
PAP LM - ISI - Cesena - UNIBO ���1

Programmazione Avanzata e Paradigmi
Ingegneria e Scienze Informatiche - UNIBO
a.a 2013/2014
Lecturer: Alessandro Ricci

[module 2.1]
CONCURRENT PROGRAMMING

INTRODUCTION

v1.0
20130407

IntroductionPAP LM - ISI - Cesena - UNIBO

SUMMARY
• Concurrent programming

– motivations: HW evolution
– basic jargon

• processes interaction, cooperation, competition,
• mutual exclusion, synchronization
• problems: deadlocks, starvation, livelocks

• A little bit of history
– Dijkstra, Hoare, Brinch-Hansen

• Concurrent languages, mechanisms, abstractions
– overview

���2

IntroductionPAP LM - ISI - Cesena - UNIBO

CONCURRENCY AND CONCURRENT
SYSTEMS

• Concurrency as a main concept of many domains and systems
– operating systems, multi-threaded and multi-process programs,

distributed systems, control systems, real-time systems,...
• General definitions

– “In computer science, concurrency is a property of systems in which
several computational processes are executing at the same time,
and potentially interacting with each other.” [ROS-97]

– “Concurrency is concerned with the fundamental aspects of systems
of multiple, simultaneously active computing agents, that interact
with one another” [CLE-96]

• Common aspects
– systems with multiple activities or processes whose execution

overlaps in time
– activities can have some kind of dependencies, therefore can

interact

���3

IntroductionPAP LM - ISI - Cesena - UNIBO

CONCURRENT PROGRAMMING
• Concurrent programming

– building programs in which multiple computational activities
overlap in time and typically interact in some way

• Concurrent program
– finite set of sequential programs that can be executed in parallel,

i.e. overlapped in time
• a sequential program specifies sequential execution of a list

of statements
• the execution of a sequential program is called process
• a concurrent program specifies two or more sequential

programs that may be executed concurrently as parallel
processes

– the execution of a concurrent program is called concurrent
computation or elaboration

���4

IntroductionPAP LM - ISI - Cesena - UNIBO

CONCURRENT PROGRAMMING VS.
PARALLEL PROGRAMMING
• Parallel programming

– the execution of programs overlaps in time by running on
separate physical processors

• Concurrent programming
– the execution of programs overlaps in time without necessarily

running on separate physical processors, by sharing for instance
the same processor

• potential or abstract parallelism
• Distributed programming

– when processors are distributed over a network
– no shared memory

���5

IntroductionPAP LM - ISI - Cesena - UNIBO

PARALLEL COMPUTERS:
MULTI-CORE ARCHITECTURES
• Chip multiprocessors - Multicore

– multiple cores on a single chip
• sharing RAM, possibly sharing cache levels
• examples: Intel Core Duo, Core i7, AMD Dual Core Opteron

���6

IntroductionPAP LM - ISI - Cesena - UNIBO

PARALLEL COMPUTERS:
HETEROGENEOUS CORES & MANY-CORE
• Heterogeneous Chips Designs

– augmenting a standard processor with one or more specialized
compute engines, called attached processors

• examples: Graphical Processing Units (GPU), GPGPU (General-
Purpose Computation on Graphics Hardware), Field-Programmable
Gate Array (FPGA), Cell processors, CUDA architecture

���7

IntroductionPAP LM - ISI - Cesena - UNIBO

PARALLEL COMPUTERS:
SUPER-COMPUTERS
• Traditionally used by national labs and large companies
• Different kind of architectures, including clusters
• Typically large number of processors

– example: IBM BlueGene/L
• 65536 dual-core nodes, where each node is a 440 PowerPC

(770MhZ), 512 MiB of shared RAM, a number of ports to be
connected to the other nodes

���8

IntroductionPAP LM - ISI - Cesena - UNIBO

PARALLEL COMPUTERS:
CLUSTERS / GRID
• Made from commodity parts

– nodes are boards containing one or few processors, RAM and
sometimes a disk storage

– nodes connected by commodity interconnect
• e.g. Gigabit Ethernet, Myrinet, InfiniBand, Fiber Channel

• Memory not shared among the machines
– processors communicate by message passing

• Examples
– System X supercomputer at Virginia Tech,a 12.25 TFlops computer cluster of

1100 Apple XServe G5 2.3 GHz dual-processor machines (4 GB RAM, 80 GB
SATA HD) running Mac OS X and using InfiniBand interconnect

• Grid computing

���9

IntroductionPAP LM - ISI - Cesena - UNIBO

PARALLEL COMPUTERS:
CLOUD COMPUTING
• Delivering computing as a service through the network

– shared resources, software, and information are provided to
computers and other devices as a metered service over a
network (typically the Internet)

• X as a Service
– Software as a Service (SAAS)
– Platform as a Service (PAAS)
– Infrastructure as a Service (IAAS)

• Public clouds, private clouds
• Examples

– Amazon EC2 (Elastic Computing Cloud)
– Microsoft Azure, Google App Engine

���10

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

THE FASTEST
• Fastest operational supercomputer (Nov 2009): Oak Ridge National

Laboratory 'Jaguar' Supercomputer
– composed by Cray XT5 and XT4 Jaguar machines

• based on AMD Opteron CPU - 6 cores per CPU

– more than 224,000 cores
– a sustained processing rate of 1.759 PFLOPS

• Fastest cluster (December 2009): Folding@home
– reported over 7.8 petaflops of processing power

• 2.3 petaflops of this processing power is contributed by clients running on PlayStation 3
systems - Cell microprocessor CPU (Sony, Toshiba, IBM) - 3.2 GHz PowerPC-based
"Power Processing Element" (PPE) + 8 Synergistic Processing Elements (SPEs).

