
Achieving “One-Web” through
customization and prioritization

Nassiriah Shaari
University Utara Malaysia, Sintok, Malaysia, and

Stuart Charters and Clare Churcher
Lincoln University, Lincoln, New Zealand

Abstract

Purpose – Accessing web sites from mobile devices has been gaining popularity but may often do
not give the same results and experiences as accessing them from a personal computer. The paper
aims to discuss these issues.

Design/methodology/approach – To address these issues, the paper presents a server-side
adaptation approach to prioritising adaptive pages to different devices through prioritisation system.
The prioritisation approach allows users to prioritise page items for different devices. The prioritisation
engine reorders, shows, and removes items based on its priority set by users or developers.

Findings – With this approach, the overall web page’s structure is preserved and the same
terminology, content, and similar location of content are delivered to all devices. A user trial and a
performance test were conducted. Results show that adaptive page and prioritisation provides a
consistent and efficient web experience across different devices.

Originality/value – The approach provides advantages over both client-side and proxy and has
conducted significant experimentation to determine the applicability and effectiveness of the
approach.

Keywords Advanced web applications, Applications and standards, Mobile computing for the internet,
Performance of web applications, Web semantics architectures, Applications and standards

Paper type Research paper

1. Introduction
Producing and maintaining multiple versions of a web site for different platforms is
expensive, time consuming and error prone (Byron, 2011). Visitors can become
frustrated navigating different versions of a web site if the site layout and structure is
not consistent (Compuware, 2011). The “One-Web” W3C (2008) approach to web
development is a single web site that provides a consistent experience across different
platforms.

To achieve a “One-Web” web site, we present an approach which allows the
customised delivery of a single site to different platforms based on user preferences.
The primary driver of our work is the display of web sites on mobile devices as they
continue to be the largest growing platform for accessing the internet. This is particularly
the case in economically less developed countries where mobile communication
infrastructure is being deployed more rapidly, with higher data rates and greater
reliability than traditional telecommunications infrastructure (ITU, 2011; Ohri, 2011).

We have trialled our adaptation engine against a social networking site, Facebook,
as it has a large user base and currently maintains multiple versions of the web site for
different platforms.

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/1744-0084.htm

Received 4 February 2013
Revised 22 May 2013
Accepted 24 May 2013

International Journal of Web
Information Systems
Vol. 9 No. 4, 2013
pp. 264-278
q Emerald Group Publishing Limited
1744-0084
DOI 10.1108/IJWIS-02-2013-0002

IJWIS
9,4

264

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/19967262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper, we outline previous approaches to prioritisation and customization of
web site content before describing the implementation of our adaptation engine. We
also describe the user trials of a site designed in a “One-Web” manner and delivered
using our adaptation engine against the traditional multi-version implementation.

2. Background
There are a number of prior approaches to the issue of web content adaptation. These
approaches can be characterised by where they take place (server-side, through a
proxy, client-side) as well as by how the adaptation is carried out. Customization
occurs when users alter aspects of the delivered page such as the position,
appearance, or the type or amount of content. Personalization is similar but it is the
system which determines the changes based on a user’s historical preferences
(Nielsen, 2009).

Some common examples of customization include: moving, adding, or removing
blocks of content on a page (e.g. Yahoo! and iGoogle); modifying preferences such as
menu options, displaying images or including widgets; or changes to colours and fonts.

Several studies have investigated approaches to customizing web pages, which
allows users to determine content or items of interest for mobile devices.

PROTEUS (Anderson et al., 2001) makes use of syntactic translation using the
information seeking routes of the current and previous visitors to shorten navigation
paths through web sites and remove content from pages. This approach reduces the
amount of data required to be downloaded by a mobile web visitor and also the number
of clicks required to find information. Proteus runs on a web proxy and acts as an
intermediary between the site visitor and the site itself. Proteus builds a set of tuples as
a state search space of the web site and uses a utility function to evaluate each state.
A search can then be conducted to find the best state for a given visitor given their
prior history and the history of other users. The results of the search return a modified
page which has shortcuts to information the visitor is likely to request. An evaluation
of Proteus showed that whilst the prototype implementation was not suitable for real
time personalization (taking minutes to return a customised page) off-line
pre-personalized pages improved the user experience for mobile web visitors by
reducing the time to find information they required.

