v1.0
20130407

Programmazione Avanzata e Paradigmi
Ingegneria e Scienze Informatiche - UNIBO

a.a 2013/2014
Lecturer: Alessandro Ricci

'module 2.1]

CONCURRENT PROGRAMMING
INTRODUCTION

PAP LM - ISI - Cesena - UNIBO

SUMMARY

« Concurrent programming
— motivations: HW evolution
— basic jargon
» processes interaction, cooperation, competition,
» mutual exclusion, synchronization
» problems: deadlocks, starvation, livelocks

« Alittle bit of history
— Dijkstra, Hoare, Brinch-Hansen

« Concurrent languages, mechanisms, abstractions
— overview

PAP LM - IS] - Cesena - UNIBO Introduction

CONCURRENCY AND CONCURRENT
SYSTEMS

« Concurrency as a main concept of many domains and systems

— operating systems, multi-threaded and multi-process programs,
distributed systems, control systems, real-time systems,...

* General definitions
— “In computer science, concurrency is a property of systems in which

several computational processes are executing at the same time,
and potentially interacting with each other.” [ROS-97]

“Concurrency is concerned with the fundamental aspects of systems
of multiple, simultaneously active computing agents, that interact
with one another’ [CLE-96]

« Common aspects

— systems with multiple activities or processes whose execution
overlaps in time

— activities can have some kind of dependencies, therefore can
interact

PAP LM - IS] - Cesena - UNIBO Introduction

CONCURRENT PROGRAMMING

 Concurrent programming

— building programs in which multiple computational activities
overlap in time and typically interact in some way

« Concurrent program

— finite set of sequential programs that can be executed in parallel,
l.e. overlapped in time

» a sequential program specifies sequential execution of a list
of statements

 the execution of a sequential program is called process

« a concurrent program specifies two or more sequential
programs that may be executed concurrently as parallel
processes

— the execution of a concurrent program is called concurrent
computation or elaboration

PAP LM - IS] - Cesena - UNIBO Introduction

CONCURRENT PROGRAMMING VS.
PARALLEL PROGRAMMING

« Parallel programming

— the execution of programs overlaps in time by running on
separate physical processors

« Concurrent programming

— the execution of programs overlaps in time without necessarily
running on separate physical processors, by sharing for instance

the same processor
« potential or abstract parallelism
* Distributed programming
— when processors are distributed over a network
— no shared memory

PAP LM - IS] - Cesena - UNIBO Introduction

PARALLEL COMPUTERS:
MULTI-CORE ARCHITECTURES

e Chip multiprocessors - Multicore
— multiple cores on a single chip
» sharing RAM, possibly sharing cache levels
« examples: Intel Core Duo, Core i7, AMD Dual Core Opteron

Intel Core i7 Processor

Proces | Proces | Proces | Proces | Proces | Proces | Proces | Proces

Logical | Logical | Logical § Logical | Logical | Logical | Logical | Logical
sor sor sor sor sor sor sor sor

L1and L2 L1and L2 L1 and L2 L1and L2

Execution Engine | Execution Engine | Execution Engine | Execution Engine

Third Level Cache

QuickPath Interconnect (QPI) Interface, Integrated Memory Controller

Iop' IMC I I I

DDR3

Chipset
OM19810b

PAP LM - ISI - Cesena - UNIBO Introduction

PARALLEL COMPUTERS:
HETEROGENEOUS CORES & MANY-CORE

 Heterogeneous Chips Designs

— augmenting a standard processor with one or more specialized
compute engines, called attached processors
« examples: Graphical Processing Units (GPU), GPGPU (General-

Purpose Computation on Graphics Hardware), Field-Programmable
Gate Array (FPGA), Cell processors, CUDA architecture

PAP LM - IS] - Cesena - UNIBO Introduction

PARALLEL COMPUTERS:
SUPER-COMPUTERS

« Traditionally used by national labs and large companies
» Different kind of architectures, including clusters
Typically large number of processors

— example: IBM BlueGene/L

65536 dual-core nodes, where each node is a 440 PowerPC
(770MhZ), 512 MiB of shared RAM, a number of ports to be

connected to the other nodes

PAP LM - IS] - Cesena - UNIBO Introduction

PARALLEL COMPUTERS:
CLUSTERS / GRID

Made from commodity parts

— nodes are boards containing one or few processors, RAM and
sometimes a disk storage

— nodes connected by commodity interconnect
» e.g. Gigabit Ethernet, Myrinet, InfiniBand, Fiber Channel
Memory not shared among the machines

— processors communicate by message passing

Examples

— System X supercomputer at Virginia Tech,a 12.25 TFlops computer cluster of
1100 Apple XServe G5 2.3 GHz dual-processor machines (4 GB RAM, 80 GB
SATA HD) running Mac OS X and using InfiniBand interconnect

Grid computing

PAP LM - ISI - Cesena - UNIBO

PARALLEL COMPUTERS:
CLOUD COMPUTING

« Delivering computing as a service through the network

— shared resources, software, and information are provided to
computers and other devices as a metered service over a
network (typically the Internet)

« X as a Service

— Software as a Service (SAAS)

— Platform as a Service (PAAS) o

— Infrastructure as a Service (IAAS) &~
« Public clouds, private clouds) R

Colaber wmon

 Examples [T .