• 5.1 petaflops is contributed by GPU2 client.

• (?) Google Cluster Architecture - search engine system - at
Googleplex

– estimated total processing power of between 126 and 316 teraflops, as of April 2004
– 450,000 servers in the server farm estimated in 2006

– recent estimation: 20 to 100 petaflops
• ~500000 servers based on dual quad-core Xeon processors, at 2.5 GHz or 3 GHz.

���11

IntroductionPAP LM - ISI - Cesena - UNIBO

“THE HARDWARE (CORE) JUNGLE”
• “The Free Lunch is Over. Now Welcome to the Hardware

Jungle” (Herber Sutter, [SUT-12])

���12

IntroductionPAP LM - ISI - Cesena - UNIBO

“THE HARDWARE JUNGLE”

���13

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

FLYNN’S TAXONOMY
• Categorization of all computing systems according to the number of

instruction stream and data stream
– stream as a sequence of instruction or data on which a computer

operate
• Four possibilities

– Single Instruction, Single Data (SISD)
• Von-Neumann model, single processor computers

– Single Instruction, Multiple Data (SIMD)
• single instruction stream concurrently broadcasted to multiple

processors, each with its own data stream
• fine grained parallelism, vector processors

– Multiple Instruction, Single Data (MISD)
• no well known systems fit this

– Multiple Instruction, Multiple Data (MIMD)
• each processor has its own stream of instructions operating

on its own data

���14

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

MIMD MODELS
• MIMD category can be then decomposed according to memory

organization
– shared memory

• all processes (processors) share a single address space and
communicate each other by writing and reading shared
variables

– distributed memory
• each process (processor) has its own address space and

communicate with other process by message passing
(sending and receiving messages)

���15

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

MIMD FURTHER CLASSIFICATIONS
• Two further classes for shared-memory computers

– SMP (Symmetric Multi-processing Architecture)
• all processors share a connection to a common memory and

access all location memories at equal speed
– NUMA (Non-uniform Memory Access)

• the memory is shared, by some blocks of memory may be
physically more closely associated with some processors than
others

���16

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

MIMD FURTHER CLASSIFICATIONS
• Two further classes for distributed-memory computers

– MPP (Massively Parallel Processors)
• processors and the network infrastructure are tightly coupled

and specialized for a parallel computer
• extremely scalable, thousands of processors in a single

system
• for High-Performance Computing (HPC) applications

– Clusters
• distributed-memory systems composed of off-the-shelf

computers connected by an off-the-shelf network
• e.g. Beowulf clusters (= clusters on Linux)

– Grid
• systems that use distributed, heterogeneous resources

connected by LAN and/or by WAN, without a common point of
administration

���17

IntroductionPAP LM - ISI - Cesena - UNIBO

WHY CONCURRENT PROGRAMMING:
PERFORMANCE
• Performance improvement

– increased application throughput
• by exploiting parallel hardware

– increased application responsiveness
• by optimizing the interplay among CPU and I/O activities

!
• Quantitative measurement for performance: speedup

���18

x = a0 +
1

a1 + 1
a2+ 1

a3+a4

(1)

S =
T1

TN
=

1
1� P + P

N

(2)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

1

x = a0 +
1

a1 + 1
a2+ 1

a3+a4

(1)

S =
T1

TN
(2)

S =
1

1� P + P
N

(3)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

1

IntroductionPAP LM - ISI - Cesena - UNIBO

• Maximum speedup parallelizing a system:
!
!
!
!
!

!
– P is the proportion of a program that can be made parallel
– (1-P) is then the part that cannot be parallelized

• Theoretically maximum for P = 1 (linear speedup)
– actually there are specific cases with S > N (super-linear)

speedup

AMDAHL’S LAW

���19

ns =

(
nP

i=1
mi)!

nQ
i=1

(mi!)

NX

i=1

(
Ci

Ti
) N(2

1
N � 1)

NX

i=1

(
Ci

Ti
) 1

E =
S

P

S =
1

1� P +
P

N

1

IntroductionPAP LM - ISI - Cesena - UNIBO

AMDAHL’S LAW

���20

IntroductionPAP LM - ISI - Cesena - UNIBO ���21

THAT MEANS:

serializations / sequentializations
are poison for performances
(e.g. locking)

...but are often necessary for correctness
(e.g. safety properties)

> struggle & tradeoffs
 (..and a lot of research about it)

IntroductionPAP LM - ISI - Cesena - UNIBO

BUT DON’T FORGET EFFICIENCY
• Normalized measure of speed-up indicating how effectively each

processor is used

• The ideal efficiency is 1 = all processors are used at full capacity
– typically lower

���22

ns =

(
nP

i=1
mi)!

nQ
i=1

(mi!)