Highlight (Nichols and Lau, 2008) allows users to create a mobile version of
existing web sites on a desktop. Highlight splits web site pages into multiple pages or
“pagelets”, based on tasks users demonstrate on a desktop version. This helps to
reduce individual page size and download time on the mobile devices. Highlight
allows users to test their customised applications. If there are missing tasks, users
can add them to the application. It is suitable for sites with tasks that are frequently
performed by users. These were all done through Highlight Designer, a proxy-side
adaptation system that adapts the page content and layout. Highlight (through its
Highlight Designer) is a proxy-side adaptation system that adapts both the page’s
content and layout. An informal user study conducted with three users showed that
Highlight Designer is easy to use even by novice users. An empirical evaluation
comparing performing the same set of tasks using Highlight to browse with desktop
browser features showed that Highlight application reduces the number of
interactions.

Customization
and prioritization

265

PageTailor (Bila et al., 2007) is a reusable end-user customization tool for the mobile
web, which allows customization to be made on a user’s browser via a plug-in. It is
targeted to PDA uses and implemented on the Minimo web browser. It allows users to
adapt the layout of web pages in which users can move, remove, or resize page items.
The customization is stored on the device’s persistent storage, thus allowing the same
customization to be applied on each visit until the cookies expire. PageTailor first loads
the whole page (except images, which are loaded after the customization
rules/preferences are applied) on the browser and applies the customization on the
DOM tree. The customization is done once or for a minimal number of pages and is
long lasting. User studies conducted in lab experiments showed that the customization
lasts at least a month and is applicable to more than 75 per cent of pages with similar
structure. Other pages with similar page structure will also be customized based on the
earlier customization. However, users may want to have different things available on
different sites regardless of them having the same structures. Low-end and mid-range
devices may not support large storage. In addition, users need to install a specific
browser and plug-in to use the adaptation engine.

A customizable mobile device oriented web data extraction scheme has been
proposed by Xiao et al. (2008, 2009). The customization engine resides in a proxy
server, as they found that most users did not agree to install a plug-in on the client
device. Based on the DOM tree, the system splits web page into two layers – a link
block and the corresponding content block. The engine customizes and personalizes
content based on a user’s browsing history. Similar to PageTailor, it will deliver
content that users want and hide the rest; but the adaptation and customization is done
using AJAX instead of a browser plug-in. The customization and personalization only
works if the mobile device supports AJAX as part of the system requires AJAX code to
run on the client-side. Similar to PageTailor and Highlight, the customization process
involves content and layout adaptation. The system was evaluated for its efficiency
(speed) and effectiveness (accuracy) of the splitting mechanism, which showed the
system’s efficiency and effectiveness are acceptable.

A toolkit to personalize web pages for mobile devices has been proposed by
Kao et al. (2009). The concept of the adaptation engine is also similar to PageTailor
by Bila et al. (2007) but it requires users to set their preferences through a desktop
computer instead of on the client device. The system allows users to determine
blocks of content on a web page to be displayed or retained after customization. The
mobile code for the personalisation, called PageTailor and is implemented in
JavaScript (N.B. this PageTailor is not the same as the PageTailor developed by
Bila et al. (2007)). User preferences for the page are identified by the XPath
expressions of the object or content. Users can specify the preference by selecting
blocks of items to retain and altering their order on the customized page. This is done
using the visual manipulation provided by PageTailor code, which manipulates the
page through the DOM interface. To access the customized page, users need to
configure their browser to go through a proxy first. Filtering the unwanted content
reduces the page length, which in turn reduces scrolling. No detailed evaluations
were reported. However, simple tests conducted showed that the system worked
consistently across the two browsers tested (Internet Explorer and Firefox) and was
stable as customization based on users’ preferences produces the same blocks of
content on different days.

IJWIS
9,4

266

Proteus (Caetano et al., 2007) (note this Proteus is different from that of
Anderson et al. (2001)) is a proxy side dynamic adaptation system adapting web pages
on small screen devices based on user preferences stored in a profile. The HTML code
is validated and unimportant information such as comments are removed. The DOM
structure is used to represent the page in memory for further actions. For each block of
summarised text, a more link is appended at the end of the summary that links to the
original text. Proteus allows users to filter images or figures, so only textual
information is displayed. It allows users to determine the compression rate for images
if they decide to display the image. It also adapts a page into a thumbnail or
conventional HTML text. All these are done based on users’ preferences specified on a
form on the web. Preliminary results showed that the system worked as intended.
No formal user studies or empirical evaluation was reported.

