half-years still cannot occur in the age at death, because 
there is an odd number of days in the year. The difficulty may 
always be avoided if it be borne in mind in fixing the limits 
to class-intervals, these being carried to a further place of decimals, 
or a smaller fraction, than the values in the original record. Thus 
if statures are measured to the nearest centimetre, the class-
intervals may be taken as 150-5-15T5, 151'5-152'5, etc. ; if to 
the nearest eighth of an inch, the intervals may be 59y|—60yf, 

If the difficulty is not evaded in any of these ways, it is 
usual to assign one-half of an intermediate observation to each 
adjacent class, with the result that half-units occur in the 
class-frequencies (cf. Tables VII., p. 90, X., p. 96, and XI., 
p. 96). The procedure is rough, but probably good enough for 
practical purposes ; it would be slightly better, but a good deal 
more laborious, to assign the intermediate observations to the 
adjacent classes in proportion to the numbers of other observations 
falling into the two classes. 

9. Tabulation.—As regards the actual drafting of the final 
table, there is little to be said, except that care should be taken 
to express the class-limits clearly, and, if necessary, to state the 
manner in which the difficulty of intermediate values has been 
met or evaded. The class-limits are perhaps best given as in 
Tables I. and II., but may be more briefly indicated by the mid-
values of the class-intervals. Thus Table I. might have been 
given in the form— 

A common mode of defining the class-intervals is to state the 
limits in the form "x and less than y." In the case of measure-
ments of stature, for example, the table might run— 

60ig-61irb a n d 8 0 °n-

Death-rate per 1000 
per annum to the 

Nearest Unit. 

Number of 
Districts with 

said Death-rate. 

13 
14 
15 
16 
etc. 

5 
16 
61 

112 
etc. 

6 
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Stature in Inches. Number of 
Observations. 

57 and less than 58 
58 „ „ 59 
59 „ „ 60 

4 
14 
etc. etc. 

—the statement" 57 and less than 58," etc., being often abbreviated 
to 57-, 58-, 59-, etc. (cf. Table VI., p. 88). The mode of grouping 
is, in effect, that described in the last paragraph as of service in 
avoiding intermediate observations, but it should be noted that the 
form of statement leaves the classdimits uncertain unless the degree 
of accuracy of the measurements is also given. Thus, if measure-
ments were taken to the nearest eighth of an inch, the class-
limits are really 56i |--57if, 57if-58 | | - , etc.; if they were 
only taken to the nearest quarter of an inch, the limits are 56£ 
-57-|, 57-g—58|-, etc. With such a form of tabulation a state-
ment as to the number of significant figures in the original 
record is therefore essential. It is better, perhaps, to state the 
true class-limits and avoid ambiguity. 

10. The rule that class-intervals should be all equal is one 
that is very frequently broken in official statistical publications, 
principally in order to condense an otherwise unwieldy table, 
thus not only saving space in printing but also considerable 
expense in compilation, or possibly, in the case of confidential 
figures, to avoid giving a class which would contain oidy one or 
two observations, the identity of which might be guessed. It 
would hardly be legitimate, for example, to give a return of 
incomes relating to a limited district in such a form that the 
income of the two or three wealthiest men in the district would 
be clear to any intelligent reader with local knowledge. If the 
intervals be made unequal, the application of many statistical 
methods is rendered awkward, or even impossible, and the 
relative values of the frequencies are at first sight misleading, so 
that the table is not perspicuous. Thus, consider the first two 
columns of Table IV., showing the numbers of dwelling-houses 
of different annual values, assessed to inhabited house duty. On 
running the eye down the column headed "number of houses" it 
is at once caught by the two striking irregularities at the. classes 
" £ 6 0 and under £80," and "£100 and under £150." But these 
have no real significance; they are merely due to changes from 
a £10 to a £20, and then to a £50 interval. Moreover, the 
intervals after £150 go on continuously increasing, but attention 
is not directed thereto by any marked changes in the frequencies. 
To make the latter really comparable inter se, they must first be 
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TABLE IV.—Showing the Annual Value and Number of Dwelling-houses in 
Great Britain assessed to Inhabited House Duty in 1885-6. (Cited from 
Jour. Roy. Stat. Soc., vol. 1., 1887, p. 610.) 

Annual Value in £'s. N u m b e r 
of Houses. 

Frequency 
per £10 

Interval . 

£20 and under £30 
30 „ 40 
40 ,, 50 
50 ,, 60 
60 ,, 80 
80 ,, 100 

100 ,, 150 
150 ,, 300 
300 ,, 500 
500 ,, 1000 

1000 and upwards 

Total number of houses 

306,408 
182,972 
105,407 

63,096 
71,436 
32,365 
41,336 
26,732 

6,198 
2,098 

644 

306,408 
182,972 
105,407 

63,096 
35,718 
16,182 

8,267 
1,782 

310 
42 

? 

£20 and under £30 
30 „ 40 
40 ,, 50 
50 ,, 60 
60 ,, 80 
80 ,, 100 

100 ,, 150 
150 ,, 300 
300 ,, 500 
500 ,, 1000 

1000 and upwards 

Total number of houses 838,692 — 

reduced to a common interval as basis, e.g. £10, by dividing the 
fifth and sixth numbers by 2, the seventh by 5, the eighth by 15, 
and so on. This gives the mean frequencies per £10 interval 
tabulated in the third column of Table IV. The reduction is, 
however, impossible in the case of the last class, for we are only 
told the number of houses of £1000 annual value and upwards: 
the magnitude of the class is indefinite. Such an indefinite class 
is in many respects a great inconvenience, and should always be 
avoided in work not subject to the necessary limitations of 
official publications. 

The general rule that intervals should be equal must not be 
held to bar the analysis by smaller equal intervals of some 
portion of the range over which the frequency varies very 
rapidly. In Table XII., p. 98, for example, giving the numbers 
of deaths from diphtheria at successive ages, a five-year interval 
might be substituted with advantage for the irregular intervals 
after the fifth year of age, but it would still be desirable to give 
the numbers of deaths in each year for the first five years, so as 
to bring out the rapid rise to the maximum in the fourth year 
of life. 

11. When the table has been completed, it is often convenient 
to represent the frequency-distribution by means of a diagram 
which conveys the general run of the observations to the eye 
better than a column of figures. The following short table, 
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giving the distribution of head-breadths for 1000 men, will serve 
as an example. 

TABLE Y.—Showing the Frequency-distribution of Head-breadths for Students 
at Cambridge. Measurements taken to the nearest tenth of an inch 
(Cited from W. R. Macdonell, Biometrika, i., 1902, p. 220.) 

Head-breadth 
in Inches. 

Number of 
Men with said 
Head-breadth. 

Head-breadth 
in Inches. 

Number of 
Men with said 
Head-breadth. 

5-5 
5'6 
6-7 
5 '8 
5-9 
6-0 
6-1 
6-2 

3 
12 
43 
80 

131 
236 
185 
142 

6-3 
6-4 
6-5 
6-6 
6 '7 
6-8 

99 
37 
15 
12 

3 
2 

5-5 
5'6 
6-7 
5 '8 
5-9 
6-0 
6-1 
6-2 

3 
12 
43 
80 

131 
236 
185 
142 Total 1000 

Taking a piece of squared paper ruled, say, in inches and tenths, 
mark off along a horizontal base-line a scale representing class-
intervals ; a half-inch to the class-interval would be suitable. 
Then choose a vertical scale for the class-frequencies, say 50 
observations per interval to the inch, and mark off, on the 
verticals or ordinates through the points marked 5'5, 5'6, 5'7 
. . . . at the centres of the class-intervals on the base-line, heights 
representing on this scale the class-frequencies 3, 12, 43. . . . 
The diagram may then be completed in one of two ways: (1) 
as a frequency polygon, by joining up the marks on the ver-
ticals by straight lines, the last points at each end being joined 
down to the base at the centre of the next class-interval (fig. 1); 
or (2) as a column diagram or histogram (to use a term sug-
gested by Professor Pearson, ref. 1), short horizontals being drawn 
through the marks on the verticals (fig. 2), which now form the 
central axes of a series of rectangles representing the class-
frequencies. The student should note that in any such diagram, 
of either form, a certain area represents a given number of 
observations. On the scales suggested, 1 inch on the horizontal 
represents 2 intervals, and 1 inch on the vertical represents 60 
observations per interval: 1 square inch therefore represents 
5 0 x 2 = 100 observations. The diagrams are, however, con-
ventional : the whole area of the figure is correct in either case, 
but the area over each interval is not correct in the case of the 
frequency-polygon, and the frequency of each fraction of any 
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HcclcL br-ecLdJJx. in. inches 
FIG. 1.—Frequency-Polygon for Head-breadths of 1000 Cambridge 

Students. (Table V.) 

r-

1200 

5-5 6 7 8 3 60 -1 -Z -3 # -5 6 1 B 
Hecuji breaxDJv in, inches 

FIG. 2.—Histogram for the same data as Fig. 1. 
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interval is not the same, as suggested by the histogram. The 
area shown by the frequency-polygon over any interval with an 
ordinate y2 (fig. 3) is only correct if the tops of the three 

F I G . 4 . 

Fio. 3. 

successive ordinates yv y2, yA lie on a line, i.e. if y2 = + y,), 
the areas of the two little triangles shaded in the figure being 
equal. If y2 fall short of this value, the area shown by the 

polygon is too great; if y2 exceed it, the area shown by the 
polygon is too small; and if, for this reason, the frequency-
polygon tends to become very misleading at any part of the 
range, it is better to use the histogram. In the mortality dis-
tribution of Table I., for instance, the frequency rises so sharply 
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to the maximum that a histogram is, on the whole, the better re-
presentation of the distribution of frequency, and in such a 
distribution as that of Table IV. the use of the histogram is 
almost imperative. 

12. If the class-interval be made smaller and smaller, and at 
the same time the number of observations be proportionately in-
creased, so that the class-frequencies may remain finite, the 
polygon and the histogram will approach more and more closely 
to a smooth curve. Such an ideal limit to the frequency-polygon 
or histogram is termed a frequency-curve. In this ideal frequency-
curve the area between any two ordinates whatever is strictly 
proportional to the number of observations falling between the 
corresponding values of the variable. Thus the number of 
observations falling between the values x1 and of the variable 
in fig. 4 will be proportional to the area of the shaded strip in the 
figure; the number of observed values greater than x2 will 
similarly be given by the area of the curve to the right of the 
ordinate through x„, and so on. When, in any actual case, the 
number of observations is considerable—say a thousand at least 
—the run of the class-frequencies is generally sufficiently 
smooth to give a good notion of the form of the ideal distri-
bution ; with small numbers the frequencies may present all 
kinds of irregularities, which, most probably, have very little 
significance (cf. Chap. XY. § 15, and § 18, Ex. iv.). The forms 
presented by smoothly running sets of numerous observations 
present an almost endless variety, but amongst these we notice 
a small number of comparatively simple types, from which many 
at least of the more complex distributions may be conceived as 
compounded. For elementary purposes it is sufficient to consider 
these fundamental simple types as four in number, the symmetri-
cal distribution, the moderately asymmetrical distribution, the 
extremely asymmetrical or J-shaped distribution, and the U-shaped 
distribution. 

13. The symmetrical distribution, the class-frequencies decreas-
ing to zero symmetrically on either side of a central maximum. 
Fig. 5 illustrates the ideal form of the distribution. 

Being a special case of the more general type described under 
the second heading, this form of distribution is comparatively rare 
under any circumstances, and very exceptional indeed in economic 
statistics. It occurs more frequently in the case of biometric, more 
especially anthropometric, measurements, from which the following 
illustrations are drawn, and is important in much theoretical work. 
Table VI. shows the frequency-distribution of statures for adult 
males in the British Isles, from data published by a British 
Association Committee in 1883, the figures being given separately 
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TABLE VI .—Showing the Frcqueney-distributions of Statures for Adult 
Males bom in England, Ireland, Scotland, and Wales. Final Report of 
the Anthropometric Committee to the British Association. (Report, 1883, 
p. 256.) As Measurements are stated to have been taken to the nearest 
J t h of an Inch, the Class-Intervals are here presumably 
5 7 H - 5 8 H , and so on {cf. § 9). See Fig. 6. 

Number of Men wi th in said Limits of Height. 

He igh t wi thout 
Place of B i r t h -

Heigh t wi thout Total snoes, mcnes . 

England. Scotland. Wales. I reland. 

57 - 1 S M t j f , 2 
5 8 - 3 1 — — 4 
59- 12 — 1 1 14 
60- 39 2 — 41 
61- 70 2 9 2 83 
62- 128 9 30 2 . 169 
63- 320 19 48 7 394 
64- 524 47 83 15 669 
6 5 - 740 109 108 33 990 
66- 881 139 145 58 1223 
67- 918 210 128 73 1329 
6 8 - 886 210 72 62 1230 
6 9 - 753 218 52 40 1063 
70- 473 115 33 25 646 
7 1 - 254 102 21 15 392 
7 2 - 117 69 6 10 202 
73- 48 26 2 3 79 
74- 16 15 1 — 32 
7 5 - 9 6 1 i— 16 
76- 1 4 — 5 
7 7 - 1 1 — — 2 

Total 6194 1304 741 346 8585 

for persons born in England, Scotland, Wales, and Ireland, and 
totalled in the last column. These frequency-distributions are 
approximately of the symmetrical type. The frequency-polygon 
for the totals given by the last column of the table is shown 
in fig. 6. The student will notice that an error of ^ inch, 
scarcely appreciable in the diagram on its reduced scale, is neglected 
in the scale shown on the base-line, the intervals being treated 
as if they were 57-58, 58-59, etc. Diagrams should be drawn for 
comparison showing, to a good open scale, the separate distributions 
for England, Scotland, Wales, and Ireland. 
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FIG. 5.—An ideal symmetrical Frequency-distribution. 

i 

fi 

A 
\ 

\ 
58 60 62 64 66 68 70 72 74 76 78 BO 

Stature in, inches. 

FIG. 6.—Frequency-distribution of Stature for 8585 Adult Males born in 
the British Isles. (Table VI.) 
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Table VII. gives two similar distributions from more recent 
investigations, relating respectively to sons over 18 years of 
age, with parents living, in Great Britain, and to students at 
Cambridge. The polygons are shown in figs. 7 and 8. Both these 
distributions are more irregular than that of fig. 6, but, roughly 
speaking, they may all be held to be approximately symmetrical. 

14. The moderately asymmetrical distribution, the class-fre-
quencies decreasing with markedly greater rapidity on one side of 
the maximum than on the other, as in fig. 9 (a) or (b). This is 
the most common of all smooth forms of frequency-distribution, 
illustrations occurring in statistics from almost every source. The 
distribution of death-rates in the registration districts of England 

TABLE VI I .—Showing the Frequency-distribution of Statures for (1) 1078 
English Sons (Karl Pearson, Biometrika, ii., 1903, p. 415) ; (2) for 1000 
Male Students at Cambridge (W. R. Macdonell, Biometrika, i., 1902, 
p. 220). See Figs. 7 and 8. 

Number of Men within said 
Limits of Stature. 

Stature in 
Inches. 

(2) 
Cambridge 
Students. 

(1) 
English Sons. 

59-5-60-5 
60-5-61-5 
61-5-62-5 
62-5-63-5 

2 - 0 
1-5 
3-5 

20-5 
38-5 
61-5 
89'5 

148-0 
173-5 
149-5 
128-0 
108-0 
63-0 
42-0 
29-0 

4-0 
19 0 
24-5 
40-5 
84-5 

123-5 
139-0 
179-0 
138-5 
108-0 

53-5 
47-5 
21-0 
12-0 

6-0 
0-5 

63-5-64-5 
64-5-65-5 
65-5-66-5 
66-5-67-5 
67-5-68-5 
68-5-69-5 
69-5-70-5 
70-5-71-5 
71-5-72-5 
72-5-73-5 
73-5-74-5 
74-5-75-5 
75-5-76-5 
76-5-77-5 
77-5-78-5 
78-5-79-5 

8-5 
4 0 
4-0 
3-0 
0-5 

Total 1078 1000 
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FIG. 7.—Frequency-distribution of Stature for 1078 "Eng l i sh Sons.' 
(Table VII . ) 
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FIG. 8.—Frequency-distribution of Stature for 1000 Cambridge 

Students. (Table VI I . ) 
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and Wales, given in Table I., p. 77, is a somewhat rough examplo 
of the type. The distribution of rates of pauperism in the same 

W (a.) 

districts (Table VIII. and fig. 10) is smoother and more like the 
type (a) of fig 9. The frequency attains a maximum for 

f 100 

$ .10 k. 
no 

o 
70 

£ 60 
•S .10 

40 
L 
& 30 

20 

5- 10 
£ 

0 

/ \ 
/ \ 
/ \ 

V / \ / \ 
I \ 

\ 
I \ 

j \ 
/ \ 

1 2 3 4 5 6 7 8 9 10 11 
Percentage of the poputcUJoTt in- reccipt oF relief. 

FIG. 10.—Frequency-distribution of Pauperism (Percentage of the Population 
in Receipt of Poor-law Relief) on 1st January 1891 in the Registration 
Districts of England and Wales : 632 Districts. (Table VIII . ) 
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districts with 2f to 3|- per cent, of the population in receipt of 
relief, and then tails off slowly to unions with 6, 7, and 8 per 
cent, of pauperism. 

TABLE V I I I . — Showing the Number of Registration Districts in England and 
Wales with Different Percentages of the Population in receipt of Poor-law 
Relief on the l s i January 1891. (Yule, Jour. Roy. Stat. Soc., vol. lix., 
1896, p. 347, q.v. for distr ibutions for earlier years.) See Fig. 10. 

Percentage of 
the Population 

in receipt of 
Relief. 

Number of 
Unions with 

given Percent-
age in receipt 

of Relief. 

0 '75-1-25 18 
1 '25-1 '75 48 
1-75-2-25 72 
2-25-2-75 89 
2-75-3-25 100 
3-25-3-75 90 
3-75-4-25 75 
4-25-4-75 60 
4-75-5-25 40 
5-25-5-75 21 
5-75-6-25 11 
6-25-6-75 5 
6-75-7-25 1 
7-25-7-75 1 
7-75-8-25 0 
8-25-8-75 1 

Total 632 

While the distribution of stature is in general symmetrical, that 
of weight is asymmetrical or skew, the greater frequencies lying 
towards the lower end of the range. This is shown very well by 
the data (Table IX. and fig. 11) collected by the same British 
Association Committee, from the Report of which the data as to 
stature were cited in the last section. As in the case of the stature 
diagram (fig. 6), the small error of \ lb. has been neglected, for 
the sake of brevity, in lettering the base-line of fig. 11, the classes 
being treated as if they were 90 lb.-lOO lb., 100 lb.-llO lb., 
and so on. 

Table X. and fig. 12 give a biological illustration, viz. the 
distribution of fecundity (ratio of yearling foals produced to 
coverings) in mares. The student should notice the difficulty 
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FIG. 11.—Frequency-distribution of Weight for 7749 Adult Males in 

the British Isles. (Table IX.) 
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Ratio of Yearling foals produced, to ccverirujs. 
FIG. 12.—Frequency-distribution of Fecundity for Brood-mares: 

2000 observations. (Table X.) 
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TABLE IX. —Showing the Frequency-distribution of Weights for Adult Males 
born in England, Ireland, Scotland, and Wales. (Loc. cit., Table VI.) 
Weights were taken to the nearest pound, consequently the true Class-
Intervals are 89-5-99-5, 99-5-109-5, etc. (§ 9). 

Number of Men within given Limits of 

Weight 
in lbs. 

Weight. Place of B i r t h -
Total. Weight 

in lbs. 
England. Scotland. Wales. Ireland. 

90- 2 _ 2 
100- 26 1 2 5 34 
110- 133 8 10 1 152 
120- 338 22 23 7 390 
130- 694 63 68 42 867 
140- 1240 173 153 57 1623 
150- 1075 255 178 51 1559 
160- 881 275 134 36 1326 
170- 492 168 102 25 787 
180- 304 125 34 13 476 
190- 174 67 14 8 263 
200- 75 24 7 1 107 
210- 62 14 8 1 85 
220- 33 7 1 — 41 
230- 10 4 2 — 16 
240- 9 2 — — 11 
250- 3 4 1 R E J , & 8 
260- 1 — — — 1 
270- — — — — — 

280- — 1 — 1 

Total 5552 1212 738 247 7749 

of classification in this case : the class-interval chosen throughout 
the middle of the range is l/15th, but the last interval is 
" 29/30-1." This is not a whole interval, but it is more than a 
half, for all the cases of complete fecundity are reckoned into the 
class. In the diagram (fig. 12) it has been reckoned as a whole 
class, and this gives a smooth distribution. 

To take an illustration from meteorology, the distribution of 
barometer heights at any one station over a period of time is, in 
general, asymmetrical, the most frequent heights lying towards the 
upper end of the range for stations in England and Wales. 
Table XI. and fig. 13 show the distribution for daily observations 
at Southampton during the years 1878-90 inclusive. 

The distributions of Tables VIII.-XI. all follow more or less the 
type of fig. 9 (a), the frequency tailing off, at the steeper end of 
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TABLE X.—Shoioing the Frequency-distribution of Fecundity, i .e. the Ratio 
of the Number of Yearling Foals produced to the Number of Coverings, 

for Brood-mares (Race-horses) Covered Fight Times at Least. (Pearson, 
Lee, and Moore, Phil. Trans., A, vol. cxcii. (1899), p. 303.) Sec Fig. 12. 

Number of Number of 
Mares with Mares with 

Fecundity. Fecundity 
between the 

Given Limits. 

Fecundity. Fecundity 
between the 

Given Limits. 

1/30- 3/30 2 17/30-19/30 315 
3/30- 5/30 7-5 19/30-21/30 337 
5/30- 7/30 11'5 21/30-23/30 293-5 
7/30- 9/30 21-5 23/30-25/30 204 
9/30-11/30 55 25/30-27/30 127 

11/30-13/30 104-5 27/30-29/30 49 
13/30-15/30 182 29/30-1 19 
15/30-17/30 271-5 15/30-17/30 271-5 

Total 2000-0 

TABLE XI. — Sfwwing the Frequency-distribution of Barometer Heights for 
Daily Observations during the Thirteen Years 1878-1890 at Southampton. 
(Karl Pearson and A. Lee, Phil. Trans , A, vol. cxc. (1897), p. 428, q.v. 
for numerous other distr ibutions.) See Fig. 13. 

Height of 
Barometer 
in Inches. 

Number of Days 
on which Height 

was observed 
between the 

Given Limits. 

Height of 
Barometer 
in Inches. 

Number of Days 
on which Height 

was observed 
between the 

Given Limits. 

28-45- 28-55 1 29-85- •95 548-5 
•55- •65 2 •95--30-05 602-5 
•65- •75 2 30'05- •15 619-5 
•75- •85 4 •15- •25 500 
•85- •95 8-5 •25- •36 382 
•95-29-05 13-5 •35- •46 237-5 

29-05- •15 21-5 •45- •55 189-5 
•15- •25 87 •65- •65 88-6 
•25- •35 79 •65- •75 43-6 
•35- •45 108 •75- •85 7 
•45- •55 181-5 •85- •95 4 
•55- •65 254-5 30-95- 31-05 1 
•65- •75 348-5 
•75- •85 463-5 Total 4748 
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FIG. 13.—Frequency-distr ibution of Barometer Heights a t 
Sou thampton : 4748 observations. (Table XI . ) 
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FIG. 14.—Frequency-distr ibution of Deaths from Diphther ia a t different Ages 
in England and Wales, 1891-1900. (Table X I I . ) 
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the distribution, in such a way as to suggest that the ideal 
curve is tangential to the base. Cases of greater asymmetry, 
suggesting an ideal curve that meets the base (at one end) at a 
finite angle, even a right angle, as in fig. 9 (5), are less frequent, 
but occur occasionally. The distribution of deaths from diphtheria, 
according to age, affords one such example of a more asymmetrical 
kind. The actual figures for this case are given in Table XII., and 
illustrated by fig. 14 ; and it will be seen that the frequency of 
deaths reaches a maximum for children aged " 3 and under 4," 
the number rising very rapidly to the maximum, and thence 
falling so slowly that there is still an appreciable frequency for 
persons over 60 or 70 years of age. 

TABLE XII .—Showing the Numbers of Deaths from Diphtheria at Different 
Agesin England and Wales during the Ten Years 1891-1900. (Supple-
ment to 65th Annual Report of the Registrar-General, 1891-1900, p. 3.) 
See Fig. 14. 

Number of 

Age in Years. Deaths between Number Age in Years. Given Limits per Annum. 
of Age. 

per Annum. 

Under 1 year 4,186 4,186 
1 - 10,491 10,491 
2 - 11,218 11,218 
3 - 12,390 12,390 
4 - 11,194 11,194 
5 - 23,348 4,670 

10 - 4,092 
1,123 

818 
15 -

4,092 
1,123 225 

20 - 585 117 
25- 786 "79 
35- 512 51 
45 - 324 32 
55 - 260 26 
65- 127 13 

75 and upwards 35 ? 

Total 80,671 — 

15. The extremely asymmetrical, or " J-shaped," distribution, the 
class-frequencies running up to a maximum at one end of the 
range, as in fig. 15. 

This may be regarded as the extreme form of the last distribution, 
from which it cannot always be distinguished by elementary 
methods if the original data are not available. If, for instance, 
the frequencies of Table XII. had been given by five-year intervals 
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only, they would have run 49,479, 23,348, 4,092, and so on, 
thus suggesting a maximum number of deaths at the beginning 
of life, i.e. a distribution of the present type. It is only the 
analysis of the deaths in the earlier years of life by one-year 
intervals which shows that the frequency reaches a true maximum 
in the fourth year, and therefore the distribution is of the 
moderately asymmetrical type. In practical cases no hard and 

fast line can always be drawn between the moderately and 
. extremely asymmetrical types, any more than between the 
moderately asymmetrical and the symmetrical type. 

In economic statistics this form of distribution is particularly 
characteristic of the distribution of wealth in the population at 
large, as illustrated, e.g., by income tax and house valuation returns, 
by returns of the size of agricultural holdings, and so on (cf. ref. 4). 
The distributions may possibly be a very extreme case of the last 
type ; but if the maximum is not absolutely at the lower end of the 



1 0 0 THEORY OF STATISTICS. 

range, it is very close indeed thereto. Official returns do not 
usually give the necessary analysis of the frequencies at the 
lower end of the range to enable the exact position of the maximum 
to be determined; and for this reason the data on which Table 
XIII. is founded, though of course very unreliable, are of some 
interest. It will be seen from the table and fig. 16 that with the 
given classification the distribution appears clearly assignable to 
the present type, the number of estates between zero and £100 
in annual value being more than six times as great as the number 
between =£100 and £200 in annual value, and the frequency 
continuously falling as the value increases. A close analysis of 
the first class suggests, however, that the greatest frequency does 
not occur actually at zero, but that there is a true maximum 
frequency for estates of about £1 15 0 in annual value. The 
distribution might therefore be more correctly assigned to the 
second type, but the position of the greatest frequency indicates a 

TABLE XI I I .—Showing the Numbers and Annual Values of the Estates of 
those who had taken part in the Jacobite Rising of 1715. (Compiled from 
Cosin's Names of the Roman Catholics, Nonjurors, and others who refused 
to take the Oaths to his late Majesty King Oeorge, etc. ; London, 1745. 
Figures of very doubtful absolute value. See a note in Southey's 
Commonplace Book, vol. i. p. 573, quoted from the Memoirs of T. Hollis.) 
See Fig. 16. 

Annual 
Value in 

£100. 

Number of 
Estates. 

Annual 
Value in 

£100. 

Number of 
Estates. 

0 - 1 1726-5 17-18 1 
1 - 2 280 — — 

2 - 3 140-5 20-21 4 
3 - 4 87 21-22 1 
4 - 5 46-5 22-23 1 
5 - 6 42-5 23-24 1 
6 - 7 29-5 — — 

7 - 8 25-5 27-28 2 
8 - 9 18-5 — — 

9-10 21 31-32 1 
10-11 11-5 — — 

11-12 9-5 39-40 1 
12-13 4 — — 

13-14 3-5 45-46 1 
14-15 8 — — 

15-16 8 48-49 1 
16-17 5 16-17 5 

Total 2476 
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degree of asymmetry that is high even compared with the 
asymmetry of fig. 14 : the distribution of numbers of deaths from 

16-

u -

£ 12 

^ 10 

8 -

€ 4-

2 -

o J 1 I 1 1 = 3 1 ' 
0 1 2 3 4 5 6 7 8 a 10 II 12 

AnnxuiL vaZue in, =£.100 
FIG. 16.—Frequency-distr ibution of the Annua l Values of certain Esta tes 

in England in 1715 : 2476 Esta tes . (Table X I I I . ) 

diphtheria would more closely resemble the distribution of estate-
values if the maximum occurred in the fourth and fifth weeks 
of life instead of in the fourth year. The figures of Table IV., 
p. 83, showing the annual value and number of dwelling-houses, 
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afford a good illustration of this form of distribution, but marred 
by the unequal intervals so common in official returns. 

TABLE XIV.—Showing the Frequencies of Different Numbers of Petals for 
Three Series of Ranunculus bulbosus. (II. de Vries, Per. dtsch. bot. ties., 
Bd. xii., 1894, q.v. for details.) See Fig. 17. 

Frequency. 
Number 

of Petals. 
Series A. Series B. Series 0. 

5 312 345 133 
6 17 24 55 
7 4 7 23 
8 2 — 7 
9 2 2 2 

10 — — 2 
11 — 2 — 

Total 337 380 222 

The type is not very frequent in other classes of material, but 
instances occur here and there. Table XIV. and fig. 17 show 

H 

I 1 300 

Si o.. 
£200-

$ o. 

s 

5 <1 7 8 9 6 1 8 9 10 11 5 6 7 <? 9 10 

FIG. 17.—Frequency-distributions of Numbers of Petals for Three Series of 
Ranunculus bulbosus : A 337, B 380, C 222 observations. (Table XIV.) 

distributions of this form for the petals of the buttercup, Ranun-
culus bulbosus. 

16. The U-shaped distribution, exhibiting a maximum frequency 



v i . — T H E FREQUENCY-DISTRIBUTION. 1 0 3 

at the ends of the range and a minimum towards the centre. 
The ideal form of the distribution is illustrated by fig. 18. 

This is a rare but interesting form of distribution, as it stands 
in somewhat marked contrast to the preceding forms. Table XV. 
and fig. 19 illustrate an example based on a considerable number 
of observations, viz. the distribution of degrees of cloudiness, or 
estimated percentage of the sky covered by cloud, at Breslau 

TABLE XV.—ShouAng the Frequencies of Estimated Intensities of Cloudiness 
at Breslau during the Ten Years 1876-85. (See ref. 2.) See Fig. 19. 

FIG. 18.—An ideal Dis t r ibut ion of the U-shaped Form. 

Cloudiness. Frequency. Cloudiness. Frequency. 

0 
1 
2 
3 
4 
5 

751 
179 
107 

69 
46 

9 
10 

6 

8 
7 

9 

21 
71 

194 
117 

2089 

Total 3653 
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during the years 1876-85. A sky completely, or almost com-
pletely, overcast at the time of observation is the most common, 
a practically clear sky comes next, and intermediates are more 
rare. 

This form of distribution appears to be sometimes exhibited by 
the percentages of offspring possessing a certain attribute when one 
at least of the parents also possesses the attribute. The remarks 

j 2000. 

i 1500 . 

5s 
"4. 

\ 1000 . 

•o 

0 1 2 3 4 5 6 1 8 9 10 
ClviLcU/te^s 

FIG. 19.—Frequency-distribution of Degrees of Cloudiness a t Breslau, 
1876-85 : 3653 observations. (Table XV.) 

of Sir Francis Galton in Natural Inheritance suggest such a 
form for the distribution of " consumptivity" amongst the off-
spring of consumptives, but the figures are not in a decisive shape. 
Table XYI. gives the distribution for an analogous case, viz. the 

TABLE XVI .—Showing the Percentages of Deaf-mutes among Children of 
Parents one of whom at least was a Deaf-mute, for Marriages producing 
Five Children or more. (Compiled from material in Marriages of the Deaf 
in America, ed. E. A. Fay, Volta Bureau, Washington, 1898.) 

Percentage 
of 

Deaf-mutes. 

Number of 
Families. 

Percentage 
of 

Deaf-mutes. 

Number of 
Families. 

0 - 2 0 2 2 0 6 0 - 8 0 5 ' 5 
2 0 - 4 0 2 0 - 5 8 0 - 1 0 0 1 5 
4 0 - 6 0 1 2 

Total 2 7 3 
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distribution of deaf-mutism amongst the offspring of parents one 
of whom at least was a deaf-mute. In general less than one-fifth 
of the children are deaf-mutes : at the other end of the range the 
cases in which over 80 per cent, of the children are deaf-mutes are 
nearly three times as many as those in which the percentage lies 
between 60 and 80. The numbers are, however, too small to form 
a very satisfactory illustration. 

R E F E R E N C E S . 

(1) PEARSON, KARL, " S k e w Variation in Homogeneous Material," Phil. 
Trans. Roy. Soc., Series A, vol. clxxxvi. (1895), pp. 343-414. 

(2) PEARSON, KARL, "Cloudiness : Note on a Novel Case of Frequency," 
Proc. Roy. Soc., vol. lxii. (1897), p. 287. 

(3) PEARSON, KARL, " Supplement to a Memoir on Skew Variation," Phil. 
Trans. Roy. Soc., Series A, vol. cxcvii. (1901), pp. 443-459. 

(4) PARETO, VILFREDO, Cours d'iconomie politique; 2 vols., Lausanne, 
1896-7. See especially tome ii., livre iii., chap, i., " La courbe des 
revenus." 

The first three memoirs above are mathematical memoirs on the theory 
of ideal frequency-curves, the first being the fundamental memoir, and 
the second and third supplementary. The elementary student may, 
however, refer to them with advantage, on account of the large collection 
of frequency-distributions which is given, and from which some of the 
illustrations in the preceding chapter have been cited. Without 
at tempting to follow the mathematics, he may also note t ha t each of 
our rough empirical types may be divided into several sub-types, the 
theoretical division into types being made on different grounds. 

The fourth work is cited on account of the author's discussion of the 
distribution of wealth in a community, to which reference was made in 
§15-

E X E R C I S E S . 

1. If the diagram fig. 6 is redrawn to scales of 300 observations per interval 
to the inch and 4 inches of stature to the inch, what is the scale of observa-
tions to the square inch ? 

If the scales are 100 observations per interval to the centimetre and 2 inches 
of stature to the centimetre, what is the scale of observations to the 
square centimetre ? 

2. If fig. 10 is redrawn to scales of 25 observations per interval to the inch 
and 2 per cent, to the inch, what is the scale of observations to the 
square inch ? 

If the scales are 10 observations per interval to the centimetre and 1 per 
cent, to the centimetre, what is the scale of observations to the square 
centimetre ? 

3. If a frequency-polygon be drawn to represent the data of Table I. , what 
number of observations will the polygon show between death-rates of 
16'5 and 17'5 per thousand, instead, of the true number 159 ? 

4. If a frequency-polygon be drawn to represent the data of Table V., 
what number of observations will the polygon show between head-breadths 
5'95 and 6'05, instead of the t rue number 236 ? 
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AVERAGES. 

1. Necessity for quant i ta t ive definition of the characters of a frequenoy-
distribution—2. Measures of position (averages) and of dispersion—3. 
The dimensions of an average the same as those of the variable—4. 
Desirable properties for an average to possess—5. The commoner forms 
of average—6-13. The ar i thmetic mean : its definition, calculation, and 
simpler properties—14-18. The med ian : its definition, calculation, and 
simpler properties—19-20. The mode: its definition and relation to 
mean and median—21. Summary comparison of the preceding forms 
of average—22-26. The geometric mean : i ts definition, simpler pro-
perties, and the cases in which i t is specially applicable—27. The 
harmonic mean : i ts definition and calculation. 

1. IN § 2 of the last chapter it was pointed out that a classification 
of the observations in any long series is the first step necessary 
to make the observations comprehensible, and to render possible 
those comparisons with other series which are essential for any 
discussion of causation. Very little experience, however, would 
show that classification alone is not an adequate method, seeing 
that it only enables qualitative or verbal comparisons to be made. 
The next step that it is desirable to take is the quantitative 
definition of the characters of the frequency-distribution, so that 
quantitative comparisons may be made between the corresponding 
characters of two or more series. It might seem at first sight 
that very difficult cases of comparison could arise in which, for 
example, we had to contrast a symmetrical distribution with a " J-
shaped " distribution. As a matter of practice, however, we seldom 
have to deal with such a case; distributions drawn from similar 
material are, in general, of similar form. When we have to 
compare the frequency-distributions of stature in two races of 
man, of the death-rates in English registration districts in two 
successive decades, of the numbers of petals in two races of the 
same species of Ranunculus, we have only to compare with each 
other two distributions of the same or nearly the same type. 

2. Confining our attention, then, to this simple case, there are 
two fundamental characteristics in which such distributions may 

106 
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differ: (1) they may differ markedly in position, i.e. in the values 
of the variable round which they centre, as in fig. 20, A, or (2) 
they may centre round the same value, but differ in the range of 
variation or dispersion, as it is termed, as in fig. 20, B. Of course 
the distributions may differ in both characters at once, as in fig 20, 
C, but the two properties may be considered independently. 
Measures of the first character, position, are generally known as 
averages ; measures of the second are termed measures of disper-
sion. In addition to these two principal and fundamental 
characters, we may also take a third of some interest but of much 
less importance, viz. the degree' of asymmetry of the distribution. 

Fig. 20. 

The present chapter deals only with averages; measures of 
dispersion are considered in Chapter VIII. and measures of 
asymmetry are also briefly discussed at the end of that chapter. 

3. In whatever way an average is defined, it may be as well to 
note, it is merely a certain value of the variable, and is therefore 
necessarily of the same dimensions as the variable: i.e. if the 
variable be a length, its average is a length; if the variable be a 
percentage, its average is a percentage, and so on. But there are 
several different ways of approximately defining the position of a 
frequency-distribution, that is, there are several different forms of 
average, and the question therefore arises, By what criteria are we 
to judge the relative merits of different forms ? What are, in fact, 
the desirable properties for an average to possess1! 
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4. (a) In the first place, it almost goes without saying that an 
average should be rigidly defined, and not left to the mere estimation 
of the observer. An average that was merely estimated would 
depend too largely on the observer as well as the data. (b) An 
average should be based on all the observations made. If not, 
it is not really a characteristic of the whole distribution, (c) It 
is desirable that the average should possess some simple and 
obvious properties to render its general nature readily compre-
hensible : an average should not be of too abstract a mathematical 
character. (d) It is, of course, desirable that an average should 
be calculated with reasonable ease and rapidity. Other things 
being equal, the easier calculated is the better of two forms of 
average. At the same time too great weight must not be attached 
to mere ease of calculation, to the neglect of other factors. (e) 
It is desirable that the average should be as little affected as 
may be possible by what we have termed fluctuations of sampling. 
If different samples be drawn from the same material, however 
carefully they may be taken, the averages of the different samples 
will rarely be quite the same, but one form of average may show 
much greater differences than another. Of the two forms, the 
more stable is the better. The full discussion of this condition 
must, however, be postponed to a later section of this work 
(Chap. XVII.). (J) Finally,'by far the most important desideratum 
is this, that the measure chosen shall lend itself readily to 
algebraical treatment. If, e.g., two or more series of observations 
on similar material are given, the average of the combined series 
should be readily expressed in terms of the averages of the 
component series: if a variable may be expressed as the sum of 
two or more others, the average of the whole should be readily 
expressed in terms of the averages of its parts. A measure for 
which simple relations of this kind cannot be readily determined 
is likely to prove of somewhat limited application. 

5. There are three forms of average in common use, the 
arithmetic mean, the median, and the mode, the first named being 
by far the most widely used in general statistical work. To 
these may be added the geometric mean and the harmonic mean, 
more rarely used, but of service in special cases. We will con-
sider these in the order named. 

6. The arithmetic mean.—The arithmetic mean^ of a series of 
values of a variable Xv Xv X3, . . . X„, N in number, is the 
quotient of the sum of the values by their number. That is to 
say, if M be the arithmetic mean, 

M=hx1 + x2+x3+ . . . +Xn), 
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or, to express it more briefly by using the symbol 2 to denote 
" the sum of all quantities like," 

• • • • ( 1 ) 

The word mean or average alone, without qualification, is very 
generally used to denote this particular form of average : that 
is to say, when anyone speaks of " the mean " or " the average " 
of a series of observations, it may, as a rule, be assumed that the 
arithmetic mean is meant. I t is evident that the arithmetic 
mean fulfils the conditions laid down in (a) and (&) of § 4, for it 
is rigidly defined and based on all the observations made. 
Further, it fulfils condition (c), for its general nature is readily 
comprehensible. If the wages-bill for N workmen is £P, the 
arithmetic mean wage, P/JY pounds, is the amount that each 
would receive if the whole sum available were divided equally 
between them : conversely, if we are told that the mean wage 
is £M, we know this means that the wages-bill is N.M pounds. 
Similarly, if N families possess a total of 0 children, the mean 
number of children per family is C/JV—the number that each 
family would possess if the children were shared uniformly. 
Conversely, if the mean number of children per family is M, the 
total number of children in N families is N.M. The arithmetic 
mean expresses, in fact, a simple relation between the whole 
and its parts. 

7. As regards simplicity of calculation, the mean takes a high — 
position. In the cases just cited, it will be noted that the mean 
is actually determined without even the necessity of determining 
or noting all the individual values of the variable : to get the 
mean wage we need not know the wages of every hand, but only 
the wages-bill; to get the mean number of children per family 
we need not know the number in each family, but only the total. 
If this total is not given, but we have to deal with a moderate 
number of observations—so few (say 30 or 40) that it is hardly 
worth while compiling the frequency-distribution—the arithmetic 
mean is calculated directly as suggested by the definition, i.e. 
all the values observed are added together and the total divided 
by the number of observations. But if the number of observations 
be large, this*direct process becomes a little lengthy. I t may 
be shortened considerably by forming the frequency-table and 
treating all the values in each class as if they were identical with 
the mid-value of the class-interval, a process which in general 
gives an approximation that is quite sufficiently exact for prac-
tical purposes if the class-interval has been taken moderately 
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small (cf. Chap. VI. § 5). In this process each class-frequency 
is multiplied by the mid-value of the interval, the products added 
together, and the total divided by the number of observations. 
I f / d e n o t e the frequency of any class, X the mid-value of the 
corresponding class-interval, the value of the mean so obtained 
may be written— 

M=±t(f.X) . . . . (2) 

8. But this procedure is still further abbreviated in practice 
by the following artifices:—(1) The class-interval is treated 
as the unit of measurement throughout the arithmetic; (2) the 
difference between the mean and the mid-value of some arbi-
trarily chosen class-interval is computed instead of the absolute 
value of the mean. 

If A be the arbitrarily chosen value and 

X=A + £ (3) 
then 

2 ( f X ) = l(f.A) + l(te), 
or, since A is a constant, 

M = A + ^ ( M ) . ; . . (4) 

The calculation of 2 ( f - X ) is therefore replaced by the calcula-
tion of 2(/.£). The advantage of this is that the class-frequencies 
need only be multiplied by small integral numbers; for A 
being the mid-value of a class-interval, and X the mid-value of 
another, and the class-interval being treated as a unit, the £'s 
must be a series of integers proceeding from zero at the arbitrary 
origin A. To keep the values of £ as small as possible, A should 
be chosen near the middle of the range. 

It may be mentioned here that 2(0, or 2(/-£) for the grouped 
distribution, is sometimes termed the first moment of the distribu-
tion about the arbitrary origin A : we shall not, however, make 
use of this term. 

9. The process is illustrated by the following example, using 
the frequency-distribution of Table VIII., Chap. VI. The 
arbitrary origin A is taken at 3-5 per cent., the' middle of the 
sixth class-interval from the top of the table, and % little nearer 
than the middle of the range to the estimated position of the 
mean. The consequent values of ( are then written down as in 
column (3) of the table, against the corresponding frequencies, the 
values starting, of course, from zero opposite 3 5 per cent. Each 
frequency f is then multiplied by its | and the products entered 
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in another column (4). The positive and negative products are 
totalled separately, giving totals - 776 and + 509 respectively, 
whence = - 267. Dividing this by N~, viz. 632, we have 
the difference of M from A in class-intervals, viz. 0'42 intervals, 
that is 0'21 per cent. Hence the mean is 3 5 - 0'21 = 3'29 
per cent. 

CALCULATION OF THE MEAN: Example i.—Calculation of the Arithmetic 
Mean of the Percentages of the Population in receipt of Pelief, from the 
Figures of Table VIII., Chap. VI., p. 93. 

(1) (2) (3) (4) 
Mid-values 

of the Deviation 
Class-intervals Frequency from Arbitrary Product 
(Percentage in / • Value A * A-

receipt of {• 
Relief). 

1 18 - 5 90 
1-5 48 - 4 192 
2 72 - 3 216 
2'5 89 - 2 178 
3 100 - 1 100 

3-5 90 0 - 7 7 6 

4 75 • + 1 75 
4-5 60 + 2 120 
5 40 + 3 120 
5-5 21 + 4 84 • 
6 11 + 5 55 
6-5 5 -!-' 6 30 
7 1 + 7 7 
7-5 1 + 8 8 
8 — % + 9 
8-5 1 + 10 10 

Total 632 — + 509 

2(/|)=|g\509-776=-267 
M-A — _ g g 2 class-intervals = — 0'42 class-intervals 

* = - 0 ' 2 I units 
mean M = 3 ' 5 - 0 " 2 1 = 3'29percent. 

It must always be remembered that S(/.£)/iV gives the value of 
M - A in class-intervals, and must not be added directly to A 
unless the interval is also a unit. In the present illustration the 



112 THEORY OF STATISTICS. 

interval is half a unit, and accordingly the quotient 267/632 is 
halved in order to obtain an answer in units. Care must also be 
taken to give the right sign to the quotient. 

10. As the process is an important one we give a second illustra-
tion from the figures of Table VI., Chap. VI. In this case the class-
interval is a unit (1 inch), so the value of M-A is given directly 
by dividing 2 ( / . f ) by N. The student must notice that, measures 
having been made to the nearest eighth of an inch, the mid-values 
of the intervals are 5 7 ^ , 58-/^, etc., and not 57'5, 58-5, etc. 

CALCULATION OF THE M E A N : Example ii.—Calculation of tlie Arithmetic 
Mean Stature of Male Aclults in the British Isles from the Figures of 
Chap. VI., Table VI., p. 88. 

(1) (2) (8) (4) 
Deviation 

Height, Frequency from Arbitrary Product 
Inches. / • Value A f l 

i-
f l 

57- 2 - 1 0 20 
58- 4 - 9 36 
59- 14 - 8 112 
60- 41 - 7 287 
61- 83 - 6 498 
62- 169 - 5 845 
63- 394 - 4 1576 
64- 669 - 3 2007 
65- 990 - 2 1980 
66- 1223 - 1 1223 

67- 1329 0 - 8 5 8 4 

68- 1230 + 1 1230 
69- 1063 + 2 2126 
70- 646 '+ 3 1938 
71- 392 + 4 1568 
72- 202 + 5 1010 
73- 79 + 6 474 
74- 32 + 7 224 
75- 16 + 8 128 
76- .5 + 9 45 
77- 2 + 10 20 

Total 8585 - -^8763 

2(_/£)= + 8763 - 8584= +179 
179 

j- TTT̂ i = + '02 class-in' 
8 5 8 5 
M= 67A + -02 = 67-46 inches. 

179 M- A = +X7777 = + "02 class-intervals or inches. 
8 5 8 5 



VII. —AVERAGES. 113 

It is evident that an absolute check on tho arithmetic of any 
such calculation may be effected by taking a different arbitrary 
origin for the deviations : all the figures of col. (4) will be changed, 
but the value ultimately obtained for the mean must be the 
same. The student should note that a classification by unequal 
intervals is, at best, a hindrance to this simple form of calculation, 
and the use of an indefinite interval for the extremity of the 
distribution renders the exact calculation of the mean impossible 
(cf. Chap. VI. § 10). 

11. We return again below (§ 13) to the question of the 

/ 
/ \ 
/ \ / \ / Mo \ 

1 \ 
\ 1 \ • 

/ \ 
/ \ • 

MoM 
o I 2 3™ 4 6 6 J a 9 10 
Percentage cf the population. Ul recetpt of relief. 

FIG. 21. —Showing the Arithmetic Mean M, the Median Mi, and the Mode Mo, 
by verticals drawn through the corresponding points on the base, for the 
distribution of pauperism of fig. 10, p. 92. 

errors caused by the assumption that all values within the same 
interval may be treated as approximately the mid-value of the 
interval. It is sufficient to say here that the error is in general 
very small and of uncertain sign for a distribution of the 
symmetrical or only moderately asymmetrical type, provided of 
course the class-interval is not large (Chap. YI. § 5). In the case 
of the " J-shaped" or extremely asymmetrical distribution, how-
ever, the error is evidently of definite sign, for in all the intervals 
the frequency is piled up at the limit lying towards the greatest 
frequency, i.e. the lower end of the range in the case of the illustra-
tions given in Chap. YI., and is not evenly distributed over the 

8 
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interval. In distributions of such a type the intervals must be 
made very small indeed to secure an approximately accurate value 
for the mean. The student should test for himself the effect of 
different groupings in two or three different cases, so as to get 
some idea of the degree of inaccuracy to be expected. 

12. If a diagram has been drawn representing the frequency-
distribution, the position of the mean may conveniently be 
indicated by a vertical through the corresponding point on the 
base. Thus fig. 21 (a reproduction of fig. 10) shows the frequency-
polygon for our first illustration, and the vertical MM indicates 
the mean. In a moderately asymmetrical distribution at all of 
this form the mean lies, as in the present example, on the side of 
the greatest frequency towards the longer " tail" of the distribu-

t e MiM 
Fio. 22.—Mean M, Median Mi, and Mode Mo, of the ideal moderately 

asymmetrical distribution. 

tion : M in fig. 22 shows similarly the position of the mean in 
an ideal distribution. In a symmetrical distribution the mean 
coincides with the centre of symmetry. The student should mark 
the position of the mean in the diagram of every frequency dis-
tribution that he draws, and so accustom himself to thinking of 
the mean, not as an abstraction, but always in relation to the 
frequency-distribution of the variable concerned. 

13. The following examples give important properties of the 
arithmetic mean, and at the same time illustrate the facility of its 
algebraic treatment:— 

(a) The sum of the deviations from the mean, taken with their 
proper signs, is zero. 

This follows at once from equation (4) : for if M and A are 
identical, evidently 2(/.f) must be zero. 
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(5) If a series of N observations of a variable X consist of, say, 
two component series, the mean of the whole series can be 
readily expressed in terms of the means of the two components. 
For if we denote the values in the first series by X1 and in the 
second series by X„, 

' S(X) = S(Xl) + S(X2), 
that is, if there be N1 observations in the first series and N2 in 
the second, and the means of the two series be Mv M2 respectively, 

N.M=NvM1 + Ni.Mi . . . (5) 

For example, we find from the data of Table YI., Chap. VI., 
Mean stature of the 346 men born in Ireland = 67-78 in. 

„ „ ,, 741 „ „ Wales = 66-62 in. 
Hence the mean stature of the 1087 men born in the two countries 
is given by the equation— 

1087.M= (346 x 67-78)+ (741 x 66-62). 
That is, M= 66-99 inches. It is evident that the form of the 
relation (5) is quite general: if there are r series of observations 
Xv X2 . . . . XT, the mean M of the whole series is related to 
the means Mv J/2 . . . . M„ of the component series by the 
equation 

N.M=NvM1 + N».M2+ . . . . +Nr.Mr . . (6) 

For the convenient checking of arithmetic, it is useful to note 
that, if the same arbitrary origin A for the deviations f be taken 
in each case, we must have, denoting the component series by the 
subscripts 1, 2, . . . r as before, 

%(/.£) = 2(/1.f1) + 2 ( / 2 . 4 )+ • (7) 
The agreement of these totals accordingly checks the work. 

As an important corollary to the general relation (6), it may 
be noted that the approximate value for the mean obtained from 
any frequency distribution is the same whether we assume (1) 
that all the values in any class are identical with the mid-value 
of the class-interval, or (2) that the mean of the values in the 
class is identical with the mid-value of the class-interval. 

(c) The mean of all the sums or differences of corresponding 
observations in two series (of equal numbers of observations) is 
equal to the sum or difference of the means of the two series. 

This follows almost at once. For if 

X = X, + XOJ 

2(X) = S(X1)±S(X2). 
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That is, if M, Mv M.2 be the respective means, 

M=Mx±M2 . . . . (8) 

Evidently the form of this result is again quite general, so that 
if 

X=X1±X2± ±x„ 
M=M1±Mi± . . . . ±Mt . . . (9) 

As a useful illustration of equation (8), consider the case of 
measurements of any kind that are subject (as indeed all 
measures must be) to greater or less errors. The actual measure-
ment X in any such case is the algebraic sum of the true 
measurement X1 and an error X2. The mean of the actual 
measurements M is therefore the sum of the true mean Mv and 
the arithmetic mean of the errors M2. If, and only if, the 
latter be zero, will the observed mean be identical with the true 
mean. Errors of grouping (§11) are a case in point. 

14. The median.—The median may be defined as the middle-
most or central value of the variable when the values are ranged 
in order of magnitude, or as the value such that greater and 
smaller values occur with equal frequency. In the case of a 
frequency-curve, the median may be defined as that value of the 
variable the vertical through which divides the area of the curve 
into two equal parts, as the vertical through Mi in fig. 22. 

The median, like the mean, fulfils the conditions (b) and (c) 
of § 4, seeing that it is based on all the observations made, and 
that it possesses the simple property of being the central or 
middlemost value, so that its nature is obvious. But the defini-
tion does not necessarily lead in all cases to a determinate value. 
If there be an odd number of different values of X observed, say 
2n+\, the (m+l)th in order of magnitude is the only value 
fulfilling the definition. But if there be an even number, say 
2n different values, any value between the nth and (n+ l ) t h 
fulfils the conditions. In such a case it appears to be usual to 
take the mean of the nth and («.+ l)th values as the median, 
but this is a convention supplementary to the definition. It 
should also be noted that in the case of a discontinuous variable 
the second form of the definition in general breaks down : if we 
range the values in order there is always a middlemost value 
(provided the number of observations be odd), but there is not, as a 
rule, any value such that greater and less values occur with equal 
frequency. Thus in Table III., § 3 of Chap. VI., we see that 45 per 
cent, of the poppy capsules had 12 or fewer stigmatic rays, 55 
per cent, had 13 or more; similarly 61 per cent, had 13 or fewer 
rays, 39 per cent, had 14 or more. There is no number of rays 
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such that the frequencies in excess and defect are equal. 
In the case of the buttercups of Table XIV. (Chap. VI. § 15) 
there is no number of petals that even remotely fulfils the 
required condition. An analogous difficulty may arise, it may 
be remarked, even in the case of an odd number of observations 
of a continuous variable if the number of observations be small 
and several of the observed values identical. The median is 
therefore a form of average of most uncertain meaning in cases 
of strictly discontinuous variation, for it may be exceeded by 
5, 10, 15, or 20 per cent, only of the observed values, instead of 
by 50 per cent.: its use in such cases is to be deprecated, and 
is perhaps best avoided in any case, whether the variation be 
continuous or discontinuous, in which small series of observations 
have to be dealt with. 

15. When a table showing the frequency-distribution for a 
long series of observations of a continuous variable is given, no 
difficulty arises, as a sufficiently approximate value of the median 
can be readily determined by simple interpolation on the hypo-
thesis that the values in each class are uniformly distributed 
throughout the interval. Thus, taking the figures in our first 
illustration of the method of calculating the mean, the total 
number of observations (registration districts) is 632, of which 
the half is 316. Looking down the table, we see that there are 
227 districts with not more than 2'7 5 per cent, of the population 
in receipt of relief, and 100 more with between 2'75 and 3'25 
per cent. But only 89 are required to make up the total of 316 ; 
hence the value of the median is taken as 

8 9 
2-75 + ^ . | = 2-75 + 0-445 

= 3T95 per cent. 
The mean being 3-29, the median is slightly less ; its position 

is indicated by Mi in fig. 21. 
The value of the median stature of males may be similarly 

calculated from the data of the second illustration. The work 
may be indicated thus :— 

Half the total number of observations (8585) = 4292'5 
Total frequency under 6 6 i | inches . . = 3589 

Difference = 703-5 
Frequency in next interval . . . =1329 
Therefore median = 66i£ + 

= 67-47 inches. 
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The difference between median and mean in this case is 
therefore only about one-hundredth of an inch, the smallness 
of the difference arising from the approximate symmetry of 
the distribution. In an absolutely symmetrical distribution 
it is evident that mean and median must coincide. 

16. Graphical interpolation may, if desired, be substituted 
for arithmetical interpolation. Taking, again, the figures of 
Example i., the number of districts with pauperism not exceeding 
2-25 is 138; not exceeding 2-75, 227 ; not exceeding 3-25, 327 ; 
and not exceeding 3'75, 417. Plot the numbers of districts 
with pauperism not exceeding each value X to the corresponding 

300-

200-

100-

3 

316 
300 

400 

-100 Mi 
2-5 3 35 4 

Percentage of the population. 
vi receipt of relief 

FIQ. 23.—Determination of the median by graphical interpolation. 

value of X on squared paper, to a good large scale, as in fig. 23, 
and draw a smooth curve through the points thus obtained, 
preferably with the aid of one of the "curves," splines, or flexible 
curves sold by instrument-makers for the purpose. The point 
in which the smooth curve so obtained cuts the horizontal line 
corresponding to a total frequency N/2 = 316 gives the median. 
In general the curve is so flat that the value obtained by this 
graphical method does not differ appreciably from that calculated 
arithmetically (the arithmetical process assuming that the 
curve is a straight line between the points on either side of 
the median); if the curvature is considerable, the graphical 
value—assuming, of course, careful and accurate draughtsmanship 
—is to be preferred to the arithmetical value, as it does not 
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involve the crude assumption that the frequency is uniformly 
distributed over the interval in which the median lies. 

17. A comparison of the calculations for the mean and 
for the median respectively will show that on the score of 
brevity of calculation the median has a distinct advantage. 
When, however, the ease of algebraical treatment of the two 
forms of average is compared, the superiority lies wholly on 
the side of the mean. As was shown in § 13, when several series 
of observations are combined into a single series, the mean of 
the resultant distribution can be simply expressed in terms 
of the means of the components. The expression of the 
median of the resultant distribution in terms of the medians 
of the components is, however, not merely complex and difficult, 
but impossible : the value of the resultant median depends on 
the forms of the component distributions, and not on their 
medians alone. If two symmetrical distributions of the same 
form and with the same numbers of observations, but with 
different medians, be combined, the resultant median must 
evidently (from symmetry) coincide with the resultant mean, i.e. 
lie halfway between the means of the components. But if the 
two components be asymmetrical, or (whatever their form) 
if the degrees of dispersion or numbers of observations in the 
two series be different, the resultant median will not coincide 
with the resultant mean, nor with any other simply assignable 
value. It is impossible, therefore, to give any theorem for 
medians analogous to equations (5) and (6) for means. It is 
equally impossible to give any theorem analogous to equations 
(8) and (9) of § 13. The median of the sum or difference of 
pairs of corresponding observations in two series is not, 
in general, equal to the sum or difference of the medians of 
the two series ; the median value of a measurement subject to 
error is not necessarily identical with the true median, even 
if the median error be zero, i.e. if positive and negative errors 
be equally frequent. 

18. These limitations render the applications of the median in 
any work in which theoretical considerations are necessary com-
paratively circumscribed. On the other hand, the median may 
have an advantage over the mean for special reasons, (a) It is 
very readily calculated ; a factor to which, however, as already 
stated, too much weight ought not to be attached. (b) I t is 
readily obtained, without the necessity of measuring all the 
objects to be observed, in any case in which they can be arranged 
by eye in order of magnitude. If, for instance, a number of men 
be ranked in order of stature, the stature of the middlemost is 
the median, and he alone need be measured. (On the other hand 
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it is useless in the cases cited at the end of § 6 ; the median wage 
cannot be fouud from the total of the wages-bill, and the total 
of the wages-bill is not known when the median is given.) (c) It 
is sometimes useful as a makeshift, when the observations are so 
given that the calculation of the mean is impossible, owing, e.g., to 
a final indefinite class, as in Table IV. (Chap. VI. § 10). (d) The 
median may sometimes be preferable to the mean, owing to its 
being less affected by abnormally large or small values of the 
variable. The stature of a giant would have no more influence 
on the median stature of a number of men than the stature of 
any other man whose height is only just greater than the median. 
If a number of men enjoy incomes closely clustering round a 
median of £500 a year, the median will be no more affected by 
the addition to the group of a man with the income of £50,000 
than by the addition of a man with an income of £5000, or even 
£600. If observations of any kind are liable to present occasional 
greatly outlying values of this sort (whether real, or due to 
errors or blunders), the median will be more stable and less 
affected by fluctuations of sampling than the arithmetic mean. 
(In general the mean is the less affected.) The point is discusscd 
more fully later (Chap. XVII.). (e) I t may be added that the 
median is, in a certain sense, a particularly real and natural 
form of average, for the object or individual that is the median 
object or individual on any one system of measuring the charactor 
with which we are concerned will remain the median on any 
other method of measurement which leaves the objects in the 
same relative order. Thus a batch of eggs representing eggs 
of the median price, when prices are reckoned at so much per 
dozen, will remain a batch representing the median price when 
prices are reckoned at so many eggs to the shilling. 

19. The Mode.—The mode is the value of the variable corre-
sponding to the maximum of the ideal frequency-curve which 
gives the closest possible fit to the actual distribution. 

It is evident that in an ideal symmetrical distribution mean, 
median and mode coincide with the centre of symmetry. If, 
however, the distribution be asymmetrical, as in fig. 22, the three 
forms of average are distinct, Mo being the mode, Mi the median, 
and M the mean. Clearly, the mode is an important form of 
average in the cases of skew distributions, though the term is of 
recent introduction (Pearson, ref. 11). It represents the value 
which is most frequent or typical, the value which is in fact the 
fashion (la mode). But a difficulty at once arises on attempting 
to determine this value for such distributions as occur in practice. 
It is no use giving merely the mid-value of the class-interval into 
which the greatest frequency falls, for this is entirely dependent 
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on the choice of the scale of class-intervals. It is no use making 
the class-intervals very small to avoid error on that account, for 
the class-frequencies will then become small and the distribution 
irregular. What we want to arrive at is the mid-value of the 
interval for which the frequency would be a maximum, if the 
intervals could be made indefinitely small and at the same time 
the number of observations be so increased that the class-frequen-
cies should run smoothly. As the observations cannot, in a 
practical case, be indefinitely increased, it is evident that some 
process of smoothing out the irregularities that occur in the 
actual distribution must be adopted, in order to ascertain the 
approximate value of the mode. But there is only one smoothing 
process that is really satisfactory, in so far as every observation 
can be taken into account in the determination, and that is the 
method of fitting an ideal frequency-curve of given equation to 
the actual figures. The value of the variable-corresponding to the 
maximum of the fitted curve is then taken as the mode, in 
accordance with our definition. Mo in fig. 21 is the value of the 
mode so determined for the distribution of pauperism, the value 
2-99 being, as it happens, very nearly coincident with the centre 
of the interval in which the greatest frequency'lies. The deter-
mination of the mode by this—the only strictly satisfactory— 
method must, however, be left to the more advanced student. 

20. At the same time there is an approximate relation between 
mean, median, and mode that appears to hold good with surprising 
closeness for moderately asymmetrical distributions, approaching 
the ideal type of fig. 9, and it is one that should be borne in 
mind as giving—-roughly, at all events—the relative values of 
these three averages for a great many cases with which the 
student will have to deal. It is expressed by the equation— 

Mode = Mean - 3(Mean - Median). 
That is to say, the median lies one-third of the distance from the 
mean towards the mode (compare figs. 21 and 22). For the dis-
tribution of pauperism we have, taking the mean to three places of 
decimals,— 

Mean 3*289 
Median . . . . 3T95 
Difference . . . . 0-094 

Hence approximate mode = 3'289 - 3 x 0'094 
= 3-007, 

or 3'01 to the second place of decimals, which is sufficient accuracy 
for the final result, though three decimal places must be retained 
for the calculation. The true mode, found by fitting an ideal 
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distribution, is 2'99. As further illustrations of the closeness 
with which the relation may be expected to hold in different cases, 
we give below the results for the distributions of pauperism in 
the unions of England and Wales in the years 1850, 1860, 1870, 
1881, and 1891 (the last being the illustration taken above), 
and also the results for the distribution of barometer heights at 
Southampton (Table XI., Chap. VI. § 14), and similar distribu-
tions at four other stations. 

Comparison, of the Approximate and True Modes in the Case of Five Dis-
tributions of Pauperism (Percentages of the Population in receipt of 
Relief) in the Unions of England and Wales. (Yule, Jour. Roy. Stat. 
Soc., vol. lix., 1896.) 

Year. Mean. Median. Approximate 
Mode. True Mode. 

1850 6'508 6-261 5-767 5-815 
1860 5-195 5-000 4-610 4-657 
1870 5-451 5-380 5-238 5-038 
1881 3-676 3-523 3-217 3-240 
1891 3-289 3-195 3-007 2-987 

Comparison of the Approximate and True Modes in the Case of Five Dis-
tributions of the Height of the Barometer for Daily Observations at the 
Stations named. (Distributions given by Karl Pearson and Alice Lee. 
Phil. Trans., A, vol. cxc. (1897), p. 423.) 

Station. Mean. Median. Approximate 
Mode. True Mode. 

Southampton . 29-981 30-000 • 30-038 30-039 
Londonderry . 29-891 29-915 29-963 29-900 
Carmarthen 29-952 29-974 30-018 30-013 
Glasgow . 29 886 29-906 '29-946 29-967 
Dundee . 29-870 29-890 29-930 29951 

I t will be seen that in the case of the pauperism figures the 
approximate mode only diverges markedly from the true value 
in the year 1870, a year in which the frequency-distribution was 
very irregular. In all the other years the difference between the 
true and approximate values of the mode is hardly greater than 
the alteration that might be caused in the true mode itself by 
slight variations in the method of fitting the curve to the actual 
distribution. Similar remarks apply to the second series of illus-
trations ; the true and approximate values are extremely close, 
except in the case of Dundee and Glasgow, where the divergence 
reaches two-hundredths of an inch. 

21. Summing up the preceding paragraphs, we may say that 
the mean is the form of average to use for all general purposes; 
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it is simply calculated, its value is always determinate, its 
algebraic treatment is particularly easy, and in most cases it is 
rather less affected than the median by errors of sampling. The 
median is, it is true, somewhat more easily calculated from a given 
frequency-distribution than is the mean; it is sometimes a useful 
makeshift, and in a certain class of cases it is more and not less 
stable than the mean; but its use is undesirable in cases of discon-
tinuous variation, its value may be indeterminate, and its algebraic 
treatment is difficult arid often impossible. The mode, finally, 
is a form of average hardly suitable for elementary use, owing 
to the difficulty of its determination, but at the same time it 
represents an important value of the variable. The arithmetic 
mean should invariably be employed unless there is some very 
definite reason for the choice of another form of average, and the 
elementary student will do very well if he limits himself to its 
use. Objection is sometimes taken to the uge of the mean in the 
case of asymmetrical frequency-distributions, on the ground that 
the mean is not the mode, and that its value is consequently 
misleading. But no one in the least degree familiar with the 
manifold forms taken by frequency-distributions would regard the 
two as in general identical ; and while the importance of the mode 
is a good reason for stating its value in addition to that of the 
mean, it cannot replace the latter. The objection, it may be noted, 
would apply with almost equal force to the median, for, as we have 
seen (§ 20), the difference between mode and median is usually 
about two-thirds of the difference between mode and mean. 

22. The Geometric Mean.—The geometric mean G of a series of 
values Xv X2, X3, . . . . X„, is defined by the relation 

ff=(X1.X2.X3 . . . . Xn)\ . . . (10) 

The definition may also be expressed in terms of logarithms, 

l o g £ = -Ls ( logX) . . . (11) 

that is to say, the logarithm of the geometric mean of a series of 
values is the arithmetic mean of their logarithms. 

The geometric mean of a given series of quantities is always 
less than their arithmetic mean • the student will find a proof in 
most text-books of algebra, and in ref. 10. The magnitude of 
the difference depends largely on the amount of dispersion of the 
variable in proportion to the magnitude of the mean (cf. Chap. 
VIII., Question 8). I t is necessarily zero, it should be noticed, if 
even a single value of X is zero, and it may become imaginary if 
negative values occur. Excluding these cases, the value of the 
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geometric mean is always determinate and is rigidly defined. The 
computation is a little long, owing to the necessity of taking 
logarithms: it is hardly necessary to give an example, as the 
method is simply that of finding the arithmetic mean of the 
logarithms of X (instead of the values of X) in accordance with 
equation (11). If there are many observations, a table should be 
drawn up giving the frequency-distribution of log X, and the 
mean should be calculated as in Examples i. and ii. of §§ 9 and 10. 
The geometric mean has never come into general use as a repre-
sentative average, partly, no doubt, on account of its rather 
troublesome computation, but principally on account of its some-
what abstract mathematical character (cf. § 4 (c)) : the geometric 
mean does not possess any simple and obvious properties which 
render its general nature readily comprehensible. 

23. At the same time, as the following examples show, the 
mean possesses some important properties, and is readily treated 
algebraically in certain cases. 

(a) If the series of observations X consist of r component 
series, there being observations in the first, N2 in the second, 
and so on, the geometric mean G of the whole series can bo 
readily expressed in terms of the geometric means Gv Gv etc., of 
the component series. For evidently we have at once (as in § 13 
(b))~ 

X. log <? = i\r.log £ 1 + X 2 . log£ 2 + . . . . + Nr. log Gr . (12) 
(b) The geometric mean of the ratios of corresponding observa-

tions in two series is equal to the ratio of their geometric means. 
For if 

X = X J X 2 , 
log X = l o g X1 - log X2, 

then summing for all pairs of Xj's and X2's, 
G=GJG2 . . . . (13) 

(c) Similarly, if a variable X is given as the product of any 
number of others, i.e. if 

X"= Xj.Xg.-Xj . . . . Xr 

Xj, X2, . . . . Xr denoting corresponding observations in r 
different series, the geometric mean G of X is expressed in terms 
of the geometric means Gv Gv . . . . Gr of Xv X2, . . . . X„ by 
the relation 

G=GrG2.G3 . . . . Gr . . . (14) 

That is to say, the geometric mean of the product is the product 
of the geometric means. 
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24. The use of the geometric mean finds its simplest application 
in estimating the numbers of a population midway between two 
epochs (say two census years) at which the population is known. 
If nothing is known concerning the increase of the population 
save that the numbers recorded at the first census were P0 and at 
the second census n years later P„, the most reasonable assump-

1801 11 21 31 41 61 61 71 81 91 1901 

1807 11 21 31 41 SI 61 71 81 91 1901 
Census year. 