NX

i=1

(
Ci

Ti
) N(2

1
N � 1)

NX

i=1

(
Ci

Ti
) 1

E =
S

P

1

IntroductionPAP LM - ISI - Cesena - UNIBO

A NEW BOTTLENECK: MEMORY
• Shared memory and bus as potential bottleneck

– only one memory operation takes place at a time
– importance of the cache

• cache coherency protocol more and more complex and smart

���23

IntroductionPAP LM - ISI - Cesena - UNIBO

WHY CONCURRENT PROGRAMMING:
DESIGN & ABSTRACTION
• Abstraction and engineering

– define a proper level of abstraction for programs which interact
with the environment, control multiple activities and handle
multiple events..

• objects from OOP are not enough
• Concurrency as a tool for software design and construction

– rethinking to the way in which we solve problems
• basic algorithms & data structures

– rethinking to the way in which we design and build systems
• new level of abstraction

– different kind of decomposition, modularization,
encapsulation

• Affecting the full engineering spectrum
– modelling, design, implementation, verification, testing

���24

IntroductionPAP LM - ISI - Cesena - UNIBO

BASIC JARGON OF CONCURRENT
PROGRAMMING: PROCESSES
• Processes ~ a sequential program in execution

– the basic unit of a concurrent system, single thread of
control
• logical thread of control, not (necessarily) physical

– sequence of instructions operating together as a group
• unit of work (task)

– abstract / general concept
• …not necessarily related to OS processes

• speed independence
– process execution is meant to be completely

asynchronous with each other
• we can’t do any assumption about their speed

– non-determinism
���25

IntroductionPAP LM - ISI - Cesena - UNIBO

BASIC JARGON OF CONCURRENT
PROGRAMMING: INTERACTION

• Process interaction
– any non trivial concurrent program is based on multiple

processes that need to interact in some way in order to
achieve the objective of the system

• Basic kinds of interaction:
– cooperation
– competition / contention
– interferences

���26

IntroductionPAP LM - ISI - Cesena - UNIBO

PROCESS INTERACTION:
COOPERATION
• Refers to interactions which are both expected and wanted

– they are part of the semantics of the concurrent program
• Two basic kinds

– communication
• concerns the need of realizing an information flow among

processes, typically realized in terms of messages
• introduction of specific supports for the exchange of

messages
– synchronization

• concerns the explicit definition or presence of temporal
relationships or dependencies among processes and among
actions of distinct processes

• introduction of specific supports for the exchange of temporal
signals

���27

IntroductionPAP LM - ISI - Cesena - UNIBO

PROCESS INTERACTION:
CONTENTION / COMPETITION
• Refers to interactions which are expected and necessary, but not

wanted
– typically concerns the need of coordinating the access by multiple

processes to shared resources
• Two basic class of problems

– mutual exclusion
• ruling the access to shared resources by distinct processes

– critical sections
• ruling the concurrent execution of blocks of actions by distinct

processes

���28

IntroductionPAP LM - ISI - Cesena - UNIBO

SYNCHRONIZATION VS. MUTUAL EXCLUSION
• Different - even if related - concepts

– “synchronization = mutual exclusion urban legend” [BUH-05]
• false story, still present in textbooks / research papers

– synchronization defines a timing relationship among processes
• maintaining time-relationships which includes actions

happening at the same time or happening at the same relative
rate or simply some action having to occur before another
(precedence relationships)

– mutual-exclusion defines a restriction on access to shared data
• mutual-exclusion is meaningless if no shared data is involved

• Relationships
– mutual-exclusion typically require some forms of implicit

synchronization
• blocking some actions, waiting for other actions to complete

– synchronization does not necessarily require any kind of shared
data and the mutual exclusion

���29

IntroductionPAP LM - ISI - Cesena - UNIBO

ON THE DIFFICULTY OF SYNCHRONIZATION:
TOY EXAMPLE: “BUY-THE-MILK” PROBLEM
• “Alice and Bob live together, happily without cell-phones. Both are

responsible to buy the milk when it finishes...”

���30

Time Alice Bob

5:00 Arrive home

5:05 Look in the fridge; no milk

5:10 Leave for a grocery

5:15 Arrive home

5:20 Look in the fridge; no milk

5:25 Buy milk Leave for grocery

5:30 Arrive home; put milk in fridge

5:40 Buy milk

5:45 Arrive home; oh no!

IntroductionPAP LM - ISI - Cesena - UNIBO

A SOLUTION: NOTES IN THE FRIDGE (1/2)
• Looking for a solution to ensure that:

– only one person buys the milk, when there is no milk
– someone always buys the milk, when there is no milk

• Tentative solution: using notes on the fridge!
!
!
!
!
!
!
!
!

– “if you find that there is no milk and there is no note on the door
of the fridge, then leave a note on the fridge’s door, go and buy
milk, put the milk in the fridge, and remove your note.”