These existing approaches are limited in their applicability and generalizability as
they often rely on specific client software or technology, e.g. a specific browser or
Javascript capability. This limits the extent of their potential uptake.

3. User requirements
In order to develop our approach we conducted a number of user surveys and a user
trial. Our survey (Shaari, 2013) showed that the use of mobile devices for accessing the
web was increasing but was not yet widespread. Issues that users reported with
accessing web sites on mobile devices included:

. infrastructure issues;

. slow downloads;

. unstable connections;

. design issues;

. jumbled page content;

. long pages requiring lots of scrolling; and

. difficulties viewing images.

In addition to the issues with accessing web sites on mobile devices we also surveyed
the types of web site most commonly accessed both on desktop and mobile devices.
The most frequently accessed type of web site on both classes of devices were social
networking sites, of these, Facebook was the most common. For this reason the
Facebook web site was selected as an exemplar for our study.

Facebook maintains two sites: one for desktop machines and one for mobile devices.
A user trial comparing these two sites (Shaari, 2013) found that users were confused
and frustrated with inconsistent layout, functionality and navigation between the sites.
Based on the results of those trials we set out to develop an approach which would
allow a single web site to:

. ensure a similar page structure is delivered on all devices;

. ensure consistency of terms used and the location of items on all devices;

. minimise items displayed and reduce navigation within a page; and

. support users visiting the site on multiple different devices.

Customization
and prioritization

267

4. Our approach
Our initial user trial (Shaari, 2013) showed that users often had different use-cases for a
site depending on which device they were using to access the site. The users wanted to
access different items on the site using their desktops and mobile devices. We therefore
developed an approach where all items on the master page can be associated with a
level of prioritisation. In this section we discuss how we achieved this.

Our approach is to allow the priority of div elements in a HTML page to be set by the
developer or the user. These priorities can be customised for each device or class of
device. We also propose the use of a cut-off value. The cut-off value is designed to
remove low priority content and therefore reduce page size, and download times. We
anticipate that the cut-off value will be of particular use for small screen devices and
those with limited network connectivity. If the cut-off value is used, we recognise that it
may be important to access the removed content occasionally and therefore propose the
use of a , more. . . . link to allow the user to access the page with no content removed.

To achieve this we augment the div HTML tags of a page with a rank attribute. This
allows developers and users to specify priorities for different devices. We recommend
that developers provide default priorities for different classes of device and users can
alter these individually if they choose. We developed a server-side database to store the
default and user defined prioritisations. A significant component of realising our
approach is the prioritisation engine which modifies the page to reflect user priorities
before delivering it to the remote device.

5. Specifying priorities for page elements
In (X)HTML the div tag is the structural element used to separate the page into
different sections and to control page layout. This is common practice for many web
sites and is employed in sites such as Yahoo![1], Google[2], and Stuff[3].

In our approach we categorise divs into two categories, prioritisable and
non-prioritisable. Prioritisable divs are those which have an attribute id, and are thus
uniquely identifiable. Non-proritisable divs are those which are not uniquely identified.
Each div could also have divs or other elements nested within it. The attribute id acts as
a unique identifier for the item within a page. Non-prioritisable divs will remain in the
prioritised page and will assume higher priority and be displayed first among its
prioritisable siblings. The distinction between prioritisable and non-prioritisable items
allows the developer control over which items can be re ordered.

In order to manipulate and prioritise the divs, we introduce a new attribute rank
which is added to the attribute list of a div. The rank attribute is processed by the
prioritisation engine but does not impact the display or rendering of HTML by
browsers allowing developers to retain their existing development tools and workflow
in developing web sites.

The values for the pair of id and rank for each page element are stored in a database
on the server for each user and for each device. A cut-off value can also be stored for
each user and device. This is the maximum number of page elements that will initially
displayed on the prioritised page. The remaining elements will be available via a
, more. . . . link.

Developers can determine default values of cut-off and element ranks for each class
of device. If this is done carefully the need for individuals to select and store their own
preferences will be greatly reduced. Users who wish to modify their preferences will

IJWIS
9,4

268

need to be identifiable; typically this would be through a registration and
authentication process. Other users will get the default options.

6. Prioritisation engine
The prioritisation engine is a core component of our approach. The engine reads the
rank augmented HTML page, the preferences stored for the page and device and then
performs the prioritisation and outputs the final result for delivery to the user’s
browser. The full process is shown in Figure 1 and described in more detail below.