FIG. 24.—Showing the Populations of certain rural counties of England 
for each Census year from 1801 to 1901. 

tion to make is that the percentage increase in each year has 
been the same, so that the populations in successive years form a 
geometric series, P0r being the population a year after the first 
census, P0r2 two years after the first census, and so on, and 

P„ = P0.r» . . . . (15) 

The population midway between the two censuses is therefore 

P„/2 = P 0 . ^ = (P0.P„)' . . . (16) 
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i.e. the geometric mean of the numbers given by the two censuses. 
This result must, however, be used with discretion. The rate of 
increase of population is not necessarily, or even usually, constant 
over any considerable period of time : if it were so, a curve 
representing the growth of population as in fig. 24 would be 
continuously convex to the base, whether the population were 
increasing or decreasing. In the diagram it will be seen that 
the curves are frequently concave towards the base, and similar 
results will often be found for districts in which the population is 
not increasing very rapidly, and from which there is much 
emigration. Further, the assumption is not self-consistent in any 
case in which the rate of increase is not uniform over the entire 
area—and almost any area can be analysed into parts which are not 
similar in this respect. For if in one part of the area considered 
the initial population is P0 and the common ratio R, and in the 
remainder of the area the initial population is p0 and the common 
ratio r, the population in year n is given by 

Pn+pn = P0.Rn+P0.r\ 
This does not represent a constant rate of increase unless R = r. 
If then, for example, a constant percentage rate of increase be 
assumed for England and Wales as a whole, it cannot be assumed 
for the Counties: if it be assumed for the Counties, it cannot be 
assumed for the country as a whole. The student is referred to 
refs. 14, 15 for a discussion of methods that may be used for the 
consistent estimation of populations under such circumstances. 

25. The property of the geometric mean illustrated by equation 
(13) renders it, in some respects, a peculiarly convenient form of 
average in dealing with ratios, i.e. " index-numbers," as they are 
termed, of prices. Let 

0' V" A 01 " 
1' X > 

•y//t 
i' • • 

2' •X 2? -ym 
A- 2> • " . . X", 

denote the prices of N commodities in the years 0, 1, 2 . . . . 
Further, let Y10 = XJX,, and so on, so that 

V V" V" Vn  1 10' 1 \o> 1 io> • • • • 1 10 
V V"" y " yn 1 20' 1 20' 1 20' ' ' ' ' 20 

represent the ratios of the prices of the several commodities in years 
1, 2, . . . to their prices in year 0. These ratios, in practice 
multiplied by 100, are termed index-numbers of the prices of the 
several commodities, on the year 0 as base. Evidently some 
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form of average of the 3"s for any given year will afford an 
indication of the general level of prices for that year, provided the 
commodities chosen are sufficiently numerous and representative. 
The question is, what form of average to choose. If the geometric 
mean be chosen, and 6r10, &20 denote the geometric means of the 
F s for the years 1 and 2 respectively, we have 

From the first form of this equation we see that the ratio of the 
geometric mean index-number in year 2 to that in year 1 is 
identical with the geometric mean of the ratios for the index-
numbers of the several commodities. A similar property does 
not hold for any other form of average : the ratio of the arithmetic 
mean index-numbers is not the same as the arithmetic mean of 
the ratios, nor is the ratio of the medians the median of the 
ratios. From the second and third forms of the equation it 
appears further that the ratio of the geometric mean index-
number in year 2 to that in year 1 is independent of the prices in 
the year first chosen as base (i.e. year 0), and is identical with the 
geometric mean of the index-numbers for year 2, on year 1 as 
base. Again, a similar property does not hold for any other form 
of average. If arithmetic means of the index-numbers be taken, 
for example, the ratio of the mean in year 2 to the mean in year 
1 will vary with the year taken as base, and will differ more or 
less from the arithmetic mean ratio of the prices in year 2 to the 
prices of the same commodities in year 1 ; the same statement is 
true if medians be used. The results given by the use of the 
geometric mean possess, therefore, a certain consistency that is 
not exhibited if other forms of average are employed. It was 
used in a classical paper by Jevons (ref. 4), though not on quite 
the same grounds, but has never been at all generally employed. 

26. The general use of the geometric mean has been suggested 
on another ground, namely, that the magnitudes of deviations 
appear, as a rule, to be dependent in some degree on the magni-
tude of the average; thus the length of a mouse varies less than 
the stature of a man, and the height of a shrub less than that of 
a tree. Hence, it is argued, variations in such cases should be 
measured rather by their ratio to, than their difference from, the 
average; and if this is done, the geometric mean is the natural 
average to use. If deviations be measured in this way, a 

(17) 

— / V V" V"' Vn \ -— X1 21 • 1 21 • 1 21 • • • • 21/ N 
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deviation G/r will be regarded as the equivalent of a deviation r.G, 
instead of a deviation -a ; as the equivalent of a deviation + x. 
If a distribution take the simplest possible form when relative 
deviations are regarded as equivalents, the frequency of deviations 
between G/s and G/r will be equal to the frequency of deviations 
between r.G and s.G. The frequency-curve will then be sym-
metrical round log G if plotted to log X as base, and if there be 
a single mode, log G will be that mode—a logarithmic or geometric 
mode, as it might be termed : G will not be the mode if the distri-
bution be plotted in the ordinary way to values of X as base. 
The theory of such a distribution has been discussed by more than 
one author (refs. 2, 8, 9). The general applicability of the assump-
tion made does not, however, appear to have been very widely 
tested, and the reasons assigned have not sufficed to bring the 
geometric mean into common use. It may be noted that, as the 
geometric mean is always less than the arithmetic mean, the 
fundamental assumption which would justify the use of the former 
clearly does not hold where the (arithmetic) mode is greater than 
the arithmetic mean, as in Tables X. and XI. of the last chapter. 

27. The Harmonic Mean.—The harmonic mean of a series of 
quantities is the reciprocal of the arithmetic mean of their 
reciprocals, that is, if H be the harmonic mean, 

• • • • < 1 8 > 

The following illustration, the result of which is required for an 
example in a later chapter (Chap. XIII. § 11), will serve to show 
the method of calculation. 

The table gives the number of litters of mice, in certain 
breeding experiments, with given numbers (X) in the litter. (Data 
from A. D. Darbishire, Biometrika, iii. pp. 30, 31.) 

Number in Number of 
Litter. Litters. f / X . 

X. / • 
f / X . 

1 7 7-000 
2 11 5-500 
3 16 5-333 
4 17 4-250 
6 26 5-200 
6 31 5-167 
7 11 1-571 
8 1 0-125 
9 1 0-111 

— 121 34-257 
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Whence, 1/5 '= 0-2831, 11= 3'532. The arithmetic mean is 4-587, 
or more than a unit greater. 

If the prices of a commodity at different places or times are 
stated in the form "so much for a unit of money," and an average 
price obtained by taking the arithmetic mean of the quantities 
sold for a unit of money, the result is equivalent to the harmonic 
mean of prices stated in the ordinary way. Thus retail prices of 
eggs are usually quoted in England as " so many to the shilling." 
Supposing we had 100 returns of retail prices of eggs, 50 returns 
showing twelve eggs to the shilling, 30 fourteen to the shilling, 
and 20 ten to the shilling; then the mean number per shilling 
would be 12'2, equivalent to a price of 0'984d. per egg. But 
if the prices had been quoted in the form usual for other com-
modities, we should have had 50 returns showing a price of Id. 
per egg, 30 showing a price of 0'857d., and 20 a price of T2d.: 
arithmetic mean 0'997d., a slightly greater value than the har-
monic mean of 0'984. The official returns of prices in India were, 
until 1907, given in the form of "Sers (2'057 lbs.) per rupee." 
The average annual price of a commodity was based on half-
monthly prices stated in this form, and "index-numbers" were 
calculated from such annual averages. In the issues of " Prices 
and Wages in India" for 1908 and later years the prices have 
been stated in terms of "rupees per maund (82'286 lbs.)." The 
change, it will be seen, amounts to a replacement of the harmonic 
by the arithmetic mean price. 

The harmonic mean of a series of quantities is always lower 
than the geometric mean of the same quantities, and, a fortiori, 
lower than the arithmetic mean, the amount of difference depend-
ing largely on the magnitude of the dispersion relatively to the 
magnitude of the mean. (Cf. Question 9, Chap. VIII.) 

R E F E R E N C E S . 

General. 
(1) FECHNER, G. T. "Ueber den Ausgangswerth der kleinsten Abweieh-

ungssumme, dessen Bestimmung, Verwendung und Verallgemein-
erung," Abh. d. kgl. sdchsischen Gesellschaft d. Wissenschaften, vol. 
xviii. (also numbered xi. of the Abh. d. math.-phys. Classe)-, Leipzig 
(1878), p. 1. (The average defined as the origin from which the 
dispersion, measured in one way or another, is a minimum : geometric 
mean dealt with incidentally, pp. 13-16.) 

(2) FECHNER, G. T., KolleHivmasslehre, herausgegeben von G. F. Lipps; 
Engelmann, Leipzig, 1897. (Posthumously published: deals with 
frequency-distributions, their forms, averages, and measures of dis-
persion in general: includes much of the matter of (1).) 

(3) ZIZEK, FRANZ, Die statistischcn Mittelwerthe ; Duncker und Humblot, 
Leipzig, 1908. (Non-mathematical, but useful to the economic student 
for references cited.) 
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The Geometric Mean. 
(4) JEVONS, W. STANLEY, A Serious Fall in the Value of Gold ascertained 

and its Social Effects set forth \ Stanford, London, 1863. Reprinted 
in Investigations in Currency and Finance ; Maemillan, London, 1884. 
(The geometric mean applied to the measurement of price changos.) 

(5) JEVONS, W. STANLEY, "On the Variation of Prices and the Value of 
the Currency since 1782," Jour. Roy. Stat. Soc., vol. xxviii., 1865. 
Also reprinted in volume cited above. 

(6) EDGEWORTH, F. Y., "On the Method of ascertaining a Change in the 
Value of Gold," Jour. Roy. Stat. Soc., vol. xlvi., 1883, p. 714. (Some 
criticism of the reasons assigned by Jevons for the use of the geometric 
mean.) 

(7) GALTON, FRANCIS, "The Geometric Mean in Vital and Social Statistics," 
Proc. Roy. Soc., vol. xxix., 1879, p. 365. 

(8) MOALISTER, DONALD, " The Law of the Geometric Mean," ibid., p. 367. 
(The law of frequency to which the use of the geometric mean would 
be appropriate.) 

(9) KAPTEYN, J. C., Skew Frequency-curves in Biology and Statistics ; 
Noordhoff, Groningen, and ffm, Dawson, London, 1903. (Contains, 
amongst other forms, a generalisation of McAlister's law.) 

(10) CRAWFORD, G. E., " A n Elementary Proof that the Arithmetic Mean 
of any number of Positive Quantities is greater than the Geometric 
Mean," Proc. Edin. Math. Soc., vol. xviii., 1899-1900. 

See also refs. 1 and 2. 

The Mode. 
(11) PEARSON, KARL, "Skew Variation in Homogeneous Material," Phil. 

Trans. Roy. Soc., Series A, vol. clxxxvi., 1895, p. 343. (Definition of 
mode, p. 345.) 

(12) YULE, G. U., "Notes on the History of Pauperism in England and 
Wales, etc. : Supplementary Note on the Determination of the Mode," 
Jour. Roy. Stat. Soc., vol. lix., 1896, p. 343. (The note deals with 
elementary methods of approximately determining the mode : the one-
third rule and one other.) 

(13) PEARSON, KARL, "On the Modal Value of an Organ or Character," 
Biometrika, vol. i., 1902, p. 260. (A warning as to the inadequacy of 
mere inspection for determining the mode.) 

Estimates of Population. 
(14) WATERS, A. C., " A Method for estimating Mean Populations in the 

last Intercensal Period," Jour. Roy. Stat. Soc., vol. lxiv., 1901, p. 293. 
(15) WATERS, A. C., Estimates of Population : Supplement to the 65(/I Annual 

Report of the Registrar-General for England and Wales (Cd. 2618,1907), 
p. cxvii. 

Cf. SNOW, ref. 9, Chap. XII., for a different method based on the 
symptoms of growth such as numbers of births or of houses. 

Index-numbers. 
These were incidentally referred to in § 25. The general theory of 

index-numbers and the different methods in which they may be formed 
are not considered in the present work. The student will find copious 
references to the literature in the following:— 

(16) Edgewobth, f . y . , "Reports of the Committee appointed for the 
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purpose of investigating the best methods of ascertaining and measuring 
Variations in the Value of the Monetary Standard," British Association 
Reports, 1887 (p. 247), 1888 (p. 181), 1889 (p. 133), and 1890 (p. 485). 

(17) EDGEWORTH, F. Y., Article " Index-numbers" in Palgrave's Dictionary 
of Political Economy, vol. ii.; Macmillan, 1896. 

(18) FOUNTAIN, H., "Memorandum on the Construction of Index-numbers 
of Prices," in the Board of Trade Report on Wholesale and, Retail 
Prices in the United Kingdom, 1903. 

E X E R C I S E S . 

1. Verify the following means and medians from the data of Table VI., 
Chap. VI., p. 88. 

Stature in Inches for Adult Males in— 
England. Scotland. Wales. Ireland. 

Mean . . . 67"31 68'55 66'62 67'78 
Median . . . 67'35 68'48 66 "56 67'69 

In the calculation of the means, use the same arbitrary origin as in Example 
ii., and check your work by the method of § 13 (£>). 

2. Find the mean weigh t of adult males in the United Kingdom from the 
data in the last column of Table IX., Chap VI., p. 95. Also find the median 
weight, and hence the approximate mode, by the method of § 20. 

3. Similarly, find the mean, median, and approximate value of the mode 
for the distribution of fecundity in race-horses, Table X., Chap. VI., p. 96. 

4. Using a graphical method, find the median annual value of houses 
assessed to inhabited house duty in the financial year 1885-6 from the data 
of Table IV., Chap. VI., p. 83. 

5. (Data from Sauerbeck, Jour. Roy. Stat. Soc., March 1909.) The figures 
in columns 1 and 2 of the small table below show the index-numbers (or per-
centages) of prices of certain animal foods in the years 1898 and 1908, on 
their average prices during the years 1867-77. In column 3 have been added 
the ratios of the index-numbers in 1908 to the index-numbers in 1898, the 
latter being taken as 100. 

Find the average ratio of prices in 1908 to prices in 1898, taken as 100 :— 
(1) From the arithmetic mean of the ratios in col. 3. 
(2) From the ratio of the arithmetic means of cols. 1 and 2. 
(3) From the ratio of the geometric means of cols. 1 and 2. 
(4) From the geometric mean of the ratios in col. 3. 
Note that, by § 25, the last two methods must give the same result. 

Index- number of price in Ratio 

Commodity. 1898. 1908. 08/98. 

1. 2. 3. 

1. Beef, prime 78 88 112-8 
2. Beel, middling . 72 90 125-0 
3. Mutton, prime . 84 92 109-5 
4. Mutton, middling 67 95 141-8 
5. Pork 87 83 95-4 
6. Bacon . . . . 78 84 107-7 
7. Butter . . . . 76 91 119-7 
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6. (Data from census of 1901.) The table below shows the population of 
the rural sanitary districts of Essex, the urban sanitary districts (other than 
the borough of West Ham), and the borough of West Ham, at the censuses 
of 1891 and 1901. Estimate the total population of the county at a date 
midway between the two censuses, (1) on the assumption that the percentage 
rate of increase is constant for the county as a whole, (2) on the assumption 
that the percentage rate of increase is constant in each group of districts and 
the borough of West Ham. 

Essex. 
Population. 

Essex. 
1891. 1901. 

Rural districts 
West Ham . . . . 
Other urban districts 

Total 

232,867 
204,903 
345,604 

240,776 
267,358 
575,864 

Rural districts 
West Ham . . . . 
Other urban districts 

Total 783,374 1,083,998 

7. (Data from Agricultural Statistics for 1905, Cd. 3061, 1906.) The 
following statement shows the monthly average prices of eggs in Great 
Britain in 1905, as compiled from the weekly returns of market prices for 
first and second quality British eggs, per 120 :— 

Month. First 
Quality. 

Second 
Quality. 

s. d. s. d. 
January 13 0 11 0 
February 11 0 9 0 
March . . . . 8 0 6 0 
April . . . . 7 6 6 6 
May . . . . 8 0 7 6 
June . . . . 8 6 8 0 
July . . . . 9 6 8 6 
August . . . . 11 0 10 0 
September 11 6 10 6 
October . . . . 14 0 12 6 
November 18 0 16 0 
December 17 6 15 0 

Mean for year 11 54 10 01 

What would have been the mean price for the year in each case if the whole-
sale prices had been recorded in the same way as retail prices, i.e. at so many 
eggs per shilling ? State your answer in thp form of the equivalent price per 
120, and obtain it in the shortest way by taking the harmonic mean of the 
above prices (cf. § 27). 

8. Supposing the frequencies of values 0 , 1 , 2, . . . of a variable to be 
given by the terms of the binomial series 

n(» - 1) . ., 
qn, n.qn-Kp, —j-j," -P"' 

where p + q = 1, find the mean. 



CHAPTER VIII. 

MEASURES OE DISPERSION, ETC. 

1. Inadequacy of the range as a measure of dispersion—2-13. The standard 
deviation: its definition, calculation, and properties—14-19. The 
mean deviation: its definition, calculation, and properties—20-24. The 
quartile deviation or semi-interquartile r&nge—25. Measures of 
relative dispersion—26. Measures of asymmetry or skewness—27-30. 
The method of grades or percentiles. 

1. THE simplest possible measure of the dispersion of a series of 
values of a variable is the actual range, i.e. the difference between 
the greatest and least values observed. While this is frequently 
quoted, it is as a rule the worst of all possible measures for any 
serious purpose. There are seldom real upper and lower limits 
to the possible values of the variable, very large or very small 
values being only more or less infrequent: the range is therefore 
subject to meaningless fluctuations of considerable magnitude 
according as values of greater or less infrequency happen to 
have been actually observed. Note, for instance, the figures of 
Table IX., Chap. VI. p. 95, showing the frequency distributions of 
weights of adult males in the several parts of the United King-
dom. In Wales, one individual was observed with a weight of 
over 280 lbs., the next heaviest being under 260 lbs. The 
addition of the one very exceptional individual has increased the 
range by some 30 lbs., or about one-fifth. A measure subject to 
erratic alterations by casual influences in this way is clearly not 
of much use for comparative purposes. Moreover, the measure 
takes no account of the form of the distribution within the limits 
of the range ; it might well happen that, of two distributions 
covering precisely the same range of variation, the one showed 
the observations for the most part closely clustered round the 
average, while the other exhibited an almost even distribution of 
frequency over the whole range. Clearly we should not regard 
two such distributions as exhibiting the same dispersion, though 
they exhibit the same range. Some sort of measure of dispersion 
is therefore required, based, like the averages discussed in the last 
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chapter, on all the observations made, so that no single observation 
can have an unduly preponderant effect on its magnitude ; indeed, 
the measure should possess all the properties laid down as desir-
able for an average in § 4 of Chap. VII. There are three such 
measures in common use—the standard deviation, the mean 
deviation, and the quartile deviation or semi-interquartile range, 
of which the first is the most important. 

2. The Standard Deviation.—The standard deviation is the 
square root of the arithmetic mean of the squares of all deviations, 
deviations being measured from the arithmetic mean of the 
observations. If the standard deviation be denoted by <r, and a 
deviation from the arithmetic mean by x, as in the last chapter, 
then the standard deviation is given by the equation 

^ = . . . . (1) 

To square all the deviations may seem at first sight an artificial 
procedure, but it must be remembered that it would be useless to 
take the mere sum of the deviations, in order to obtain a measure 
of dispersion, since this sum is necessarily zero if deviations be 
taken from the mean. In order to obtain some quantity that 
shall vary with the dispersion it is necessary to average the 
deviations by a process that treats them as if they were all of the 
same sign, and squaring is the simplest process for eliminating 
signs which leads to results of algebraical convenience. 

3. A quantity analogous to the standard deviation may bo 
defined in more general terms. Let A be any arbitrary value of 
X, and let £ (as in Chap. VII. § 8) denote the deviation of X 
from A ; i.e. let 

i=X-A. 
Then we may define the root-mean-square deviation s from the 
origin A by the equation 

= ( 2 ) 

In terms of this definition the standard deviation is the root-
mean-square deviation from the mean. There is a very simple 
relation between the standard deviation and the root-mean-square 
deviation from any other origin. Let 

M-A=d (3) 
so that £=x + d. 
Then £2 = xs> + 2 x.d + d2, 

2(f2) = + 2d.2(x) + N.d*. 
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But the sum of the deviations from the mean is zero, therefore 
the second term vanishes, and accordingly 

S2 = (r2 + ^2. . . . (4) 

Hence the root-mean-square deviation is least when deviations 
are measured from the mean, i.e. the standard deviation is the least 
possible root-mean-square deviation. 

2(£2), or 2 ( f - P ) if we are dealing with a grouped distribution 
and / is the frequency of is sometimes termed the second moment 
of the distribution about A, just as 2 ( 0 or 2(/.£) is termed 
the first moment (cf. Chap. VII. § 8): we shall not make use 
of the term in the present work. Generally, 2(/•£") is termed 
the mth moment. 

4. If cr and d are the two sides of a right-angled triangle, s is 

a 

F i g . 25. 

the hypotenuse. If, then, MH be the vertical through the 
mean of a frequency-distribution (fig. 25), and MS be set off 
equal to the standard deviation (on the same scale in which the 
variable X is plotted along the base), SA will be the root-mean-
square deviation from the point A. This construction gives a 
concrete idea of the way in which the root-mean-square deviation 
depends on the origin from which deviations are measured. It 
will be seen that for small values of d the difference of s from cr 
will be very minute, since A will lie very nearly on the circle 
drawn through M with centre S and radius SM: slight errors 
in the mean due to approximations in calculation will not, there-
fore, appreciably affect the value of the standard deviation. 

5. If we have to deal with relatively few, say thirty or forty, 
ungrouped observations, the method of calculating the standard 
deviation is perfectly straightforward. It is illustrated by the 
figures given below for the estimated average earnings of 
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agricultural labourers in 38 rural unions. The values (earnings) 
are first of all totalled and the total divided by IF to give the 
arithmetic mean M, viz. 15s. ll|-§d., or 15s. l id . to the nearest 
penny. The earnings being estimates, it is not necessary to take 
the average to any higher degree of accuracy. Having found 
the mean, the difference of each observation from the mean is 
next written down as in col. 3, one penny being taken as the 
unit : the signs are not entered, as they are not wanted, but the 
work should be checked by totalling the positive and negative 
differences separately. [The positive total is 300 and the 
negative 290, thus checking the value for the mean, viz. 15s. 
l i d . + 10/38.] 

Finally, each difference is squared, and the squares entered in 
col. 4,—tables of squares are useful for such work if any of the 
differences to be squared are large (see list of Tables, p. 356). 
The sum of the squares is 16,018. Treating the value taken for 
the mean as sensibly accurate, we have— 

^ 1 ^ = 4 2 1 - 5 OO 
<r = 20'5d. 

If we wish to be more precise we can reduce to the true mean 
by the use of equation (4), as follows :— 

j 2 = 1 6 ^ 8 = 4 2 1 . 5 2 6 3 
38 

d= ^ = 0-2632: <22 = 0'0693 38 
Hence o-2 = s2 - d2 = 421-4570 

<r= 20-52M 

Evidently this reduction, in the given case, is unnecessary, 
illustrating the fact mentioned at the end of § 4, that small 
errors in the mean have little effect on the value found for the 
standard deviation. The first value is correct within a very 
small fraction of a penny. 
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CALCULATION OF THE STANDARD DEVIATION: Example i . — C a l c u l a t i o n of 
Mean and Standard Deviation for a Short Series of Observations un-
grouped. Estimated Average Weekly Earnings of Agricultural Labourers 
in Thirty-eight Rural Onions, in 1892-3. (W. Little : Labour Com-
mission; Report, vol. v., parti . , 1894.) 

1. 

Union. 

2. 
Earnings 
(Shillings 

and Pence). 

3. 

Difference 
| (Pence). 

4. 

(Difference)2 

I2-

1. Glendale . . . . 
2. Wigton . . . . 
3. Garstang . . . . 
4. Belper . . . . 
5. Nantwich . . . . 
6. Atcham . . . . 
7. Driffield . . . . 
8. Uttoxeter . . . . 
9. Wetherby . . . . 

10. Easingwold 
11. Southwell . . . . 
12. Hollingbourn 
13. Melton Mowbray 
14. Truro . . . . 
15. Godstone . . . . 
16. Louth . . . . 
17. Brixworth . . . . 
18. Crediton . . . . 
19. Holbeach . . . . 
20. Maldon . . . . 
21. Monmouth 
22. StNeots . . . . 
23. Swaffham . . . . 
24. Thakeham. 
25. Thame . . . . 
26. Thingoe . . . . 
27. Basingstoke 
28. Cirencester . . . 
29. N.Witchford . 
30. Pewsey . . . . 
31. Bromyard . . . . 
32. Wantage . . . . 
33. Stratford-on-Avon 
34. Dorchester 
35. Woburn . . . . 
36. Buntingford 
37. Pershore . . . . 
38. Langport . . . . 

Total 

s. d. 
20 9 
20 3 
1 9 8 
18 6 
1 7 8 
1 7 6 
1 7 1 
1 7 0 
1 7 0 
16 11 
16 6 
1 6 4 
1 6 3 
1 6 3 
16 0 
16 0 
1 5 9 
1 5 8 
1 5 6 
1 5 6 
1 5 4 
1 5 3 
1 5 0 
1 5 0 
1 5 0 
1 5 0 
1 5 0 
1 5 0 
1 4 1 0 
1 4 9 
1 4 9 
1 4 9 
1 4 7 
1 4 6 
1 4 6 
1 4 4 
1 3 6 
12 6 

58 
52 
45 
31 
21 

*19 
14 
13 
13 
12 

7 
6 
4 
4 
1 
1 
2 
3 
6 
5 
7 
8 

11 
11 
11 
11 
11 
11 
13 
14 
14 
14 
16 
17 
17 
19 
29 
41 

3,364 
2,704 
2,025 

961 
441 
361 
196 
169 
169 
144 

49 
25 
16 
16 

1 
1 
4 
9 

25 
25 
49 
64 

121 
121 
121 
121 
121 
121 
169 
196 
196 
196 
256 
289 
289 
361 
841 

1,681 

1. Glendale . . . . 
2. Wigton . . . . 
3. Garstang . . . . 
4. Belper . . . . 
5. Nantwich . . . . 
6. Atcham . . . . 
7. Driffield . . . . 
8. Uttoxeter . . . . 
9. Wetherby . . . . 

10. Easingwold 
11. Southwell . . . . 
12. Hollingbourn 
13. Melton Mowbray 
14. Truro . . . . 
15. Godstone . . . . 
16. Louth . . . . 
17. Brixworth . . . . 
18. Crediton . . . . 
19. Holbeach . . . . 
20. Maldon . . . . 
21. Monmouth 
22. StNeots . . . . 
23. Swaffham . . . . 
24. Thakeham. 
25. Thame . . . . 
26. Thingoe . . . . 
27. Basingstoke 
28. Cirencester . . . 
29. N.Witchford . 
30. Pewsey . . . . 
31. Bromyard . . . . 
32. Wantage . . . . 
33. Stratford-on-Avon 
34. Dorchester 
35. Woburn . . . . 
36. Buntingford 
37. Pershore . . . . 
38. Langport . . . . 

Total 605 8 + 300 
- 2 9 0 | 16,018 
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The figures dealt with in this illustration are estimates of the 
weekly earnings of the agricultural labourers, i.e. they include 
allowances for gifts in kind, such as coal, potatoes, cider, etc. The 
estimated weekly money wages are, however, also given in the 
same Report, and we are thus enabled to make an interesting 
comparison of the dispersions of the two. I t might be expected 
that earnings would vary less than wages, as his earnings and not 
the mere money wages he receives are the important matter to 
the labourer, and as a fact we find 

Standard deviation of weekly earnings . . 20'5d. 
,, ,, „ wages . 26'0d. 

The arithmetic mean wage is 13s. 5d. 
6. If we have to deal with a grouped frequency-distribution, 

the same artifices and approximations are used as in the calculation 
of the mean (Chap. VII. §§ 8, 9, 10). The mid-value of one of 
the class-intervals is chosen as the arbitrary origin A from which 
to measure the deviations the class-interval is treated as a 
unit throughout the arithmetic, and all the observations within 
any one class-interval are treated as if they were identical with 
the mid-value of the interval. If, as before, we denote the 
frequency in any one interval by / , these f observations con-
tribute /£2 to the sum of the squares of deviations and we 
have— 

The standard deviation is then calculated from equation (4). 
7. The whole of the work proceeds naturally as an extension of 

that necessary for calculating the mean, and we accordingly use 
the same illustrations as in the last chapter. Thus in Example 
ii. below, cols. 1, 2, 3, and 4 are the same as those we have already 
given in Example i. of Chap. VII. for the calculation of the mean. 
Column 5 gives the figures necessary for calculating the standard 
deviation, and is derived directly from col. 4 by multiplying the 
figures of that column again by Thus 90 x 5 = 450, 192 x 4 = 
768, and so on. The work is therefore done very rapidly. The 
remaining steps of the arithmetic are given below the table ; the 
student must be careful to remember the final conversion, if 
necessary, from the class-interval as unit to the natural unit 
of measurement. In this case the value found is 2-48 class-
intervals, and the class-interval being half a unit, that is T24 
per cent. 



VIII.—MEASURES OF DISPERSION, ETC. 139 

CALCULATION o r THE STANDARD DEVIATION: Example i i . — C a l c u l a t i o n of 
the Standard Deviation of the Percentages of the Population in receipt of 
Relief., in addition to the Mean, from the figures of Table VIII. of 
Chap. VI. [Cf. the work for the mean alone, p. 111.) 

(1) 
Percentage 
in receipt 
of Relief. 

(2) 

Frequency. 
/ . 

(3) 
Deviation 

from Valued. 
I-

(4) 

Product. 
A-

(5) 

Product. 
A2-

1 18 - 5 90 450 
1-5 48 - 4 192 768 
2 72 - 3 216 648 
2-5 . 89 - 2 178 356 
3 100 - 1 100 100 

3-5 90 0 - 7 7 6 — 

4 75 + 1 75 75 
4-5 60 + 2 120 240 
5 40 + 3 120 360 
5-5 21 + 4 84 336 
6 11 + 5 55 275 
6-5 5 + 6 30 180 
7 1 + 7 7 49 
7-5 1 + 8 8 64 
8 + 9 — — 

8-5 " i + 10 10 100 

Total 632 — + 509 4001 

From previous work, p. I l l , M - A—d= -0 '4225 class-intervals. 
4001 

N - 6 3 2 ~ 6 3 3 0 7 ' 

<t2=6'3307 - ("4225)2 

= 6'1522. 

. •. cr = 2'48 intervals = 1 '24 per cent. 

To illustrate again the value of the standard deviation for 
purposes of comparison, figures are given below showing the 
means and standard deviations of similar distributions for a series 
of years from 1850. It will be seen that not only did the mean 
decrease during the period, but the standard deviation decreased 
to an equally marked extent, having been halved between 
1850 and 1891 ; the average was lowered, and at the same time 
the percentages of the population in receipt of relief clustered 
much more closely round the lower average. 
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iteans and Standard, Deviations of the Distributions of Pauperism (Percentage 
of the Population in receipt of Poor-law Relief) in the Unions of England 
and Wales since 1850. (From Yule, Jour. Roy. Stat. Soc., vol. lix.. 
1896, figures slightly amended.) 

Year. 

Percentage of the Population 
in receipt of Relief. 

Year. 

Arithmetic 
Mean. 

Standard 
Deviation. 

1850 6-51 2'50 
1860 5-20 2'07 
1870 5-45 2-02 
1881 3'68 1 36 
1891 3'29 1-24 

8. In the table given on p. 141 (Example iii.), the calculation of 
the standard deviation is similarly shown for the distribution of 
the statures of adult males in the British Isles, the work being 
continued from the stage which it reached for the calculation of 
the mean in Example ii. of Chap. VII. The steps of the arith-
metic hardly call for further explanation, but it may be noted that 
the class-interval being a unit in this case, no conversion of 
the standard deviation from class-intervals to units is required. 

9. The student must remember, as in the case of the calculation 
of the mean, that the treatment of all values within each class-
interval as if they were identical with the mid-value of the interval 
is an approximation and no more (cf. Chap. VII. § 11), though, 
for a distribution of the symmetrical or moderately asymmetrical 
type with a class-interval not greater than one-twentieth or so 
of the range, the approximation may be a very close one. But 
while the value of the arithmetic mean may be either increased 
or decreased by grouping, in the case of distributions which are 
not more than slightly asymmetrical, the standard deviation of 
such distributions tends to be increased, and the increase is the 
greater the cruder the grouping. We give an approximate 
correction for this effect later (Chap. XI. § 4). The student is 
recommended to test for himself the effect of grouping in two 
or three cases. 

10. It is a useful empirical rule to remember that a range of 
six times the standard deviation usually includes 99 per cent, or 
more of all the observations in the case of distributions of the 
symmetrical or moderately asymmetrical type. Thus in Example 
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CALCULATION OF THE STANDARD DEVIATION : Example i i i . — C a l c u l a t i o n 
of the Standard Deviation of Stature of Male Adults in the British Isles 
from the figures of Table VI., p. 88. (Cf. p. 112 for the calculation of 
mean alone.) 

(1) 

Height. 
Inches. 

(2) 

Frequency. 
/ • 

(3) 
Deviation 

from 
Value A. 

I-

(4) 

Product. 
M 

(5) 

Product 
/ • I2-

57- 2 - 1 0 20 200 
58- 4 - 9 36 324 
59- 14 - 8 112 896 
60- 41 - 7 287 2,009 
61- 83 - 6 498 2,988 
62- 169 - 5 846 4,225 
63- 394 - 4 1576 6,304 
64- 669 - 3 2007 6,021 
65- 990 - 2 1980 3,960 
66- 1223 - 1 1223 1,223 

67- 1329 0 - 8 5 8 4 — 

68- 1230 + 1 1230 1,230 
69- 1063 + 2 2126 4,252 
70- 646 + 3 1938 5,814 
71- 392 + 4 1568 6,272 
72- 202 '+ 5 1010 5,050 
73- 79 + 6 474 2,844 
74- 32 + 7 224 1,568 
75- 16 + 8 128 1,024 
76- 5 + 9 45 405 
77- 2 + 10 20 200 

Total 8585 — + 8763 56,809 

From previous work, M-A =d= + '0209 class-intervals or inches. 
56809 

o 2 = 6 '6172 - ('0209)2 

= 6-6168. 
,*. <r=2"57 class-intervals or inches. 

ii. the standard deviation is T24 per cent.; six times this is 7'44 
per cent., and a range from 0'75 to 8*19 per cent, includes all 
but one observation out of 632. In Example iii. the standard 
deviation is 2-57 in., six times this is 15'42 in., and a range from, 
say, 60 in. to 75'4 in. includes all but some 37 out of 8585 
individuals, i.e. about 99'6 per cent. This rough rule serves to 



142 THEORY OF STATISTICS. 

give a more definite and concrete meaning to the standard 
deviation, and also to check arithmetical work to some extent— 
sufficiently, that is to say, to guard against very gross blunders. 
I t must not be expected to hold for short series of observations : 
in Example i., for instance, the actual range is a good deal less 
than six times the standard deviation. 

11. The standard deviation is the measure of dispersion which 
it is most easy to treat by algebraical methods, resembling in this 
respect the arithmetic mean amongst measures of position. The 
majority of illustrations of its treatment must be postponed to a 
later stage (Chap. XI.), but the work of § 3 has already served as 
one example, and we may take another by continuing the work of 
§13 (5), Chap. VII. In that section it was shown that if a series 
of observations of which the mean is M consist of two component 
series, of which the means are Mx and M„ respectively, 

N.M=NvM1 + F2M2, 
TVJ and iV2 being the numbers of observations in the two com-
ponent series, and N = + N2 the number in the entire series. 
Similarly, the standard deviation cr of the whole series may be 
expressed in terms of the standard deviations o-j and cr2 of the 
components and their respective means. Let 

M 1 - M = d 1 

J/2- M—dv 

Then the mean-square deviations of the component series about 
the mean v)/are, by equation (4), o-j2 + d a n d cr2

2 + c?2
2 x-espec-

tively. Therefore, for the whole series, 
N . o - ^ F ^ + d ^ + N ^ + d*) . . (5) 

If the numbers of observations in the component series be equal 
and the means be coincident, we have as a special case— 

o-2 = |(cr1
2 + o-2

2) . . . . (6) 

so that in this case the square of the standard deviation of the 
whole series is the arithmetic mean of the squares of the standard 
deviations of its components. 

It is evident that the form of the relation (5) is quite general : 
if a series of observations consists of r component series with 
standard deviations <rv tr2, . . . cr,, and means diverging from the 
general mean of the whole series by dv dv . . . d„ the standard 
deviation cr of the whole series is given (using m to denote any 
subscript) by the equation— 

N.<r* = 3,(Nm.<rJ) + Z(Nm.dJ) . . . (7) 
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Again, as in § 13 of Chap. VII., it is convenient to note, for the 
checking of arithmetic, that if the same arbitrary origin be used 
for the calculation of the standard deviations in a number of 
component distributions we must have 

2(/.£2) = 2(/1.£1
2) + S(/2.£2

2) + + 2 ( / , £ 2 ) . (8) 
12. As another useful illustration, let us find the standard 

deviation of the first N natural numbers. The mean in this case 
is evidently (Ar+ l)/2. Further, as is shown in any elementary 
Algebra, the sum of the squares of the first N natural numbers is 

jy(AT+l)(2Ar+l) 
6 

The standard deviation cr is therefore given by the equation— 
= l)(2Ar+ 1) - i ( V + l)2, 

that is, 0-2 = ^ ( ^ 2 - 1 ) . . . . . (9) 
This result is of service if the relative merit of, or the relative 
intensity of some character in, the different individuals of a series 
is recorded not by means of measurements, e.g. marks awarded on 
some system of examination, but merely by means of their 
respective positions when ranked in order as regards the character, 
in the same way as boys are numbered in a class. With N 
individuals there are always N ranks, as they are termed, 
whatever the character, and the standard deviation is therefore 
always that given by equation (9). 

Another useful result follows at once from equation (9), namely, 
the standard deviation of a frequency-distribution in which all 
values of X within a range ± Ij2 on either side of the mean are 
eaually frequent, values outside these limits not occurring, so that 
the frequency-distribution may be represented by a rectangle. The 
base I may be supposed divided into a very large number N of equal 
elements, and the standard deviation reduces to that of the first N 
natural numbers when N is made indefinitely large. The single 
unit then becomes negligible compared with N, and consequently 

. . . . ( i o ) 

13. It will be seen from the preceding paragraphs that the 
standard deviation possesses the majority at least of the properties 
which are desirable in a measure of dispersion as in an average 
(Chap. VII. § 4). It is rigidly defined; it is based on all the 
observations made ; it is calculated Tvith reasonable ease ; it lends 
itself readily to algebraical treatment; and we may add, though the 
student will have to take the statement on trust for the present, 
that it is, as a rule, the measure least affected by fluctuations of 
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sampling. On the other hand, it may be said that its general 
nature is not very readily comprehended, and that the process of 
squaring deviations and then taking the square root of the mean 
seems a little involved. The student will, however, soon surmount 
this feeling after a little practice in the calculation and use of the 
constant, and will realise, as he advances further, the advantages 
that it possesses. Such root-mean-square quantities, it may be 
added, frequently occur in other branches of science. The 
standard deviation should always be used as the measure of disper-
sion, unless there is some very definite reason for preferring another 
measure, just as the arithmetic mean should bo used as the measure 
of position. It may be added here that the student will meet with 
the standard deviation under many different names, of which we 
have adopted the most recent (due to Pearson, ref. 2): many of 
the earlier names are hardly adapted to general use, as they bear 
evidence of their derivation from the theory of errors of observation. 
Thus the terms "mean error" (Gauss), "error of mean square" 
(Airy), and " mean square error " have all been used in the same 
sense. The square of the standard deviation, and also twice the 
square, have been termed the "fluctuation" (Edgeworth): the 
standard deviation multiplied by the square root of 2, the 
" modulus" (Airy),—the student will see later the reason for 
the adoption of the factor. The reciprocal of the modulus lias 
been termed the "precision" (Lexis). 

14. The Mean Deviation.—The mean deviation of a series of 
values of a variable is the arithmetic mean of their deviations 
from some average, taken without regard to their sign. The 
deviations may be measured either from the arithmetic mean or 
from the median, but the latter is the natural origin to use. .J ust 
as the root-mean-square deviation is least when deviations are 
measured from the arithmetic mean, so the mean deviation is 
least when deviations are measured from the median. For 
suppose that, for some origin exceeded by m values out of N, the 
mean deviation has a value A. Let the origin be displaced by 
an amount c until it is just exceeded by m - 1 of the values only, 
i.e. until it coincides with the mth value from the upper end of 
the series. By this displacement of the origin the sum of devia-
tions in excess of the mean is reduced by rn.c, while the sum of 
deviations in defect of the mean is increased by (N-m)c. The 
new mean deviation is therefore 

(N - m)c - mc 
A + N 

= A + ^ ( N - 2m)c. 
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The new mean deviation is accordingly less than the old so long as 

That is to say, if N be even, the mean deviation is constant for 
all origins within the range between the iV/2th and the (JV/2 + l)th 
observations, and this value is the least: if N be odd, the mean 
deviation is lowest when the origin coincides with the ( N + l)/2th 
observation. The mean deviation is therefore a minimum when 
deviations are measured from the median or, if the latter be 
indeterminate, from an origin within the range in which it lies. 

15. The calculation of the mean deviation either from the mean 
or from the median for a series of ungrouped observations is very 
simple. Take the figures of Example i. (p. 137) as an illustration. 
We have already found the mean (15s. l i d . to the nearest penny), 
and the deviations from the mean are written clown in column 3. 
Adding up this column without respect to the sign of the devi-
ations we find a total of 590. The mean deviation from the mean 
is therefore 590/38 = 15-53d. The mean deviation from the 
median is calculated in precisely the same way, but the median 
replaces the mean as the origin from which deviations are measured. 
The median is 15s. 6d. The deviations in pence run 63, 57, 50, 
36, and so on; their sum is 570; and, accordingly, the mean 
deviation from the median is 15d. exactly. 

16. In the case of a grouped frequency-distribution, the sum 
of deviations should be calculated first from the centre of the 
class-interval in which the mean (or median) lies, and then 
reduced to the mean as origin. Thus in the case of Example ii. 
the mean is 3'29 per cent, and lies in the class-interval centring 
round 3 5 per cent. We have already found that the sum of 
deviations in defect of 3'5 per cent, is 776, and of deviations in 
excess 509 : total (without regard to sign) 1285,—the unit of 
measurement being, of course, as it is necessary to remember, the 
class-interval. If the number of observations below the mean is 
A^ and above the mean JV2, and M - A = d, as before, we have to 
add Nvd to the sum found and subtract N2.d. In the present 
case Ar

1 = 327 and N2 = 305, while ( i = - 0 ' 4 2 class-intervals, 
therefore 

d(N\ - Ay = - 0-42 x 22 = - 9-2, 

and the sum of deviations from the mean is 1285 - 9-2 = 1275-8. 
Hence the mean deviation from the mean is 1275-8/632 = 2'019 
class-intervals, or T01 per cent. 

17. The mean deviation from the median should be found in 
precisely similar fashion, but the mid-value of the interval in 
which the median (instead of the mean) lies should, for con-

10 
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venience, be taken as origin. Thus in Example ii. the median is 
(Chap. VII. § 15) 3-195 per cent. Hence 3-0 per cent, should be 
taken as the origin, d= + 039 intervals, A j = 327, JV2 = 305. The 
deviation-sum with 3'0 as origin is found to be 1263, and the 
correction is + 0 39 x 2 2 = + 8 ' 6 . Hence the mean deviation 
from the median is 2'012 intervals, or again T01 per cent. The 
value is really smaller than that of the mean deviation from the 
arithmetic mean, but the difference is too slight to affect the 
second place of decimals. 

It should be noted that, as in the case of the standard deviation, 
this method of calculation implies the assumption that all the 
values of X within any one class-interval may be treated as if 
they were the mid-value of that interval. This is, of course, an 
approximation, but as a rule gives results of amply sufficient 
accuracy for practice if the class-interval be kept reasonably small 
(cf. again Chap. VI. § 5). We have left it as an exercise to the 
student to find the correction to be applied if the values in each 
interval are treated as if they were evenly distributed over the 
interval, instead of concentrated at its centre (Question 7). 

18. The mean deviation, it will be seen, can be calculated rather 
more rapidly than the standard deviation, though in the case of a 
grouped distribution the difference in ease of calculation is not 
great. It is not, on the other hand, a convenient magnitude for 
algebraical treatment; for example, the mean deviation of a dis-
tribution obtained by combining several others cannot in general 
be expressed in terms of the mean deviations of the component 
distributions, but depends upon their forms. As a rule, it is more 
affected by fluctuations of sampling than is the standard deviation, 
but may be less affected if large and erratic deviations lying 
somewhat beyond the bulk of the distribution are liable to occur. 
This may happen, for example, in some forms of experimental 
work, and in such cases the use of the mean deviation may be 
slightly preferable to that of the standard deviation. 

19. It is a useful empirical rule for the student to remember 
that for symmetrical or only moderately asymmetrical distri-
butions, approaching the ideal forms of figs. 5 and 9, the mean 
deviation is usually very nearly four-fifths of the standard devia-
tion. Thus for the distribution of pauperism we have 

mean deviation T 0 1 _ ^ i g j 
standard deviation T24 

In the case of the distribution of male statures in the British 
Isles, Example iii., the ratio found is 0'80. For a short series of 
observations like the wage statistics of Example i. a regular result 
could hardly be expected: the actual ratio is 15'0/20'5 = 0'73. 
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We pointed out in § 10 that in distributions of the simple forms 
referred to, a range of six times the standard deviation contains 
over 99 per cent, of all the observations. If the mean deviation 
be employed as the measure of dispersion, we must substitute a 
range of 7 j times this measure. 

20. The Quartile Deviation or Semi-interquartile Range.—If a 
value Q1 of the variable be determined of such magnitude that 
one-quarter of all the values observed are less than Q1 and three-
quarters greater, then Q1 is termed the lower quartile. Similarly, 
if a value Qs be determined such that three-quarters of all the 
values observed are less than Q3 and one-quarter only greater, 
then Qg is termed the upper quartile. The two quartiles and the 
median divide the observed values of the variable into four 
classes of equal frequency. If Mi be the value of the median, in 
a symmetrical distribution 

Mi - Q1 = Q3 - Mi, 
and the difference may be taken as a measure of dispersion. But 
as no distribution is rigidly symmetrical, it is usual to take as the 
measure 

and Q is termed the quartile deviation, or better, the semi-
interquartile range—it is not a measure of the deviation from 
any particular average: the old name probable error should be 
confined to the theory of sampling (Chap. XV. § 17). 

21. In the case of a short series of ungrouped observations 
the quartiles are determined, like the median, by inspection. 
In the wage statistics of Example i., for instance, there are 
38 observations, and 38/4 = 9 '5: What is the lower quartile? 
The student may be tempted to take it halfway between the 
ninth and tenth observations from the bottom of the l ist ; 
but this would be wrong, for then there would be nine 
observations only below the value chosen instead of 9-5. The 
quartile must be taken as given by the tenth observation 
itself, which may be regarded as divided by the quartile, and 
falling half above it and half below. Therefore 

Lower quartile (^=148. lOd. 
Upper quartile @3=16s. l id . 

and Q = QlZ-Qi — l2-5d. 

22. Tn the case of a grouped distribution, the quartiles, like 
the median, are determined by simple arithmetical or by 
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graphical interpolation (cf. Chap. VII. §§15, 16). Thus for the 
distribution of pauperism, Example ii., we have 

632 + 4=158 
Total frequency under 2-25 per cent. = 138 

Difference = 20 
Frequency in interval 2'25 - 2'75 = 89 

20 
Whence Q1 = 2-25 + ^ x 0 ' 5 = 2-362 per cent. 

Similarly we find Qs =4'130 „ 

Hence Q = = 0-884 
It is left to the student to check the value by graphical 
interpolation. 

23. For distributions approaching the ideal forms of figs. 
5 and 9, the semi-interquartile range is usually about two-thirds 
of the standard deviation. Tims for Example ii. we find 

^ 0 j 8 8 4 
cr 1-24 

The distribution of statures, Example iii., gives the ratio 0'68. 
The short series of wage statistics in Example i. could not be 
expected to give a result in very strict conformity with the 
rule, but the actual ratio, viz. 0-61, does not diverge greatly. 
It follows from this ratio that a range of nine times the semi-
interquartile range, approximately, is required to cover the same 
proportion of the total frequency (99 per cent, or more) as a range 
of six times the standard deviation. 

24. Of the three measures of dispersion, the semi-interquartile 
range has the most clear and simple meaning. It is calculated, 
like the median, with great ease, and the quartiles may be found, 
if necessary, by measuring two individuals only. If, e.g., the 
dispersion as well as the average stature of a group of men 
is required to be determined with the least possible expenditure 
of time, they may be simply ranked in order of height, and the 
three men picked out for measurement who stand in the centre 
and one-quarter from either end of the rank. This measure of 
dispersion may also be useful as a makeshift if the calculation 
of the standard deviation has been rendered difficult or impossible 
owing to the employment of an irregular classification of the 
frequency or of an indefinite terminal class. Such uses are, 
however, a little exceptional, and, generally speaking, the 
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semi-interquartile range as a measure of dispersion is not to be 
recommended, unless simplicity of meaning is of primary im-
portance, owing to the lack of algebraical convenience which 
it shares with the median. Further, it is obvious that the 
quartile, like the median, may become indeterminate, and that 
the use of this measure of dispersion is undesirable in cases of 
discontinuous variation : the student should refer again to the 
discussion of the similar disadvantage in the case of the median, 
Chap. VII. § 14. It has, however, been largely used in the past, 
particularly for anthropometric work. 

25. Measures of Relative Dispersion.—As was pointed out in 
Chapter VII. § 26, if relative size is regarded as influencing not only 
the average, but also deviations from the average, the geometric 
mean seems the natural form of average to use, and deviations 
should be measured by their ratios to the geometric mean. As 
already stated, however, this method of measuring deviations, with 
its accompanying employment of the geometric mean, has never 
come into general use. It is a much more simple matter to allow 
for the influence of size by taking the ratio of the measure of 
absolute dispersion (e.g. standard deviation, mean deviation, or 
quartile deviation) to the average (mean or median) from which 
the deviations were measured. Pearson has termed the quantity 

i.e. the percentage ratio of the standard deviation to the arithmetic 
mean, the coefficient of variation (ref. 6), and has used it, for 
example, in comparing the relative variations of corresponding 
organs or characters in the two sexes: the ratio of the quartile 
deviation to the median has also been suggested (Verschaeffelt, 
ref. 7). Such a measure of relative dispersion is evidently a mere 
number, and its magnitude is independent of the units of 
measurement employed. 

26. Measures of Asymmetry or Skewness.—If we have to compare 
a series of distributions of varying degrees of asymmetry, or skew-
ness, as Pearson has termed it, some numerical measure of this 
character is desirable. Such a measure of skewness should 
obviously be independent of the units in which we measure the 
variable—e.g. the skewness of the distribution of the weights of a 
given set of men should not be dependent on our choice of the 
pound, the stone, or the kilogramme as the unit of weight—and 
the measure should accordingly be a mere number. Thus the 
difference between the deviations of the two quartiles on either 
side of the median indicates the existence of skewness, but to 
measure the degree of skewness we should take the ratio of this 
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difference to some quantity of the same dimensions, e.g. the semi-
interquartile range. Our measure would then be, taking the 
skewness to be positive if the longer tail of the distribution runs 
in the direction of high values of X, 

skewness Mi) - (Mi - Ql) _ fr + Q- 2Mi 
y q 

This would not be a bad measure if we were using the quartile 
deviation as a measure of dispersion : its lowest value is zero, 
when the distribution is symmetrical; and while its highest possible 
value is 2, it would rarely in practice attain higher numerical 
values than ±1. A similar measure might be based on the mean 
deviations in excess and in defect of the mean. There is, however, 
only one generally recognised measure of skewness, and that is 
Pearson's measure (ref. 8)— 

, mean - mode . , . . skewness = =—^— ;—:— . . (12) standard deviation 

This is evidently zero for a symmetrical distribution, in whicli 
mode and mean coincide. No upper limit to the ratio is apparent 
from the formula, but, as a fact, the value does not exceed unity for 
frequency-distributions resembling generally the ideal distributions 
of fig. 9. As the mode is a difficult form of average to determine 
by elementary methods, it may be noted that the numerator of the 
above fraction may, in the case of frequency-distributions of the 
forms referred to, be replaced approximately by 3(mean - median), 
(cf. Chap. VII. §20). The measure (12) is much more sensitive 
than (11) for moderate degrees of asymmetry. 

27. The Method of Percentiles.—We may conclude this chapter 
by describing briefly a method that has been largely used in the 
past in lieu of the methods dealt with in Chapters VI. and VII., 
and the preceding paragraphs of this chapter, for summarising 
such statistics as we have been considering. If the values of the 
variable (variates, as they are sometimes termed) be ranged in 
order of magnitude, and a value P of the variable be determined 
such that a percentage p of the total frequency lies below it and 
100 -p above, then P is termed a percentile. If a series of per-
centiles be determined for short intervals, e.g. 5 per cent, or 10 
per cent., they suffice by themselves to show the general form 
of the distribution. This is Sir Francis Galton's method of 
percentiles. The deciles, or values of the variable which divide 
the total frequency into ten equal parts, form a natural and 
convenient series of percentiles to use. The fifth decile, or value 
of the variable which has 50 per cent, of the observed values 
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above it and 50 per cent, below, is the median : the two quartiles 
lie between the second and third and the seventh and eighth 
deciles respectively. 

28. The deciles, like the median and quartiles, may be 
determined either by arithmetical or by graphical interpolation, 
excluding the cases in which, like the former constants, they 
become indeterminate (cf. § 24). It is hardly necessary to give 
an illustration of the former process, as the method is precisely 
the same as for median and quartiles (Chap. VII. § 15, and above, 
§ 22). Fig. 26 shows, of course on a very much reduced scale, the 
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FIG. 26.—Curve showing the number of Districts of England and Wales in 
which the Pauperism on 1st January 1891 did not exceed any given per-
centage of the population (same data as Fig. 10, p. 92) : graphical 
determination of Deciles. 

curve used for obtaining the deciles by the graphical method in 
the case of the distribution of pauperism (Example ii. above). 
The figures of the original table are added up step by step from 
the top, so as to give the total frequency not exceeding the upper 
limit of each class-interval, and ordinates are then erected to a 
horizontal base to represent on some scale these integrated 
frequencies: a smooth curve is then drawn through the tops of 
the ordinates so obtained. This curve, as will be seen from the 
figure, rises slowly at first when the frequencies are small, then 
more rapidly as they increase, and finally turns over again and 
becomes quite flat as the frequencies tail off to zero. The deciles 
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may be readily obtained from such a curve by dividing the 
terminal ordinate into ten equal parts, and projecting the points 
so obtained horizontally across to the curve and then vertically 
down to the base. The construction is iudicated on the figure for 
the fourth decile, the value of which is approximately 2'88 per cent. 

29. The curve of fig. 26 may be drawn in a different way by 
taking a horizontal base divided into ten or a hundred equal 
parts (grades, as Sir Francis Galton has termed them), lud erecting 
at each point so obtained a vertical proportional to the cor-
responding percentile. This gives the curve of fig. 27, which was 
obtained by merely redrafting fig. 26. The curve is of so-called 

O 10 20 30 10 SO 60 70 80 00 100 

0 10 20 30 10 SO 60 70 80 90 JOO 
Grades 

Fig. 27.—The curve of Fig. 26 redrawn so as to give the Pauperism 
corresponding to each grade : Galton's " Ogive." 

ogive form. The ogive curve for the distribution of statures 
(Example iii.) is shown for comparison in fig. 28. It will be noticed 
that the ogive curve does not bring out the asymmetry of the 
distribution of pauperism nearly so clearly as the frequency-
polygon, fig. 10, p. 92. 

30. The method of percentiles has some advantages as a method 
of representation, as the meaning of the various percentiles is so 
simple and readily understood. An extension of the method to 
the treatment of non-measurable characters has also become of 
some importance. For example, the capacity of the different boys 
in a class as regards some school subject cannot be directly 
measured, but it may not be very difficult for the master to 
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arrange them in order of merit as regards this character: if the 
boys are then " numbered up " in order, the number of each boy, 
or his rank, serves as some sort of index to his capacity (cf. the 
remarks in § 12. It should be noted that rank in this sense is 
not quite the same as grade; if a boy is tenth, say, from the 
bottom in a class of a hundred his grade is 9'5, but the method 
is in principle the same with that of grades or peixentiles). 
The method of ranks, grades, or percentiles in such a case may 
be a very serviceable auxiliary, though, of course, it is better if 
possible to obtain a numerical measure. But if, in the case of a 
measurable character, the percentiles are used not merely as 
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Stature, corresponding to e&ch grade, 
for adult males in the British, /stes. 

FIG. 28.—Ogive Curve for Stature, same data as Fig. 6, p. 89. 

constants illustrative of certain aspects of the frequency-distribu-
tion, but entirely to replace the table giving the frequency-
distribution, serious inconvenience may be caused, as the 
application of other methods to the data is barred. Given the 
table showing the frequency-distribution, the reader can calculate 
not only the percentiles, but any form of average or measure of 
dispersion that has yet been proposed, to a sufficiently high 
degree of approximation. But given only the percentiles, or at 
least so few of them as the nine deciles, he cannot pass back to 
the frequency distribution, and thence to other constants, with any 
degree of accuracy. In all cases of published work, therefore, 
the figures of the frequency-distribution should be given ; they 
are absolutely fundamental. 
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EXERCISES. 

1. Verify the following from the data of Table VI., Chap. VI., continuing 
the work from the stage reached for Qu. 1, Chap. VII. 

Stature in Inches for Adult Males born in— 

England. Scotland. Wales. Ireland. 

Standard deviation . 2'56 2-50 2-35 2-17 
Mean deviation. 2-05 1-95 1-82 1-69 
Quartile deviation 1-78 1-56 1-46 1-35 
Mean deviation / standard 0-80 0-78 0-78 0-78 

deviation 
Quartile deviation/standard 0-69 0-62 0-62 0-62 

deviation 
Lower quartile . 65'55 66-92 * 65-06 66-39 
Upper ,, 69-10 70-04 6 7 9 8 69-10 

2. (Continuing from Qu. 2, Chap. VII.) Find the standard deviation, 
mean deviation, quartiles and quartile deviation (or semi-interquartile range) 
for the distribution of weights of adult males in the United Kingdom given in 
the last column of Table IX., Chap. VI. 

Compare the ratios of the mean and quartile deviations to the standard 
deviation with the ratios stated in §§ 19 and 23 to be usual. 

Find the value of the skewness (equation 12), using the approximate value 
of the mode. 

3. Using, or extending if necessary, your diagram for Question 4, Chap. VII., 
find the quartile values for houses assessed to inhabited house duty in 1885-6, 
from the data of Table IV., Chap. VI. 

Find also the 9th decile (the value exceeded by 10 per cent, of the houses 
only). 

4. Verify equation (9) by direct calculation of the standard deviation of the 
numbers 1 to 10. 

5. (Data from Sauerbeck, Jour. Roy. Stat. Soc., March 1909.) The 
following are the index-numbers (percentages) of prices of 45 commodities in 
1908 on their average prices in the years 1867-77:—40, 43, 43, 46, 46, 46, 
54, 56, 59, 62, 64, 64, 66, 66, 67, 67, 68, 68, 69, 69, 69, 71, 75, 75, 76, 76, 
78, 80, 82, 82, 82, 82, 82, 83, 84, 86, 88, 90, 90, 91, 91, 92, 95, 102, 127. 
Find the mea,n and standard deviation (1) without further grouping ; (2) 
grouping the numbers by fives (40-, 45-, 50-, etc.); (3) grouping by tens (40-, 
50-, 60-, etc.). 

6. (Continuing from Qu. 8, Chap. VII.) Supposing the frequencies of 
values 0, 1, 2, 3, . . . of a variable to be given by the terms of the binomial 
series 

.... 
where p + q—1, find the standard deviation. 

7. (Cf. the remarks at the end of § 17.) The sum of the deviations (with-
out regard to sign) about the centre of the class-interval containing the mean 
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(or median), in a grouped frequency-distribution, is found to be S. Find the 
correction to be applied to this sum, in order to reduce it to the mean (or 
median) as origin, on the assumption that the observations are evenly dis-
tributed over each class-interval. Take the number of observations below tho 
interval containing the mean (or median) to be n l t in that interval n.,, and 
above it n 3 ; and the distance of the mean (or median) from the arbitrary 
origin to be d. 

Show that the values of the mean deviation (from the mean and from the 
median respectively) for Example ii., found by the use of this formula, do not 
differ from the values found by the simpler method of §§ 16 and 17 in tho 
second place of decimals. 

8. (W. Scheibner, " Ueber Mittelwerthe," Bcrichtc der kgl. sdehsisehen 
Gesellscliaft d. Wissenscliaften, 1873, p. 564, cited by Fechner, ref. 2 of 
Chap. VII. : the second form of the relation is given by G. Duncker (Die 
Methode der Variationsstatistik ; Leipzig, 1899) as an empirical one.) Show 
that if deviations are small compared with the mean, so that (x/M)1 may bo 
neglected in comparison with x/M, we have approximately the relation 

where G is the geometric mean, M the arithmetic mean, and a the standard 
deviation : and consequently to the same degree of approximation M2- G2 = <r2. 

9. (Scheibner, loc. cit., Qu. 8.) Similarly, show that if deviations are small 
compared with the mean, we have approximately 

H being the harmonic mean. 



CHAPTER IX. 

CORRELATION. 

1-3. The correlation table and its formation—4-5. The correlation surface— 
6-7. The general problem—8-9. The line of means of rows and the 
line of means of columns: their relative positions in the case of 
independence and of varying degrees of correlation—10-14. The 
correlation coefficient, the regressions, and the* standard-deviations of 
arrays—15-16. Numerical calculations—17. Certain points to be 
remembered in calculating and using the coefficient. 

1. I N chapters V I . - V I I I . we considered the frequency-distribu-
tion of a single variable, and the more important constants 
that may be calculated to describe certain characters of such 
distributions. We have now to proceed to the case of two 
variables, and the consideration of the relations between them. 

2. If the corresponding values of two variables be noted 
together, the methods of classification employed in the preceding 
chapters may be applied to both, and a table of double entry or 
contingency-table (Chap. V.) be formed, exhibiting the frequencies 
of pairs of values lying within given class-intervals. Six such 
tables are given below as illustrations for the following 
variables: — Table I., two measurements on a shell (Pecten). 
Table If., ages of husbands and wives in England and Wales in 
1901. Table III., statures of fathers and their sons (British). 
Table IV., fertility of mothers and their daughters (British 
peerage). Table V., the rate of discount and the ratio of reserves 
to deposits in American banks. Table VI., the proportion of 
male to total births, and the total numbers of births, in the 
registration districts of England and Wales. 

Each row in such a table gives the frequency-distribution of 
the first variable for cases in which the second variable lies 
within the limits stated on the left of the row. Similarly, every 
column gives the frequency-distribution of the second variable 
for cases in which the value of the first variable lies within the 
limits stated at the head of the column. As " columns" and 
" rows" are distinguished only by the accidental circumstance 
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TABLE I.—Correlation between (1) Antero-posterior and (2) Dorso-ventral Diameter in Lower Valve of Pecten opercularis. 
Condensed from a Table given by C. B. Davenport, Proc. Amer. Ac., xxxix. 149 (1903).] Measurements in millimetres. 

(1) Antero-posterior diameter, mm. 

CO itt. Ox Cn tn OS Total. 
CO to Vx GO •fk. o CO oa 

CO tf^ IP* 531 en w OJ QO O CO a» to ox 00 

37-39 4 4 
40-42 1 12 6 19 
43-45 — 1 35 12 48 
46-48 — — 1 3S 22 1 59 
49-51 — — — 2 22 17 3 44 
52-54 29 68 8 105 
55-57 32 90 25 147 
58-60 14 59 7 80 
61-63 4 13 3 1 21 
64-66 5 1 6 
67-69 1 1 2 
70-72 — • — _ — .^.Trt.:' — — — — — — — — 2 2 

Total 5 13 42 49 44 47 103 112 88 20 8 3 — 3 537 
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TABLE II.—Correlation between (1) the Age of Wife, (2) the Age of Husband, for all Husbands and Wives in England and 
Wales who were residing together on the night of the Census, 1901. (Census, 1901, Summary Tables, p. 182.) Table 

based on 5,317,520 pairs ; condensed by omitting 000's. 

(1) Ages of Wives. 
Total. 

15-• 20- 25- SO- 35 - 40- 45- 50 - 55- 60 - 65- 70 - 75- 80 - 85-

Total. 

15 - 2 2 _ _ _ 4 
20- 16 173 46 i 1 240 

688 25- 4 185 402 84 10 2 1 
240 
688 

30- 1 41 265 411 84 12. 2 1 817 
35 - — 9 69 251 369 80 12 2 1 793 
40- — 3 17 • 71 219 309 66 12 2 1 700 
45- V f - r . . 1 6 20 66 178 252 59 10 2 1 595 
50- — 2 8 19 57 146 195 44 10 483 
55- — ' — 1 3 8 18 46 110 141 35 6 1 369 
60- — — — 1 3 8 16 39 81 101 23 4 1 277 
65- — — — 1 1 1 3 6 11 26 5 3 ' 58 13 2 1 — 175 
70 - — — — 1 1 2 5 8 18 31 31 6 1 104 
75- 1 1 2 3 5 10 14 12 2 50 
80- 1 1 1 2 4 5 3 1 18 
85- 1 1 1 1 — 4 

Total 23 414 808 854 781 669 550 437 317 226 134 68 27 8 1 5317 
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TABLE I I I .—Corre la t i on between (1) Stature of Father and (2) Stature of Son: 1 or 2 Sons 07% 0 / crecTj Father. 

Measurements in inches. [From Karl Pearson and Alice Lee, Biometrika, vol. i i . (1903), p. 415 . ] 

(1) Stature of Father. 
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Total. 

69-6-60'6 
60-6-61'5 
61*5-62*5 
62*6-63*6 
6S-5-646 
64*5-65 6 
65*5-66*5 
66*5-67*5 
67*5-68*6 
68*5-69*5 
69*5-70*6 
70*5-71*5 
71*5-72*5 
72*6-73*5 
73 5-74*6 
74*5-75*5 
76*5-76*5 
76*5-77*5 
77*5-7S*5 
78*5-79*5 

X 
2 

•26 
•26 

1 
•6 

1-6 

•25 
•25 

1-6 
•6 

1 
2 
1*6 
1 

2 25 
3'75 
2 
2-25 
4-75 
2 

•6 
•6 
•6 

2-25 
3 
3*25 
6-25 
3-6 
7-5 
6-25 
1 

1 

•5 
1 
2 
4 26 
9 5 
9-5 

13-75 
10 
6 
2-5 
3-25 

•25 

1 

•25 
4 
8 

13'5 
10 
19-75 
10-25 
12-75 
5-75 
5 
3 

•76 
1-5 

•26 
5 
9-25 

10-75 
16-75 
26-5 
24-25 
18-25 
18-75 
8-75 
1-25 

•16 
1-5 

1 
•5 

2-75 
S 
7-6 

17-5 
26-75 
31-5 
16 
11-75 
10-75 
7 
2-5 

•5 
1-25 
1-25 
5-5 

16 
19-5 
23-5 
24 
195 
19 

7-75 
7-6 
5-25 1 
1-25 
1-25 

1-5 
3-6 
5-25 

12-5 
29-5 
29 
22-5 
14-75 
10-75 
6-5 
2-25 
2 

•25 
"26 

1 

•25 
•76 

2-5 
2 

13-75 
13-25 
21-5 
19-5 
20-75 
11-25 

6 
2-5 

1 
1 

•25 
1-25 

2-5 
3-25 
8-5 

10 
14-5 
10-75 
10 
7-5 
6-5 
2-5 

•5 

1 
•5 

9-6 
3-5 
6-25 
8 
8"5 
6'25 
3-25 

•76 
1 

•26 
•25 

1 
2-25 
2-25 
3-6 
G 
2-75 
3-25 
3-25 
1-75 
1 
1-5 

•75 
•25 

1*5 
1 

•6 
•6 

•6 

1 
1 
1 

•5 
2 

2 
1-6 
3-6 

20-5 
38-5 
61-5 
89-5 

148 
173-6 
149-5 
128 
108 

63 
42 
29 
8-5 
4 
i 
3 

•6 

Total 3 3-5 S 17 33 5 615 95-5 142 137 5 164 141-5 116 78 49 28-5 4 5 5 1078 

MUSH 



TABLE IV.—Correlation between the Number of Children (1) of a Woman, (2) of one of her Daughters. One Daughter only 
taken from each Mother. Marriages lasted at least 15 years in each case. British Peerage Statistics. [From Karl 
Pearson, Alice Lee, and L. Bramley Moore, Phil. Trans., A, vol. cxcii. (1899), table iv . ] 

3 B 

o B" 

(1) Number of Mother's Children. 

Total. Total. 
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 1 

1 
1 

1 
1 

9 
5 
9 

10 
5 
6 
5 
4 
2 

2 

11 
14 
10 
16 
19 

7 
8 
3 
4 
4 
1 
2 
1 

18 
15 
15 
11 
17 
17 
11 

8 
12 

3 
2 
1 
2 

21 
10 
18 

9 
21 
23 
15 

4 
9 
3 
1 
J. 
3 
2 

15 
13 
.15 
14 
15 

9 
12 
13 

9 
4 
3 
1 

1 

8 
9 
9 

13 
18 
12 
15 

9 
8 
7 
4 

1 

9 
8 
3 

10 
10 
13 
14 

8 
5 
5 
6 

1 

6 
5 
2 
4 

14 
14 

--.'7 -
5 

12 
3 
3 
1 

3 
3 
4 
8 
2 
8 
5 

10 
3 
2 
2 
2 

2 
2 
2 
2 
1 
3 
3 
2 
4 
2 

1 

3 
2 

3 
5 
2 
3 
1 
1 
1 
1 

1 
2 
1 
1 
2 

1 
2 

1 

1 

1 

1 

110 
98 
97 

105 
133 
12.3 
103 

73 
73 
34 
24 

8 
13 

6 

Total 53 57 100 132 140 124 113 92 76 52 25 22 10 2 1 1 1000 



TABLE V.—Correlation between (1) Call Discount Rales and (2) Percentage of Reserves on Deposits in New York Associated Banks 
(Weekly Returns). (From Statistical Studies in the New York Money Market, by J. P. Norton. Publications of the 
Department of the Social Sciences, Yale University', The Macmillan Co., 1902.) Note that, after the column headed ai 
8 per cent., blank columns have been omitted to save space. ^ 

(1) Call Discount Rates. 
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. . —uiwwhiy ihe ivumber of Registration Districts in England and Wales exhibiting (1) a given Proportion of 
Male Births, (2) a given Total Number of Births during the Decade 1881-90. (The Data as to Total Births and 
Numbers of Male and Female Births from Decennial Supplement to Report of the Registrar-General. Table from H. D. 
Vigor and G. U. Yule, Jour. Roy. Stat. Soc., vol. lxix., 1906.) 

(1) Proportion of Male Uirths per 1000 of all Births. 
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of the one set running vertically and the other horizontally, and 
the difference has no statistical significance, the word array 
has been suggested as a convenient term to denote either a row 
or a column. If the values of X in one array are associated 
with values of Y between the limits YN - S and YN + 8, Y„ may be 
termed the type of the array. (Pearson, ref. 6.) The special 
kind of contingency tables with which we are now concerned 
are called correlation tables, to distinguish them from tables 
based on unmeasured qualities and so forth. 

