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Abstract 

In this paper a simulation study of a parametric mixture model of three different distributions is considered to 
model heterogeneous survival data. Some properties of the proposed parametric mixture of Exponential, Gamma 
and Weibull are investigated. The Expectation Maximization Algorithm (EM) is implemented to estimate the 
maximum likelihood estimators of three different postulated parametric mixture model parameters. The 
simulations are performed by simulating data sampled from a population of three component parametric mixture 
of three different distributions, and the simulations are repeated 10, 30, 50, 100 and 500 times to investigate the 
consistency and stability of the EM scheme. The EM Algorithm scheme developed is able to estimate the 
parameters of the mixture which are very close to the parameters of the postulated model. The repetitions of the 
simulation give parameters closer and closer to the postulated models, as the number of repetitions increases, 
with relatively small standard errors. 

Keywords: survival time analysis, maximum likelihood, em-algorithm, mixture model, simulation, exponential 
distribution, gamma distribution, weibull distribution 

1. Introduction 

The survival time data analysis is concerned with the analysis of time to occurrence of a particular event of 
interest. The data are usually related to clinical studies of human or laboratory studies of animal or studies to test 
the life time of some devices. Historically, nonparametric techniques were used to handle survival data. 
Parametric distributions are the conventional techniques in statistics; they are very useful if the selected 
parametric probability distribution fits the data properly. The most frequently used parametric distributions in 
survival time data analysis includes the Exponential, Gamma, and Weibull among others (Ibrahim, Chen, & 
Sinha, 2001; Kalbfleisch & Prentice, 2002; Lawless, 2003; Lee & Wang, 2003). In cases of data with 
heterogeneous structure, mixture distributions are more convenient to handle such data. Recently, a considerable 
number of authors used mixture model technique to analyse survival time data. Cheng and Fu (1982) proposed a 
parametric mixture model of Weibull distribution where they employed the weighted least squares method to 
estimate the parameters. Jiang and Kececioglu (1992a) estimated the parameters of a mixture model of Weibull 
distribution using graphical approach. They (Jiang & Kececioglu, 1992b) also developed a new procedure to 
estimate the parameters of a mixture model of Weibull.  

Zhang (2008) proposed a two-component mixture model of the Weibull-Weibull distribution to model survival 
time data and investigated the suitability of the model in survival analysis. Also Erisoglu, Erisoglu and Erol 
(2012) modelled heterogeneous survival time data by a mixture model of Gamma-Gamma, a mixture of 
Lognormal-Lognormal and a mixture of the Weibull- Weibull distributions, where they investigated the best fit 
model to real survival time data. A mixture model of mixed distributions was proposed by Ersioglu and Erol 
(2010), to model heterogeneous survival time data, where they employed a two component mixture model of the 
Extended Exponential-Geometric (EEG) distribution. In Erisoglu, Erisoglu and Erol (2011), a mixture of two 
different distributions Exponential-Gamma, Exponential-Weibull and Gamma-Weibull were used to model 
heterogeneous survival data. 
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In the case of open-heart surgery, Blackstone, Naftel and Turner Jr. (1986) identified three overlapping phases of 
death after surgery which could be modelled by a three component parametric mixture model instead of the 
conventional parametric survival time model, as was pointed out by Ng, Mclachan, Yau, and Lee (2004) and 
Philips, Coldman, and McBride (2002). Mixture of different distributions would be appropriate to model a 
different mode of hazard in heterogeneous survival time data. The Expectation Maximization Algorithm (EM) is 
effectively used in cases of data with missing of unobserved observations (Dempster, Laird, & Rubin, 1977). 
The maximum likelihood estimates of the parameters of the survival mixture model are estimated usually via 
(EM) (Mclachlan & Peel, 2000; Mclachlan & Krishnan, 2008). 

The purpose of this paper is to investigate the consistency and stability of EM in estimating the parameters and 
the appropriateness of a mixture of three different distributions in analysing heterogeneous survival time data. 
The article is arranged as follows. Section two to discusses survival analysis and some frequently used 
theoretical distributions and their properties. Section three will be devoted to discussing the mixture model of 
three different distributions in the survival time analysis. Section four for the implementation of EM scheme to 
estimate the maximum likelihood estimator of the model. Section five is devoted to simulation, estimation of the 
parameters of the model and demonstrates the successful convergence of the EM, consistency and stability of the 
scheme. 