When a page is requested via the prioritisation engine the requesting device is
detected using the user agent string. If a user is identifiable then the user’s preferences
are retrieved from the database, if not the default priorities are retrieved. The HTML
page is loaded from disk and preferences are associated with page elements via the
attribute id in the div element. The prioritisation algorithm is then run. If a cut-off has
been set then items with a priority at or below the cut-off are removed and the
, more. . . . link added to the page to allow them to be displayed if required.
An XSLT processor is then used to re-order and transform the remaining elements on
the page. Items are sorted based on the value of the attribute rank in ascending order.
For each level of the page tree divs are sorted relative to other divs at that level. Thus, a

Figure 1.
Tasks performed by

the prioritisation engine

Query Preference
and cutoffNo

Load HTML

Sort and output

Assign Preference

Remove Low
Priority Items

Add Link ‘more...’

Read URL Logged in?

Anonymous user
profile (default)

user profile

No

Detect
device

Yes

Cutoff?

No

yes

Customization
and prioritization

269

child node with priority 1 in a parent with priority 4 will appear below a child with
priority 2 in a parent with priority 3. Items with highest priority (value of 1) are
displayed first at that level. If multiple divs at the same hierarchical level share the
same preference, they are displayed in the order they initially appear in the HTML tree.
All other elements are copied unchanged. An example of how this works can be seen in
Figure 2(a)-(c), Figure 2(a) shows the structure of the original page after priorities have
been assigned but before the page has been re-ordered. Figure 2(b) shows how the page

Figure 2.
Original page structure
and prioritised results

(a)

(b)

(c)

Notes: Page structure with assigned priorities shown in yellow boxes; original page;
prioritised page with cut-off of 3 set. Lower priority elements can be accessed via the
<more…> link-

IJWIS
9,4

270

renders in a browser without being prioritised and Figure 2(c) shows the result after
the page has been processed by the prioritisation engine.

The prioritisation engine was implemented using PHP5 and employing the XSLT
processor libraries for manipulating page structure. User preferences and device
identification were stored in a MySQL database. The system was deployed on an
instance of Microsoft Internet Information Server 7 running on Windows 2008 R2
inside a virtual environment.

7. Evaluation
Having developed the prioritisation approach and implemented the prioritisation engine
we designed a two-fold evaluation. The first aspect of the evaluation is a user evaluation
to compare the utility and usability of the prioritised version of a web site with a more
traditional approach of developing multiple sites to satisfy the requirement of each class
of device. The second component of the evaluation was a performance evaluation to
examine the scalability of the solution and the impact of page delivery times.

Our earlier surveys had shown that the differences between the two versions of
Facebook (desktop and mobile) had caused users problems. A mock Facebook page was
prepared using the div structure described in Section 4. It was designed to closely
resemble the desktop Facebook page. Our earlier surveys (Shaari, 2013) showed a clear
preference for items thought most useful for mobile users and we used these to determine
ranks for page elements. Figure 3 shows the actual mobile Facebook page along with the
result from putting our mocked up page through the prioritisation engine.

8. Method
A trial was carried out to compare the actual and Facebook mobile page and our
prioritised mobile page as shown in Figure 3. We selected tasks from a set of frequent
tasks identified in Shaari (2013) which met one of the following criteria:

. Task 1. Located at the top of both pages (update status).

. Task 2. Difficult to find in Facebook mobile (find information about a friend).

. Task 3. Hidden behind “more . . . ” link in the prioritised mobile (display photo
album).

Full details of the trials can be found in Shaari (2013). Figure 4 shows an overview of
the trial process.

The background questionnaire asked about the participant’s use of Facebook and
experience with mobile devices and touch screens. An initial pilot revealed that
participants were able to use real phones better than emulator software. A touch screen
mobile phone was used for the actual trial and a familiarisation session was provide to
ensure the participants were familiar with the processes (e.g. scrolling, selecting) they
would require to carry out the tasks.

A within-subjects design was used for the trials (Nielsen, 1993). 14 regular Facebook
users were recruited for this trial from the Lincoln University community. All
participants performed the tasks on both the actual Facebook mobile site and the
prioritised mobile version. A second trial involved a different five participants carrying
out the same tasks using the actual and mocked up desktop versions.

To lessen the learning transfer effect, a counterbalancing approach (Sharp et al.,
2006) was used. The orders of versions of pages participants trialled were alternated.