3. Nothing need be added to what was said in Chapter YI. as 
regards the choice of magnitude and position of class-intervals. 
When these have been fixed, the table is readily compiled by 
taking a large sheet ruled with rows and columns properly 
headed in the same way as the final table and entering a dot, 
stroke, or small cross in the corresponding con^partment for each 
pair of recorded observations. If facility of checking be of 
great importance, each pair of recorded values may be entered 
on a separate card and these dealt into little packs on a board 
ruled in squares, or into a divided tray; each pack can then be 
run through to see that no card has been mis-sorted. The 
difficulty as to the intermediate observations—values of the 
variables corresponding to divisions between class-intervals—will 
be met in the same way as before if the value of one variable 
alone be intermediate, the unit of frequency being divided 
between two adjacent compartments. If both values of the pair 
be intermediates, the observation must be divided between four 
adjacent compartments, and thus quarters as well as halves may 
occur in the table, as, e.g., in Table III. In this case the statures 
of fathers and sons were measured to the nearest quarter-
inch and subsequently grouped by 1-inch intervals : a pair in 
which the recorded stature of the father is 605 in. and that of 
the son 62'5 in. is accordingly entered as 0'25 to each of the 
four compartments under the columns 59'5-60'5, 605-6T5, and 
the rows 6T5-62-5, 62'5-63'5. Workers will generally form 
their own methods for entering such fractional frequencies 
during the process of compiling, but one convenient method is 
to use a small x to denote a unit and a dot for a quarter; the 
four dots should be placed in the position of the four points 
of the x and joined when complete. I t is best to choose the 
limits of class-intervals, where possible, in such a way as to avoid 
fractional frequencies. 

4. The distribution of frequency for two variables may be 
represented by a surface or solid in the same way as the frequency-
distribution of a single variable may be represented by a plane 
figure. We may imagine the surface to be obtained by erecting 
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at the centre of every compartment of the correlation-table a 
vertical of length proportionate to the frequency in that com-
partment, and joining up the tops of the verticals. If the 
compartments were made smaller and smaller while the class-
frequencies remained finite, the irregular figure so obtained would 
approximate more and more closely towards a continuous curved 
surface—a frequency-surface—corresponding to the frequency-
curves for single variables of Chapter YI. The volume of the 
frequency-solid over any area drawn on its base gives the 
frequency of pairs of values falling within that area, just as the 
area of the frequency-curve over any interval of the base-line gives 
the frequency of observations within that interval. Models of 
actual distributions may be constructed by drawing the frequency-
distributions for all arrays of the one variable, to the same scale, 
on sheets of cajflboard, and erecting the cards vertically on a 
base-board at equal distances apart, or by marking out a base-
board in squares corresponding to the compartments of the 
correlation-table, and erecting on each square a rod of wood of 
height proportionate to the frequency. Such solid representations 
of frequency-distributions for two variables are sometimes termed 
stereograms. 

5. It is impossible, however, to group the majority of 
frequency-surfaces, in the same way as the frequency-curves, 
under a few simple types : the forms are too varied. The simplest 
ideal type is one in which every section of the surface is a sym-
metrical curve—the first type of Chap. VI. (fig. 5, p. 89). Like 
the symmetrical distribution for the single variable, this is a very 
rare form of distribution in economic statistics, but approximate 
illustrations may be drawn from anthropometry. Fig. 29 shows 
the ideal form of the surface, somewhat truncated, and fig. 
30 the distribution of Table III., which approximates to the same 
type,—the difference in steepness is, of course, merely a matter of 
scale. The maximum frequency occurs in the centre of the 
whole distribution, and the surface is symmetrical round the 
vertical through the maximum, equal frequencies occurring at 
equal distances from the mode on opposite sides. The next 
simplest type of surface corresponds to the second type of 
frequency-curve—the moderately asymmetrical. Most, if not all, 
of the distributions of arrays are asymmetrical, and like the dis-
tribution of fig. 9, p. 92 : the surface is consequently asymmetrical, 
and the maximum does not lie in the centre of the distribution. 
This form is fairly common, and illustrations might be drawn 
from a variety of sources—economics, meteorology, anthropometry, 
etc. The data of Table II. will serve as an example. The total 
distributions and the distributions of the majority of the arrays 









IX. — CORRELATION. 167 

are asymmetrical, the skewness being positive for the rows at 
the top of the table (the mode being lower than the mean), and. 
negative for the rows at the foot, the more central rows being 
nearly symmetrical. The maximum frequency lies towards the 
upper end of the table in the compartment under the row and 
column headed " 30 - ". The frequency falls off very rapidly 
towards the lower ages, and slowly in the direction of old age. 
Outside these two forms, it seems impossible to delimit empirically 
any simple types. Tables V. and VI. are given simply as illus-
trations of two very divergent forms. Fig. 31 gives a graphical 
representation of the former by the method corresponding to the 
histogram of Chapter VI., the frequency in each compartment 
being represented by a square pillar. The distribution of 
frequency is very characteristic, and quite different from that 
of any of the Tables I., II., III., or IV. 

6. It is clear that such tables may be treated by any of the 
methods discussed in Chapter V., which are applicable to all 
contingency-tables, however formed. The distribution may be 
investigated in detail by such methods as those of § 4, or tested 
for isotropy (§ 11), or the coefficient of contingency can be 
calculated*'^ 5-8). In applying any of these methods, however, 
it is desirable to use a coarser classification than is suited to the 
methods tb be presently discussed, and it is not necessary to 
retain the constancy of the class-interval. The classification 
should, on the contrary, be arranged simply with a view to avoiding 
many scattered units or very small frequencies. A few examples 
should be worked as exercises by the student (Question 3). 

7. But the coefficient of contingency merely tells us whether, 
and if so, how closely, the two variables are related, and much 
more information than this can be obtained from the correlation-
table, seeing that the measures of Chapters VII. and VIII. can be 
applied to the arrays as well as to the total distributions. If the 
two variables are independent, the distributions of all parallel 
arrays are similar (Chap. V. § 13); hence their averages and 
dispersions, e.g. means and standard deviations, must be the same. 
In general they are not the same, and the relation between the 
mean or standard deviation of the array and its type requires 
investigation. Of the two constants, the mean is, in general, the 
more important, and our attention will for the present be con-
fined to it. The majority of the questions of practical statistics 
relate solely to averages : the most important and fundamental 
question is whether, on an average, high values of the one variable 
show any tendency to be associated with high (or with low) 
values of the other. If possible, we also desire to know how great a 
divergence of the one variable from its average value is associated 
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with a unit divergence of the other, and to obtain some idea as to 
the closeness with which this relation is usually fulfilled. 

8. Suppose a diagram (fig. 32) to be drawn representing the 
values of means of arrays. Let OX, 0 Y be the scales of the two 
variables, i.e. the scales at the head and side of the table, 01, 12, 
etc., being successive class-intervals. Let M1 be the mean value 
of X, and M2 the mean value of Y. If the two variables be 
absolutely independent, the distributions of frequency in all 
parallel arrays are similar (Chap. V. § 13), and the means of arrays 
must lie on the vertical and horizontal lines MXM, M^M, the 
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small circles denoting means of rows and the small crosses means 
of columns. (In any actual case, of course, the moans would not 
lie so regularly, but, if the independence were almost complete, 
would only fluctuate slightly to the one side and the other of the 
two lines.) 

The cases with which the experimentalist, e.g. the chemist or 
physicist, has to deal, where the observations are all crowded 
closely round a single line, lie at the opposite extreme from 
independence. The entries fall into a few compartments only of 
each array, and the means of rows and of columns lie approximately 
on one and the same curve, like the line RR of fig. 33. 

The ordinary cases of statistics are intermediate between these 
two extremes, the lines of means being neither at right angles as 

- + -- + -

) 
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in fig. 32, nor coincident as in fig. 33, but standing at an acute 
angle with one another as RR (means of rows) and GC (means of 
columns) in figs. 36-8. The complete problem of the statistician, 
like that of the physicist, is to find formulas or equations which 
will suffice to describe approximately these curves. 

9. In the general case this may be a difficult problem, but, in 
the first place, it often suffices, as already pointed out, to know 
merely whether on an average high values of the one variable 
show any tendency to be associated with high or with low values 
of the other, a purpose which will be served very fairly by fitting a 

straight line; and further, in a large number of cases, it is found 
either (1) that the means of arrays lie very approximately round 
straight lines, or (2) that they lie so irregularly (possibly owing 
only to paucity of observations) that the real nature of the curve 
is not clearly indicated, and a straight line will do almost as well 
as any more elaborate curve. (Cf. figs. 36-38.) In such cases 
—and they are relatively more frequent than might be supposed 
—the fitting of straight lines to the means of arrays determines 
all the most important characters of the distribution. We might 
fit such lines by a simple graphical method, plotting the points 
representing means of arrays on a diagram like those of figures 
36-38, and "fit t ing" lines to them, say, by means of a stretched 
black thread shifted about till it appeared to run as near as 
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might be to all the points. But such a method is hardly satis-
factory, more especially if the points are somewhat scattered ; it 
leaves too much room for guesswork, and different observers obtain 
very different results. Some method is clearly required which 
will enable the observer to determine equations to the two lines 
for a given distribution, however irregularly the means may lie, 
as simply and definitely as he can calculate the means and 
standard deviations. 

10. Consider the simplest case in which the means of rows lie 

exactly on a straight line RR (fig. 34). Let be the mean 
value of Y, and let RR cut M2x, the horizontal through J/2, in M. 
Then it may be shown that the vertical through M must cut OX 
in Mv the mean of X. For, let the slope of RR to the vertical, 
i.e. the tangent of the angle MXMR or ratio of Id to IM, be bv 
and let deviations from My, Mx be denoted by x and y. Then for 
any one row of type y in which the number of observations is n, 
2 ( x ) = n.bxy, and therefore for the whole table, since 2(ny) —0. 
2(x) = 612(ny) - 0. Mx must therefore be the mean of X, and 
M may accordingly be termed the mean of the whole distribution. 
Knowing that RR passes through M, it remains only to determine 
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bv This may conveniently be done in terms of the mean product 
•p of all pairs of associated deviations x and y, i.e.— 

(i) 
For any one row we have 

t(xy) = y%(x) = n.b1y2. 

Therefore for the whole table 

!(xy) = b1l(ny*) = mi.<r*y, 

(2) Vv 

Similarly, if CC be the line on which lie the means of columns 
and b2 its slope to the horizontal, rs/sM, 

*2 = f 2 (3) 

These two equations (2) and (3) are usually written in a 
slightly different form. Let 

(4) 

Then h = . . (5) 2 <rx w 

Or we may write the equations to RR and GC— 

°V x — r—.y y = r—.x . . . (6) 

These equations may, of course, be expressed, if desired, in 
terms of the absolute values of the variables X and Y instead of 
the deviations x and y. 

11. The meaning of the above expressions when the means of 
rows and columns do not lie exactly on straight lines is very 
readily obtained. If the values of x and bry be noted for all 
pairs of associated deviations, we have for the sum of the 
squares of the differences, giving b1 its value from (5), 

Z ( x - b v y y = N.<r?.( l - r » ) . . . (7) 

If b1 be given any .other value, say (r + S)—, then 

%(x - byyf = ^0-/(1 - r2 + 32). 
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This is necessarily greater than the value (7); hence ~2(x - btf)" 
has the lowest possible value when 6j is put equal to ro-xl<rr 
Further, for any one row in which the number of observations 
is n, the deviation of the mean of the row from RR is d (fig. 35), 
and the standard deviation is - b̂ y)"1 = nsj* + n.d2. There-
fore for the whole table, 

But the first of the two sums on the right is unaffected by the 

F I G . 35 . 

slope or position of RR, hence, the left-hand side being a 
minimum, the second sum on the right must be a minimum also. 
That is to say, when bl is put equal to r a-Jv^, the sum of the squares 
of the distances of the row-means from RR, each multiplied by the 
corresponding frequency, is the lowest possible. 

Similar theorems hold good, of course, with respect to the line 

CC. If b2 be given the value r ~2,(x - b^.y)2 is a minimum, 

and also S(«.e2) (fig. 35). Hence we may regard the equations (6) 
as being, either (a) equations for estimating each individual x 
from its associated y (and y from its associated x) in such a way 
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as to make the sum of the squares of the errors of estimate the 
least possible; or (b) equations for estimating the mean of the a's 
associated with a given type of y (and the mean of the y's associated 
with a given type of x) in such a way as to make the sum of the 
squares of the errors of estimate the least possible, when every 
mean is counted once for each observation on which it is based. 

columns by crosses: r= +0 '91. 

The lines represented by the two equations are thus, in a certain 
natural sense, "lines of best fit" to the two actual lines of means. 

12. The constant r is of very great importance. It is evi-
dently a pure number, and its magnitude is unaffected by the 
scales in which x and y are measured, for these scales will 
affect the numerator and denominator of (4) to the same 
extent. If the two variables are independent, r is zero, for b1 
and b2 are zero (c/. § 8). The sign is the sign of the mean 
product p, and accordingly r is positive if large values of x 
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are associated with large values of y, and conversely (as in 
Tables l.-IV.), negative if small values of x are associated with 
large values of y and conversely (as in Table V.). The numerical 
value cannot exceed ± 1, for the sum of the series of squares 
in equation (7) is then zero and the sum of a series of squares 
cannot be negative. If r = ±1, it follows that all the observed 
pairs of deviations are subject to the relation x/y = <r1/cri\ this 

63 

66 

C 

67 

69 

62 

t 

l 
o 

«5 7 / 

7 3 

75 

Father Is stature 
64 ft 66 68 70 7 8 

\ 
\ 
\ 

V 

s \ 
• L 

f S • s . 

IV \ 
V 
\ 

( \ 
\ 

B 
FIG. 37.—Correlation between Stature of Father and Stature of Son (Table 

I I I . ) : means of rows shown by circles and means of columns by crosses : 
r— +0*51, 

would be the case if the circles and crosses in such a diagram as 
fig. 33 all lay on one and the same straight line. From these 
properties r is termed the coefficient of correlation, and the 
expression (4), r = "p\ajry = %{xy)IN.<Tjjv, should be remembered. 

It should be noted that, while r is zero if the variables are 
independent, the converse is not necessarily true : the fact that 
r is zero only implies that the means of rows and columns 
lie scattered round two straight lines which do not exhibit 
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any definite trend, to right or to left, upward or downward. 
Two variables for which r is zero are, however, conveniently 
spoken of as uncorrelated. Table VI. and fig. 39 will serve as an 
illustration of a case in which the variables are almost uncor-
related but by no means independent, r being very small ( - 0'014), 
but the coefficient of contingency C (for grouping of qu. 3) 0'47. 

Figs. 36, 37, 38 are drawn from the data of Tables II., III., and 
IV., for which r has the values + 0-91, + 0'51, and +0-21 respec-
tively, the correlation being positive in each case. The student 

Number of Mother's Children^. 

FIG. 38.—Correlation between number of a Mother's Children and number of 
her Daughter ' s Children (Table I V . ) : means of rows shown by circles 
and means of columns by crosses : r= + 0'21. 

should study such tables and diagrams closely, and endeavour to 
accustom himself to estimating the value of r from the general 
appearance of the table. 

13. The two quantities 

bl — r— b„ = r— 

are termed the coefficients of regression, or simply the regressions, 
b1 being the regression of x on y, or deviation in x corresponding 
on the average to a unit change in the type of y, and b2 being 
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similarly the regression of y on x. Whilst the coefficient of 
correlation is always a pure number, the regressions are only 
pure numbers if the two variables have the same dimensions, as 
in Tables I . - IV.: their magnitudes depend on the ratio of crxl<ry, and 
consequently on the units in which x and y are measured. They 
are both necessarily of the same sign (the sign of r). Since r is 

Proportion, ofMaU lirths -per 1000 Tiirths. 
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FIG. 39.—Correlation between Population of a Registration District and Pro-
portion of Male Bir ths per thousand of all births (England and Wales, 
1881-90, Table V I . ) : means of rows shown by circles and means 
of columns by crosses : r = - 0'014. 

not greater than unity, one at least of the regressions must be 
not greater than unity, but the other may be considerably greater 
if the ratio <rxjiry or crjcrx be great. The name regression arose 
from the term being first introduced in the case of inheritance of 
stature (Galton, refs. 2, 3). In this case the two standard devia-
tions are very nearly equal, so that both bl and b„ are less than 
unity, say (using the more recent data of Table III.) 0'50 and 0'52. 
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Hence the sons of fathers of deviation x from the mean of all fathers 
have an average deviation of only 0~52x from the mean of all sons; 
i.e. they step back or " regress " towards the general mean, and 0'52 
may be termed the "ratio of regression." In general, however, 
the idea of a "stepping back" or "regression" towards a more 
or less stationary mean is quite inapplicable—obviously so where 
the variables are different in kind, as in Tables Y. and VI.— 
and the term "coefficient of regression" should be regarded simply 
as a convenient name for the coefficients b1 and 5,. RR and CC 
are generally termed the "lines of regression," and equations (6) 
the " regression equations." The expressions " characteristic lines," 
" characteristic equations " (Yule, ref. 8) would perhaps be better. 
Where the actual means of arrays appear to be given, to a satis-
factory degree of approximation, by straight lines, we may say 
that the regression is linear. I t is not safe, however, to assume 
that such linearity extends beyond the limits of observation. 

14. The two standard deviations 

sz = o-j. Jl - r1 sv — <Ty J1 - r2 

are of considerable importance. It follows from (7) that sx is the 
standard deviation of (x-bry), and similarly sy is the standard 
deviation of (y - b„.x). Hence we may regard sx and sv as the 
standard errors (root mean square errors) made in estimating x 
from y and y from x by the respective characteristic relations 

x = bvy y = b2.x. 

sx may also be regarded as a kind of average standard deviation of 
a row about RR, and sy as an average standard deviation of a 
column about CC. In an ideal case, where the regression is 
truly linear and the standard deviations of all parallel arrays are 
equal, a case to which the distribution of Table III. is a rough 
approximation, sx is the standard deviation of the avarray and sy 
the standard deviation of the y-array (cf. Chap. X. § 19 (3)). 
Hence sx and s„ are sometimes termed the "standard deviations 
of arrays." 

15. Proceeding now to the arithmetical work, the only new 
expression that has to be calculated in order to determine r, bv b2, 
s„ and s„ is the product sum ~S,(xy) or the mean product p. As in 
the cases of means and standard deviations, the form of the 
arithmetic is slightly different according as the observations are 
few and ungrouped, or sufficient to justify the formation of a 
correlation-table. In the first case, as in Example i. below, the 
work is quite straightforward. 

Example i., Table VII.—The variables are (1) X—the estimated 
12 
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TABLE V I I . THEORY OF CORRELATION : Example i . 

p 

Union. 

2. 

X . 
Es t ima ted 

Average 
Earn ings 
of Agri-
cu l tu ra l 

Labourers . 
Shill ings 

and Pence 
pe r Week. 

8. 

Y. 
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age of 
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t ion in 
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of 
Poor-
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Mean. 
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X. 

Devia-
t i o n of 
x f rom 
Mean 

(Pence). 

a. 

V-

Devia-
tion of 
y f rom 
Mean. 

6. 7. 

Posi-
tive. 

Nega-
tive. 

1. Glendale . 
2. Wig tou . 
3. Gars tang . 
4. Belper 
5. Nantwicll 
6. Atcham . 
7. Driffield . 
8. U t toxe te r 
9. We the rby 

10. Easingwold 
11. Southwel l 
12. Hol l ingbourn . 
13. Mel ton Mowbray 
14. T ru ro 
15. Godstone 
16. Lou th 
17. Br ixwor th 
18. Crediton . 
19. Holbeach . 
20. Maldon . 
21. Monmou th 
22. St Neots . 
23. Swaffham 
24. Thakeham 
25. Thame 
26. Thingoe . 
27. Basingstoke . 
28. Cirencester 
29. Nor th Wi tch fo rd 
30. Pewsey 
31. Bromyard 
32. W a n t a g e . 
33. S t ra t fo rd on Avon 
34. Dorches te r 
35. W o b u m . 
36. Bunt ingford . 
37. Pershore . 
38. Langpor t . 

s. d. 
20 9 
20 3 
19 8 
18 6 
17 8 
17 6 
17 1 
17 0 
17 0 
16 11 
10 6 
16 4 
16 3 
16 3 
16 0 
16 0 
16 9 
15 8 
15 6 
15 6 
15 4 
15 3 
15 0 

15 0 
16 0 
15 0 
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- 1 4 
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32 13 698-17 
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16 11 

Mean 
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T" 16,018 

*x 
20'5d. 

63-0556 

1-29% Z(:cy)= -606-04 
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average weekly earnings of agricultural labourers in 38 English 
Poor-law unions of an agricultural type (the data of Example i., 
Chap. VIII. p. 137). (2) Y—the percentage of the population 
in receipt of Poor-law relief on the 1st January 1891 in each of the 
same unions (B return). The means of each of the variables are 
calculated in the ordinary way, and then the deviations x and y 
from the mean are written down (columns 4 and 5) : care must-
be taken to give each deviation the correct sign. These deviations 
are then squared (columns 6 and 7) and the standard deviations 
found as before (Chap. VIII. p. 136). Finally, every x is 
multiplied by the associated y and the product entered in column 
8 or column 9 according to its sign. These columns are then 
added up separately and the algebraic sum of the totals gives 

~Si(xy)— - 666-04 : therefore the mean product p = ~2,{xy)IN— -
17-53, and 

R =
 1 I ^ _ = - - 6 6 . " 

20-5 x 1-29 

There is therefore a well-marked relation exhibited by these data 
between the earnings of agricultural labourers in a district and 
the percentage of the population in receipt of Poor-law relief. 
A penny is rather a small unit in which to measure deviations in 
the average earnings, so for the regressions we may alter the unit 
of a; to a shilling, making a x ~ T71, and 

b1 = r— = -0 '87 , J, = -0-50. 

The regression equations are therefore, in terms of these units, 

x= - 0'87y y=- 0-5Cte. 

For practical purposes it is more convenient to express the 
equations in terms of the absolute values of the variables rather 
than the deviations: therefore, replacing x by (X - 15-94) and y 
by ( F - 3 ' 6 7 ) and simplifying, we have 

X = 19-13-0-877 . . . . (a) 
Y= 11-64 - 0-50X . . . .(b) 

the units being Is. for the earnings and 1 per cent, for the 
pauperism. The standard errors made in using these equations 
to estimate earnings from pauperism and pauperism from earnings 
respectively are 

<rx J l -?-2 = 15-4d. = l-28s. 
crv J 1 - r ' i = 0-97 per cent. 
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The equation (5) tells us therefore that a rise of 2s. in earnings 
in passing from one district to another means on the average a 
fall of 1 in the percentage in receipt of relief. A natural con-
clusion would be that this means a direct effect of the higher 
earnings in diminishing the necessity for relief, but such a 
conclusion cannot be accepted offhand. Equation (a) indicates, 
for instance, that every rise of a unit in the percentage re-
lieved corresponds to a fall of 0'87 shillings, or lOJd. in earnings: 
this might mean that the giving of relief tends to depress wages. 
Which is the correct interpretation of the facts? The above 

12 13 „ 14- 15 16 11 18 19 20 21 

ft, o 

• \ 

x l 
• „ 

\ s. 

• \ 
\ 

> 
\ 

Average- weeldy earnings of Agricultural* Labourers. 

FIG. 40.—Correlation between Pauperism and Average Earnings of Agricultural 
Labourers for certain distr icts of England (data of Table VII.) : RR, 
CO, lines of regression : r — — 0'66. 

regression equations alone cannot tell us this, and it is in the 
discussion of such questions that most of the difficulties of statisti-
cal arguments arise. 

As a check on the whole of the arithmetical work, and to test 
whether the correlation coefficient is unduly affected by a few out-
lying observations, or, perhaps, by the regression not being linear, 
it is always as well to draw a diagram representing the results 
obtained. Take scales along two axes at right angles (fig. 40) 
representing the variables, and insert a dot (better, for clearness, 
a small circle or a cross) at the point determined by each observed 
pair of x and y. Complete the diagram by inserting the two lines 
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RR and CC given by the regression equations (a) and (b). In 
doing this it is as well to determine a point at each end of both 
lines, and then to check the work by seeing that they meet in the 
mean of the whole distribution. Thus RR is determined from (a) 
by the points 7 = 0 , X = 19-13 and 7 = 6 , X = 13-91: CC is 
determined from (b) by the points X = 12, 7 = 5 ' 6 4 and X= 21, 
7 = 1-14. Marking in these points, and drawing the lines, they 
will be found to meet in the mean, X = 15-94, 7=3 '67 . The 
diagram gives a very clear idea of the distribution; clearly the 
regression is as nearly linear as may be with so very scattered a 
distribution, and there are no very exceptional observations. The 
most exceptional districts are Brixworth and St Neots with rather 
low earnings but very low pauperism, and Glendale and Wigton 
with the highest earnings but a pauperism well above the lowest— 
over 2 per cent. 

16. When a classified correlation-table is to be dealt with, the 
procedure is of precisely the same kind as was used in the calcula-
tion of a standard deviation, the same artifices being used to shorten 
the work. That is to say, (1) the product>sum is calculated in the 
first instance with respect to an arbitrary origin, and is afterwards 
reduced to the value it would have with respect to the mean; (2) 
the arbitrary origin is taken at the centre of a class-interval; (3) 
the class-interval is treated as the unit of measurement throughout 
the arithmetic. 

Let deviations from the arbitrary origin be denoted by f tj, and 
let f jy be the co-ordinates of the mean. Then 

£ = x +| rj = y + y. 
f?7 = xy + ly + 172; + gfj. 

Therefore, summing, since the second and third sums on the 
right vanish, being the sums of deviations from the mean, 

or bringing 2(xy) to the left, 

That is, in terms of mean-products, using p to denote the mean-
product for the arbitrary origin, 

p =p - Hv-

In any case where the origin from which deviations have been 
measured is not the mean, this correction must be used. It will 
sometimes give a sensible correction even for work in the form of 
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Example i., and in that case, of course, the standard deviations 
will also require reduction to the mean. 

As the arithmetical process of calculating the correlation co-
efficient from a grouped table is of great importance, we give two 
illustrations, the first economic, the second biological. 

Example ii., Table VIII.—The two variables are (1) X, the 
percentage of males over 65 years of age in receipt of Poor-law 
relief in 235. unions of a mainly rural character in England and 
Wales ; (2) Y, the ratio of the numbers of persons given relief " out-
doors" (in their own homes) to one "indoors" (in the workhouse). 
The figures refer to a one-day count (1st August 1890, No. 36, 
1890), and the table is one of a series that were drawn up with 
the view to discussing the influence of administrative methods on 
pauperism. (Economic Journal, vol. vi., 1896, p. 613.) 

The arbitrary origin for X was taken at the centre of the fourth 
column, or at 17-5 per cent. ; for Y at the centre of the fourth 
row, or 3'5. The following are the values found for the constants 
of the single distributions :— 

£ = - 0 T 5 3 2 intervals = - 0 ' 7 7 per cent., whence M„** 
16-73 per cent. 

<rx = 1'29 intervals = 6-45 per cent. 
r)= +0'36 intervals or units, whence J/„ = 3-86. 

cr,, = 2'98 units. 
To calculate 2(£17), the value of frq is first written in every 

compartment of the table against the corresponding frequency, 
treating the class-interval as the unit: these are the figures in 
heavy type in Table V I I I . In making these entries the sign of 
the product may be neglected, but it must be remembered that 
this sign will be positive in the upper left-hand and lower right-
hand quadrants, negative in the two others. The frequencies are 
then collected as shown in columns 2 and 3 of Table V I I I A . , 

being grouped according to the value and sign of £77. Thus for 
£77=1, the total frequency in the positive quadrants is 13 + 8-5 
= 21-5, in the negative 14 + 6 = 20: for £7 = 2, 10 + 4-5+1 + 4-5 
= 20 in the positive quadrants, 5 + 2 + 14-3-5 = 11-5 in the 
negative, and so on. When columns 2 and 3 are completed, they 
should first of all be checked to see that no frequency has been 
dropped, which may be readily done by adding together the totals 
of these two columns together with the frequency in row 4 and 
column 4 of Table V I I I . (the row and column for which = 0), 
being careful not to count twice the frequency in the compartment 
common to the two; this grand total must clearly be equal to the 
total number of observations N, or 235 in the present case. The 
algebraic sum of the frequencies in each line of columns 2 and 3 is 
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TABLE V I I I . THEORY OF CORRELATION : Exampleu.—Old-age Pauperism and 
Proportion of Out-relief. ( T h e F r e q u e n c i e s a r e t h e figures p r i n t e d i n o r d i -
n a r y t y p e . T h e n u m b e r s i n h e a v y t y p e a r e t h e D e v i a t i o n - P r o d u c t s ( | i j ) . ) 

Number 
relieved 

Outdoors 
to One 

Indoors . 

§ f M 
1 - 2 { 

Percentage of Males over 65 in receipt of Rel ief . 

Total . 

Number 
relieved 

Outdoors 
to One 

Indoors . 

§ f M 
1 - 2 { 

0-6. 6-10. 10-15. 15-20. 20-25. 25-30. 30-35. 35-40. 
Total . 

Number 
relieved 

Outdoors 
to One 

Indoors . 

§ f M 
1 - 2 { 

0-5 
9 

6 0 
6 

9 0 
3 

1 0 
0 — 

— 
— 

1-0 
12 

17-5 

Number 
relieved 

Outdoors 
to One 

Indoors . 

§ f M 
1 - 2 { 3-6 

6 
13-0 

4 
10-0 

2 
14-0 

0 
5-0 
2 

-
-

— 45-5 

2- 3 -{ 1-0 
3 

4-5 
2 

13-0 
1 

13'5 
0 

14'0 
1 

2-0 
2 — 

— 48'0 

3- 4 | 1-0 
0 

4-5 
0 

7-6 
0 

14-0 
0 

1 4 0 
0 

3-0 
0 — 

— 44'0 

4- 6 { 
— 

1-0 
2 

6 0 
1 

11-5 
0 

8-5 
1 

1-0 
2 

— 
-

28-0 

6- 6 | 
• — . — 

3 5 
2 

3-0 
0 

4'5 
2 

2'0 
4 — — 

1 3 0 

6 - 7 | — l -o 
6 

2-0 
3 

1-0 
0 

2 0 
3 

4-0 
6 

1-0 
9 — 

11-0 

7 - 8 { 
— 

0-5 
8 

1-0 
4 

1 0 
0 

3 0 
4 

— — 
— 

5 5 

8 - 9 | 0-5 
10 

1-0 
5 

1-0 
0 

1 0 
5 

4 0 
10 

— — 7'5 

9-10 { 

10-11 

— 
1-0 
12 

- 2 0 
0 

4-0 
6 

- -
— 

7-0 9-10 { 

10-11 - - - - - - - -

11-12 | 
— 

— 
— — 

2-0 
8 — 

-
— 

2-0 

12-13 | 
— 

— 1-0 . 
9 — — 

-
— 

— 1-0 

13-14 -[ 
— 

1 0 
2 0 

— — — -
— 

— 1-0 

14-15 - - - - - - - - -

15-16 | •'•'.vjfes; — — 1-0 
0 

— 1-0 
2 4 — — 

2-0 

16-17 - - - - - - - - -

17-18 I 
— 

— 
— 

- — l 'o 
2 8 — . _ 1 0 

18-19 | — — 
— 

— 1-0 
15 

- - - l 'o 

Totals 6-0 33-0 54-0 6 3 0 59'0 18'0 1 0 1-0 235 0 

Percentage in receipt of Relief . . . Mean 16-73 per cent . <rz 6-45 per cen t . 
Out-relief Ra t io Mean 3-86. <^2-98. 
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TABLE V I I I A . CALCULATION OF T H E PRODUCT SUM 

1. 2. 3. 4. 5. 6. 
Frequencies. Products. 

Total. 

+ 
Quadrants. Quadrants. 

Total. 

Positive. Negative. 

1 21-5 20 + 1-5 1-5 
2 20 11-5 + 8-5 17 — 

3 12 2 + 10 30 — 

4 18 1 + 17 68 — 

5 1 1 — — — 

6 17-5 1 + 16-5 99 — 

8 2 0-5 + 1-5 12 — 

9 1-5 1 + 0-5 4-5 — 

10 4 0-5 + 3-5 35 — 

12 — 2 - 2 — 24 
15 , 1 — + 1 15 — 

20 1 - 1 — 20 
24 1 — + 1 24 — 

28 1 — + 1 28 — 

Totals 100-5 41-5 + 334 - 4 4 
41-5 - 44 
93 

+ 290 
235 

then entered in column 4, treating the frequencies in column 3 as if 
they were themselves negative, and finally the figures of column 4 
are multiplied by the values of £t] and the products entered in 
column 5 or 6 according to sign. The algebraic sum of the totals 
of columns 5 and 6 = + 290 = Whencep' = S(^)/iV= 1 -234. 
To find the value of^> we have, remembering that we are working 
with class-intervals as the unit, 

(V 
P=P 

r 

The regression of pauperism on out-relief ratio is, reverting to 
1 per cent, as the unit of pauperism instead of the class-interval, 

= - (0-153 x 0-36)= -0-055 
= 1-234 + 0-055= +1-289 

1*289 
= + 129.x 2-98 ~ + ' 
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+ 0-34 x 6-45/2-98 = 0"74, and the regression equation accordingly 
x = 0'7iy, or 

X= 13-9 + 0-747, 

the standard error made in using the equation for estimating X 
from 7 being crx J 1 - r 2 = 6'07. 

This is the equation of greatest practical interest, telling us 
that, as we pass from one district to another, a rise of 1 in the 
ratio of the numbers relieved in their own homes to the numbers 
relieved in the workhouse corresponds on an average to a rise of 
0-74 in the percentage in receipt of relief. The result is such as 
to create a presumption in favour of the view that the giving of 
out-relief tends to increase the numbers relieved, and this can be 
taken as a working hypothesis for further investigation. 

The student should work out the second regression equation, 
and check both by calculating the means of the principal rows 
and columns, and drawing a diagram like figs. 36, 37, and 38. 

Example iii., Table IX.—(Unpublished data ; measurements by 
G. U. Yule.) The two variables are (1) X, the length of a mother-
frond of duckweed (Lemna minor); (2) 7, the length of the 
daughter-frond. The mother-frond was measured when the 
daughter-frond separated from it, and the daughter-frond when 
its first daughter-frond separated. Measures were taken from 
camera drawings made with the Zeiss-Abb(5 camera under a low 
power, the actual magnification being 24 : 1. The units of length 
in the tabulated measurements are millimetres on the drawings. 

The arbitrary origin for both X and 7 was taken at 105 mm. 
The following are the values found for the constants of the single 
distributions :— 

| = - 1 - 0 5 8 intervals = - 6"3 mm. M±= 98'7 mm. on drawing. 
= 4'11 mm. actual. 

<r»= 2'828 intervals = 17'0 mm. on drawing = 0'707 mm. actual. 
r j = - 0-203 ,, = - 1-2 mm. M 2 = 103'8 mm. on drawing. = i '32 mm. actual. 

i ry= 3*084 ,, = 18'5 mm. on drawing= 0'771 mm. actual. 

The values of are entered in every compartment of the 
table as before, and the frequencies then collected, according to 
the magnitude and sign of ^ , in columns 2 and 3 of Table IXA. 
The entries in these two columns are nest checked by adding to 
the totals the frequency in the row and column for which £77 is 
zero, and seeing that it gives the total number of observations 
(266).. The numbers in column 4 are given by deducting the 
entries in column 3 from those in column 2. The totals so 
obtained are multiplied by £7? (column 1) and the products entered 
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TABLE I X A . 

1. 2. 3. 4. 5. 6. 
Frequencies. Products. 

In Total. Total. 

+ _ 
+ Quadrants. Quadrants. + 

1 8-5 - 8-5 8-5 
2 17 13-5 + 3-5 7 — 

3 10-5 9 + 1-5 4-5 — 

4 13-5 6-5 + 7 28 — 

5 2 0-5 + 1-5 7-5 — 

6 13-5 5 + 8-5 . 51 
8 13 1 + 12 96 — 

9 9 4 + 5 45 — 

10 6-5 1 + 5-5 55 
12 17-5 — + 17-5 210 — 

14 1 — + 1 14 j— 
15 6 — + 6 90 — 

16 7 — + 7 112 — 

18 2 — + 2 36 i— 
20 8 — + 8 160 - — 

21 2 — + 2 42 . — 
24 6 — + 6 144 — 

25 • 1 — + 1 25 
28 1 — + 1 28 — 

30 3 — + 3 90 
36 1 — - + 1 36 
40 1 — + 1 40 — 

42 2 — + 2 84 — 

60 1 — + 1 60 — 
63 1 — + 1 63 — 

; Totals 145-5 49 + 1528 - 8 - 5 
49 - 8-5 
71-5 

1519-5 
266 

in column 5 or 6 according to sign. The algebraic sum of the 
totals of these two columns gives S ( ^ ) = +1519 5. Dividing 
by 266, p' = 5-712. But £ j = + 1-058 x 0-203=+0-215 ; there-
fore^ =5-712 - 0-215 = 5-497. 
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The regression of daughter-frond on mother-frond is 0'69 (a 
value which will not be altered by altering the units of measure-
ment for both mother- and daughter-fronds, as such an alteration 
will affect both standard deviations equally). Hence the re-
gression equation giving the average actual length (in millimetres) 
of daughter-fronds for mother-fronds of actual length X is 

T = T48 + 069JT. 
We again leave it to the student to work out the second 

regression equation giving the average length of mother-fronds 
for daughter-fronds of length T, and to check the whole work 
by a diagram showing the lines of regression and the means of 
arrays for the central portion of the table. 

17. The student should be careful to remember the following 
points in working:— 

(1) To give p and their correct signs in finding the true 
mean deviation-product p. 

(2) To express <rx and cry in terms of the class-interval as a 
unit, in the value of r=pl<rx <ryl for these are the units in terms 
of which p has been calculated. 

(3) To use the proper units for the standard deviations (not 
class-intervals in general) in calculating the coefficients of 
regression : in forming the regression equation in terms of the 
absolute values of the variables, for example, as above, the work 
will be wrong unless means and standard deviations are ex-
pressed in the same units. 

Further, it must always be remembered that correlation 
coefficients, like all other statistical measures, are subject to 
fluctuations of sampling (cf. Chap. III. §§ 7, 8). If we write 
on cards a series of pairs of strictly independent values of x and 
y and then work out the correlation coefficient for samples of, 
say, 40 or 50 cards taken at random, we are very unlikely ever 
to find r = 0 absolutely, but will find a series of positive and 
negative values centring round 0. No great stress can therefore 
be laid on small, or even on moderately large, values of r as 
indicating a true correlation if the numbers of observations be 
small. For instance, if N= 36, a value of r= ±0-5 may be 
merely a chance result (though a very infrequent one); if 
iV=100, r= +0 '3 may similarly be a mere fluctuation of 
sampling, though again an infrequent one. If N = 900, a value 
of r— ±0T might occur as a fluctuation of sampling of the same 
degree of infrequency. The student must therefore be careful in 
interpreting his coefficients. (See Chap. XVII. § 15.) 

Finally, it should be borne in mind that any coefficient, e.g. the 
coefficient of correlation or the coefficient of contingency, gives 
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only a part of the information afforded by the original data or 
the correlation table. The correlation table itself, or the original 
data if no correlation table has been compiled, should always be 
given, unless considerations of space or of expense absolutely 
preclude the adoption of such a course. 
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EXERCISES. 

1. Find the correlation-coefficient and the equations of regression for the 
following values of X and Y. 

X. Y. 
1 2 
2 5 
3 3 
4 8 
5 7 

[As a matter of practice it is never worth calculating a correlation-coefficient 
.or so few observations: the figures are given solely as a short example on 
which the student can test his knowledge of the work.] 

2. The following figures show, for the districts of Example i., the ratios of 
the numbers of paupers in receipt of outdoor relief to the numbers in receipt 
of relief in the workhouse. Find the correlations between the out-relief ratio 
and (1) the estimated earnings of agricultural labourers; (2) the percentage 
of the population in receipt of relief. 

1 6'40 14 7-50 27 2-97 
2 4-04 15 4-44 28 5 38 
3 7-90 16 8'34 29 3-24 
4 3-31 17 0'69 30 7-61 
5 7-85 18 9-89 31 5-87 
6 0'45 19 4-00 32 5-50 
7 10-00 20 6-02 33 3-58 
8 4-43 21 8-27 34 6-93 
9 4-78 22 1-58 35 6-02 

10 4-73 23 16'04 36 4-92 
11 6'66 24 1-96 37 4-64 
12 1-22 25 9-28 38 10-56 
13 4-27 26 8-72 

3. Verify the following data for the under-mentioned tables of the preceding 
chapter. Calculate the means of rows and columns and draw diagrams showing 
the lines of regression, as figs. 36-39, for one or two cases at least. 

I . I I . I I I . IV. VI. 

Mean of X . 
„ Y . 

Standard devia-
tion ofX . 

Standard devia-
tion of Y . 

Coefficient of corre-
lation 

55'3 mm. 
53-1 „ 

6-86 ,, 

5-77 „ 

+ 0-97 

40-6 years 
42-8 „ 

12-7 „ 

1 3 1 „ 

+ 0-91 

67 '70 ins. 
68-66 ,, 

2-72 „ 

2-75 „ 

+ 0-51 

5-90 
4-33 

2-83 

2-97 

+ 0-21 

509-2 
14,500 

7-46 

18,100 

-0 -014 

Coefficient of con-" 
t ingency(forthe 
grouping stated 
below) 

0-90 0-81 0-51 0-31 0-47 
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In calculating the coefficient of contingency (coefficient of mean square 
contingency) use the following groupings, so as to avoid small scattered fre-
quencies at the extremities of the tables and also excessive ari thmetic:— 

I. Group together (I) two top rows, (2) three bottom rows, (3) two first 
columns, (4) four last columns, leaving centre of table as it stands. 

I I . Regroup by ten-year intervals (15-, 25-, 35-, etc.) for both husband and 
wife, making the last group " 6 5 and over." 

I I I . Regroup by 2-inch intervals, 58*5-60*5, etc., for father, 59*5-61*5, 
etc., for son. If a 3-inch grouping be used (58 "5—61*5, etc., for both father and 
son), the coefficient of mean square contingency is 0'465. [Both results cited 
from Pearson, ref. 1 of Chap. V. ] 

IV. For cols., group 1 + 2, 3 + 4, . . . , 11 + 12, 13 and upwards. Rows, 
0, 1 + 2 , 3 + 4, . . . , 9 + 10, 11 and upwards. 

VI. For cols., group all up to 494*5 and all over 521*5, leaving central ools. 
Rows singly up 20 : then 20-28, 28-44, 44-56, 56 upwards. 



CHAPTER X. 

C O R R E L A T I O N : I L L U S T R A T I O N S A N D P R A C T I C A L 

M E T H O D S . 

1. Necessity for careful choice of variables before proceeding to calculate i — 
2-8. Illustration i. : Causation of pauperism—9-10. Illustration 
ii.: Inheritance of fertility—11-13. Illustration iii.: The weather 
and the crops—14. Correlation between the movements of two 
variables:—(a) Non-periodic movements : Illustration iv.: Changes 
in infantile and general mortality—15-17. (i) Quasi-periodic move-
ments : Illustration v.: The marriage - rate and foreign trade— 
18. Elementary methods of dealing with cases of non-linear regression 
-—19. Certain rough methods of approximating to the correlation 
coefficient—20-22. The correlation ratio. 

1. THE student—especially the student of economic statistics, to 
whom this chapter is principally addressed—should be careful to 
note that the coefficient of correlation, like an average or a 
measure of dispersion, only exhibits in a summary and compre-
hensible form one particular aspect of the facts on which it is 
based, and the real difficulties arise in the interpretation of the 
coefficient when obtained. The value of the coefficient may be 
consistent with some given hypothesis, but it may be equally 
consistent with others; and not only are care and judgment 
essential for the discussion of such possible hypotheses, but also 
a thorough knowledge of the facts in all other possible aspects. 
Further, care should be exercised from the commencement in the 
selection of the variables between which the correlation shall be 
determined. The variables should be defined in such a way as 
to render the correlations as readily interpretable as possible, 
and, if several are to be dealt with, they should afford the answers 
to specific and definite questions. Unfortunately, the field of 
choice is frequently very much limited, by deficiencies in the 
available data and so forth, and consequently practical possibilities 
as well as ideal requirements have to be taken into account. No 
general rules can be laid down, but the following are given as 
illustrations of the sort of points that have to be considered. 

191 
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2. Illustration i.—It is required to throw some light on the 
variations of pauperism in the unions (unions of parishes) of 
England. (Cf. Yule, ref. 2.) 

One table (Table VIII.) bearing on a part of this question, viz. 
the influence of the giving of out-relief on the proportion of the 
aged in receipt of relief, was given in Chap. IX. (p. 183). The 
question was treated by correlating the percentage of the aged 
relieved in different districts with the ratio of numbers relieved 
outdoors to the numbers in the workhouse. Is such a method 
the best possible ? 

On the whole, it would seem better to correlate changes in 
pauperism with changes in various possible factors. If we say 
that a high rate of pauperism in some district is due to lax 
administration, we presumably mean that as administration 
became lax, pauperism rose, or that if administration were more 
strict, pauperism would decrease ; if we say that the high pauper-
ism is due to the depressed condition of industry, we mean that 
when industry recovers, pauperism will fall. When we say, in 
fact, that any one variable is a factor of pauperism, we mean 
that changes in that variable are accompanied by changes in the 
percentage of the population in recoipt of relief, either in the 
same or the reverse direction. I t will be better, therefore, to 
deal with changes in pauperism and possible factors. The next 
question is what factors to choose. 

3. The possible factors may be grouped under three heads:— 
(a) Administration.—Changes in the method or strictness of 

administration of the law. 
(b) Environment.—Changes in economic conditions (wages, 

prices, employment), social conditions (residential or industrial 
character of the district, density of population, nationality of 
population), or moral conditions (as illustrated, e.g., by the statis-
tics of crime). 

(c) Age Distribution.—the percentage of the population between 
given age-limits in receipt of relief increases very rapidly with old 
age, the actual figures given by one of the only two then existing 
returns of the age of paupers being—2 per cent, under age 16, 
1 per cent, over 16 but under 65, 20 per cent, over 65. (Return 
36, 1890.) 

I t is practically impossible to deal with more than three factors, 
one from each of the above groups, or four variables alto-
gether, including the pauperism itself. What shall we take, then, 
as representative variables, and how shall we best measure 
" pauperism "1 

4. Pauperism.—The returns give (a) cost, (b) numbers relieved. 
It seems better to deal with (b) (as in the illustration of Table 
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VIII., Chap. IX.), as numbers are more important than cost from 
the standpoint of the moral effect of relief on the population. 
The returns, however, generally include both lunatics and vagrants 
in the totals of persons relieved ; and as the administrative methods 
of dealing with these two classes differ entirely from the methods 
applicable to ordinary pauperism, it seems better to alter the 
official total by excluding them. Returns are available giving 
the numbers in receipt of relief on 1st January and 1st Ju ly ; 
there does not seem to be any special reason for taking the one 
return rather than the other, but the return for 1st January was 
actually used. The percentage of the population in receipt of 
relief on 1st January 1871, 1881, and 1891 (the three census 
years), less lunatics and vagrants, was therefore tabulated for each 
union. (The investigation was carried out in 1898.) 

5. Administration.—The most important point here, and one 
that lends itself readily to statistical treatmeht, is the relative 
proportion of indoor and outdoor relief (relief in the workhouse 
and relief in the applicant's home). The first question is, 
again, shall we measure this proportion by cost or by numbers 1 
The latter seems, as before, the simpler and more important ratio 
for the present purpose, though some writers have preferred the 
statement in terms of expenditure (e.g. Mr Charles Booth, Aged 
Poor—Condition, 1894). If we decide on the statement in terms , 
of numbers, we still have the choice of expressing the proportion (1) 
as the ratio of numbers given out-relief to numbers in the work-
house, or (2) as the percentage of numbers given out-relief on 
the total number relieved. The former method was chosen, 
partly on the simple ground that it had already been used in an 
earlier investigation, partly on the ground that the use of the 
ratio separates the higher proportions of out-relief more clearly 
from each other, and these differences seem to have significance. 
Thus a union with a ratio of 15 outdoor paupers to one indoor 
seems to be materially different from one with a ratio of, say, 10 
to 1; but if we take, instead of the ratios, the percentages of 
outdoor to total paupers, the figures are 94 per cent, and 91 per 
cent, respectively, which are so close that they will probably fall 
into the same array. The ratio of numbers in receipt of outdoor 
relief to the numbers in the workhouse, in every union, was 
therefore tabulated for 1st January in the census years 1871, 1881 
1891. 

6. Environment.—This is the most difficult factor of all to deal 
with. In Mr Booth's work the factors tabulated were (1) persons 
per acre; (2) percentage of population living two or more to a 
room,i.e. "overcrowding"; (3) rateable value per head (Aged Poor— 
Condition). The data relating to overcrowding were first collected 

13 



194 THEORY OF STATISTICS. 

at the census of 1891, and are not available for earlier years. 
Some trial was made of rateable value per head, but with not 
very satisfactory results. For any given year, and for a group of 
unions of somewhat similar character, e.g. rural, the rateable value 
per head appears to be highly (negatively) correlated with the 
pauperism, but changes in the two are not very highly correlated : 
probably the movements of assessments are sluggish and irregular, 
especially in the case of falling assessments in rural unions, and 
do not correspond at all accurately with the real changes in the 
value of agricultural land. After some consideration, it was 
decided to use a very simple index to the changing fortunes of a 
district, viz. the movement of the population itself. If the 
population of a district is increasing at a rate above the average, 
this is primdfacie evidence that its industries are prospering; if 
the population is decreasing, or not increasing as fast as the 
average, this strongly suggests that the industries are suffering 
from a temporary lack of prosperity or permanent decay. The 
population of every union was therefore tabulated for the censuses 
of 1871, 1881, 1891. 

7. Age Distribution.—As already stated, the figures that are 
known clearly indicate a very rapid rise of the percentage relieved 
after 65 years of age. The percentage of the population over 65 

.years of age was therefore worked out for every union and tabu-
lated from the same three censuses. This is not, of course, 
at all a complete index to the composition of the population as 
affecting the rate of pauperism, which is sensibly dependent on 
the proportion of the two sexes, and the numbers of children as 
well. As the percentage in receipt of relief was, however, 20 per 
cent, for those over 65, and only 1 -2 per cent, for those under that 
age, it is evidently a most important index. (A more complete 
method might have been used by correcting the observed rate of 
pauperism to the basis of a standard population with given num-
bers of each age and sex. . (Cf. below, Chap. XI. pp. 223-25.) 

8. The changes in each of the four quantities that had been 
tabulated for every union were then measured by working out the 
ratios for the intercensal decades 1871-81 and 1881-91, taking 
the value in the earlier year as 100 in each case. The percentage 
ratios so obtained were taken as the four variables. Further, as 
the conditions are and were very different for rural and for urban 
unions, it seemed very desirable to separate the unions into groups 
according to their character. But this cannot be done with any 
exactness : the majority of unions are of a mixed character, con-
sisting, say, of a small town with a considerable extent of the 
surrounding country. It might seem best to base the classification 
on returns of occupations, e.g. the proportions of the population 
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engaged in agriculture, but the statistics of occupations are not 
given in the census for individual unions. Finally, it was decided 
to use a classification by density of population, the grouping used 
being—Rural, 0'3 person per acre or less : Mixed, more than 
0'3 but not more than 1 person per acre : Urban, more than 1 person 
per acre. The metropolitan unions were also treated by them-
selves. The limit 0'3 for rural unions was suggested by the 
density of those agricultural unions the conditions in which 
were investigated by the Labour Commission (the unions of 
Table VII., Chap. IX.): the average density of these was 025, 
and 34 of the 38 were under 0'3. The lower limit of density for 
urban unions—1 per acre—was suggested by a grouping of Mr 
Booth's (group xiv.): of course 1 person per acre is not a density 
associated with an urban district in the ordinary sense of the 
term, but a country district cannot reach this density unless it 
include a small town or portion of a town, i.e. unless a large 
proportion of its inhabitants live under urban conditions. 

The method by which the relations between four variables are 
discussed is fully described in Chapter XII. : at the present stage 
it can only be stated that the discussion is based on the correlations 
between all the possible (6) pairs that can be formed from the four 
variables. 

9. Illustration ii.—The subject of investigation is the inheritance-
of fertility in man. (Cf. Pearson and others, ref. 3.) One table, 
from the memoir cited, was given as an example in the last chapter 
(Table IV.). 

Fertility in man (i.e. the number of children born to a given pair) 
is very largely influenced by the age of husband and wife at 
marriage (especially the latter), and by the duration of marriage. 
It is desired to find whether it is also influenced by the heritable 
constitution of the parents, i.e. whether, allowance being made for 
the effect of such disturbing causes as age and duration of marriage, 
fertility is itself a heritable character. 

The effect of duration of marriage may be largely eliminated 
by excluding all marriages which have not lasted, say, 15 years 
at l^ast. This will rather heavily reduce the number of records 
available, but will leave a sufficient number for discussion. It 
would be desirable to eliminate the effect of late marriages in 
the same way by excluding all cases in which, say, husband was 
over 30 years of age or wife over 25 (or even less) at the time 
of marriage. But, unfortunately, this is impossible ; the age of 
the wife—the most important factor—is only exceptionally given 
in peerages, family histories, and similar works, from which the 
data must be compiled. All marriages must therefore be 
included, whatever the age of the parents at marriage, and the 
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effect of the varying age at marriage must be estimated 
afterwards. 

10. But the correlation between (1) number of children of a 
woman and (2) number of children of her daughter will be further 
affected according as we include in the record all her available 
daughters or only one. Suppose, e.y., the number of children in 
the first generation is 5 (say the mother and her brothers and 
sisters), and that she has three daughters with 0, 2, and 4 
children respectively: are we to enter all three pairs (5, 0), 
(5, 2), (5, 4) in the correlation-table, or only one pair? If the 
latter, which pair? For theoretical simplicity the second process 
is distinctly the best (though it still further limits the available 
data). If it be adopted, some regular rule will have to be made 
for the selection of the daughter whose fertility shall bo entered 
in the table, so as to avoid bias: the first daughter married 
for whom data are given, and who fulfils the conditions as to 
duration of marriage, may, for instance, be taken in every case. 
(For a much more detailed discussion of the problem, and the 
allied problems regarding the inheritance of fertility in the horse, 
the student is referred to the original.) 

11. Illustration iii.—The subject for investigation is the 
relation between the bulk of a crop (wheat and other cereals, 
turnips and other root crops, hay, etc.), and the weather. (Cf. 
Hooker, ref. 6.) 

Produce-statistics for the more important crops of Great 
Britain have been issued by the Board of Agriculture since 
1885 : the figures are based on estimates of the yield furnished 
by official local estimators all over the country. Estimates arc 
published for separate counties and for groups of counties 
(divisions). But the climatic conditions vary so much over the 
United Kingdom that it is better to deal with a smaller area, 
more homogeneous from the meteorological standpoint. On the 
other hand, the area should not be too small; it should be large 
enough to present a representative variety of soil. The group 
of eastern counties, consisting of Lincoln, Hunts, Cambridge, 
Norfolk, Suffolk, Essex, Bedford, and Hertford, was selected as 
fulfilling these conditions. The group includes the county with 
the largest acreage of each of the ten crops investigated, with 
the single exception of permanent grass. 

12. The produce of a crop is dependent on the weather of 
a long preceding period, and it is naturally desired to find the 
influence of the weather at all successive stages during this 
period, and to determine, for each crop, which period of the 
year is of most critical importance as regards weather. It must 
be remembered, however, that the times of both sowing and 
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harvest are themselves very largely dependent on the weather, 
and consequently, on an average of many years, the limits of 
the critical period will not be very well defined. If, therefore, 
we correlate the produce of the crop (X) with the characteristics 
of the weather (Y) during successive intervals of the year, it 
will be as well not to make these intervals too short. It was 
accordingly decided to take successive groups of 8 weeks, over-
lapping each other by 4 weeks, i.e. weeks 1-8, 5-12, etc. 
Correlation coefficients were thus obtained at 4-weeks intervals, 
but based on 8 weeks' weather. 

13. It remains to be decided what characteristics of the weather 
are to be taken into account. The rainfall is clearly one factor 
of great importance, temperature is another, and these two will 
afford quite enough labour for a first investigation. The weekly 
rainfalls were averaged for eight stations within the area, and 
the average taken as the first characteristic of the weather. 
Temperatures were taken from the records of the same stations. 
The average temperatures, however, do not give quite the sort 
of information that is required : at temperatures below a certain 
limit (about 42° Fahr.) there is very little growth, and the 
growth increases in rapidity as the temperature rises above this 
point (within limits). It was therefore decided to utilise the 
figures for "accumulated temperatures above 42° Fahr.," i.e. 
the total number of day-degrees above 42° during each of the 
8-weekly periods, as the second characteristic of the weather; 
these "accumulated temperatures," moreover, show much larger 
variations than mean temperatures. 

The student should refer to the original for the full dis-
cussion as to data. The method of treating the correlations 
between three variables, based on the three possible correlations 
between them, is described in Chapter XII. 

14. Problems of a somewhat special kind arise when dealing 
with the relations between simultaneous values of two variables 
which have been observed during a considerable period of time, 
for the more rapid movements will often exhibit a fairly close 
consilience, while the slower changes show no similarity. The two 
following examples will serve as illustrations of two methods which 
are generally applicable to such cases. 

Illustration iv.—Fig. 41 exhibits the movements of (1) the 
infantile mortality (deaths of infants under 1 year of age per 1000 
births in the same year); (2) the general mortality (deaths at all 
ages per 1000 living) in England and Wales during the period 
1838-1904. A very cursory inspection of the figure shows that 
when the infantile mortality rose from one year to the next 
the general mortality also rose, as a rule; and similarly, when the 
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infantile mortality fell, the general mortality also fell. There 
were, in fact, only five or six exceptions to this rule during the 
whole period under review. The correlation between the annual 
values of the two mortalities would nevertheless not be very high, 
as the general mortality has been falling more or less steadily since 
1875 or thereabouts, while the infantile mortality attained almost 
a record value in 1899. During a long period of time the correla-
tion between annual values may, indeed, very well vanish, for the 
two mortalities are affected by causes which are to a large extent 
different in the two cases. To exhibit, therefore, the closeness of 
the relation between infantile and general mortality, for such 
causes as show marked changes between one year and the next, it 
will be best to proceed by correlating the annual changes, and not 
the annual values. The work would be arranged in the following 
form (only sufficient years being given to exhibit the principle of 
the process), and the correlation worked out between the figures of 
columns 3 and 5. 

1. 

Year. 

2 

Infantile 
Mortality 
per 1000 
Births. 

3. 
Increase or 
Decrease 
from Year 

before. 

4. 
General 

Mortality 
per 1000 

living. 

5. 
Increase or 

Decrease 
from Year 

before. 

1838 159 22'4 
1839 151 t 8 21-8 - 0'6 
1840 154 + 3 22-9 + 1-1 
1841 145 - 0 21-6 - 1 - 3 
1842 152 + 7 21'7 + 0'1 
1843 150 - 2 21 '2 - 0 ' 5 

For the period to which the diagram refers, viz. 1838-1904, the 
following constants were found by this method :— 

Infantile mortality, mean annual change - 0'21 
standard deviation 9'63 

General mortality, mean annual change - 0'09 
standard deviation 114 

Coefficient of correlation + 0'77. 

This is a much higher correlation than would arise from the 
mere fact that the deaths of infants form part of the general 
mortality, and consequently there must be a high correlation 
between the annual changes in the mortality of those who are over 
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and under 1 year of age. (Cf. Exercises 7 and 8, Chap. XI., and 
for method ref. 5.) 
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FIG. 41.—Infantile and General Mortali ty in England and Wales, 1838-1904. 

15. Illustration v.—The two curves of fig. 42 show (1) the 
marriage-rate (persons married per 1000 of the population) for 
England and Wales; (2) the values of exports and imports per 
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FIG. 42.—Marriage-rate and Foreign Trade, England and Wales, 1855-1904. 

head of the population of the United Kingdom for every year 
from 1855 to 1904. Inspection of the diagram suggests a similar 
relation to that of the last example, the one variable showing a 
rise from one year to the next when the other rises, and a fall 
when the other falls. The movement of both variables is, how-
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ever, of a much more regular kind than that of mortality, 
resembling a series of " waves " superposed on a steady general 
trend, and it is the " waves " in the two variables—the short-period 
movements, not the slower trends—which are so clearly related. 

16. I t is not difficult, moreover, to separate the short-period 
oscillations, more or less approximately, from the slower movement. 
Suppose the marriage-rate for each year replaced by the average 
of an odd number of years of which it is the centre, the number 
being as near as may be the same as the period of the " waves"— 
e.g. nine years. If these short-period averages were plotted on 
the diagram instead of the rates of the individual years, we should 
evidently obtain a smoother curve which would clearly exhibit 
the trend and be practically free from the conspicuous waves. 
The excess or defect of each annual rate above or below the 
trend, if plotted separately, would therefore give the " waves" 
apart from the slower changes. The figures for foreign trade 
may be treated in the same way as the marriage-rate, and we 
can accordingly work out the correlation between the waves or 
rapid fluctuations, undisturbed by the movements of longer period, 
however great they may be. The arithmetic may be carried out 
in the form of the following table, and the correlation worked out 
in the ordinary way between the figures of columns 4 and 7. 

• 1. 

Year. 

2. 
Marriage-

rate 
(England 

and 
Wales). 

3. 

Nine 
Years' 

^Average. 

4. 

Differ-
ence. 

5. 
Exports + 
Imports, 
£ ' s per 

head 
(U.K.). 

6. 

Nine 
Years' 

Average. 

7. 

Differ-
ence. 

1855 16-2 9-36 
1856 16-7 — — 11-14 — — ' 

1857 16'5 — — 11-85 — — 

1858 16-0 — — 10-73 — - - , — ' 

1859 17'0 16-5 + 0-5 11-72 12-15 - 0 - 4 3 
1860 17-1 16 6 + 0-5 13-03 12-94 + 0-09 
1861 16-3 16-7 - 0 - 4 13-01 13-52 - 0 - 5 1 
1862 16'1 16-8 0-7 13-40 14-17 - 0 - 7 7 
1863 16'8 16*9 - O - I 15-13 14-81 fO-32 
1864 17'2 — — 16-43 — — 

1865 17-5 — | — 16-37 — — 

1866 1 7 5 . — S..— 17-72 — — 

1867 16-5 — . — 16-47 ™ — 

17. Fig. 43 is drawn from the figures of columns 4 and 7, arid 
shows very well how closely the oscillations of the marriage-rate 
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are related to those of trade. For the period 1861-95 the 
correlation between the two oscillations (Hooker, ref. 4) is 0'86. 
The method may obviously be extended by correlating the devia-
tion of the marriage-rate in any one year with the deviation of 
the exports and imports of the year before, or two years before, 
instead of the same year; if a sufficient number of years be 
taken, an estimate may be made, by interpolation, of the time-
difference that would make the correlation a maximum if it were 
possible to obtain the figures for exports and imports for periods 
other than calendar years. Thus Mr Hooker finds (ref. 4) that 
on an average of the years 1861-95 the correlation would be a 
maximum between the marriage-rate and the foreign trade of 

1860 65 10 75 80 85 90 95 

FIG. 43.—Fluctuations in (I) Marriage-rate and (2) Foreign Trade (Exports 
+ Imports per head) in England and Wales : the Curves show Deviations 

from 9-year means. Data of R. H. Hooker, Jour. Roy. Stat. Soc., 1901. 

about one-third of a year earlier. The method is an extremely 
useful one and is obviously applicable to any similar case. The 
student should refer to the paper by Mr Hooker, cited. Reference 
may also be made to ref. 9, in which several diagrams are given 
similar to fig. 43, and the nature of the relationship between the 
marriage-rate and such factors as trade, unemployment, etc , is 
discussed, it being suggested that the relation is even more 
complex than appears from the above. 

18. It was briefly mentioned in § 9 of the last chapter that 
the treatment of cases when the regression was non-linear was, 
in general, somewhat difficult. Such cases lie strictly outside 
the scope of the present volume, but it may be pointed out 
that if a relation between X and Y be suggested, either by 
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theory or by previous experience, it may be possible to throw 
that relation into the form 

Y=A + B.<f>(X), 

where A and B are the only unknown constants to be determined. 
If a correlation-table be then drawn up between Y and <t>(X) 
instead of Y and X, the regression will be approximately linear. 
Thus in Table V. of the last chapter, .if X be the rate of 
discount and Y the percentage of reserves on deposits, a 
diagram of the curves of regression, or curves on which the 
means of arrays lie, suggests that the relation between X and Y 
is approximately of the form 

X(Y-B) = A, 

A and B being constants ; that is, 

XY=A+BX. 

Or, if we make XY a new variable, say Z, 

Z=A + BX. 

Hence, if we draw up a new correlation-table between X and Z 
the regression will probably be much more closely linear. 

If the relation between the variables be of the form 

, Y=ABK 

we have 
log F= log A + X. log B, 

and hence the relation between log Y and X is linear. Similarly, 
if the relation be of the form 

XnY=A 
we have 

log Y — log A - n. log X, 

and so the relation between log Y and log X is linear By 
means of such artifices for obtaining correlation-tables in 
which the regression is linear, it may be possible to do a good 
deal in difficult cases whilst using elementary methods only. 
The advanced student should refer to ref. 12 for a different 
method of treatment. 

19. The only strict method of calculating the correlation 
coefficient is that described in Chapter IX. from the formula 

r = ^ . Approximations to this value may, however, be iV.o'ja-j 
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found in various ways, for the most part dependent either (1) 

on the formula for the two regressions r— and r—, or (2) on 
°V 

the formulae for the standard deviations of the arrays trx J 1 - r2 

and o-j \ / l — Such approximate methods are not recommended 
for ordinary use, as they will lead to different results in different 
hands, but a few may be given here, as being occasionally useful 
for estimating the value of the correlation in cases where the 
data are not given in such a shape as to permit of the proper 
calculation of the coefficient. 

(1) The means of rows and columns are plotted on a diagram, 
and lines fitted to the points by eye, say by shifting about 
a stretched black thread until it seems to run as near as may 
be to all the points. If bv b.2 be the slopes of these two lines 
to the vertical and the horizontal respectively, 

r = Jbvb2. 

Hence the value of r may be estimated from any such diagram 
as figs. 36-40 in Chapter IX , in the absence of the original 
table. Further, if a correlation-table be not grouped by 
equal intervals, it may be difficult to calculate the product 
sum, but it may still be possible to plot approximately a diagram 
of the two lines of regression, and so determine roughly the 
value of r. Similarly, if only the means of two rows and 
two columns, or of one row and one column in addition to the 
means of the two variables, are known, it will still be possible 
to estimate the slopes of RR and CC, and hence the correlation 
coefficient. 

(2) The means of one set of arrays only, say the rows, are 
calculated, and also the two standard-deviations crx and ar The 
means are then plotted on a diagram, using the standard-deviation 
of each variable as the unit of measurement, and a line fitted by 
eye. The slope of this line to the vertical is r. If the standard 
deviations be not used as the units of measurement in plotting, 
the slope of the line to the vertical is rcrx/<ry, and hence r will be 
obtained by dividing the slope by the ratio of the standard-
deviations. 

This method, or some variation of it, is often useful as a 
makeshift when the data are too incomplete to permit of the 
proper calculation of the correlation, only one line of regression 
and the ratio of the dispersions of the two variables being required : 
the ratio of the quartile deviations, or other simple measures of 
dispersion, will serve quite well for rough purposes in lieu of the 
ratio of standard-deviations. As a special case, we may note that 
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if the two dispersions are approximately the same, the slope of 
RR to the vertical is r. 

Plotting the medians of arrays on a diagram with the quartile 
deviations as units, and measuring the slope of the line, was the 
method of determining the correlation coefficient ("Galton's 
function ") used by Sir Francis Galton, to whom the introduction 
of such a coefficient is due. (Refs. 2-4 of Chap. IX. p. 188.) 

(3) If sx be the standard-deviation of errors of estimate like 
x- bvy, we have from Chap. IX. § 11— 

s/ = <rj( l - r « ) , 
and hence 

But if the dispersions of arrays do not differ largely, and the 
regression is nearly linear, the value of sx may be estimated from 
the average of the standard-deviations of a few rows, and r deter-
mined—or rather estimated—accordingly. Thus in Table III,, 
Chap. IX., the standard-deviations of the ten columns headed 
62-5-63-5, 63-5-64-5, etc., are— 

2-56 2-26 
2-11 2-26 
2-55 2-45 
2-24 2-33 
2-23 
2-60 Mean 2-359 

The standard-deviation of the stature of all sons is 2'75 : hence 
approximately 

/ , /2-359X2 
r = v 1 - U T 5 ) 

= 0-514. 
This is the same as the value found by the product-sum method 
to the second decimal place. I t would be better to take an 
average by counting the square of each standard-deviation 
once for each observation in the column (or " weighting" 
it with the number of observations in the column), but in the 
present case this would only lead to a very slightly different 
result, viz. o- = 2'362, r = 0'512. 

20. The Correlation Ratio.—The method clearly would not 
give an approximation to the correlation coefficient, however, in 
the case of such tables as V. and VI. of Chap. IX., in which the 
means of successive arrays do not lie closely round straight lines. 
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In such oases it would always tend to give a value for r markedly 
higher than that given by the product-sum method. The 
product-sum method gives in fact a value based on the standard-
deviation round the line of regression; the method used above 
gives a value dependent on the standard-deviation round a line 
which sweeps through all the means of arrays, and the second 
standard-deviation is necessarily less than the first. We reach, 
therefore, a generalised coefficient which measures the approach 
towards a curvilinear line of regression of any form. 

Let «„ denote the standard-deviation of any array of X's, and 
let n, as before, be the number of observations in this array (Chap. 
IX., § 11), and further let 

<rj = %(n- sJ)IN . . . . (1). 

Then o-^ is an average of the standard-deviations of the arrays 
obtained as suggested at the end of the last section. Now let 

T - 1 = 0 ^ ( 1 - 0 • . . . (2) 
or 

w = i - H • • • • ( 3 ) ' 

Then r ^ is termed by Professor Pearson a correlation-ratio (ref. 
13). As there are clearly two correlation-ratios for any one table, 
it should be distinguished as the correlation-ratio of X on Y: it 
measures the approach of values of X associated with given 
values of Y to a single-valued relationship of any form. The 
calculation would be exceedingly laborious if we had actually to 
evaluate o^, but this may be avoided and the work greatly 
simplified by the following consideration. If Mx denote the mean 
of all JPs, mx the mean of an array, then we have by the general 
relation given in § 11 of Chap. VIII. (p. 142) 

Or, using o-^ to denote the standard-deviation of mIt 

= + • • • • (4) 
Hence, substituting in (3) 

V ^ — (5) <rx 

The correlation-ratio of X on Y is therefore determined when we 
have found, in addition to the standard-deviation of X, the 
standard-deviation of the means of its arrays. 

21. The correlation-ratio of X on Y cannot be less than the 
correlation-coefficient for X and Y, and tjxi/

2 - r 2 is a measure of 
the divergence of the regression of X on Y from linearity. For 
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if d denote, as in Chap. IX., the deviation of the moan of an 
array of X's from the line of regression, we have by the relation 
of Chap. IX., § 11, p. 172 

< ^ ( 1 - ^ ) = ^ + ^ . . . . (6) 
Substituting for <ra from (2), that is, 

^ ^ ( W - * - 2 ) • • • • CO 
But o-a is necessarily positive, and therefore r)xu is not less than r. 
The magnitude of <rd and therefore of 17'' - r 2 measures the 
divergence of the actual line through the means of arrays from 
the line of regression. 

