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The search for possible mixing patterns of charged leptons and neutrinos is im-
portant to get clues of the origin of nearly maximal mixings, since there are some
preferred bases of the lepton mass matrices given by underlying theories. We sys-
tematically examine the mixing patterns which could lead to large lepton mixing
angles. We find out 37 mixing patterns are consistent with experimental data if
taking into account phase factors in the mixing matrices. Only 6 patterns of them
can explain the observed data without any tuning of parameters, while the others
need particular choices for phase values.

1 Introduction

The Super-Kamiokande experiment has confirmed the neutrino oscillation in
atmospheric neutrinos, which favors the νµ → ντ process with a large mixing
angle sin2 2θatm ≥ 0.88 and a mass-squared difference ∆m2

atm = (1.6−4)×10−3

eV2 1. On the other hand, the recent data of Super-Kamiokande favors the
large mixing angle (LMA) MSW solution2 for the solar neutrinos problem, but
there are still four solutions allowed; the small mixing angle (SMA) MSW3, the
LMA-MSW, the low ∆m2 (LOW), and the vacuum oscillation (VO) solutions4.
As a result, the neutrino mixing matrix (MNS matrix 5) has two possibilities:
one is the matrix with single maximal mixing, which gives the SMA-MSW so-
lution for the solar neutrino problem, and the other with bi-maximal mixing 6,
which corresponds to the LMA-MSW, LOW, and VO solutions.
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Assuming that the neutrino oscillations only account for the solar and
atmospheric neutrino data, one can consider prototypes of the MNS mixing
matrix UMNS with single maximal mixing, and with bi-maximal mixing. Where
is the origin of the above nearly maximal mixings? This is one of the most
important problems in the lepton mixing. In almost all models for the fermion
masses and mixing, there are some preferred bases given by underlying theo-
ries of the models. The maximal mixing angles generally follow from both the
charged-lepton and neutrino mass matrices. The search for possible mixing
patterns of charged leptons and neutrinos is therefore important for construct-
ing models with maximal lepton mixings. We systematically investigate the
mixing patterns where at least one of the mixing matrices has sources of max-
imal mixings 7. Our analysis is not concerned with any particular structures
of lepton mass matrices and hence with the mass spectrum of neutrinos.

2 Phenomenology of Mixing Matrices

When the charged-lepton and neutrino mass matrices are given, the MNS
matrix is defined as

UMNS = V †
E Vν , (1)

where V ’s are the mixing matrices which rotate the left-handed fields so that
the mass matrices are diagonalized. The mixing matrices VE and Vν are gen-
erally parameterized as follows:

VE = P U(23)P ′ U(13)U(12)P ′′, Vν = P U(23)P
′
U(13)U(12)P

′′
. (2)

Here U(ij) are the rotation matrices,

U(23) =

(

1 0 0
0 c23 s23

0 −s23 c23

)

, U(13) =

(

c13 0 s13

0 1 0
−s13 0 c13

)

, U(12) =

(

c12 s12 0
−s12 c12 0

0 0 1

)

(3)

in which sij = sin θij and cij = cos θij , and P ’s are the phase matrices;
P = diag(1, eia, eib), P ′ = diag(1, 1, eiδ), and P ′′ = diag(eip, eiq, eir). The

matrices U(ij), P , P
′
, and P

′′
in the neutrino side take the same forms as

above. Since there are six mixing angles in VE and Vν , it is meaningful to
raise a query which angles are responsible for the observed maximal mixings
in UMNS. In order to answer this, we analyze the mixing patterns in a model-
independent way.

Now, the MNS mixing matrix is written as

UMNS = {U(23)P ′ U(13)U(12)}† Q U(23)P
′
U(13)U(12) ≡ U †

E Q Uν , (4)
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in which Q = P ∗P ≡ diag(1, eiα, eiβ). As will be seen below, in our analysis,
the phase factors in the matrix Q sometimes play important roles to have
phenomenologically viable mixing angles. The mixing matrix U(ij) and U(ij)
are determined if the mass matrices of charged leptons and neutrinos are given.
In the first approximation, we assume that these mixing angles are zeros or
maximal ones, and then examine possible combinations of UE and Uν combined
with indications of Super-Kamiokande and long baseline neutrino experiments.