2. Survival Analysis and Functions  

Survival analysis deals with the implementation of certain statistical techniques to model and analyze survival 
time data. The primary interest in such data is the endpoint time when an event of interest occurs. Generally, the 
events of interest are referred to as failures. They could be; the time to death of a patient, time to learning a new 
skill, time to exit from unemployment, time to promotion for employees and time to breakdown of some device. 
The response of primary interest, T is a non-negative random variable representing survival time of an individual 
and can be described by three important functions. The probability density function (pdf) denoted by ( )f t , which 
can be written as 

  ( )dF t
f t

dt
                                  (1) 

Where ( )F t is the the responsetion function of response variable T. The probability density function can also be 
presented graphically, the graph of ( )f t , is known as the density curve. The density function ( )f t is a 
nonnegative function and the area between the curve and the t axis is equal to 1. The survival function denoted 
by ( )S t , which can be written as 

   1S t F x                                         (2) 

that represents the probability that an individual survives beyond time ݐ. Note that the survival function ܵሺݐሻ is 
a monotonic decreasing continuous function with  0 1S  and    lim 0

t
S S t


   . The hazard function which 

is denoted by ( )h t , and can be written as 

 
0

( | ) ( )
lim

( )t

p t T t t T t f t
h t

t s t 

     


                      (3)
 

representing the probability that an individual fails within a small interval ( , Δ )t t t , given that the individual 
survived to the beginning of the interval. The cumulative hazard function of the survival time T is defined by; 

   
0

t

H t h u du                                       (4) 

Therefore, when 0t  then   1S t  and   0H t  , and when t   then,   0S t  and  H t   . That is, the 
cumulative hazard function can assume any value between zero to infinity. The hazard function specifies the 
instantaneous rate of failure at time ݐ given that the individual survived up to time ݐ, and sometimes it is 
known as the instantaneous failure rate, force of mortality, conditional mortality rate, and age-specific failure 
rate. The hazard function is also presented graphically. These three functions are equivalent if any one of them is 
known then the two others can be derived (Lee & Wang, 2003). 

Parametric statistical techniques are convenient tools in survival analysis; provided that the selected parametric 
distribution adequately fit the data at hand. In the literature the Exponential, Gamma and Weibull probability 
distributions are the most frequently used density functions in modelling survival time data (Cheng & Fu, 1982; 
Jian & Kececioglu, 1992a; Ng, Mclachan, Yau, & Lee, 2004; Zhang, 2008; Erisoglu & Erol, 2010; Erisoglu, 
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Erisoglu, & Erol, 2011, 2012). The probability density function ( )f t , survival functions ( )S t and hazard 
functions ( )h t of these distributions are highlighted below.  

Exponential Distribution 

  , 0t
Expf t e t                                   (5) 

  t
ExpS t e                                      (6) 

  1
ExpE t 


                                     (7) 

Gamma Distribution 

  1 , 0
Γ( )

t

Gm

e
f t t t and





   

 
                        (8) 

  xΓ (α)
1

Γ( )GmS t  


                                (9) 

GmE                                      (10) 

where Γ ( )x   is known as the incomplete Gamma function.  

Weibull Distribution 

 
1

, 0Wbl

t t
f t exp t and

     
               

                (11) 

 Wbl

t
S t exp

  
      

                            (12) 

  1
Γ 1WblE t
     

                             (13) 

3. Parametric Mixture of Three Different Distributions 

Mixture models are implemented to analyse survival time data in different situations, because of their flexibility, 
and they are the best choice in situations where a single parametric distribution may not suffice (Mclachlan & 
Peel, 2000; Fruhwirth-Schnatter, 2006). A mixture model of three different distributions is considered where it is 
assumed that it is sampled from a population consisting of three subpopulation or subgroups. The mixture model 
can be expressed as 

 , , 1 2 3;Θ ( ; ) ( ; ) ( ; )X Y Q X X Y Y Q Qf t f t f t f t                             (14) 

Where the vector 1 2 3Θ ( , , , , , )X Y Q       , contains all the unknown parameters in the mixture model. The 
functions  ; , ( ; )X X Y Yf t f t  and ( ; )Q Qf t   are known as the mixture component density functions for some 
parameters ,X Y  and Q  respectively. 