It should be noted that, owing to the fluctuations of sampling, 
r and 77 are almost certain to differ slightly, even though the 
regression may be truly linear. The observed value of tf - r2 

must be compared with the values that may arise owing to 
fluctuations of sampling alone, before a definite significance can 
be ascribed to it (cf. Pearson, ref. 14, Blakeman, ref. 16, and the 
•formulas cited therefrom on p. 352 below). 

22. The following table illustrates the form of the arithmetic 
for the calculation of the correlation-ratio of son's stature on 
father's stature (Table III. of Chap. IX., p. 160). In the first 
column is given the type of the array (stature of father); in the 
second, the mean stature of sons for that array; in the third, the 
difference of the mean of the array from the mean stature of all 
sons. In the fourth column these differences are squared, and in 
the sixth they are multiplied by the frequency of the array, two 
decimal places only having been retained as sufficient for the 
present purpose. The sum total of the last column divided by 
the number of observations (1078) gives crm

2 = 2'058, or vmy=^ 1'43. 
As the standard-deviation of the sons' stature is 2'75 in. (cf. 
Chap. IX., question 3), rjyx = 0'52. Before taking the differences 
for the third column of such a table, it is as well to check the 
means of the arrays by recalculating from them the mean of the 
whole distribution, i.e. multiplying each array-mean by its fre-
quency, summing, and dividing by the number of observations. 
The form of the arithmetic may be varied, if desired, by working 
from zero as origin, instead of taking differences from the true 
mean. The square of the mean must then be subtracted from 
?.(f-m?)IN to give <rmy

2. 
If the second correlation-ratio for this table be worked out in 

the same way, the value will be found to be the same to the 
second place of decimals : the two correlation-ratios for this table 
are, therefore, very nearly identical, and only slightly greater 
than the correlation-coefficient (0'51). Both regressions, it 
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follows from the last section, are very nearly linear, a result 
confirmed by the diagram of the regression lines (fig. 37, p. 174). 
On the other hand, it is evident from fig. 39, p. 176, that we 
should expect the two correlation-ratios for Table VI. of the same 
chapter to differ considerably from each other and from the correla-
tion. The values found are Tjxy = 0'14, r]yx = 0'38 (r= - 0 0 1 4 ) : 
rjxy is comparatively low as proportions of male births differ little 
in the successive arrays, but rjyx is higher since the line of regres-
sion of Y on X is sharply curved. For Table VIII.. p. 183, the 
two ratios are -qxy = 0'46, rjyx = 039 (r = 0'34). The confirmation 
of these values is left to the student. 

The student should notice that the correlation-ratio only 
affords a satisfactory test when the number of observations is 
sufficiently large for a grouped correlation table to be formed. 
In the case of a short series of observations such as that given in 
Table VII., p. 178, the method is inapplicable. 

CALCULATION OF THE CORRELATION-RATIO : Example.—Son's Staturr on 
Father's Stature: Data of Table III., Chap. IX., p. 160. 

1. 

Type of 
Array 

(Father's 
Stature). 

2. 

Mean of 
Array 
(Son's 

Stature). 

3. 
Difference 
from Mean 
of all Sons 

(68-66). 

4. 

Square of 
Difference. 

5. 

Frequency. 

6. 

Frequency x 
(difference)2. 

59 64-67 - 3 - 9 9 15-9201 3 47-76 
60 65-64 - 3 - 0 2 9-1204 3-5 31 -9-2 
61 66-34 - 2 - 3 2 5-3824 8 43-06 
62 65-56 - 3 - 1 0 9-6100 17 163-37 
63 66-68 - 1 - 9 8 3-9204 33-5 131-33 
64 66-74 - 1 - 9 2 3-6864 61-5 226-71 
65 67-19 -1 -47 2-1609 95-5 206-37 
66 67-61 - 1 - 0 5 1-1025 142 156-56 
67 67-95 - 0 - 7 1 0-5041 137-5 69-31 
68 69-07 + 0-41 0-1681 154 25-89 
69 69-39 + 0-73 0-5329 141-5 75-41 
70 69-74 + 1-08 1-1664 116 135-30 
71 70-50 + 1-84 3-3856 78 264-08 
72 70-87 + 2-21 4-8841 49 239-32 
73 72-00 + 3-34 11-1556 28-5 31793 
74 71-50 + 2-84 8-0656 4 32-26 
75 71-73 + 3-07 9-4249 5-5 51-84 

Total 1078 2218-42 

o-mj,2 = 2218"42/1078 = 2 058 ^ = 1-43 
i j„x=l 43/2-75 = 0-52. 
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CHAPTER XI. 

M I S C E L L A N E O U S T H E O R E M S I N V O L V I N G T H E U S E O F 

^ E H E C O R R E L A T I O N - C O E F F I C I E N T . 

1. Introductory—2. Standard-deviation of a sum or difference—3-5. In-
fluence of errors of observation and of grouping on the standard-
deviation—6-7. Influence of errors of observation on the correlation-
coefficient (Spearman's theorems)—8. Mean and standard-deviation 
of an index — 9. Correlation between indices —10. Correlation-
coefficient for a two- x two-fold table—11. Correlation-coefficient 
for all possible pairs of JV values of a variable—12. Correlation due 
to heterogeneity of material—13. .Reduction of correlation due to 
mingling of uncorrelated with correlated material — 14-17. The 
weighted mean—18-19. Application of weighting to the correction 
of death-rates, etc., for varying sex and age-distributions—20. The 
weighting of forms of average other than the arithmetic mean. 

1. IT has already been pointed out that a statistical measure, if 
it is to be widely useful, should lend itself readily to algebraical 
treatment. The arithmetic mean and the standard-deviation 
derive their importance largely from the fact that they fulfil this 
requirement better than any other averages or measures of dis-
persion ; and the following illustrations, while giving a number of 
results that are of value in one branch or another of statistical 
work, suffice to show that the correlation-coefficient can be treated 
with the same facility. This might indeed be expected, seeing 
that the coefficient is derived, like the mean and standard-devia-
tion, by a straightforward process of summation. 

2. To find the Standard-deviation of the sum or difference Z of 
corresponding values of two variables X^ and X„. 

Let z, x v denote deviations of the several variables from 
their arithmetic means. Then if 

evidently 
Z=X1±X,i 

210 
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Squaring both sides of the equation and summing, 

2(z2) = t ( x 2 ) + ± 

That is, if r be the correlation between x1 and x2, and cr, o-j, cr2 
the respective standard-deviations, 

cr2 = ffx
2 + cr2

2 ± 2r.<r1<x2 . . . (1) 

If x, and are uncorrelated, we have the important special case 

o-2 = o-1
2 + cr2

2 . . . . (2) 

The student should notice that in this case the standard-
deviation of the sum of corresponding values of the two variables 
is the same as the standard-deviation of their difference. 

The same process will evidently give the standard-deviation of a 
linear function of any number of variables. For the sum of a 
series of variables Xv X2 . . . . X„ we must have 

tr2 = o-j2 + (r2
2 + . . . . + <r„2 + 2r12.<r10'2 + 2r13.(r1(r3 

+ . . . . + 2r23.o-,o-3 + . . . . 

?'12 being the correlation beween X1 and X2, r23 the correlation 
between X2 and Xa, and so on. 

3. Influence of Errors of Observation on the Standard-deviation. 
—The results of § 2 may be applied to the theory of errors of 
observation. Let us suppose that, if any value of X be observed 
a large number of times, the arithmetic mean of the observations 
is approximately the true value, the arithmetic mean error being 
zero. Then, the arithmetic mean error being zero for all values 
of X, the error, say 8, is uncorrelated with X. In this case if x1 be 
an observed deviation from the arithmetic mean, x the true devia-
tion, we have from the preceding 

< = < r * 2 W • • • • (3) 
The effect of errors of observation is, consequently, to increase the 
standard-deviation above its true value. The student should 
notice that the assumption made does not imply the complete in-
dependence of X and 8: he is quite at liberty to suppose that 
errors fluctuate more, for example, with large than with small 
values of X, as might very probably happen. In that case the 
contingency-coefficient between X and 8 would not be zero, 
although the correlation-coefficient might still vanish as supposed. 

4. Influence of Grouping on [lie Standard-deviation.-—The 
consequence of grouping observations to form the frequency 
distribution is to introduce errors that are, in effect, errors of 



212 THEORY OF STATISTICS. 

measurement. Instead of assigning to any observation its true 
value X, we assign to it the value X j corresponding to the centie 
of the class-interval, thereby making an error 8, where 

X j = x + s. 

To deduce from this equation a formula showing the nature of 
the influence of grouping on the standard-deviation we must know 
the correlation between the error 8 and X or Xv If the original 
distribution were a histogram, Xl and 8 would be uncorrelated, 
the mean value of 8 being zero for every value of X j : further, the 
standard-deviation of 8 would be c2/12, where c is the class-
interval (Chap. VIII. § 12, eqn. (10)). Hence, if o-j be the 
standard-deviation of the grouped values Xx and <r the standard-
deviation of the true values X, 

r2 

But the true frequency distribution is rarely or never a 
histogram, and trial on any frequency distribution approximating 
to the symmetrical or slightly asymmetrical forms of fig. 5, p. 89, 
or fig. 9 (a), p. 92, shows that grouping tends to increase rather 
than reduce the standard-deviation. If we assume, as in § 3, that 
the correlation between 8 and X, instead of 8 and Xv is appreciably 
zero and that the standard-deviation of 8 may be taken as c2/12, 
as before (the values of 8 being to a first approximation uniformly 
distributed over the class-interval when all the intervals are 
considered together), then we have 

-Q 

• • • W cr2 = cr,2 — 1 12 
This is a formula of correction for grouping (Sheppard's correc-
tion, refs. 1 to 4) that is very frequently used, and that trial 
(ref. 1) shows to give very good results for a curve approximating 
closely to the form of fig. 5, p. 89. The strict proof of the 
formula lies outside the scope of an elementary work : it is based 
on two assumptions: (1) that the distribution of frequency is 
continuous, (2) that the frequency tapers off gradually to zero 
in both directions. The formula would not give accurate results 
in the case of such a distribution as that of fig. 9 (6), p. 92, or 
fig. 14, p. 97, neither is it applicable at all to the more divergent 
forms such as those of figs. 15, et seq. 

5. If certain observations be repeated so that we have in every 
case two measures and ®2 of the same deviation x, it is possible 
to obtain the true standard-deviation <rx if the further assumption 
is legitimate that the errors 82 and 82 are uncorrelated with each 
other. On this assumption 
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Z(x1x2) = S(x + 81)(x+82) 
= 2 « > , 

and accordingly 

«r. 2 _ 
N • (5) 

(This formula is part of Spearman's formula for the correction of 
the correlation-coefficient, cf. § 7.) 

6. Influence of Erroi's of Observation on the Correlation-coefficient. 
—Let xv be the observed deviations from the arithmetic means, 
x, y the true deviations, and 8, t the errors of observation. Of 
the four quantities x, y, 8, e we will suppose x and y alone to 
be correlated. On this assumption 

a(*1y1) = S(*y) . . • . (6) 
It follows at once that 

and consequently the observed correlation is less than the true 
correlation. This difference, it should be noticed, no mere increase 
in the number of observations can in any way lessen. 

7. Spearman's Theorems.—If, however, the observations of both 
x and y be repeated, as assumed in § 5, so that we have two 
measures x^ and ®2, y1 and y2 of every value of x and y, the true 
value of the correlation can be obtained by the use of equations 
(5) and (6), on assumptions similar to those made above. For 
we have 

ry ry rv* ry ' 

Or, if we use all the four possible correlations between observed 
values of x and observed values of y, 

„ 4 _r'iVi'rxtyir'ivi-r*ni\ /o\ 
- /,. r y • • ' \°> V'lV yty2J 

Equation (8) is the original form in which Spearman gave his 
correction formula (refs. 5, 6). It will be seen to imply the 
assumption that, of the six quantities x, y, 8j, 82, c1, e2, x and y 
alone are correlated. The correction given by the second part 
of equation (7), also suggested by Spearman, seems, on the 



214 THEORY OF STATISTICS. 

whole, to be safei', for it eliminates the assumption that the errors 
in x and in y, in the same series of observations, are uncorrelated. 
An insufficient though partial test of the correctness of the 
assumptions may be made by correlating xx - x., with ?/j - y„ : this 
correlation should vanish. Evidently, however, it may vanish 
from symmetry without thereby implying that all the correlations 
of the errors are zero. 

8. Mean and, Standard-deviation of an Index.—-(Ref. 10.) The 
means and standard-deviations of non-linear functions of two or 
more variables can in general only be expressed in terms of the 
means and standard-deviations of the original variables to a first 
approximation, on the assumption that deviations are small 
compared with the mean values of the variables. Thus let it be 
required to find the mean and standard-deviation of a ratio or 
index Z = XJX2, in terms of the constants for X1 and X2. Let / 
be the mean of Z, i!7, and M2 the means of Xj and Xv Then 

N \ x j N M 2 \ m J \ M j 

Expand the second bracket by the binomial theorem, assuming 
that x2/M2 is so small that powers higher than the second can 
be neglected. Then to this approximation 

7 = 1 * 1 
N M„ 

That is, if r be the correlation between x1 and xv and if vx = <jx\Mv 

Vt = vJ-M2. 

7 = ^ ( 1 + . . . (9) 

If s be the standard-deviation of Z we have 

»2 + 72 
n \ X J 

N + M j V + M j 

Expanding the second bracket again by the binomial theorem, 
and neglecting terms of all orders above the second, 

s2 + 72= 1 M ' ' s ( 1 + --1 ) ' ( 1 - 2 X- + + N M . f \ + M j V M, + Ml 
M 2 

= ^ 2 ( 1 2 + W ) 
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or from (9) 

j h W - Z ™ A + V ) • (10) 
2 

9. Correlation between Indices.—(Ref. 10.) The following prob-
lem affords a further illustration of the use of the same method; 
Required to find approximately the correlation between two ratios 
Z1 = X1/X,, Z2 = XJXS, X1 X„ and Xa being uncorrelated. 

Let the means of the two ratios or indices be / j / 2 and the 
standard-deviations Sj s.2; these are given approximately by (9) 
and (10) of the last section. The required correlation p will be 
given by 

Neglecting terms of higher order than the second as before and 
remembering that all correlations are zero, we have 

where, in the last step, a term of the order v3
4 has again been 

neglected. Substituting from (10) for sx and s2, we have finally— 

This value of p is obviously positive, being equal to 0'5 if 
v1=v2 = v3; and hence even if Xx and X2 are independent, the in-
dices formed by taking their ratios to a common denominator Xs will 
be correlated. The value of p is termed by Professor Pearson the 
" spurious correlation." Thus if measurements be taken, say, on 
three bones of the human skeleton, and the measurements grouped 
in threes absolutely at random, there will, nevertheless, be a 
positive correlation, probably approaching 0'5, between the indices 
formed by the ratios of two of the measurements to the third. To 
give another illustration, if two individuals both observe the same 
series of magnitudes quite independently, there may be little, if 

. (11) 
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any, correlation between their absolute errors. But if the errors 
be expressed as percentages of the magnitude observed, there 
may be considerable correlation. It does not follow of necessity 
that the correlations between indices or ratios are misleading. 
If the indices are uncorrelated, there will be a similar "spurious" 
correlation between the absolute measurements Z v X i = X l and 
Z2.X3 = X2, and the answer to the question whether the correlation 
between indices or that between absolute measures is misleading 
depends on the further question whether the indices or the 
absolute measures are the quantities directly determined by the 
causes under investigation (cf. ref. 12). 

The case considered, where Xx X2 X3 are uncorrelated, is only 
a special one; for the general discussion cf. ref. 10. 

10. The Correlation-coefficient for a two- x two-fold Table.—The 
correlation-coefficient is in general only calculated for a table with 
a considerable number of rows and columns, such as those given 
in Chapter IX. In some cases, however, a theoretical value is 
obtainable for the coefficient, which holds good even for the limiting 
case when there are only two values possible for each variable (e.g. 
0 and 1) and consequently two rows and two columns (cf. one 
illustration in § 11, and for others the references given in 
questions 11 and 12). It is therefore of some interest to obtain 
an expression for the coefficient in this case in terms of the class-
frequencies. 

Using the notation of Chapters I.-IV. the table may be written 
in the form 

Values of 
Second 

Variable. 

Values of First Variable. Values of 
Second 

Variable. X, X', Total 

x 2 (AB) {S) 

X'2 {•dP) {aP) {P) 

Total {A) («) N 

Taking the centre of the table as arbitrary origin and the.' 
class-interval, as usual, as the unit, the co-ordinates of the 
mean are 

(A)} 
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The standard-deviations a-v cr2 are given by 

<r12 = 0 - 2 5 - f 2 = (^ ) (a ) / i^ 
cr2

2 = 0-25 - ? = (B)(/3)/IP. 

Finally, 
= {{(AB) + (a/3) - (A/3) - (aB)} - N&j. 

Writing 
(AB)-(A)(B)/W=8 

(as in Chap. III. §§ 11-12) and replacing f, rj by their values, 
this reduces to 

~S,(xy) = 8. 
Whence 

i O 
r = J(A)(a)(B)(f3)'- • • • (12) 

This value of r can be used as a coefficient of association, but, 
unlike the association-coefficient of Chap. III. § 13, which is 
unity if either (AB) = (A) or (AB) = (B), r only becomes unity if 
(AB) = (A) = (B). This is the only case in which both frequencies 
(aB) and (A/3) can vanish so that (AB) and (a/3) correspond to 
the frequencies of two points Yv X2 }r

2 on a line. Obviously 
this alone renders the numerical values of the two coefficients 
quite incomparable with each other. But further, while the 
association coefficient is the same for all tables derived from one 
another by multiplying rows or columns by arbitrary coefficients, 
the correlation coefficient (12) is greatest when (.4) = (a) and 
(B) = (/3), i.e. when the table is symmetrical, and its value is 
lowered when the symmetrical table is rendered asymmetrical by 
increasing or reducing the number of -4's or B's. For moderate 
degrees of association, the association coefficient gives much the 
larger values. The two coefficients possess, in fact, essentially 
different properties, and are different measures of association in 
the same sense that the geometric and arithmetic means are 
different forms of average, or the interquartile range and the 
standard-deviation different measures of dispersion. 

The student is again referred to ref. 3 of Chap. III. for a 
general discussion of various measures of association, including 
these and others, that have been proposed. 

11. The Correlation-coefficient for all possible pairs of N values 
of a Variable.—In certain cases a correlation-table is formed by 
combining N observations in pairs in all possible ways. If, for 
example, a table is being formed to illustrate, say, the correlation 
between brothers for stature, and there are three brothers in 
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one family with statures 5 ft. 9, 5 ft. 10, and 5 ft. 11, these are 
regarded as giving the six pairs 

5 ft. 9 with 5 ft. 10 5 ft. 10 with 5 ft. 9 
„ 5 ft. 11 5 ft. 11 „ 

5 ft. 10 „ „ „ „ 5 ft. 10 
which may be entered into the table. The entire table will bo 
formed from the aggregate of such subsidiary tables, each due to 
one family. Let it be required to find the correlation-coefficient, 
however, for a single subsidiary table, due to a family with N 
members, the numbers of pairs being therefore N(N~- 1). 

As each observed value of the variable occurs N - 1 times, 
i.e. once in combination with every other value, the means and 
standard-deviations of the totals of the correlation-table are the 
same as for the original N observations, say M and cr. If x„ 
x3 . . . . be the observed deviations, the product sum may be 
written 

-t- -+- . . . . 
x.+ . . . . 

OC-^ | OCqOCQ t i x + . . . . 
+ 
= x1{li(x) - XY} + x2[%(x) - x2) + x3{%(x) - X?i} + . . . . 

= - Xj2 - x2
2 - xs

2 - . . . . = - No3, 

whence, there being N(N- 1) pairs, 
Ncr* 1 

r iV(-V- I )ir'~ i V - 1 • • • ( 1 3 ) 

Kor N= 2, 3, 4 . . . . this gives the successive values of r = - 1, 
— -J, — $ • . . . . I t is clear that the first value is right, for two 
values xv x2 only determine the two points (xv x2) and (x2, xj), 
and the slope of the line joining them is negative. 

The student should notice that a corresponding negative 
association will arise between the first and second member of the 
pair if all possible pairs are formed in a mixture of A's and a's. 
Looking at the association, in fact, from the standpoint of § 10, 
the equation (13) still holds, even if the variables can only assume 
two values, e.g. 0 and 1. This result is utilised in § 14 of Chapter 
XIV. 

12. Correlation due to Heterogeneity of Material.—The following 
theorem offers some analogy with the theorem of Chap. IV. 
§ 6 for a t t r i b u t e s . — I f X and Y are uncorrelated in each of tv>o 
records, they will nevertheless exhibit some correlation when the 
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two records are mingled, unless the mean value of X in the 
second recoi'd is identical with that in the first record, or the mean 
value of Y in the second record is identical with that in the first 
record, or both. 

This follows almost at once, for if M v M2 are the mean values of 
X in the two records Kv K2, the mean values of Y, vVj, N2 the 
numbers of observations, and M, K the means when the two 
records are mingled, the product-sum of deviations about M, K is 
iV, (Mx - .I/)(Ar

1 • • it) + N.pl, - M){K, - K). 
Evidently the first term can only be zero if M = MX or Ii=Kv 

But the first condition gives 

1VYMl + N2M2 

A\+N.2 - m » 
that is, Mx = M2. 

Similarly, the second condition gives KX = K2. Both the first 
and second terms can, therefore, only vanish if Mx = M2 or 
Kx = K2. Correlation may accordingly be created by the mingling 
of two records in which X and Y vary round different means. 
(For a more general form of the theorem cf. ref. 18.) 

13. Reduction of Correlation due to mingling of uncorrelated 
with correlated pairs.—Suppose that nx observations of x and y 
give a correlation-coefficient 

r 

1 <*x<rv' 

Now let n2 pairs be added to the material, the means and 
standard-deviations of x and y being the same as in the first 
series of observations, but the correlation zero. The value of 
%{xy) will then be unaltered, and we will have 

ry) 
+ « 2 k < V 

Whence - 2 = ~ 1 — . . . . ( H ) rx nx +n 2 

Suppose, for example, that a number of bones of the human 
skeleton have been disinterred during some excavations, and 
a correlation r2 is observed between pairs of bones presumed 
to come from the same skeleton, this correlation being rather 
lower than might have been expected, and subject to some 
uncertainty owing to doubts as to the allocation of certain 
bones. If rx is the value that would be expected from other 
records, the difference might be accounted for on the hypothesis 
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that, in a proportion - r2)/Vj of all the pairs, the bones do 
not really belong to the same skeleton, and have been virtually 
paired at random. (For a more general form of the theorem cf. 
again ref. 18.) 

14. The Weighted Mean.—The arithmetic mean M of a series 
of values of a variable X was defined as the quotient of the sum 
of those values by their number N, or 

M=2(X)/JV. 

If, on the other hand, we multiply each several observed 
value of X by some numerical coefficient or weight W, the 
quotient of the sum of such products by the sum of the weights 
is defined as a iveighted mean of X, and may be denoted by Af 
so that 

M' = %(W.X)I%{W). 

The distinction between " weighted " and " unweighted " means 
is, it should be noted, very often formal rather than essential, 
for the " weights" may be regarded as actual, estimated, or 
virtual frequencies. The weighted mean then becomes simply 
an arithmetic mean, in which some new quantity is regarded 
as the unit. Thus if we are given the means Mv M.it Ma . . . . 
Mr of r series of observations, but do not know the number 
of observations in every series, we may form a general average 
by taking the arithmetic mean of all the means, viz. 
treating the series as the unit. But if we know the number 
of observations in every series it will be better to form the 
weighted mean 2(iO/)/2(iV), weighting each mean in proportion 
to the number of observations in the series on which it is based. 
The second form of average would be quite correctly spoken 
of as a weighted mean of the means of the several series : at 
the same time it is simply the arithmetic mean of all the 
series pooled together, i.e. the arithmetic mean obtained by 
treating the observation and not the series as the unit. 
(Chap. VII. § 13.) 

15. To give an arithmetical illustration, if a commodity is sold 
at different prices in different markets, it will be better to form 
an average price, not by taking the arithmetic mean of the several 
market prices, treating the market as the unit, biit by weighting 
each price in proportion to the quantity sold at that price, if 
known, i.e. treating the unit of quantity as the unit of frequency. 
Thus if wheat has been sold in market A at an average price of 
29s. Id. per quarter, in market B at an average price of 27s. 7d., 
and in market C at an average price of 28s. 4d., we may, if no 
statement is made as to the quantities sold at these prices (as very 
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often happens in the ease of statements as to market prices), take 
the arithmetic mean (28s. 4d.) as the general average. But if we 
know that 23,930 qrs. were sold at A, only 26 qrs. at B, and 3933 
qrs. at C, it will be better to take the weighted mean 

(29s. Id. x 23,930) + (27s. 7d. x 26) + (28s. 4d. x 3933) 
27889 

to the nearest penny. This is appreciably higher than the 
arithmetic mean price, which is lowered by the undue importance 
attached to the small markets B and C. 

In the case of index-numbers for exhibiting the changes in 
average prices from year to year (cf. Chap. VII. § 25), it may 
make a sensible difference whether we take the simple arithmetic 
mean of the index-numbers for different commodities in any one 
year as representing the price-level in that year, or weight the 
index-numbers for the several commodities according to their 
importance from some point of view ; and much has been written 
as to the weights to be chosen. If, for example, our standpoint 
be that of some average consumer, we may take as the weight for 
each commodity the sum which he spends on that commodity in 
an average year, so that the frequency of each commodity is 
taken as the number of shillings or pounds spent thereon instead 
of simply as unity. 

Bates or ratios like the birth-, death-, or marriage-rates of a 
country may be regarded as weighted means. For, treating the 
rate for simplicity as a fraction, and not as a rate per 1000 of the 
population, 

total births 
Birth-rate of whole country = , -, , , ,. 

J total population 
2(birth-rate in each district x population in that district) 

^(population of each district) 
i.e. the rate for the whole country is the mean of the rates in the 
different districts, weighting each in proportion to its population. 
We use the weighted and unweighted means of such rates as 
illustrations in §17 below. 

16. It is evident that any weighted mean will in general differ 
from the unweighted mean of the same quantities, and it is 
required to find an expression for this difference. If r be the 
correlation between weights and variables, <rw and <rx the standard-
deviations, and w the mean weight, we have at once 

2( W.X) = N(M.w + rcrw<rx), 

whence M' = M . . (15) 
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That is to say, if the weights and variables are positively correlated, 
the weighted mean is the greater; if negatively, the less. In some 
cases r is very small, and then weighting makes little difference, 
but in others the difference is large and important, r having a 
sensible value and o-xcr„/w a large value. 

17. The difference between weighted and unweighted means 
of death-rates, birth-rates or other rates on the population in 
different districts is, for instance, nearly always of importance. 
Thus we have the following figures for rates of pauperism 
(Jour. Stat. Soc., vol. lis. (1896), p. 349). 

Janua ry 1. 

Percentages of the Population in 
receipt of Relief. 

J anua ry 1. 
Ar i thmet ic Mean 

of Rates in 
different Districts. 

England and 
Wales as a 

whole. 

1850 6 '51 5-80 
1860 5-20 4-26 
1870 5-45 4-77 
1881 3 68 3 12 
1891 3-29 2 '69 

In this case the weighted mean is markedly the less, and the 
correlation between the population of a district and its pauperism 
must therefore be negative, the larger (on the whole urban) dis-
tricts having the lower percentage in receipt of relief. On the 
other hand, for the decade 1881-90 the average birth-rate for 
England and Wales was 32'34 per thousand, the arithmetic 
mean of the rates for the different districts 30'34 only. The 
weighted mean was therefore the greater, the birth-rate being 
higher in the more populous (urban) districts, in which there is 
a greater proportion of young married persons. 

For the year 1891 the average population of a Poor-law district 
was found to be roughly 45,900 and the standard-deviation cr„ 
56,400 (populations ranging from under 2000 to over half a 
million). The standard-deviation a-x of the percentages of the 
population in receipt of relief was 1'24. We have therefore, 
for the correlation between pauperism and population, 

_ 3^29 - 2-69 459  
r ~ 1'24 X 564 

= -0-39. 
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For the birth-rate, on the other hand, assuming that crjw 
is approximately the same for the decade 1881-90 as in 1891, 
we have, <rx being 4'08, 

_ 32-34 -30-34 459  
r 4t08 X 564 

= + -40. 

The closeness of the numerical values of r in the two cases is, 
of course, accidental. 

18. The principle of weighting finds one very important 
application in the treatment of such rates as death-rates, which 
are largely affected by the age and sex-composition of the popula-
tion. Neglecting, for simplicity, the question of sex, suppose the 
numbers of deaths are noted in a certain district for, say, the 
age-groups 0-, 10-, 20-, etc., in which the fractions of the whole 
population are pQ, pv p2, etc., where ~2(p)= 1. Let the death-
rates for the corresponding age-groups be dg, dj, etc. Then 
the ordinary or crude death-rate for the district is 

D = ~%(d.p) . . . . (16) 

For some other district taken as a basis of comparison, perhaps 
the country as a whole, the death-rates and fractions of the 
population in the several age-groups may be Sj 8, S3 . . . , -n-j ir2 
7r3 . . . , and the crude death-rate 

A = 2(8.7r) . . . . (17) 

Now D and A may differ either because the d's and S's differ 
or because the p's and TT'S differ, or both. It may happen that 
really both districts are about equally healthy, and the death-
rates approximately the same for all age-classes, but, owing to a 
difference of weighting, the first average may be markedly higher 
than the second, or vice versd. If the first district be a rural 
district and the second urban, for instance, there will be a larger 
proportion of the old in the former, and it may possibly have a 
higher crude death-rate that the second, in spite of lower death-
rates in every class. The comparison of crude death-rates is 
therefore liable to lead to erroneous conclusions. The difficulty 
may be got over by averaging the age-class death-rates in the 
district not with the weights px p2 pz . . . . given by its own 
population, but with the weights, TT1 TT2 ir3 . . . . given by the 
population of the standard district. The corrected death-rate for 
the district will then be 

-P' = S(eZ.7r) (18) 
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and D' and A will be comparable as regards age-distribution. 
There is obviously no difficulty in taking sex into account as well 
as age if necessary. The death-rates must be noted for each sex 
separately in every age-class and averaged with a system of 
weights based on the standard population. The method is also 
of importance for comparing death-rates in different classes of the 
population, e.g. those engaged in given occupations, as well as in 
different districts, and is used for both these purposes in the 
Decennial Supplements to the Reports of the Registrar General 
for England and Wales (ref. 14). 

19. Difficulty may arise in practical cases from the fact that 
the death-rates dx d2d3 . . . . are not known for the districts or 
classes which it is desired to compare with the standard popula-
tion, but only the crude rates D and the fractional populations 
of the age-classes px p2 p3 . . . • The difficulty may be partially 
obviated (cf. Chap. IV. § 9, pp. 51-3) by forming what may be 
termed a potential or standard death-rate A' for the class or 
district, A' being given by 

A' = %(8.p) . . . . (19) 

i.e. the rates of the standard population averaged with the 
weights of the district population. I t is the crude death-rate 
that there would be in the district if the rate in every age-
class were the same as in the standard population. An 
approximate corrected death-rate for the district or class is 
then given by 

= . . . . (20) 

D" is not necessarily, nor generally, the same as D'. I t can 
only be the same if 

S (d.ir) ^(S.Tr) 
2 (d.P) 2(8 -P)' 

This will hold good if, e.g., the death-rates in the standard 
population and the district stand to one another in the same 
ratio in all age-classes, i.e. 8Jdx = S2/d2 = 83/d3 = etc. This method 
of correction is used in the Annual Summaries of the Registrar 
General for England and Wales. 

Both methods of correction—that of § 18 and that of the 
present section—are of great and growing importance. They 
are obviously applicable to other rates besides death-rates, e.g. 
birth-rates (cf. refs. 15, 16). Further, they may readily be 
extended into quite different fields. Thus it has been suggested 
(ref. 17) that corrected average heights or corrected average weighti 
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of the children in different schools might be obtained on the 
basis of a standard school population of given age and sex 
composition, or indeed of given composition as regards hair and 
eye-colour as well. 

20. In §§ 14-17 we have dealt only with the theory of 
the weighted arithmetic mean, but it should be noted that 
any form of average can be weighted. Thus a weighted median 
can be formed by finding the value of the variable such that 
the sum of the weights of lesser values is equal to the sum 
of the weights of greater values. A weighted mode could be 
formed by finding the value of the variable for which the sum 
of the weights was greatest, allowing for the smoothing of̂  
casual fluctuations. Similarly, a weighted geometric mean could 
be calculated by weighting the logarithms of every value of the 
variable before taking the arithmetic mean, i.e. 

S( W. log X ) 
log <?.- 2(IF) • 
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(A number of theorems of general application are given in the intro-
ductory part of this memoir, some of which have been utilised in §§ 12-
13 of the preceding chapter.) 

EXERCISES. 

1. Find the values obtained for the standard-deviations in Examples ii. 
(p. 139) and iii. (p. 141) of Chapter VIII . on applying Sheppard's correction 
for grouping. 

2. Show that if a range of six times the standard-deviation covers at least 18 
class-intervals (cf. Chap. VI. § 5), Sheppard's correction will make a difference 
of less than 0'5 per cent, in the rough value of the standard-deviation. 

3. (Data from the decennial supplements to the Annual Reports of the 
Registrar-General for England and Wales.) The following particulars are 
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found for 36 small registration districts in which the number of births in 
decade ranged between 1500 and 2500 :— 

Decade. 

Proportion of Male Births 
per 1000 of all Births. 

Decade. 
Mean. Standard-

deviation. 

1881-1890 
1891-1900 . 

Both decades 

508'1 
508-4-

12-80 
10-37 

1881-1890 
1891-1900 . 

Both decades 508-25 11-65 

I t is believed, however, tha t a great part of the observed standard-deviation 
is due to mere "f luctuat ions of sampl ing" of no real significance. 

Given tha t the correlation between the proportions of male births in a 
district in the two decades is + 0'36, estimate (1) the true standard-deviation 
freed from such fluctuations of sampling ; (2) the standard-deviation of fluctua-
tions of sampling, i.e. of the errors produced by such fluctuations in the observed 
proportions of male births. 

4. (Data from Pearson, ref. 10.) The coefficients of variation for breadth, 
height, and length of certain skulls are 3'89, 3'50, and 3'24per cent, respec-
tively. Find the " spurious correlation " between the breadth/length and 
height/length indices, absolute measures being combined at random so tha t 
they are uncorrelated. 

5. (Data from Boas, communicated to Pearson : ef. Fawcett and Pearson, 
Proc. Roy. Soc., vol. lxii. p. 413.) From short series of measurements on 
American Indians the mean coefficient of correlation found between father and 
son, and father and daughter, for cephalic index, is 0'14 ; between mother and 
son, and mother and daughter 0'33. Assuming these coefficients should be 
the same if it were not for the looseness of family relations, find the proportion 
of children not due to the reputed father. 

6. Find the correlation between' X1 + X2 and X2 + X3; Xu X2 and X3 being 
uncorrelated. 

7. Find the correlation between Xx and aXl + tX„, X1 and X2 being 
uncorrelated. 

8. (Referring to illustration iv., § 14, Chap. X.) Use the answer to 
question 7 to estimate, very roughly, the correlation tha t would be found 
between annual movements in infantile and general mortality if the mortali ty 
of those under and over 1 year of age were uncorrelated. Note tha t— 

general mortality per \ . l n n n i . . _ j . i . births 
1000«of population } = infantile mortality per 1000 births x p o p u l a t i o n 

+ deaths over one year per 1000 of population. 

and treat the ratio of births to population as if it were constant a t a rough 
average value, say 0'033. The standard-deviation of annual movements in 
infantile mortality is (loc. cit.) 9'6, and that of annual movements in mortality 
other than infantile may be taken as sensibly the same as that of general 
mortality, or say 1 unit. 

9. If the relation 
a.xl + b.x2 + c.x3=0 
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holds for all values of x^ and x3 (which are, in our usual notation, 
deviations from their respective arithmetic means), find the correlations 
between xl, and x3 in terms of their standard-deviations and the values of 
a, i and c. 

10. W h a t is the effect on a weighted mean of errors in the weights or the 
quantities weighted, such errors being uncorrelated with each other, with the 
weights, or with the variables—(1) if the arithmetic mean values of the errors 
are zero ; (2) if the arithmetic mean values of the errors are not zero 1 

11. Cf. (Pearson, " On a Generalised Theory of Alternative Inheritance," 
Phil. Trans., vol. cciii., A, 1904, p. 63). If we consider the correlation 
between number of recessive couplets in parent and in offspring, in a 
Mendelian population breeding at random (such as would ultimately result 
from an initial cross between a pure dominant and a pure recessive), the 
correlation is found to be 1/3 for a total number of couplets n. If w = l , the 
only possible numbers of recessive couplets are 0 and 1, and the correlation 
table between parent and offspring reduces to the form 

Offspring. 
Parent. 

Offspring. 
0 1 Total 

0 5 1 6 

1 1 1 2 

Total 6 2 8 

Verify the correlation, and work out the association coefficient Q. 
12. (Cf. the above, and also Snow, Proc. Boy. Soc., vol. lxxxiii., B, 1910, 

Table I I I . , p. 42.) For a similar population the correlation between 
brothers, assuming a practically infinite size of family, is 5/12. The table is 

Second 
First Brother. 

Brother. 0 1 Total. 

0. 41 7 48 

1 7 9 16 

Total 48 16 64 

Verify the correlation, and work out the association coefficient Q. 
13. Referring to the notation of § 10, show that we have the following 

expressions for the regressions in a fourfold table:— 
N.S JAB) JAB) 

"(-»)(/3) (B) (/3) 
°a_ m _(AB) (aB) 

(A)(a) (A) («) ' 

Verify on the tables of questions 11 and 12. 



CHAPTER XII. 

PARTIAL CORRELATION. 

1-2. Introductory explanation—3. Direct deduction of the formulae for two 
variables—4. Special notation for the general case : generalised re-
gressions—5. Generalised correlations—6.- Generalised deviations and 
standard-deviations—7-8. Theorems concerning the generalised pro-
duct-sums—9. Direct interpretation of the generalised regressions— 
10-11. Reduction of the generalised standard-deviation—12. Reduc-
tion of the generalised regression—13. Reduction of the generalised 
correlation-coefficient—14. Arithmetical work: Example i. : Example 
ii.—15. Geometrical representation of correlation between three 
variables by means of a model—16. The coefficient of M-fold correlation 
—17. Expression of regressions and correlations of lower in terms of 
those of higher order—18. Limiting inequalities between the values of 
correlation-coefficients necessary for consistence—19. Fallacies. 

1. IN Chapters IX.-XI. the theory of the correlation-coefficient for 
a single pair of variables has been developed and its applications 
illustrated. But in the case of statistics of attributes we found 
it necessary to proceed from the theory of simple association for 
a single pair of attributes to the theory of association for several 
attributes, in order to be able to deal with the complex causation 
characteristic of statistics; and similarly the student will find it 
impossible to advance very far in the discussion of many problems 
in correlation without some knowledge of the theory of multiple 
correlation, or correlation between several variables. In such a 
problem as that of illustration i., Chap. X., for instance, it might 
be found that changes in pauperism were highly correlated 
(positively) with changes in the out-relief ratio, and also with 
changes in the proportion of old ; and the question might arise how 
far the first correlation was due merely to a tendency to give out-
relief more freely to the old than the young, i.e. to a correlation 
between changes in out-relief and changes in proportion of old. 
The question could not at the present stage be answered by work-
ing out the correlation-coefficient between the last pair of variables, 
for we have as yet no guide as to how far a correlation between 

229 
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the variables 1 and 2 can be accounted for by correlations 
between 1 and 3 and 2 and 3. Again, in the case of illustration iii., 
Chap. X., a marked positive correlation might be observed between, 
say, the bulk of a crop and the rainfall during a certain period, and 
practically no correlation between the crop and the accumulated 
temperature during the same period ; and the question might arise 
whether the last result might not be due merely to a negative 
correlation between rain and accumulated temperature, the crop 
being favourably affected by an increase of accumulated temper-
ature if other things were equal, but failing as a rule to obtain this 
benefit owing to the concomitant deficiency of rain. In the prob-
lem of inheritance in a population, the corresponding problem is 
of great importance, as already indicated in Chapter IV. I t is 
essential for the discussion of possible hypotheses to know whether 
an observed correlation between, say, grandson and grandparent 
can or cannot be accounted for solely by observed correlations 
between grandson and parent, parent and grandparent. 

2. Problems of this type, in which it is necessary to consider 
simultaneously the relations between at least three variables,, and 
possibly more, may be treated by a simple and natural extension 
of the method used in the case of two variables. The latter case 
was discussed by forming linear equations between the two 
variables, assigning such values to the constants as to make the 
sum of the squares of the errors of estimate as low as possible : 
the more complicated case may be discussed by forming linear 
equations between any one of the n variables involved, taking 
each in turn, and the n - 1 others, again assigning such values to 
the constants as to make the sum of the squares of the errors of 
estimate a minimum. If the variables are Xx X2 X3 . . . . Xn, 
the equation will be of the form 

X1 = a + b2.X2 + b3.X3 + . . . . +bn.Xn. 

If in such a generalised regression or characteristic equation we 
find a sensible positive value for any one coefficient such as b2, 
we know that there must be a positive correlation between Xx 
and X2 that cannot be accounted for by mere correlations of Xx 
and X2 with X3, Xv or Xn, for the effects of changes in these 
variables are allowed for in the remaining terms on the right. 
The magnitude of b„ gives, in fact, the mean change in XT 
associated with a unit change in X0 when all the remaining 
variables are kept constant. The correlation between Jf, and 
X2 indicated by b2 may be termed a partial correlation, as 
corresponding with the partial association of Chapter IV., and it 
is required to deduce from the values of the coefficients b, which 
may be termed partial regressions, partial coefficients of corre-



XII. —PARTIAL CORRELATION. 2 3 1 

lation giving the correlation between Xx and X2 or other pair of 
variables token the remaining variables X3 . . . . Xn are kept 
constant, or when changes in these variables are corrected or allowed 
for, so far as this may be done with a linear equation. For examples 
of such generalised regression-equations the student may turn to 
the illustrations worked out below (pp. 239-247). 

3. With this explanatory introduction, we may now proceed to 
the algebraic theory of such generalised regression-equations and 
of multiple correlation in general. I t will first, however, be as 
well to revert briefly to the case of two variables. In Chapter IX., 
to obtain the greatest possible simplicity of treatment, the value 
of the coefficient'r=p/<rla-„ was deduced on the special assump-
tion that the means of all arrays were strictly eollinear, and the 
meaning of the coefficient in the more general case was sub-
sequently investigated. Such a process is not conveniently 
applicable when a number of variables are to be taken into 
account, and the problem has to be faced directly: i.e. required, 
to determine the coefficients and constant term, if any, in a 
regression-equation, so as to make the sum of the squares of the 
errors of estimate a minimum. We will take this problem first 
for the case of two variables, introducing a notation that can be 
conveniently adapted to more. Let us take the arithmetic 
means of the variables as origins of measurement, and let xv x2 
denote deviations of the two variables from their respective 
means. Then it is required to determine ax and bl2 in the re-
gression-equation 

= + b12.x2 . . . . (a) 

so as to make X(xx — + b12.x2)2, for all associated pairs of 
deviations xx and x2, the least possible. Put more briefly, if 
we write 

+ . . . ( b ) 

so that Sj 2 is the root-mean-square value of the errors of estimate 
in using regression-equation (a) (cf. Chap. IX. § 14), it is required 
to make sh2 a minimum. Suppose any value whatever to be 
assigned to bl2, and a series of values of ax to be tried, s12 being 
calculated for each. Evidently s12 would be very large for 
values of ax that erred greatly either in excess or defect of the 
best value (for the given value of bl2), and would continuously 
decrease as this best value was approached; the value of s12 could 
never become negative, though possibly, but exceptionally, zero. 
If therefore the values of »12 were plotted to the values of ax on 
a diagram, a curve would be obtained more or less like that 
of fig. 44. The best value of av for which s12 attained its 
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minimum value, say crl2, could be approximately estimated from 
such a diagram; but it can be calculated with much more exact-
ness from the condition that if a\ a"x be two values close above 
and below the best, the corresponding values of s 1 2 are equal. Let 
dj and (ax + 8) be two such values. Then if 

S f o - ax + bl2.x^f = - cij + S + &12.£2)2 

when 8 is very small, the value of a1 is the best for the assigned 
value of b12. But, evidently, the equation gives, neglecting 
the term in S2, 

- ax + bu.x2) = 0, 
that is, 

a1 = 0 

whatever the value of i12i This is the direct proof of the 

result that no constant term need be introduced on the right 
of a regression-equation when written in terms of deviations 
from the arithmetic mean, or that the two lines of regression 
must pass through the mean (Chap. IX. § 10). We may 
therefore omit any constant term. If, now, b12 is to be assigned 
the best value, we must have, by similar reasoning, for slightly 
differing values, b12, bl2 + 8, 

That is, again neglecting terms in 82, 

%x2(xx - bl2.x2) = 0 . . . . ( c ) 

or, breaking up the sum, 

K 
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which is the value found by the previous indirect method of 
Chapter IX. From the fact that i12 is determined so as to 
make the value of - &i2#2)2 the least possible, the method 
of determination is sometimes called the method of least squares. 
Evidently all the remaining results of Chapter IX. follow from 
this, and notably we have for <r12, the minimum value of s12, 
the standard-deviation of errors of estimate 

• v w a - v ) • • • • (d) 
4. Now apply the same method to the regression-equation 

for n variables. Writing the equation in terms of deviations, 
it follows from reasoning precisely similar to that given above 
that no constant term need be entered on the right-hand 
side. For the partial regression-coefficients (the coefficients of 
the a's on the right) a special notation will be used in order 
that the exact position of each coefficient may be rendered quite 
definite. The first subscript affixed to the letter b (which will 
always be used to denote a regression) will be the subscript of 
the x on the left (the dependent variable), and the second will 
be the subscript of the x to which it is attached; these may 
be called the primary subscripts. After the primary subscripts, 
and separated from them by a point, are placed the subscripts 
of all the remaining variables on the right-hand side as secondary 
subscripts. The regression-equation will therefore be written 
in the form 

X1 = 1̂2.34 . . . n • X2 + 1̂3.24 . . . n • xs + • • • + l̂n.23 . . . (n-1 ' xn • (1) 
The order in which the secondary subscripts are written is, 
it should be noted, quite indifferent, but the order of the 
primary subscripts is material; e.g. 612 3 . ... „ and b21 ,s. ... „ 
denote quite distinct coefficients, xx being the dependent variable 
in the first case and x2 in the second. A coefficient with p 
secondary subscripts may be termed a regression of the pth order. 
The regressions 512, 621, 513, 6S1, etc., in the case of two variables 
may be regarded as of order zero, and may be termed total as 
distinct from partial regressions. 

5. In the case of two variables, the correlation-coefficient r32 
may be regarded as defined by the equation 

We shall generalise this equation in the form 
r!2.34 » = (&12.S4 . . . . „ • &21.34 . . . . „)* • • (2) 

This is at present a pure definition of a new symbol, and it 
remains to be shown that r123i „ may really be regarded as, 
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and possesses all the properties of, a correlation-coefficient; the 
name may, however, be applied to it, pending the proof. A 
correlation-coefficient with p secondary subscripts will be termed 
a correlation of order p. Evidently, in the case of a correlation-
coefficient, the order in which both primary and secondary 
subscripts is written is indifferent, for the right-hand side of 
equation (2) is unaltered by writing 2 for 1 and 1 for 2. The 
correlations r12, r13, etc., may be regarded as of order zero, and 
spoken of as total, as distinct from partial, correlations. 

6. If the regressions b l23i. . . . «j 1̂3.24 . . . «» etc., be assigned the 
"bes t " values, as determined by the method of least squares, the 
difference between the actual value of and the value assigned 
by the right-hand side of the regression-equation (1), that is, the 
error of estimate, will be denoted by x123 ,...„; i.e. as a defini-
tion we have 

1̂.23 . . . n ~ x 1 ~ "12.34. . , n - x 2 ~ 1̂3.24 . . . n • X3 ~ . . . ~ l̂n.23 . . . (n- l ) -®n • (3) 
where assigned any one set of observed values. 
Such an error (or residual, as it is sometimes called) denoted by a 
symbol with p secondary suffixes, will be termed a deviation of the 
pth order. Finally, we will define a generalised standard-deviation 
<̂1.23 . . . . n by the equation 

. . . . „ = 2(^ ,3 . . . . „ ) . . . (4) 
N being, as usual, the number of observations. A standard-
deviation denoted by a symbol with p secondary suffixes will be 
termed a standard-deviation of the joth order, the standard-
deviations o-j (r2, etc., being regarded as of order zero, the standard-
deviations o-j 2 <r21 etc., (cf. eqn. (d) of § 3) of the first order, and 
so on. 

7. From the reasoning of § 3 it follows that the " leasf>square " 
values of the partial regressions 612 34 . . . . „ , etc., will be given by 
equations of the form 

2 ( a ? j — &12.34 . . . . * • + • • • • + ^ln.23 . . . . ( n - l ) • x n ) " 

= S f o - (b12M „ + S)x2 + . . . . + bJn2s . . . . ,„_,,. xnf 

S being very small. That is, neglecting the term in S2, 

'S,x2(x1 - i 1 2 . 3 4 . . . „ .
 x2 + . . . . + 5 l „ . 2 3 . . . . (n—1) • 'X j t ) = 0 | 

or, more briefly, in terms of the notation of equation (3), 
2 ( ^ - ^ . 2 3 . . . . n) = 0 . . . . (5) 

There are a large number of these equations, (n - 1) for determin-
ing the coefficients bnM . . . . „ , etc., ( n - 1) again for determining 
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the coefficients b213J . . . . , „ etc., and so on : they are sometimes 
termed the normal equations. If the student will follow the pro-
cess by which (5) was obtained, he will see tha t when the con-
dition is expressed tha t &12M . . . . „ shall possess the "least-square " 
value, x2 enters into the product-sum with x123 . . . . n> when the 
same condition is expressed for i1324 . . . . „ , xa enters into the 
product-sum, and so on. Taking each regression in turn, in fact, 
every x the suffix of which is included in the secondary suffixes 

£1.23 . n enters into the product-sum. The normal equations 
of the form (5) are therefore equivalent to the theorem— 

The product-sum of any deviation of order zero with any deviation 
of higher order is zero, provided the subscript of the former occur 
among the secondary subscripts of the latter. 

8. But it follows from this tha t 

2(21.34. . . n • ®2.34 . .. n) = 2a.-l.34 . . . „(x2 - b2 3.4 . . . n.. Xs - . . . - £>2>i.34 . . . (n-1) • %n) 
= 2(̂ 1.34 . . .„ . X2). 

Similarly, 
2(®1.34 . . . „. a>2.34 ...n) = 2(:E1. K2.34 ...„). 
Similarly again, 
2(»1.34.. . n.- ^2.34.. . (n-1)) = 2(®i.34 . . . „ . X2), 
and so on. Therefore, quite generally, 
2(̂ 1.34 . . . . n' X2.3i . . . . n)~ 2(#j.34 . . . . (n-1) • 2̂.34 . . . . « ) 

= 2 ( ® i . £2.34 . . . . „ ) 

= 2(aJL34 . . . . „ • a'2.34 . . . . (n-1)) 

= 2(®I.34 . . . n . X2) 
Comparing all the equal product-sums tha t may be obtained 

in this way, we see tha t the product-sum of any two deviations is 
unaltered by omitting any or all of the secondary subscripts of either 
which are common to the two, and, conversely, the product-sum of any 
deviation of crrder p with a deviation of order p + q, the p subscripts 
being the same in each case, is unaltered by adding to the secondary 
subscripts of the former any or all of the q additional subscripts of 
the latter. 

I t follows therefore from (5) tha t any product-sum is zero if all 
the subscripts of the one deviation occur among the secondary sub-
scripts of the other. As the simplest case, we may note tha t xx is 
uncorrelated with x2and uncorrelated with x12. 

The theorems of this and of the preceding paragraph are of 
fundamental importance, and should be carefully remembered. 
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9. We have now from §§ 7 and 8— 

0 = 2(̂ 2.34 . . . . n- 1̂.234 . . . . n) 
= 2®2.34 . . . . n (xi~ 612.34 . . . »• ®g — terms in xs to x„) 
= 2(ajj . 2̂.34 . . . . n) ~ 1̂2.34 . . . . n • 2̂.34 . . . . n) 
= S(®1.34 . . . . n • 2̂.34 . . . n) — ̂ 12.34 . . . . n 2(#|j.S4 . . . . „)• 

That is 
7, _ 2(̂ 1.34 . . . . ti • #2.34 . . . . n) ,H\ 

1254 • • • » - 2(.rr.,., ) ' ' 
But this is the value that would have been obtained by taking a 
regression-equation of the form 

#1.34 . . . . n~ 1̂2.34 . . . . n - #2.34 . . . . n 
and determining bvl.M „ by the method of least-squares, i.e. 
612.34 . . . . n is the regression of x13i „ on x.2Si . . . . . . It follows 
at once from (2) that r12S4 . • . . . „ is the correlation between 
x i . u . . . n

 a n d #2.34 . . . . m and from (4) that we may write 

i °"l.34 . . . . n /o\ "12.34 . . . . n — '12.34 . . . . n~ — • • \0) °"2.34 . . . . n 
an equation identical with the familiar relation = »'i2-°"i/cr2' 
with the secondary suffixes 34 . . . . n added throughout. 

To illustrate the meaning of the equation by the simplest case, 
if we had three variables only, xv xv and xs, the value of br23 or 
r 1 2 3 could be determined (1) by finding the correlations rl3 and 
r23 and the corresponding regressions 613 and b23; (2) working out 
the residuals - bl3.x3 and x2 - b23.x3 for all associated deviations; 
(3) working out the correlation between the residuals associated 
with the same values of x3. The method would not, however, be 
a practical one, as the arithmetic would be extremely lengthy, 
much more lengthy than the method given below for expressing 
a correlation of order p in terms of correlations of order p - 1. 

10. Any standard-deviation of order/) may be expressed in terms 
of a standard-deviation of orders - 1 and a correlation of orderp - 1. 
For, 

2(̂ 1.23 . . . n) = ... (n-1) • #1.23 . . . n) 
= 2(^.23 .. („-!))(*! - bln.23... („_!)#„ - terms in x2 to xn_x) 
- 2(^.23 . . . (n-1)) ~~ l̂n.23 . . . (n-1) 2(»].JJ . . . („_1) • x

n:a . . . (n-ll) 
or, dividing through by the number of observations, 

. . . . n = . . . . <n—1)( 1 ~ l̂n.23 . . . . (n-1) • n̂l.23 . . . . (n-1)) 
" cr;.23 . . . („_i,(l - ?i„.23 . . . . (»-n) • • - (9) 
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This is again the relation of the familiar form— 
o-L = ^ ( l - r \ n ) 

with the secondary suffixes 23 . . . . (n- 1) added throughout. 
It is clear from (9) that ^ . . . . („_!), like any correlation of order 
zero, cannot be numerically greater than unity. It also follows 
at once that if we have been estimating xx from x2, x3 . . . . xn_x, 
xn will not increase the accuracy of estimate unless rlnXS... („_1( 
(not rln) differ from zero. This condition is somewhat interesting, 
as it leads to rather unexpected results. For example, if r12 = + 0'8, 
r 1 3 = +0'4, ?"28= +0'5, it will not be possible to estimate xx with 
any greater, accuracy from x2 and x3 than from x2 alone, for the 
value of r1 3 2 is zero (see below, § 13). 

11. I t should be noted that, in equation (9), any other subscript 
can be eliminated in the same way as subscript n from the suffix of 

23.... ni s o t h a t a standard-deviation of order p can be expressed 
in p ways in terms of standard-deviations of the next lower order. 
This is useful as affording an independent check on arithmetic. 
Further, o-123.... (n_y can be expressed in the same way in terms 

°"i.23 (n—2)> a n ( i s 0 on> s o that we must have 

° l 2 3 . . . n = ° i ( l - ^ j X 1 - » » j ) ( 1 - »i4.ss) • ' • • ( ! 'An. 23...(n-ll) • (10) 
This is an extremely convenient expression for arithmetical use ; 

the arithmetic can again be subjected to an absolute check by 
eliminating the subscripts in a different, say the inverse, order. 
Apart from the algebraic proof, it is obvious that the values must 
be identical; for if we are estimating one variable from n others, it 
is clearly indifferent in what order the latter are taken into account. 

12. Any regression of order p may be expressed in terms of 
regressions of order/) — 1. For we have 

2(Kl.34. .. n • 2̂2.34 .. . n) = 2(®1.34 . . , (n-ll . ®2.34 . . . „) 
= Za^.34... („_i)(aj2 - hr i .u . . . (n—i). xn - terms in x^ to Xn-i) 
= 2(®1.34... (n-l| .»2.34... (n-l|) ~ &2n.34. .. (n-l)2(«1.34 ... (n-1) • Xn.3l... (n-

Replacing V34 . . . (n-u b y .. (»-i> • "2.34... (n-uA^La... <n-i)> 
we have 

&12.34 .. , /i• (T2.34 • • • n = b 12.34 . . . (n-1) - V2.34 . . . (n-1) ~ l̂n.34 . . . (n-1). &M2.34 . . (n-1) - 2̂.34 . . . (n-
or, from (9), 

1 1̂2.34 . . . . (n-ll ~ l̂n.34 . . . . (n-1) • n̂2.34 . . . (n-1) /1 \ 12-34 n — ] , 7 (.It; 1 — 2n,34 . . . . (n-1) • °n2.34 . . . . (n—1) 
The student should note that this is an expression of the form 

_ Z>12 - K, • t> n2 
°12.n — -I I. j i ~ »2n • 0„, 
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with the subscripts 34 . . . . (n-1) added throughout. The 
coefficient 612 S4. . . . „ may therefore be regarded as determined 
from a regression-equation of the form 

#1.34 . . . ( n - 1 ) = ^12.34 . . . n • #2.34 . . . ( n - 1 ) + ^ ln .23 . . . ( n - 1 ) • #n .34 . . . (n- l )> 

i.e. it is the partial regression of xlsi . . . . (n_1( on x.1M .... ,„_,,, 
xn.34 . . . . (n-i) being given. As any other secondary suffix might 
have been eliminated in lieu of n, we might also regard it as 
the partial regression of xlA5 „ on x1AS . . . . „ , xSM „ being 
given, and so on. 

13. From equation (11) we may readily obtain a corresponding 
equation for correlations. For (11) may be written 

7 _ ^12.31 . . . . ( n - 1 ) ~ ? ' l» .34 . . . . ( n - 1 ) • r g n . 3 l . . . . (»-1) 1.34 . . . . (n -1 ) . 

1 r2ti.34 . . . . ( n - 1 ) °"2.34 . . . . (n -1 ) 

Hence, writing down the corresponding expression for b2hs, 
and taking the square root 

r _ ^12.34 . . . . ( n - 1 ) ~ r l n . 3 4 . . . . ( n - 1 ) • r 2n .34 . . . . ( n - 1 ) 

( 1 — r\n.M . . . . ( n - 1 ) ) ' ( 1 — r 2n .34 . . . . ( n - 1 ) ) ' 

This is, similarly, the expression for three variables 

(12) 

' 1 2 - ~ ( i - < ) ! ( i - r & y 
with the secondary subscripts added throughout, and r i 2 3 4 . . . . „ 
can be assigned interpretations corresponding to those of bl%ii ... „ 
above. Evidently equation (12) permits of an absolute check on 
the arithmetic in the calculation of all partial coefficients of an 
order higher than the first, for any one of the secondary suffixes 
of ri2.34.... n o a n be eliminated so as to obtain another equation of 
the same form as (12), and the value obtained for r12 34 . . , . „ by 
inserting the values of the coefficients of lower order in the 
expression on the right must be the same in each case. 

14. The equations now obtained provide all that is necessary 
for the arithmetical solution of problems in multiple correlation. 
The best mode of procedure on the whole, having calculated all 
the correlations and standard-deviations of order zero, is (1) to 
calculate the correlations of higher order by successive applications 
of equation (12); (2) to calculate any required standard-deviations 
by equation (10); (3) to calculate any required regressions by 
equation (8): the use of equation (11) for calculating the 
regressions of successive orders directly from each other is com-
paratively clumsy. We will give two illustrations, the first for 



XII. —PARTIAL CORRELATION. 2 3 9 

three and the second for four variables. The introduction of 
more variables does not involve any difference in the form of the 
arithmetic, but rapidly increases the amount. 

Example i.—The first illustration we shall take will be a 
continuation of example i. of Chapter IX., in which the correla-
tion was worked out between (1) the average earnings of agri-
cultural labourers and (2) the percentage of the population in 
receipt of Poor-law relief in a group of 38 rural districts. In 
Question 2 of the same chapter are given (3) the ratios of the 
numbers in receipt of outdoor relief to the numbers relieved in the 
workhouse, in the same districts. Required to work out the partial 
correlations, regressions, etc., for these three variables. 

Using as our notation Xx = average earnings, X2 = percentage of 
population in receiptof relief, X3 = out-relief ratio, the first constants 
determined are— 

Mx = 15'9 shillings crx = T71 shillings r 1 2 = - 0 ' 6 6 
M 2 = 3'67 per cent. o-2 = 1'29 per cent. r 1 3 = - 0 T 3 
Mx = 5-79 o-a=3-09 r23=-l-0-60 

To obtain the partial correlations, equation (12) is used direct in 
its simplest form— 

„ _ r i 2 ~ rl3 • r2S 
_ (1 - rX3)* (1 - W 

The work is best done systematically and the results collected 
in tabular form, especially if logarithms are used, as many of the 
logarithms occur repeatedly. First it will be noted that the 
logarithms of ( l -r2)* occur in all the denominators; these had, 
accordingly, better be worked out at once and tabulated (col. 2 of 
the table below). In col. 3 the product term of the numerator of 

1. 2. 3. 

P roduc t 
Term. 

t . 

Numera-
tor . 

5. 

log 
N u m . 

6. 

log 
Denom. 

7. 8. 

Correlation of 
Fi rs t Order . 

9. 

r. log 

3. 

P roduc t 
Term. 

t . 

Numera-
tor . 

5. 

log 
N u m . 

6. 

log 
Denom. 

7. 8. 

Correlation of 
Fi rs t Order . 

log \ / l — r 2 . r. log 

3. 

P roduc t 
Term. 

t . 

Numera-
tor . 

5. 

log 
N u m . 

6. 

log 
Denom. 

log. 

1-86554 
1-64599 
1-83904 

Value . 
log \ / l — r 2 . 

r ] 2 = - 0 ' 6 0 1-87580 
r u = - 0 - 1 3 1-99629 
r 2 3 = + 0 - 6 0 ! 1-90309 

- 0-0780 
-0-3960 
+0-0858 

-0-5820 
+0-2660 
+0-5142 

1-76492 
I 42488 
1-71113 

I'89938 
1-77889 
1-87209 

log. 

1-86554 
1-64599 
1-83904 

>-12.3-0-73 
r ] 3 - 2 +0-44 
n s f i + u f o 

1-83216 
1-95267 
1-86946 

each partial coefficient is entered, i.e. the product of the two other 
coefficients on the remaining lines in col. 1 ; subtracting this from 
the coefficient on the same line in col. 1 we have the numerator(col. 
4) and can enter its logarithm. The logarithm of the denominator 
(col. 6) is obtained at once by adding the two logarithms of (1 - r2)* 
on the remaining lines of the table, and subtracting the logarithms 
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of the denominators from those of the numerators we have the 
logarithms of the correlations of the first-order. I t is also as well 
to calculate at once, for reference in the calculation of standard-
deviations of the second-order, the values of log J I - r- for the 
first-order coefficients (col. 9). 

Having obtained the correlations we can now proceed to the 
regressions. If we wish to find all the regression-equations, we 
shall have six regressions to calculate from equations of the form 

^12-S = r l 2 - 3 ' o r1.8/0 '2.8. 

These will involve all the six standard-deviations of the first 
order crh2, <r1-3, <r21, o\2.3, etc. But the standard-deviations of 
the first-order are not in themselves of much interest, and the 
standard-deviations of the second-order are so, as being the 
standard-errors or root-mean-square errors of estimate made in 
using the regression-equations of the second-order. We may 
save needless arithmetic, therefore, by replacing the standard-
deviations of the first-order by those of the second, omitting the 
former entirely, and transforming the above equation for b1%s 
to the form 

^12.3 = ,-12.3 • <r\-til(T2M-

This transformation is a useful one and should be noted by the 
student. The values of each o- may be calculated twice inde-
pendently by the formulse of the form 

°"i.23=o'IC1 - ^ y - ^ y 
# 1 ( 1 - ^ ) * a -^2 .3 ) 4 

so as to check the arithmetic; the work is rapidly done if the 
values of log J 1 — r2 have been tabulated. The values found are 

log er123 = 0'06146 cr123 = l -15 
log o-213 = 1 -84584 <r213 = 0-70 
log °s.u = 0-34571 <r3.12 = 2-22 

From these and the logarithms of the r ' s we have 

log J j , s = 0-08116, 6 1 2 3 = -1 -21 : log 6132 = T-36174, 613„= +0-23 
log 6 2 1 3 = 1-64993, 6 9 1 3 = - 0 - 4 5 : log fi231 = 1-33917, i 2 3 1 = +0-22 
log 631.2= 1-93024, 631.2= +0-85 : log = 0-33891, bg%1= +2-18 

That is, the regression-equations are 

(1) xx = - 1-21 x.2 + 0*23 xs 
(2) x2 = - 0 - 4 5 K j + 0-22 x3 

(3) x3= +0-85 xx + 2-18 x2 
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or, transferring the origins to zero, 
(1) Earnings Xx = +19'0 - 1-21 X 2 + 0'23 X 3 
(2) Pauperism X2 = + 9'55 - 0'45 X\ + 0*22 X3 
(3) Out-relief ratio X3 = - 1 5 - 7 + 0-85 X^ + 2-18 X2 

The units are throughout one shilling for the earnings Xx, 1 
per cent, for the pauperism X2, and 1 for the out-relief ratio X3. 

The first and second regression-equations are those of most 
practical importance. The argument has been advanced that 
the giving of out-relief tends to lower earnings, and the total 
coefficient ( r 1 3 = - 0 T 3 ) between earnings (Xj) and out-relief 
(X3), though very small (cf. Chap. IX. § 17), does not seem, 
inconsistent with such a hypothesis. The partial correlation 
coefficient (»'13.2= +0"44) and the regression-equation (1), how-
ever, indicate that in unions with a given percentage of the 
population in receipt of relief (X2) the earnings are highest where 
the proportion of out-relief is highest; and this is, in so far, 
against the hypothesis of a tendency to lower wages. I t remains 
possible, of course, that out-relief may adversely affect the possibil-
ity of'earning, e.g. by limiting the employment of the old. As 
regards pauperism, the argument might be advanced that the 
observed con-elation (r23= + 0'60) between pauperism and out-
relief was in part due to the negative correlation (?']3 = - 0 T 3 ) 
between earnings and out-relief. Such a hypothesis would have 
little to support it in view of the smallness and doubtful signifi-
cance of r13, and is definitely contradicted by the positive partial 
correlation r231 = + 0'69, and the second regression-equation. The 
third regression-equation shows that the proportion of out-relief is 
on the whole highest where earnings are highest and pauperism 
greatest. It should be noticed, however, that a negative ratio is 
clearly impossible, and consequently the relation cannot be strictly 
linear ; but the third equation gives possible (positive) average 
ratios for all the combinations of pauperism and earnings that 
actually occur. 

Example ii.—(Four variables.) As an illustration of the form 
of the work in the case of four variables, we will take a portion 
of the data from another investigation into the causation of 
pauperism, viz. that described in the first illustration of Chapter X., 
to which the student should refer for details. The variables are 
the ratios of the values in 1891 to the values in 1881 (taken as 
100) of— 

1. The percentage of the population in receipt of relief, 
2. The ratio of the numbers given outdoor relief to the numbers 

relieved in the workhouse, 
3. The percentage of the population over 65 years of age, 

1 6 
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4. The population itself, 
in the metropolitan group of 32 unions, and the fundamental 
constants (means, standard-deviations and correlations) are as 
follows:— 

TABLE I . 

1. 

Means. 

2. 

Standard-
deviations. 

3. 

Correlation-
coefficient. 

4. 

log a/1 -

1 104-7 1 . 29-2 12 + 0-52 1-93154 
2 90-6 2 41-7 13 + 0-41 1-96003 
3 107-7 3 5-5 14 - 0 - 1 4 1-99570 
4 111-3 4 23-8 23 + 0-49 1-94038 
— — ..— 24 + 0-23 1-98820 

— * 
J 34 + 0-25 1-98598 

It is seen that the average changes are not great; the per-
centages of the population in receipt of relief have increased on 
an average by 4'7 per cent., the out-relief ratio has dropped by 
9-4 per cent., and the percentage of old has increased by 7-7 
per cent., at the same time as the population of the unions has 
risen on the average by 11'3 per cent. At the same time the 
standard-deviations of the first, second, and fourth variables are 
very large. As a matter of fact, while in one union the 
pauperism decreased by nearly 50 per cent, and in others by 
20 per cent., in some there were increases of 60, 80, and 90 
per cent.; similarly, in the case of the out-relief, in several unions 
the ratio was decreased by 40 to 60 per cent., a consistent 
anti-out-relief policy having been enforced; in others the ratio 
was doubled, and more than doubled. As regards population, 
the more central districts show decreases ranging up to 20 and 
25 per cent., the circumferential districts increases of 45 to 80 
per cent. The correlations of order zero are not large, the 
changes in the rate of pauperism exhibiting the highest correlation 
with changes in the out-relief ratio, slightly less with changes 
in the proportion of old, and very little with changes in 
population. 

The correlations of the second order are obtained in two steps. 
In the first place, the six coefficients of order zero are grouped in 
four sets of three, corresponding to the four sets of three variables 
formed by omitting each one of the four variables in turn (Table 
II. col. 1). Each of these sets of three coefficients is then 
treated in the same manner as in the last example, and so the 
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TABLE I I . 

1. 2. 3. 4. 5. 

Correlation - Product Correlation-
coefficient Term of Numerator. coefficient log \ / l - »"2. 

(Zero Order). Numerator. (First Order). 
log \ / l - »"2. 

12. + 0'52 + 0-2009 + 0-3191 12-3 + 0-4013 1-96187 
13 + 0'41 + 0-2548 + 0-1552 13-2 + 0-2084 1-99035 
23 + 0-49 + 0-2132 + 0-2768 23-1 + 0-3553 1-97070 

12 + 0-52 -0-0322 + 0-5522 12-4 + 0-5731 1-91355 
14 - 0 ' 1 4 + 0-1196 -0-2596 14-2 -0 -3123 1-97772 
24 + 0-23 -0 -0728 + 0-3028 24-1 + 0-3580 1-97022 

13 + 0-41 -0-0350 + 0-4450 13-4 + 0-4642 1-94731 
14 - 0 - 1 4 + 0-1025 -0-2425 14-3 -0-2746 1-98297 
34 + 0-25 -0-0574 + 0-3074 3 4 1 + 0 3404 1-97326 

23 + 0'49 + 0-0575 + 0-4325 23-4 + 0-4590 1-94863 
24 + 0-23 + 0-1225 + 0-1075 24-3 + 0-1274 1-99645 
34 + 0-25 + 0-1127 + 0-1373 34-2 + 0-1618 1-99424 

TABLE I I I . 