• Does it work? Not always actually...
���31

PROGRAM for Alice & Bob	

1 if (no note) then!
2 if (no milk) then!
3 leave note!
4 buy milk!
5 remove note!
6 fi!
7 fi

IntroductionPAP LM - ISI - Cesena - UNIBO

A SOLUTION: NOTES IN THE FRIDGE (2/2)
(..NOT SO EASY, ACTUALLY..)

���32

Time Alice Bob

5:00 Arrive home

5:05 Look at the fridge; no note

5:10 ...ops! need a toilet

5:15 ...still at the toilet... Arrive home

5:20 ...still at the toilet... Look at the fridge; no note

5:21 ...still at the toilet... Look in the fridge; no milk (argh)

5:22 ...still at the toilet... leave note

5:25 ...still at the toilet... go and buy milk

5:45 look in the fridge: no milk (*) ...

5:50 leave note...

[*] Alice does not realize that a note was put on the fridge (she is not really a
good observer) and strictly follows the established program

IntroductionPAP LM - ISI - Cesena - UNIBO

PROCESS INTERACTION:
INTERFERENCES
• Refers to interactions which are neither expected, nor

wanted
– producing bad effects only when the ratio among the

process speeds assumes specific values (time-
dependent errors)

• The “nightmare” of concurrent programming
– “heisen-bugs”

• when debugging influence the bugs...

���33

IntroductionPAP LM - ISI - Cesena - UNIBO

INTERFERENCES: RACE CONDITIONS

• race condition or race hazard or simply race
– whenever two or more processes concurrently access

and update shared resources, and the result of the
single update depends on the specific order occurring
in process access

• Related to two main types of programming errors
– bad management of expected interactions
– presence of spurious interactions not expected in the

problem

���34

IntroductionPAP LM - ISI - Cesena - UNIBO

CRITICAL SITUATIONS
• Interferences and errors in concurrent programs can lead

to critical situations for the concurrent system in the
overall
– Deadlock (...or deadly embrace (Dijkstra))
– Starvation (or unfairness)
– Livelock

���35

IntroductionPAP LM - ISI - Cesena - UNIBO

DEADLOCK
• Situation wherein two or more competing actions

(processes) are waiting for the other to finish, and thus
neither ever does
– typically concerns the release of a locked shared

resource, the reception of a temporal signal or a
message

���36

IntroductionPAP LM - ISI - Cesena - UNIBO

STARVATION
• Situation wherein a process is blocked in an infinite

waiting
• Resource starvation

– the process is perpetually denied in accessing
necessary resources.

– without those resources, the program can never finish
its task

���37

IntroductionPAP LM - ISI - Cesena - UNIBO

LIVELOCK
• A livelock is similar to a deadlock, except that the states

of the processes involved in the livelock constantly
change with regard to one another, none progressing

• Livelock is a special case of resource starvation
– the general definition only states that a specific

process is not progressing

���38

IntroductionPAP LM - ISI - Cesena - UNIBO

“STANDING ON THE SHOULDERS OF GIANTS”:
THE ORIGIN OF CONCURRENT PROGRAMMING

���39

Edgar W. Dijkstra
(1930-2002)

Per Brinch Hansen
(1938-2007)

Sir Anthony (Tony) Hoare
(1934)

IntroductionPAP LM - ISI - Cesena - UNIBO

THE INVENTION OF CONCURRENT
PROGRAMMING (NOTES FROM [HAN-01)]

• One original motivation:
developing reliable operating systems
!

• But from the beginning it was recognized that
the principles of concurrent programming...
“have a general utility that goes beyond
operating systems.. “ (P.B. Hansen 1971)

���40

IntroductionPAP LM - ISI - Cesena - UNIBO

1960s - 1970s
• 1961: birth of multiprogramming

– Kilburn & Howarth introduce the use of interrupts to simulate
concurrent execution of programs on the ATLAS computer

• early multiprogramming systems were programmed in assembly
language without any conceptual foundation
– huge and unreliable multiprogrammed OS
=> software crisis (end of the 1960s) (Naur, 1969)
=> need of having a deeper understanding of concurrent

programming
• In 15 years (from ~1965 to end of the 1970s) computer scientists

– discovered the fundamental concepts
– expressed by programming notations
– included them in programming languages
– and used these languages to write operating systems

• 1970s
– the new programming concepts used to write first textbooks on

the principle of OS and concurrent programming
���41

IntroductionPAP LM - ISI - Cesena - UNIBO

THE MAIN CONCEPTS
• All the main contributions were from the three giants: Dijkstra,

Hansen, Hoare

���42

Fundamental Concepts
!
Asynchronous processes
Speed independence
Fair scheduling
Mutual exclusion
Deadlock prevention
Process communication
Hierarchical structure
Extensible system kernels

Programming Language
Concepts
!
Concurrent statements
Critical regions (~critical sections)
Semaphores
Message buffers (~bounded buffers)
Conditional critical regions
Secure queueing variables
Monitors
Synchronous message communication
Remote procedure calls