In this paper a mixture of three different distributions of Exponential, Gamma and Weibull is proposed to model 
heterogeneous survival time data, the different distribution takes care of different hazard mode in the 
heterogeneous data, and the model defined as 

  1 2 1 1 3 2 2;Θ ( ; ) ( ; , ) ( ; , )Exp Gm Wbl Exp Gm Wblf t f t f t f t                          (15) 

Where 'i s are the mixing proportions or mixing probabilities and
3

1

1i
i

  . The functions Expf , Gmf  and Wblf , 

as defined in (5), (8) and (11), are the probability density functions of Exponential, Gamma and Weibull 
distributions respectively.  

4. The Expectation Maximization Algorithm (EM) and Parameter Estimation  

The EM Algorithm is frequently employed in the literature as an efficient technique to estimate the maximum 
likelihood estimators of finite mixture models (Mclachlan & Krishnan, 2008).  

Let 1 2, , , nt t t  be a set of observations of n incomplete data and 1 2 3, ,z z z  be a set of missing observations, 
where   1ki k iz z t  , if the observation belongs to the kth component and 0 otherwise for 1,2,3k  and

1, ,i n  . Here z`s are treated as missing values when applying the EM Algorithm to the mixture distribution. 
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The EM Algorithm proceeds in two steps, the Expectation step or the E-step and Maximization step or the 
M-step. 

In the E step the iz Variables are considered as missing data, the expectation ,( | )ki iE z t  is obtained to estimate 
the hidden variable vector 1 2 3, ][ ,i i i iz z z z .  

Thus  

     
1

1 1
1 2 3

( ; )
|

; ; ( ; )
ˆ X i X

i i i
X i X Y i Y Q i Q

f t
z E z t

f t f t f t

 
 

       
                   (16) 

     
2

2 2
1 2 3

( ; )
|

; ; ( ; )
ˆ Y i Y

i i i
X i X Y i Y Q i Q

f t
z E z t

f t f t f t

 
 

       
                  (17) 

     
3

3 3
1 2 3

( ; )
|

; ; ( ; )
ˆ Q i Q

i i i
X i X Y i Y Q i Q

f t
z E z t

f t f t f t

 
 

       
                  (18) 

The functions    1 2| , |i i i iE z t E z t and  3 |i iE z t calculated in the E step will be maximized in the M step of the 

EM Algorithm under the condition
3

1

1i
i

  . The Lagrange method can be employed to estimate the mixing 

probabilities ߨ௜ and parameter vector [ , , ]X Y Q     . The estimated mixing probabilities are; 

1 1
1

ˆ ˆ
1 n

i
i

z
n 

                                         (19) 

2 2
1

ˆ ˆ
1 n

i
i

z
n 

                                        (20) 

3 3
1

ˆ ˆ
1 n

i
i

z
n 

                                        (21) 

The maximum likelihood estimator of the parameter ߣ for the proposed model can be obtained by the equation 
(22)  

1

1 1
1 1

ˆ ˆ ˆ
n n

i i i
i i

z t z


 

    
 
                                  (22) 

The maximum likelihood estimators of the parameters ߙଵ and ߚଵ	for the proposed model can be estimated from 
the equations (23) and (24) respectively  

   

 

n n

2i i 2i it 1 t 1
1, 1, n n

2i 2it 1 t 1
1,( 1) 1,

'
1,

1,

ˆ ˆ
ˆ ˆ

ˆ

z t z ln t
ln( ) Ψ ln

ˆ
ˆ ˆ

ˆ

z

1
ˆ

z

Ψ

r r

r r

r
r

 

 


 
     
 
    
 



 
 

              (23) 

and 
1

1 1 2 2
1 1

ˆ ˆ ˆ ˆ
n n

i i i
i i

z z t


 

    
 
                                 (24) 

Where ݎ is the number of Newton-Raphson iteration within EM Algorithm and Ψሺ. ሻand Ψ′ሺ. ሻ are a digamma 
and trigamma functions respectively. 