1. 2. 4. 5. 

Correlation-
coefficient 

(First Order). 

Product 
Term of 

Numerator. 

3. 

Numerator. 
Correlation-
coefficient 

(Second Order). 
log V I ~ r~• 

12-4 
13-4 
23-4 

+ 0-5731 
+ 0-4642 
+ 0-4590 

+ 0-2131 
+ 0-2631 
+ 0-2660 

+ 0-3600 
+ 0-2011 
+ 0-1930 • 

12-34 
13-24 
23 14 

+ 0-457 
+ 0-276 
+ 0-266 

1-94901 
1-9.8277 
1-98408 

12-3 
14-3 
24-3 

+ 0-4013 
-0-2746 
+ 0-1274 

-0-0350 
+ 0-0511 
-0-1102 

+ 0-4363 
-0-3257 
+ 0-2376 

12-34 
14-23 
24-13 

+ 0-457 
-0 -359 
+ 0-270 

1-97013 
1-98359 

13-2 
14-2 
34-2 

+ 0-2084 
-0 -3123 
+ 01618 

- 0-0505 
+ 0-0337 
-0 -0651 

+ 0-2589 
-0-3460 
+ 0-2269 

13-24 
14-23 
3 4 1 2 

+ 0-276 
-0 -359 
+ 0-244 1-98664 

23-1 
24-1 
34-1 

+ 0-3553' 
+ 0-3580 
+ 0-3404 

+ 0-1219 
+ 0-1209 
+ 0-1272 

+ 0 2334 
+ 0-2371 
+ 0-2132 

23-14 
24-13 
34-12 

+ 0-266 
+ 0-270 
+ 0-244 — 
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correlations of the first order (Table II. col. 4) are obtained. 
The first-order coefficients are then regrouped in sets of three, 
with the same secondary suffix (Table III. col. 1), and these 
are treated precisely in the same way as the coefficients of order 
zero. In this way, it will be seen, the value of each coefficient 
of the second order is arrived at in two ways independently, and 
so the arithmetic is checked: r1 2 a 4 occurs in the first and fourth 
lines, for instance, r1S24 in the second and seventh, and so on. 
Of course slight differences may occur in the last digit if a 
sufficient number of digits is not retained, and for this reason the 
intermediate work should be carried to a greater degree of 
accuracy than is necessary in the final result; thus four places 
of decimals were retained throughout in the intermediate work of 
this example, and three in the final result. If he carries out an 
independent calculation, the student may differ slightly from 
the logarithms given in this and the following work, if more or 
fewer figures are retained. 

Having obtained the correlations, the regressions can be calcu 
lated from the third-order standard-deviations by equations of the 
form (as in the last example), 

b =r
 a'1-23't 12-34 12-34 _ > 2-134 

so the standard-deviations of lower orders need not be evaluated. 
Using equations of the form 

<ri.234 = < r i ( l r r ? 2 ) J ( l - ^ s . a ) i ( l ^ . 2 3 )» 

we find 
log <r1 234 = 1-35740 <r1 234 = 22-8 
l o S °-2.i34= 1-50597 O-2.134 = 32"1 
log o-31„4 = 0-65773 cr3104 = 4-55 
log <r4.123= 1-32914 <r4.i23 = 2 1 ' 3 

All the twelve regressions of the second order can be readily 
calculated, given these standard deviations and the correlations, 
but we may confine ourselves to the equation giving the changes 
in pauperism ( X J in terms of other variables as the most impor-
tant. I t will be found to be 

x1 = 0-325«2 + 1 -383a:3 - 0'383a;4, 

or, transferring the origins and expressing the equation in terms of 
percentage-ratios, 

Xx = - 31 -1 + 0-325X, + l-383Xj - 0-383X4, 
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or, again, in terms of percentage-changes (ratio - 100): — 
Percentage change in pauperism 

= + 1-4 per cent. 
+ 0'325 times the change in out-relief ratio. 
+ T383 „ „ proportion of old. 
-0 ' 383 ,, ,, population. 

These results render the interpretation of the total coefficients, 
which might be equally consistent with several hypotheses, more 
clear and definite. The questions would arise, for instance, 
whether the correlation of changes in pauperism with changes in 
out-relief might not be due to correlation of the latter with the' 
other factors introduced, and whether the negative correlation with 
changes in population might not be due solely to the correlation 
of the latter with changes in the proportion of old. As a matter 
of fact, the partial correlations of changes in pauperism with 
changes in out-relief and in proportion of old are slightly less than 
the total correlations, but the partial correlation with changes in 
population is numerically greater, the figures being 

r 1 2 =+0-52 r 1 2 3 4 =+0-46 
r 1 3 =+0-41 r1 3 .2 4=+0-28 
r i 4 = ~ 0'14 r14.23= -0-36 

So far, then, as we have taken the factors of the case into 
account, there appears to be a true correlation between changes 
in pauperism and changes in out-relief, proportion of old, and 
population—the latter serving, of course, as some index to 
changes in general prosperity. The relative influences of the 
three factors are indicated by the regression-equation above. 
[For the full discussion of the case cf. Jour. Roy. Stat. Soc., 
vol. lxii., 1899.] 

15. The correlation between pauperism and labourers' earnings 
exhibited by the figures of Example i. was illustrated by a diagram 
(fig. 40, p. 180), in which scales of "pauperism" and "earnings" 
were taken along two axes at right angles, and every observed 
pair of values was entered by marking the corresponding point 
with a small circle : the diagram was completed by drawing in 
the lines of regression. In precisely the same way the correlation 
between three variables may be represented by a model showing the 
distribution of points in space; for any set of observed values Xv 
X2, X3 may be regarded as determining a point in space, just as 
any pair of values Xx and X2 may be regarded as determining a 
point in a plane. Fig. 45 is drawn from such a model, constructed 
from the data of Example i. Four pieces of wood are fixed together 
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like the bottom and three sides of a box. Supposing the open 
side to face the observer, a scale of pauperism is drawn vertically 
upwards along the left-hand angle at the back of the "box," the 

B 

Fig . 45.—Model i l lus t ra t ing the Correlation between three Variables : (1) 
Pauperism (percentage of the population in receipt of Poor-law re l ief) ; 
(2) Out-relief rat io (numbers given relief in their homes to one in the 
workhouse) ; (3) Average Weekly Earn ings of agricultural labourers, 
(data pp. 178 and 189). A, f ron t view ; B, view of model tilted till the 
plane of regression for pauperism on the two remaining variables is seen 
as a s t ra ight line. 
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scale starting from zero, as very small values of pauperism occur : 
a scale of out-relief ratio is taken along the angle between the 
back and bottom of the box, starting from zero at the left: finally, 
the scale of earnings is drawn out towards the observer along the 
angle between the left-hand side and the bottom, but as earnings 
lower than 12s. do not occur, the scale may start from 12s. at the 
corner. Suitable scales are : pauperism, 1 in. = 1 per cent.; out-
relief ratio, 1 in. = 1 unit ; earnings, 1 in. = Is.; and the inside 
measures of the model may then be 17 in. x 10 in. x 8 in. high, 
the dimensions of the model constructed. Given these three 
scales, any set of observed values determine a point within the 
"box." The earnings and out-relief ratio for some one union are 
noted first, and the corresponding point marked on the baseboard-; 
a steel wire is then inserted vertically in the base at this point 
and cut off at the height corresponding, on the scale chosen, to 
the pauperism in the same union, being finally capped with a 
small ball or knob to mark the "point" clearly. The model 
shows very well the general tendency of the pauperism to be the 
higher the lower the wages and the higher the out-relief, for the 
highest points lie towards the back and right-hand side of the 
model. If some representation of all three equations of regression 
were to be inserted in the model, the result would be rather 
confusing; so the most important equation, viz. the second, giving 
the average rate of pauperism in terms of the other variables, may 
be chosen. This equation represents a plane : the lines in which 
it cuts the right-and left-hand sides of the "box" should be 
marked, holes drilled at equal intervals on these lines on the 
opposite sides of the box (the holes facing each other), and threads 
stretched through these holes, thus outlining the plane as shown 
in the figure. In the actual model the correlation-diagrams (like 
fig. 40) corresponding to the three pairs of variables were drawn 
on the back sides and base : they represent, of course, the eleva-
tions and plan of the points. 

The student possessing some skill in handicraft would find it 
worth while to make such a model for some case of interest to 
himself, and to study on it thoroughly the nature of the plane of 
regression, and the relations of the partial and total correlations. 

16. If we write 

« ' . . (13) 
it may be shown that R m . . . . „ ) is the correlation between 
xx and the expression on the right-hand side of the regression-
equation, say eL23 . . . . „ , where 
e 1.23 = &12 .34 . . . n • X2 + ^13.24. . . n • # 8 + • • • + ^ln.23... ( n - 1 ) •

 xn • ( 1 4 ) 
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For we have 
• «1.23 * ) = S ^ f o - X 1 M . . . „ ) = - 0-5.J3 ) 

and also 
2(e?.23 n) = S f o - ^.23 . . . „)2 = N(a\ - CTj.23 „) 

whence the correlation between xx and e123 „ is 

)' J 

i.e. the value of RU23 . . . . „ ) given by (13). The value of 7S is 
accordingly a useful datum as indicating how closely xx can 
be expressed in terms of a linear function of x2, xs . . . . x„, and 
the values of the regressions may be regarded as determined 
by the condition that R shall be a maximum. Its value is 
essentially positive as the product-sum 2(®1.e1.23 . . . . „ ) is positive. 
R maybe termed a coefficient of (?i-l)-fold (or double, triple, 
etc.) correlation; for n variables there are n such correlations, 
but in the limiting case of two variables the two are identical. 
The value may be readily calculated, either from tr123 . . . . „ and 
o-j or directly from the equation 

1 - .„) = ( ! - r?2)(l - r?3.2)(l - 3) . . . (1 - <.23... ,„-,,). (15) 
It is obvious from this equation that since every bracket on 
the right is not greater than unity, 

1 - ^ ( 2 3 «)>! 
Hence i?1(23 . . . . „ ) cannot be numerically less than r12. For the 
same reason, rewriting (15) in every possible form, Rim . . . nl 
cannot be numerically less than r12, . . . . rln, i.e. any one 
of the possible constituent coefficients of order zero. Further, 
for similar reasons, . . . . „ ) cannot be numerically less than 
any possible constituent coefficient of any higher order. That 
is to say, RM23 , . . . „ ) is not numerically less than the greatest 
of all the possible constituent coefficients, and is usually, though 
not always, markedly greater. Thus in Example 
(the coefficient of double correlation between pauperism on 
the one hand, out-relief and labourers' earnings on the other) 
is 0'839, and the numerically greatest of the possible constituent 
coefficients is r 1 2 8 = - 0 ' 7 3 . Again, in Example 

ii., -̂ i(234) is 
0'626, and the numerically greatest of the possible constituent 
coefficients is r 1 2 4 = +0 -573. 

The student should notice that R is necessarily positive. 
Further, even if all the variables Xv X2 Xn were strictly 
uncorrelated in the original universe as a whole, we should expect 
r i 2 > r i 3 2> r i4 -23> exhibit values (whether positive or negative) 
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differing from zero in a limited sample. Hence, R will not 
tend, on an average of such samples, to be zero, but will 
fluctuate round some mean value. This mean value will 
be the greater the smaller the number of observations in the 
sample, and also the greater the number of variables. When 
only a small number of observations are available it is, 
accordingly, little use to deal with a large number of variables. 
As a limiting case, it is evident that if we deal with n variables 
and possess only n observations, all the partial correlations 
of the highest possible order will be unity. 

17. I t is obvious that as equations (11) and (12) enable us to 
express regressions and correlations of higher orders in terms of 
those of lower orders, we must similarly be able to express the 
coefficients of lower in terms of those of higher orders. Such 
expressions are sometimes useful for theoretical work. Using the 
same method of expansion as in previous cases, we have 

0 = 23 . . . . n - #2.34 . . . . ( n - 1 ) ) 

= " ( X j . (To 34 . . . . ( n - 1 ) ) ~~ ^12.34 . . . . n ^ - ( # 2 • #2.34 . . . . ( n - 1 ) ) 

— ^ ln .23 . . . . ( n - 1 ) • #2.34 . . . . ( n - 1 ) ) 
That is, 

^12.34 . . . . (n -1 ) ~ ^12.34 . . . . n + ^ ln .23 . . . . ( n - 1 ) • ^n2.34 . . . . ( n - 1 ) ' 

In this equation the coefficient on the left and the last on the 
right are of order n - 3, the other two of order n - 2. We therefore 
wish to eliminate the last coefficient on the right. Interchanging 
the suffixes 1 for n and n for 1, we have 

&n2.34 . . . . ( n - 1 ) = &n2.13 . . . . ( n - 1 ) • + ^n l .23 . . . . n - 1 ) • ^12.34 . . . . (n -1) -

Substituting this value for bn2.u . . . . ,„_,, in the first equation we 
have 

z ^12.34 . . . . n + ^ ln .23 . . . . ( n - 1 ) • &n2.13 . . . . (n -1 ) , , 
12.34 ( n - 1 ) - I — i 1 • ( 1 O ) 

1 uln.23 . . . . ( n - 1 ) • y n l . 2 3 . . . . ( n - 1 ) 

This.is the required equation for the regressions; it is the equation 

I 1̂2.n + l̂n.2 • n̂2.1 

with secondary suffixes 34 . . . . (n - 1) added throughout. The 
corresponding equation for the correlations is obtained at once 
by writing down equation (16) for blh3l . . . . (n-i) a n d taking the 
square root of the product (cf. §13) ; this gives 

r l2.34 . . . . n + r l n . 2 3 . . . . ( n - 1 ) • r 2 n , 1 3 . . . . ( n - 1 ) 

( 1 - r ? n . 2 3 ( n - l ) ) ! ( l ~ < 1 3 ( n - 1 ) ) ' 
( 1 7 ) 
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which is similarly the equation 
rlln + rln.2 • r-M 

with the secondary suffixes 34 . . . . (M - 1) added throughout. 
18. Equations (12) and (17) imply that certain limiting 

inequalities must hold between the correlation-coefficients in 
the expression on the right in each case in order that real 
values (values between ±1) may be obtained for the correlation-
coefficient on the left. These inequalities correspond precisely 
with those " conditions of consistence!' between class-frequencies 
with which we dealt in Chapter II., but we propose to treat them 
only briefly here. Writing (12) in its simplest form for r12.3, 
we must have «i 2 3 <l or 

( r i 2 _ ~ r i s • ' ' 2 3 ) " 

(1~ -< ) ( ] : -< )< - 1 -
that is, 

r?2 + ri3 + r l ) _ 2r12r13r23 < 1 . . . (18) 
if the three r's are consistent with each other. If we take r12, r n 
as known, this gives as limits for r23 

rvlra ± J\ -r\2- r(z + r\„ru. 

Similarly writing (17) in its simplest form for r12 in terms of 
r i 2 -3> r i 3 2>

 a n d r 2 3 . i '
 w e must have 

, -12.3 + , -13.a + >23.1 + ^ri2.3ri3.2r23.1<~ 1 • • 0 ^ ) 

and therefore, if r12S and r132 are given, ?2W must lio between 
the limits 

— r12.3rl3.2 i "J 1 ~ 7^2.3 ~ < 2 + *UU»U.if. 
The following table gives the limits of the third coefficient in 
a few special cases, for the three coefficients of zero order and 
of the first order respectively :— 

Value of Limits of 

ri2 or N2.3. ris or ri3.2. r-a. r23.i. 

0 0 + 1 + 1 
+ 1 + 1 + 1 - 1 
+ 1 + 1 - 1 + 1 
W O - 5 + V 0 - 5 0 , + 1 0 , - 1 

± V ( F 5 + V 0 - 5 0 , - 1 0 , + 1 
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The student should notice that the set of three coefficients of 
order zero and value unity are only consistent if either one only, 
or all three, are positive, i.e. +1, +1, +1, or - 1, - 1, + 1 ; but 
not - 1 , - 1 , - 1 . On the other hand, the set of three coefficients 
of the first order and value unity are only consistent if one only, 
or all three, are negative: the only consistent sets are +1, +1, 
- 1 and - 1, - 1, - 1. The values of the two given r's need to 
be very high if even the sign of the third can be inferred; if the 
two are equal, they must be at least equal to \/0'5 or '707 . . . . 
Finally, it may be noted that no two values for the known 
coefficients ever permit an inference of the value zero for the 
third; the fact that 1 and 2, 1 and 3 are uncorrelated, pair and 
pair, permits no inference of any kind as to the correlation 
between 2 and 3, which may lie anywhere between 4-1 and - 1. 

19. We do not think it necessary to add to this chapter a 
detailed discussion of the nature of fallacies on which the theory 
of multiple correlation throws much light. The general nature of 
such fallacies is the same as for the case of attributes, and was 
discussed fully in Chap. IV. §§ 1-8. It suffices to point out the 
principal sources of fallacy which are suggested at once by the 
form of the partial correlation 

' V ! ' r - a . . . (a) 
12,3 x / ( l - r r 3 ) ( l - 4 ) 

and from the form of the corresponding expression for r12 in terms 
of the partial coefficients 

From the form of the numerator of (a) it is evident (1) that even 
if r12 be zero, r12.'3 will not be zero unless either r13 or r23, or 
both, are zero. If r13 and r23 are of the same sign the partial 
association will be positive; if of opposite sign, negative. Thus 
the quantity of a crop might appear to be unaffected, say, by 
the amount of rainfall during some period preceding harvest: 
this might be due merely to a correlation between rain and low 
temperature, the partial correlation between crop and rainfall 
being positive and important. We may thus easily misinterpret 
a coefficient of correlation which is zero. (2) r1 2 3 may be, indeed 
often is, of opposite sign to r12, and this may lead to still more 
serious errors of interpretation. 

From the form of the numerator of (5), on the other hand, we 
see that, conversely, r ]2 will not be zero even though r123 is zero, 
unless either r13 2 or r231 is zero. This corresponds to the theorem 
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of Chap. IV. § 6, and indicates a source of fallacies similar to 
those there discussed. 

20. We have seen (§ 9) that r 1 2 3 is the correlation between as,.s 
and x2s, and that we might determine the value of this partial 
correlation by drawing up the actual correlation table for the two 
residuals in question. Suppose, however, that instead of drawing 
up a single table we drew up a series of tables for values of a;13 
and x2a associated with values of xa lying within successive 
class-intervals of its range. In general the value of r1 2 3 would 
not be the same (or approximately the same) for all such tables, 
but would exhibit some systematic change as the value of xs 
increased. Hence r12 3 should be regarded, in general, as of the 
nature of an average correlation: the cases in which it measures 
the correlation between xhs and x2S for every value of xa (cf. 
Chap. XVI.) are probably exceptional. The process for deter-
mining partial associations (cf. Chap. IV.) is, it will be remembered, 
thorough and complete, as we always obtain the actual tables 
exhibiting the association between, say, A and B in the universe 
of C's and the universe of y's : that these two associations may 
differ materially, is illustrated by Example i. of Chap. IV. 
(pp. 45-6). I t might sometimes serve as a useful check on 
partial-correlation work to reclassify the observations by the 
fundamental methods of that chapter. 

R E F E R E N C E S . 

The preceding chapter is written from the standpoint of refs. 3 and 4, and 
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standpoint of the " n o r m a l " distribution of frequency (cf. Chap. XVI.). 
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EXERCISES. 
1. (Ref. 8.) The following means, standard-deviations, and correlations are 

found for 
Xl = seed-hay crops in cwts. per acre, 
X 2 = s p r i n g rainfall in inches, 
-3T3 = accumulated temperature above 42° F. in spring, 

in a certain district of England during 20 years. 
Mx = 28'02 ff1 = 4*42 + 0'80 
M 2 = 4-91 <T„ = 1-10 r ] 3 = - 0'40 
i f 3 = 594 o3 = 85 • r 2 3 = - 0 - 5 6 

Find the partial correlations and the regression-equation for hay-crop on spring 
rainfall and accumulated temperature. 

2. (The following figures must be taken as an illustration only : the data 
on which they were based do not refer to uniform times or areas.) 

• X ^ d e a t h s of infants under 1 year per 1000 births in same year (infantile 
mortality). 

X 2 =proport ion per thousand of married women occupied for gain. 
X3=death -rate of persons over 5 years of age per 10,000. 
Xt = proportion per thousand of population living 2 or more to a room 

(overcrowding). 

Taking the figures below for 30 urban areas in England and Wales, find the 
partial correlations and the regression-equation for infantile mortality on the 
other factors. 

i / j = 164 01= 20-0 r 1 2 = + 0 ' 4 9 ^ = + 0 - 1 5 
J /„=158 o 2 = 74-9 r13 = + 0 '78 r 2 4 = - 0 - 3 7 
i f 3 = 143 o 3 = 22-4 ru= + 0'20 r 3 4 = + 0 ' 2 3 
J / 4 = 2 0 5 o4 = 130*0 

3. If all the correlations of order zero are equal, say = r, what are the values 
of the partial correlations of successive orders ? 

Under the same condition, what is the limiting value of r if all the equal 
correlations are negative and n variables have been observed ? 

4. Wha t is the correlation between % 2 a n d ? 
5. Write down from inspection the values of the partial correlations for the 

three variables 
Xv X2 , and X3=a.X1 + b.X2. 

Check the answer to Qu. 7, Chap. XI . , by working out the partial 
correlations. 

6. If the relation 
a.x1 + b.x2 + c.x3=0 

holds for all sets of values of xlt x2, and x3, what must the partial correlations 
be? 

Check the answer to Qu. 9, Chap. XI . , by working out the partial 
correlations, 
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CHAPTER XIII. 

SIMPLE SAMPLING OF ATTRIBUTES. 

1 The problem of the present Par t—2. The two chief divisions of the theory 
of sampling—3. Limitat ion of the discussion to the case of simple 
sampling—4. Definition of the chance of success or failure of a given 
event—5. Determinat ion of the mean and standard-deviat ion of the 
number of successes in n events—6. The same for the proportion of 
successes in n even ts : the s tandard-deviat ion of simple sampling as a 
measure of unrel iabil i ty, or i ts reciprocal as a measure of precision—7. 
Verification of the theoretical results by experiment—8. More detailed 
discussion of the assumptions on which the formula for the standard-
deviation of simple sampl ing is based—9-10. Biological cases to 
which the theory is directly applicable—11. Standard-deviation of 
simple sampling when the numbers of observations in the samples 
vary—12. Approximate value of the standard-deviat ion of simple 
sampling, and relation between mean and standard-deviation, when 
the chance of success or failure is very small—13. Use of the s tandard-
deviation of simple sampling, or s tandard error, for checking and 
controll ing the interpretat ion of stat ist ical results. 

1. ON several occasions in the preceding chapters it has been 
pointed out that small differences between statistical measures like 
percentages, averages, measures of dispersion and so forth cannot 
in general be assumed to indicate the action qf definite and assign-
able causes. Small differences may easily arise from indefinite 
and highly complex causation such as determines! the fluctuating 
proportions of heads and tails in tossing a coin, of black balls in 
drawing samples from a bag containing a mixture of black and 
white balls, or of cards bearing measurements within some given 
class-interval in drawing cards, say, from an anthropometric record. 
In 100 throws of a coin, for example, we may have noted 56 heads 
and only 44 tails, but we cannot conclude that the coin is biassed : 
on repeating our throws we may get only 48 heads and 52 tails. 
Similarly, if on measuring the statures of 1000 men in each of 
two nations we find that the mean stature is slightly greater for 

254 
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nation A than for nation B, we cannot necessarily conclude that 
the real mean stature is greater in the case of nation A : possibly 
if the observations were repeated on different samples of 1000 
men the ratio might be reversed. 

2. The theory of such fluctuations may be termed the theory 
of sampling, and there are two chief sections of the theory corre-
sponding to the' theory of attributes and the theory of variables 
respectively. In tossing a coin we only classify the results of the 
tosses as heads or tails ; in drawing balls from a mixture of black 
and white balls, we only classify the balls drawn as black or as 
white. These cases correspond to the theory of attributes, and 
the general case may be represented as the drawing of a sample 
from a universe containing both ^ 's and a's, the number or 
proportion of .4's in successive samples being observed. If, on the 
other hand, we put in a bag a number of cards bearing different 
values of some variable X and draw sample batches of cards, we 
can form averages and measures of dispersion for the successive 
batches, and these averages and measures of dispersion will vary 
slightly from one batch to another. If associated measures of 
two variables X and Y are recorded on each card, we can also form 
correlation-coefficients for the different batches, and these will vary 
in a similar manner. These cases correspond to the theory of 
variables, and it is the function of the theory of sampling for such 
cases to inform us as to the fluctuations to be expected in the 
averages, measures of dispersion, correlation-coefficients, etc., in 
successive samples. In the present and the three following 
chapters the theory of sampling is dealt with for the case of 
attributes alone. The theory is of great importance and interest, 
not only from its applications to the checking and control of 
statistical results, but also from the theoretical forms of frequency-
distribution to which it leads. Finally, in Chapter XVII. one or 
two of the more important cases of the theory of sampling for 
variables are briefly treated, the greater part of the theory, owing 
to its difficulty, lying> somewhat outside the limits of this work. 

3. The theory of sampling attains its greatest simplicity if 
every observation contributed to the sample may be regarded as 
independent of every other. This condition of independence 
holds good, e.g., for the tossing of a coin or the throwing of a die : 
the result of any one throw or toss does not affect, and is un-
affected by, the results of the preceding and following tosses. 
It does not hold good, on the other hand, for the drawing of balls 
from a bag: if a ball be drawn from a bag containing 3 black 
and 3 white balls, the remainder may be either 2 black and 3 
white, or 2 white and 3 black, according as the first ball was 
black or white. The result of drawing a second ball is therefore 
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dependent on the result of drawing the first. The disturbance 
can only be eliminated by drawing from a bag containing a 
number of balls that is infinitely large compared with the 
total number drawn, or by returning each ball to the bag before 
drawing the next. In this chapter our attention will be confined 
to the case of independent sampling, as in coin-tossing or dice-
throwing—the simplest cases of an artificial kind suitable for 
theoretical study and experimental verification. For brevity, we 
may refer to such cases of sampling as simple sampling : the 
implied conditions are discussed more fully in § 8 below. 

4. If we may regard an ideal coin as a uniform, homogeneous 
circular disc, there is nothing which can make it tend to fall more 
often on the one side than on the other; we may expect, there-
fore, that in any long series of throws the coin will fall with 
either face uppermost an approximately equal number of times, 
or with, say, heads uppermost approximately half the times. 
Similarly, if we may regard the ideal die as a perfect homogeneous 
cube, it will tend, in any long series of throws, to fall with each 
of its six faces uppermost an approximately equal number of 
times, or with any given face uppermost one-sixth of the whole 
number of times. These results are sometimes expressed by 
saying that the chance of throwing heads (or tails) with a coin is 
1/2, and the chance of throwing six (or any other face) with a die 
is 1/6. To avoid speaking of such particular instances as coins 
or dice, we shall in future, using terms which have become 
conventional, refer to an event the chance of success of which is p 
and the chance of failure q. Obviously p + q = 1. 

5. Suppose we take N samples with n events in each. What 
will be the values towards which the mean and standard-deviation 
of the number of successes in a sample will tend ? The mean is 
given at once, for there are N.n events, of which approximately 
pNn will be successes, and the mean number of successes in a 
sample will therefore tend towards pn. As regards the standard-
deviation, consider first the single event (m=l). The single 
event may give either no successes or one success, and will tend 
to give the former qN, the latter pN, times in N trials. Take 
this frequency-distribution and work out the standard-deviation 
of the number of successes for the single event, as in the case of 
an arithmetical example :— 

Frequency / . Successes / { . . /{2 . 
qN 
pN 

0 
1 pN pN 

pN pN 
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We have therefore M=p, and 

<A =p-pi=pq. 
But the number of successes in a group of n such events is the 
sum of successes for the single events of which it is composed, 
and, all the events being independent, we have therefore, by the 
usual rule for the standard-deviation of the sum of independent 
variables (Chap. XI. § 2, equation (2)), cr„ being the standard-
deviation of the number of successes in n events, 

°i= npq (1) 
This is an equation of fundamental importance in the theory of 
sampling. The student should particularly bear in mind that, 
the standard-deviation of the number of successes, due to 
fluctuations of simple sampling alone, in a group of n events 
varies, not directly as n, bu t as the square root of n. 

6. In lieu of recording the absolute number of successes in each 
sample of n events, we might have recorded the proportion of 
such successes, i.e. l/?ith of the number in each sample. As this 
would amount to merely dividing all the figures of the original 
record by n, the mean proportion of successes—or rather the value 
towards which the mean tends to approach—must be p, and the 
standard-deviation of the proportion of successes sn be given by 

«l = o-n/n2=pq/n . . . . (2) 
The standard-deviation of the proportion of successes in samples 

of such independent events varies therefore inversely as the square 
root of the number on which the proportion is calculated. Now 
if we regard the observed proportion in any one sample as a 
more or less unreliable determination of the true proportion in 
a very large sample from the same material, the standard-devia-
tion of sampling may fairly be taken as a measure of the 
unreliability of the determination—the greater the standard-
deviation, the greater the fluctuations of the observed proportion, 
although the true proportion is the same throughout. The 
reciprocal of the standard-deviation (1/s), on the other hand, may 
be regarded as a measure of reliability, or, as it is sometimes 
termed, precision, and consequently the reliability or precision of 
an observed proportion varies as the square root of the number of 
observations on which it is based. This is again a very important 
rule with many practical applications, bu t the limitations of the 
case to which it applies, and the exact conditions from which it 
has been deduced, should be borne in mind. We return to this 
point again below (§ 8 and Chap. XIV.). 

7. Experiments in coin tossing, dice throwing, and so forth 
have been carried out by various persons in order to obtain ex-

1 7 
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perimental verification of these results. The following will serve 
as illustrations, but the student is strongly recommended to 
carry out a few series of such experiments personally, in order to 
acquire confidence in the use of the theory. It may be as well 
to remark that if ordinary commercial dice are to be used for the 
trials, care should be taken to see that they are fairly true cubes, 
and the marks not cut very deeply. Cheap dice are generally 
very much out of truth, and if the marks are deeply cut the 
balance of the die may be sensibly affected. A convenient mode 
of throwing a number of dice, suggested, we believe, by the late 
Professor Weldon, is to roll them down an inclined gutter of 
corrugated paper, so that they roll across the corrugations. 

(1) (W. F. R. Weldon, cited by Professor F. Y. Edgeworth, 
Encycl. Brit., 11th edn., vol. xxii. p. 394. Totals of the columns 
in the table there given.) 

Twelve dice were thrown 4096 times ; a throw of 4, 5, or 6 points 
reckoned a success, therefore p = q = 0'5. Theoretical mean M — 6 ; 
theoretical value of the standard-deviation cr12 = <J6~5 x 0'5 x 12 = 
1-732. 

The following was the frequency-distribution observed :— 
Successes. Frequency. Successes. Frequency. 

0 7 847 
1 7 8 536 
2 60 9 257 
3 198 10 71 
4 430 11 11 
5 731 12 — 
6 948 Total 4096 

Mean M= 6-139, standard-deviation <x = T712. The proportion of 
successes is 6-139/12 = 0-512 instead of 0'5. 

(2) (W. F. R. Weldon, loc. cit., p. 400. Totals of columns of 
the table given.) 

Twelve dice were thrown 4096 times ; only a throw of 6 was 
counted a success, so p — 1/6, q = 5/6. Theoretical mean M = 2, 
standard-deviation cr= Vl/6 x 5/6 x 12= 1-291. 

The following was the observed frequency-distribution :— 
Successes. 

0 
1 
2 
3 
4 

Frequency. 
447 

1145 
1 1 8 1 
796 
380 

Successes. 
5 
6 
7 

Frequency. 
115 

24 
7 
1 

Total 4096 
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Mean M = 2 000, standard-deviation cr = 1'296. Actual proportion 
of successes 2-00/12 = 0-1667, agreeing with the theoretical value 
to the fourth place of decimals. Of course such very close 
agreement is accidental, and not to be always expected. 

(3) (G. U. Yule.) The following may be taken as an illustra-
tion based on a smaller number of observations. Three dice were 
thrown 648 times, and the numbers of 5's or 6's noted at 
each throw. £> = l/3, q = 2/3. Theoretical mean 1. Standard-
deviation, 0-816. 

Frequency-distribution observed :— 

M= T034, o- = 0'823. Actual proportion of successes 0-345. 
For other illustrations, some of which are cited in the questions 

at the end of this chapter, the student may be referred to the 
list of references on p. 273. The student should notice that in 
all the distributions given a range of six times the standard-
deviation includes either all, or the great bulk of, the observations, 
as in most frequency-distributions of the same general form. We 
shall make use of this rule below, § 13. 

8. In deducing the formulse (1) and (2) for the standard-
deviations of simple sampling in the cases with which we have 
been dealing, only one condition has been explicitly laid down as 
necessary, viz. the independence of the several drawings, tossings, 
or other events composing the sample. But in point of fact this 
is not the only nor the most fundamental condition which has 
been explicitly or implicitly assumed, and it is necessary to realise 
all the conditions in order to grasp the limitations under which 
alone the formulse arrived at will hold. Supposing, for example, 
that we observe among groups of 1000 persons, at different times 
or in different localities, various percentages of individuals 
possessing certain characteristics—dark hair, or blindness, or 
insanity, and so forth. Under what conditions should we 
expect the observed percentages to obey the law of sampling 
that we have found, and show a standard-deviation given by 
equation (2)? 

(a) In the first place we have tacitly assumed throughout the 
preceding work that our dice or our coins were the same set or 

Successes. 
0 
1 
2 
3 

Frequency. 

179 
298 
141 

30 

Total 648 
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identically similar throughout the experiment, so that the chance 
of throwing "heads" with the coins or, say, "s ix" with the dice 
was the same throughout: we did not commence an experiment 
with dice loaded in one way and later on take a fresh set of dice 
loaded in another way. Consequently if formula (2) is to hold 
good in our practical case of sampling there must not be a 
difference in any essential respect—i.e. in any character that can 
affect the proportion observed—between the localities from which 
the observations are drawn, nor, if the observations have been 
made at different epochs, must any essential change have taken 
place during the. period over which the observations are spread. 
Where the causation of the character observed is more or less 
unknown, it may, of course, be difficult or impossible to say what 
differences or changes are to be regarded as essential, but, where 
we have more knowledge, the condition laid down enables us to 
exclude certain cases at once from the possible applications of 
formula (1) or (2). Thus it is obvious that the theory of simple 
sampling cannot apply to the variations of the death-rate in 
localities with populations of different age and sex compositions, 
nor to death-rates in a mixture of healthy and unhealthy districts, 
nor to death-rates in successive years during a period of con-
tinuously improving sanitation. In all such cases variations 
due to definite causes are superposed on the fluctuations of 
sampling. 

(b) In the second place, we have also tacitly assumed not 
only that we were using the same set of coins or dice throughout, 
so that the chances p and q were the same at every trial, but 
also that all the coins and dice in the set used were identically 
similar, so that the chances p and q were the same for every coin 
or die. Consequently, if our formulse are to apply in the practical 
case of sampling, the conditions that regulate the appearance of 
the character observed must not only be the same for every 
sample, but also for every individual in every sample. This is 
again a very marked limitation. To revert to the case of death-
rates, formulse (1) and (2) would not apply to the numbers of 
persons dying in a series of samples of 1000 persons, even if these 
samples were all of the same age and sex composition, and living 
under the same sanitary conditions, unless, further, each sample 
only contained persons of one sex and one age. For if each 
sample included persons of both sexes and different ages, the 
condition would be broken, the chance of death during a given 
period not being the same for the two sexes, nor for the young 
and the old. The groups would not be homogeneous in the sense 
required by the conditions from which our formula; have been 
deduced. Similarly, if we were observing hair-colours, our formulse 
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would not apply if the samples were compounded by always 
taking one person from district A, another from district B, and 
so on, these districts not being similar as regards the distribution 
of hair-colour. 

The above conditions were only tacitly assumed in our previous 
work, and consequently it has been necessary to emphasise them 
specially. The third condition was explicitly s ta ted: (c) The 
individual "events," or appearances of the character observed, 
must be completely independent of one another, like the throws 
of a die, or sensibly so, like the drawings of balls from a bag 
containing a number of balls tha t is very large compared with 
the number drawn. Reverting to the illustration of a death-rate, 
our formulas would not apply even if the sample populations 
were composed of persons of one age and one sex, if we were 
dealing, for example, with deaths from an infectious or contagious 
disease. For if one person in a certain sample' has contracted 
the disease in question, he has increased the possibility of others 
doing so, and hence of dying from the disease. The same thing 
holds good for certain classes of deaths from accident, e.g. railway 
accidents due to derailment, and explosions in mines: if such an 
accident is fatal to one person it is probably fatal to others also, 
and consequently the annual returns show large and more or 
less erratic variations. 

When we speak of simple sampling in the following pages, the 
term is intended to imply the fulfilment of all the conditions (a), 
(b), and (c), all the samples and all the individual contributions to 
each sample being taken under precisely the same conditions, 
and the individual " events " or appearances of the character being 
quite independent. I t may be as well expressly to note tha t we 
need not make any assumption as to the conditions tha t determine 
p unless we have to estimate Jnpq a priori. If we draw a 
sample and observe in it the actual proportion of, say. 4 ' s : 
draw another sample under precisely the same conditions, and 
observe the proportion of ,4's in the two samples together : add 
to these a third sample, and so on, we will find tha t p approaches 
—not continuously, bu t with some fluctuations—closer and closer 
to some limiting value, f t is this limiting value which is to be 
used in our formulae—the value of p tha t would be observed in 
a very large sample. The standard-deviation of the number of 
sixes thrown with n dice, on this understanding, may be Jnpq, 
even if the dice be out of t ru th or loaded so tha t p is no longer 
1/6. Similarly, the standard-deviation of the number of black 
balls in samples of n drawn from an infinitely large mixture of 
black and white balls in equal proportions may be Jnpq even 
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if p is, say, 1/3, and not 1/2 owing to the black balls, for some 
reason, tending to slip through our fingers. (Cf. Chap. XIV. 
§4.) 

9. It is evident that these conditions very much limit the 
field of practical cases of an economic or sociological character 
to which formulse (1) and (2) can apply without considerable 
modification. The formulse appear, however, to hold to a high 
degree of approximation in certain biological cases, notably in 
the proportions of offspring of different types obtained on crossing 
hybrids, and, with some limitations, to the proportions of the 
two sexes at birth. It is possible, accordingly, that in these cases 
all the necessary conditions are fulfilled, but this is not a necessary 
inference from the mere applicability of the formulas (cf. Chap. 
XIV. § 15). In the case of the sex-ratio at birth, it seems 
doubtful whether the rule applies to the frequency of the sexes in 
individual families of given numbers (ref. 9), but it does apply 
fairly closely to the sex-ratios of births in different localities, 
and still more closely to the ratios in one locality during 
successive periods. That is to say, if we note the number of 
males in a series of groups of n births each, the standard-deviation 
of that number is approximately Jnpq, where p is the chance 
of a male birth; or, otherwise, Jpq jn is the standard-deviation 
of the proportion of male births. We are not able to assign an 
a priori value to the chance p as in the case of dice-throwing, 
but it is quite sufficiently accurate for practical purposes to use 
the proportion of male births actually observed if that proportion 
be based on a moderately large number of observations. 

10. In Table VI. of Chap. IX. (p. 163) was given a correlation-
table between the total numbers of births in the registrationdistricts 
of England and Wales during the decade 1881-90 and the pro-
portion of male births. The table below gives some similar figures, 
based on the same data, for a few isolated groups of districts con-
taining not less than 30 to 40 districts each. In both tables thu 
drop in dispersion as we pass from the small to the large districts 
is extremely striking. The actual standard-deviations, and the 
standard-deviations of simple sampling corresponding to the mid-
numbers of births, are given at the foot of the table, and it will 
be seen that the two agree, on the whole, with surprising closeness, 
considering the small numbers of observations. The actual 
standard-deviation is, however, the larger of the two in every case 
but one. The corresponding standard-deviations for Table VI. of 
Chap. IX. are given in Qu. 7 at the end of this chapter, and show 
the same general agreement with the standard-deviations of simple 
sampling; the actual standard-deviations are, however, again, as 
a rule, slightly in excess of the theoretical values. 
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TABLE showing Frequencies of Registration Districts in England and Wales with 
Different Ratios of Male to Total Births during the Decade 1881-90, for 
Groups of Districts with the Numbers of Births in the Decade lying between 
Certain limits. [Data based on Decennial Supplement to Fifty-fifth Annual 
Report of the Registrar-General for England and Wales.] 

Male Bir ths 
per Thousand 
Total Births. 

Number of Bir ths in Decade. 

Male Bir ths 
per Thousand 
Total Births. 1500 

to 
2500. 

3500 
to 

4000. 

3 
1 
4 
3 
1 
5 
3 
3 
5 
2 
3 

1 
2 
1 

1 

4500 
to 

5000. 

10,000 
to 

15,000. 

15,000 
to 

20,000. 

30,000 
to 

50,000. 

50,000 
to . 

90,000. 

466-67 

482- 3 

492- 3 
494- 5 
496- 7 
498- 9 
500- 1 
502- 3 
504- 5 
506- 7 
508- 9 
510- 1 
512- 3 
514- 5 
516- 7 
518- 9 
520- 1 
522- 3 
524- 5 
526- 7 
528- 9 
530- 1 
532- 3 
534- 5 
536- 7 

1 

1 
1 

•2 

2 
3 
3 
5 

4 
1 
2 

4 
1 
2 
1 
1 

1 

3500 
to 

4000. 

3 
1 
4 
3 
1 
5 
3 
3 
5 
2 
3 

1 
2 
1 

1 

1 
1 

2 
3 
3 
3 
3 
9 
2 
3 
3 
3 
1 
3 

| 
j 

| 
| 

j 
|H

«
O

f
f

lf
f

lW
O

O
O

in
^ 

|H
 

|H
 

j 
| 

j 

1 
1

 
1
 

1
 

1
 

I
I 

1
 

w
 

1
 

K
.W

W
O

.^
O

,*
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1 

4 
6 

16 
8 
4 
3 
1 

1 
1

 
I

I 
! 

1
 

1
 

1
 

1
 

1
 

I 
I 

u>
o<

£S
o>

 1
 

1
 

1
 

1
 

1
 

1
 1

 
1
 

Total 36 38 40 73 33 4-3 35 
Mean 508-2 509-5 510-2 510-6 510-3 509-0 507-8 

Standard deviation s 12-8 8-53 7 12 4-98 3-87 3-22 2-20 
Theo. st. deviation-i 

corresponding to I 11-2 8-16 7-25 4-47 3-78 2-50 1-89 
mean bir ths s0J 

V ^ - V * 6-2 2-5 — 2-2 0-8 2-0 1-1 

* The meaning of th i s expression is explained in § 10 of Chap. XIV. 
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The student should note that in both cases the standard-devia-
tions given are standard-deviations of the proportion of male 
births per 1000 of all births, that is, 1000 times the values given 
by equation (2). These values are given by simply substituting 
the proportions per 1000 fo rp and q in the formula. Thus for 
the first column of Table I. the proportion of males is 508 per 
1000 births, the mid-number of births 2000, and therefore— 

11. In the above illustration the difficulty due to the wide 
variation in the number of births n in different districts has been 
surmounted by grouping these districts in limited class intervals, 
and assuming that it would be sufficiently accurate for practical 
purposes to treat all the districts in one class as if the sex-ratios 
had been based on the mid-numbers of births. Given a sufficiently 
large number of observations, such a process does well enough, 
though it is not very good. But if the number of observations 
does not exceed, perhaps, 50 or 60 altogether, grouping is 
obviously out of the question, and some other procedure must be 
adopted. 

Suppose, then, that a series of samples have been taken from 
the same material, / j samples containing TO, individuals or observa-
tions each, / 2 containing m2, / 8 containing n3, and so on: What 
would be the standard-deviation of the observed proportions in 
these samples 1 Evidently the square of the standard-deviation 
in the first group would be pq/nv in the second pqjn„, and so on : 
therefore, as the means tend to the same values in all the groups, 
we must have for the whole series— 

That is to say, where the number of observations varies from one 
sample to another, the harmonic mean number of observations in 
a sample must be substituted for n in equation (2). 

Thus the following percentages (taken to the nearest unit) of 

/ 

(3) 
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albinos were obtained in 121 litters from hybrids of Japanese 
waltzing mice by albinos, crossed inter se (A. D. Darbishire, 
Biometrika, iii. p. 30) :— 

Percentage. Frequency. Percentage. Frequency. 

0 40 40 3 
14 4 43 2 
17 9 50 16 
20 9 57 1 

' 22 1 60 3 
25 10 67 4 
29 3 80 1 
33 13 100 2 

The distribution is very irregular owing to the small numbers in 
the litters, and the standard-deviation .is 23-09 per cent. The 
numbers of litters of different sizes were given in § 27 of Chap. 
VII. p. 128, and the harmonic mean size of litter was found to be 
3'53. The expected proportion of albinos is 25 per cent., and 
hence the standard-deviation of sampling is 

^25 x 75V 
3'53 = 23-05, 

in very close agreement with the actual value. The proportion 
of albinos amongst all the offspring together was 24'7 per cent. 

12. If one of the two proportions^? and q become very small, 
equation (1) may be put into an approximate form that is very 
useful. Suppose p to be the proportion that becomes very small, 
so that we may neglect p1 compared with p : then 

PI =P ~P2 =P approximately, 
and consequently we have approximately 

<r„= Jn.p = JM . . . (4) 
That is to say, if the proportion of successes be small, the 

standard-deviation of the number of successes is the square root of 
the mean number of successes. Hence we can find the standard-
deviation of sampling even though p be unknown, provided only 
we know that it is small. 

Thus (ref. 14) in 10 Prussian army corps in 20 years (1875-
1894) there were 122 men killed by the kick of a horse, or, on an 
average, there were 0-61 deaths from that cause in each army 
corps annually. From equation (4) we accordingly have for the 
standard-deviation of simple sampling 

o-= (0-61)'= 0-78. 
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The frequency-distribution of the number of deaths per army 
corps per annum was 

Deaths. Frequency. 

0 109 
1 65 
2 22 
3 3 
4 1 

o-2 = 0-6079 
o- = 0-78 

whence 

—an almost exact agreement with the standard-deviation of simple 
sampling. 

13. We may now turn from these verifications of the theoretical 
results for various special cases, to the use of the formula) for 
checking and controlling the interpretation of statistical results. 
If we observe, in a statistical sample, a certain proportion of 
objects or individuals possessing some given character—say ,4's— 
this proportion differing more or less from the proportion which 
for some reason we expected, the question always arises whether 
the difference may be due to the fluctuations of simple sampling 
only, or may be indicative of definite differences between the 
conditions in the universe from which the sample has been drawn 
and the assumed conditions on which we based our expectation. 
Similarly, if we observe a different proportion in one sample from 
that which we have observed in another, the question again arises 
whether this difference may be due to fluctuations of simple 
sampling alone, or whether it indicates a difference between the 
conditions subsisting in the universes from which the two samples 
were drawn: in the latter case the difference is often said to be 
significant. These questions can be answered, though only more 
or less roughly at present, by comparing the observed difference 
with the standard-deviation of simple sampling. We know 
roughly that the great bulk at least of the fluctuations of samp-
ling lie within a range of ± three times the standard-deviation ; 
and if an observed difference from a theoretical result greatly 
exceeds these limits it cannot be ascribed to a fluctuation of 
"simple sampling " as defined in § 8 : it may therefore be signifi-
cant. The "standard-deviation of simple sampling" being the 
basis of all such work, it is convenient to refer to it by a shorter 
name. The observed proportions of .4's in given samples being 
regarded as differing by larger or smaller errors from the true 
proportion in a very large sample from the same material, the 
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" standard-deviation of simple sampling" may be regarded as a 
measure of the magnitude of such errors, and may be called ac-
cordingly the standard error. 

Three principal cases of comparison may be distinguished. 
Case I.—It is desired to know whether the deviation of a certain 

observed number or proportion from an expected theoretical value 
is possibly due to errors of sampling. 

In this case the observed difference is to be compared with the 
standard error of the theoretical number or proportion, for the 
number of observations contained in the sample. 

Example i.—In the first illustration of § 7, 25,145 throws of a 4, 
5, or 6 were made in lieu of the 24,576 expected (out of 49,152 
throws altogether). The excess is 569 throws. Is this excess 
possibly due to mere fluctuations of sampling? 

The standard error is 

The deviation observed is 5T times the standard error, and, 
pi-actically speaking, could not occur as a fluctuation of simple 
sampling. It may perhaps indicate a slight bias in the dice. 

The problem might, of course, have been attacked equally well 
from the standpoint of the proportion in lieu of the absolute 
number of 4's, 5's, or 6's thrown. This proportion is 0*5116 instead 
of the theoretical 0-5000, difference in excess 0-0116. The 
standard error of the proportion is 

and the difference observed bears the same ratio to the standard 
error as before, as of course it must. 

Example i i .—(Data from the Second Report of the Evolution 
Committee of the Royal Society, 1905, p. 72.) 

Certain crosses of Fisum sativum gave 5321 yellow and 1804 
green seeds. The expectation is 25 per cent, of green seeds, or 
1781. Can the divergence from the exact theoretical result have 
arisen owing to errors of sampling only1? 

The numerical difference from the expected result is 23. The 
standard error is 

cr = = 4 x i x 49152 
= 110-9. 

<7 = = J0-25 x 0-75 x 7125 = 36-8. 

Hence the divergence from theory is only some 3/5 of the 
standard error, and may very well have arisen owing simply to 
fluctuations of sampling. 
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Working from the observed proportion of green seeds, viz. 02532 
instead of the theoretical 0'25, we have 

s = v/0'25 x 0•75/7125 = 0'0051, 
and similarly the divergence from theory is only some 3/5 of the 
standard error, as before. 

It should be noted that this method must not be used as a test 
of association by comparing the difference of (AB) from (A)(B)/N 
with a standard error calculated from the latter value as a 
"theoretical number," for it is not a theoretical number given 
a priori as in the above illustrations, and A and B are themselves 
liable to errors of sampling. If we formed an association-tablc 
between the results of tossing two coins N times, <r = JN. 1-
would be the standard error for the divergence of (AB) from the 
a priori value m/4, not the standard error for differences of (AB) 
from (A)(B)/N, (A) and (B) being the numbers of heads thrown 
in the case of the first and the second coin respectively. 

Case II.—Two samples from distinct materials or different 
universes give proportions of ^ 's p1 and p2, the numbers of 
observations in the samples being n1 and n2 respectively, (a) Can 
the difference between the two proportions have arisen merely as a 
fluctuation of simple sampling, the two universes being really 
similar as regards the proportion of ,4's therein'! (b) If the 
difference indicated were a real one, might it vanish, owing to 
fluctuations of sampling, in other samples taken in precisely the 
same way 1 This case corresponds to the testing of an association 
which is indicated by a comparison of the proportion of A'b amongst 
B'b and F3's. 

(a) We have no theoretical expectation in this case as to the 
proportion of -4's in the universe from which either sample has 
been taken. 

Let us find, however, whether the observed difference between pj 
and p2 may not have arisen solely as a fluctuation of simple 
sampling, the proportion of A'a being really the same in both cases, 
and given, let us say, by the (weighted) mean proportion in our 
two samples together, i.e. by 

nx + n2 

(the best guide that we have). 
Let c, e2 be the standard errors in the two samples, then 

If the samples are simple samples in the sense of the previous 
work, then the mean difference between px and p2 will be zero, 
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and the standard error of the difference €12, the samples being 
independent, will be given by 

• • • • ( 5 ) 

If the observed difference is less than some three times e12 it 
may have arisen as a fluctuation of simple sampling only. 

(b) If, on the other hand, the proportions of 2's are not the same 
in the material from which the two samples are drawn, but and 
p.2 are the true values of the proportions, the standard errors of 
sampling in the two cases are 

4 =Pi9ilni 
and consequently 

. . . . (6) 
n2 . 

If the difference between and p„ does not exceed some three 
times this value of e12, it may be obliterated by an error of simple 
sampling on taking fresh samples in the same way from the same 
material. 

Further, the student should note that the value of e12 given by 
equation (6) is frequently employed, in lieu of that given by 
equation (5), for testing the significance of an observed difference. 
The justification of this usage we indicate briefly later (Chap. 
XIV, § 3). Here it is sufficient to state that, if n be large, 
equation (6) gives approximately the standard-deviation of the 
true values of the difference for a given observed value, and hence, 
if the observed difference is greater or less than some three times 
the value of e12 given by (6), it is hardly possible that the true 
value of the difference can be zero. The difference between the 
values of t12. given by (5) and (6) is indeed, as a rule, of more 
theoretical than practical importance, for they do not differ largely 
unless px and p2 differ largely, and in that case either formula will 
place the difference outside the range of fluctuations of sampling. 

Example iii.—The following data were given in Qu. 3 of Chap. 
III. for plants of Lobelia fulgens obtained by cross- and self-fertilisa-
tion respectively:— 

Parentage Cross-fertilised. Parentage Self-fertilised. 
Height— Height— 

Above Average. Below Average. Above Average. Below Average. 

17 17 12 22 
The figures indicate an association between tallness and cross-

fertilisation of parentage. Is this association significant of some 
real difference, or may it have arisen solely as an " error of 
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sampling " 1 The proportion of plants above average height in the 
two classes (cross- and self-fertilised) together is 29/68. The 
standard-deviation of the differences due to simple sampling 
between the proportions of " ta l l" plants in two samples of 34 
observations each is therefore 

/29 39 9 
! = (.68 * 68 * 34/ 

or 12'0 per cent. The actual proportions observed are 50 per 
cent, and 35 per cent.—difference 15 per cent. As this difference 
is only slightly in excess of the standard error of the difference, 
for samples of 34 observations drawn from identical material, no 
definite significance could be attached to it—if it stood alone. 

The student will notice, however, that all the other cases cited 
from Darwin in the question referred to show an association of 
the same sign, but rather more marked. Hence the difference 
observed may be a real one, or perhaps the real difference may be 
greater and may be partially masked by a fluctuation of sampling. 
If 50 per cent, and 35 per cent, were the true proportions in the 
two classes, the standard error of the percentage difference would 
be, by equation (6), 

/50x 50 35 x 65\ ei2 = ^ 3 4 + 3 4 J = 11 '9 per cent., 

and consequently the actual difference might not infrequently be 
completely masked by fluctuations of sampling, so long as experi-
ments were only conducted on the same small scale. 

Example iv.—(Data from J. Gray, Memoir on the Pigmentation 
Survey of Scotland, Jour, of the Royal Anthropological Institute, 
vol. xxxvii., 1907.) The following are extracted from the tables 
relating to hair-colour of girls at Edinburgh and Glasgow :— 

Of Medium Total Per cent. 
Hair-colour. observed. Medium. 

Edinburgh . . 4,008 9,743 4T1 
Glasgow . . 17,529 39,764 44T 

Can the difference observed in the percentage of girls of medium 
hair-colour have arisen solely through fluctuations of sampling? 

In the two towns together the percentage of girls with medium 
hair-colour is 43'5 per cent. If this were the true percentage, 
the standard error of sampling for the difference between per-
centages observed in samples of the above sizes would be— 

e]2 = (43-5 x 5 6 - 5 ) » x ( J S 3 + M i g i ) t 

= 0'56 per cent. 
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The actual difference is 3'0 per cent., or over 5 times this, and 
could not have arisen through the chances of simple sampling. 

If we assume that the difference is a real one and calculate the 
standard error by equation (6), we arrive at the same value, viz. 
0"56 per cent. With such large samples the difference could not, 
accordingly, be obliterated by the fluctuations of simple sampling 
alone. 

Case III.—Two samples are drawn from distinct material or 
different universes, as in the last case, giving proportions of 
.4's pj and p2, but in lieu of comparing the proportion p1 with 
p0 it is compared with the proportion of .d's in the two samples 
together, viz. p0, where, as before, 

Required to find whether the difference between p1 and p0 can 
have arisen as a fluctuation of simple sampling, p0 being the 
true proportion of ,4's in both samples. 

This case corresponds to the testing of an association which 
is indicated by a comparison of the proportion of 4's amongst 
the B's with the proportion of ,4's in the universe. The general 
treatment is similar to that of Case II., but the work is complicated 
owing to the fact that errors in px and p0 are not independent. 

If e01 be the standard error of the difference between p1 and 
p0, we have at once 

r01 being the correlation between errors of simple sampling in 
py and p0. But, from the above equation relating p0 to pl 
and p2, writing it in terms of deviations in p0 p} and p2, 
multiplying by the deviation in p1 and summing, we have, 
since errors in pj and p2 are uncorrelated, 

•Po = 
n\P\ + niVi 

2 2 , 2 -2 O , 

Therefore finally 
P&0 ™2 

+ ?l2 ' n! 

Unless the difference between p0 and px exceed, say, some 
three times this value of e01, it may have arisen solely by the 
chances of simple sampling. 
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It will be observed that if be very small compared with 
n2, e01 approaches, as it should, the standard error for a sample 
of ^ observations. 

We omit, in this case, the allied problem whether, if the 
difference between p1 and p0 indicated by the samples were 
real, it might be wiped out in other samples of the same size 
by fluctuations of simple sampling alone. The solution is a 
little complex as we no longer have 4==Po1o/(ni+n2)-

Example v.—Taking the data of Example iii., suppose that 
we compare the proportion of tall plants amongst the offspring 
resulting from cross-fertilisations (viz. 50 per cent.) with the 
proportion amongst all offspring (viz. 29/68, or 42'6 per cent.). 
As, in this case, both the subsamples have the same number 
of observations, n̂  = n2 = 34, and 

or 6 per cent. As in the working of Example iii., the observed 
difference is only T25 times the standai'd error of the difference, 
and consequently it may have arisen as a mere fluctuation 
of sampling. 

Example vi.—Taking now the figures of Example iv., suppose 
that we had compared the proportion of girls of medium hair-
colour in Edinburgh with the proportion in Glasgow and 
Edinburgh together. The former is 41T per cent., the latter 
43'5 per cent., difference 2'4 per cent. The standard error of 
the difference between the percentages observed in the sub-
sample of 9743 observations and the entire sample of 49,507 
observations is therefore 

The actual difference is over five times this (the ratio must, of 
course, be the same as in Example iv.), and could not have occurred 
as a mere error of sampling. 

The theory of sampling, for the cases dealt with in this chapter, is generally 
treated by first determining the frequency-distribution of the number of 
successes in a sample. This frequency-distribution is not considered till 
Chapter XV., and the student will be unable to follow much of the literature 
until he has read tha t chapter. 

= 0'45 per cent. 
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EXERCISES. 

1. (Ref. 4 : total of columns of all the 13 tables given.) 
Compare the actual with the theoretical mean and standard-deviation for 

the following record of 6500 throws of 12 dice, 4, 5, or 6 being reckoned 
as a "success." 

Successes. 
0 
1 
2 
3 
4 
5 

Frequency. 
1 

14 
103 
302 
711 

1231 
1411 

Successes. Frequency. 

10 
11 
12 

Total 6500 
2. (Ref. 1.) 
Balls were drawn from a bag containing equal numbers of black and white 

balls, each ball being returned before drawing another. The records wero then 
grouped by counting the number of black balls in consecutive 2's, 3's, 4's, 5's, 
etc. The following give the distributions so derived for grouping by 5's, 6's, 
and 7's. Compare actual with theoretical means and standard-deviations. 

Successes. (a) Grouping 
by Fives. 

(6) Grouping 
by Sixes. 

(c) Grouping 
by Sevens. 

0 30 17 9 
1 125 65 34 
2 277 166 104 
3 224 192 151 
4 136 166 148 
5 27 69 95 
6 — 8 40 
7 — — 4 

Total 819 683 585 

3. (Ref. 2, p. 22.) 
Ten thousand drawings of a ball from a bag containing equal numbers of 

black and white were made in the same manner as in the preceding example, 
and then grouped into 100 sets of 100. The following gives the resulting 
frequency of different numbers of white balls. Compare mean and standard-
deviation with theory. 

Number. Frequency. Number. Frequency. Number. Frequency 
34 1 44 8 54 8 
36 — 45 4 55 8 
36 — 46 6 56 5 
37 — 47 e 57 4 
38 — . 48 5 58 4 
39 1 49 n 59 — 

40 2 50 9 60 — 

41 2 51 5 61 1 
42 2 52 10 62 1 
43 3 53 4 63 1 
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4. The proportion of successes in the data of Qu. 1 is 0'5097. Find the stand-
ard-deviation of the proportion with the given number of throws, and state 
whether you would regard the excess of successes as probably significant of bias 
in the dice. 

5. In the 4096 drawings on which Qu. 2 is based 2030 balls were black 
and 2066 white. Is this divergence probably significant of bias ? 

6. If a frequency-distribution such as those of Questions 1, 2, and 3 be given, 
show how n and p, if unknown, m a y b e approximately determined from the 
mean and standard-deviation of the distribution. 

Find n andja in this way from the data of Qu. 1 and Qu. 3. 
7. Verify the following results for Table V l . of Chapter IX. p. 163, and 

compare the results of the different grouping of the table on p. 263. In 
calculating the actual standard-deviation, use Sheppard's correction for 
grouping (p. 212). 

Actual Standard-
Row or Rows. Mean. Standard- deviation * 

deviation s. of Sampling s0. 

1 508-2 11-60 11-18 
2 509-5 6-79 6-45 
3 510-0 5-28 5-00 
4 511-1 5-03 4-22 
5 510-2 3-67 3-73 

6, 7 509-7 4-13 3-24 
8, 9, 10, 11 508-7 3-10 2-69 
12, 13, 14 508-4 2-55 2-25 

15 and upwards. 508-2 2-13 1-85 

8. In a case of mice-breeding (see reference given in § 11) the harmonic 
mean number in a litter was 4'735, and the expected proportion of albinos 
50 per cent. Find the standard-deviation of simple sampling for the pro-
portion of albinos tn a litter, and state whether the actual standard-deviation 
(21 '63 per cent.) probably indicates any real variation, or not. 

9. (Data from Report i., Evolution Committee of the Royal Society, p. 17.) 
In breeding certain stocks 408 hairy and 126 glabrous plants were obtained. 
If the expectation is one-fourth glabrous, is the divergence significant, or might 
i t have occurred as a fluctuation of sampling ? 

10. (Data of Example viii. and Qu. 5, Chap. I I I . ) Is the association in 
either of the following cases likely to have arisen as a fluctuation of simple 
sampling ? 

(a) (AB) = i1 (At3) = 12 (aB) = 21 (a£) = 3 
(b) (AB) = 309 (A$) = 21i (aB)=132 (a,8) = 119 

11. The sex-ratio a t birth is sometimes given by the ratio of male to female 
births, instead of the proportion of male to total births. If Z is the ratio, i. e. 

Z=plq, show tha t the standard error of Z is approximately + 
n 

n being large, so that deviations are small compared with the mean. (The 
student may find it useful to refer to § 8, Chap. XI.) 

* Based on the mid-value of the class-interval for single rows, or the 
harmonic mean of the mid-values for groups of rows. 



C H A P T E R X I V 

SIMPLE SAMPLING CONTINUED: EFFECT OF 
REMOVING THE LIMITATIONS OF SIMPLE SAMPLING. 

1. Warning as to the assumption tha t three times the standard error gives the 
range for the majority of fluctuations of simple sampling of either sign 
—2. Warning as to the use of the observed for the true value of p in 
the formula for the standard error—3. The inverse standard error, or 
standard error of the true proportion for a given observed proportion : 
equivalence of the direct and inverse standard errors when n is large - -
4-8. The importance of errors other than fluctuations of " s imple 
sampl ing" in practice: unrepresentative or biassed samples—9-10. 
Effect of divergences from the conditions of simple sampling: (a) 
effect of variation in p and q for the several universes from which the 
samples are drawn—11-12. (b) Ell'ect of variation in p and q from one 
sub-class to another within each universe—13-14. (c) Eil'ect of a 
correlation between the results of the several events—15. Summary. 

1 . T H E R E are two warnings as regards the methods adopted in 
the examples in the concluding section of the last chapter 
which the student should note, as they may become of importance 
when the number of observations is small. In the first place, he 
should remember that, while we have taken three times the 
standard error as giving the limits within which the great 
majority of errors of sampling of either sign are contained, 
the limits are not, as a rule, strictly the same for positive and 
for negative errors. As is evident from the examples of actual 
distributions in § 7, Chap. XIII., the distribution of errors is not 
strictly symmetrical unless p = q = 0'5. No theoretical rule as 
to the limits can be given, but it appears from the examples 
referred to and from the calculated distributions in Chap. XV. 
§ 3, that a range of three times the standard error includes 
the great majority of the deviations in the direction of the 
longer " ta i l " of the distribution, while the same range on the 
shortei side may extend beyond the limits of the distribution 
altogether. If, therefore, p be less than 0'5, our assumed range 
may be greater than is possible for negative errors, or if p be 

276 
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greater than 0'5, greater than is possible for positive errors. The 
assumption is not, however, likely as a rule to lead to a serious 
mistake ; as stated at the commencement of this paragraph, the 
point is of importance only when n is small, for when n is large the 
distribution tends to become sensibly symmetrical even for values 
of p differing considerably from 0'5. (Gf. Chap. XV. for the 
properties of the limiting form of distribution.) 

2. In the second place, the student should note that, where we 
were unable to assign any a priori value to p, we have assumed 
that it is sufficiently accurate to replace p in the formula for the 
standard error by the proportion actually observed, say tt. 
Where n is large so that the standard error of p becomes small 
relatively to the product pq the assumption is justifiable, and no 
serious error is possible. If, however, n be small, the use of the 
observed value -n- may lead to an under-, or over-estimation of the 
standard error which cannot be neglected. To get some rough 
idea of the possible importance of such effects, the approximate 
standard error e may first be calculated as usual from the 
observed proportion ir, and then fresh values recalculated, replac-
ing ir by it + 3e. I t should be remembered that the maximum 
value of the product pq is given by p = q = 0'5, and hence these 
values, if within the limits of fluctuations of sampling, will give 
one limiting value for the standard error. The procedure is by 
no means exact, but may serve to give a useful warning. 

Thus in Example iii. of Chap. XIII. the observed proportion of 
tall plants is 29/68, or, say, 43 per cent. The standard error of 
this proportion is 6 per cent., and a true proportion of 50 per 
cent, is therefore well within the limits of fluctuations of sampling. 
The maximum value of the standard error is therefore 

On the other hand, the standard error is unlikely to be lower 
than that based on a proportion of 43 - 18 = 25 per cent., 

3. The two difficulties mentioned in §§ 1 and 2 arise when n, 
the number of cases in the sample, is small. The interpretation 
of the value of the standard error is also more limited in this 
case than when n is large. Suppose a large number of observa-
tions to be made, by means of samples of n observations each, on 
different masses of material, or in different universes, for each of 
which the true value of p is known. On these data we could 
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form a correlation-table between the true proportion p in a given 
universe and the observed proportion 7r in a sample of n observa-
tions drawn therefrom. What we have found from the work of 
the last chapter is that the standard-deviation of an array of ir's 
associated with a certain true value p, in this table, is (pqln){; 
but the question may be asked—What is the standard-deviation 
of the array at right angles to this, i.e. the array of p's associated 
with a certain observed proportion irl In other words, given an 
observed proportion 7r, what is the standard-deviation of the true 
proportions 1 This is the inverse of the problem with which we 
have been dealing, and it is a much more difficult problem. 
On general principles, however, we can see that if n be large, 
the two standard-deviations will tend, on the average of all 
values of p, to be nearly the same, while if n be small the standard-
deviation of the array of 7r's will tend to be appreciably the 
greater of the two. For if 7r =p + S, S is uncorrelated with p, 
and therefore if crp be the standard-deviation of p in all the 
universes from which samples are drawn, cr„ the standard-
deviation of observed proportions in the samples, and o-j the 
standard-deviation of the differences, 

But o j varies inversely as n. Hence if n become very large, as 
becomes very small, rrn becomes sensibly equal to <rp, and therefore 
the standard-deviations of the arrays, on an average, are also 
sensibly equal. If n be large, therefore, [7r(l - ir)/^ may be 
taken as giving, with sufficient exactness, the standard-deviation 
of the true proportion p for a given observed proportion tr. But 
if n be small, ars cannot be neglected in comparison with cr,, a-„ is 
therefore appreciably greater than crp, and the standard-deviation 
of the array of -jt's is, on an average of all arrays, correspondingly 
greater than the standard deviation of the array of p's—the state-
ment is not true for every pair of corresponding arrays, especially 
for extreme values of p near 0 and 1. Further, it should be 
noticed that, while the regression of it on p is unity—i.e. the 
mean of the array of 7r's is identical with p, the type of the 
array—the regression of p on TT is less than unity. If we as-
sume, therefore, that a tabulation of all possible chances, observed 
for every conceivable subject, would give a distribution of p 
ranging uniformly between 0 and 1, or indeed grouped symmetri-
cally in any way round 0'5, any observed value 7r greater than 
0 5 will probably correspond to a true value of p slightly lower 
than 7r, and conversely. We have already referred to the use of 
the inverse standard error in § 13 of Chap. XIII. (Case II., p. 269). 
If we determine, for example, the standard error of the difference 
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between two observed proportions by equation (6) of tha t chapter, 
this may be taken, provided n be large, as approximately the 
standard-deviation of t rue differences for the given observed 
difference. 

4. The use of standard errors must be exercised with care. I t 
is very necessary to remember the limited assumptions on which 
the theory of simple sampling is based, and to bear in mind tha t 
it covers those fluctuations alone which exist when all the assumed 
conditions are fulfilled. The formulae obtained for the standard 
errors of proportions and of their differences have no bearing 
except on the one question, whether an observed divergence of a 
certain proportion from a certain other proportion tha t might be 
observed in a more extended series of observations, or tha t has 
actually been observed in some other series, might or might not 
be due to fluctuations of simple sampling alone. Their use is 
thus quite restricted, for in many cases of practical sampling this 
is not the principal question at issue. The principal question in 
many such cases concerns quite a different point, viz. whether the 
observed proportion ir in the sample may not diverge from the 
proportion p existing in the universe from which it was drawn, 
owing to the nature of the conditions under which the sample was 
taken, ir tending to be definitely greater or definitely less than 
p. Such divergence between tt and p might arise in two distinct 
ways, (1) owing to variations of classification in sorting the 
A's and a's, the characters not being well defined—a source of 
error which we need not fur ther discuss, bu t one which may lead 
to serious results [c/. ref. 5 of Chap. V.]. (2) Owing to either .4's 
or a's tending to escape the attentions of the sampler. To give 
an illustration from artificial chance, if on drawing samples from 
a bag containing a very large number of black and white balls 
the observed proportion of black balls was tt, we could not 
necessarily infer tha t the proportion of black balls in the bag was 
approximately TT, even though the standard error were small, and 
we knew tha t the proportions in successive samples were subject 
to the law of simple sampling. For the black balls might be, 
say, much more highly polished than the white ones, so as to 
tend to escape the fingers of the sampler, or they might be re-
presented by a number of lively black insects sheltering amongst 
white stones: in neither case would the ratio of black balls to 
white, or of insects to stones, be represented in their proper pro-
portions. Clearly, in any parallel case, inferences as to the 
material from which the sample is drawn are of a very doubtful 
and uncertain kind, and it is this uncertainty whether the chance 
of inclusion in the sample is the same for ,4's and a's, far more 
than the mere divergences between different samples drawn in 
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the same way, which renders many statistical results based on 
samples so dubious. 