Platform

— Amazon EC2 (Elastic Computing Cloud) : e
— Microsoft Azure, Google App Engine

Puntire

Infrastructure
~

o Blodk Seorage

Cloud C-birhbdxting

PAP LM - ISI - Cesena - UNIBO Introduction 10

THE FASTEST

Fastest operational supercomputer (Nov 2009): Oak Ridge National
Laboratory 'Jaguar' Supercomputer

— composed by Cray XT5 and XT4 Jaguar machines
» based on AMD Opteron CPU - 6 cores per CPU

— more than 224,000 cores

— a sustained processing rate of 1.759 PFLOPS
Fastest cluster (December 2009): Folding@home
— reported over 7.8 petaflops of processing power

» 2.3 petaflops of this processing power is contributed by clients running on PlayStation 3
systems - Cell microprocessor CPU (Sony, Toshiba, IBM) - 3.2 GHz PowerPC-based
"Power Processing Element" (PPE) + 8 Synergistic Processing Elements (SPEs).

» 5.1 petaflops is contributed by GPU2 client.
(?) Google Cluster Architecture - search engine system - at

Googleplex
— estimated total processing power of between 126 and 316 teraflops, as of April 2004
— 450,000 servers in the server farm estimated in 2006

— recent estimation: 20 to 100 petaflops
» ~500000 servers based on dual quad-core Xeon processors, at 2.5 GHz or 3 GHz.

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

“THE HARDWARE (CORE) JUNGLE"

“The Free Lunch is Over. Now Welcome to the Hardware
Jungle” (Herber Sutter, [SUT-12])

Welcome to
the jungle

The free cloud-core
lunch is ,.—l:
SO over
hetero-core
multi- E—

core

single-threaded free lunch
A
1

| IIIIIIIIIIIIII ¢ §

98 1990s - :

| | ;
2011 20??

2005
Exit Moore

Introduction

PAP LM - ISI] - Cesena - UNIBO

“THE HARDWARE JUNGLE"

Exploitability Stages / Alternatives Software Impact m

Make single core 1970s & 1980s: Add one The free lunch:

Moore’s more comp]ex to blg feature per Chlp Shlp an EXE that
motherlode: [IEHFS single- generation will just run

Unicore threaded code 1990s & 2000s: Several faster on new
faster smaller improvements/gen hardware

2005-207?7?: Deliver several Must write SPARC Niagara,
Secondary .
N Deliver more big cores parallel code x86

cores per chip 2012-20??: Deliver lots of ~ Must write very Intel MIC
smaller cores parallel code

Single-core x86,
SPARC, ARM

Multicore

Deliver different . Still less Cell (e.g., PS3)
RGN ORSEON Big/fast (complex) vs.

Tertiary small/slow (simpler) exploital?le: Intel Xeon+MIC
veins: Because the Must write AMD and

General-purpose heterogeneous
Hetero cores are (traditional CPU core) vs. and Jocally NVIDIA GPUs,

simpler, yields - o incl. on-die
manycore large one-time special-purpose (e.g., GPU 4istributed TR

jump in #cores Cole) palalielicode Tegra 3)

PAP LM - ISI] - Cesena - UNIBO Introduction

FLYNN'S TAXONOMY

« Categorization of all computing systems according to the number of
instruction stream and data stream

— stream as a sequence of instruction or data on which a computer
operate

* Four possibilities
— Single Instruction, Single Data (SISD)
« Von-Neumann model, single processor computers
Single Instruction, Multiple Data (SIMD)

* single instruction stream concurrently broadcasted to multiple
processors, each with its own data stream

« fine grained parallelism, vector processors
Multiple Instruction, Single Data (MISD)

* no well known systems fit this
Multiple Instruction, Multiple Data (MIMD)

« each processor has its own stream of instructions operating
on its own data

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

MIMD MODELS

 MIMD category can be then decomposed according to memory
organization

— shared memory

« all processes (processors) share a single address space and
communicate each other by writing and reading shared
variables

— distributed memory
» each process (processor) has its own address space and

communicate with other process by message passing
(sending and receiving messages)

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

MIMD FURTHER CLASSIFICATIONS

» Two further classes for shared-memory computers
— SMP (Symmetric Multi-processing Architecture)

« all processors share a connection to a common memory and
access all location memories at equal speed

— NUMA (Non-uniform Memory Access)

« the memory is shared, by some blocks of memory may be
physically more closely associated with some processors than
others

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

MIMD FURTHER CLASSIFICATIONS

« Two further classes for distributed-memory computers
— MPP (Massively Parallel Processors)

» processors and the network infrastructure are tightly coupled
and specialized for a parallel computer

» extremely scalable, thousands of processors in a single
system

 for High-Performance Computing (HPC) applications
— Clusters

» distributed-memory systems composed of off-the-shelf
computers connected by an off-the-shelf network

» e.g. Beowulf clusters (= clusters on Linux)
— Grid

« systems that use distributed, heterogeneous resources
connected by LAN and/or by WAN, without a common point of
administration

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

WHY CONCURRENT PROGRAMMING:
PERFORMANCE

e Performance improvement
— increased application throughput
* by exploiting parallel hardware
— Increased application responsiveness
* by optimizing the interplay among CPU and I/O activities