The maximum likelihood estimators of the parameters ߙଶ and ߚଶ	for the proposed model can be estimated from 
the equations (25) and (26) respectively.  

 
2,

2,( 1) 2, 2

2 2
2,

ˆ
ˆ ˆ

1
ˆ

1 r
r

r r

r r

r r r

r r

C
A

B

B D C

B



   
           

 
   

                       (25) 
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Where
1

3 3
1 1

ˆ ˆ ln
n n

r i i i
i i

A z z t


 

   
 
  , 2,ˆ

3
1

ˆ r

n

r i i
i

B z t



 , 2,

3
1

ˆˆ lnr

n

r i i i
i

C z t t



 ,  2, 2ˆ

3
1

ˆ lnr

n

r i i i
i

D z t t



  and r is the number 

of Newton-Raphson iteration within EM Algorithm. 

2

2

1
1

2 3 3
1 1

ˆ
ˆˆ ˆ ˆ

n n

i i i
i i

z z t
 



 

  
       
                               (26) 

5. Simulation  

Simulations were performed to investigate the convergence of the proposed EM scheme. Samples of size 400 
observations were generated, each of them randomly sampled from three-component survival mixture model of 
Exponential, Gamma and Weibull. There was no restriction imposed on the number of iterations and 
convergence was achieved when the differences between successive estimates were less than 10-4. Three 
different postulated models were considered with a different set of parameters. The result of the parameter 
estimation of the three sets of mixture model is given below: 

5.1 The First Postulated Mixture Model 

The set of parameters of the postulated mixture model is 1 2 1 20.1, 0.6( , ) = ( 2, 9,, 9,          
1 22, 25)    , and the model can be written as  

  1 1 2 20.1 ( ; 2) 0.6 ( ; 9, 2) 0.3 ( ; 9, 25)Exp Gm Wblf t f t f t f t                 

Where the density functions fExp, fGm and fWbl are Exponential, Gamma and Weibull densities as defined in (5), (8) 
and (11). The mixing probabilities for each component are 1 0.1  , 2 0.6   and 3 0.3  . 

The result of the parameter estimation, shown in Table 1, shows that the estimated parameters of the model are 
almost similar to the true postulated parametric mixture model parameters. 

 

Table 1. The result of the simulation of the first postulated model 

Parameters ࣊૚ ࣊૚ ࢻ ࣅ૚ ࢻ૛ ࢼ૚ ࢼ૛ 

Postulated model 0.1 0.6 2 9 9 2 25 

Proposed model 0.10175 0.60050 1.94297 9.25717 9.00000 2.03143 24.89839 

 

Figure 1 displays the comparison between the probability density function of the parametric Exponential, 
Gamma and Weibull mixture and the probability density functions of each single distribution. The histogram 
represents the simulated data. As can be seen the mixture model fits the simulated data far better than the single 
distributions. 

 
Figure 1. The density function of three component parametric mixture versus the single distributions of the first 

postulated model 
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5.2 The Second Postulated Mixture Model 

The set of parameters of the postulated mixture model is ሺߨ, ߣ ,ଶ= 0.375ߨ ,ଵ= 0.3ߨ) = ሻߠ ൌ 3, ߙଵ ൌ 11, ߙଶ ൌ 7, ߚଵ ൌ 4, ߚଶ ൌ 6.3), and the model can be written as  

  1 1 2 20.3 ( ; 3) 0.375 ( ; 11, 4) 0.325 ( ; 7, 6.3)E G Wf t f t f t f t                 

Where the density functions fExp, fGm and fWbl are Exponential, Gamma and Weibull densities as defined in (5), (8) 
and (11). The mixing probabilities for each component are ߨଵ ൌ 0.3, ߨଶ ൌ 0.375 and ߨଷ ൌ 0.325. 

The result of the parameter estimation shown in Table 2 shows that the model estimated parameters are almost 
similar to the parameters of the true postulated parametric mixture model. 