5. Thus in collecting returns as to family income and expendi-
ture from working-class households, the families with lowt-
incomes are almost certain to be under-represented ; they largely 
"escape the sampler's fingers" from their simple lack of ability 
to keep the necessary accounts. I t is almost impossible to say, 
however, to what extent they are under-represented, or to form 
any estimate as to the possible error when two such samples 
taken by different persons at different times, or in different places, 
are compared. Again, if estimates as to crop-production aro 
formed on the basis of a limited number of voluntary returns, 
the estimates are likely to err in excess, as the persons who 
make the returns will probably include an undue proportion 
of the more intelligent farmers whose crops will tend to be 
above average. Whilst voluntary returns are in this way liable 
to lead to more or less xmrepresentative samples, compulsory 
sampling does not evade the difficulty. Compulsion could not en-
sure equally accurate and trustworthy returns from illiterate 
and well-educated workmen, from intelligent and unintelligent 
farmers. The following of some definite rule in drawing the 
sample may also produce unrepresentative samples: if samples 
of fruit were taken solely from the top layers of baskets exposed 
for sale, the results might be unduly favourable ; if from the 
bottom layer, unduly unfavourable. 

6. In such cases we can see that any sample, taken in the 
way supposed, is likely to be definitely biassed, in the sense 
that it will not tend to include, even in the long run, equal 
proportions of the A's and a's in the original material. In other 
cases there may be no obvious reason for presuming such bias, 
but, on the other hand, no certainty that it does not exist. Thus 
if we noted the hair-colours of the children in, say, one 
school in ten in a large town, the question would arise whether 
this method would tend to give an unbiassed sample of all the 
children. No assured answer could be given: conjectures on 
the matter would be based in part on the way in which the 
schools were selected, e.g. the volunteering of teachers for the work 
might in itself introduce an element of bias. Again, if say 
10,000 herrings were measured as landed at various North Sea 
ports, and the question were raised whether the sample was 
likely to be an unbiassed sample of North Sea herrings, no 
assured answer could be given. There may be no definite reason 
for expecting definite bias in either case, but it may exist, and 
no mere examination of the sample itself can give any informa-
tion as to whether it exists or no. 
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7. Such an examination may be of service, however, as 
indicating one possible source of bias, viz. great heterogeneity in 
the original material. If, for example, in the first illustration, 
the hair-colours of the children differed largely in the different 
schools—much more largely than would be accounted for by 
fluctuations of simple sampling—it would be obvious tha t one 
school would tend to give an unrepresentative sample, and 
questionable therefore whether the five, ten or fifteen schools 
observed might not also have given an unrepresentative sample. 
Similarly, if the herrings in different catches varied largely, it 
would, again, be difficult to get a representative sample for a 
large area. But while the dissimilarity of subsamples would 
then be evidence as to the difficulty of obtaining a representative 
sample, the similarity of subsamples would, of course, be no 
evidence tha t the sample was representative, for some very 
different material which should have been represented might 
have been missed or overlooked. 

8. The student must therefore be very careful to remember 
tha t even if some observed difference exceed the limits of fluctua-
tion in simple sampling, it does not follow tha t it exceeds the 
limits of fluctuation due to what the practical man would regard— 
and quite rightly regard—as the chances of sampling. Further , 
he must remember tha t if the standard error be small, it by no 
means follows tha t the result is necessarily t rustworthy : the 
smallness of the standard error only indicates tha t i t is not 
untrustworthy owing to the magnitude of fluctuations of simple 
sampling. I t may be quite untrustworthy for other reasons: 
owing to bias in taking the sample, for instance, or owing to definite 
errors in classifying the and a's. On the other hand, of course, 
it should also be borne in mind tha t an observed proportion is not 
necessarily incorrect, bu t merely to a greater or less extent 
untrustworthy if the standard error be large. Similarly, if an 
observed proportion n-j in a sample drawn from one universe be 
greater than an observed proportion tt2 in a sample drawn from 
another universe, but irx - 7r2 is considerably less than three times 
the standard error of the difference, it does not, of course, follow 
that the t rue proportion for the given universes, px and p2, are 
most probably equal. On the contrary, pY most likely exceeds £>2 '> 
the standard error only warns us tha t this conclusion is more or 
less uncertain, and that possibly p2 may even e x c e e d ^ . • 

9. Let us now consider the effect, on the standard-deviation of 
sampling, of divergences from the conditions of simple sampling 
which were laid down in § 8 of Chap. XIII . 

First suppose the condition (a) to break down, so tha t there is 
some essential difference between the localities from which, or the 
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conditions under which, samples are drawn, or that some essential 
change has taken place during the period of sampling. We may 
represent such circumstances in a case of artificial chance by 
supposing that for the first / j throws of n dice the chance of 
success for each die is pv for the next f.2 throws p2, for the nex t / 8 
throws ps, and so on, the chance of success varying from time to 
time, just as the chance of death, even for individuals of the same 
age and sex, varies from district to district. Suppose, now, that 
the records of all these throws are pooled together. The mean 
number of successes per throw of the n dice is given by 

M= jfifiPi +frf>2 +/3JP3 + . . . . ) = n.pw 

where JV= 2 ( / ) is the whole number of throws and p0 is the mean 
value ~2(fp)IN of the varying chance p. To find the standard-
deviation of the number of successes at each throw consider that 
the first set of throws contributes to the sum of the squares of 
deviations an amount 

n.pxqx being the square of the standard-deviation for these throws, 
and n(p1 - p 0 ) the difference between the mean number of 
successes for the first set and the mean for all the sets together. 
Hence the standard-deviation a of the whole distribution is given 
by the sum of all quantities like the above, or 

No-2 = ri2(fpq) + n* 2 f ( p - p0)\ 

Let <rp be the standard-deviation of p, then the last sum is 
N.nVp, and substituting 1 -p for q, we have 

a'' = np0 - npl - wcr£ + n2a2
p 

= np0q0 + n(n-l)oz
p . . . . (1) 

This is the formula corresponding to equation (1) of Chap. 
XIII. : if we deal with the standard-deviation of the proportion 
of successes, instead of that of the absolute number, we have, 
dividing through by n2, the formula corresponding to equation 
(2) of Chap. XIII., viz.— 

- a » . . . . (2) n n 1 

10. If n be large and s0 be the standard-deviation calculated 
from the mean proportion of successes p ^ equation (2) is sensibly 
of the form 
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TABLE showing Frequencies of Registration Districts in England and Wales 
with Different Proportions of Deaths in Childbirth (including Deaths 
from Puerperal Fever) per 1000 Births in the same Year, for the same 
Groups of Districts as in the Table of Chap. X I I I . § 10. Data from same 
source. Decade 1881-90. 

Number of Bir ths in the Decade. 

Deaths in 
Childbir th per 

1000 Births. 

Deaths in 
Childbir th per 

1000 Births. 1500 
to 

2500. 

3500 
to 

4000. 

4500 
to 

5000. 

10,000 
to 

15,000. 

15,000 
to 

20,000. 

30,000 
to 

50,000. 

50,000 
to 

90,000. 
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1 
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1 
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1 
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W
W
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1 
1 
1 
5 
6 
2 
7 
5 
1 
3 
1 

1 

1 

1 

3 
5 
6 
5 
5 
3 
3 
5 
1 
1 

1 

1 
1 

1 
[ 

1 
1 

1 
[ 

H
M

tf
».

a!
O

Q
O

O
't

iH
M

t5
 

1 
4 
8 

23 
14 
14 

5 

3 

1 

1 
I 

1 
1^

1 
1 

1 
1 

1 
1 

[ [
 

1 
1 

I 
If

-'
j^

to
F

-'
U

ia
i^

ic
ow

i-
'l 

I 
1 

' 
! 

' 
I 

1 
1 

| 
| 

| 

Total 
Mean 

Standard - de-1 
viation f 

T h e o r e t i c a l ^ 
s tandard -de-
viation corre- V 
sponding to 
mean b i r ths J 

36 
5'29 

1-77 

1-62 

0-71 

38 
4-71 

1-37 

1-12 

0-80 

40 
4'45 

1-09 

0-97 

0-51 

73 
4-68 

1-01 

0-61 

0'80 

33 
4 '99 

0-99 

0-53 

0-84 

43 
5-13 

1-12 

0-36 

1-07 

35 
4-64 

0'87 

0"26 

0-83 

and hence, knowing s and s0, we can find o-p the standard-deviation 
of the chance or proportion in the universes from which the 
samples have been drawn. 

The values of J ^ - si are tabulated at the foot of the table 
showing the distribution of the proportion of male births in 
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certain registration districts of England, in § 10 of Chap. XIII. 
p. 263. It will be seen that in the first group of small districts 
there appears to be a significant standard-deviation of some 6 
units in the proportion of male births per thousand, but in the 
more urban districts this falls to 1 or 2 units ; in one case only 
does s fall short of s0. In the table on p. 283 are given some 
different data relating to the deaths of women in childbirth in the 
same groups of districts, and in this case the effect of definite 
causes is relatively larger, as one might expect. The values of 
J s 2 - S5 suggest an almost uniform significant standard-deviation 

trJ1 = 0'8 in the deaths of women per thousand births, five out of 
the eight values being very close to this average. The figures of 
this case also bring out clearly one important consequence of (2), 
viz. that if we make n large s becomes sensibly equal to crp, while 
if we make n small s becomes more nearly equal to p0qjn. Hence 
if we want to know the significant standard-deviation of the pro-
portion p—the measure of its fluctuation owing to definite causes 
—n should be made as large as possible; if, on the other hand, we 
want to obtain good illustrations of the theory of simple sampling 
n should be made small. If n be very large the actual standard-
deviation may evidently become almost indefinitely large com-
pared with the standard-deviation of sampling. Thus during the 
20 years 1855-74 the death-rate in England and Wales fluctuated 
round a mean value of 22-2 per thousand with a standard-devia-
tion of 0'86. Taking the mean population as rough] j 21 millions, 
the standard-deviation of sampling is approximately 

This is only about one twenty-seventh of the actual value. 
11. Now consider the effect of altering the second condition 

of simple sampling, given in § 8 (b) of Chapter XIII., viz. the 
condition that the chances p and q shall be the same for every 
die or coin in the set, or the circumstances that regulate the 
appearance of the character observed the same for every individual 
or every sub-class in each of the universes from which samples 
are drawn. Suppose that in the group of n dice thrown the 
chances for mj dice are p1 q1; for m2 dice, p2 q2, and so on, 
the chances varying for different dice, but being constant 
throughout the experiment. The case differs from the last, as 
in that the chances were the same for every die, at any one 
throw, but varied from one throw to another: now they are con-
stant from throw to throw, but differ from one die to another as 
they would in any ordinary set of badly made dice. Required to 
find the effect of these differing chances. 
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For the mean number of successes we evidently have 

M = m^ + m.2p2 + m^p^ + . . . . 
= n.p0 

p0 being the mean chance 2(mp)/n. To find the standard-deviation 
of the number of successes at each throw, it should be noted that 
this may be regarded as made up of the number of successes in 
the m1 dice for which the chances are p1 qv together with the 
number of successes amongst the m2 dice for which the chances 
are p2 q2, and so on: and these numbers of successes are all 
independent. Hence 

<r2 = m1p1q1+mip2q2 + map3qs + . . . . 

= 2 (mpq), 

Substituting 1 —p for q, as before, and using crp to denote the 
standard-deviation of p, 

<r = n.p0q0 - ncrl . . . . (3) 

or if s be, as before, the standard-deviation of the proportion of 
successes, 

s2=Pa-1o _ _ _ . (4) 
n n 

12. The effect of the chances varying for the individual dice or 
other "events" is therefore to lower the standard-deviation, as 
calculated from the mean proportion pQ, and the effect may 
conceivably be considerable. To take a limiting case, if p be zero 
for half the events and unity for the remainder, pQ = q0 = and 
<rp = b, so that s is zero. To take another illustration, still some-
what extreme, if the values of p are uniformly distributed over 
the whole range between 0 and 1, _p0

 = l?o = 2 a s before but = 
1/12 = 0-0833 (Chap. VIII. § 12, p. 143). Hence s2 = 0'1667/m, 

instead of 0 ' 5 J j n , the value of s if the chances are 
J in every case. In most practical cases, however, the effect will be 
much less. Thus the standard-deviation of sampling for a death-
rate of, say, 18 per thousand in a population of uniform age and 
one sex is (18 x 9 8 2 ) ' / ^ = 133/v«. In a population of the age 
composition of that of England and Wales, however, the death-
rate is not, of course, uniform, but varies from a high value in 
infancy (say 150 per thousand), through very low values (2 to 4 
per thousand) in childhood to continuously increasing values in 
old age ; the standard-deviation of the rate within such a popula-
tion is roughly about 30 per thousand. But the effect of this 
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variation on the standard-deviation of simple sampling is quite 
small, for, as calculated from equation (4), 

s2 = i(18 x 982-900) 

s = 130/Jn 

as compared with 133Jjn. 
13. We have finally to pass to the third condition (c) of § 8, Chap. 

XIII., and to discuss the effect of a certain amount of dependence 
between the several " events " in each sample. We shall suppose, 
however, that the two other conditions (a) and (6) are fulfilled, 
the chances p and q being the same for every event at every trial, 
and constant throughout the experiment. The problem is again 
most simply treated on the lines of § 5 of the last chapter. The 
standard-deviation for each event is (pqY as before, but the events 
are no longer independent: instead, therefore, of the simple 
expression 

cr2 = n.pq, 

we must have (cf. Chap. XI. § 2) 

<r2 = n.pq + 2pq(rn + r13 + . . . . rm+ . . . . ) , 

where, r12, r l s, etc. are the correlations between the results of the 
first and second, first and third events, and so on—correlations 
for variables (number of successes) which can only take the 
values 0 and 1, but may nevertheless, of course, be treated as 
ordinary variables (cf. Chap. XI. § 10). There are n(n- l)/2 
'correlation-coefficients, and if, therefore, r is the arithmetic mean 
of the correlations we may write 

cr2 = npq\\ + r(n — 1)] . . . . (5) 

The standard-deviation of simple sampling will therefore be 
increased or diminished according as the average correlation 
between the results of the single events is positive or negative, 
and the effect may be considerable, as a may be reduced to zero 
or increased to n(jp(ff. For the standard deviation of the propor-
tion of successes in each sample we have the equation 

s 2 = - ^ [ l + r ( r a - l ) ] . . . . (6) 

It should be noted that, as the means and standard-deviations 
for our variables are all identical, r is the correlation-coefficient 
for a table formed by taking all possible pairs of results in the 
n events of each sample. 
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It should also be noted that the case when r is positive covers 
the departure from the rules of simple sampling discussed in 
§§ 9-10 : for if we draw successive samples from different records, 
this introduces the positive correlation at once, even although the 
results of the events at each trial are quite independent of one 
another. Similarly, the case discussed in §§ 11-12 is covered by 
the case when r is negative : for if the chances are not the same 
for every event at each trial, and the chance of success for some 
one event is above the average, the mean chance of success for the 
remainder must be below it. The cases (a), (b) and (c) are, how-
ever, best kept distinct, since a positive or negative correlation 
may arise for reasons quice different from those discussed in 

14. As a simple illustration, consider the important case of 
sampling from a limited universe, e.g. of drawing n balls in 
succession from the whole number w in a bag containingpw) white 
balls and qui black balls. On repeating such drawings a large 
number of times, we are evidently equally likely to get a white 
ball or a black ball for the first, second, or nth ball of the sample : 
the correlation-table formed from all possible pairs of every sample 
will therefore tend in the long run to give just the same form of 
distribution as the correlation-table formed from all possible pairs 
of the w balls in the bag. But from Chap. XI. § 11 we 
know that the correlation-coefficient for this table is - 1 / ( w - 1), 
whence 

If n=l, we have the obviously correct result that cr=(pq)i, as 
in drawing from unlimited material: if, on the other hand, n = w, 
<j becomes zero as it should, and the formula is thus checked for 
simple cases. For drawing 2 balls out of 4, o- becomes 0'816 
(ripq)*; for drawing 5 balls out of 10, 0'745 (npq)h; in the case 
of drawing half the balls out of a very large number, it approxi-
mates to (0'5.npqy, or 0'707 (npqY. 

In the case of contagious or infectious diseases, or of certain 
forms of accident that are apt, if fatal at all, to result in whole-
sale deaths, r is positive, and if n be large (as it usually is in such 
cases) a very small value of r may easily lead to a very great increase 
in the observed standard-deviation. It is difficult to give a really 
good example from actual statistics, as the conditions are hardly 
ever constant from one year to another, but the following will 

§§ 9-12. 

w - n 
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serve to illustrate the point. During the twenty years 1887-1906 
there were 2107 deaths from explosions of firedamp or coal-dust 
in the coal-mines of the United Kingdom, or an average of 105 
deaths per annum. From § 12 of Chap. XIII. it follows that this 
should be the square of the standard-deviation of simple sampling, 
or the standard-deviation itself approximately 10'3. But the 
square of the actual standard-deviation is 7178, or its value 84-7, 
the numbers of deaths ranging between 14 (in 1903) and 317 
(in 1894). This large standard-deviation, to judge from the 
figures, is partly, though not wholly, due to a general tendency to 
decrease in the numbers of deaths from explosions in spite of a 
large increase in the number of persons employed; but even if we 
ignore this, the magnitude of the standard-deviation can be 
accounted for by a very small value of the correlation r, expressive 
of the fact that if an explosion is sufficiently serious to be fatal to • 
one individual, it will probably be fatal to others also. For if cr0 
denote the standard-deviation of simple sampling, <r the standard 
deviation of sampling given by equation (5), we have 

" ( n - l ) o j 

Whence, from the above data, taking the numbers of persons 
employed underground at a rough average of 560,000, 

7073 
+ 0-00012. 560000 x 105 

15. Summarising the preceding paragraphs, §§ 9-14, we see 
that if the chances p and q differ for the various universes, 
districts, years, materials, or whatever they may be from which 
the samples are drawn, the standard-deviation observed will be 
greater than the standard-deviation of simple sampling, as 
calculated from the average values of the chances : if the average 
chances are the same for each universe from which a sample is 
drawn, but vary from individual to individual or from one sub-
class to another within the universe, the standard-deviation 
observed will be less than the standard-deviation of simple 
sampling as calculated from the mean values of the chances: 
finally, if p and q are constant, but the events are no longer 
independent, the observed standard-deviation will be greater or 
less than the simplest theoretical value according as the corre-
lation between the results of the single events is positive or 
negative. These conclusions further emphasise the need for 
caution in the use of standard errors. If we find that the 
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standard-deviation in some case of sampling exceeds the standard-
deviation of simple sampling, two interpretations are possible : 
either that p and q are different in the various universes from 
which samples have been drawn (i.e. that the variations are 
more or less definitely significant in the sense of § 13, Chap. XIII.), 
or that the results of the events are positively correlated inter 
se. If the actual standard-deviation fall short of the standard-
deviation of simple sampling two interpretations are again 
possible, either that the chances p and q vary for different 
individuals or sub-classes in each universe, while approximately 
constant from one universe to another, or that the results of 
the events are negatively correlated inter se. Even if the 
actual standard-deviation approaches closely to the standard-
deviation of simple sampling, it is only a conjectural and not 
a necessary inference that all the conditions of " simple sampling " 
as defined in § 8 of the last chapter are fulfilled. Possibly, for 
example, there may be a positive correlation r between the 
results of the different events, masked by a variation of the 
chances p and q in sub-classes of each universe. 

Sampling which fulfils the conditions laid down in § 8 of 
Chap. XIII., simple sampling as we have called it, is generally 
spoken of as random, sampling. We have thought it better to 
avoid this term, as the condition that the sampling shall be 
random—haphazard—is not the only condition tacitly assumed. 

REFERENCES. 

Cf. generally the references to Chap. XIII . , to which may be 
added,— 

(1) PEARSON, KARL, " On certain Properties of the Hypergeometrical Series, 
and on the fitting of such Series to Observation Polygons in the Theory of 
Chance," Philosophical Magazine, 5th Series, vol. xlvii., 1899, p. 236. 
(An expansion of one section of ref. 10 of Chap. XIII . , dealing with the 
first problem of our § 14, i.e. drawing samples from a bag containing 
a limited number of white and black balls, from the standpoint of the 
frequency-distribution of the number of white or black balls in the 
samples.) 

EXERCISES. 

1. Referring to Question 7 of Chap. XIII., work out the values of the 
significant standard-deviation <rp (as in § 10) for each row or group of rows 
there given, but taking row 5 with rows 6 and 7. 

2. For all the districts in England and Wales included in the same table 
(Table VI., Chap. IX.) the standard-deviation of the proportion of male births 
per 1000 of all births is 7'46 and the mean proportion of male births 509'2. 
The harmonic mean number of births in a district is 5070. Find the significant 
standard-deviation <rr, 

1 9 
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3. If for one half of n events the ohance of success is p and the chance of 
failure q, whilst for the other half the chance of success is q and the chance of 
failure p, what is the standard-deviation of the number of successes, the events 
being all independent ? 

4. The following are the deaths from small-pox during the 20 years 
1882-1901 in England and Wales :— 

The death-rate from small-pox being very small, the rule of § 12, Chap. 
XIII., may be applied to estimate the standard-deviation of simple sampling. 
Assuming that the excess of the actual standard-deviation over this can be 
entirely accounted for by a correlation between the results of exposure to risk 
of the individuals composing the population, estimate r. The mean population 
during the period may be taken in round numbers as 29 millions. 

1882 1317 
83 957 
84 2234 
85 2827 
86 275 
87 506 
88 1026 
89 23 
90 16 
91 49 

1892 431 
93 1457 
94 820 
95 223 
96 541 
97 25 
98 253 
99 174 

1900 85 
1901 356 

k 



C H A P T E R X V . 

THE BINOMIAL DISTRIBUTION AND THE 
NORMAL CURVE. 

1-2. Determination of the frequency-distributiQn for the number of successes 
in n events: the binomial distribution—3. Dependence of the form 
of the distribution on p, q and n—4-5. Graphical and mechanical 
methods of forming representations of the binomial distribution— 
6. Direct calculation of the mean and the standard-deviation from 
the distribution—7-8. Necessity of deducing, for use in many 
practical cases, a continuous curve giving approximately, for large 
values of n, the terms of the binomial series—9. Deduction of the 
normal curve as a limit to the symmetrical binomial—10-11. The 
value of the central ordinate—12. Comparison with a binomial dis-
tribution for a moderate value of n—13. Outline of the more general 
conditions from which the curve can be deduced by advanced methods— 
14. Fitting the curve to an actual series of observations—15. Difficulty 
of a complete test of tit by elementary methods—16. The table of areas 
of the normal curve and its use—17. The quartile deviation and the 
" probable error "—18. Illustrations of the application of the normal 
curve and of the table of areas. 

1 . I N Chapters X I I I . and X I V . the standard-deviation of the 
number of successes in n events was determined for the several 
more important cases, and the applications of the results indicated. 
For the simpler cases of artificial chance it is possible, however, to 
go much further, and determine not merely the standard-deviation 
but the entire frequency-distribution of the number of " successes." 
This we propose to do for the case of "simple sampling," in which 
all the events are completely independent, and the chances p and 
q the same for each event and constant throughout the trials. 
The case corresponds to the tossing of ideally perfect coins (homo-
geneous circular discs), or the throwing of ideally perfect dice 
(homogeneous cubes). 

2. If we deal with one event only, we expect in N trials, Nq 
failures and Np successes. Suppose we now combine with the 
results of this first event the results of a second. The two events 
are quite independent, and therefore, according to the rule of 

291 



Number of Successes. 

One event N.q N.p 

N.q1 N.pq + N.pq N.p2 

Two events 

Three events 

Four events 

2 N.pq N.pP 

N.q3 N.pq- + 2 N.pq2 2N.p-q + N.p-q 

N.q3 3 N.pq2 
3 N.fq 

N.p3 

N.p3 

Nq4 N.pq3 + 3N.pq3 3N.p2q2 + 3 N.p-q2 3 N.fq + N.fq 

AW 4 N.pq3 GN.prq2 \N.p3q 

N.pi 

N.p4 
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independence, of the Nq failures of the first event (Nq)q will be 
associated (on an average) with failures of the second event, and 
(Nq)p with successes of the second event (cf. row 2 of the scheme 
on p. 292). Similarly of the Np successful first events, (Np)q will 
be associated (on an average) with failures of the second event 
and (Np)p with successes. In trials of two events we would 
therefore expect approximately Nq2 cases of no success, 2Npq 
cases of one success and one failure, and Np2 cases of two successes, 
as in row 3 of the scheme. The results of a third event may be 
combined with those of the first two in precisely the same way. 
Of the Nq2 cases in which both the first two events failed, (Nq2)q 
will be associated (on an average) with failure of the third also, 
(Nq2)p with success of the third. Of the 2Npq cases of one 
success and one failure, (2Npq)q will be associated with failure 
of the third event and (2Npq)p with success, and similarly for 
the Np2 cases in which both the first two events succeeded. The 
result is that in N trials of three events we should expect Nq3 

cases of no success, 3 Npq2 cases of one success, 3 Np"-q cases of two 
successes, and Np3 cases of three successes, as in row 5 of the 
scheme. The scheme is continued for the results of a fourth 
event, and it is evident that all the results are included under a 
very simple rule : the frequencies of 0, 1, 2 . . . . successes are 
given 

for one event by the binomial expansion of N(q +p) 
for two events ,, ,, N(q+p)2 

for three events ,, ,, N(q+p)3 

for four events „ ,, N(q +p)4 

and so on. Quite generally, in fact:—the frequencies of 0,1, 2 . . . . 
successes in N trials of n events are given by the successive terms 
in the binomial expansion of N(q + p)'\ viz.— 

N { g » + n . q ^ p . g " - y + n { - n - ^ - 4-. . . . j 

This is the first theoretical expression that we have obtained for 
the form of a frequency-distribution. 

3. The general form of the distributions given by such 
binomial series will have been evident from the experimental 
examples given in Chapter XIII., i.e. they are distributions 
of greater or less asymmetry, tailing off in either direction 
from the mode. The distribution is, however, of so much 
importance that it is worth while considering the form in 
greater detail. This form evidently depends (1) on the values 
of q and p, (2) on the value of the exponent n. If p and q 
are equal, evidently the distribution must be symmetrical, for 
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p and q may be interchanged without altering the value of 
any term, and consequently terms equidistant from either 
end of the series are equal. If p and q are unequal, on the 
other hand, the distribution is asymmetrical, and the more 
asymmetrical, for the same value of n, the greater the inequality 
of the chances. The following table shows the calculated 
distributions for n = 20 and values of p, proceeding by 0.1, 
from 0.1 to 0.5. When p = 0.1, cases of two successes are the 

A.— Terms of the Binomial Series 10,000 (q for Values of p 
from 0-1 to 0'5. (Figures given to the nearest unit.) 

Number of 
Successes. 

p = 0'l 
5 = 0-9 II 

II 
o 

o 
CO

 C
O

 
p=0-3 
? = 0'7 

p = 0'4 
j = 0'6 q = 0 5 

0 1216 115 8 _ 
1 2702 576 68 5 — 

2 2852 1369 278 31 2 
3 1901 2054 716 123 11 
4 898 2182 1304 350 46 
5 319 1746 1789 746 148 
6 , 89 1091 1916 1-244 370 
7 20 545 1643 1659 739 
8 4 222 1144 1797 1201 
9 1 74 654 1597 1602 

10 — 20 308 1171 1762 
11 — 5 120 710 1602 
12 — 1 39 355 1-201 
13 — — 10 146 739 
14 — . — 2 49 370 
15 — — — 13 148 
16 I — — — 3 46 
17 — — — — 11 
18 
19 

— — • — — 2 

20 — — — — — 

most frequent, but cases of one success almost equally frequent: 
even nine successes may, however, occur about once in 10,000 
trials. As p is increased, the position of the maximum 
frequency gradually advances, and the two tails of the distribution 
become more nearly equal, un t i l / ) = 0.5, when the distribution 
is symmetrical. Of course, if the table were continued, the 
distribution for p — 0.6 would be similar to that for q = 0.6, 
but reversed end for end, and so on. Since the standard-
deviation is (npqY and the maximum value of pq is given by 
p = q, the symmetrical distribution has the greatest dispersion. 
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If p = q the effect of increasing n is to raise the mean and 
increase the dispersion. If p is not equal to q, however, not 
only does an increase in n raise the mean and increase the 
dispersion, but it also lessens the asymmetry; the greater 
n, for the same value of p and q, the less the asymmetry. 
Thus if we compare the first distribution of the above table 
with that given by n= 100, we have the following :— 

B.—Terms of the Binomial Series 10,000 (O'Q + O-l)100. (Figures given 
to the nearest unit.) 

Number Number Number 
of Frequency. of Frequency. of Frequency. 

Successes. 
Frequency. 

Successes. Successes. 

0 8 1148 16 193 
1 3 9 1304 17 106 
2 16 10 1319 18 54 
3 59 11 1199 19 26 
4 159 12 988 20 12 
5 339 13 743 21 5 
6 596 14 513 22 2 
7 889 15 327 23 1 

The maximum frequencies now occur for 9 and 10 successes, 
and the two " ta i l s " are much more nearly equal. If, on the 
other hand, n is reduced to 2, the distribution is— 

Number of Successes. Frequency. 

0 8100 
1 1800 
2 100 

and the maximum frequency is at one end of the range. What-
ever the values of p and q, if n is only increased sufficiently, the 
distribution may be treated as sensibly symmetrical, the necessary 
condition being (we state this without proof) that p - q shall be 
small compared with the standard-deviation Jnpq. I t is left 
to the student to calculate as an exercise the theoretical distribu-
tions corresponding to the experimental results cited in Chapter 
XIII. (Question 1). 

4. The property of the binomial series used in the scheme of 
§ 2 for deducing the series with exponent n from that with 
exponent n-1 leads to two interesting methods—graphical and 
mechanical — for constructing approximate representations of 
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binomial distributions. It will have been noted that any one 
term—say the rth—in one series is obtained by taking q times the 
rth term together with/) times the (r- l ) th term of the preceding 
series. Now if AP, CR (figure 46) be two verticals, and a third, 
BQ, be erected between them, cutting PR in Q, so that 
AB : BC :: q :p, then 

BQ=p.AP + q.GB. 

(This follows at once on joining AR and considering the two 
segments into which BQ is divided.) Consider then somo 
binomial, say for the case p = \, = Draw a series of verticals 
(the heavy verticals of fig. 47) at any convenient distance apart 

P 

F I G . 4 6 . 

on a horizontal base line, and erect other verticals (the lighter 
verticals) dividing the distance between them in the ratio of 
q :p, viz. 3 : 1. Next, choosing a vertical scale, draw the binomial 
polygon for the simplest case n = 1 ; in the diagram N has been 
taken = 4096, and the polygon is abed, ob — 3072, lc = 1024. The 
polygons for higher values of n may now be constructed graphi-
cally. Mark the points where ab, be, cd respectively cut the 
intermediate verticals and project them horizontally to the right 
on to the thick verticals. This gives the polygon ab'c'd'e for 
n = 2. For ob' = q.ob, 1 c =p.ob + q. lc, and so on. Similarly, if the 
points where ab', b'c, etc., cut the intermediate verticals are 
projected horizontally on to the thick verticals, we have the 
polygon ab"c"d"e"f" for n — 3. The process may be continued 

9 
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indefinitely, though it will be found 'difficult to maintain any 
high degree of accuracy after the first few constructions. 
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5. The mechanical method of constructing the representation of 
a binomial series is indicated diagrammatically by fig. 48. The 
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apparatus consists of a funnel opening into a space—say a -J inch in 
depth—between a sheet of glass and a back-board. This space is 
broken up by successive rows of wedges like 1, 2 3, 4 5 6, etc., which 
will divide up into streams any granular material such as shot or 
mustard seed which is poured through the funnel when the 
apparatus is held at a slope. At the foot these wedges are 
replaced by vertical strips, in the spaces between which the 

Flu. 48.—The Pearson-Galton Binomial Apparatus. 

material can collect. Consider the stream of material that 
comes from the funnel and meets the wedge 1. This wedge is 
set so as to throw q parts of the stream to the left and p parts 
to the right (of the observer). The wedges 2 and 3 are set so as 
to divide the resultant streams in the same proportions. Thus 
wedge 2 throws q1 parts of the original material to the left and 
qp to the right, wedge 3 throws pq parts of the original material 
to the left and p2 to the right. The streams passing these wedges 
are therefore in the ratio of q2 : 2qp : p2. The next row of wedges 
is again set so as to divide these streams in the same proportions 
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as before, and the four streams that result will bear the propor-
tions q3: 3g2p : 3qp2: p3. The final set, at the heads of the 
vertical strips, will give the streams proportions qi : 4qap : 6q2p2 : 
iqp3 : pi, and these streams will accumulate between the strips 
and give a representation of the binomial by a kind of histogram, 
as shown. Of course as many rows of wedges may be provided 
as may be desired. 

This kind of apparatus was originally devised by Sir Francis 
Galton (ref. 1) in a form that gives roughly the symmetrical 
binomial, a stream of shot being allowed to fall through rows of 
nails, and the resultant streams being collected in partitioned 
spaces. The apparatus was generalised by Professor Pearson, 
who used rows of wedges fixed to movable slides, so that they 
could be adjusted to give any ratio of q :p. (Eef. 12.) 

6. The values of the mean and standard-deviation of a binomial 
distribution may be found from the terms of the series directly, 
as well as by the method of Chap. XIII. (the calculation was 
in fact given as an exercise in Question 8, Chap. VII., and 
Question 6, Chap. VIII.). Arrange the terms under each other 
as in col. 1 below, and treat the problem as if it were an arith-
metical example, taking the arbitrary origin at 0 successes: as 
N is a factor all through, it may be omitted for convenience. 

( 1 ) ( 2 ) ( 3 ) ( 4 ) 

Frequency / . Dev. / | . / f 2 . 
qn

 0 — — 

n.qn~'p 1 n . q n . q n ~ x p 

«(»-!)(»-2) n(n-\jn- 2) Zn(n-\){n-1) 
1 . 2 . 3 1 1 1 . 2 9. V 12 1 P 

The sum of col. 1 is of course unity, i.e. we are treating N as 
unity, and the mean is therefore given by the sum of the terms 
in col. (3). But this sum is 

np | g"- 1 +(« - 1 y - f r + ~ ~ 2\"-y + . . . . J 

= np(q +p)n~x = np. 

That is, the mean M is np, as by the method of Chap. XIII. 
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The square of the standard-deviation is given by the sum of 
the terms in col. (4) less the square of the mean, that is, 

( In -1)(»- 2) „ „ I a*-=np + + . . . . j -n-p\ 

But the series in the bracket is the binomial series (q+p)"'1 

with the successive terms multiplied by 1, 2, 3, . . . I t therefore 
gives the difference of the mean of the said binomial f r o m - 1 , 
and its sum is therefore (n - l)p + 1. Therefore 

o-2 = np{(n - \)p + 1} - n2p2 

= np - np2 = npq. 
7. The terms of the binomial series thus afford a means of 

completely describing a certain class of frequency-distributions— 
i.e. of giving not merely the mean and standard-deviation in 
each case, but of describing the whole form of the distribution. 
If N samples of n cards each be drawn from an indefinitely large 
record of cards marked with A or a, the proportion of it-cards 
in the record being p, then the successive terms of the series 
JV(q+p)n give the frequencies to be expected in the long run of 
0, 1, 2, . . . 4-cards in the sample, the actual frequencies only 
deviating from these by errors which are themselves fluctuations 
of sampling. The three constants JV, p, n, therefore, determine 
the average or smoothed form of the distribution to which actual 
distributions will more or less closely approximate. 

Considered, however, as a formula which may be generally 
useful for describing frequency-distributions, the binomial series 
suffers from a serious limitation, viz. that it only applies to a 
strictly discontinuous distribution like that of the number of 
jl-cards drawn from a record containing A's and a's, or the number 
of heads thrown in tossing a coin. The question arises whether 
we can pass from this discontinuous formula to an equation 
suitable for representing a continuous distribution of frequency. 

8. Such an equation becomes, indeed, almost a necessity for 
certain cases with which we have already dealt. Consider, for 
example, the frequency-distribution of the number of male births 
in batches of 10,000 births, the mean number being, say, 5100. 
The distribution will be given by the terms of the series 
(0'49 + 0'51)10000 and the standard-deviation is, in round numbers, 
50 births. The distribution will therefore extend to some 150 
births or more on either side of the mean number, and in order 
to obtain it we should have to calculate some 300 terms of a 
binomial series with an exponent of 10,000 ! , This would not 
only be practically impossible without the use of certain methods 
of approximation, but it would give the distribution in quite 

_ 
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unnecessary detail: as a matter of practice, we would not have 
compiled a frequency-distribution by single male births, but 
would certainly have grouped our observations, taking probably 
10 births as the class-interval. We want, therefore, to replace the 
binomial series by some continuous curve, having approximately 
the same ordinates, the curve being such that the area between 
any two ordinates yx and y2 will give the frequency of observations 
between the corresponding values of the variable xx and x2. 

9. It is possible to find such a continuous limit to the binomial 
series for any values of p and q, but in the present work we will 
confine ourselves to the simplest case in which p = q = 0'5, and the 
binomial is symmetrical. The terms of the series are 

The frequency of m successes is 
In 

my \m | n - m 
and the frequency of m + 1 successes is derived from this by 
multiplying it by (n - m)/(m + 1). The latter frequency is 
therefore greater than the former so long as 

n — m > m + 1 
n- 1 or m<—7j—. 

Suppose, for simplicity, that n is even, say equal to 2k; then the 
frequency of k successes is the greatest, and its value is 

| 2 k 

The polygon tails off. symmetrically on either side of this greatest 
ordinate. Consider the frequency of k + x successes ; the value is 

y*=N^\kSk-x . • • • <2> 
and therefore 

y*= ( f t ) (* - l ) (* -2 ) . . . . (k-x+l) 
y,0 ( i + l ) ( i + 2 ) ( i + 3) . . . . (k + x) 

( ' - J X > - i X ' - D - - - - 0 - V ) 

D • • • • (is-r^ti 
(3) 
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Now let us approximate by assuming, as suggested in § g, that 
k is very large, and indeed large compared with x, so that (x/k)2 

may be neglected compared with (x/k). This assumption does 
not involve any difficulty, for we need not consider values of x 
much greater than three times the standard-deviation or 3 Jk/2, 
and the ratio of this to k is 3/ Jlk, which is necessarily small if k 
be large. On this assumption we may apply the logarithmic 
series 

82 3s S* loge(l + S) = 8 — - + . . . . 

to every bracket in the fraction (3), and neglect all terms beyond 
the first. To this degree of approximation, 

x(x - 1) x 
k k 

k ' 
Therefore, finally, 

k . . . . (4) 

where, in the last expression, the constant k has been replaced by 
the standard-deviation <r, for o-2 = /c/2. 

The curve represented by this equation is symmetrical about 
the point x = 0, which gives the greatest ordinate y = y0. Mean, 
median, and mode therefore coincide, and the curve is, in fact, that 
drawn in fig. 5, p. 89, and taken as the ideal form of the symmetri-
cal frequency-distribution in Chap. VI. The curve is generally 
known as the normal curve of errors or of frequency, or the law 
of error. 

10. A normal curve is evidently defined completely by giving 
the values of y0 and cr and assigning the origin of x. If we 
desire to make a normal curve fit some given distribution as near 
as may be, the last two data are given by the standard-deviation 
and the mean respectively; the value of y0 will be given by the 
fact that the areas of the two distributions, or the numbers of 
observations which these areas represent, must be the same. 

This condition does not, however, lead in any simple and 
elementary algebraic way to an expression for y0, though such 
a value could be found arithmetically to any desired degree 
of approximation. For it is evident that (1) any alteration in 
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y0 produces a proportionate alteration in the area of the curve, 
e.g. doubling y0 doubles every ordinate yx and therefore doubles 
the area: (2) any alteration in cr produces a proportionate 
alteration in the area, for the values of yx are the same for the 
same values of x/cr, and therefore doubling cr doubles the distance 
of every ordinate from the mean, and consequently doubles the 
area. The area of the curve, or the number of observations 
represented, is therefore proportional to y0cr, or we must have 

N=a x y0cr 

where a is a numerical constant. The value of a may be found 
approximately by taking y0 and cr both equal to unity, calculating 
the values of the ordinates yx for equidistant values of x, and 
taking the area, or number of observations N, as given by the 
sum of the ordinates multiplied by the interval. 

11. The table below gives the values of y for values of x 
proceeding by fifths of a uni t ; the values are, of course, the same 
for positive and negative values of x. For the whole curve the 
sum of the ordinates will be found to be 12 53318, the interval 
being 0'2 units; the area is therefore, approximately, 2'50664, 

Ordinates of the Curve y=e (For references to more extended 
tables, see list on pp. 3 5 7 - 8 . ) 

X. y- Log y. X. y• Log y. 

0 1-00000 0 2-6 •03405 2-53209 
0'2 •98020 1-99131 2-8 •01984 2-29757 
0-4 •92312 1-96526 3-0 •01111 2-04567 
0'6 •83527 1-92183 3'2 •00598 3-77641 
0-8 •72615 1-86103 3'4 •00309 3-48978 
1-0 •60653 1-78285 3-6 •00153 3-18577 
1-2 •48675 1-68731 3-8 •00073 4-86439 
1-4 •37531 1-57439 4-0 •00034 4-52564 
1'6 •27804 1-44410 4-2 •00015 4-16952 
1-8 •19790 1-29644 4-4 •00006 5-79603 
2-0 •13534 1-13141 4-6 •00003 5-40516 
2-2 •08892 2!94901 4-8 •00001 6-99693 

. 2'4 •05614 2-74923 5-0 •ooooo 6-57132 

and this is the approximate value of a. The value is more than 
sufficiently accurate for practical purposes, for the exact value 
is <y27r=2'506627 . . . . The proof of this value cannot be given 
here, but it may be deduced from an important approximate 
expression for the factorials of large numbers, due to James 
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Stirling (1730). If n be large, we have, to a high degree of 
approximation, 

n" 
\n— sJ2mr —• e" 

Applying Stirling's theorem to the factorials in equation (1) we 
have 

If & ... 
J^k" s/2^.cr ' ' ' { b ) 

The complete expression for the normal curve is therefore 

— e • • • • *J ATT.ct 

The exponent may be written ®2/c2 where 
c= J2~.tr, and this is 

the origin of the use of J 2 x cr (the "modulus") as a measure 
of dispersion, of 1/ J2.cr as a measure of "precision," and of 2cr2 

as " the fluctuation" (cf. Chap. VIII. § 13). The use of the factor 
2 or J 2 becomes meaningless if the distribution be not normal. 

Another rule cited in Chap. VIII., viz. that the mean deviation 
is approximately 4/5 of the standard-deviation, is strictly true 
for the normal curve only. For this distribution the mean 
deviation = cr *J2/tt= 0'79788 . . . . a: the proof cannot be given 
within the limitations of the present work. The rule that a 
range of 6 times the standard-deviation includes the great 
majority of the observations and that the quartile deviation is 
about 2/3 of the standard-deviation were also suggested by the 
properties of this curve (see below §§16, 17). 

12. In the proof of § 9 the assumption was made that k (the 
half of the exponent of the binomial) was very large compared 
with x (any deviation that had to be considered). In point 
of fact, however, the normal curve gives the terms of the 
symmetrical binomial surprisingly closely even for moderate 
values of n. Thus if n = 64, k = 32, and the standard-deviation 
is 4. Deviations x have therefore to be considered up to ±12 
or more, which is over 1/3 of k. As will be seen, however, from 
the annexed table, the ordinates of the normal curve agree with 
those of the binomial to the nearest unit (in 10,000 observations) 
up to i = ±15. The closeness of approximation is partly due 
to the fact that, in applying the logarithmic series to the 
fraction on the right of equation (3), the terms of the second 
order in expansions of corresponding brackets in numerator and 
denominator cancel each other: these terms, therefore, do not 
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accumulate, but only the terms of the third order. There is 
only one second-order term that has been neglected, viz. that due 
to the last bracket in the denominator. Even for much lower 
values of n than that chosen for the illustration—e.g. 10 or 12 
(cf. Qu. 4 at the end of this chapter)—the normal curve still 
gives a very fair approximation. 

TABLE showing ( 1 ) Ordinates of the Binomial Series 1 0 , 0 0 0 ( J + J ) 6 4 and 
iu,uuu ~ g 

(2) Corresponding Ordinates of the Normal Curve y = — e 
4 V""' 

Term. Binomial 
Series. 

Normal 
Curve. Term. Binomial 

Series. 
Normal. 
Curve. 

32 993 997 24 anS 40 136 135 
31 and 33 963 967 23 „ 41 80 79 
30 ,, 34 878 880 22 ,, 42 44 44 
29 ,, 35 753 753 21 „ 43 23 23 
28 ,, 36 606 605 20 ,, 44 11 11 
27 „ 37 459 457 19 „ 45 5 5 
26 ,, 38 326 324 18 ,, 46 2 2 
25 „ 39 217 216 17 „ 47 1 1 

13. But if the normal curve were limited in its application to 
distributions which were certainly of binomial type, its use in 
practice (apart from its theoretical applications to many cases of 
the theory of sampling) would be very restricted. As suggested, 
however, by the illustrations given in Chap. VI., a certain, though 
not a large, number of distributions—more particularly among 
those relating to measurements on man and other animals—are 
approximately of normal form, even although such distributions 
have not obviously originated in the same way as a binomial 
distribution. Take, for example, the distribution of statures in 
the United Kingdom (Chap. VI., Table VI.). The mean stature 
is 67'46 inches, the standard-deviation 2'57 inches (the values are 
worked out in the illustrations of Chaps. VII. and VlII.), and the 
number of observations 8585. This gives y0=1333, and all the 
data necessary for plotting a normal curve of the same mean and 
standard-deviation (the process of fitting is dealt with at greater 
length in § 14 below). The two distributions are shown together 
in fig. 49, the continuous curve being the normal curve, and the 
small circles showing the observed frequencies. I t is evident that 
they agree very closely. Other body measurements, e.g. skull 
measurements, etc., also follow the normal law; it also applies to 
certain characters in plants (e.g. number of seeds per capsule in 

2 0 
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Lotus, Pearl, American Naturalist, Nov. 1906). The question 
arises, therefore, why, in such cases, the distribution should be 
approximately normal, a form of distribution which we have only 
shown to arise if the variable is the sum of a large number of 
elements, each of which can take the values 0 and 1 (or other two 
constant values), these values occurring independently, and with 
equal frequency. 

In the first place, it should be stated that the conditions of the 
deduction given in § 9 were made a little unnecessarily restricted, 

isoc , _ _ , 

Stature in, inch&s. 
FIG. 49.—The Distribution of Stature for Adult Males in the British Isles 

(fig. 6, p. 89), fitted with a Normal Curve : to avoid confusing the 
figure, the frequency-polygon has not been drawn in, the tops of the 
ordinates being shown by small circles. 

with a view to securing simplicity of algebra. The deduction 
may be generalised, whilst retaining the same type of proof, by 
assuming that p and q are unequal (provided p - q be small 
compared with Jnpq, cf. § 3), that p and q are not quite the 
same for all the events, that all the events are not quite inde-
pendent, or that n is not large, but that some sort of continuous 
variation is possible in the values of the elementary variables, 
these being no longer restricted to 0 and 1, or two other discrete 
values. (Cf. the deduction given by Pearson in ref. 12.) Pro-
ceeding further from this last idea, the deduction may be rendered 
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more general still, without introducing the conception of the 
binomial at all, by founding the curve on more or lesB complex 
cases of the theory of sampling for variables instead of for attri-
butes. If a variable is the sum (or, within limits, some slightly 
more complicated function) of a large number of other variables, 
then the distribution of the compound or resultant variable is 
normal, provided that the elementary variables are independent, 
or nearly so (c/. ref. 6). The forms of the frequency-distribu-
tions of the elementary variables affect the final distribution less 
and less as their number is increased : only if their number is 
moderate, and the distributions all exhibit a comparatively high 
degree of asymmetry of uniform sign, will the same sign of 
asymmetry be sensibly evident in the distribution of the compoupd 
variable. On this sort of hypothesis, the expectation of normality 
in the case of stature may be based on the fact that it is a highly 
compound character—depending on the. sizes of the bones of the 
head, the vertebral column, and the legs, the thickness of the 
intervening cartilage, and the curvature of the spine—the elements 
of which it is composed being at least to some extent independent, 
i.e. by no means perfectly correlated with each other, and their 
frequency-distributions exhibiting no very high degree of asym-
metry of one and the same sign. The comparative rarity of 
normal distributions in economic statistics is probably due in part 
to the fact that in most cases, while the entire causation is 
certainly complex, relatively few causes have a largely predominant 
influence (hence also the frequent occurrence of irregular 
distributions in this field of work), and in part also to a high 
degree of asymmetry in the distributions of the elements on which 
the compound variable depends. Errors of observation may in 
general be regarded as compounded of a number of elements, due 
to various causes, and it was in this connection that the normal 
curve was first deduced, and received its name of the curve of 
errors, or law of error. 

14. If it be desired to compare some actual distribution 
with the normal distribution, the two distributions should be 
superposed on one diagram, as in fig. 49, though, of course, on 
a much larger scale. When the mean and standard-deviation 
of the actual distribution have been determined, y0 is given by 
equation (5); the fit will probably be slightly closer if the 
standard-deviation is adjusted by Sheppard's correction (Chap. 
XI. § 4). The normal curve is then most readily drawn by plot-
ting a scale showing fifths of the standard-deviation along the 
base line of the frequency diagram, taking the mean as origin, 
and marking over these points the ordinates given by the figures 
of the table on p. 303, multiplied in each case by yQ. The curve 
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can be drawn freehand, or by aid of a curve ruler, through the 
tops of the ordinates so determined. The logarithms of y in the 
table on p. 303 are given to facilitate the multiplication. The only 
point in which the student is likely to find any difficulty is 
in the use of the scales: he must be careful to remember 
that the standard-deviation must be expressed in terms of the 
class-interval as a unit in order to obtain for y0 a number of 
observations per interval comparable with the frequencies of his 
table. 

The process may be varied by keeping the normal curve 
drawn to one scale, and redrawing the actual distribution 
so as to make the area, mean, and standard-deviation the 
same. Thus suppose a diagram of a normal curve was printed 
once for all to a scale, say, of y0 = 5 inches, cr = 1 inch, and 
it were required to fit the distribution of stature to it. 
Since the standard-deviation is 2'57 inches of stature, the 
scale of stature is 1 inch = 2'57 inch of stature, or 0'389 inches 
= 1 inch of stature ; this scale must be drawn on the base of the 
normal-curve diagram, being so placed that the mean falls 
at 67'46. As regards the scale of frequency-per-interval, this 
is given by the fact that the whole area of the polygon showing 
the actual distribution must be equal to the area of the 
normal curve, that is 5 J2 12'53 square inches. If, therefore, 
the scale required is n observations per interval to the inch, 
we have, the number of observations being 8585, 

=12-53, 7i x 2'57 ' 
which gives m = 266'6. 

Though the second method saves curve drawing, the first, 
on the whole, involves the least arithmetic and the simplest 
plotting. 

15. Any plotting of a diagram, or the equivalent arithmetical 
comparison of actual frequencies with those given by the 
fitted normal distribution, affords, of course, in itself, only a 
rough test, of a practical kind, of the normality of the given 
distribution. The question whether all the observed differences 
between actual and calculated frequencies, taken together, 
may have arisen merely as fluctuations of sampling, so that the 
actual distribution may be regarded as strictly normal, neglecting 
such errors, is a question of a kind that cannot be answered in 
an elementary work (cf. ref. 21). At present the student is in 
a position to compare the divergences of actual from calculated 
frequencies with fluctuations of sampling in the case of single 
class-intervals, or single groups of class-intervals only. If the 
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expected theoretical frequency in a certain interval is / , the 
standard error of sampling is Jf(N-f)jN ; and if the divergence 
of the observed from the theoretical frequency exceed some 
three times this standard error, the divergence is unlikely to 
have occurred as a mere fluctuation of sampling. 

It should be noted, however, that the ordinate of the normal 
curve at the middle of an interval does not give accurately the 
area of that interval, or the number of observations within i t : it 
would only do so if the curve were sensibly straight. To deal 
strictly with problems as to fluctuations of sampling in the 
frequencies of single intervals or groups of intervals, we require, 
accordingly, some convenient means of obtaining the number of 
observations, in a given normal distribution, lying between a"ny 
two values of the variable. 

16. If an ordinate be erected at a distance x/u from the mean, 
in a normal curve, it divides the whole area into two parts, the 
ratio of which is evidently, from the mode of construction of the 
curve, independent of the values of y0 and of cr. The calculation 
of these fractions of area for given values of a;/cr, though a long 
and tedious matter, can thus be done once for all, and a table 
giving the results is useful for the purpose suggested in § 15 and 
in many other ways. Eeferences to complete tables are cited at 
the end of this work (list of tables, pp. 357-8), the short table below 
being given only for illustrative purposes. The table shows the 
greater fraction of the area lying on one side of any given ordinate; 
e.g. 0'53983 of the whole area lies on one side of an ordinate at 
O'lo- from the mean, and 0'46017 on the other side. It will be 
seen that an ordinate drawn at a distance from the mean equal to 
the standard-deviation cuts off some 16 per cent, of the whole 
area on one side; some 68 per cent, of the area will therefore be 
contained between ordinates at ± cr. An ordinate at twice the 
standard-deviation cuts off only 2'3 per cent., and therefore some 
95'4 per cent, of the whole area lies within a range of + 2cr. As 
three times the standard-deviation the fraction of area cut off is 
reduced to 135 parts in 100,000, leaving 99-7 per cent, within a 
range of ± 3cr. This is the basis of our rough rule that a range 
of 6 times the standard-deviation will in general include the 
great bulk of the observations : the rule is founded on, and is only 
strictly true for, the normal distribution. For other forms of 
distribution it need not hold good, though experience suggests 
that it more often holds than not. The binomial distribution, 
especially lip and q be unequal, only becomes approximately normal 
when n is large, and this limitation must be remembered in applying 
the table given, or similar more complete tables, to cases in which 
the distribution is strictly binomial. 
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T A B L E showing the Greater Fraction of the Area of a Normal Curve to One 
Side of an Ordinate of Abscissa K/O*. {For references to more extended 
tables, see list on pp. 357-8.) 

Greater Greater 
x/tr. Fraction of x/<r. Fraction of x/tr. 

Area. 
x/<r. 

Area. 

0 •50000 2-1 •98214 
0-1 •53983 2-2 •98610 
0-2 •57926 2-3 •98928 
0'3 •61791 2-4 •99180 
0-4 •65542 2-5 •99379 
0-5 •69146 2-6 •99534 
0-6 •72575 2-7 •99653 
0-7 •75804 2-8 •99744 
0-8 •78814 2-9 •99813 
0 9 •81594 3-0 •99865 
l'O •84134 3 1 •99903 
1 1 •86433 3'2 •99931 
1-2 •88493 3'3 •99952 
1-3 •90320 3-4 •99966 
1-4 •91924 3-5 •99977 
1-5 •93319 3-6 •99984 
1-6 94520 3-7 •99989 
1-7 •95543 3'8 •99993 
1-8 •96407 3'9 •99995 
1-9 •97128 4-0 •99997 
2-0 •97725 4-1 •99998 

17. If we try to determine the quartile deviation in terms of 
the standard-deviation from the table, we see that it lies between 
0'6 and 0'7cr. Interpolating, it is given approximately by 

( 2425 I 
{ o ^ o - i ^ - o ^ . 

More exact interpolation gives the value 0'67448975o-. This result, 
again, is the foundation of the rough rule that the semi-inter-
quartile range is usually some 2/3 of the standard-deviation : it is 
strictly true for the normal curve only. It may be noted that 
the constant 0'67448975 . . . . can be determined by processes of 
interpolation only, and cannot be expressed exactly, like the 
mean deviation, in terms of any other known constant, such 
as it. 

It has become customary to use 0'674 . . . . times the standard 
error rather than the standard error itself as a measure of the 
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unreliability of observed statistical results, and the term probable 
error is given to this quantity. It should be noted that the word 
"probable" is hardly used in its usual sense in this connection: 
the probable error is merely a quantity such that we may expect 
greater and less errors of simple sampling with about equal 
frequency, provided always that the distribution of errors is 
normal. On the whole, the use of the "probable error" has little 
advantage compared with the standard, and consequently little 
stress is laid on it in the present work; but the term is in constant 
use, and the student must be familiar with it. 

It is true that the " probable error " has a simpler and more direct 
significance than the standard error, but this advantage is lost as 
soon as we come to deal with multiples of the probable error. 
Further, the best modern tables of the ordinates and area of the 
normal curve are given in terms of the standard-deviation or 
standard error, not in terms of the probable error, and the mul-
tiplication of the former by 0'6745, to obtain the probable error, 
is not justified unless the distribution is normal. For very large 
samples the distribution is approximately normal, even though p 
and q are unequal • but this is not so for small samples, such as 
often occur in practice. In the case of small samples the use of 
the "probable error" is consequently of doubtful value, while the 
standard error retains its significance as a measure of dispersion. 
The " probable error," it may be mentioned, is often stated after 
an observed proportion with the ± sign before i t ; a percentage 
given as 20'5±2'3 signifying " 20"5 per cent., with a probable 
error of 2 3 per cent." 

If an error or deviation in, say, a certain proportion/) only just 
exceed the probable error, it is as likely as not to occur in simple 
sampling: if it exceed twice the probable error (in either direction), 
it is likely to occur as a deviation of simple sampling about 18 
times in 100 trials—or the odds are about 4'6 to 1 against its 
occurring at any one trial. For a range of three times the probable 
error the odds are about 22 to 1, and for a range of four times the 
probable error 142 to 1. Until a deviation exceeds, then, 4 times 
the probable error, we cannot feel any great confidence that it is 
likely to be " significant." It is simpler to work with the standard 
error and take ± 3 times the standard error as the critical range : 
for this range the odds are about 370 to 1 against such a devia-
tion occurring in simple sampling at any one trial. 

18. The following are a few miscellaneous examples of the use 
of the normal curve and the table of areas. 

Example i.—A hundred coins are thrown a number of times. 
How often approximately in 10,000 throws may (1) exactly 65 
heads, (2) 65 heads or more, be expected % 
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The standard-deviation is x 0-5x100 = 5. Taking the 
distribution as normal, y 0 = 797-9. 

The mean number of heads being 50, 65 - 50 = 3cr. The 
frequency of a deviation of 3cr is given at once by the table (p. 303) 
as 797-9 x-0111 . . . . = 8-86, or nearly 9 throws in 10,000. A 
throw of 65 heads will therefore be expected about 9 times. 

The frequency of throws of 65 heads or more is given by the 
area table (p. 3l0), but a little caution must now be used, owing 
to the discontinuity of the distribution. A throw of 65 heads is 
equivalent to a range of 64-5-65-5 on the continuous scale of the 
normal curve, the division between 64 and 65 coming at 64'5. 
6 4 - 5 - 5 0 = +2-9cr, and a deviation of + 2'9.o- or more, will only 
occur, as given by the table, 187 times in 100,000 throws, or, say, 
19 times in 10,000. 

Example ii.—Taking the data of the stature-distribution of fig. 
49 (mean 67*46, standard-deviation 2'57 in.), what proportion of 
all the individuals will be within a range of ± 1 inch of the 
mean1? 

1 inch =0-389cr. Simple interpolation in the table of p. 310 
gives 0'65129 of the area below this deviation, or a more extended 
table the more accurate value 0'65136. Within a range of 
± 0-389cr the fraction of the whole area is therefore 0-30272, or the 
statures of about 303 per thousand of the given population will lie 
within a range of ± 1 inch from the mean. 

Example iii.—In a case of crossing a Mendelian recessive by a 
heterozygote the expectation of recessive offspring is 50 per cent. 
(1) How often would 30 recessives or more be expected amongst 50 
offspring owing simply to fluctuations of sampling 1 (2) How many 
offspring would have to be obtained in order to reduce the probable 
error to 1 per cent. 1 

The standard error of the percentage of recessives for 50 
observations is 50 Jl/50 = 7-07. Thirty recessives in fifty is 
a deviation of 5 from the mean, or, if we take thirty as representing 
29-5 or more, 4'5 from the mean; that is, 0-636.IT. A positive 
deviation of this amount or more occurs about 262 times in 1000, 
so that 30 recessives or more would be expected in more than a 
quarter of the batches of 50 offspring. We have assumed 
normality for rather a small value of n, but the result is sufficiently 
accurate for practical purposes. 

As regards the second part of the question we are to have 

•6745 x 50 V 5 > = 1, 

n being the number of offspring. This gives n— 1137 to the 
nearest unit. 
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Example iv.—The diagram of fig. 4-9 shows that the number of 
statures recorded in the group "62 in. and less than 63" is 
markedly less than the theoretical value. Could such a difference 
occur owing to fluctuations of simple sampling; and if so, how 
often might it happen 1 

The actual frequency recorded is 169. To obtain the theoreti-
cal frequency we may either take it as given roughly by the 
ordinate in the centre of the interval, or, better, use the integral 
table. Remembering that statures were only recorded to the 
nearest ^ in., the true limits of the interval are 61-jf—62j-f, or 
6T94-62'94, mid-value 62'44. This is a deviation from the 
mean (67'46) of 5'02. Calculating the ordinate of the normal 
curve directly we find the frequency 197'8. This is certainly; as 
is evident from the form of the curve, a little too small. The 
interval actually lies between deviations of 4'52 in. and 5'52 
in., that is, T759o- and 2'148cr. The'corresponding fractions of 
area are 0-96071 and 0'98418, difference, or fraction of area 
between the two ordinates, 0-02347. Multiplying this by the 
whole number of observations (8585) we have the theoretical 
frequency 20T5. 

The difference of theoretical and observed frequencies is therefore 
32"5. But the proportion of observations which should fall into 
the given class is 0-023, the proportion falling into other classes 
0'977, and the standard error of the class frequency is accordingly 
s/0-023 x 0-977 x 8585 = 14'0. As the actual deviation is only 

2'32 times this, it could certainly have occurred as a fluctuation of 
sampling. 

The question how often it might have occurred can only be 
answered if we assume the distribution of fluctuations of sampling 
to be approximately normal. I t is true that p and q are very 
unequal, but then n is very large (8585)—so large that the 
difference of the chances is fairly small compared with Jnpq 
(about one-fifteenth). Hence we may take the distribution of 
errors as roughly normal to a first approximation, though a 
first approximation only. The tables give 0-990 of the area 
below a deviation of 2-32tr, so we would expect an equal or 
greater deficiency to occur about 10 times in 1000 trials, or once 
in a hundred. 

R E F E R E N C E S . 

The Binomial Machine. 
( 1 ) GALTON, FRANCIS, Natural Inheritance; Macmillan & Co. London, 1 8 8 9 , 

(Mechanical method of forming a binomial or normal distribution, 
chap, v., p. 63; for Pearson's generalised machine, see below, 
ref. 12.) 
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Frequency Curves. 
For the early classical memoirs on the normal curve or law of error 

by Laplace, Gauss, and others, see Todhunter's History (Introduction : 
ref. 7). The literature of this subject is too extensive to enable us to do 
more than cite a few of the more recent memoirs, of which 6, 7, and 12 
are of fundamental importance. The student will find other citations 
in 6, 8, and 13. 

(2) OHARLIF.R, C. V. L., "Researches into the Theory of Probability" 
(Communications from the Astronomical Observatory, Lund); Lund, 
1906. 

(3) CUNNINGHAM, E., "The a>-Functions, a Class of Normal Functions 
occurring in Statistics," Proc. Roy. Soc., Series A, vol. lxxxi., 1908, 
p. 310. 

(4) EDGEWORTH, F. Y., "On the Representation of Statistics by Mathema-
tical Formulse," Jour. Roy. Stat. Soc., vol. lxi., 1898 ; vol. lxii., 1899 ; 
and vol. lxiii., 1900. 
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(6) EDGEWORTH , F. Y., "The Law of Error," Cambridge Phil. Trans., vol. 
xx., 1904, pp. 36-65, 113-141 (and an appendix, pp. i-xiv, not 
printed in the Cambridge Phil. Trans.). 

(7) EDGEWORTH, F. Y., "The Generalised Law of Error, or Law of Great 
Numbers," Jour. Roy. Stat. Soc., vol. lxix., 1906, p. 497. 

(8) EDGEWORTH, F. Y., "On the Representation of Statistical Frequency by 
a Curve," Jour. Roy. Stat. Soc., vol. lxx., 1907, p. 102. 

(9) FEUHNER, G. T., Kollektivmasslehre (herausgegeben von G. F. Lipps ; 
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( 1 0 ) KAPTEYN, J . C . , Skew Frequency Curves in Biology and Statistics', 
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( 1 1 ) MACALISTER, DONALD , "The Law of the Geometric Mean," Proc. Roy. 
Soc., vol. xxix., 1879, p. 367. 

(12) PEARSON, KARL , "Skew Variation in Homogeneous Material," Phil. 
Trans. Roy. Soc., Series A, vol. clxxxvi., 1895, p. 343. 

(For the generalised binomial machine, see § 1. The memoir deals 
with curves derived from the general binomial, and from a somewhat 
analogous series derived from the case of sampling from limited 
material. Supplement to the memoir, ibid., vol. exevii., 1901, p. 443. 
For a derivation of the same curves from a modified standpoint, 
ignoring the binomial and analogous distributions, cf. chap, x., ref. 13.) 

(13) PEARSON, KARL, " Das Fehlergesetz und seine Verallgemeinerungon 
durch Fechner und Pearson" : A Rejoinder, Biometrika, vol. iv., 1905, 
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1'Eti degli Sposi," Mem. della ClasSe di Scienze morali, etc., Reale 
Accad. dei Lincei, vol. x., Series 3, 1882. 

(15) SHEPPARD, W. F., " On the Application of the Theory of Error to Cases 
of Normal Distribution and Normal Correlation," Phil. Trans. Roy. 
Soc., Series A, vol. cxcii., 1898, p. 101. (Includes a geometrical treat-
ment of the normal curve.) 

(16) YULE, G. U., " On the Distribution of Deaths with Age when the Causes 
of Death act cumulatively, and similar Frequency-distributions," 
Jour. Roy. Stat. Soc., vol. lxxiii., 1910, p. 26. (A binomial distribu-
tion with negative index, and the related curve, i.e. a special case of 
one of Pearson's curves, ref. 12.) 
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The Resolution of a Distribution compounded of two Normal 
Curves into its Components. 

(17) PEARSON, KARL, "Contributions to the Mathematical Theory of Evolu-
tion (on the Dissection of Asymmetrical Frequency Curves)," Phil. 
Trans. Roy. Soc., Series A, vol. clxxxv., 1894, p. 71. 

(18) EDGEWORTH, F. Y., " On the Representation of Statistics by Mathema-
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(19) PEARSON, KARL, "On some Applications of the Theory of Chance to 
Racial Differentiation," Phil. Mag., 6th Series, vol. i., 1901, p. 110. 

(20) HELGUERO, FERNANDO DE, " Per la risoluzione delle curve dimoifiche," 
Biometrika, vol. iv. 1905, p. 230. Also memoir under the same title 
in the Transactions of the Reale Accademia dei Lincei, Rome, vol. vi., 
1906. (The first is a short note, the second the full memoir.) 

See also the memoir by Charlier, cited in (2), section vi. of tjiat 
memoir dealing with the problem of dissection. 

Testing the Pi t of an Observed, to a Theoretical or 
another Observed Distribution. 

(21) PEARSON, KARL, "On the Criterion that a given System of Deviations 
from the Probable, in the case of a Correlated System of Variables, is 
such that it can be reasonably supposed to have arisen from random 
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(22) PEARSON, KARL, " On the Probability that Two Independent Distribu-
tions of Frequency are really Samples from the same Population," 
Biometrika, vol. viii., 1911, p. 250. 

EXERCISES. 

1. Calculate the theoretical distributions for the three experimental cases 
(1), (2), and (3) cited in § 7 of Chapter XIII. 

2. Show that if np be a whole number, the mean of the binomial coincides 
with the greatest term. 

3. Show that if two symmetrical binomial distributions of degree n (and 
of the same number of observations) are so superposed that the rth term of 
the one coincides with the (r - f l ) th term of the other, the distribution 
formed by adding superposed terms is a symmetrical binomial of degree n +1. 

[Note: it follows that if two normal distributions of the same area and 
standard-deviation are superposed so that the difference between the means is 
small compared with the standard-deviation, the compound curve is very 
nearly normal.] 

4. Calculate the ordinates of the binomial 1024 (0'5 + 0'5)10, and compare 
them with those of the normal curve. 

5. Draw a diagram showing the distribution of statures of Cambridge 
Students (Chap. VI., Table VII.), and a normal curve of the same area, 
mean, and standard-deviation superposed thereon. 

6. Compare the values of the semi-interquartile range for the stature 
distributions of male adults in the United Kingdom and Cambridge Students, 
(1) as found directly, (2) as calculated from the standard-deviation, on the 
assumption that the distribution is normal. 

7. Taking the mean stature for the British Isles as 67'46 in. (the dis-
tribution of fig. 49), the mean for Cambridge students as 68'85 in., and the 
common standard-deviation as 2'56 in., what percentage of Cambridge students 
exceed the British mean in stature, assuming the distribution normal ? 
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8. As stated in Chap. XIII., Example ii., certain crosses of Pisum sativum 
based on 7125 seeds gave 25 '32 per cent, of green seeds instead of the theoretical 
proportion 25 per cent., the standard error being 0'51 per cent. In what per-
centage of experiments based on the same number of seeds might an equal or 
greater percentage be expected to occur owing to fluctuations of sampling 
alone? 

9. In what proportion of similar experiments based on (1) 100 seeds, (2) 
1000 seeds, might (a) 30 per cent, or more, (b) 35 per cent, or more, of green 
seeds, be expected to occur, if ever ? 

10. In similar experiments, what number of seeds must be obtainod to 
make the " probable error" of the proportion 1 per cent. ® 

11. If skulls are classified as dolichocephalic when the length-breadth 
index is under 75, mesoccphalic when the same index lies between 75 and 80, 
and brachycephalic when the index is over 80, find approximately (assuming 
that the distribution is normal) the mean and standard-deviation of a series 
in which 58 per cent, are stated to be dolichocephalic, 38 per cent, mcso-
cephalic, and 4 per cent, brachycephalic. 



CHAPTER XVI. 

NORMAL CORRELATION. 

1-3. Deduction of the general expression for the normal correlation surface 
from the case of independence—4. Constancy of the standard-
deviations of parallel arrays and linearity of the regression—5. The 
contour lines: a series of concentric and similar ellipses—6. The 
normal surface for two correlated variables regarded as a normal 
surface for uncorrelated variables rotafed with respect to the axes of 
measurement: arrays taken at any angle across the surface are normal 
distributions with constant standard-deviation : distribution of and 
correlation between linear functions of two normally correlated 
variables are normal: principal axes—7. Standard-deviations round 
the principal axes—8-11. Investigation of Table III., Chap. IX., to 
test normality : linearity of regression, constancy of standard-deviation 
of arrays, normality of distribution obtained by diagonal addition, 
contour lines—12-13. Isotropy of the normal distribution for two 
variables—14. Outline of the principal properties of the normal dis-
tribution for ii variables. 

1. THE expression that we have obtained for the "normal"dis-
tribution of a single variable may readily be made to yield a 
corresponding expression for the distribution of frequency of pairs 
of values of two variables. This normal distribution for two 
variables, or "normal correlation surface," is of great historical 
importance, as the earlier work on correlation is, almost with-
out exception, based on the assumption of such a distribution; 
though when it was recognised that the properties of the correla-
tion-coefficient could be deduced, as in Chap. IX., without reference 
to the form of the distribution of frequency, a knowledge of 
this special type of frequency-surface ceased to be so essential. 
But the generalised normal law is of importance in the theory of 
sampling : it serves to describe very approximately certain actual 
distributions {e.g. of measurements on man); and if it can be 
assumed to hold good, some of the expressions in the theory of 
correlation, notably the standard-deviations of arrays (and, if 
more than two variables are involved, the partial correlation-
coefficients), can be assigned more simple and definite meanings 
than in the general case. The student should, therefore, be 
familiar with the more fundamental properties of the distribution. 