* Quantitative measurement for performance: speedup

N is the number of processors
T4 is the execution time of the sequential algorithm
Ty is the execution time of the parallel algorithm with N processors

PAP LM - IS] - Cesena - UNIBO Introduction

AMDAHL'S LAW

 Maximum speedup parallelizing a system:

1

S =

P
1-P+ —
_i_N

— P is the proportion of a program that can be made parallel
— (1-P) is then the part that cannot be parallelized

« Theoretically maximum for P = 1 (linear speedup)

— actually there are specific cases with S > N (super-linear)
speedup

PAP LM - IS] - Cesena - UNIBO Introduction

AMDAHL'S LAW

Amdahl’'s Law

/

mul

Parallel Portion
50%

— 75%

90%
— 95%

Number of Processors

PAP LM - ISI] - Cesena - UNIBO

Introduction

THAT MEANS:

serializations / sequentializations

are poison for performances
(e.g. locking)

...but are often necessary for correctness
(e.qg. safety properties)

> struggle & tradeoffs

(..and a lot of research about it)

PAP LM - IS] - Cesena - UNIBO Introduction

BUT DON'T FORGET EFFICIENCY

« Normalized measure of speed-up indicating how effectively each
processor is used

« The ideal efficiency is 1 = all processors are used at full capacity
— typically lower

PAP LM - IS] - Cesena - UNIBO Introduction

A NEW BOTTLENECK: MEMORY

« Shared memory and bus as potential bottleneck
— only one memory operation takes place at a time
— importance of the cache
« cache coherency protocol more and more complex and smart

Memory
P —
< | | S Bus) | >

l

Cache control

Cache control

Cache control

Cache control

L2 cache

L2 cache

L2 cache

L2 cache

El=[E8SS [=F)

L1-l L1-D

L1-l L1-D

L1-l L1-D

PO

Processor

Processor
P1

Processor
P2

Processor
P3

PAP LM - ISI - Cesena - UNIBO

Introduction

WHY CONCURRENT PROGRAMMING:
DESIGN & ABSTRACTION

« Abstraction and engineering

— define a proper level of abstraction for programs which interact
with the environment, control multiple activities and handle
multiple events..

» objects from OOP are not enough
« Concurrency as a tool for software design and construction

— rethinking to the way in which we solve problems
 basic algorithms & data structures

— rethinking to the way in which we design and build systems
* new level of abstraction

— different kind of decomposition, modularization,
encapsulation

» Affecting the full engineering spectrum
— modelling, design, implementation, verification, testing

PAP LM - IS] - Cesena - UNIBO Introduction

BASIC JARGON OF CONCURRENT
PROGRAMMING: PROCESSES

 Processes ~ a sequential program in execution

— the basic unit of a concurrent system, single thread of
control

* logical thread of control, not (necessarily) physical
— sequence of instructions operating together as a group
* unit of work (task)

— abstract / general concept
* ...not necessarily related to OS processes
 speed independence

— process execution is meant to be completely
asynchronous with each other

« we can’'t do any assumption about their speed
— non-determinism

PAP LM - IS] - Cesena - UNIBO Introduction

BASIC JARGON OF CONCURRENT
PROGRAMMING: INTERACTION

* Process interaction

— any non trivial concurrent program is based on multiple
processes that need to interact in some way in order to
achieve the objective of the system

« Basic kinds of interaction:
— cooperation
— competition / contention
— interferences

PAP LM - IS] - Cesena - UNIBO Introduction

PROCESS INTERACTION:
COOPERATION

» Refers to interactions which are both expected and wanted
— they are part of the semantics of the concurrent program
 Two basic kinds
— communication

« concerns the need of realizing an information flow among
processes, typically realized in terms of messages

* introduction of specific supports for the exchange of

messages
— synchronization

» concerns the explicit definition or presence of temporal
relationships or dependencies among processes and among
actions of distinct processes

« introduction of specific supports for the exchange of temporal
signals

PAP LM - IS] - Cesena - UNIBO Introduction

PROCESS INTERACTION:
CONTENTION / COMPETITION

» Refers to interactions which are expected and necessary, but not
wanted
— typically concerns the need of coordinating the access by multiple
processes to shared resources
« Two basic class of problems

— mutual exclusion
* ruling the access to shared resources by distinct processes

— critical sections
* ruling the concurrent execution of blocks of actions by distinct
processes

PAP LM - IS] - Cesena - UNIBO Introduction

SYNCHRONIZATION VS. MUTUAL EXCLUSION

» Different - even if related - concepts
— “synchronization = mutual exclusion urban legend” [BUH-05]
» false story, still present in textbooks / research papers
— synchronization defines a timing relationship among processes

* maintaining time-relationships which includes actions
happening at the same time or happening at the same relative
rate or simply some action having to occur before another

(precedence relationships)
— mutual-exclusion defines a restriction on access to shared data

» mutual-exclusion is meaningless if no shared data is involved
« Relationships

— mutual-exclusion typically require some forms of implicit
Synchronization

* blocking some actions, waiting for other actions to complete

— synchronization does not necessarily require any kind of shared
data and the mutual exclusion

PAP LM - IS] - Cesena - UNIBO Introduction

ON THE DIFFICULTY OF SYNCHRONIZATION:
TOY EXAMPLE: "BUY-THE-MILK" PROBLEM

« “Alice and Bob live together, happily without cell-phones. Both are
responsible to buy the milk when it finishes...”

Time Alice Bob
5:00 |[Arrive home

5:05 |Look in the fridge; no milk

5:10 |[Leave for a grocery

5:15 Arrive home

5:20 Look in the fridge; no milk

5:25 |Buy milk Leave for grocery

5:30 |[Arrive home; put milk in fridge

9:40 Buy milk

5:45 Arrive home; oh no!

PAP LM - IS] - Cesena - UNIBO Introduction

A SOLUTION: NOTES IN THE FRIDGE (1/2)

* Looking for a solution to ensure that:
— only one person buys the milk, when there is no milk
— someone always buys the milk, when there is no milk
« Tentative solution: using notes on the fridge!

PROGRAM for Alice & Bob

1 if (no note) then
2 if (no milk) then
leave note
buy milk
remove note
fi
fi

— “if you find that there is no milk and there is no note on the door
of the fridge, then leave a note on the fridge's door, go and buy
milk, put the milk in the fridge, and remove your note.”

« Does it work? Not always actually...

PAP LM - IS] - Cesena - UNIBO Introduction

A SOLUTION: NOTES IN THE FRIDGE (2/2)
(..NOT SO EASY, ACTUALLY..)

Time Alice Bob
5:00 |Arrive home
5:05 |Look at the fridge; no note

9:10 |...ops! need a toilet

5:15 |...still at the toilet... Arrive home
5:20 |...still at the toilet... Look at the fridge; no note
9:21 |...still at the toilet... Look in the fridge; no milk (argh)

5:22 |...still at the toilet... leave note
9:25 |...still at the toilet... go and buy milk
5:45 |look in the fridge: no milk (*)

5:50 |leave note...

[*] Alice does not realize that a note was put on the fridge (she is not really a
good observer) and strictly follows the established program

PAP LM - ISI - Cesena - UNIBO Introduction 32

PROCESS INTERACTION:
INTERFERENCES

« Refers to interactions which are neither expected, nor
wanted
— producing bad effects only when the ratio among the
process speeds assumes specific values (time-
dependent errors)

* The “nightmare” of concurrent programming

— “heisen-bugs”
« when debugging influence the bugs...

PAP LM - IS] - Cesena - UNIBO Introduction

INTERFERENCES: RACE CONDITIONS

* race condition or race hazard or simply race

— whenever two or more processes concurrently access
and update shared resources, and the result of the
single update depends on the specific order occurring
INn process access

« Related to two main types of programming errors
— bad management of expected interactions

— presence of spurious interactions not expected in the
problem

PAP LM - IS] - Cesena - UNIBO Introduction

CRITICAL SITUATIONS

 Interferences and errors in concurrent programs can lead
to critical situations for the concurrent system in the
overall

— Deadlock (...or deadly embrace (Dijkstra))
— Starvation (or unfairness)
— Livelock

PAP LM - IS] - Cesena - UNIBO Introduction

DEADLOCK

« Situation wherein two or more competing actions

(processes) are waiting for the other to finish, and thus
neither ever does

— typically concerns the release of a locked shared
resource, the reception of a temporal signal or a
message

PAP LM - IS] - Cesena - UNIBO Introduction

STARVATION

« Situation wherein a process is blocked in an infinite
waiting
* Resource starvation

— the process is perpetually denied in accessing
necessary resources.

— without those resources, the program can never finish

its task

PAP LM - IS] - Cesena - UNIBO Introduction

LIVELOCK

 Alivelock is similar to a deadlock, except that the states
of the processes involved in the livelock constantly
change with regard to one another, none progressing

Livelock is a special case of resource starvation

— the general definition only states that a specific
process is not progressing

PAP LM - IS] - Cesena - UNIBO Introduction

"STANDING ON THE SHOULDERS OF GIANTS™:
THE ORIGIN OF CONCURRENT PROGRAMMING

Edgar W. Dijkstra

(1930-2002)

Per Brinch Hansen
(1938-2007)

l" Sir Anthony (Tony) Hoare
[(1934)

PAP LM - ISI - Cesena - UNIBO Introduction 39

THE INVENTION OF CONCURRENT
PROGRAMMING (NOTES FROM [HAN-01)]

* One original motivation:
developing reliable operating systems

« But from the beginning it was recognized that
the principles of concurrent programming...

“have a general utility that goes beyond
operating systems.. “ (P.B. Hansen 1971)

PAP LM - IS] - Cesena - UNIBO Introduction

1960s - 1970s

* 1961: birth of multiprogramming

— Kilburn & Howarth introduce the use of interrupts to simulate
concurrent execution of programs on the ATLAS computer

« early multiprogramming systems were programmed in assembly
language without any conceptual foundation

— huge and unreliable multiprogrammed OS
=> software crisis (end of the 1960s) (Naur, 1969)
=> need of having a deeper understanding of concurrent
programming
* In 15 years (from ~1965 to end of the 1970s) computer scientists
— discovered the fundamental concepts
— expressed by programming notations
— included them in programming languages
— and used these languages to write operating systems
« 1970s

— the new programming concepts used to write first textbooks on
the principle of OS and concurrent programming
PAP LM - ISI - Cesena - UNIBO Introduction 41

THE MAIN CONCEPTS

« All the main contributions were from the three giants: Dijkstra,

Hansen, Hoare

Fundamental Concepts

Asynchronous processes
Speed independence
Fair scheduling

Mutual exclusion
Deadlock prevention
Process communication
Hierarchical structure
Extensible system kernels

PAP LM - ISI - Cesena - UNIBO

Programming Language
Concepts

Concurrent statements

Critical regions (~critical sections)
Semaphores

Message buffers (~bounded buffers)
Conditional critical regions

Secure queueing variables

Monitors

Synchronous message communication
Remote procedure calls

Introduction

CLASSIC PAPERS

1
2
3
4
5
6
7
8
9

[UE WY
_ O

e e S S ——y
O 0 1 &N Ut B W N

. E. W. Dijkstra, Cooperating Sequential Processes (1965).

. E. W. Dijkstra, The Structure of the THE Multiprogramming System (1968).

. P. Brinch Hansen, RC 4000 Software: Multiprogramming System (1969).

. E. W. Dijkstra, Hierarchical Ordering of Sequential Processes (1971).

.C. A.R. Hoare, Towards a Theory of Parallel Programming (1971).

. P. Brinch Hansen, An Outline of a Course on Operating System Principles (1971).

. P. Brinch Hansen, Structured Multiprogramming (1972).

. P. Brinch Hansen, Shared Classes (1973).

.C. A.R. Hoare, Monitors: An Operating System Structuring Concept (1974).

. P. Brinch Hansen, The Programming LLanguage Concurrent Pascal (1975).

. P. Brinch Hansen, The Solo Operating System: A Concurrent Pascal Program (1976).

. P. Brinch Hansen, The Solo Operating System: Processes, Monitors and Classes (1976).
. P. Brinch Hansen, Design Principles (1977).

. E. W. Dijkstra, A Synthesis Emerging? (1975).

. C. A. R. Hoare, Communicating Sequential Processes (1978).

. P. Brinch Hansen, Distributed Processes: A Concurrent Programming Concept (1978).

. P. Brinch Hansen, JoycelA Programming Language for Distributed Systems (1987).

. P. Brinch Hansen, SuperPascal: A Publication Language for Parallel Scientific Computing (199:-
. P. Brinch Hansen, Efficient Parallel Recursion (1995)

PAP LM - ISI - Cesena - UNIBO Introduction 43

CONCURRENT LANGUAGES AND
MACHINES

« To describe / specify a concurrent program we need
concurrent programming languages

— enabling programmers to write down programs as set
of instructions to be executed concurrently

* To execute a concurrent program we need a concurrent
machine

— a machine (which can be abstract) designed to handle
the execution of multiple sequential processes, by
exploiting multiple processors (physical or virtual)

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

CONCURRENT MACHINES

« A concurrent machine provides:

— a support for the execution of concurrent programs
and realizing then concurrent computations

— as many virtual processors as the number of
processes composing the concurrent computation

 Providing basic mechanisms for:

— multiprogramming

« virtual processors generation and management
— synchronization and communication
— access control to resources

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

BASIC MECHANISMS

* Multiprogramming

— set of mechanisms that make it possible to create new virtual
processors and allocate physical processors of the lower-level
machine to the virtual processors by means of scheduling algorithms

« Synchronization and Communication

— two different typologies of mechanisms, related to two different
architectural models for concurrent machines:

 shared memory model

— presence of a shared memory among the virtual processors
— example: multi-threaded programming
e message passing model

— every virtual processor has its own memory and no shared
memory among processors is present

— every communication and interaction among processors is
realized through message passing

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

FROM MACHINES TO PROGRAMMING
LANGUAGES

« Programming languages for specifying concurrent programs on top
of concurrent machines

— programs organized as sets of sequential processes to be
executed concurrently on the virtual processors of the concurrent
machine

Basic constructs for
— specifying concurrency

 creation of multiple processes

— specifying process interaction
« synchronization and communication
* mutual exclusion

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

CONCURRENT PROGRAMMING
LANGUAGES - DESIGN APPROACHES

* Three main design approaches
— sequential language + library with concurrent primitives
* e.9. C + PThreads
— language designed for concurrency
« e.g. OCCAM, ADA, Erlang
— hybrid approach

» sequential paradigm extended with a native support for
concurrency

— e.g. Java, Scala
* library and patterns based on basic mechanisms
— e.g. java.util.concurrent

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

BASIC NOTATIONS AND CONSTRUCTS:

First proposals (back to ~1960/1970)
— fork/join
— cobegin/coend
More recent proposals
— first-class abstractions and constructs for defining processes
 called also tasks
— e.g. ADA, Erlang languages
Mainstream languages
— support for threads and multi-threaded programming
* e.g. Java
— raise of asynchronous & event-driven programming
Research landscape - several proposals, among the others:
— actor-based models
« ...more and more adopted also in the main stream
» a reference model for Concurrent OOP
active objects
STM - Software Transactional Memory
reactive programming
agent-oriented programming

PAP LM - IS] - Cesena - UNIBO Introduction

FORK / JOIN

« Among the first basic language notations for expressing concurrency
(Conway 1963, Dennis 1968)