Customization
and prioritization

271

After performing the three tasks on each version, participants were asked what they liked
and disliked about the site, what tasks proved difficult and what other comments they
might have. After participants completed the set of tasks on both versions they were
asked which version they preferred and about the factors that influenced their choice.

Then, a semi-structured interview was conducted. Participants were asked
questions related to their opinion about the overall concept of prioritisation.

9. Results
Times were recorded for participants completing the three tasks on the prioritised
version and on the actual Facebook mobile site. The means and one standard deviation

Figure 3.
Actual Facebook mobile
page and our mocked up
page after prioritisation

Facebook mobile page Mock Facebook page after prioritisation

IJWIS
9,4

272

of these times are shown in Figure 5 (the dotted box shows the mean time just for users
who completed Task 3). In all cases the tasks were carried out more quickly on
the prioritised version even among those users who had experience with using the
Facebook site.

A paired-samples t-test was conducted to examine whether there were significant
differences of mean completion time between the tasks performed on the prioritised
version and the tasks performed on the Facebook mobile version. The t-test results

Figure 4.
Protocol for user trials

Briefing+Consent

Background Questionnaire

Familiarisation with the
mobile (only for Study 1)

User Test (performing tasks)

Post-test Survey+Interview

Debriefing

Figure 5.
Mean completion times for

tasks performed on the
actual mobile site versus

the prioritised site

Customization
and prioritization

273

revealed completion time for each task was significantly shorter (p , 0.05) on the
prioritised version than on the Facebook mobile version

For Task 1 (updating status) and Task 2 (find a friend) users had difficulty on the
Facebook mobile version as the status box and search boxes were in a different
positions than on the full version. While the prioritised version looks quite different
from the full version the consistency in the relative positions of items made it easier for
the users to find their way around.

Task 3 (display photo album) was under the , more. . . . link on the prioritised
version. The majority of the users after scrolling down the first page confidently
investigated the , more. . . . link and completed the task. Two users took more time
but eventually found what they were looking for. On the actual Facebook page the
unfamiliar terminology for links (photos, photo stories) caused confusion to such an
extent that three users could not complete the task. Figure 5 shows the mean time for
all users (including those who abandoned the task) and also the times just for those
users who completed the task (dotted box).

Throughout the trials, participants were observed and were seen to use their
experience and knowledge from the Facebook full site to carry out the tasks on both the
prioritised and actual mobile versions. Participants seemed to easily find, with less
clicking and scrolling, the items they were looking for if the order or locations of items
had some similarities to the Facebook full site version. Conversely, most participants
were inclined to overlook the items that they were looking for if the items appeared in a
different location to that on the Facebook full site version.

It was observed that participants, using their desktop experience, have already
determined where things should be on a page. Thus, not initially finding the items
where they expected them to be, a few participants were reluctant to scroll further or
carefully inspect the page. This reluctance to scroll caused the participants to try and
click any link available on the top of the page even though the links were incorrect.
This observation is similar to those of Marsden et al. (2002) and Shrestha (2007) who
found that participants are reluctant and not prepared to scroll.

Participants were asked about being able to give their own priorities to elements on
the pages and were receptive of this idea. There was good agreement among the
participants about what items they would include the top five items being mentioned
by more than a third. This suggests that it would be possible to provide default
prioritisations that would be acceptable to the majority of users (although a larger trial
would be necessary to determine this more accurately). Users would be able to provide
their own modifications if they desired.

10. Performance trial
The performance of the prioritisation engine was tested to ensure that the time
required to perform the prioritisation would not devalue the users experience. The tests
were undertaken with: databases with different numbers of rows for user, device, item
tuples; pages with different numbers of prioritisable items and different numbers of
items being chosen to be displayed. Each part of the process was investigated:
querying the database, finding the prioritised items, ordering the items and displaying
them. The overall times for preparing and displaying a prioritised page was compared
with displaying a similar static page.

IJWIS
9,4

274

The greatest contribution to the overall time was querying as the database size
grew. Figure 6 shows the time for the prioritisation with different sized databases. The
tests were undertaken with a standard relational database without any query
optimisation. For much larger databases, different data structures or query
optimisation could be investigated if query time became an issue.

Increasing the size of the database from one thousand to one million records
increased the time taken by the query by approximately 0.3 milliseconds. If this linear
trend continues for larger databases then the additional time for increased rows should
be negligible.