317 
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2. Consider first the case in which the two variables are com-
pletely independent. Let the distributions of frequency for the 
two variables xx and x2, singly, be 

.A 
2 ai 

Vi = 

(1) 

Then, assuming independence, the frequency-distribution of pairs 
of values must, by the rule of independence, be given by 

-<44 
\ cri <r2/ 

(2) 

where 
y'l-y'z N y = o . . . (3) J\ JTT.CTjO-J x 

Equation (2) gives a normal correlation surface for one special 
case, the correlation-coefficient being zero. If we put x2 = a con-
stant, we see that every section of the surface by a vertical plane 
parallel to the x1 axis, i.e. the distribution of any array of a^'s, is 
a normal distribution, with the same mean and standard-deviation 
as the total distribution of a^'s, and a similar statement holds for 
the array of a'2's; these properties must hold good, of course, as 
the two variables are assumed independent (cf. Chap. Y. § 13). 
The contour lines of the surface, that is to say, lines drawn on 
the surface at a constant height, are a series of similar ellipses 
with major and minor axes parallel to the axes of xx and x2 and 
proportional to a1 and cr2, the equations to the contour lines being 
of the general form 

3 + 3 = C . . . . (4) 

Pairs of values of x1 and x2 related by an equation of this form 
are, therefore, equally frequent. 

3. To pass from this special case of independence to the general 
case of two correlated variables, remember (Chap. XII. § 8) 
that if 

^2-1 = X2 ~ 
xl and x21, as also x2 and xh2 are uncorrelated. If they are not 
merely uncorrelated but completely independent, and if the dis-
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tribution of each of the deviations singly be normal, we must have 
for the frequency-distribution of pairs of deviations of xx and x n 

But 
y W r f V l ff2l/ • • • • (5) 

of + a-L ~ o?(l - r\2) + «J(1 - r\2) - r\,) 

= — + — - 2rn . 
•r 1.2 °"2.1 °*1.2' °2.1 

Evidently we would also have arrived at precisely the same 
expression if we had taken the distribution of frequency for x2 
and xh2, and reduced the exponent 

— _)_ 
<4 °i.2 

We have, therefore, the general expression for the normal 
correlation surface for two variables 

V12 = Vn1 

J i \ !R\ 
• • • ( 6 ) \ a [ o (T2.l 1,2 2.1/ 

Further, since and x2.v x2 and xV2, are independent, we must 
have 

, = N ^ N N 
tor.*^ 27T.0-O0-J.2 21r.o-1.o-2(l -r?2)» • ( '> 

4. If we assign to x2 some fixed value, say h2, we have the 
distribution of the array of a^'s of type h2, 

yu = yi2-e 

fx\ W 
\ "1.2 "2.1 ljfll-

( h. 
"2 ' 

=y'i2-e •e 2o"'-2 

This is a normal distribution of standard-deviation <r12, with a 

mean deviating by -h2 from the mean of the whole distribu-
° " 2 

tion of iCj's. As h2 represents any value whatever of x2, we see 
(1) that the standard-deviations of all arrays of Xj are the same, 
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and equal to o-li2: (2) that the regression of a^ on is strictly 
linear. Similarly, of course, if we assign to a;1 any value hv we 
will find (1) that the standard-deviations of all arrays of x2 are 
the same : (2) that the regression of x2 on is strictly linear. 

Correlation Surface. 

5. The contour lines are, as in the case of independence, a 
series of concentric and similar ellipses; the major and minor 
axes are, however, no longer parallel to the axes of x1 and x2, but 
make a certain angle with them. Fig. 50 illustrates the calcu-
lated form of the contour lines for one case, Itli and CC being 
the lines of regression. As each line of regression cuts every 
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array of x1 or of x0 in its mean, and as the distribution of every 
array is symmetrical about its mean, RR must bisect every 
horizontal chord and CC every vertical chord, as illustrated 
by the two chords shown by dotted lines : it also follows that 
RR cuts all the ellipses in the points of contact of the horizontal 
tangents to the ellipses, and CC in the points of contact of 
the vertical tangents. The surface or solid itself, somewhat 
truncated, is shown in fig. 29, p. 166. 

6. Since, as we see from fig. 50, a normal surface for two 
correlated variables may be regarded merely as a certain surface 
for which r is zero turned round through some angle, and since 
for every angle through which it is turned the distributions of all 
x1 arrays and x„ arrays are normal, it follows that every section 
of a normal surface by a vertical plane is a normal curve, i.e. the 
distributions of arrays taken at any angle across the surface are 
normal. It also follows that, since the total distributions of xl 
and x2 must be normal for every angle though which the surface 
is turned, the distributions of totals given by slices or arrays 
taken at any angle across a normal surface must be normal 
distributions. But these would give the distributions of functions 
like a.Xj ± b.x2, and consequently (1) the distribution of any 
linear function of two normally distributed variables x1 and x2 
must also be normal; (2) the correlation between any two linear 
functions of two normally distributed variables must be norma) 
correlation. 

To find the angle & through which the surface has been turned, 
from the position for which the correlation is zero to the position 
for which the coefficient has some assigned value r, we must use 
a little trigonometry. The major and minor axes of the ellipses 
are sometimes termed the principal axes. If be the co-
ordinates referred to the principal axes (the £raxis being the 
Xj axis in its new position) we have for the relation between 
i2, xv x2, the angle 6 being taken as positive for a rotation of 
the a^-axis which will make it, if continued through 90°, coincide 
in direction and sense with the Xtg- ELXISJ 

But, since £2 are uncorrelated, 2 ( ^ 2 ) = 0. Hence, multiplying 
together equations (8) and summing, 

f j = xv cos 8 + x2. sin 6 ) 
£2 = x.2. cos 9 - xv sin 6 j (8) 

0 = (oj - of) sin 29 + 2r12.o-1o-„ cos 20 

tan 29 = . (9) 

2 1 
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I t should be noticed that if we define the principal axes of any 
distribution for two variables as being a pair of axes at right 
angles for which the variables £2 are uncorrelated, equation 
(9) gives the angle that they make with the axes of measurement 
whether the distribution be normal or no. 

7. The two standard-deviations, say 2j and 22, about the 
principal axes are of some interest, for evidently from § 2 the 
major and minor axes of the contour-ellipses are proportional 
to these two standard-deviations. They may be most readily 
determined as follows. Squaring the two transformation equations 
(8), summing and adding, we have 

2? + 2* = o-? + o-̂  . . . . (10) 

Referring the surface to the axes of measurement, we have for 
the central ordinate by equation (7) 

' = N 

V 1 2 2 ^ ( 1 

Referring it to the principal axes, by equation (3) 

, _ N 
2 / l2_27r.2122-

But these two values of the central ordinate must be equal, 
therefore 

2 ^ = ^ ( 1 - ^ . (11) 

(10) and (11) are a pair of simultaneous equations from which 
2j and 22 may be very simply obtained in any arithmetical case. 
Care must, however, be taken to give the correct signs to the 
square root in solving. + 22 is necessarily positive, and 2j - 22 
also if r is positive, the major axes of the ellipses lying along : 
but if r be negative, 2j - 22 is also negative. It should be noted 
that, while we have deduced (11) from a simple consideration 
depending on the normality of the distribution, it is really of 
general application (like equation 10), and may be obtained at 
somewhat greater length from the equations for transforming 
co-ordinates. 

8. As stated in Chap. XV. § 13, the frequency-distribution 
for any variable may be expected to be approximately normal 
if that variable may be regarded as the sum (or, within limits, 
some slightly more complex function) of a large number of other 
variables, provided that these elementary component variables 
are independent, or nearly so. Similarly, the correlation between 
two variables may be expected to be approximately normal if 
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each of the two variables may be regarded as the sum, or some 
slightly more complex function, of a large number of elementary 
component variables, the intensity of correlation depending on 
the proportion of the components common to the two variables. 

Stature is- a highly compound character of this kind, and we 
have seen that, in one instance at least, the distribution of stature 
for a number of adults is given approximately by the normal 
curve. We can now utilise Table III., Chap. IX., p. 160, showing 
the correlation between stature of father and son, to test, as far 
as we can by elementary methods, whether the normal surface 
will fit the distribution of the same character in pairs of indi-
viduals : we leave it to the student to test, as far as he can do so 
by simple graphical methods, the approximate normality of the 
total distributions for this table. The first important property 
of the normal distribution is the linearity of the regression. 
This was well illustrated in fig. 37, p.-174, and the closeness of 
the regression to linearity was confirmed by the values of 
the correlation-ratios (p. 206), viz., 0-52 in each case as com-
pared with a correlation of 0'51. Subject to some investiga-
tion as to the possibility of the deviations that do occur 
arising as fluctuations of simple sampling, when drawing 
samples from a record for which the regression is strictly 
linear, we may conclude that the regression is appreciably 
linear. 

9. The second important property of the normal distribution 
for two variables is the constancy of the standard-deviation for 
all parallel arrays. We gave in Chap. X. p. 204 the standard-
deviations of ten of the columns of the present table, from the 
column headed 62'5-63'5 onwards ; these were—-

the mean being 2'36. The standard-deviations again only fluctuate 
irregularly round their mean value. The mean of the first five 
is 2'34, of the second five 2"38, a difference of only 0'04 : of the 
first group, two are greater and three are less than the mean, 
and the same is true of the second group. There does not seem 
to be any indication of a general tendency for the standard-
deviation to increase or decrease as we pass from one end of the 
table to the other. We are not yet in a position to test how 
far the differences from the average standard-deviation might 
arise in sampling from a record in which the distribution was 

2-56 
2-11 
2-55 
2-24 
2-23 

2-60 
2 -26 
2 - 2 6 
2-45 
2-33 
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strictly normal, but, as a fact, a rough test suggests that they 
might have done so. 

10. Next we note that the distributions of all arrays of a 
normal surface should themselves be normal. Owing, however, 
to the small numbers of observations in any array, the distributions 
of arrays are very irregular, and their normality cannot be tested 
in any very satisfactory way : we can only say that they do not 
exhibit any marked or regular asymmetry. But we can test the 
allied property of a normal correlation-table, viz. that the totals 
of arrays must give a normal distribution even if the arrays be 
taken diagonally across the surface, and not parallel to either 
axis of measurement (cf. § 6). From an ordinary correlation-
table we cannot find the totals of such diagonal arrays exactly, 
but the totals of arrays at an angle of 45° will be given with 
sufficient accuracy for our present purpose by the totals of lines 
of diagonally adjacent compartments. Referring again to Table 
III., Chap. IX., and forming the totals of such diagonals (running 
up from left to right), we find, starting at the top left-hand 
corner of the table, the following distribution — 

0-25 78-75 
2 81-25 
3.25 67-5 
6-25 59 25 
8 42-25 
9-75 30-75 

17 29-25 
34-5 19 
41 10-75 
46-25 7 
60-5 4-25 
67-5 3-5 
85-75 1-75 
87-25 1 
78 0-25 
94-25 

Total 1078 

The mean of this distribution is at 0*368 of an interval above the 
centre of the interval with frequency 78 : its standard-deviation 
is 4'755 intervals, or, remembering that the interval is 1/ J2 of 
an inch, 3"362 inches. (This value may be checked directly from 
the constants for the table given in Chap. IX., Question 3, p. 189, 
for we have from the first of the transformation equations (8), 

cr| = <rj. cos2 0 + of sin" 0 + 2rn<rl(T2. sin 6 cos 6, 
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and inserting 0*! = 2-72, o-2 = 2-75, r12 = 0'51, sin 0 = cos 0 = 1/N/2 
find <jf = 3'361). Drawing a diagram and fitting a normal 
curve we have fig. 51 ; the distribution is rather irregular but the 
fit is fair j certainly there is no marked asymmetry, and, so far as 
the graphical test goes, the distribution may be regarded as 
appreciably normal. One of the greatest divergences of the 
actual distribution from the normal curve occurs in the almost 
central interval with frequency 78 : the difference between the 
observed and calculated frequencies is here 12 units, but the 
standard error is 9T, so that it may well have occurred as a 
fluctuation of simple sampling. 
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FIG. 51.—Distribution of Frequency obtained by addition of Table I I I . 
Chap. IX., along Diagonals running up from left to right, fitted withe 
Normal Curve. 

11. So far, we have seen (1) that the regression is approxi-
mately linear; (2) that, in the arrays which we have tested, the 
standard-deviations are approximately constant, or at least that 
their differences are only small, irregular and fluctuating; (3) that 
the distribution of totals for one set of diagonal arrays is approxi-
mately normal. These results suggest, though they cannot 
completely prove, that the whole distribution of frequency may 
be regarded as approximately normal, within the limits of fluctu-
ations of sampling. We may therefore apply a more searching 
test, viz. the form of the contour lines and the closeness of their 
fit to the contour-ellipses of the normal surface. We can see at 
once, however, that no very close fit can be expected. Since the 
frequencies in the compartments of the table are small, the 
standard error of any frequency is given approximately by its 
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square root (Chap. XIII. § 12), and this implies a standard error 
of about 5 units at the centre of the table, 3 units for a frequency 
of 9, or 2 units for a frequency of 4 : such fluctuations might 
cause wide divergences in the corresponding contour lines. 

Using the suffix 1 to denote the constants relating to the 
distribution of stature for fathers, and 2 the same constants for 
the sons, 

N= 1078 ^ = 67-70 J/2 = 68-66 _ „ M 
0-!= 2-72 o-2= 2-75 

Hence we have from equation (7) 
y'i2 = 26-7 

and the complete expression for the fitted normal surface is 
2 \ xlZ2 \ 

-i \— +-
n \5-47 6-60 5'43 J y = 26'7e 

The equation to any contour ellipse will be given by equating 
the index of e to a constant, but it is very much easier to draw 
the ellipses if we refer them to their principal axes. To do this 
we must first determine 6, and 22. From (9), 

tan 26 = -46 '49, 
whence 25 = 91° 14', 6 = 45° 37', the principal axes standing very 
nearly at an angle of 45° with the axes of measurement, 
owing to the two standard-deviations being very nearly equal. 
They should be set off on the diagram, not with a protractor, but 
by taking tan# from the tables (1-022) and calculating points on 
each axis on either side of the mean. 

To obtain 2 j and 22 we have from (10) and (11) 
2? + 2!=14-961 
22XS2 = 12-868 

Adding and subtracting these equations from each other and 
taking the square root, 

21H-22 = 5-275 
2j - 22 = 1 -447 

whence 2j = 3-36, 22 = T91; owing to the principal axes stand-
ing nearly at 45° the first value is sensibly the same as that found 
for o-f in § 10. The equations to the contour ellipses, referred to 
the principal axes, may therefore be written in the form 

a ti 
y . « = t* 

(3-36) (T91)2 ' 
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the major and minor axes being 3'36 x c and 1 "91 x c respectively. 
To find c for any assigned value of the frequency y we have 

, 2 
y\i=y'vLe * 

c2 _ ^(log y \ i - log y12) 
log e 

Supposing that we desire to draw the three contour-ellipses for 
y — 5, 10 and 20, we find o=l '83 , T40 and 0'76, or the following 

FIG. 52.—Contour Lines for the Frequencies 5, 10 and 20 of the distribution 
of Table III., Chap. IX., and corresponding Contour Ellipses of the fitted 
Normal Surface. Px Px, P2 Pi, principal axes : M, mean. 

values for the major and minor axes of the ellipses :—semi-major 
axes, 6-15, 4'70, 2'55 : semi-minor axes, 3-50, 2*67, 1'45. The 
ellipses drawn with these axes are shown in fig. 52, very much 
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reduced, of course, from the original drawing, one of the squares 
shown representing a square inch on the original. The actual 
contour lines for the same frequencies are shown by the irregular 
polygons superposed on the ellipses, the points on these polygons 
having been obtained by simple graphical interpolation between 
the frequencies in each row and each column—diagonal interpola-
tion between the freqiiencies in a row and the frequencies in a 
column not being used. It will be seen that the fit of the two 
lower contours is, on the whole, fair, especially considering the 
high standard errors. In the case of the central contour, j/ = 20, 
the fit looks very poor to the eye, but if the ellipse be compared 
carefully with the table, the figures suggest that here again we 
have only to deal with the effects of fluctuations of sampling. 
For father's stature = 66 in., son's stature = 70 in., there is 
a frequency of 18'75, and an increase in this much less than the 
standard error would bring the actual contour outside the ellipse. 
Again, for father's stature = 68 in., son's stature = 71 in., there 
is a frequency of 19, and an increase of a single unit would give 
a point on the actual contour below the ellipse. Taking the 
results as a whole, the fit must be regarded as quite as good as 
we could expect with such small frequencies. It is perhaps of 
historical interest to note that Sir Francis Galton, working with-
out a knowledge of the theory of normal correlation, suggested 
that the contour lines of a similar table for the inheritance of 
stature seemed to be closely represented by a series of concentric 
and similar ellipses (ref. 2): the suggestion was confirmed when 
he handed the problem, in abstract terms, to a mathematician, 
Mr J. D Hamilton Dickson (ref. 4), asking him to investigate 
" the Surface of Frequency of Error that would result from 
these data, and the various shapes and other particulars of its 
sections that were made by horizontal planes" (ref. 3, p. 102). 

12. The normal distribution of frequency for two variables is 
an isotropic distribution, to which all the theorems of Chap. Y. 
§§ 11-12 apply. For if we isolate the four compartments of the 
correlation-table common to the rows and columns centring 
round values of the variables xv x2, Xl, x'2, we have for the ratio 
of the cross-products (frequency of x1 x2 multiplied by frequency 
of x[, x'2, divided by frequency of x1 x2 multiplied by frequency of 
xl a?2), 

e °'1.2<r2.1 

Assuming that x\ -xx has been taken of the same sign as x2-xv 
the exponent is of the same sign as r12. Hence the association for 
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this group of four frequencies is also of the same sign as r12, the 
ratio of the cross-products being unity, or the association zero, 
if r12 is zero. In a normal distribution, the association is therefore 
of the same sign—the sign of r12—for every tetrad of frequencies 
in the compartments common t6 two rows and two columns ; that 
is to say, the distribution is isotropic. It follows that every 
grouping of a normal distribution is isotropic whether the class-
intervals are equal or unequal, large or small, and the sign of the 
association for a normal distribution grouped down to 2- x 2-fold 
form must always be the same whatever the axes of division 
chosen. 

These theorems are of importance in the applications of the 
theory of normal correlation to the treatment of qualitative 
characters which are subjected to a manifold classification. The 
contingency tables for such characters are sometimes regarded as 
groupings of a normal distribution of frequency, and the coefficient 
of correlation is determined on this hypothesis by a rather lengthy 
procedure (ref. 14). Before applying this procedure it is well, 
therefore, to see whether the distribution of frequency may be 
regarded as approximately isotropic, or reducible to isotropic form 
by some alteration in the order of rows and columns (Chap. V. 
§§ 9-10). If only reducible to isotropic form by some rearrange-
ment, this rearrangement should be effected before grouping the 
table to 2- x 2-fold form for the calculation of the correlation 
coefficient by the process referred to. If the table is not reducible 
to isotropic form by any rearrangement, the process of calculating 
the coefficient of correlation on the assumption of normality is to 
be avoided. Clearly, even if the table be isotropic it need not be 
normal, but at least the test for isotropy affords a rapid and 
simple means for excluding certain distributions which are not 
even remotely normal. Table II. of Chap. Y, might possibly be 
regarded as a grouping of normally distributed frequency if re-
arranged as suggested in § 10 of the same chapter'—it would be 
worth the investigator's while to proceed further and compare 
the actual distribution with a fitted normal distribution—but 
Table 1Y. could not be regarded as normal, and could not be 
rearranged so as to give a grouping of normally distributed 
frequency. 

13. If the frequencies in a contingency-table be not large, and 
also if the contingency or correlation be small, the influence 
of casual irregularities due to fluctuations of sampling may 
render it difficult to say whether the distribution may be regarded 
as essentially isotropic or no. In such cases some further con-
densation of the table by grouping together adjacent rows and 
columns, or some process of " smoothing" by averaging the 
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frequencies in adjacent compartments, may be of service. The 
correlation-table for stature in father and son (Table III., Chap. 
IX.), for instance, is obviously not strictly isotropic as it stands: 
we have seen, however, that it appears to be normal, within the 
limits of fluctuations of sampling, and it should consequently be 
isotropic within such limits. We can apply a rough test by 
regrouping the table in a much coarser form, say with four rows 
and four columns : the table below exhibits such a grouping, the 
limits of rows and of columns having been so fixed as to include 
not less than 200 observations in each array. 

TABLE I.—(condensed from Table III. of Chapter IX.). 

Son's Stature 
(inches). 

Father's Stature (inches). 

Son's Stature 
(inches). Under 

65-5. 65-5-67-5 67-5-69-5. 69-5 
and over. Total. 

Under 86 -5 
66-5-68-5 
68-5-70-5 

70'5 and over 

97"5 
76-5 
33-25 
14-75 

74-25 
108 

64-75 
32 5 

34-75 
85 
95 
80-75 

10-5 
52 
84-5 

134 

217 
321-5 
277-5 
262 

Total | 2-22 279-5 295-5 281 1078 

Taking the ratio of the frequency in col. 1 to the sum of the 
frequencies in cols. 1 and 2 for each successive row, and so on for 
the other pairs of columns, we find the following series of ratios : 

T A B L E II .—Ratio of Frequency in Column m to Frequency in Column m 
+ Frequency in Column (m +1) in Table I. 

Eow. 

Columns 

Eow. 
1 and 2. 2 and 3. 3 and 4. 

1 0-568 0-681 0-768 
2 0415 0-560 0-620 
3 0 339 0-405 0-529 
4 0-312 0-287 0-376 

These ratios decrease continuously aB we pass from the top to the 
bottom of the table, and the distribution, as condensed, is therefore 
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isotropic. The student should form one or two other condensations 
of the original table to 3- x 3- or 4- x 4-fold form : he will probably 
find them either isotropic, or diverging so slightly from isotropy 
that an alteration of the frequencies, well within the margin of 
possible fluctuations of sampling, will render the distribution 
isotropic. 

14. Before concluding this chapter we may note briefly some 
of the principal properties of the normal distribution of frequency 
for any number of variables, referring the student for proofs to 
the original memoirs. Denoting the frequency of the combination 
of deviations xv x2, BE, . . . , xn by yl2 . . . . „ , we must have 
in the notation of Chapter XII., if the uncorrelated deviations xv 

etc. be completely independent (cf. § 3 of the present 
chapter), 

„ _ , / *n) • • • (12) yi2 . ... n~ y 12 .... n K 

where 

+ . . . . (13) 
T3.12 T i . l . . . . (n—1) 

JV 
and y 12 . . . . »=y0-w • (14) (Jir) o-jO-2.jO-g.j2 . . . . <?•„.! . . . . ,„_,, 

The expression (13) for the exponent </> may be reduced to a 
general form corresponding to that given for two variables, viz.— 

-5 + ^ + . . . + - 2 2 . . . . (15) 
° 1 . 2 3 . . . . n °"2.13 . . . . n crn.12 . . . ( n - 1 ) 

9 XtX2 Xn_jXn . *-r12.3 • • •» - ... - . . . („_2) — - . 
o 3.23. . . nO 2.13 . . . n ° ( j i - l ) . l . . . {n~2)nan.l. . . ( n - l ) 

Several important results may be deduced directly from the form 
(13) for the exponent. Clearly this might have been written in 
a great variety of ways, commencing with any deviation of the 
first order, allotting any primary subscript to the second deviation 
(except the subscript of the first), and so on, just as in § 3 we 
arrived at precisely the same final form for the exponent whether 
we started with the two deviations xx and or with x2 and x12. 
Our assumption, then, that the deviations xv x21, xsl2, etc. are 
normally distributed amounts to the assumption that all devia-
tions of any order and with any suffixes are normally distributed, 
i.e. in the general normal distribution for n variables every array 
of every order is a normal distribution. It will also follow, gen-
eralising the deduction of § 6, tha t any linear function of xv x2 
. . . . xn is normally distributed. Further, if in (13) any fixed 
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values be assigned to ®812 and all the following deviations, the 
correlation between 4,-j and x.2, on expanding x,2l, is, as we have 
seen, normal correlation. Similarly, if any fixed values be 
assigned to xv to 

•̂ 4*123' and all the following deviations, on 
reducing x312 to the second order we shall find that the correla-
tion between x2a and x31 is normal correlation, the correlation 
coefficient being r.2sl, and so on. That is to say, using k to 
denote any group of secondary suffixes, (1) the correlation between 
any two deviations xmk and x,lk is normal correlation; (2) the correla-
tion between the said deviations is rmnk whatever the particular 
fixed values assigned to the remaining deviations. The latter 
conclusion, it will be seen, renders the meaning of partial 
correlation coefficients much more definite in the case of normal 
correlation than in the general case. In the general case rMllk 
represents merely the average correlation, so to speak, between 
xmk and xnk: in the normal case rmnk is constant for all the sub-
groups corresponding to particular assigned values of the other 
variables. Thus in the case of three variables which are normally 
correlated, if we assign any given value to a.'3, the correlation 
between the associated values of xy and x2 is r12 3 : in the general 
case r123, if actually worked out for the various sub-groups 
corresponding, say, to increasing values of x3, would probably 
exhibit some continuous change, increasing or decreasing as the 
case might be. Finally, we have to note that if, in the expression 
(15) for <jb, we assign fixed values, say h2, h3, etc., to all the 
deviations except xv and then throw </> into the form of a perfect 
square (as in § 4 for the case of two variables), we obtain a normal 
distribution for x1 in which the mean is displaced by 

< r i . 2 3 . . . » 7 , <71.28. . . » 1 °"l.23 • . • n , 
r l 2 . 3 4 . . . n "•2 + r13.St...n~ ns+ • • • * l n . 2 . . . ( n - l ) _ " « . a2.13 . . . n "8.12 ... « n.12 . . . (n-1) 
But this is a linear function of h,2, h3, etc., therefore in the case of 
normal correlation the regression of any one variable on any or all 
of the others is strictly linear. The expressions rn.M . . . . n 
o-i.23.... n/0-2.13 n> etc- a r e of course the partial regressions 
&12.34.... ID etc-
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EXERCISES. 

1. Deduce equation (11) from the equations for transformation of co-ordinates 
without assuming the normal distribution. (A proof will bo found in ref. 10.) 

2. Hence show that if the pairs of observed values of a,1! and x„ are repre-
sented by points on a plane, and a straight line drawn through tho mean, the 
sum of the squares of the distances of the points from this lino is a minimum 
if the line is the major principal axis. 

3. The coefficient of correlation with reference to the principal axes being 
zero, and with reference to other axes something, there must be some pair of 
axes at right angles for which the correlation is a maximum, i.e. is numerically 
greatest without regard to sign. Show that these axes make an angle of 45° 
with the principal axes, and that the maximum value of the correlation is— 

4. (Sheppard, ref. 12.) A fourfold table is formed from a normal correla-
tion table, taking the points of division between A and a, B and at the 
medians, so that (A) = [a) = (B) = ( f i ) = N/2. Show that 

r 



C H A P T E R X V I I . 

THE SIMPLER CASES OP SAMPLING FOR VARIABLES : 
PERCENTILES AND MEAN. 

1-2. The problem of sampling for variables; the conditions assumed— 
3. Standard error of a percentile—4. Special values for the percentiles 
of a normal distribution—5. Effect of the form of the distribution 
generally—6. Simplified formula for the case of a grouped frequency-
distribution—7. Correlation between errors in two percentiles of the 
same distribution—8. Standard error of the interquartile range for the 
normal curve—9. Effect of removing the restrictions of simple sampling, 
and limitations of interpretation—10. Standard error of the arithmetic 
mean—11. Relative stability of mean and median in sampling—12. 
Standard error of the difference between two means—13. The tendency 
to normality of a distribution of means—14. Effect of removing the re-
strictions of simple sampling—15. Statement of the standard errors of 
standard-deviation, coefficient of variation, correlation coefficient and 
regression, correlation-ratio and criterion for linearity of regression—16. 
Restatement of the limitations of interpretation if the sample be small. 

1. I N Chapters X I I I . - X Y I . we have been concerned solely with 
the theory of sampling for the case of attributes and the frequency-
distributions appropriate to that case. We now proceed to 
consider some of the simpler theorems for the case of variables 
(cf. Chap. X I I I . § 2). Suppose that we have a bag containing a 
practically infinite number of tickets or cards bearing the recorded 
values of some variable X, and that we draw a ticket from this 
bag, note the value that it bears, draw another, and so on until 
we have drawn n cards (a number small compared with the whole 
number in the bag). Let us continue this process until we have 
N such samples of n cards each, and then work out the mean, 
standard-deviation, median, etc., for each of the samples. No one 
of these measures will prove to be absolutely the same for every 
sample, and our problem is to determine the standard-deviation 
that each such measure will exhibit. 

2. In solving this problem, we must be careful to define 
precisely the conditions which are assumed to subsist, so as to 
realise the limitations of any solution obtained. These conditions 

335 
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were discussed very fully for the case of attributes (Chap. XIII. 
§ 8), and we would refer the student to the discussion then given. 
Here it is sufficient to state the assumptions briefly, using the 
letters (a), (b) and (c) to denote the corresponding assumptions 
indicated by the same letters in the section cited. 

(a) We assume that we are drawing from precisely the same 
record throughout the experiment, so that the chance of drawing 
a card with any given value of X, or a value within any assigned 
limits, is the same at each sampling. 

(b) We assume not only that we are drawing from the same 
record throughout, but that each of our cards at each drawing 
may be regarded quite strictly as drawn from the same record (or 
from identically similar records): e.g. if our card-record is con-
tained in a series of bundles, we must not make it a practice to 
take the first card from bundle number 1, the second card from 
bundle number 2, and so on, or else the chance of drawing a 
card with a given value of X, or a value within assigned limits, 
may not be the same for each individual card at each drawing. 

(c) We assume that the drawing of each card is entirely 
independent of that of every other, so that the value of X recorded 
on card 1, at each drawing, is uncorrelated with the value of X 
recorded on card 2, 3, 4, and so on. It is for this reason that we 
spoke of the record, in § 1, as containing a practically infinite 
number of cards, for otherwise the successive drawings at each 
sampling would not be independent: if the bag contain ten 
tickets only, bearing the numbers 1 to 10, and we draw the card 
bearing 1, the average of the following cards drawn will be higher 
than the mean of all cards drawn ; if, on the other hand, we draw 
the 10, the average of the following cards will be lower than the mean 
of all cards—i.e. there will be a negative correlation between the 
number on the card taken at any one drawing and the card taken 
at any other drawing. Without making the number of cards in 
the bag indefinitely large, we can, as already pointed out for the 
case of attributes (Chap. XIII. § 3), eliminate this correlation by 
replacing each card before drawing the next 

Sampling conducted under these conditions we shall, as before, 
speak of as simple sampling. We do not, it should be noticed, 
make the further assumption that the sample is unbiassed, i.e. 
that the chance of inclusion in the sample is independent of the 
value of X recorded on the card (cf. the last paragraph in § 8, 
Chap. XIII., and the discussion in §§ 4-8, Chap. XIV.). This 
assumption is unnecessary. If it be true, the interpretation of 
our results becomes simpler and more straightforward, for we 
can substitute for such phrases as " the standard-deviation of X 
in a very large sample," " the form of the frequency-distribution 
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in a very large sample," the phrases " the standard-deviation of 
X in the original record," " the form of the frequency-distribution 
i.n the original record": but in very many, perhaps the majority 
of, practical cases the very question at issue is the nature of the 
relation between the distribution of the sample and the distribu-
tion of the record from which it is drawn. As has already been 
emphasised in the passages to which reference is made above, no 
examination of samples drawn under the same conditions can 
give any evidence on this head. 

3. Standard Error of a Percentile.—Let us consider first the 
fluctuations of sampling for a given percentile, as the problem is 
intimately related to that of Chaps. XIII.-XIV. 

Let Xp be a value of X such that pN of the values of X in 
an indefinitely large sample drawn under the same conditions lie 
above it and qN below it. 

If we note the proportions of observations above Xp in samples 
of n drawn from the record, we know that these observed values 
will tend to centre round p as mean, with a standard-deviation 
Jpq/n. If now at each drawing, as well as observing the pro-

portion of X's above Xv, say p + 8, for the sample, we also proceed 
to note the adjustment e required in Xp to make the proportion 
of observations above Xp + e in the sample pn, the standard-
deviation of € will bear to the standard-deviation of S the same 
ratio that c on an average bears to S. But this ratio is quite 
simply determinable if the number of observations in the sample 
is sufficiently large to justify us in assuming that 8 is small—so 
small that we may regard the element of the frequency curve 
(for a very large sample) over which Xp + E ranges as approximately 
a rectangle. If this assumption be made, and we denote the 
standard-deviation of X in a very large sample by cr, and the 
ordinate of the frequency curve at Xp when drawn with unit area 
and unit standard-deviation by yp, 

Therefore for the standard-deviation of e or of the percentile 
corresponding to a proportion p we have 

4. If the frequency-distribution for the very large sample be a 
normal curve, the values of yp for the principal percentiles may be 
taken from the published tables. A table calculated by Mr 
Sheppard (Table IV., ref. 15, in Appendix I.), gives the values 

e = 

(1) 

23 
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directly, and these have been utilised for the following: the 
student can estimate the values roughly by a combined use of the 
area and ordinate tables for the normal curve given in Chapter 
XV., remembering to divide the ordinates given in that, table by 

so as to make the area unity— 

Median . 
Deciles 4 and 6 

„ 3 and 7 
„ 2 and 8 
„ 1 and 9 

Quartiles 

Value of yp 

0-3989423 
0-3863425 
0-3476926 
0-2799619 
0-1754983 
0-3177766 

Inserting these values of yp in equation (1), we have the 
following values for the standard errors of the median, deciles, 
etc., and the values given in the second column for their probable 
errors (Chap. XV. § 17), which the student may sometimes find 
useful:— 

Median 
Deciles 4 and 6 

„ 3 and 7 
2 and 8 

,, 1 and 9 
Quartiles 

Standard error is 
<r/V n multiplied by 

. 1-25331 

. 1-26804 

. 1-31800 
. 1-42877 
. 1-70942 
. 1-36263 

Probable error is 
<r/V» multiplied by 

0-84535 
0-85528 
0-88897 
0-96369 
1-15298 
0-91908 

It will be seen that the influence of fluctuations of sampling on 
the several percentiles increases as we depart from the median : 
the standard error of the quartiles is nearly one-tenth greater than 
that of the median, and the standard error of the first or ninth 
deciles more than one-third greater. 

5. Consider further the influence of the form of the frequency-
distribution on the standard error of the median, as this is an 
important form of average. For a distribution with a given 
number of observations and a given standard-deviation the 
standard error varies inversely as yp. Hence for a distribution in 
which yv is small, for example a U-shaped distribution like that 
of fig. 18 or fig. 19, the standard error of the median will be 
relatively high, and it will, in so far, be an undesirable form of 
average to employ. On the other hand, in the case of a distribu-
tion which has a high peak in the centre, so as to exhibit a value 
of yp large compared with the standard-deviation, the standard 
error of the median will be relatively low. We can create such a 
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" peaked" distribution by superposing a normal curve with a 
small standard-deviation on a normal curve with the same mean 
and a relatively large standard-deviation. To give some idea of 
the reduction in the standard error of the median that may be 
effected by a moderate change in the form of the distribution, let 
us find for what ratio of the standard-deviations of two such curves, 
having the same area, the standard error of the median reduces to 

where o- is of course the standard-deviation of the com-
pound distribution. 

Let CTJ, cr2 be the standard-deviations of the two distributions, 
and let there be n/2 observations in each. Then 

/°i+<4 • " , 
°- = V 2 . . . . (a) 

On the other hand, the value of yv is— 

Hence the standard error of the median is 

V » o-T^ * • • • <C> 
(c) is equal to <r/Jn if 

(a-l + era) s/o-f + o-j _ 
2 \f 77(7̂ (7̂  

Writing o-g/o-j = p, that is if 

( i + p K / r + 7 2
= 1 

2 J t t P 
or 

pi + 2p3 + (2 - 4tt)p°- + 2P + 1 = 0. 

This equation may be reduced to a quadratic and solved by 

taking p + —as a new variable. The roots found give p = 2'2360 
. . . . or 0'4472 . . . ., the one root being merely the reciprocal of 
the other. The standard error of the median will therefore be 
<r/Jn, in such a compound distribution, if the standard-deviation 
of the one normal curve is, in round numbers, about times 
that of the other. If the ratio be greater, the standard error 
of the median will be less than cr/Jn. The distribution 
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for which the standard error of the median is exactly equal to 
cr/Jn is shown in fig. 53 : it will be seen that it is by no means 
a very striking form of distribution; at a hasty glance it might 
almost be taken as normal. In the case of distributions of a form 
more or less similar to that shown, it is evident that we cannot 
at all safely estimate by eye alone the relative standard error qf 
the median as compared with <r/Jn. 

6. In the case of a grouped frequency-distribution, if the 
number of observations is sufficient to make the class-frequencies 
run fairly smoothly, i.e. to enable us to regard the distribution 

as nearly that of a very large sample, the standard error of any 
percentile can be calculated very readily indeed, for we can 
eliminate cr from equation (1). Let fr be the frequency-per-
class-interval at the given percentile—simple interpolation will 
give us the value with quite sufficient accuracy for practical 
purposes, and if the figures run irregularly they may be smoothed. 
Let o- be the value of the standard-deviation expressed in class-
intervals, and let n be the number of observations as before. 
Then since yp is the ordinate of the frequency-distribution when 
drawn with unit standard-deviation and unit area, we must 
have « 

FIG. 5 3 . 

<r. 
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But this gives at once for the standard error expressed in terms 
of the class-interval as unit 

% = ^ . . . . (2) 
Jp 

As an example in which we can compare the results given by 
the two different formulae (1) and (2), take the distribution of 
stature used as an illustration in Chaps. VII. and VIII. and in 
§§ 13, 14 of Chap. XV. The number of observations is 8585, 
and the standard-deviation 2-57 in., the distribution being 
approximately normal: a-/Jn = 0'027737, and, multiplying by the 
factor T253 . . . . given in the table in § 4, this gives 00348 
as the standard error of the median, on the assumption of 
normality of the distribution. Using the direct method of 
equation (2), we find the median to be 67-47 (Chap. VII. § 15), 
which is very nearly at the centre' of the interval with a 
frequency 1329. Taking this as being, with sufficient accuracy 
for our present purpose, the frequency per interval at the median, 
the standard error is 

78585 
1329 = 0-0349. 

As we should expect, the, value is practically the same as that 
obtained from the value of the standard-deviation on the assump-
tion of normality. 

Let us find the standard error of the first and ninth deciles 
as another illustration. On the assumption that the distribu-
tion is normal, these standard errors are the same, and equal tp 
0-027737 x 1-70942 = 0-0474. Using the direct method, we 
find by simple interpolation the approximate frequencies per 
interval at the first and ninth deciles respectively to be 590 and 
570, giving standard errors of 0"0471 and 0'0488, mean 0-0479, 
slightly in excess of that found on the assumption that the fre-
quency is given by the normal curve. The student should notice 
that the class-interval is, in this case, identical with the unit of 
measurement, and consequently the answer given by equation (2) 
does not require to be multiplied by the magnitude of the 
interval. 

In the case of the distribution of pauperism (Chap. VII., 
Example i.), the fact that the class-interval is not a unit must 
be remembered. The frequency at the median (3-195 per cent.) 
is approximately 96, and this gives for the standard error of the 
median by (2) (the number of observations being 632) 0-1309 
intervals, that is 0-0655 per cent. 

7. In finding the standard error of the difference between two 
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percentiles in the same distribution, the student must be care-
ful to note that the errors in two such percentiles are not 
independent. Consider the two percentiles, for which the values 
of p and q are pj qv p2 q2 respectively, the first-named being the 
lower of the two percentiles. These two percentiles divide the 
whole area of the frequency curve into three parts, the areas of 
which are proportional to qv 1 - ql —pot and pv Further, since 
the errors in the first percentile are directly proportional to the 
errors in qv and the errors in the second percentile are directly 
proportional but of opposite sign to the errors in p2, the corre-
lation between errors in the two percentiles will be the same as 
the correlation between errors in q1 and p2 but of opposite sign. 
But if there be a deficiency of observations below the lower 
percentile, producing an error in qv the missing observations 
will tend to be spread over the two other sections of the curve 
in proportion to their respective areas, and will therefore tend to 
produce an error 

S2= - — . 8, 
Pi 

in p2. If then r be the correlation between errors in qx and 
and e2 their respective standard errors, we have 

fi Pi 

Or, inserting the values of the standard errors, 

V: Mi 
1%Pi 

The correlation between the percentiles is the same in magni-
tude but opposite in sign : it is obviously positive, ancl consequently 

correlation between errors 1 _ J Pil l ,„<, 
in two percentiles J v ' • w 

If the two percentiles approach very close together, q1 and qv 
px and p2 become sensibly equal to one another, and the correla-
tion becomes unity, as we should expect. 

8. Let us apply the above value of the correlation between 
percentiles to find the standard error of the semi-interquartile 
range for the normal curve. Inserting q1=p2 — b 7i=Pi = f> we 

findr = J. Hence the standard error of the interquartile range 
is, applying the ordinary formula for the standard-deviation of a 
difference, 2/J3 times the standard error of either quartile, or 
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the standard error of the semi-interquartile range 1/^/3 times 
the standard error of a quartile. Taking the value of the 
standard error of a quartile from the table in § 4, we have, finally, 

standard error of the semi- j or 
interquartile range in a . =0'78672'~r^ . . (4) 
normal distribution j 

Of course the standard-deviation of the inter-quartile, or semi-
interquartile, range can readily be worked out in any particular 
case, using equation (2) and the value of the correlation 
given above: it is best to work out such standard errors 
from first principles, applying the usual formula for the standard 
deviation of the difference of two correlated variables (Chap. XI. 
§ 2, equation (1)). 

9. If there is any failure of the conditions of simple sampling, 
the formulae of the preceding sections cease, of course, to hold 
good. We need not, however, enter again into a discussion of 
the effect of removing the several restrictions, for the effect on 
the standard error of p was considered in detail in §§ 9-14 of 
Chap. XIV., and the standard error of any percentile is directly 
proportional to the standard error of p (cf. § 3). Further, the 
student may be reminded that the standard error of any per-
centile measures solely the fluctuations that may be expected in 
that percentile owing to the errors of simple sampling alone : it 
has no bearing, therefore, save on the one question, whether an 
observed divergence of the percentile, from a certain value that 
might be expected to be yielded by a more extended series of 
observations or that had actually been observed in some other 
series, might or might not be due to fluctuations of simple 
sampling alone. It cannot and does not give any indication of 
the possibility of the sample being biassed or unrepresentative of 
the material from which it has been drawn, nor can it give any 
indication of the magnitude or influence of definite errors of 
observation—errors which may conceivably be of greater im-
portance than errors of sampling. In the case of the distribution 
of statures, for instance, the standard error almost certainly gives 
quite a misleading idea as to the accuracy attained in determining 
the average stature for the United Kingdom : the sample is not 
representative, the several parts of the kingdom not contributing 
in their true proportions. The student should refer again to the 
discussion of these points in §§ 4-8 of Chap. XIV. Finally, we 
may note that the standard error of a percentile cannot be 
evaluated unless the number of observations is fairly large—large 
enough to determine fp (eqn. 2) with reasonable accuracy, or 
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to test whether we may treat the distribution as approximately 
normal (cf. also § 16 below). 

(As regards the theory of sampling for the median and per-
centiles generally, cf. ref. 13, Laplace, Supplement II. (standard 
error of the median), Edgeworth, refs. 5, 6, 7, and Sheppard, ref. 
23: the preceding sections have been based on the work of 
Edgeworth and Sheppard.) 

10. Standard Error of the Arithmetic Mean.—Let us now pass 
to a fresh problem, and determine the standard error of the 
arithmetic mean. 

This is very readily obtained. Suppose we note separately at 
each drawing the value recorded on the first, second, third . . . . 
and rath card of our sample. The standard-deviation of the values 
on each separate card will tend in the long run to be the same, 
and identical with the standard-deviation cr of a; in an indefinitely 
large sample, drawn under the same conditions. Further, the 
value recorded oti each card is (as we assume) uncorrelated with 
that on every other. The standard-deviation of the sum of the 
values recorded on the n cards is therefore Jn.cr, and the 
standard-deviation of the mean of the sample is consequently 
1 /nth of this ; or, 

= (5) 

This is a most important and frequently cited formula, and the 
student should note that it has been obtained without any 
reference to the size of the sample or to the form of the frequency-
distribution. It is therefore of perfectly general application, if 
cr be known. We can verify it against our formula for the 
standard-deviation of sampling in the case of attributes. The 
standard-deviation of the number of successes in a sample of m 
observations is Jm.pq: the standard-deviation of the total 
number of successes in n samples of m observations each is there-
fore Jnm.pq : dividing by n we have the standard-deviation of 
the mean number of successes in the n samples, viz. Jrnpq / Jn, 
agreeing with equation (5). 

11. For a normal curve the standard error of the mean is to 
the standard error of the median approximately as 100 to 125 
(cf. § 4), and in general the standard errors of the two stand in 
a somewhat similar ratio for a distribution not differing largely 
from the normal form. For the distribution of statures used as 
an illustration in § 6 the standard error of the median was found 
to be 0-0349 : the standard error of the mean is only 0-0277. 
The distribution being very approximately normal, the ratio of 
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the two standard errors, viz. 1'26, assumes almost exactly the theo-
retical magnitude. In the case of the asymmetrical distribution of 
rates of pauperism, also used as an illustration in § 6, the standard 
error of the median was found to be 0'0655 per cent. The 
standard error of the mean is only 0-0493 per cent., which bears 
to the standard error of the median a ratio of 1 to 1'33. As 
such cases as these seem on the whole to be the more common 
and typical, we stated in Chap. VII. § 18 that the mean is in 
general less affected than the median by errors of sampling. At 
the same time we also indicated the exceptional cases in which 
the median might be the more stable—cases in which the mean 
might, for example, be affected considerably by small groups of 
widely outlying observations, or in which the frequency-distri-
bution assumed a form resembling fig. 53, but even more 
exaggerated as regards the height of the central "peak" and the 
relative length of the " tails." Such' distributions are not un-
common in some economic statistics, and they might be expected 
to characterise some forms of experimental error. If, in these 
cases, the greater stability of the median is sufficiently marked 
to outweigh its disadvantages in other respects, the median 
may be the better form of average to use. Fig. 53 represents 
a distribution in which the standard errors of the mean and of the 
median are the same. Further, in some experimental cases it is 
conceivable that the median may be less affected by definite 
experimental errors, the average of which does not tend to be 
zero, than is the mean,—this is, of course, a point quite distinct 
from that of errors of sampling. 

12. If two quite independent samples of nx and observations 
respectively be drawn from a record, evidently e12, the standard 
error of the difference of their means is given by 

^ = < 4 ) • • • • («> 
If an observed difference exceed three times the value of e12 
given by this formula it can hardly be ascribed to fluctuations 
of sampling. It, in a practical case, the value of cr is not known 
a priori, we must substitute an observed value, and it would seem 
natural to take as this value the standard-deviation in the two 
samples thrown together. If, however, the standard-deviations 
of the two samples themselves differ more than can be accounted 
for on the basis of fluctuations of sampling alone (see below, § 15), 
we evidently cannot assume that both samples have been drawn 
from the same record : the one sample must have been drawn 
from a record or a universe exhibiting a greater standard-deviation 
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than the other. If two samples be drawn quite independently 
from different universes, indefinitely large samples from which 
exhibit the standard-deviations cr, and cr2, the standard error of 
the difference of their means will be given by 

„ aj crl 
= — + — . . . . (7) TO, 712 w 

This is, indeed, the formula usually employed for testing the 
significance of the difference between two means in any case : 
seeing that the standard error of the mean depends on the 
standard-deviation only, and not on the mean, of the distribution, 
we can inquire whether the two universes from which samples 
have been drawn differ in mean apart from any difference in 
dispersion. 

If two quite independent samples be drawn from the same 
universe, but instead of comparing the mean of the one with the 
mean of the other we compare the mean ml of the first with the 
mean m0 of both samples together, the use of (6) or (7) is not 
justified, for errors in the mean of the one sample are correlated 
with errors in the mean of the two together. Following precisely 
the lines of the similar problem in § 13, Chap. XIII., case III., we 
find that this correlation is \Jn^l(nx + TO2), and hence 

TO^TOi+TOa) x ' 

(For a complete treatment of this problem in the case of samples 
drawn from two different universes cf. ref. 20.) 

13. The distribution of means of samples drawn under the 
conditions of simple sampling will always be more symmetrical 
than the distribution of the original record, and the symmetry 
will be the greater the greater the mimber of observations in the 
sample. Further, the distribution of means (and therefore also of 
the differences between means) tends to become not merely sym-
metrical but normal. We can only illustrate, not prove, the 
point here; but if the student will refer tog 13, Chap. XV., he will 
see that the genesis of the normal curve in this case is in accord-
ance with what we then stated, viz. that the distribution tends to 
be normal whenever the variable may be regarded as the sum 
(or some slightly more complex function) of a number of other 
variables. In the present instance this condition is strictly ful-
filled. The mean of the sample of n observations is the sum of 
the values in the sample each divided by TO, and we should expect 
the distribution to be the more nearly normal the larger TO. AS 
an illustration of the approach to symmetry even for small values 
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of n, we may take the following case. If the student will turn to 
the calculated binomials, given as illustrations of the forms of 
binomial distributions in Chap. XY. § 3, he will find there the 
distribution of the number of successes for twenty events when 
q = 0'9, /> = 0'1 : the distribution is extremely skew, starting at 
zero, rising to high frequencies for 1 and 2 successes, and thence 
tailing off to 20 oases of 7 successes in 10,000 throws, 4 cases of 8 
successes and 1 case of 9 successes. But now find the distribu-
tion for the mean number of successes in groups of five throws, 
under the same conditions. This will be equivalent to finding 
the distribution of the number of successes for 100 such events, 
and then dividing the observed number of successes by five—the 
last process making no difference to the form of the distribution, 
but only to its scale. But the distribution of the number of 
successes for 100 events when (? = 0'9, jp = 0T, is also given in 
Chap. XY. § 3, and it will be seen that, while it is appreciably 
asymmetrical, the divergence from symmetry is comparatively 
small: the distribution has gained very greatly in symmetry 
though only five observations have been taken to the sample. 
We may therefore reasonably assume, if our sample is large, 
that the distribution of means is approximately a normal dis-
tribution, and we may calculate, on that assumption, the fre-
quency with which any given deviation from a theoretical value 
or a value observed in some other series, in an observed mean, will 
arise from fluctuations of simple sampling alone. 

The warning is necessary, however, that the approach to 
normality is only rapid if the condition that the several drawings 
for each sample shall be independent is strictly fulfilled. If the 
observations are not independent, but are to some extent positively 
correlated with each other, even a fairly large sample may con-
tinue to reflect any asymmetry existing in the original distribution 
(cf. ref. 26 and the record of sampling there cited). 

If the original distribution be normal, the distribution of 
means, even of small samples, is strictly normal. This follows at 
once from the fact that any linear function of normally distributed 
variables is itself normally distributed (Chap. XVI. § 6). The 
distribution will not in general, however, be normal if the 
deviation of the mean of each sample is expressed in terms of the 
standard-deviation of that sample [cf. ref. 24). 

14. Let us consider briefly the effect on the standard error of 
the mean if the conditions of simple sampling as laid down in 
§ 2 cease to apply. 

(a) If we do not draw from the same record all the time, but 
first draw a series of samples from one record, then another 
series from another record with a somewhat different mean and 
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standard-deviation, and so on, or if we draw the successive 
samples from essentially different parts of the same record, the 
standard error will be greatly increased. For suppose we draw 

samples from the first record, for which the standard-deviation 
(in an indefinitely large sample) is o-j, and the mean differs by 
dx from the mean of all the records together (as ascertained by 
large samples in numbers proportionate to those now taken); k2 
samples from the second record, for which the standard-deviation 
is cr2, and the mean differs by d2 from the mean of all the records 
together, and so on. Then for the samples drawn from the first 
record the standard error of the mean will be o-JJn, but the 
distribution will centre round a value differing by from the 
mean for all the records together : and so oil for the samples 
drawn from the other records. Hence, if crm be the standard error 
of the mean, N the total number of samples, 

But the standard-deviation cr0 for all the records together is given 

Hence, writing ~2(kcP) = JV.s ,̂ 

This equation corresponds precisely to equation (2) of § 9, Chap. 
XIV. The standard error of the mean, if our samples are drawn 
from different records or from essentially different parts of the 
entire record, may be increased indefinitely as compared with the 
value it would have in the case of simple sampling. If, for 
example, we take the statures of samples of n men in a number 
of different districts of England, and the standard-deviation of all 
the statures observed is cr0, the standard-deviation of the means 
for the different districts will not be <rjjn, but will have some 
greater value, dependent on the real variation in mean stature 
from district to district. 

(b) If we are drawing from the same record throughout, but 
always draw the first card from one part of that record, the 
second card from another part, and so on, and these parts differ 
more or less, the standard error of the mean will be decreased. 
For if, in large samples drawn from the subsidiary parts of the 
record from which the several cards are taken, the standard-
deviations are crv cr2, . . . . cr„, and the means differ by dv d2, 

by 
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. . . . dn from the mean for a large sample from the entire record, 
we have 

n n 
Hence 

The last equation again corresponds precisely with that given for 
the same departure from the rules of simple sampling in the case 
of attributes (Chap. XIV. § 11., eqn. 4). If, to vary our previous 
illustration, we had measured the statures of men in each of n 
different districts, and then proceeded, to form a set of samples 
by taking one man from each district for the first sample, one 
man from each district for the second sample, and so on, the 
standard-deviation of the means of the samples so formed would 
be appreciably less than the standard error of simple sampling 
a-JjJn. As a limiting case, it is evident that if the men in each 
district were all of precisely the same stature, the means of all the 
samples so compounded would be identical: in such a case, in fact, 
O*Q = sm, and consequently <rm = 0. To give another illustration, if 
the cards from which we were drawing samples had been arranged 
in order of the magnitude of X recorded on each, we would get 
a much more stable sample by drawing one card from each 
successive nth part of the record than by taking the sample 
according to our previous rules—e.g. shaking them up in a bag 
and taking out cards blindfold, or using some equivalent process. 

The result is perhaps of some practical interest. It shows that, 
if we are actually taking samples from a large area, different 
districts of which exhibit markedly different means for the 
variable under consideration, and are limited to a sample of n 
observations; if we break up the whole area into n sub-districts, 
each as homogeneous as possible, and take a contribution to the 
sample from each, we will obtain a more stable mean by this 
orderly procedure than will be given, for the same number of 
observations, by any process of selecting the districts from which 
samples shall be taken by chance. There may, however, be a 
greater risk of biassed error. The conclusions seem in accord 
with common-sense. 

(c) Finally, suppose that, while our conditions (a) and (b) of § 2 
hold good, the magnitude of the variable recorded on one card 
drawn is no longer independent of the magnitude recorded on 
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another card, e.g. that if the first card drawn at any sampling 
bears a high value, the next and following cards of the same 
sample are likely to bear high values also. Under these circum-
stances, if r12 denote the correlation between the values on the 
first and second cards, and so on, 

4 = J + + . . . . + r2) + . . . . ) . 

There are n{n~ l)/2 correlations; and if, therefore, r is the 
arithmetic mean of them all, we may write 

As the means and standard-deviations of 
#2) • • • • ĴX firo all 

identical, r may more simply be regarded as the correlation 
coefficient for a table formed by taking all possible pairs of the 
n values in every sample. If this correlation be positive, the 
stahdard error of the mean will be increased, and for a given 
value of r the increase will be the greater, the greater the size of 
the samples. If r be negative, on the other hand, the standard 
error will be diminished. Equation (11) corresponds precisely to 
equation (6), § 13, of Chap. XIV. 

As was pointed out in that chapter, the case when r is positive 
covers the case discussed under (a): for if we draw successive 
samples from different records, such a positive correlation is at 
once introduced, although the drawings of the several cards at 
each sampling are quite independent of one another. Similarly, 
the case discussed under (6) is covered by the case of negative 
correlation, for if each card is always drawn from a separate and 
distinct part of the record, the correlation between any two x's will 
on the average be negative : if some one card be always drawn 
from a part of the record containing low values of the variable, 
the others must on an average be drawn from parts containing 
relatively high values. It is as well, however, to keep the cases 
(a), (b), and (c) distinct, since a positive or negative correlation 
may arise for reasons quite different from those considered under 
(a) and (b). 

15. With this discussion of the standard error of the arithmetic 
mean we must bring the present work to a close. To indicate 
briefly our reasons for not proceeding further with the discussion 
of standard errors, we must remind the student that in order to 
express the standard error of the mean we require to know, in 
addition to the mean itself, the standard-deviation about the mean, 
or, in other words, the mean (deviation)2 with respect to the mean. 
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Similarly, to express the standard error of the standard-deviation 
we require to know, in the general case, the mean (deviation)4 

with respect to the mean. Either, then, we must find this quantity 
for the given distribution—and this would entail entering on a 
field of work which hitherto we have intentionally avoided—or we 
must, if that be possible, assume the distribution to be of such a 
form that we can express the mean (deviation)4 in terms of the 
mean (deviation)2. This can be done, as a fact, for the normal 
distribution, but the proof would again take us rather beyond 
the limits that we have set ourselves. To deal with the standard 
error of the correlation coefficient would take us still further 
afield, and the proof would be laborious and difficult, if not 
impossible, without the use of the differential and integral cal-
culus. We must content ourselves, therefore, with a simple 
statement of the standard errors of some of the more important 
constants. 

Standard-deviation.—If the distribution be normal, 

standard error of the ) ^ 
standard-deviation in > = — . . (12) 
a normal distribution ) ^ 

This is generally given as the standard error in all cases : it is, 
however, by no means exact: the general expression is 

standard error of the standard- j / , 
deviation in a distribution > = » / — ^ • (13) 
of any form j V w 

where fx.i is the mean (deviation)4—deviations being, of course, 
measured from the mean—and the mean (deviation)2 or the 
square of the standard-deviation : n is assumed sufficiently large 
to make the errors in the standard-deviation small compared with 
that quantity itself. Equation (13) may in some cases give 
values considerably greater—twice as great or more—than (12). 
(Cf. ref. 15.) If, however, the distribution be normal, equation 
(12) gives the standard error not merely of standard-deviations of 
order zero, to use the terminology of Chap. XII., but of standard-
deviations of any order (ref. 27). It will be noticed, on reference 
to equation (4) above, § 8, that the standard error of the standard-
deviation is less than that of the semi-interquartile range for a 
normal distribution. 

For a normal distribution, again, we have— 

standard error of the co- ) _ v f -j J v \2 I 1 

efficient of variation v j — J2n\ *\l00,/ J ' 
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The expression in the bracket is usually very nearly unity, for 
a normal distribution, and in that case may be neglected. 

Correlation coefficient.—If the distribution be normal, 
standard error of the cor- I 1 _ 

relation coefficient for •> =—j=- . . (15) 
a normal distribution ) *1 1 

This is the value always given : the use of a more general formula 
which would entail the use of higher moments does not appear-
to have been attempted. As regards the case of small samples, 
cf. ref. 25. Equation (15) gives the standard error of a coefficient 
of any order, total or partial (ref. 27). For the standard error of 
the correlation-coefficient for a fourfold table (Chap. XI., § 10), 
see ref. 28 : the formula (15) does not apply. 

Coefficient of regression.—If the distribution be normal, 
standard error of the co- ) —-5-

efficient of regression bV2 I- =<l!- _ = . (16) 
for a normal distribution ) o-.2Jn <r2Jn 

This formula again applies to a regression coefficient of any order, 
total or partial: i.e. in terms of our general notation, k denoting 
any collection of secondary subscripts other than 1 or 2, 

standard error of b12k for 1 _ 1̂.2* 
a normal distribution \ ~ a„k Jn. 

Correlation ratio.—The general expression for the standard 
error of the correlation-ratio is a somewhat complex expression 
(cf. Professor Pearson's original memoir on the correlation-ratio, 
ref. 13, Chap. X.). In general, however, it may be taken as 
given sufficiently closely by the above expression for the standard 
error of the correlation coefficient, that is to say, 

standard error of correlation- ) 1 ~ T 
ratio approximately | J n ' ' \ ) 

As was pointed out in Chap. X., § 21, the value of £ = ?72-r2 is a 
test for linearity of regression. Very approximately (Blakeman, 
ref. 1), 

standard error of £ = 2 a / ^ v/(l - ^ 2 ) 2 - ( l - r 2 ) 2 + l . (18) 
V n 

For rough work the value of the second square root may be 
taken as nearly unity, and we have then the simple expression, 

standard error of £ roughly = 2 . . (19) 
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To convert any standard error to the •probable error multiply by 
the constant 0-674489 . . . . 

16. We need hardly restate once more the warnings given in 
Chap. XIY., and repeated in § 9 above, that a standard error can 
give no evidence as to the biassed or representative character of 
a sample, nor as to the magnitude of errors of observation, but 
we may, in conclusion, again emphasise the warnings given 
in §§ 1-3, Chap. XIV., as to the use of standard errors when 
the number of observations in the sample is small. 

In the first place, if the sample be small, we cannot in general 
assume that the distribution of errors is approximately normal: 
it would only be normal in the case of the median (for which 
p and q are equal) and in the case of the mean of a normal 
distribution. Consequently, if n be small, the rule that a 
range of three times the standard error includes the majority 
of the fluctuations of simple sampling of either sign does not 
strictly apply, and the "probable error" becomes of doubtful 
significance. 

Secondly, it will be noted that the values of cr and yp in (1), of 
fp in (2), and of cr in (4) and (5), i.e. the values that would be 
given for these constants by an indefinitely large sample drawn 
under the same conditions, or the values that they possess in 
the original record if the sample is unbiassed, are assumed to be 
known a priori. But this is only the case in dealing with the 
problems of artificial chance : in practical cases we have to use 
the values given us by the sample itself. If this sample is based 
on a considerable number of observations, the procedure is safe 
enough, but if it be only a small sample we may possibly mis-
estimate the standard error to a serious extent. Following the 
procedure suggested in Chap. XIV., some rough idea as to the 
possible extent of under-estimation or over-estimation may be 
obtained, e.g. in the case of the mean, by first working out the 
standard error of cr on the assumption that the values for the 
necessary moments are correct, and then replacing cr in the 
expression for the standard error of the mean by o- ± three times 
its standard error so obtained. 

Finally, it will be remembered that unless the number of 
observations is large, we cannot interpret the standard error of 
any constant in the inverse sense, i.e. the standard error ceases 
to measure with reasonable accuracy the standard-deviation of 
true values of the constant round the observed value (Chap. 
XIV. § 3). If the sample be large, the direct and inverse 
standard errors are approximately the same. 

2 3 
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R E F E R E N C E S . 

The memoirs on the probable errors of frequency constants, correlation 
coefficient, etc., which the student may find most useful, are 16, 18, and 28. 

(1) BLAKEMAN, J., "On Tests for Linearity of Regression in Frequency 
Distributions," Biometrika, vol. iv., 1905, p. 332. 

(2) BLAKEMAN , J . , a n d KARL PEARSON , " O n t h e P r o b a b l e Error of t h e 
Coefficient of Mean Square Contingency," Biometrika, vol. v., 1906, 
p. 191. 

(3 ) BOWLEY, A . L., The Measurement of Groups and Series ; C . k E . Layton, 
London, 1903. 

(4 ) BOWLEY, A . L . , Address to Section F of the British Association, 1906 . 
(5) EDGEWORTH, F. Y., "Observations and Statistics: An Essay on the 

Theory of Errors of Observation and the First Principles of Statistics," 
Cambridge Phil. Trans., vol. xiv., 1885, p. 139. 

(6) EDGEWORTH, F . Y., " Problems in Probabilities," Phil. Mag., 5th Series, 
vol. xxii., 1886, p. 371. 

(7) EDGEWORTH , F. Y., "The Choice of Means," Phil. Mag., 5th Series, 
vol. xxiv., 1887, p. 268. 

(8) EDGEWORTH, F. Y., "On the Probable Errors of Frequency Constants," 
Jour. Roy. Stat. Soc., vol. lxxi., 1908, pp. 381, 499, 651 ; and 
Addendum, vol. lxxii., 1909, p. 81. 

(9) ELDERTON, W. PA HN, "Tables for Testing the Goodness of Fit of Theory 
to Observation," Biometrika, vol. i., 1902, p. 155. 

(10) GIBSON, WINIFRED, "Tables for Facilitating the Computation of 
Probable Errors," Biometrika, vol. iv., 1906, p. 385. 

(11) HERON, D., "An Abac to determine the Probable Errors of Correlation 
Coefficients," Biometrika, vol. vii., 1910, p. 411. (A diagram giving 
the probable error for any number of observations up to 1000.) 

(12) HEKON, D., " On the Probable Error of a Partial Correlation Coefficient," 
Biometrika, vol. vii., 1910, p. 411. (A proof, on ordinary algebraic 
lines, for the case of three variables, of the result given in (27).) 

(13) LAPLACE, P I E R R E SIMON , Marquis de, Thiorie des probability, 2° £dn., 
1814. (With four supplements.) 

(14) PEARL, RAYMOND, "The Calculation of the Probable Errors of Certain 
Constants of the Normal Curve," Biometrika, vol. v., 1906, p. 190. 

(15) PEARL, RAYMOND, "On certain Points concerning the Probable Error 
of the Standard-deviation," Biometrika, vol. vi., 1908, p. 112. (On 
the amount of divergence, in certain cases, from the probable error 
<rl\/2n in the case of a normal distribution.) 

( 1 6 ) PEARSON, KARL , a n d L. N . G. FILON , " O n t h e P r o b a b l e Errors of 
Frequency Constants, and on the Influence of Random Selection on 
Variation and Correlation," Phil. Trans. Roy. Soc., Series A, vol. cxci., 
1898, p. 229. 

(17) PEARSON, KARL, " On the Criterion that a given System of Deviations 
from the Probable in the Case of a Correlated System of Variables is 
such that it can be reasonably supposed to have arisen from Random 
Sampling," Phil. Mag., 5th series, vol. 1., 1900, p. 157. 

(18) PEARSON, KARL, and others (editorial), "On the Probable Errors of 
Frequency Constants," Biometrika, vol. ii., 1903, p. 273. (Useful for 
the general formulse given, based on the general case without respect to 
the form of the frequency-distribution.) 

(19) PEARSON, KARL, " On the Curves which are most suitable for describing 
the Frequency of Random Samples of a Population," Biometrika, vol. 
v., 1906, p. 172. 
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(20) PEARSON, KARL, "Note on the Significant or Non-significant Character 
of a Sub-sample drawn from a Sample," Biometrika, vol. v., 1906, p. 
181. 

(21) PEARSON, KARL, "On the Probability that two Independent Distribu-
tions of Frequency are really Samples from the same Population," 
Biometrika, vol. viii., 1911, p. 250. 

(22) RHIND, A., "Tables for Facilitating the Computation of Probable Errors 
of the Chief Constants of Skew Frequency-distributions," Biometrika, 
vol. vii., 1909-10, p. 127 and p. 386. 

(23) SHEPPARD, W. F., "On the Application of the Theory of Error to Cases 
of Normal Distribution and Normal Correlation," Phil. Trans. Roy. 
Soc., Series A, vol. cxcii., 1898, p. 101. 

(24) " S T U D E N T , " "On the Probable Error of a Mean," Biometrika, vol. vi., 
1908, p. 1. (The standard error of the mean in terms of the standard 
error of the sample.) 

(25) "STUDENT," "On the Probable Error of a Correlation Coefficient," 
Biometrika, vol. vi., 1908, p. 302. (The problem of the probable error 
with small samples.) 

(26) "STUDENT," "On the Distribution of Means of Samples which are not 
drawn at Random," Biometrika, vol. vii., 1909, p. 210. 

(27) YULE, G. U., "On the Theory of Normal Correlation for any number of 
Variables treated by a New System of Notation," Proc. Roy. Soc , 
Series A, vol. lxxix., 1907, p. 182. (See pp. 192-3 at end.) 

(28) YULE, G. U., "On the Methods of Measuring Association between two 
Attributes," Jour. Roy. Stat. Soc., vol. lxxvi., 1912. (Probable error 
of the correlation coefficient for a fourfold table, of association co-
efficients, etc.) 

Reference may also be made to the following, which deal for the 
most part with the effects of errors other than errors of sampling:— 

(29) BOWLEV, A. L., "Relations between the Accuracy of an Average and 
that of its Constituent Parts," Jour. Roy. Stat. Soc., vol. lx., 1897, 
p. 855. 

(30) BOWLEV, A. L., "The Measurement of the Accuracy of an Average," 
Jour. Roy. Stat. Soc., vol. lxxv., 1911, p. 77. 

EXERCISES. 

1. For the data in the last column of Table IX., Chap. VI. p. 95, find 
the standard error of the median (154-7 lbs.). 

2. For the same distribution, find the standard errors of the two quartiles 
(142-5 lbs., 168-4 lbs.). 

3. For the same distribution, find the standard error of the semi-inter-
quartile range. 

4. The standard-deviation of the same distribution is 21'3 lbs. Find the 
standard error of the mean, and compare its magnitude with that of the 
standard error of the median (Qn. 1). 

5. Work out the standard error of the standard deviation for the distribu-
tion of statures used as an illustration in § 6. (Standard-deviation 2'57 in. ; 
8585 observations.) Compare the ratio of standard error of standard-
deviation to the standard-deviation, with the ratio of the standard error of 
the semi-interquartile range to the semi-interquartile range, assuming the 
distribution normal. 

6. Calculate a small table giving the standard errors of the correlation 
coefficient, based on (1) 100, (2) 1000 observations, for values of r = 0, 0 2, 0'4, 
0'6, 0'8, assuming the distribution normal. 
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T A B L E S F O R F A C I L I T A T I N G S T A T I S T I C A L W O R K . 

A. CALCULATING TABLES. 

FOR heavy arithmetical work an arithmometer is, of course, 
invaluable ; but, owing to their cost, arithmetic machines are, as a 
rule, beyond the reach of the student. For a great deal of simple 
work, especially work not intended for publication, the student 
will find a slide-rule exceedingly useful: particulars and prices 
will be found in any instrument maker's catalogue. A plain 
25-cm. rule will serve for most ordinary purposes, or if greater 
accuracy is desired, a 50-cm. rule, a Fuller spiral rule, or one of 
Hannyngton-pattern rules (Aston & Mander, London), in which 
the scale is broken up into a number of parallel segments, may be 
preferred. For greater exactness in multiplying or dividing, 
logarithms are almost essential: five-figure tables suffice if answers 
are only desired true to five digits ; if greater accuracy is needed, 
seven-figure tables must be used. Tt is hardly necessary to cite 
special editions of tables of logarithms here, but attention may 
perhaps be directed to the recently issued eight-figure tables of 
Bauschinger and Peters (W. Engelmann, Leipzig, and Asher & Co., 
London, 1910; vol. i. containing logarithms of all numbers from 
1 to 200,000, price 18s. 6d. net . ; vol. ii. containing logs, of 
trigonometric functions). 

If it is desired to avoid logarithms, extended multiplication 
tables are very useful. There are many of these, and four of 
different forms are cited below. Zimmermann's tables are inex-
pensive and recommended for the elementary student, Cotsworth's, 
Crelle's, or Peters' tables for more advanced work. Barlow's tables 
are invaluable for calculating standard-deviations of ungrouped 
observations and similar work. 