 

Table 2. The result of the simulation of the second postulated model 

Parameters ࣊૚ ࣊૚ ࢻ ࣅ૚ ࢻ૛ ࢼ૚ ࢼ૛ 

Postulated model 0.3 0.375 3 11 7 4 6.3 

Proposed model 0.30154 0.38002 2.72490 10.39157 7.00000 4.02030 6.25523

 

Figure 2 displays the comparison between the probability density function of the parametric Exponential, 
Gamma and Weibull mixture and the probability density functions of each single distribution. Also here it can be 
observed that the mixture model fit the simulated data far better than the distribution of each component. 

 
Figure 2. The density function of three component parametric mixture versus the each single distribution of the 

second postulated model 

 
5.3 The Third Postulated Mixture Model 

The set of parameters of the postulated mixture model is ሺߨ, ߣ ,ଶ= 0.4ߨ ,ଵ=0.25ߨ) = ሻߠ ൌ 2, ߙଵ ൌ	8, ߙଶ ൌ 
ଵߚ ,10 ൌ 4, ߚଶ ൌ 5), and the model can be written as  

  1 1 2 20.25 ( ; 2) 0.4 ( ; 8, 4) 0.35 ( ; 10, 5)E G Wf t f t f t f t                 

Where the density functions fExp, fGm and fWbl are Exponential, Gamma and Weibull densities as defined in (5), (8) 
and (11). The mixing probabilities for each component are ߨଵ ൌ 0.25, ߨଶ ൌ 0.4 and ߨଷ ൌ 0.35. 

The result of the parameter estimation shown in Table 3 shows that the model estimated parameters are almost 
similar to the parameters of the postulated parametric mixture model. 

 

Table 3. The result of the simulation of the third postulated model 

Parameters ࣊૚ ࣊૚ ࢻ ࣅ૚ ࢻ૛ ࢼ૚ ࢼ૛ 

Postulated model 0.25 0.4 2 8 10 4 5 

Proposed model 0.24698 0.39824 2.09577 8.03957 10.0000 3.98857 5.00431 
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Figure 3 displays the comparison between the probability density function of the parametric Exponential, 
Gamma and Weibull mixture and the probability density functions of each single distribution. Also here it can be 
observed that the mixture model fit the simulated data far better than the distribution of each component. 

 
Figure 3. The density function of three component parametric mixture versus the each single distribution of the 

third postulated model 

 
5.4 Consistency and Stability of the EM 

The simulation has been repeated 10, 30, 50, 100 and 500 times, with samples of size 400 observations for each 
postulated model, to investigate the consistency and stability of the EM scheme. The averages of the estimated 
parameters of the three components, Exponential, Gamma and Weibull mixture model, and their corresponding 
standard errors for the first, second and third postulated models are listed in Tables 4, 5 and 6 respectively. It can 
be observed that the estimated mixing probabilities get closer and closer the values of the three postulated 
models as the number of repetitions increases. When the number of repetitions is 500 the estimated mixing 
probabilities become exactly the same as that of the postulated models. The standard errors for the mixing 
probabilities are relatively very small.  

Likewise, the estimates of the Exponential, Gamma and Weibull distributions get close to the parameters of the 
postulate model. Note that the shape parameters of the Weibull distribution are estimated exactly as that of the 
postulated models for all the repetitions. 