Let us consider 9 types of mixing matrices for UE and Uν . The first three
types of matrices are given by taking one of mixing angles being maximal and
the others being zero:

A =





1 0 0
0 1√

2

1√
2

0 − 1√
2

1√
2



 , S =





1√
2

1√
2

0

− 1√
2

1√
2

0
0 0 1



 , L =





1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2



(5)

where we use the notation A, S, and L for three type mixing matrices of UE

and Uν . The second three types of matrices are given by taking one of mixing
angles being zero and the others being maximal:

B =







1√
2

1√
2

0

− 1

2

1

2

1√
2

1

2
− 1

2

1√
2






, H =







1

2

1

2

1√
2

− 1√
2

1√
2

0

− 1

2
− 1

2

1√
2






, N =







1√
2

0 1√
2

− 1

2

1√
2

1

2

− 1

2
− 1√

2

1

2






.(6)

The threefold maximal mixing 8 and the unit matrix are also added in our
analyses:

T =







1√
3

1√
3

1√
3
e−iδ

− 1

2
− 1

2
√

3
eiδ 1

2
− 1

2
√

3
eiδ 1√

3

1

2
− 1

2
√

3
eiδ − 1

2
− 1

2
√

3
eiδ 1√

3






, I =





1 0 0
0 1 0
0 0 1



 . (7)

In addition to these, one specific mixing, which is the so-called democratic type
mixing 9, is examined because this mixing is different from the above ones and
may be derived from well-motivated underlying theories:

D =







1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3






.

s12 = 1/2
s13 = 1/

√
3

s23 = 1/
√

2
(8)

By using the above types of mixing matrices, we have 81 (= 9× 9) combi-
nations of matrices for the MNS matrix UMNS, in which the phases α, β, δE ,
and δν are free parameters. Note that if at least one of the matrix elements is
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zero in UE (Uν), we can take P ′ (P
′
) as a unit matrix without loss of generality.

The phase δE (δν) can be absorbed into the matrices P ′′ (P
′′
) and/or Q.

We examine the MNS matrices according to phenomenological constraints
coming from the atmospheric neutrino experiments. The Chooz experiment 10

also provides a useful guide for the classification of mixing matrices, in par-
ticular, for the (UMNS)e3 element. The solar neutrino problem can be solved
with both large and small mixing angle solutions, which are now predictions
of our systematic search of taking 81 combinations of UE and Uν . We here
take a convention where the mixing between the labels 2 and 3 is relevant to
atmospheric neutrinos and the mixing between the labels 1 and 2 to the solar
neutrino problem. We find that the 81 mixing patterns are classified into the
following five categories:

• class 1: small mixing for atmospheric neutrinos

• class 2: large value of (UMNS)e3

• class 3: small mixing for atmospheric neutrinos when (UMNS)e3 ≪ 1 by
tuning phase values

• class 4: consistent with experiments by tuning phase values

• class 5: consistent with experiments independently of phase values

The classes 4 and 5 are consistent with the experimental data. We have also
checked the “stability” of our classification numerically by taking the fluctua-
tions of all mixing angles in the region of θij = θij ± 5◦ both in the charged-
lepton and neutrino sectors. Due to a constraint from the Chooz experiment,
one may usually assume that a bi-maximal mixing matrix takes the form of
type B. It is, however, found here that the matrix N , which has a large 1-3
mixing, gives exactly the same results as the matrix B does. (The predictions
for 1-2 mixing angles are also the same.) This would give a new possibility of
model-building for the fermion masses and mixings.

In the category of class 5, there are the following 6 mixing patterns:

(UE , Uν) = (A, S), (A, I), (I, A), (I, B), (D, S), (D, I). (9)