IntroductionPAP LM - ISI - Cesena - UNIBO

CLASSIC PAPERS

���43

1. E. W. Dijkstra, Cooperating Sequential Processes (1965).	

2. E. W. Dijkstra, The Structure of the THE Multiprogramming System (1968).	

3. P. Brinch Hansen, RC 4000 Software: Multiprogramming System (1969).	

4. E. W. Dijkstra, Hierarchical Ordering of Sequential Processes (1971).	

5. C. A. R. Hoare, Towards a Theory of Parallel Programming (1971).	

6. P. Brinch Hansen, An Outline of a Course on Operating System Principles (1971).	

7. P. Brinch Hansen, Structured Multiprogramming (1972).	

8. P. Brinch Hansen, Shared Classes (1973).	

9. C. A. R. Hoare, Monitors: An Operating System Structuring Concept (1974).	

10. P. Brinch Hansen, The Programming Language Concurrent Pascal (1975).	

11. P. Brinch Hansen, The Solo Operating System: A Concurrent Pascal Program (1976).	

12. P. Brinch Hansen, The Solo Operating System: Processes, Monitors and Classes (1976).	

13. P. Brinch Hansen, Design Principles (1977).	

14. E. W. Dijkstra, A Synthesis Emerging? (1975).	

15. C. A. R. Hoare, Communicating Sequential Processes (1978).	

16. P. Brinch Hansen, Distributed Processes: A Concurrent Programming Concept (1978).	

17. P. Brinch Hansen, Joyce|A Programming Language for Distributed Systems (1987).	

18. P. Brinch Hansen, SuperPascal: A Publication Language for Parallel Scientific Computing (1994).	

19. P. Brinch Hansen, Efficient Parallel Recursion (1995)

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines ���44

CONCURRENT LANGUAGES AND
MACHINES

• To describe / specify a concurrent program we need
concurrent programming languages
– enabling programmers to write down programs as set

of instructions to be executed concurrently
• To execute a concurrent program we need a concurrent

machine
– a machine (which can be abstract) designed to handle

the execution of multiple sequential processes, by
exploiting multiple processors (physical or virtual)

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

CONCURRENT MACHINES
• A concurrent machine provides:

– a support for the execution of concurrent programs
and realizing then concurrent computations

– as many virtual processors as the number of
processes composing the concurrent computation

• Providing basic mechanisms for:
– multiprogramming

• virtual processors generation and management
– synchronization and communication
– access control to resources

���45

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

BASIC MECHANISMS
• Multiprogramming

– set of mechanisms that make it possible to create new virtual
processors and allocate physical processors of the lower-level
machine to the virtual processors by means of scheduling algorithms

• Synchronization and Communication
– two different typologies of mechanisms, related to two different

architectural models for concurrent machines:
• shared memory model

– presence of a shared memory among the virtual processors
– example: multi-threaded programming

• message passing model
– every virtual processor has its own memory and no shared

memory among processors is present
– every communication and interaction among processors is

realized through message passing

���46

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

FROM MACHINES TO PROGRAMMING
LANGUAGES
• Programming languages for specifying concurrent programs on top

of concurrent machines
– programs organized as sets of sequential processes to be

executed concurrently on the virtual processors of the concurrent
machine

• Basic constructs for
– specifying concurrency

• creation of multiple processes
– specifying process interaction

• synchronization and communication
• mutual exclusion

���47

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

CONCURRENT PROGRAMMING
LANGUAGES - DESIGN APPROACHES

• Three main design approaches
– sequential language + library with concurrent primitives

• e.g. C + PThreads
– language designed for concurrency

• e.g. OCCAM, ADA, Erlang
– hybrid approach

• sequential paradigm extended with a native support for
concurrency

– e.g. Java, Scala
• library and patterns based on basic mechanisms

– e.g. java.util.concurrent

���48

IntroductionPAP LM - ISI - Cesena - UNIBO

BASIC NOTATIONS AND CONSTRUCTS:
• First proposals (back to ~1960/1970)

– fork/join
– cobegin/coend

• More recent proposals
– first-class abstractions and constructs for defining processes

• called also tasks
– e.g. ADA, Erlang languages

• Mainstream languages
– support for threads and multi-threaded programming

• e.g. Java
– raise of asynchronous & event-driven programming

• Research landscape - several proposals, among the others:
– actor-based models

• …more and more adopted also in the main stream
• a reference model for Concurrent OOP

– active objects
– STM - Software Transactional Memory
– reactive programming
– agent-oriented programming

���49

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

FORK / JOIN
• Among the first basic language notations for expressing concurrency

(Conway 1963, Dennis 1968)
– adopted in UNIX system / POSIX, provided by MESA language

(1979)
• fork primitive

– behavior similar to procedure invocation, with the difference that a
new process is created and activated for executing the procedure

• input param: procedure to be executed
• output param: the identifier of the process created

> it results in a bifurcation of the program control flow
• the new process (child) is executed asynchronously with respect

to the generating process (parent) and existing processes
• join primitive

– it detects when a process created by a fork has terminated and it
synchronize current control flow with such event

• input parameter: the identifier of the process to wait
> it results in a join of independent control flows

���50

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

FORK / JOIN IN MESA

���51

process p;!
A: ...;!
 p=fork fun;!
B: ...;!
 join p;!
D:;!
!
void fun() {!
 C:;!
}