The size of the page to be prioritised also has an effect on the performance of the
approach. Tests were done with up to 100 items on a page representing a large page.
The performance of each stage of the prioritisation process is shown in Figure 7.

Increasing the number of items in a page from ten to 100 items increased the time
taken by the UpdateRank phase by about 3 milliseconds; increased the time taken for
query by about 2 milliseconds; and increased the time for sort by only about 0.3
millisecond. If the linear trend continues for pages with more items then it suggests
that time could be an issue for UpdateRank and Query. This test was undertaken on a

Figure 6.
Time for queries over

database size
(thousands of rows)

Figure 7.
Time for different

prioritisation phases over
number of page items

Customization
and prioritization

275

prototype without any code optimization. Although it is unlikely that a page will have
more than 100 items, code optimization mechanisms could be investigated.

Results showed that the time taken to prioritise a page was higher than the time
taken to load the static page. To illustrate, on a database with 1,000 records,
prioritising a ten item page with five items assigned a preference (five items with a
preference) added around 19 milliseconds compared with loading the static page.
Similarly, on a database with 1,000 K records, prioritising a 50 item page with 50 items
of preferences added around 24 milliseconds than only loading the equivalent static
page.

The overall total time spent to deliver (prioritise and display) a prioritised page
including the network transmission delay and rendering time should be below the
general benchmark web site load times of 2-3 s (Gomez, 2010b) and should be within
the response time that most users are willing to wait for web sites to load on their
mobile devices (Compuware, 2011; Gomez, 2010a).

11. Discussion
Our results show the practicability and feasibility of the prioritisation of adaptive
pages to produce similar web pages on different devices. This approach allows only
one version of a web site be developed which reduces the costs associated with
developing and maintaining multiple versions of sites, and ensures consistency of
pages on all devices. It is easy for the developers. Developers can set defaults items to
be prioritised and displayed on different devices without changing the original desktop
version. The prioritisation also allows users to have only items of interest displayed;
and with carefully thought out defaults, only a minor customization is required for the
majority of users. Further work would determine if developers are able to determine
the appropriate defaults for a web site. Our results with users suggest that there is a
consensus among users as to which items are high priorities but that users will have
different relative priorities within that grouping. This would suggest that users would
need to make only small adjustments to priorities if any.

The prioritisation preserves the pages’ parent-child relationships, ensuring the
overall layout and structure of the original page is maintained. Our trials’ results
showed that this similarity and familiarity helped users to have a good browsing
experience, in which they were able to relate and recall their experience with the
familiar full site version, thus performing tasks easily. In comparison, users had
difficulty with navigating the differently structured pages for Facebook desktop and
mobile version. Participants performed tasks more quickly on the prioritised version.
The prioritisation also imposes only small overhead.

12. Conclusion
Our implementation was based on the assumption that web developers (or other
stakeholders involve in decision making in the web site development) would easily
detect and determine the areas of content to be prioritised (the divs that could be
prioritised) and would follow the general recommendation that each id within a page
should be unique.

The prioritisation engine was designed to operate on the server; this removes any
requirement for an intermediate proxy or client-side software. This approach enables
the delivery of a consistent experience to all users.

IJWIS
9,4

276

The requirements for our approach were:
. ensure a similar page structure is delivered on all devices;
. ensure consistency of terms used and the location of items on all devices;
. minimise items displayed and reduce navigation within a page; and
. support users visiting the site on multiple different devices.

The prioritisation engine approach meets these requirements by augmenting the div
element so the same source page generates pages for all devices. The use of a single
source ensures the consistency of structure and terms as content is preserved.
The items displayed can be customised on a per-device, per-user basis which supports
users visiting on an arbitrary number of devices and allows an experience that is
appropriate for the device being used.

We have undertaken both qualitative and quantitative evaluations of the approach
which have demonstrated that it requires very little overhead and provides a browsing
experience at least as good as, and in many cases better than, providing independent
sites.

Future work would allow the development of an appropriate user interface for
selecting priorities and expansion of the concept to manipulate media appropriately.
Our work has focused on sites with a structure that is generated server-side and has
not focused on sites that make extensive use of client-side scripts to dynamically create
or modify pages. Additional work would be required to accommodate this type of site.
We envisage a local prioritisation engine that works with server-side preferences and
priorities to just download the appropriate page items.