— adopted in UNIX system / POSIX, provided by MESA language
(1979)
» fork primitive
— behavior similar to procedure invocation, with the difference that a
new process is created and activated for executing the procedure
 input param: procedure to be executed
» output param: the identifier of the process created
> it results in a bifurcation of the program control flow
» the new process (child) is executed asynchronously with respect
to the generating process (parent) and existing processes
e join primitive
— it detects when a process created by a fork has terminated and it
synchronize current control flow with such event
 input parameter: the identifier of the process to wait
> it results in a join of independent control flows

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

FORK /JOIN IN MESA

process p;
A: ...7
p=fork fun;
B: ...;
join pj;
D:7

void fun() {
C: ooy

}

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

FORK / JOIN: WEAKNESSES

* Pro
— general and flexible
« can be used to build any kind of concurrent application
« Cons
— low-level of abstraction
» not providing any discipline for structuring complex processes
* error-prone

— programs difficult to read

* it is hard getting from the text an idea of what processes are
active in a specific point of the program

— no explicit representation of the process abstraction
 as abstraction to organize the overall system

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

COBEGIN / COEND CONSTRUCT

» Construct proposed by Dijkstra (1968) to provide a discipline for
concurrent programming

— enforcing the programmer to follow a specific scheme to structure
concurrent programs

« Concurrency is expressed in blocks:

cobegin - instructions S1, S2, Sn are executed in parallel

S1; - an instruction Si can be as complex as a full
S2; program (it can include nested cobegin/coend)

Sn;
coend

- a parallel structure terminates only when all its
components (processes) have terminated

* The process executing a cobegin (pared) creates as many processes
(children) as the number of instructions in the body and suspends
its execution until all the processes have terminated

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

EXAMPLE

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

COBEGIN / COEND

« Pro

— stronger discipline in structuring a concurrent program with
respect to fork/join primitives

— programs are more readable
« Cons

— less flexibility than fork/join
* how to create N concurrent processes, where N is known only

at runtime ?

— also in this case we haven't an explicit abstraction encapsulating
the process

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

LANGUAGES WITH FIRST-CLASS
SUPPORT FOR PROCESSES

» Introducing a notion of process as first-class entity of the concurrent
language (and of the concurrent machine)
— as “modules” to organize a program (static) and the system
(runtime)
— explicit encapsulation of the control flow

« Examples

— historical one
« Concurrent Pascal (70ies)
« OCCAM (1980...0CCAM3 ~90ies)

— more recent / in use examples
» ADA (~1980 up today with new versions - ADA95 with OO),
« Erlang (end of 90ies up today)
— used in particular by telecom industries

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

CONCURRENCY IN MAINSTREAM
LANGUAGES

« For the most part, mainstream languages - both procedural (like C)
and Object-Oriented (Java) - provide a support for the creation and
execution of processes by means of libraries

— without extending the language
— not completely true for Java
> Support for multi-threaded programming
— threads as implementation of the abstract notion of process

« also called “lightweight processes” by referring to OS
“heavyweight processes”

— not to be confused with the notion of process as defined in OS

e process as a programming in execution, with one or multiple
control flows (threads)

 Main examples
— multi-threaded programming in Java
— Pthread library for C/C++ language on POSIX systems

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

MULTITHREADED PROGRAMMING IN JAVA

Java has been the first “mainstream” language providing a native
support for concurrent programming

— “conservative approach”

 the language is still ~purely OO, with no explicit construct for
defining processes (threads)

* introduction of some keywords and mechanisms for
concurrency

— synchronized blocks, wait / notify mechanisms

The abstract notion of process is implemented as a thread, with a
direct mapping onto OS support for threads

— thread defined by specific classes, so at runtime they are objects

PAP LM - ISI - Cesena - UNIBO

Concurrent Languages & Machines

HREADS IN JAVA

* Thread model

— athread is defined by a single control flow, sharing memory with all
the other threads

 private stack, common heap

— each Java program contains at least one thread, corresponding to
the execution of the main in the main class

— further threads can be dynamically created and activated with
program execution, running concurrently

 Thread (process) definition
— threads are objects of classes extending Thread class provided in
java.lang package
* multiple process types can be defined, as different classes
extending java.lang.Thread
 Thread (process) execution

— thread object can be instantiated and “spawned” by invoking the
start method, beginning the execution of the process

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

JAVA THREADS: SIMPLE EXAMPLE

class ClockVisualizer extends Thread {
private int step;

public ClockVisualizer(int step){
this.step=step;

}

public void run(){
while (true) {
System.out.println(new Date());
try {
sleep(step);
} catch (Exception ex){

}

class TestClockVisualizer {
static public void main(String[] args) throws Exception {
ClockVisualizer clock = new ClockVisualizer(1000);
clock.start();

}
}

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

MULTITHREADED PROGRAMMING WITH
C/C++ & Pthreads

« Defined in the POSIX (Portable Operating System Interface) context
the Pthread (POSIX-thread) library provides a set of basic primitives
for multithreaded programming in C / C++

— the abstract notion of process is implemented as thread

— differently from Java, process body is specified by means of a
procedure

— the standard defines just the interface / specification, not the

implementation (which depends on the specific OS)

- An implementation is available on every modern OS, including
Solaris, Linux, Trué4 UNIX, Mac OS X and Windows

« Basic API for threads creation and synchronization
good tutorial: http://www.lInl.gov/computing/tutorials/pthreads/