 
Table 4. The result of the repeated simulation of the first postulated model 

Parameters ࣊૚ ࣊૚ ࢻ ࣅ૚ ࢻ૛ ࢼ૚ ࢼ૛ 
Postulated model 0.1 0.6 2 9 9 2 25 

10 times avሺ࣊, ሻ 0.098 0.608 2.056 8.851 9.000ࣂ 1.992 24.863

seሺ࣊, ሻ 0.004 0.004 0.183 0.510 0.000ࣂ 0.006 0.193 

50 times avሺ࣊, ሻ 0.099 0.601 1.992 9.008 9.000ࣂ 2.004 24.963

seሺ࣊, ሻ 0.004 0.004 0.199 0.560 0.000ࣂ 0.010 0.228 

100 times avሺ࣊, ሻ 0.100 0.600 2.009 9.057 9.000ࣂ 2.004 24.974

seሺ࣊, ሻ 0.004 0.004 0.200 0.613 0.000ࣂ 0.011 0.228 

500 times avሺ࣊, ሻ 0.100 0.600 2.018 9.026 9.000ࣂ 2.000 24.986

seሺ࣊, ሻ 0.004 0.004 0.228 0.687 0.000ࣂ 0.011 0.236 

Note: avሺπ, θሻ, seሺπ, θሻare the averages and standard errors of the estimated parameters respectively. 
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Table 5. The result of the simulation of the second postulated model 

Parameters ࣊૚ ࣊૚ ࢻ ࣅ૚ ࢻ૛ ࢼ૚ ࢼ૛ 

Postulated model 0.3 0.375 3 11 7 4 6.3 

10 
times 

avሺ࣊, ሻ 0.299 0.375 2.963 10.746ࣂ 7.000 4.011 6.291 

seሺ࣊,  ሻ 0.004 0.007 0.225 0.863 0.000 0.004 0.059ࣂ

50 
times 

avሺ࣊, ሻ 0.301 0.372 3.014 10.845ࣂ 7.000 3.993 6.277 

seሺ࣊,  ሻ 0.004 0.009 0.231 0.866 0.000 0.005 0.082ࣂ

100 
times 

avሺ࣊, ሻ 0.301 0.375 3.016 10.920ࣂ 7.000 4.004 6.298 

seሺ࣊,  ሻ 0.005 0.009 0.214 0.775 0.000 0.005 0.074ࣂ

500 
times 

avሺ࣊, ሻ 0.300 0.375 3.018 11.053ࣂ 7.000 3.997 6.291 

seሺ࣊,  ሻ 0.005 0.009 0.223 0.848 0.000 0.005 0.076ࣂ

Note: avሺπ, θሻ, seሺπ, θሻare the averages and standard errors of the estimated parameters respectively. 

 

Table 6. The result of the repeated simulation of the third postulated model 

Parameters ࣊૚ ࣊૚ ࢻ ࣅ૚ ࢻ૛ ࢼ૚ ࢼ૛ 

Postulated model 0.25 0.4 2 8 10 4 5 

10 times avሺߨ, ሻߠ 0.249 0.399 2.007 7.978 10.000 3.999 5.022 

seሺߨ, ሻߠ 0.009 0.007 0.098 0.475 0.000 0.004 0.025 

50 times avሺߨ, ሻߠ 0.251 0.399 1.990 7.951 10.000 4.012 4.996 

seሺߨ, ሻߠ 0.010 0.010 0.096 0.491 0.000 0.005 0.038 

100 times avሺߨ, ሻߠ 0.250 0.400 2.005 8.028 10.000 4.004 5.000 

seሺߨ, ሻߠ 0.010 0.099 0.105 0.529 0.000 0.005 0.041 

500 times avሺߨ, ሻߠ 0.250 0.400 2.001 8.014 10.000 3.999 5.001 

seሺߨ, ሻߠ 0.009 0.010 0.103 0.494 0.000 0.005 0.041 

Note: avሺπ, θሻ, seሺπ, θሻare the averages and standard errors of the estimated parameters respectively. 

 

The table’s show that the EM scheme converged to the true values of the parameter in 10, 50, 100 and 500 
repetitions and that emphasizes the stability of the algorithm in estimating the parameters with different 
proportion of mixing probabilities. The averages are close to the true values of the parameters and the standard 
errors are relatively small which suggest that the EM parameter estimates performed consistently.  

6. Conclusions 

The paper proposed a mixture model of three different distributions namely, Exponential, Gamma and Weibull 
to model the heterogeneous survival time data. EM algorithm was employed to estimate the maximum likelihood 
estimator of the parameter of the parametric mixture model. The convergence of the EM was investigated 
through the simulations performed. The results revealed that the EM successfully estimated the parameters of the 
three component mixture model. The mixture model of three different distributions, Exponential, Gamma and 
Weibull could be successfully applied to model heterogeneous survival time data instead of the conventional 
parametric models.  
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