A

B

C

D

fun()

fork

join

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

FORK / JOIN: WEAKNESSES
• Pro

– general and flexible
• can be used to build any kind of concurrent application

• Cons
– low-level of abstraction

• not providing any discipline for structuring complex processes
• error-prone

– programs difficult to read
• it is hard getting from the text an idea of what processes are

active in a specific point of the program
– no explicit representation of the process abstraction

• as abstraction to organize the overall system

���52

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

COBEGIN / COEND CONSTRUCT
• Construct proposed by Dijkstra (1968) to provide a discipline for

concurrent programming
– enforcing the programmer to follow a specific scheme to structure

concurrent programs
• Concurrency is expressed in blocks:

• The process executing a cobegin (pared) creates as many processes
(children) as the number of instructions in the body and suspends
its execution until all the processes have terminated

���53

cobegin!
 S1;!
 S2;!
 ...!
 Sn;!
coend

- instructions S1, S2, Sn are executed in parallel
!
- an instruction Si can be as complex as a full
program (it can include nested cobegin/coend)
!
- a parallel structure terminates only when all its
components (processes) have terminated

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

EXAMPLE

���54

S0!
cobegin!
 S1;!
 S2;!
 S3;!
coend!
S4;

S0

S2 S3

S4

S1

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

COBEGIN / COEND
• Pro

– stronger discipline in structuring a concurrent program with
respect to fork/join primitives

– programs are more readable
• Cons

– less flexibility than fork/join
• how to create N concurrent processes, where N is known only

at runtime ?
– also in this case we haven’t an explicit abstraction encapsulating

the process

���55

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

LANGUAGES WITH FIRST-CLASS
SUPPORT FOR PROCESSES
• Introducing a notion of process as first-class entity of the concurrent

language (and of the concurrent machine)
– as “modules” to organize a program (static) and the system

(runtime)
– explicit encapsulation of the control flow

• Examples
– historical one

• Concurrent Pascal (70ies)
• OCCAM (1980...OCCAM3 ~90ies)
• ...

– more recent / in use examples
• ADA (~1980 up today with new versions - ADA95 with OO),
• Erlang (end of 90ies up today)

– used in particular by telecom industries

���56

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

CONCURRENCY IN MAINSTREAM
LANGUAGES

• For the most part, mainstream languages - both procedural (like C)
and Object-Oriented (Java) - provide a support for the creation and
execution of processes by means of libraries
– without extending the language
– not completely true for Java

> Support for multi-threaded programming
– threads as implementation of the abstract notion of process

• also called “lightweight processes” by referring to OS
“heavyweight processes”

– not to be confused with the notion of process as defined in OS
• process as a programming in execution, with one or multiple

control flows (threads)
• Main examples

– multi-threaded programming in Java
– Pthread library for C/C++ language on POSIX systems

���57

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

MULTITHREADED PROGRAMMING IN JAVA

• Java has been the first “mainstream” language providing a native
support for concurrent programming
– “conservative approach”

• the language is still ~purely OO, with no explicit construct for
defining processes (threads)

• introduction of some keywords and mechanisms for
concurrency

– synchronized blocks, wait / notify mechanisms
• The abstract notion of process is implemented as a thread, with a

direct mapping onto OS support for threads
– thread defined by specific classes, so at runtime they are objects

���58

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

THREADS IN JAVA
• Thread model

– a thread is defined by a single control flow, sharing memory with all
the other threads

• private stack, common heap
– each Java program contains at least one thread, corresponding to

the execution of the main in the main class
– further threads can be dynamically created and activated with

program execution, running concurrently
• Thread (process) definition

– threads are objects of classes extending Thread class provided in
java.lang package

• multiple process types can be defined, as different classes
extending java.lang.Thread

• Thread (process) execution
– thread object can be instantiated and “spawned” by invoking the

start method, beginning the execution of the process

���59

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

JAVA THREADS: SIMPLE EXAMPLE

���60

class ClockVisualizer extends Thread {!
 private int step;!!
 public ClockVisualizer(int step){!
 this.step=step;!
 }!!
 public void run(){!
 while (true) {!
 System.out.println(new Date());!
 try {!
! sleep(step);!
 } catch (Exception ex){!
 }!
 }!
 }!
}!!
class TestClockVisualizer {!
 static public void main(String[] args) throws Exception {!
 ClockVisualizer clock = new ClockVisualizer(1000);!
 clock.start(); !
 }!
}

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

MULTITHREADED PROGRAMMING WITH
C/C++ & Pthreads
• Defined in the POSIX (Portable Operating System Interface) context

the Pthread (POSIX-thread) library provides a set of basic primitives
for multithreaded programming in C / C++
– the abstract notion of process is implemented as thread
– differently from Java, process body is specified by means of a

procedure
– the standard defines just the interface / specification, not the

implementation (which depends on the specific OS)!
• An implementation is available on every modern OS, including

Solaris, Linux, Tru64 UNIX, Mac OS X and Windows !
• Basic API for threads creation and synchronization

• good tutorial: http://www.llnl.gov/computing/tutorials/pthreads/

���61

http://www.llnl.gov/computing/tutorials/pthreads/

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines ���62

Pthread API: SOME FUNCTIONS
• Interface defined in pthread.h
• Two main data types

– pthread_t
• thread identifier data type

– pthread_attr_t !
• data structure for specifying thread attributes

• Among the main functions
– thread creation (Fork)

• pthread_create(pthread_t* tid, pthread_attr_t* attr,
void* (*func)(void*), void* arg)!