Notes

1. http://nz.yahoo.com/

2. www.google.co.nz

3. www.stuff.co.nz/

References

Anderson, C., Domingos, P. and Weld, D. (2001), “Personalizing web sites for mobile users”,
Proceedings of the 10th World Wide Web Conference (WWW10), Hong Kong.

Bila, N., Ronda, T., Mohomed, I., Truong, K.N. and Lara, E.D. (2007), “PageTailor: reusable
end-user customization for the mobile web”, Proceedings of the 5th International
Conference on Mobile Systems, Applications and Services, San Juan, Puerto Rico.

Byron, L. (2011), One Mobile Site to Serve Thousands of Phones, available at: www.facebook.
com/notes/facebook-engineering/one-mobile-site-to-serve-thousands-of-phones/101501
22073713920 (accessed 2 April 2011).

Caetano, M.F., Fialho, A.L.F., Bordim, J.L., Castanho, C.D., Jacobi, R.P. and Nakano, K. (2007),
“Proteus: an architecture for adapting web page on small-screen devices”, Network and
Parallel Computing, Lecture Notes in Computer Science, Springer, Berlin, pp. 161-170.

Compuware (2011), “What users want from mobile”, White Paper, available at: www.gomez.com/
wp-content/downloads/19986_WhatMobileUsersWant_Wp.pdf (accessed 22 July 2011).

Customization
and prioritization

277

Gomez (2010a), “Great expectations – what users want from the mobile web experience”, White
Paper, available at: www.gomez.com/resources/whitepapers/mobile-great-expectations4/
(accessed 19 November 2010).

Gomez (2010b), “When Seconds Count” National Consumer Survey on Website and Mobile
Performance Expectations, available at: www.gomez.com/wp-content/downloads/Gom
ezWebSpeedSurvey.pdf (accessed 1 October 2010).

ITU (2011), The World in 2011 ICT Facts and Figures, available at: www.itu.int/ITU-D/ict/facts/
2011/material/ICTFactsFigures2011.pdf (accessed 4 December 2011).

Kao, Y.-W., Kao, T.-H., Tsai, C.-Y. and Yuan, S.-M. (2009), “A personal web page tailoring toolkit
for mobile devices”, Computer Standards & Interfaces, Vol. 31 No. 2, pp. 437-453.

Marsden, G., Cherry, R. and Haefele, A. (2002), “Small screen access to digital libraries”, paper
presented at the CHI‘02 Extended Abstracts on Human Factors in Computing Systems.

Nichols, J. and Lau, T. (2008), “Mobilization by demonstration: using traces to re-author existing
web sites”, Proceedings of the 13th International Conference on Intelligent User Interfaces
Gran Canaria, Spain, 13-16 January.

Nielsen, J. (1993), Usability Engineering, Academic Press, Boston, MA.

Nielsen, J. (2009), Customization of UIs and Products, available at: www.useit.com/alertbox/
customization.html (accessed 18 August 2009).

Ohri, K. (2011), “The adoption of mobile devices for surfing internet will happen faster in India:
Mahesh Narayanan”, available at: www.afaqs.com/media/story.html?sid¼30940 (accessed
27 June 2011).

Shaari, N. (2013), “Customisation of web content for desktop and mobile devices”, PhD thesis,
Lincoln University, Lincoln.

Sharp, H., Rogers, Y. and Preece, J. (2006), Interaction Design: Beyond Human-Computer
Interaction, 2nd ed., Wiley, Hoboken, NJ.

Shrestha, S. (2007), “Mobile web browsing: usability study”, Proceedings of the 4th International
Conference on Mobile Technology, Applications, and Systems and the 1st International
Symposium on Computer Human Interaction in Mobile Technology, ACM, Singapore,
pp. 187-194.

W3C (2008), Mobile Web Best Practices 1.0, available at: www.w3.org/TR/mobile-bp/ (accessed
2008).

Xiao, X., Luo, Q., Hong, D., Fu, H., Xie, X. and Ma, W.-Y. (2009), “Browsing on small displays by
transforming web pages into hierarchically structured sub-pages”, ACM Trans. Web,
Vol. 3 No. 1, pp. 1-36.

Xiao, Y., Tao, Y., Li, Q. and Li, W. (2008), “A customizable mobile device oriented web data
extraction base on user behavior feedback”, paper presented at the 2008 International
Conference on Computer Science and Software Engineering, Wuhan, China, 12-14
December.

Corresponding author
Stuart Charters can be contacted at: stuart.charters@lincoln.ac.nz

IJWIS
9,4

278

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints