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

http://www.llnl.gov/computing/tutorials/pthreads/

Pthread API: SOME FUNCTIONS

* Interface defined in pthread.h
 Two main data types

— pthread_t
« thread identifier data type

— pthread attr_t
 data structure for specifying thread attributes

 Among the main functions

— thread creation (Fork)
* pthread create(pthread t* tid, pthread attr t* attr,
void* (*func) (void*), void* arg)
* pthread_attr_init(pthread attr t¥*)
— for setting up attributes
— thread termination
* pthread exit(int)
— thread join
* int pthread join(pthread t thread, void **value ptr);

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines 62

AN EXAMPLE

Creation of 5 threads running concurrently

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid)

{
printf("\n%d: Hello World!\n", threadid);
pthread exit (NULL);

}

int main (int argc, char *argv[])
{
pthread_t threads[NUM_THREADS];
int rc, t;
for (t=0; t<NUM_THREADS; t++){
printf("Creating thread %d\n", t);
rc = pthread create(&threads[t], NULL, PrintHello, (void *)t);
if (rc){
printf ("ERROR; return code from pthread create() is %d\n", rc);
exit(-1);
}
}
pthread exit (NULL);

}

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

RESEARCH LANDSCAPE

 Many proposals in the last 30 years

— most of them are extensions of sequential programming
languages

* Among the main families:
— Concurrent Object-Oriented Programming (COOP)
« extending OO with concurrency
— main examples

» actor-based models

 active objects

« objects + asynchronous programming extensions
« agent-based models

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

ACTORS

* Model proposed originally by Carl Hewitt in 1977 in the context of
Distributed Artificial Intelligence [HEW-77]

— adopted and further developed by Gul Agha & colleagues as a
model unifying objects and concurrency [AGH-96]

Actor as unique abstraction

— autonomous entities, possibly distributed on different machines,
executing concurrently and communicating through asynchronous
message passing

* no shared memory, every actor has a mailbox
First languages
— ACT family (ACT/1, ACT2, ACT/3), ABCL family (ABCL/1,ABCL/R3)
Current languages
— Erlang is based on Actors
Implemented as a pattern on top of existing languages
— many Java-based frameworks
» es: ActorFoundry, http://osl.cs.uiuc.edu/af/
— Scala language, http://www.scala-lang.org/node/242
PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

http://osl.cs.uiuc.edu/af/

ACTOR ABSTRACTION

An actor is a computational entity that, in response to a message it
receives, can concurrently:

— send a finite number of messages to other Actors;
— create a finite number of new Actors;

— designate the behavior to be used for the next message it
receives (replacing behaviour)

There is no assumed list to the above actions and they could be
carried out concurrently.

An Actor can only communicate with Actors to which it is connected.

— it can directly obtain information only from other Actors to which it
is directly connected

— connections can be implemented in a variety of ways:
« direct physical attachment
 memory or disk addresses
* network addresses / email addresses

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

ACTOR BASIC PRIMITIVES

* Only three primitives (actions) to compose an actor behaviour
— send
« asynchronously sending a message to a specified actor

« it is to concurrent programming what procedure invocation is
to sequential programming

— create
 create an actor with the specified behavior

* it is to concurrent programming what procedure abstraction is
to sequential programming

— become

» specify a new behavior (local state) to be used by actor to
respond to the next message it processed

 gives actors a history-sensitive behaviour necessary for
shared, mutable data objects

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

STATE-OF-THE-ART

 Languages
— Erlang, E language, SALSA, AmbientTalk...
— HTML 5 WebWorker
* based on the actor model
— DART Language for Web app programming
 “isolates”
* Frameworks (over existing languages)

— (on JVM) Scala Actors library, Kilim, Jetlang, ActorFoundry,
Actor Architecture, Actors Guild, JavAct, AJ

 survey in [KARO09]
— (on .NET) Microsoft’'s Asynchronous Agents Library, Retlang,
Orleans (for cloud computing)

— Act++, Thal (on C/C++), Acttalk (on Smalltalk), Stackless Python
(on Python), Stage (on Ruby)....

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

TASTE OF ACTORS IN ACTORFOUNDRY

public class PingActor extends Actor {

}

ActorName otherPinger;
@message
public void start(ActorName other) {
otherPinger = other;
send (otherPinger, "ping", self(), Id.stamp()+"called from " + self());
}

@message

public void ping(ActorName caller, String msg) {
send(stdout, "println", Id.stamp()+"Received ping (" + msg +") from " + caller +
send(caller, "alive", Id.stamp()+self().toString() + " is alive");

}

@message
public void alive(String reply) {
send(stdout, "println", Id.stamp()+"Received " + reply + " from pinged actor");

}

)i

public class PingBoot extends Actor {

@message

public void boot() throws RemoteCodeException {
ActorName pingerl = null;
ActorName pinger2 null;

pingerl = create(osl.examples.ping.PingActor.class);
pinger?2 create(osl.examples.ping.PingActor.class);

send(pingerl, "start", pinger2);

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

TASTE OF ACTORS IN SCALA

class Ping(count: int, pong: Actor) extends Actor {
def act() {
var pingsLeft = count - 1
pong ! Ping
while (true) {
receive {
case Pong =>
if (pingsLeft % 1000 == 0)
Console.println("Ping: pong")
if (pingsLeft > 0) {
pong ! Ping
pingsLeft -= 1
else {
Console.println("Ping:
pong ! Stop
exit()