• pthread_attr_init(pthread_attr_t*) !
– for setting up attributes

– thread termination
• pthread_exit(int) !

– thread join
• int pthread_join(pthread_t thread, void **value_ptr);

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

AN EXAMPLE
• Creation of 5 threads running concurrently

���63

#include <pthread.h>!
#include <stdio.h>!
#define NUM_THREADS 5!!
void *PrintHello(void *threadid)!
{!
 printf("\n%d: Hello World!\n", threadid);!
 pthread_exit(NULL);!
}!!
int main (int argc, char *argv[])!
{!
 pthread_t threads[NUM_THREADS];!
 int rc, t;!
 for(t=0; t<NUM_THREADS; t++){!
 printf("Creating thread %d\n", t);!
 rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);!
 if (rc){!
 printf("ERROR; return code from pthread_create() is %d\n", rc);!
 exit(-1);!
 }!
 }!
 pthread_exit(NULL);!
}

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

RESEARCH LANDSCAPE
• Many proposals in the last 30 years

– most of them are extensions of sequential programming
languages

• Among the main families:
– Concurrent Object-Oriented Programming (COOP)

• extending OO with concurrency
– main examples

• actor-based models
• active objects
• objects + asynchronous programming extensions
• agent-based models

���64

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

ACTORS
• Model proposed originally by Carl Hewitt in 1977 in the context of

Distributed Artificial Intelligence [HEW-77]
– adopted and further developed by Gul Agha & colleagues as a

model unifying objects and concurrency [AGH-96]
• Actor as unique abstraction

– autonomous entities, possibly distributed on different machines,
executing concurrently and communicating through asynchronous
message passing

• no shared memory, every actor has a mailbox
• First languages

– ACT family (ACT/1, ACT2, ACT/3), ABCL family (ABCL/1,ABCL/R3)
• Current languages

– Erlang is based on Actors
• Implemented as a pattern on top of existing languages

– many Java-based frameworks
• es: ActorFoundry, http://osl.cs.uiuc.edu/af/

– Scala language, http://www.scala-lang.org/node/242
���65

http://osl.cs.uiuc.edu/af/

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

ACTOR ABSTRACTION
• An actor is a computational entity that, in response to a message it

receives, can concurrently:
– send a finite number of messages to other Actors;
– create a finite number of new Actors;
– designate the behavior to be used for the next message it

receives (replacing behaviour)
• There is no assumed list to the above actions and they could be

carried out concurrently.
• An Actor can only communicate with Actors to which it is connected.

– it can directly obtain information only from other Actors to which it
is directly connected

– connections can be implemented in a variety of ways:
• direct physical attachment
• memory or disk addresses
• network addresses / email addresses

���66

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

ACTOR BASIC PRIMITIVES
• Only three primitives (actions) to compose an actor behaviour

– send
• asynchronously sending a message to a specified actor
• it is to concurrent programming what procedure invocation is

to sequential programming
– create

• create an actor with the specified behavior
• it is to concurrent programming what procedure abstraction is

to sequential programming
– become

• specify a new behavior (local state) to be used by actor to
respond to the next message it processed

• gives actors a history-sensitive behaviour necessary for
shared, mutable data objects

���67

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

STATE-OF-THE-ART
• Languages

– Erlang, E language, SALSA, AmbientTalk…
– HTML 5 WebWorker

• based on the actor model
– DART Language for Web app programming

• “isolates”
• Frameworks (over existing languages)

– (on JVM) Scala Actors library, Kilim, Jetlang, ActorFoundry,
Actor Architecture, Actors Guild, JavAct, AJ

• survey in [KAR09]
– (on .NET) Microsoft’s Asynchronous Agents Library, Retlang,

Orleans (for cloud computing)
– Act++, Thal (on C/C++), Acttalk (on Smalltalk), Stackless Python

(on Python), Stage (on Ruby)….

���68

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

TASTE OF ACTORS IN ACTORFOUNDRY

���69

public class PingActor extends Actor {!
 ActorName otherPinger;!
 @message!
 public void start(ActorName other) {!
 otherPinger = other;!
 send(otherPinger, "ping", self(), Id.stamp()+"called from " + self());!
 }!
 @message!
 public void ping(ActorName caller, String msg) {!
 send(stdout, "println", Id.stamp()+"Received ping (" + msg +") from " + caller + "...");!
 send(caller, "alive", Id.stamp()+self().toString() + " is alive");!
 }!
 @message!
 public void alive(String reply) {!
 send(stdout, "println", Id.stamp()+"Received " + reply + " from pinged actor");!
 }!
}!

public class PingBoot extends Actor {!!
 @message!
 public void boot() throws RemoteCodeException {!
 ActorName pinger1 = null;!
 ActorName pinger2 = null;!!
 pinger1 = create(osl.examples.ping.PingActor.class);!
 pinger2 = create(osl.examples.ping.PingActor.class);!
 !
 send(pinger1, "start", pinger2);!
 }!
}!