(1) BARLOW'S Tables of Squares, Cubes, Square-roots, Cube-roots, and Recip-
rocals of all Integer Numbers up to 10,000 ; E k F. N. Spoil, 
London and New York ; stereotype edition, price 4s. 
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(2) COTS WORTH, M. B., The Direct Calculator, Series 0. (Product table to 
1000 x 1000.) M'Corquodale k Co., London ; price with thumb index, 
25s.; without index, 21s. 

(3) CRELLK, A. L., Reclientafeln. (Multiplication table giving all products up 
to 1000 x 1000.) Can be obtained with explanatory introduction in 
German or in English. G. Reimer, Berlin ; price 15s. 

(4) ELDERTON, W. P. " Tables of Powers of Natural Numbers, and of the 
Sums of Powers of the Natural Numbers from 1 to 100" (gives 
powers up to seventh), Biometrika, vol. ii. p. 474. 

(5) PETERS , J., Neue Rechentafcln fur Multiplikation und Division. (Gives 
products up to 100 x 10,000 : more convenient than Crelle for forming 
four-figure products. Introduction in English, French or German.) 
G. Reimer, Berlin ; price 15s. 

(6) Z imMERMANN , H., Rechcntafel, nebst Sammlung haufig gebrauchter 
Zahienwerthe. (Products of all numbers up to 100 x 1000 : subsidiary 
tables of squares, cubes, square-roots, cube-roots and reciprocals,.etc. 
for all numbers up to 1000 at the foot of the page.) W. Ernst k Son, 
Berlin ; price 5s. ; English edition, Asher & Co., London, 6s. 

B . S P E C I A L T A B L E S O P F U N C T I O N S , E T C . 

Several tables of service will be found in the works cited in 
Appendix II., e.g., a table of Gamma Functions in Elderton's 
book (12) and a table of six-figure logarithms of the factorials 
of all numbers from 1 to 1100 in De Morgan's treatise (11). 

(7) DAVENPORT , C. B . , Statistical Methods, with especial reference to Bio-
logical Variation; New York, John Wiley; London, Chapman k 
Hall; second edition, 1904. (Tables of area and ordinates of the 
normal curve, gamma functions, probable errors of the coefficient of 
correlation, powers, logarithms, etc.) 

(8) DUFFELL, J . H . , "Tables of the Gamma-function," Biometrika, vol. vii., 
1909, p. 43. (Seven-figure logarithms of the function, proceeding by 
differences of 0 001 of the argument.) 

(9) ELDERTON, W. P., "Tables for Testing the Goodness of Fit of Theory to 
Observation," Biometrika, vol. i., 1902, p. 155. 

(10) EVERITT, P. F., "Tables of the Tetrachoric Functions for Four-
fold Correlation Tables," Biometrika, vol. vii., 1910, p. 437, and vol. 
viii., 1912, p. 385. (Tables for facilitating the calculation of the cor-
relation coefficient of a fourfold table by Pearson's method on the 
assumption that it is a grouping of a normally distributed table ; cf. 
ref. 14 of Chap. XVI.) 

(11) GIBSON, WINIFRED, "Tables for Facilitating the Computation of Prob-
able Errors," Biometrika, vol. iv., 1906, p. 385. 

(12) HERON, D., "An Abac to determine the Probable Errors of Correlation 
Coefficients," Biometrika, vol. vii., 1910, p. 411. (A diagram giving 
the probable error for any number of observations up to 1000.) 

(13) L E E , ALICE , "Tables of F(r, v) and H(r, v) Functions," British Associa-
tion Report, 1899. (Functions occurring in connection with Professor 
Pearson's frequency curves.) 

(14) RHIND, A., "Tables for Facilitating the Computation of Probable Errors 
of the Chief Constants of Skew Frequency-distributions," Biometrika, 
vol. vii., 1909-10, p. 127 and p. 386. 
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( 1 5 ) SHEPPARD , W. F., " New Tables ofthe Probability Integral," Biometrika, 
vol. ii., 1903, p. 174. (Includes not merely table of areas of the normal 
curve (to seven figures), but also a table of the ordinates to the same 
degree of accuracy.) 

(16) SHEPPARD, W. F. , "Table of Deviates of the Normal Curve" (with 
introductory article on Grades and Deviates by Sir Francis Galton), 
Biometrika, vol. v., 1907, p. 404. (A table giving the deviation of 
the normal curve, in terms of the standard-deviation as unit, for the 
ordinates which divide the area into a thousand equal parts.) 



APPENDIX II. 

SHORT LIST OF WORKS ON THE MATHEMATICAL 
THEORY OF STATISTICS AND THE THEORY OF 
PROBABILITY. 

THE student may find the following short list of service, as 
supplementing the lists of references given at the ends of the 
several chapters, the latter containing, as a rule, original memoirs 
only. The economic student who wishes to know more of the 
practical side of statistics may be referred to Mr A. L. Bowley's 
"Elements" (6 below), to An Elementary Manual of Statistics 
(Macdonald & Evans, London, 1910), by the same writer (useful 
as a general guide to English statistics), and to M. Jacques 
Bertillon's Cours elementaire de statistique (Society d'editions 
scientifiques, 1895: international in scope). Dr A. Newsbolme's 
Vital Statistics (Swan Sonnenschein, 3rd edn., 1899) will also be 
of service to students of that subject. 

The great majority of the works mentioned in the following 
list, with others which it has not been thought necessary to 
include, are in the library of the Royal Statistical Society. 
(1 ) A I R Y , Sir G . B . , On the Algebraical and Numerical Theory of Errors of 

Observations-, 1st edn., 1861; 3rd edn., 1879. 
( 2 ) BERNOULLI, J . , Ars conjectandi, opus posthumum: Accedit traclatus de 

seriebus infinitis, et epistola gallick scripta de ludo pilae reticularis, 
1713. (A German translation in Ostwald's Klassiker der exakten 
Wissenschaften, Nos. 107, 108.) 

(3) BERTRAND , J. L. F., Calcul des probability; Gauthier-Villars, Paris, 1889. 
(4) BETZ, W., Ueber Korrelation ; Beihefte zur Zeitschrift fur ang. Psycli. 

und psych. Sammelforschung ; J. A. Barth, Leipzig, 1911. (Applica-
tions to psychology.) 

(5) BOREL, 6., EUments de la thiorie des probability; Hermann, Paris, 1909. 
(6) BOWLET, A . L., Elements of Statistics; P . S. King, London; 1st edn., 

1901 ; 3rd edn., 1907. 
(7) BROWN , W., The Essentials of Mental Measurement ; Cambridge Uni-

versity Press, 1911. (Part 2 on the theory of correlation : applications 
to experimental psychology.) 
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ANSWERS 
TO, AND HINTS ON THE SOLUTION OF, THE EXERCISES GIVEN. 

CHAPTER I. 

1. N 26,287 (AB) 887 
(A) 2,308 (AC) 374 
W 2,853 (BC) 353 
(C) 749 (ABC) 149 

2. (ABC) 156 (a BC) 179 
(ABy) 431 (aBy) 1,249 
(ARC) '272 (aPC) 163 
(APy) 759 (aBy) 20,504 

3. The frequencies not given in the question itself are— 
(a) (AB) 107 (AC) 405 (BC) 525. 
(b) (.407)22,980 (aBy) 13,585 (a^C) 96,478 (afiy) 28,868,495. 

(AB) (B) , (AB) (B) 
{Ap) (P) (AB) + (Ae)>(B) + (0) ' 
(AB) (A) . . (AB) (A) 

t h a t „ _ _ > _ , that is m - l J W ) > w z J J ) 

t • {AB) (A) 
that is t—7?\ V~V (aB) (a) 

5. (AB) + (BC)-(B), i.e., the sum of the excesses of (AB) and (BC) over (_5)/2. 
8. 160. Take A = husband exceeding wife in first measurement, B = 

husband exceeding wife in second measurement, and find (a/3). 

C H A P T E R I I . 

1. 80/263 or 304 per thousand.. 
2. 55/85 or 65 per cent. 
3. 32 per cent, and 30 per cent. 
4. 117. 
5. 108. 
8. ?Cj>i (1 -2y), p^i (l + 2q), i.e., p must lie between 0 and J (1-2?) or 

between J (l + 2q) and 
9. As a hint, remember the condition that— 

(BC)^,(B) + (C)-N. 
361 
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C H A P T E R I I I . 

1. Deaf-mutes from childhood per million among males 222 ; among 
females 183 ; there is therefore positive association between deaf-mutism and 
male sex : if there had been no association between deaf-mutism and sex, there 
would have been 3176 male and 3393 female deaf-mutes. 

2. (a) positive association, since (AB\ = 1457. 
(b) negative association, since 294/490 = 3/5, 380/570 = 2/3. 
(c) independence, since 256/768 = 1/3, 48/144 = 1/3. 

3. Percentage of Plants above the Average Height. 

Ipomaea purpurea. 
Petunia violacea . 
Reseda lutea 
Reseda odorata 
Lobelia fulgens 

Parentage Crossed. 
86 per cent. 
79 
78 „ 
71 „ 
50 

Self-fertilised. 
25 per cent. 
17 
34 „ 
45 
35 

The association is much less for the species at the end than for those at the 
beginning of the list. 

4. Percentage of dark-eyed amongst the sons of dark-eyed fathers 39 per 
cent. 

Percentage of dark-eyed amongst the sons of not dark-eyed fathers 10 per 
cent. 

If there bad been no heredity, the frequencies to the nearest unit would 
have been {AB)0 18, {AB)0 111, ( a B \ 121, (a0)„ 750. 

5. Percentage of light-eyed amongst the wives of light-eyed husbands 59 
per cent. 

Percentage of light-eyed amongst the wives of not light-eyed husbands 53 
per cent. 

If there had been no association: (AB)0 = 298, (Ap)0=225, (a£)0 = 143, (a/3)0 
= 108. 

6. The following are the proportions of the insane per thousand in 
successive age groups :— 

In general population: 0'9, 2'3, 4'1, 57 , 6 9, 7'5, 7'7, 6'8. 
Amongst the blind: 20'1, 16'0, 16 3, 207 , 18'3, 17'8, 11'4, 5 "3. 

Note the diminishing association, which is especially clear in the age-group 
65—, and the negative association in the last age-group The association 
coefficient gives the values below, which decrease continuously :— 

Association coefficient: +0'92, + 0 7 5 , +0'61, +0'57, +0'46, +0'41, 
+ 0-20, -0-13 . 

C H A P T E R I V . 

(D)/N = 6-9 per cent. 
(AD)I(A) =45'0 

(BD)KP) = 3-6 
(ABD)j(AB) =41-2 

CBD)/{B) = 4 2 7 
(ABD)/{AB) = 51-6 

{A)/N = 6'8 per cent. 
(AD)j(D) =44-6 
(A)3)/($) = 4 7 

(ABD)I(BD) =54'9 
IAB)/(B) =29'2 

{ABD)!(BD) = Zh-3 

The above give two legitimate comparisons. The general results are the same 
as for the boys, i.e. a very small association between development-defects and 
dulness amongst those exhibiting nerve-signs, as compared with those who do 



ANSWERS, ETC., TO EXERCISES GIVEN. 363 

not exhibit nerve-signs, or with the girls in general. As the association 
amongst those who do not exhibit nerve-signs is quite as high as for the girls 
in general, the '' conclusion " quoted does not seem valid. 

2. (1) 
per 

thousand. 
(B)/N 3'2 

(AB)/(A) 14-9 
(BC)/(C) 38'8 

(ABG)I(AC) 216 

(2) 
per 

thousand. 
7'5 

11-7 
63-0 
214 

(1) (2) 
per per 

thousand, thousand. 
( . A ) / N ) 

(AB)/(B) 
(AC)I(C) 

(ABC)f(BC) 

0-9 
4-0 
6-6 

36'8 

4-0 
6-3 

18-8 
63'8 

The above give the two simplest comparisons, either of which is sufficient to 
show that there is a high association between blindness and mental derange-
ment amongst the deaf-mutes as well as in the general population ; amongst 
the old, the association is, in fact, small for the general population, but well-
marked for deaf-mutes. This result stands in direct contrast with thaf of 
Qu. 1, where the association between the two defects A and D was much 
smaller in the defective universe B than in the universe at large. As previously 
stated, no great reliance can be placed on the census data as to these infirmities. 

3. If the cancer death-rates for farmers over 45 and under 45 respectively 
were the same as for the population at large, the rate for all farmers 15— 
would be I ' l l . This is slightly less than the actual rate 1'20, but the excess 
would not justify the statement that'' farmers were peculiarly liable to cancer." 
It is, in point of fact, due to the further differences of age-distribution that we 
have neglected, e.g. amongst those over 45 there are more over 55 amongst 
farmers than amongst the general population, and so on. 

4. 15 per cent. 
6. If A and B were independent in both C and y universes, we would have 

(AB) equal to 
471x419^151x139 

617 383 7" 
Actually (AB) only = 358. Therefore A and B must be disassociated in one or 
both partial universes. 

9. (1) 68 "1 per cent. (2) 42'5 per cent. The fallacy discussed in § 2 is 
now avoided, and there seems no reason for declining to consider this as evidence 
of the effect of expenditure on election results. 

10. The limits to y are— 
y<l(3x-3?-l) 

>i(x+a?), 
subject to the conditions y$>x, !/<£0, y<fc'2x-l. No inference of a positive 
association from two negatives is possible unless x lies between the limits 
•382 . . . , '618 . . . . 

11. The limits to y are:— 
(1) y<i( ex-e^-i) 

>%(x + 6x2), 
subject to conditions y<£0, <£4x -1, x. 

An inference is only possible from positive associations of .^.S and AC if aCj> 
^ ; an inference is only possible from two negative associations if x lies between 
"211 . . . . and '274. . . . Note that x cannot exceed J. 

(2) y<i( 6x-3a?-l) 
>1(2® +3a2), 

subject to conditions 2/<£0, 5x- 1, 
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No inference is possible from positive associations of AB and BG. 
An inference is only possible from negative associations if x lie between 
•183 . . . .and '215 . . . . Note that a: cannot exceed J. 

(3) y<i( 6 s - 2 * 2 - 1 ) 
>4(3x + 2»2), 

subject to the conditions i/<tO, <£5a:- 1, ^>0. 
As in (2), no inference is possible from positive associations of AC and BC ; 

an inference is possible from negative associations if a; lie between '177 . . . . 
and '221 . . . . Note that x cannot excced 

C H A P T E R V . 

1. A, 0-68. B, 0-36. 

C H A P T E R V I . 

1. 1200; 200. 2. 100; 20. 3. 146'25. 4. 216'5. 

C H A P T E R V I I . 

2. Mean, 15673 lb. Median, 154-67 lb. Mode (approx.) 150'6 lb. (Note 
that the mean and the median should be taken to a place of decimals further 
than is desired for the mode: the true mode, found by fitting a theoretical 
frequency curve, is 151 1 lb.) 

3. Mean, 0'6330. Median, 0-6391. Mode (approx.), 0'651. (True mode 
is 0-653.) 

4. £35'5 approximately. 
5. (1) 116-0. (2) Means 77-4, 89'0, ratio 114-9. (3) Geometrical means 77'2, 

88-9, ratio 115-2. (4) 115'2. 
6. (1) 921,507. (2) 916,963. 
7. 1st qual. 10s. 6fd. 2nd qual. 9s. 2Jd. 
8. n.p. If the terms of the given binomial series are multiplied by 0, 1, 2, 3 

. . . , note that the resulting series is also a binomial when a common factor 
is removed. [The full proof is given in Chapter XV. § 6.] 

C H A P T E R V I I I . 

2. Standard deviation 21 "3 lb. Wean deviation 16 4 lb. Lower quartile 
142-5, upper quartile 168'4 ; whence G=12'95. Ratios: m.d./s.d. = 0 7 7 , 
Q/s.d. =0'61. Skewness, 0-29. 

3. Approximately lower quartile=£26'l, upper quartile = £54 -6, ninth 
CIGCIIG — £ 9 4 . 

5. (1) ir=73-2, <r=17-3. (2) i f = 7 3 ' 2 , <r = 17'5. (3) M = 73 2, <r = 18'0. 
(Note that while the mean is unaffected in the second place of decimals, the 
standard deviation is the higher the coarser the grouping.) 

6. \Jn.pq. The proof is given in Chapter XV. § 6. 
7. The assumption that observations are evenly distributed over the 
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intervals does not affect the sum of deviations, except for the interval in which 
the mean or median lies: for that interval the sum is «2 (0*25 +cP), hence the 
entire correction is 

d{nry - n3) + m2(0*25 +d-). 

In this expression d is, of course, expressed as a fraction of the class-interval, 
and is given its proper sign. Notice that the % and n3 of this question are 
not the same as the iVj and N 2 of § 16. 

C H A P T E R I X . 

1. (TZ=1-414, <ry=2-280, r= +0'81. Z = 0 ' 5 F + 0 ' 5 . F = 1'3A' + l ' l . 
2. Using the subscripts 1 for earnings, 2 for pauperism, 3 for out-relief ratio, 

Ki=5-79, o-3=3'09 : r 1 3 = - 0 1 3 , rzt= +0'60. 

C H A P T E R X I . 

1. 1 "232 per cent, (against 1'240 per cent.): 2-556 in. against 2'572 in. 
2. The corrected standard-deviation is 0-9954 of the rough value. 
3. Estimated true standard-deviation 6'91: standard-deviation of fluctua-

tions of sampling 9'38. (The latter, which can be independently calculated, 
is too low, and the former consequently probably too high. Cf. Chap. XIV. 
§10.) 

4. 0-43. 
5. 58 per cent. 
6. <r22/V(<ri2 + "-22)(<r22 + "-32)-
7 _ J1"i .._. 

V n V + ' V 
8. 0-30. 

The others may be written down from symmetry. 
10. (1) No effect at all. (2) If the mean value of the errors in variables is 

d, and in the weights e, the value found for the weighted mean is— 

The true value + d - r. < r z . — w(w + e) 
If r is small, d is the important term, and hence errors in the quantities are 
usually of more importance than errors in the weights. If r become consider-
able, eiTors in the weights may be of consequence, but it does not seem probable 
that the second term would become the most important in practical cases. 

11. Q = 2/3. 
1 2 . 0 = 0 - 7 7 . 

C H A P T E R X I I . 

1. ri2-3= +0-759, ns-2= +0-097, ro3.1= - 0-436. 
0-1.23 = 2-64, T2-i3 = 0-594, (r3-i2 = 70-l. 

_Xj = 9'31 + 3'37 X9 - 0*00364 XT 
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2. r u 34= +0-680, r13.24= +0-803, r]4.23= + 0'397. 
r23-14 = -0'433, rM .u= -0-553, r31.12= -0'149. 
1̂*234 = 9*17, ir2.131 = 49-2, 0-3.124 = 12-5, <r4.,53 = 105-4. 

X1 = 53 + 0-127 A2 + 0-587 Aa + 0'0345 X,. 
3. The correlation of the yth order is r/( 1 +yr). Hence if r be negative, the 

correlation of order n - 2 cannot be numerically greater than unity and r 
cannot exceed (numerically) l/(m - 1 ) . 

5. r12 .3=-1, ^3.2 = ^23.!=+1. 
r12-3 —r13'2 —''23'1= _ 

C H A P T E R X I I I . 

1. Theo. M= 6, <r=l'732 : Actual Jf=6-116, <r = l'732. 
2. (a) Theo. i¥=2 '5 , <r=l-118 : Actual i f =2"48, o- = l'14. 

(6) ,, JkT=3, o-= 1-225 : ,, ,¥"=2-97, o- = 1-26. 
(c) ,, M=Z'5, ir = l'323 : ,, i f = 3 ' 4 7 , <r = l'40. 

3. Theo. i f = 5 0 , <r = 5 : Actual J f = 5 0 ' l l , <r = 5"23. 
4. The standard deviation of the proportion is 0'00179, and the actual 

divergence is 5'4 times this, and therefore almost certainly significant. 
5. The standard deviation of the number drawn is 32, and the actual 

difference from expectation 18. There is no significance. 
6. p=\-a2/M, n=M/p : p = 0'510, n = 12'0 : p = 0'454, » = 110'4. 
8. Standard deviation of simple sampling 23'0 per cent. The actual 

standard-deviation does not, therefore, seem to indicate any real variation, but 
only fluctuations of sampling. 

9. Difference from expectation 7*5 : standard error 10'0. The difference 
might therefore occur frequently as a fluctuation of sampling. 

10. The test can be applied either by the formula of Case II. or Case III. 
Case II. is taken as the simplest. 

[a) (AB)/(B) = 69-1 per cent.: {Ap)/($) = 80'0 per cent. Difference 10 9 
percent. (A)/N= 71*1 percent, and thence e12 = 12'9 per cent. The actual 
difference is less than this, and would frequently occur as a fluctuation of 
simple sampling. 

(1b) (AB)/(B) = 70-1 per cent.: (A$)/(&) = 64'3 per cent. Difference 5'8 per 
cent. (A)/JV=67'6 per cent., and thence e12 = 3'40 per cent. The actual 
difference is 1 "7 times this, and might, rather infrequently, occur as a fluctua-
tion of simple sampling. 

C H A P T E R X I V . 

Row. Group of Rows. ffp. 
1 3-1 5, 6, and 7 1-8 
2 2-1 8, 9, 10, and 11 1-6 
3 1-7 12, 13, and 14 1 2 
4 2-7 15 and upwards 1-1 

<rp is given in units per 1000 births, as s and s0. 
2. s0 = 7'02, and o-p=2-5 units. 
3. a2 —n.pq as if the chance of success were p in all cases (but the mean is 

n/2 not p.n). 
4. Mean number of deaths per annum = <r0

!!=680, 
(r2=566,582. r = 0'000029. 
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C H A P T E R X V . 

0 1 7 792 
1 12 8 495 
2 66 9 220 
3 220 10 66 
4 495 11 12 
5 792 12 1 
6 924 

Total, 4096 

0 459-4 5 116-4 
1 1102-6 6 27-2 
2 1212-8 7 4-7 
3 808-6 8 -6 
4 363-9 

Total, 4096-2 

0 192 
1 288 * 

2 144 
3 24 

Total, 648 

2. The frequency of r successes is greater than that of r - 1 so long as 
r<np+p: if np is an integer, r=np gives the greatest term and also the mean. 

3. This follows at once from a consideration of the Galton-Pearson apparatus. 

4. Binomial Normal curve. 
1 V7 

10 10-5 
45 42-7 

120 116-1 
210 211-5 
252 258-4 
210 211-5 
etc. etc. 

5. The data are j / = 68-855, o- = 2-56, y0 = 155-8. 
6. (1) United Kingdom—direct 1'75, from standard-deviation 1'73. 

(2) Cambridge students—direct 1-68, from standard-deviation 1 "73. 
7. 70-6 per cent. 8. 27 per cent. 
9. (1) In a 12'4 per cent., b 1*0 percent, of the trials, assuming normality, 

but the assumption is hardly quite valid. (2) a about 13 times in 100,000 
trials ; b practically impossible, being a deviation of over 7 times the standard 
error. 

10. 853. 11. Mean 74-3, standard-deviation 3-23. 

C H A P T E R X V I . 

3. From equations (10) and (11) replace ir1 and <r2 by 2] and 2o in equation 
(9). Regarding this as an equation for r, note that r2 is a maximum when 
tan 2 0 is infinite, or 6 = 45°. 
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4. In fig. 50, suppose every horizontal array to be given a slide to the right 
until its mean lies on the vertical axis through the mean of the whole distribu-
tion : then suppose the ellipses to be squeezed in the direction of this vertical 
axis until they become circles. The original quadrant has now become a 
sector with an angle between one and two right angles, and the question is 
solved on determining its magnitude. 

C H A P T E R X V I I . 

1. Estimated frequency 1512, standard error 0'29 lb. 2, Lower Q, 
frequency 1472, standard error 0'26 lb. ; upper Q, frequency 1116, standard 
error 0'34 lb. 3. O'lS lb. 4. 0'24 lb., 17 per cent, less than the standard 
error of the median. 5. 0 0196 in. or 0'76 per cent. of the standard-deviation : 
the standard error of the semi-interquartile range is 1'23 per cent, of that 
range. 

r. n = 100. «.= 1000. 
o-o o-l 0-0316 
0-2 0-096 0-0304 
0-4 0-084 0-0266 
0'6 0-064 0-0202 
0-8 0-036 0-0114 

I 



I N D E X . 

[The references are to pages. The subject matter of the Exercises given at 
the ends of the chapters has been indexed only when such exercises (or 
the answers thereto) give the constants for statistical tables in the text, 
or theoretical results of general interest; in all such cases the number of 
the question cited is given. In the case* of authors' names, citations in 
the text are given first, followed by citations of the authors' papers or 
books in the lists of references.] 

ACCIDENT, deaths from (law of small 
chances), 265-266. 

Achenwall, Gottfried, Abriss der 
Staatswissenscliaft, 2. 

Ages, at death of certain women 
(table), 78 ; of husband and wife 
(correlation), 159 ; diagram, 17-3 ; 
constants (qu. 3), 189. 

Aggregate, of classes, 10-11. 
Agricultural labourers' earnings. See 

Earnings. 
Aiiy, Sir G. B., use of terms " error 

of mean square" and "modulus," 
144. Refs., Theory of Errors of 
Observation, 359. 

Ammon, 0. , hair and eye-colour data 
cited from, 61. 

Annual value of dwelling-houses 
(table), 83; of estates in 1715, 
table 100, diagram, 101. 

Arithmetic mean. See Mean, arith-
metic. 

Array, def., 164 ; standard-deviation 
of, 177, 204-205, 236-237, in 
normal correlation, 319-321. 

Association, generally, 25-59; def., 
28 ; degrees of, 29-30 ; testing by 
comparison of percentages, 30-35 ; 
constancy of difference from in-
dependence values for the second-
order frequencies, 35-36; co-
efficients of, 37-39 ; iffusory or 

misleading, 48-51 ; total possible 
number of, for n attributes, 54-56 ; 
case of complete independence, 
56-57 ; use of ordinary correlation-
coefficient as measure of association, 
216-217 ; Pearson's coefficient based 
on normal correlation (refs.), 40, 
333 ; refs., 15, 39-40, 333. 

Association, partial, generally, 42-59 ; 
the problem, 42-43 ; total and par-
tial, def., 44; arithmetical treat-
ment, 44-48 ; testing, in ignorance 
of third-order frequencies, 51-54 ; 
refs., 57. 

examples : deaths and sex, 32-
33 ; deaths and occupation, 52-53 ; 
deaf-mutism and imbecility, 33-34 ; 
eye-colour of father and son, 34-35 ; 
eye-colour of grandparent, parent, 
and offspring, 46-48, 53-54 ; colour 
and prickliness of Datura fruits, 36-
37; defects in school-children, 45-46. 

Asymmetrical frequency-distributions, 
90-102 ; relative positions of mean, 
median and mode in, 121-122, 
diagrams, 113-114. See also Fre-
quency-distributions. 

Asymmetry in frequency-distribu-
tions, measures of, 107, 149-50. 

Attributes, theory of, generally, 1-59 ; 
def., 7 ; notation, 9-10, 14-15; 
positive and negative, 10 ; order and 

369 24 
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aggregate of classes, 10-11 ; ulti-
mate classes, 12; positive classes, 
13-14; consistence of class-fre-
quencies, 17-24 (see Consistence); 
association of, 25-59 (see Associa-
tion) ; sampling of, 254-334 (see 
Sampling of attributes). 

Averages, generally, 106-32; def., 
107 ; desirable properties of, 107-
108; forms of, 108; average in 
sense of arithmetic mean, 109 ; 
refs., 129-130. See Mean, Median, 
Mode. 

Axes, principal, in correlation, 321-
322. 

BARLOW, P., tables of squares, etc., 
67. Refs., 356. 

Barometer heights, table, 96 ; dia-
gram, 97; means, medians, and 
modes, 122. 

Bateman, H., refs., law of small 
chances, 273. 

Bateson, W., data cited from, 37. 
Beeton, Miss M., data cited from, 78. 
Bernoulli, J., refs., Ars Conjectandi, 

359. 
Bertillon, J., ref., Cours ilimentaire 

de statistique, 6, 359. 
Bertrand, J. L. F., refs., Calcul des 

probability, 359. 
Betz, W., ref., Ueber Korrelation, 359. 
Bias in sampling, 261-262, 279-281, 

336-337, 343, 353. 
Binomial series, 291-300 ; genesis of, 

in sampling of attributes, 291-293 ; 
calculated series for different values 
of p and n, 294, 295 ; experimental 
illustrations of, 258, 259 (qu. 1 
and qu. 2), 274 ; graphic method of 
forming a representation of series, 
295-297 ; mechanical method of 
forming a representation of series, 
297-299, refs., 313; direct deter-
mination of mean and standard-
deviation, 299-300 ; deduction of 
normal curve from, 301-302; refs., 
314. 

Blakeman, J., refs., tests for linearity 
of regression, 209, 354 ; probable 
error of contingency coefficient, 354. 

Boole, G., refs., Laws of Thought, 23. 
Booth, Charles, on pauperism, 193, 

195. 
Borel, E., refs., TMorie des proba-

bility, 359. 

STATISTICS. 

Bortkewitsch, L. von., refs., law of 
small chances, 273. 

Bowley, A. L., refs., effect of errors 
on an average, 355 ; on sampling, 
354 ; Measurement of Groups and 
Series, 354 ; Elements of Statistics, 
359 ; Elementary Manual of Sta-
tistics, 359. 

Bravais, A., refs., correlation, 188,332. 
British Association, data cited from, 

stature, 88 ; weight, 95, see Stature, 
Weight; Reports on index-num-
bers; refs., 130-131. Address by 
A. L. Bowley on sampling, 354. 

Brown, W., refs., effect of experi-
mental errors on the correlation-
coefficient, 226 ; The Essentials of 
Mental Measurement, 359. 

Bruns, H., refs., JVahrscheinlich-
keitsrechnung und Kollektivmass-
lehre, 359. 

CENSUS (England and Wales), tabu-
lation of infirmities in, 14-15 ; data 
as to infirmities cited from, 33-34 ; 
classification of occupations, as 
example of a heterogeneous classi-
fication, 72; data as to ages of 
husbands and wives cited from, 159. 

Chance, in sense of complex causation, 
30; of success or failure of an 
event, 256. 

Chances, law of small, 265-266 ; refs., 
273. 

Charlier, C. V. L., refs., theory of 
frequency curves, resolution of a 
compound normal curve, 314, 315. 

Childbirth, deaths in, application of 
theory of sampling, 282-284. 

Class, in theory of attributes, 8 ; 
class-symbol, 9 ; class-frequency, 
10 ; positive and negative classes, 
10 ; ultimate classes, 12 ; order of 
a class, 10. 

Classification, generally, 8 ; by dicho-
tomy, def., 9 ; manifold, 60-74, 76 ; 
homogeneous and heterogeneous, 
71-72 ; of a variable for frequency-
distribution or correlation table, 
76, 80-81, 157, 164. 

Class-interval, def., 76; choice of 
magnitude and position, 79-80 ; 
desirability of equality of intei-vals, 
76, 82-83 ; influence of magnitude 
on mean, 113-114, 115, 116; on 
standard-deviation, 140, 212. 
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Cloudiness at Bresla" frequency dis-
tribution, 103 ; diagram, 104. 

Coefficient, of association, 37-39 ; of 
contingency, 64-67 ; of variation, 
149, standard error, 351 ; of cor-
relation, see Correlation. 

Consistence, of class-frequencies for 
attributes, generally, 17-24 ; def., 
18-19 ; conditions, for one or two 
attributes, 20 ; for three attributes, 
21-22 ; refs., 23. 

Consistence of correlation-coefficients, 
250-251. 

Contingency tables, def., 60; treat-
ment of, by elementary methods, 
61-63 ; isotropy, 68-71, 328-331. 

coefficient of, 64-67 ; applica-
tion to correlation tables, 167, (qu. 
3)189 ; standard error of (refs.), 354. 

Contrary classes and frequencies (for 
attributes), 10 ; case of equality of 
contrary frequencies (qu. 6, 7, 8), 
16 ; (qu. 8), 24 ; (qu. 7, 8, 9), 59. 

Correction of death-rates, etc., for 
age and sex-distribution, 223-225 ; 
refs., 226. 

of standard-deviation for group-
ing of observations, 211-212; refs. 
(including correction of moments 
generally), 225. 

of correlation-coefficient for 
errors of observation, 213-214 ; 
refs., 225-226. 

Correlation, generally, 157-253 ; con-
struction of tables, 164 ; represen-
tation of frequency-distribution by 
surface, 165-167 ; treatment of 
table by coefficient of contingency, 
167 ; correlation-coefficient, 170-
174, def. 174, direct deduction, 
231-233 ; regressions, 175-177, 
def. 175; standard-deviations of 
arrays, 177, 204, 205 ; calculation of 
coefficient for ungrouped data, 177-
181, for a grouped table, 181-188 ; 
between movements of two variables, 
197-201 ; elementary methods for 
cases of non-linear regression, 201-
202 ; rough methods for estimating 
coefficient, 202-204 ; correlation-
ratio, 204-207 ; effect of errors of 
observation on the coefficient, 213-
214; correlation between indices, 
215-216 ; coefficient for a fourfold 
table, direct, 216-217, on assump-
tion of normal correlation (Pearson's 

coefficient) (refs.), 40, 333 ; for all 
possible pairs of N values, 217-
218; correlation due to hetero-
geneity of material, 218-219 ; effect 
of adding uncorrelated pairs to a 
given table, 219-220; application 
to theory of weighted mean, 221-
223 ; correlation in theory of sam-
pling, 271, 286-289, 342, 349-350 ; 
standard error of coefficient, 352. 
Kefs., 188, 208-209, 225-226. For 
Illustrations, Normal, Partial, Ratio, 
see below. 

Correlation, Illustrations and Ex-
amples, correlation between: — 

Two diameters of a shell (Peeten), 
158 ; constants (qu. 3), 189. 

Ages of husband and wife, 159 ; 
diagram, 173 ; constants (qu. 3), 
189. 

Statures of father and son, 160 ; 
diagrams, facing 166,174; constants 
(qu. 3), 189 ; correlation-ratios, 
206-207 ; testing normality of table, 
322-328 ; diagram of diagonal dis-
tribution, 325; of contour-lines 
fitted with ellipses of normal sur-
face, 327. 

Fertility of mother and daughter, 
161, 195-196 ; diagram, 175 ; con-
stants (qu. 3), 189. 

Discount rates and percentage of 
reserves on deposits, 162 ; diagram, 
facing 166. 

Sex-ratio and numbers of births 
in different districts, 163, 175 ; 
diagram, 176; constants (qu. 3), 
189 ; correlation - ratios, 207 ; 
standard-deviations of arrays and 
comparison with theory of samp-
ling, (qu. 7) 275 and (qu. 1) 289. 

Earnings of agricultural labour-
ers, pauperism and out-relief, 177-
181 ; constants, (qu. 2) 189, 239 ; 
correlation-ratios, 207 ; treatment 
by partial correlation, 239-241 ; 
geometrical representation, 245-247. 

Old-age pauperism and out-relief, 
182-185. 

Changes in pauperism, out-relief, 
proportion of old and population, 
192-195 ; partial correlation, 241-
245. 

Lengths of mother- and daughter-
frond in Lemna Minor, 185-187. 

Weather and crops, 196-197. 
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Movements of infantile and 
general mortality, 197-199. 

Movements of marriage-rate and 
foreign trade, 199-201. 

Correlation, normal, 317-334 ; deduc-
tion of expression for two variables, 
318-319; constancy of standard-
deviation of arrays and linearity 
of regression, 319-320; contour 
lines, 320-321 ; normality of linear 
functions of two normally distri-
buted variables, 321 ; principal 
axes, 321-322; testing for normality 
of correlation table for stature, 
322-328 ; isotropy of normal cor-
relation table, 328-331 ; outline 
of theory for any number of 
variables, 331-332 ; coefficient for 
a normal distribution grouped to 
fourfold form round medians 
(Sheppard's theorem), (qu. 4) 334 ; 
applications to theory of qualitative 
observations (refs.), 333. Refs., 
332-333. 

partial, 229 - 253 ; the pro-
blem, partial regressions and cor-
relations, 229-231 ; notation and 
definitions, 233-234 ; normal equa-
tions, fundamental theorems on 
product sums, 234-235 ; signifi-
cance of generalised regressions 
and correlations, 236 ; reduction 
of standard-deviation, 236-237, of 
regression, 237-238, of correlation, 
238 ; arithmetical treatment, 238-
245; representation by a model, 
245-247 ; coefficient of ra-fold cor-
relation, 247-249 ; expression of 
correlations and regressions in terms 
of those of higher order, 249-250 ; 
consistence of coefficients, 250-251 ; 
fallacies, 251-252 ; limitations in 
interpretation of the partial correla-
tion-coefficient, partial association 
and partial correlation, 252 ; par-
tial correlation in case of normal 
distribution of frequency, 331-332. 
Refs., 252-253, 332-333. 

ratio, 204-207 ; standard error, 
352; refs., 208. 

Cosin, values of estates in 1715, 100. 
Cotsworth, M. B., refs., multiplica-

tion table, 357. 
Cournot, A. A., refs., theory of 

probability, 360. 
Crawford, G. E., refs., proof that 

STATISTICS. 

arithmetic mean exceeds geometric, 
130. 

Crelle, A. L., refs,, multiplication 
table, 357. 

Crops and weather, correlation, 196-
197. 

Cunningham, E., ref.,omega-functions, 
314. 

Czuber, E., refs., Wahrscheinlich-
keilsrechnung, 360. 

D A K B I S H I K E , A. D., data cited from, 
128, 265. Refs., illustrations of 
correlation, 188, 273. 

Darwin, Charles, data cited from, 
269-270. 

Datura, association between colour 
and prickliness of fruit, 37, 38, 
(qu. 10) 275. 

Davenport, C. B., data as to Pecten 
cited from, 158. Refs., statistical 
tables, 357. 

Deaf-mutism, association with im-
becility, 33-34, 38; frequency 
amongst offspring of deaf-mutes, 
table, 104. 

Deaths, death-rates, association with 
sex, 32-33 ; with occupation (partial 
correction for age - distribution), 
52-53; in England and Wales, 
1881-1890, table, 77 ; from diph-
theria, table, 98, diagram, 97 ; in-
fantile and general, correlation of 
movements, 197-199 ; correction of, 
for age and sex-distribution, 52-53, 
223-225, refs., 226; applications 
of theory of sampling—deaths from 
accident, 265-266, deaths in child-
birth, 282-284, deaths from ex-
plosions in mines, 287-288; in-
applicability of the theory of simple 
sampling, 260-261, 282-284, 285-
286, 287-288. 

Deciles, 150-152 ; standard error of, 
337-341. 

Defects; in school-children, associa-
tion of, 12, 45-46, refs., 15 ; census 
tabulation of, 14-15. 

De Morgan, A., refs., Formal Logic, 
23 ; Theory of Probabilities, 360. 

Deviation, mean, 134; generally, 
144-147 ; def., 144 ; is least round 
the median, 144-145; calculation 
of, 145-146, (qu. 7) 155-156 ; com-
parison of advantages with stan-
dard-deviation, 146 ; of magnitude 
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with standard-deviation, 146-147 ; 
of normal curve, 304. 

Deviation, quartile. See Quartiles. 
root-mean-square. See Devia-

tion, standard. 
standard, 134-144 ; def. 134; 

relation to root-mean-square devi-
ation from any origin, 134-135; 
is the least possible root-mean-
square deviation, 135 ; little affected 
by small errors in the mean, 135 ; 
calculation for ungrouped data, 
135-137, for a grouped distribu-
tion, 138-141 ; influence of group-
ing, 140, 211-212; range of six times 
the s. d. contains the bulk of the 
observations, 140-142, 309 ; of a 
series compounded of others, 142-
143 ; of N consecutive natural 
numbers, 143 ; of a rectangle, 143 ; 
of arrays in theory of correlation, 
177, 204, 205, 319-320; of general-
ised deviations (arrays), 234, 236-
237 ; other names for, 144 ; of a sum 
or difference, 210-211 ; effect of 
errors of observation on, 211 ; of an 
index, 214-215; of binomial series, 
299-300. For standard-deviations 
of sampling, see Error, standard. 

De Vries, H., data cited from, 102. 
Dice, records of throwing, 258-259, 

(qu. 1, 2, 3) 274; testing for 
significance of divergence from 
theory, 267 ; refs., 273. 

Dickson, J. D. Hamilton, normal 
correlation surface, 328. Refs., 
normal correlation, 333. 

Diphtheria, ages at death from, table, 
98 ; diagram, 97. 

Discounts and reserves in American 
banks, table, 162 ; diagram, facing 
1 6 6 . 

Dispersion, measures of, 107, 133-
156; unsuitability of range as 
a measure, 133 ; relative, 149 ; 
refs., 154. See Deviation, mean; 
Deviation, standard; Quartiles. 

Distribution of Frequency. See Fre 
quency-distribution. 

Duckweed,correlation between mother-
and daughter-frond, 185-187. 

Duffell, J. Ii., ref., tables of gamma-
function, 357. 

Duncker, G., relation between geo-
metric and arithmetic mean (qu. 9) 
156. 

EARNINGS of agricultural labourers ; 
calculation of standard-deviation, 
135-137; mean deviation, 145 ; 
quartiles, 147 ; correlation with 
pauperism and out-relief, 177-181, 
constants, (qu. 2) 189, 239 ; dia-
gram, 180 ; by partial correlation, 
239-247 ; diagram of model, 246. 

Edgeworth, F. Y., terms for measures 
of dispersion, 144; dice-throwings 
(Weldon), 258 ; probable error of 
median, etc., 344. Kefs., Index-
numbers, 130-131 ; correlation, 
188, 252, 333 ; law of error (normal 
law), 273, 314 ; theory of sampling, 
probable errors, etc., 273, 354 ; 
dissection of normal curve, 31&. 

Elderton, W. Palin, refs., calculation 
of moments, 154 ; table of powers, 
357-; tables for testing fit, 354, 
357 ; Frequcnc;/ Curves and Cor-
relation, 154, 360. 

Error, law of; errors, curve of. See 
Normal curve. 

mean, 144. 
mean square, 144. 
of mean square, 144. 
probable, in sense of semi-inter-

quartile range, 147 ; in theory of 
sampling, 310-311. For general 
references, see Error, standard. 

standard, def., 267 ; of number 
or proportion of successes in n 
events, 256-257, when numbers in 
samples vary, 264-265, when chance 
of success or failure is small, 265-
266 ; of percentiles (median, quar-
tiles, etc.), 337-341 ; of arithmetic 
mean, 344-350 ; of standard-devia-
tion and coefficient of variation, 
351 ; of coefficients of correlation 
and regression, 352 ; of correlation-
ratio and test for iinearity of re-
gression, 352; refs., 273, 354-355. 
See also Sampling, theory of. 

, theory of. See Sampling, 
theory of. 

Estates, annual value of. See Value. 
Everitt, P. F., refs., tables for cal-

culating Pearson's coefficient for a 
fourfold table, 357. 

Exclusive and inclusive notations for 
statistics of attributes, 14-15. 

Explosions in coal-mines, deaths from, 
as illustrating theory of sampling, 
288. 
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Eye-colour, association between father 
and son, 34-35, 38, 70-71 ; associa-
tion between grandparent, parent, 
and child, 46-48, 53 -54; con-
tingency with hair-colour, 61, 63, 
66-68; non-isotropy of contingency 
table, for father and son, 70-71 

FALKNER, R. P., refs., translation of 
Meitzen's Theorie der Statistik, 6. 

Fallacies, in interpreting associations 
—theorem on, 48-49, illustrations, 
49-51 ; owing to changes of classi-
fication, actual or virtual, 72 ; in 
interpreting correlations—" spuri 
ous" correlation between indices, 
215-216 ; correlation due to hetero-
geneity of material, 218-219 ; dif 
ference of sign of total and partial 
correlations, 251-252. 

Fay, E. A., data cited from Mar-
riages of the. Deaf in America, 
104. 

Fechner, G. T., refs., frequency-dis-
tributions, averages, measures of 
dispersion, etc., 129, 154; Kol-
lektivmasslehre, 129, 314, 360. 

Fecundity of brood-mares, table, 96 ; 
diagram, 94 ; mean, median, and 
mode, (qu. 3) 131 ; inheritance 
(ref.), 208, 226. 

Fertility of mother and daughter, 
correlation, 161, 195-196 ; dia-
gram, 175 ; constants, (qu. 3) 189 ; 
ref., 208, 226. 

Filon, L. N. G., ref., probable errors, 
354. 

Fit of a theoretical to an actual fre-
quency-distribution, testing (ref.), 
315 ; tables for, 357. 

Fluctuation, measure of dispersion, 
144. 

Fountain, H., ref., index-numbers of 
prices, 131. 

Frequency of a class, 10, 76. 
Frequency-curve, def., 87 : ideal forms 

of, 87-105 ; normal curve {q.v.), 
301-313 ; refs., 105, 314. 

Frequency-distributions, 76 ; forma-
tion of, 79-83 ; graphic represen-
tation of, 83-87 ; ideal forms— 
symmetrical, 87-90, moderately 
asymmetrical, 90-98, extremely 
asymmetrical (J-shaped), 98-102, 
U-shaped, 102-105; binomial series, 
291-300 ; hypergeometrieal series 

STATISTICS. 

(ref.), 289 ; normal curve, 301-
313 ; theoretical forms, refs., 289-
314. See Binomial series; Normal 
curve ; Correlation, normal. 

Frequency-distributions, illustrations: 
of death-rates in England and 
Wales, 77 ; of ages at death of 
certain women, 78; of stigmatic 
rays on poppies, 78; of annual 
values of dwelling-houses in Great 
Britain, 83 ; of headbreadths of 
Cambridge students, 84 ; of statures 
of males in the U.K., 88, 90 ; of 
pauperism in different districts of 
England and Wales, 93 ; of weights 
of males in the U.K., 95; of 
fecundity of brood - mares, 96 ; of 
barometer heights at Southampton, 
96 ; of ages at death from diphtheria, 
98 ; of annual values of estates, 100 ; 
of petals in Ranunculus bulbosus, 
102; of degrees of cloudiness at 
Brcslau, 103; of percentages of 
deaf-mutes in offspring of deaf-
mutes, 104. See also Correlation, 
illustrations and examples. 

Frequency-polygon, construction of, 
84. 

Frequency-surface, forms and ex-
amples of, 164-167 ; diagrams 
166, facing 166 ; normal, diagram, 
166. See Correlation, normal. 

GABAGLIO, A., ref., Teoria generate 
delta statistica, 6. 

Galton, Sir Francis, Hereditary 
Genius, 3 ; frequency-distribution 
of consumptivity, 104 ; grades and 
percentiles, 150, 152; regression, 
176 ; Galton's function (correlation-
coefficient), 204 ; binomial machine, 
299 ; normal correlation, 328; 
data cited from, 34, 46, 70. Refs. 
—geometric mean, 130; percentiles, 
154; correlation, 188, 332 ; cor-
relation between indices, 226 ; 
binomial machine, 313; Natural 
Inheritance, 154, 313, 332. 

Gauss, C. F., use of term "mean 
error," 144. Refs., normal curve, 
314 ; method of least squares, 360. 

Geiger, H., refs., law of small chances, 
269. 

Geometric mean. See Mean, geo-
metric. 

Geometric (logarithmic) mode, 128. 
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Gibbs, J. Willard, Principles of 
Statistical Mechanics, 4. 

Gibson, Winifred, refs., tables for 
computing probable errors, 354, 357. 

Grades, 152, 153. 
Graphic method, of representing fre-

quency distributions, 83-87 ; of 
interpolation for median or per-
centiles, 118, 151-152; of repre-
senting correlation between two 
variables, 180-181 ; of estimating 
correlation coefficient, 203-204 ; of 
forming one binomial polygon from 
another, 295-297. 

Graunt, John, Observations on tlw 
Bills of Mortality, 6. 

Gray, John, data cited from, 270. 
Grouping of observations to form 

frequency-distribution, choice of 
class-interval, 79-80 ; influence on 
mean, 113-114, 115, 116 ; influence 
on standard-deviation, 140, 212. 

HAIR-COLOUR : and eye-colour, ex-
ample of contingency, 61, 63, 66-
67 ; non-isotropy, 68, 69 ; theory of 
sampling applied to certain data, 
270-271, 272. 

Harmonic mean. See Mean, har-
monic. 

Harris, J. A., refs., short method 
of calculating coefficient of cor-
relation, 209. 

H ead-breadths of Cambridge students, 
table, 84 ; diagram, 85. 

Helguero, F. de, refs., dissecting 
compound normal curve, 315. 

Heron, D., refs., relation between 
fertility and social status, 208 ; 
defective physique and intelli-
gence, application of correction 
for age-distribution, etc., 226 ; 
abac giving probable errors of 
correlation coefficient, 354, 357 ; 
probable error of a partial correla-
tion coefficient, 354. 

Histogram, construction of, 84. 
Hollis, T., cited re Cosin's Names of 

the Roman Catholics, etc., 100. 
Hooker, R. H., correlation between 

weather and crops, 196 ; between 
movements of two variables, 201. 
Refs., correlation between move-
ments of two variables, 208 ; 
weather and crops, 208, 253; 
theory of partial correlation, 252. 

Houses, inhabited and uninhabited, 
in rural and urban districts, 61-
62; annual value of, table, 83 ; 
median, (qu. 4) 131 ; quartiles, 
(qu. 3) 155. 

Hull, C. H., ref., The Economic 
Writings of Sir William Petty, 
together with the Observations on 
the Bills of Mortality more probably 
by Captain John Graunt, 6. 

Husbands and wives, correlation be-
tween ages, table, 159 ; diagram, 
173 ; constants, (qu. 3) 189. 

Hypergeometrical Series, ref., 289. 

ILLUSORY associations, 48-51. 
Imbecility, association with deaf-

mutism, 33-34, 38. 
Inclusive and exclusive notations for 

statistics of attributes, 14-15. 
Independence, criterion of, for attri-

butes, 25-28 ; case of complete, for 
attributes, 56-57 ; form of contin-
gency or correlation table in case 
of, 71. 

Index-numbers of prices, def., 126 ; 
use of geometric mean for, 126-127 ; 
use of harmonic mean, 129; refs., 
130-131. 

Indices, correlation between, 215-
216 ; refs., 222. 

Infirmities, census tabulation of, 14-
15 ; association between deaf-mutism 
and imbecility, 33-34, 38. 

Intermediate observations, in a 
frequency-distribution, classifica-
tion of, 80-81 ; in correlation table, 
164. 

Isotropy, def., 68 ; generally, 67-71 ; 
of normal correlation table, 328-
331; refs., 73. 

JACOB, S. M., ref., crops and rainfall, 
2 0 8 , 2 2 6 . 

Jevons, W. Stanley, use of geometric 
mean, 127. Refs., system of 
numerically definite reasoning 
(theory of attributes), 15 ; index-
numbers, 130; Pure Logic and 
other Minor Works, 15 ; Investiga-
tions in Currency and Finance, 
130. 

Johannsen, W., Elemente der exaktcn 
Erblichkeitslehre, 360. 

John, V., refs., Geschichte der Sta-
tistik, 5. 
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J-shapcd frequency-distributions, 98-
1 0 2 . 

KAFTEYN, J . C., refs., Skexo Fre-
quency-curves in Biology and Stat-
istics, 130, 314. 

Kick of a horse, deaths from, follow-
ing law of small chances, 265-286. 

LABOURERS, earnings of agricultural. 
See Earnings. 

Laplace, Pierre Simon, Marquis de, 
probable error of median, 344. 
Refs., normal curve, 314 ; mean 
deviation least about the median, 
154 ; TlxAoric analytique des pro-
bability, 154, 354, 360; Essaiphilo-
sophiqite, 360. 

Larmor, Sir J., use of word "statis-
tical," 4. 

Lee, Alice, data cited from, 96, 122, 
160, 161. Refs., inheritance of 
fertility and fecundity, 208, 226. 

Lemna Miner, correlation between 
lengths of mother- and daughter-
frond, 185-187. 

Lexis, W., use of term "precision," 
144. Refs., Theorie der Massen-
erscheinungen, 273 ; Abhandlungen 
zur Theorie der Bevolkerungs und 
Moral-statistik, 273, 360. 

Linearity of regression, test for, 205-
206, 352. 

Lipps, G. F., refs., measures of 
dependence (association, correla-
tion, contingency, etc.), 40 ; 
Fechner's Kollcktivmasslehre, 129, 
360. 

Little, W., data as to agricultural 
labourers' earnings cited from, 137. 

Lobelia, application of theory of 
sampling to certain data, 269-270, 
272. 

Logarithmic increase of population, 
125-126 ; logarithmic mode, 128. 

MACALISTER , S i r DONALD , r e f . , l a w 
of geometric mean, 130, 314. 

Macdonell, W. R., data cited from, 
84, 90. 

Marriage-rate and trade, correlation 
of movements, 199-201. 

Maxwell, Clerk, use of word "stat-
istical," 4. 

Mean, arithmetic, generally, 108-116 ; 
def., 108-109 ; nature of, 109 ; cal-

STATISTICS. 

culation of, for a grouped distribu-
tion, 109-113 ; influence of group-
ing, 113-114, 115, 116; position 
relatively to mode and median, 121-
122, diagrams, 113, 114 ; sum of 
deviations from, is zero, 114; of 
series compounded of others, 115 ; of 
sum or difference, 115-116 ; com-
parison with median, 119 ; sum-
mary comparison with median and 
mode, mean is the best for all 
general purposes, 122-123 ; weight-
ing of, 220-225 ; of binomial series, 
299 ; standard error of, 344-350. 

Mean deviation. See Deviation, mean. 
error, 144. See Error, standard; 

Deviation, standard. 
geometric, 108; generally, 

123-128 ; def., 123; calculation, 
124; less than arithmetic mean, 
123 ; difference from arithmetic 
mean in terms of dispersion, (qu. 8) 
156; of series compounded of 
others, 124 ; of series of ratios or 
products, 124 ; in estimating inter-
censal populations, 125-126 ; con-
venience for index-numbers, 126-
127 ; use on ground that deviations 
vary with absolute magnitude, 127-
128 ; weighting of, 225. 

harmonic, 108 ; generally, 128-
129; def., 128; calculation, 128; 
is less than arithmetic and goo-
metric means, i29 ; difference from 
arithmetic mean in terms of dis-
persion, (qu, 9) 156 ; use in averag-
ing prices or index-numbers, 129; in 
theory of sampfing, when numbers 
in samples vary, 264-265. 

square error, 144. 
weighted, 220-225; def., 220; 

difference between weighted and 
unweighted means, 221-223 ; ap-
plication of weighting to correction 
of death-rates, etc., forage and sex-
distribution, 223-225 ; refs., 226. 

Median, 108; generally, 116-120; 
def., 116; indeterminate in certain 
cases, 116-117 ; unsuited to dis-
continuous observations and small 
series, 116-117 ; calculation of, 
117 ; graphical determination of, 
118 ; comparison with arithmetic 
mean, 119 ; advantages in special 
cases, 119-120; slight influence of 
outlying values on, 120 ; position 
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relatively to mean and mode, 121-
122, diagrams, 113, 114 ; weighting 
of, 225 ; standard error of, 337-341". 

Meitzen, P. A., refs., Geschichte, 
Theoric und Technik der Statistik, 6. 

Mendelian breeding experiments as 
illustrations, 37, 38, 128, 264-265, 
2 6 7 - 2 6 8 . 

Methods, statistical, purport of, 3-5, 
def., 5. 

Mice, numbers in litters, harmonic 
mean, 128-129; proportions of 
albinos in litters, fluctuations com-
pared with theory of sampling, 264-
2 6 5 . 

Milton, John, use ofword "statist," 1. 
Mode, 108 ; generally, 120-123 ; def., 

120; approximate determination, 
from mean and median, 121-122 ; 
diagrams showing position re-
latively to mean and median, 113, 
114; logarithmic or geometric mode, 
128 ; weighting of, 225 ; refs., 130. 

Modulus, as measure of dispersion, 
144; origin from normal curve, 
3 0 4 . 

Mohl, Robert von, refs., Geschichte 
und Literatur der Staatswissen-
schaften, 5. 

Moment, first, def., 110 ; second and 
general, def., 135 ; calculation of 
moments (ref.), 154. 

Moore, L. Bramley, data cited from, 
96, 161. Ref., inheritance of fer-
tility and fecundity, 208, 226. 

Mortality. See Death-rates. 
Movements, correlation of, in two 

variables, methods, 197-201 ; refs., 
208. 

NEGATIVE classes and attributes, 10. 
Newsholme, A., refs., birth-rates, cor-

rection for age-distribution, etc., 
226 ; Vital Statistics, 359. 

Normal curve of errors: deduction 
from binomial series, 301-302 ; 
value of central ordinate, 304; 
table of ordinates, 303 ; mean 
deviation and modulus, 304 ; 
comparison with binomial series 
for moderate value of n, 304-305 ; 
outline of more general methods 
of deduction, 305-307 ; fitting to 
a given distribution, 307-308 ; the 
table of areas, 310, and its use, 
309-310 ; quartile deviation and 

probable error, 310-311 ; numerical 
examples of use of tables, 311-313 ; 
normality in fluctuations of sam-
pling of the mean, 346-347. Refs., 
general, 314; dissection of com-
pound curve, 315 ; tables, 357-358. 
For normal correlation, see Correla-
tion, normal. 

Norton, J. P., data cited from, 162. 
Ref., Statistical Studies in the New 
York Money Market, 208. 

ORDER, of a class, 10 ; of generalised 
correlations, regressions, deviations, 
and standard-deviations, 233-234. 

PALGRAVE, Sir R. H. I., Dictionary 
of Political Economy, 6. 

Pareto, V., refs., Gours cViconomie 
politique, 105. 

Partial association. See Association, 
partial. 

Partial correlation. See Correlation, 
partial. 

Pauperism, in England and Wales, 
table, 93; diagrams, 92, 113; cal-
culation of mean, 111 ; of median, 
117, 118 ; means, medians, and 
modes for other years, 122 ; stand-
ard-deviation, 138-140 ; mean 
deviation, 145-146 ; quartiles, 
148 ; percentiles, 151-152. 

correlation with out-relief, 182-
185 ; with earnings and out-relief, 
1 7 7 - 1 8 1 , (qu. 2 ) 1 8 9 , 2 3 9 - 2 4 1 , 2 4 5 -
247 ; with out-relief, proportion of 
a g e d , e t c . , 1 9 2 - 1 9 5 , 2 4 1 - 2 4 5 . 

Pearl, Raymond, normal distribution 
of number of seeds in Lotus, 306. 
Ref., probable errors, 354. 

Pearson, Karl, contingency, 63, 65 ; 
mode, 120 ; standard-deviation, 
144 ; coefficient of variation, 149 ; 
skewness, 149; inheritance of 
fertility, 195 ; spurious correlation 
between indices, 215 ; binomial 
apparatus, 299 ; deduction of 
normal curve, 306 ; data cited from, 
7 0 , 7 8 , 90 , 9 6 , 1 2 2 , 160 , 1 6 1 . 
Refs., correlation of characters not 
quantitatively measurable, 40, 
333 ; contingency, etc., 72-73, 
333 ; frequency curves, 105, 130, 
1 5 4 , 2 7 3 , 2 8 9 , 3 1 4 , 3 1 5 , 3 5 4 ; 
binomial distribution and machine, 
314 ; hypergeometrical series, 289 ; 
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dissection of compound normal 
curve, 315 ; calculation of moments, 
225 ; general methods of curve-
fitting, 208, 209 ; testing fit of 
theoretical to actual distribution, 
315 ; correlation, 188, 208, 209, 
252, 333 ; fitting of principal axes 
and planes, 333 ; correlation be-
tween indices, 226 ; inheritance of 
fertility, 226 ; weighted mean, re-
productive selection, 226 ; probable 
errors, 354, 355. 

Peas, applications of theory of 
sampling to experiments in cross-
ing, 267-268. 

Pecten, correlation between two 
diameters of shell, 158 ; constants, 
(qu. 3) 189. 

Percentage, standard error of, 256-
257 ; when numbers in samples 
vary, 264-265. See also Sampling 
of attributes. 

Percentiles, 150-153 ; def., 150 ; de-
termination, 151-152 ; advantages 
and disadvantages, 152-153 ; use 
for unmeasured characters, 152— 
153, refs., 333 ; standard errors 
of, 337-341 ; correlation between 
errors of sampling in, 341-342; 
refs., 154. 

Perozzo, L., ref., applications of 
theory of probability to correlation 
of ages at marriage, 314. 

Petals of Ranunculus bulbosus, fre-
quency of, 102; unsuitability of 
median in case of such a distribu-
tion, 117. 

Peters, J., refs., multiplication table, 
357. 

Petty, Sir W., refs., Economic 
Writings, 6. 

Poincare, H., refs., Galcul des pro-
bability, 360. 

Poisson, S. D., refs., sex-ratio, 273; 
Recherches sur la probability des 
jugements, 273, 360. 

Poppies, stigmatic rays on, frequency, 
78 ; unsuitability of median in 
such a distribution, 116. 

Population, estimation of between 
censuses, 125-126 ; refs., 130, 253. 

Positive classes and attributes, def., 
10 ; number of positive classes, 13 ; 
sufficiency of for tabulation, 13; 
expression of other frequencies, in 
terms of, 13-14. 

STATISTICS. 

Precision. 144, 257, 304. 
Prices, index-numbers of, 126 ; use of 

geometric mean, 126 ; of harmonic 
mean, 129 ; refs., 130-131. 

Principal axes, in correlation, 321-
322 ; ref., 333. 

QUARTILE deviation. See Quartiles. 
Quartiles, quartile deviation and semi-

interquartile range, 134 ; generally, 
147-149 ; defs., 147; determina-
tion, 147-148; ratio of q.d. to 
standard-deviation, 148, 310; ad-
vantages of q.d. as a measure of 
dispersion, 148-149 ; difference be-
tween deviations of quartiles from 
median as measure of skewness, 
149-150 ; ratio of q.d. to median as 
measure of relative dispersion, 149 ; 
q.d. of normal curve, 310 ; standard 
errors, 337-341, 341-343. 

Quetelet, L. A. J., refs., Lettres sur 
la thiorie des probability, 273, 360. 

RANDOM sampling, in sense of simple 
sampling, 289. 

Range, unsuitability of, as a measure 
of dispersion, 133. 

Ranks, 143, 153 ; methods of corre-
lation based on (refs.), 333. 

Ranunculus, frequency of petals, 102 ; 
unsuitability of median for such 
distributions, 117. 

Registrar-General: correction of death-
rates, 224, refs., 226 ; estimates of 
population, refs., 130 ; data cited 
from Reports, 32-33, 52-53, 77, 
98, 163, 197-199, 199-201, 222, 
263, 283, 284, 285-286. 

Regressions, generally, 175-177; def., 
175 ; total and partial, 233 ; stan-
dard errors of, 352 ; non-linear, 
201-202, 205-206, 352, refs. 208-
209. 

Relative dispersion, 149. 
Reserves and discounts in American 

banks, correlation, 162; diagram, 
facing 166. 

Rhind, A., ref., tables for comput-
ing probable errors, 355, 357. 

Rutherford, E., ref., law of small 
chances, 273. 

SAMPLING, theory of, generally, 254-
355; the problem, 254-256 ; refs., 
273, 289, 313-315, 354-355. 



INDEX. 3 7 9 

Sampling of attributes: conditions 
assumed in simple sampling, 255-
256, 259-262 ; random in sense of 
simple sampling, 289 ; standard-
deviation of number or proportion of 
successes in n events, 256-257, 299-
300; examples from artificial chance, 
258-259 ; application to sex-ratio, 
262-264 ; when numbers in samples 
vary, 264-265; when chance of 
success or failure is small, 265-266 ; 
standard error def., 267; compar-
ing a sample with theory, 267-268 ; 
comparing one sample with another 
independent therefrom, 268-271 ; 
comparing one sample with another 
combined with it, 271-272 ; limita-
tions to interpretation of standard 
error when n is small, inverse in-
terpretation, 276-279 ; limits as a 
measure of untrustworthiness, 279-
281 ; effect of removing conditions 
of simple sampling, 281-289 ; sam-
pling from limited material, 287 : 
binomial distribution, 291-300 ; 
normal curve, 300-313 ; normal 
correlation, 317-334. See also 
Binomial teries ; Hypergeometrical 
series ; Normal curve ; Correlation, 
normal. 

of variables, conditions assumed 
in simple sampling, 335-337 ; 
standard errors of percentiles 
(median and quartiles), 337-341 ; 
dependence of standard error of 
median on the form of the distribu-
tion, 338-340; of difference between 
two percentiles, 341-343 ; of arith-
metic mean, 344-350 ; of difference 
between two means, 345-346 ; nor-
mality of distribution of mean, 
346-347 ; effect of removing con-
ditions of simple sampling on 
standard error of mean, 347-350 ; 
standard error of standard-devia-
tion and coefficient of variation, 
351 ; of coefficients of correlation 
and regression, 352 ; of correlation-
ratio and test for linearity of re-
gression, 352. 

Saunders, Miss E. R., data cited 
from, 37. 

Scheibner, W., difference between 
arithmetic and geometric, arith-
metic and harmonic means, (qu. 8 
o.nd qu. 9) 156. 

Scripture, E. W., use of word 
" statistics," 3. 

Semi-interquartile range. See Quar-
tiles. 

Sex-ratio of births : correlation with 
total births, 163, 175, 207; diagram, 
176 ; constants, (qu. 3) "l89 ; 
application of the theory of samp-
ling to, 262-264, (qu. 7) 275, (qu. 
1, 2) 289, refs., 273; standard 
error of ratio male to femal« births, 
(qu. 11) 275. 

Shakespeare, W., use of word 
"statist," 1. 

Sheppard, W. F., correction of the 
standard-deviation for grouping, 
212, 307 ; theorem on correlation 
of a normal distribution grouped 
round medians, (qu. 4) 334 ; 
normal curve tables, 337 ; standard 
errors of percentiles, 344. Refs., 
calculation and correction of 
moments, 225 ; normal curve 
and correlation, theory of samp-
ling, 314, 333, 355 ; tables of 
normal function and its integral, 
358. 

Significant differences, 266. 
Sinclair, Sir John, use of words 

'' statistics," " statistical, "2. 
Skew or asymmetrical frequency-

distributions, 90-102. See also 
Frequency-distributions. 

Skewness of frequency-distributions, 
107 ; measures of, 149-150. 

Snow, E. C., refs., estimates of popu-
lation, 130, 253 ; lines and planes 
of closest fit, 209. 

Southey, Robert, cited re Cosin's 
Names of the Roman Catholics, 
etc., 100. 

Spearman, C., effect of errors of 
observation on the standard-devia-
tion and coefficient of correlation, 
213-214. Refs., effect of errors of 
observation, 225, 333 ; rank method 
of correlation, 333. 

Standard-deviation. See Deviation, 
standard. 

Statist, occurrence of the word in 
Shakespeare and in Milton, 1. 

Statistical, introduction and develop-
ment in the meaning of the word, 
1-5 ; S. Account of Scotland, 2 ; 
Royal S. Society, .3 ; methods, pur-
port of, 3-5, def. 5. 



'380 THEORY OF STATISTICS. 

Statistics, introduction and develop-
ment in meaning of word, 1 - 5 ; 
def., 5 ; theory of, def., 5. 

Statures of males in U.K., tables, 88, 
90 ; diagrams, 89, 91 ; calculation 
of mean, 112 ; means and medians, 
117, (qu. 1) 131 ; standard-devia-
tion, 141; percentiles, 153; stan-
dard-deviation, mean deviation and 
quartiles, (qu. 1) 155 ; distribution 
fitted to normal curve, 305-306, 
307-308, diagram, 306 ; standard 
errors of mean and median, of first 
and ninth deciles, 341, 343, 344-
345, of standard - deviation and 
semi-interquartile range, (qu. 5) 
355. 

correlation of, for father and 
son, 160; diagrams, facing 166, 
174 ; constants, (qu. 3) 189 ; test-
ing for normality, 322-328; for 
isotropy, 329-331 ; diagram of 
diagonal distribution, 325, of fitted 
contour lines, 327. 

Stevenson, T. H. C., refs., birth-
rates, correction of, for age-dis-
tribution, 226. 

Stigmatic rays on poppies, frequency, 
78; unsuitability of median for 
such distributions, 116. 

Stirling, James, expression for fac-
torials of large numbers, 304. 

"Student" (pseudonym), refs., law 
of small chances, 273 ; probable 
errors, 355. 

Symmetrical frequency-distributions, 
87-90. See also Frequency-dis-
tributions ; Normal curve. 

Symons, G. J., use of word "sta-
tistics" in British Rainfall, 3. 

TABULATION, of statistics of attri-
butes, 11-14, 37 ; of a frequency-
distribution, 81-83 ; of a correlation 
table, 164. 

Tatham, John, refs., correction of 
death-rates, 226. 

Thorndike, E. L., refs., methods of 
measuring correlation, 333 ; Theory 
of Mental and Social Measurements, 
360. 

Todhunter, I., refs., History of 
the Mathematical Theory of Prob-
ability, G. 

Type of array, def., 164. 

ULTIMATE classes and frequencies, 
def., 12; sufficiency of, for tabula-
tion, 12-13. 

Universe, def., 17 ; specification of, 
17, 18. 

U-shapod frequency distributions, 
102-105. 

VALUE, annual, of dwelling-houses, 
table, 83 : median, (qu. 4) 131 ; 
quartiles, (qu. 3) 155. 

of estates, in 1715, table, 100 ; 
diagram, 101. 

Variables, theory of, generally, 75-
253; def., 7, 75. 

Variates, def., 150. 
Variation, coefficient of, 149; stan-

dard error of, 351-352. 
Venn, John, refs., Logic of Chancc, 

sex-ratio, 273, 360. 
Verschaeffelt, E., relative dispersion, 

149. Refs., measure of relative dis-
persion, 154. 

Vigor, H. D., data cited from, 163. 
Refs., sex-ratio, 273. 

WAGES, of agricultural labourers, see 
Earnings. 

Warner, F., refs., study of defects in 
school-children, notation for stat-
istics of attributes, 15. 

Waters, A. C., refs., estimating in-
tercensal populations, 130. 

Weather and crops, correlation, 196-
197. 

Weighted Mean, see Mean, weighted ; 
also Mean, geometric ; Median ; 
Mode. 

Weights of males in U.K., table, 95 ; 
diagram, 94 ; mean, median, and 
mode, (qu. 2) 131 ; standard-devia-
tion, mean deviation and quartiles, 
(qu. 2) 155. 

Weldon, W. F. R., dicc-throwing 
experiments, 258-259. 

Westergaard, H., refs., Theorie der 
Statistik, 6, 273, 360. 

YULE, G. U., use of term character-
istic lines (lines of regression), 177 ; 
problem of pauperism, 192 ; data 
cited from, 78, 93, 122, 140, 163, 
185, facing 186, 259. Refs., history 
of words, "statistics," "statistical," 
5 ; attributes, association, consist-
ence, etc., 15, 23, 39, 40, 57 ; 
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isotropy, influence of bias in stat 
istics of qualities, 73 ; correlation, 
188, 226, 252; correlation between 
indices, 226 ; frequency-curves, 
314 ; probable errors, 355 ; pauper-
ism, 130, 208, 253 ; birth-rates, 
208, 226 ; sex-ratio, 273. 

ZIMMERMANN, E. A. W., first to use 
the words "statistics," statis-
tical," in English, 1. 

H., multiplication table, 357. 
Zizek, F., refs., Die statistischen Mit-

telwerthe, 129. 
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