An interesting fact we find in (9) is that without tuning of phase parameters
(i.e., in class 5), a large 1-2 mixing relevant to the solar neutrino problem must
come from the neutrino side (except for the cases of democratic-type mixing).
This may be a natural result in view of the charged-lepton mass matrix and
commonly discussed in the literature. That is, in the charged-lepton sector,
the mass hierarchy between the first and second generations may be too large
for the large angle solar solutions. It is, however, noted that the same result
can be obtained only from a viewpoint of mixing matrices.
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Class 4 contains the other 31 patterns of mixing matrices. These patterns
require suitable choices of phase values to be consistent with the experimen-
tal data. The result is summarized in Table 1, which shows the values of
mixing angle for atmospheric neutrinos (sin2 2θatm) and for solar neutrinos
(sin2 2θ⊙) in cases that the values of (UMNS)e3 are fixed to be minimum. For
each combination, we also present the relevant phases which are tuned to ob-
tain the minimum value of (UMNS)e3. In some cases, the mixing angles of
sin2 2θatm and sin2 2θ⊙ have some uncertainties in their predictions. It is be-
cause there are remaining phase degrees of freedom even with fixed values of
(UMNS)e3. The mixing patterns in class 4 have different numbers of phase tun-
ing to obtain experimentally suitable MNS matrices. For example, the types
(UE , Uν) = (A, A) and (A, B), which are often seen in the literature, requires
only one tuning of phase values to fix all the mixing angles in UMNS (see also
the next section). These combinations have not been discussed so far in the
literature and would provide new possibilities for constructing models where
fermion masses and mixing angles are properly reproduced.

3 Texture of Lepton Mass Matrices

Let us begin with discussing the patterns in class 5. As noted in the previous
section, these mixing patterns are well known in the literature, in other words,
there are a lot of models of mass matrices which lead to these mixing patterns.
We summarize the 6 patterns briefly assuming that neutrinos are Majorana.

The first pattern is the case (UE , Uν) = (A, S), which predicts bi-maximal
mixing for the MNS matrix. Such a type of texture is at first derived in SO(10)
grand unified models 11. The next one is the case (UE , Uν) = (A, I), which
predicts single maximal mixing for the MNS matrix. These mass matrices are
indeed obtained in E7, E6, and SO(10) grand unified theories12. The third one
is (UE , Uν) = (I, A), which gives single maximal mixing for the MNS matrix.
This texture can be given by, for example, R-parity violating models 13. The
fourth one is (UE , Uν) = (I, B), which gives bi-maximal mixing for the MNS
matrix. This texture follows from radiative generation mechanisms for neutrino
masses 14. The fifth and sixth patterns are specific ones because they depend
on the democratic lepton mass matrix 9. All the above mixing patterns are
allowed by the experimental data without any tuning of phases, α, β, δE, ν .

Next let us discuss the mixing patterns in class 4, where the presence of
phase factors is essential in the MNS matrix to have right values of mixing
angles. There are 31 patterns classified into this category, but only a few mass
matrix models with these mixing patterns have been proposed. These patterns
thus provide potentially useful textures of lepton mass matrices.
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At first, we discuss a well-known example (UE , Uν) = (A, A) which is
derived from the mass matrices,

ME ∝



 λ2 1
λ2 1



 , Mν ∝



 1 1
1 1



 , (10)

obtained in the models with U(1) flavor symmetries 15,16. The mixing angles
at leading order become

θatm =
β − α

2
, θ⊙ = (UMNS)e3 = 0, (11)

that gives a SMA solution for the solar neutrino problem. The experimental
constraint, (UMNS)e3 ≪ 1, is satisfied, but for atmospheric neutrinos, tuning
of phase values for β−α must be involved. In the presence of the phase matrix
Q, a cancellation of two large mixing angles from UE and Uν can be avoided.

Another pattern for which concrete models have been constructed is the
case of (UE , Uν) = (A, B), which can be derived from the mass matrices,

ME ∝



 λ2 1
λ2 1



 , Mν ∝





1 1
1 ǫ
1 ǫ



 . (12)

These textures have been discussed in Ref. 17. It is pointed out in Ref. 16 that
this combination of the mixing matrices is also derived from the mass matrices
in Eq. (11). The mixing angle θatm is the same as Eq. (11), and a phase value,
β − α ≃ π/2 must be chosen to get maximal mixing of atmospheric neutrinos.

We here comment on the models 18 which introduce the following type of
mass matrices:

ME ∝





λ3 λ2 1
λ3 λ2 1
λ3 λ2 1



 , Mν ∝





1 1 1
1 1 1
1 1 1



 . (13)

This corresponds to (UE , Uν) = (T, T ), or to a special case (UE , Uν) = (D, D),
where suitable MNS matrices can also be obtained by phase tuning.