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

TASTE OF ACTORS IN SCALA

���70

class Ping(count: int, pong: Actor) extends Actor {!
 def act() {!
 var pingsLeft = count - 1!
 pong ! Ping!
 while (true) {!
 receive {!
 case Pong =>!
 if (pingsLeft % 1000 == 0)!
 Console.println("Ping: pong")!
 if (pingsLeft > 0) {!
 pong ! Ping!
 pingsLeft -= 1!
 } else {!
 Console.println("Ping: stop")!
 pong ! Stop!
 exit()!
 }!
 }!
 }!
 }!
}!

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

ACTIVE OBJECTS
• Integrating concurrency within the OO paradigm

– active + passive objects
– implicit thread creation + synchronization mechanisms

• Examples
– Languages with first-class support

• “Hybrid” language [NIE87]
• more recent: Creol [JOH06], JCoBoxes [SCH10], ABS

[JOH12]
– Active Objects as a pattern [LAV-96]

• can be implemented on top of sequential OO languages with
a basic thread support

���71

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

ACTIVE-OBJECT COMPONENTS

���72

IntroductionPAP LM - ISI - Cesena - UNIBO

SUMMARY
• Concurrent programming

– motivations: HW evolution
– basic jargon

• processes interaction, cooperation, competition,
• mutual exclusion, synchronization
• problems: deadlocks, starvation, livelocks

• A little bit of history
– Dijkstra, Hoare, Brinch-Hansen

• Concurrent languages, mechanisms, abstractions
– overview

���73

IntroductionPAP LM - ISI - Cesena - UNIBO

BIBLIOGRAPHY
• [HAN-73]

– Per Brinch Hansen - “Concurrent Programming Concepts”, ACM Computing Surveys, Vol. 5,
No. 4, Dec. 1973

• [HAN-01]
– Per Brinch Hansen - The Invention of Concurrent Programming” in “The Origin of Concurrent

Programming: From Semaphores to Remote Procedure Calls”, Springer-Verlag, 2002
• [SUT-12]

– Sutter’s Mill. Herb Sutter on software, hardware, and concurrency. "Welcome to the Jungle".
http://herbsutter.com/welcome-to-the-jungle/

• [AND-83]
– Gregory Andrews and Fred Schneider - “Concepts and Notations for Concurrent

Programming”, ACM Computing Surveys, Vol. 15, No. 1, March 1983
• [CLE-96]

– Rance Cleaveland, Scott Smolka et al - “Strategic Directions in concurrency Research”, ACM
Computing Surveys, Vol. 28, No. 4, Dec. 1996

• [ROS-97]
– Roscoe, A. W. (1997). The Theory and Practice of Concurrency. Prentice Hall. ISBN

0-13-674409-5.
• [BUH-05]

– Peter Buhr and Ashif Harji. “Concurrent Urban Legends”. Concurrency and Computation:
Practice and Experience. 2005. 17:1133-1172.

���74

http://herbsutter.com/welcome-to-the-jungle/

IntroductionPAP LM - ISI - Cesena - UNIBO

BIBLIOGRAPHY
• [HEW-77]

– C. Hewitt. Viewing Control Structures as Pattern of Passing Messages. Journal of Artificial
Intelligence, 8(3):323-364, 1977

• [AGH-86]
– Gul Agha. Actors: A model of concurrent computation in distributed systems. MIT Press, 1986.

• [NIE-87]
– Oscar Nierstrasz. Active Objects in Hybrid. SIGPLAN Notices, 1987

• [LAV-96]
– R. Greg Lavender, Douglas C. Schmidt. Active Object An Object Behavioral Pattern for

Concurrent Programming. Proc.Pattern Languages of Programs, 1996
• [GEL-92]

– D. Gelernter, N. Carriero. Coordination Languages and their Significance. Communications of the
ACM. Vol 33, Issue 2, Feb. 1992

• [JOH06]
– Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. 2006. Creol: a type-safe object-oriented

model for distributed concurrent systems. Theor. Comput. Sci. 365, 1 (November 2006), 23-66
• [KAR09]

– Karmani, Shali, Agha. Actor Frameworks for the JVM Platform: A Comparative Analysis. PPPJ 09
• [SCH10]

– Jan Schäfer and Arnd Poetzsch-Heffter. 2010. JCoBox: generalizing active objects to concurrent
components. In Proceedings of the 24th European conference on Object-oriented programming
(ECOOP'10), Theo D'Hondt (Ed.). Springer-Verlag, Berlin, Heidelberg, 275-299.

���75

IntroductionPAP LM - ISI - Cesena - UNIBO

BIBLIOGRAPHY
• [JOH-12]

– Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, Martin Steffen. ABS: A
Core Language for Abstract Behavioral Specification. Lecture Notes in Computer Science
Volume 6957, 2012, pp 142-164

���76