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

ACTIVE OBJECTS

* Integrating concurrency within the OO paradigm
— active + passive objects
— implicit thread creation + synchronization mechanisms
« Examples
— Languages with first-class support
« “Hybrid” language [NIE87]
* more recent: Creol [JOHO06], JCoBoxes [SCH10], ABS

[JOH12]
— Active Objects as a pattern [LAV-906]

« can be implemented on top of sequential OO languages with
a basic thread support

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

ACTIVE-OBJECT COMPONENTS

. loop | E
Nt ~\ —pg m = act_queue .dequeue()
Y if (m.guard()) m.call()

| Future ml() \ 1: enqueue(new M1)

/' Future m2() | N TR
| Fu gt \\, © TN~ 3:dispatch()” /Actlvatlon'
1 uture mas() } T

N)Scheduler - \ Queue /

— ‘1
4 enqueue()

/}

/' dispatch()”,~ {

< . |l
VISIBLE _enqueue() @ 1 dgqugut(_) y
10 . J > -

—

CLIENTS 1| "~—=—7 2:enqueue(MI) N

/\]

Servant\
INVISIBLE '
TO \ ml() ;

cLieNts | M20)
’m,() /—Q guard()

--/ 4: ml() ('“"()

PAP LM - ISI - Cesena - UNIBO Concurrent Languages & Machines

SUMMARY

« Concurrent programming
— motivations: HW evolution
— basic jargon
» processes interaction, cooperation, competition,
» mutual exclusion, synchronization
» problems: deadlocks, starvation, livelocks

« Alittle bit of history
— Dijkstra, Hoare, Brinch-Hansen

« Concurrent languages, mechanisms, abstractions
— overview

PAP LM - IS] - Cesena - UNIBO Introduction

BIBLIOGRAPHY

[HAN-73]
— Per Brinch Hansen - “Concurrent Programming Concepts”, ACM Computing Surveys, Vol. 5,
No. 4, Dec. 1973

[HAN-01]

— Per Brinch Hansen - The Invention of Concurrent Programming” in “The Origin of Concurrent
Programming: From Semaphores to Remote Procedure Calls”, Springer-Verlag, 2002

[SUT-12]

— Sutter’'s Mill. Herb Sutter on software, hardware, and concurrency. "Welcome to the Jungle".
http://herbsutter.com/welcome-to-the-jungle/

[AND-83]

— Gregory Andrews and Fred Schneider - “Concepts and Notations for Concurrent
Programming”, ACM Computing Surveys, Vol. 15, No. 1, March 1983

[CLE-96]
— Rance Cleaveland, Scott Smolka et al - “Strategic Directions in concurrency Research”, ACM
Computing Surveys, Vol. 28, No. 4, Dec. 1996

[ROS-97]

— Roscoe, A. W. (1997). The Theory and Practice of Concurrency. Prentice Hall. ISBN
0-13-674409-5.

[BUH-05]

— Peter Buhr and Ashif Harji. “Concurrent Urban Legends”. Concurrency and Computation:
Practice and Experience. 2005. 17:1133-1172.

PAP LM - IS] - Cesena - UNIBO Introduction

http://herbsutter.com/welcome-to-the-jungle/

BIBLIOGRAPHY

[HEW-77]

— C. Hewitt. Viewing Control Structures as Pattern of Passing Messages. Journal of Artificial
Intelligence, 8(3):323-364, 1977

[AGH-86]

— Gul Agha. Actors: A model of concurrent computation in distributed systems. MIT Press, 1986.
[NIE-87]

— Oscar Nierstrasz. Active Obijects in Hybrid. SIGPLAN Notices, 1987
[LAV-96]

— R. Greg Lavender, Douglas C. Schmidt. Active Object An Object Behavioral Pattern for
Concurrent Programming. Proc.Pattern Languages of Programs, 1996

[GEL-92]

— D. Gelernter, N. Carriero. Coordination Languages and their Significance. Communications of the
ACM. Vol 33, Issue 2, Feb. 1992

[JOHO6]

— Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. 2006. Creol: a type-safe object-oriented
model for distributed concurrent systems. Theor. Comput. Sci. 365, 1 (November 2006), 23-66

[KARO09]
— Karmani, Shali, Agha. Actor Frameworks for the JVM Platform: A Comparative Analysis. PPPJ 09
[SCH10]

— Jan Schafer and Arnd Poetzsch-Heffter. 2010. JCoBox: generalizing active objects to concurrent
components. In Proceedings of the 24th European conference on Object-oriented programming
(ECOOP'10), Theo D'Hondt (Ed.). Springer-Verlag, Berlin, Heidelberg, 275-299.

PAP LM - IS] - Cesena - UNIBO Introduction

BIBLIOGRAPHY

[JOH-12]

— Einar Broch Johnsen, Reiner Hahnle, Jan Schafer, Rudolf Schlatte, Martin Steffen. ABS: A
Core Language for Abstract Behavioral Specification. Lecture Notes in Computer Science
Volume 6957, 2012, pp 142-164

PAP LM - IS] - Cesena - UNIBO Introduction