As noted in the previous section, in class 4, there are several new mixing
patterns which have not yet been discussed. Let us show an example of the
case (UE , Uν) = (S, N). This mixing pattern could be derived from

ME ∝





λ4 λ2

λ4 λ2

λ2 1



 , Mν ∝





2
√

2
√

2√
2 1 + ǫ 1 − ǫ√
2 1 − ǫ 1 + ǫ



 . (14)
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In this case, we have

sin2 2θatm = sin2 2θ⊙ =

∣

∣

∣

∣

1

2
+

1

2
√

2
eiα

∣

∣

∣

∣

2

, (UMNS)e3 =

∣

∣

∣

∣

1

2
− 1

2
√

2
eiα

∣

∣

∣

∣

.(15)

Here we would like to emphasis that a single phase tuning of α can ensure
all the mixing angles to be consistent with experiments. Since the (UMNS)e3

mixing in (15) is close to the Chooz bound, this pattern will be tested in the
near future. Including the above example, we find several possible mixing
patterns which no one has discussed so far (see Table 1). Model-construction
utilizing such types of textures may be worth being performed.

4 Summary and Discussion

We have found that there are many allowed mixing patterns of charged lep-
tons and neutrinos for the MNS matrix with bi-maximal or single maximal
mixing. Among them, only 6 mixing patterns are allowed without any tuning
of phase values. Interestingly, these patterns are indeed derived from the con-
crete models which have been proposed to account for the fermion mass hier-
archy problem. The other patterns can give solutions of the observed neutrino
anomalies depending on the choices of phase values. In this class, physically
significant mixing patterns might be the ones which need a fewer numbers
of phase tuning to have definite predictions consistent with experiments. We
have found that 9 combinations satisfy this criterion, a single phase tuning re-
quired. They have not been studied enough in mass matrix models and would
give new possibilities of model-construction. The phases to be tuned are not
completely unphysical unlike the quark sector, but some of them could be con-
nected to Majorana phases and CP violation in the lepton sector. Combined
with these effects, the measurements of mixing angles sin2 2θ⊙ and (UMNS)e3

will be important to select possible mixing patterns.
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UE—Uν sin2 2θatm sin2 2θ⊙ (UMNS)e3 (# of) phases

A—A 0 − 1 0 0 (0)

A—B 0 − 1 1 0 (0)

S—D 8/9 0 0 α (1)

S—T 8/9 1/4 − 1 0 α + δν (1)

S—N 0.73 0.73 0.15 α (1)

L—T 8/9 1/4 − 1 0 β + δν (1)

L—N 0.73 0.73 0.15 β (1)

L—D 8/9 3/4 0 β (1)

B—T 8/9 1/4 − 1 0 α, β (2)

B—H 0.73 0.23 − 0.96 0.15 β (1)

B—L 0.73 0.73 0.15 β (1)

B—D 8/9 15/16 0 α, β (2)

H—T 8/9 1/16− 1 0 α, β (2)

H—B 0.73 0.23 − 0.96 0.15 α − β (1)

H—N 1 1 0 α, β (2)

H—A 0.73 0.73 0.15 α − β (1)

H—D 8/9 15/16 0 α − β (1)

Table 1: The mixing patterns in class 4. The values of mixing angles are shown in case of
(UMNS)e3 being minimal. The last column denotes the (number of) relevant phases which
are needed for tuning (UMNS)e3. The uncertainties in sin2 2θatm and sin2 2θ⊙ are fixed by
additional phase tunings.
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UE—Uν sin2 2θatm sin2 2θ⊙ (UMNS)e3 (# of) phases

N—T 8/9 1/4 − 1 0 α, β (2)

N—H 0.73 0.23 − 0.96 0.15 β (1)

N—L 0.73 0.73 0.15 β (1)

N—D 8/9 15/16 0 α, β (2)

T—T 0 − 1 0 − 1 0 α + δν , β + δν (2)

T—B 1 1/9 − 1 0 δE , α − β (2)

T—H 1 1/9 − 1 0 δE , β (2)

T—N 8/9 − 1 8/9 0 α, β (2)

T—A 1 8/9 0 δE , α − β (2)

T—L 1 8/9 0 δE , β (2)

T—D 0 − 1 0 − 1 0 α, β (2)

D—T 0 − 1 1/4 − 1 0 α + δν (1)

D—N 1/36 − 0.96 0.73 0.15 α (1)

D—D 0 − 1 0 0 α (1)

Table 1 (continued.)
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