Supplementary data for the article:

Malenov, D. P.; Veljković, D. Ž.; Hall, M. B.; Brothers, E. N.; Zarić, S. Influence of Chelate Ring Type on Chelate-Chelate and Chelate-Aryl Stacking: The Case of Nickel Bis(Dithiolene). *Physical Chemistry Chemical Physics* **2019**, *21* (3), 1198–1206. https://doi.org/10.1039/c8cp06312e

SUPPORTING INFORMATION

CCSD(T)/CBS calculations; comparison of CCSD(T)/CBS and DFT energies

Helgaker extrapolation method¹ was applied to determine MP2 energies at complete basis set (MP2/CBS). HF and MP2 energies were calculated with aug-cc-pVDZ and aug-cc-pVTZ basis sets (aDZ and aTZ in the following equations), and from their difference CORR (correlation) energies were obtained (Δ E(CORR) = Δ E(MP2) – Δ E(HF)). The HF energy at complete basis set (Δ E(HF/CBS)) and the CORR energy at complete basis set (Δ E(CORR/CBS)) were then obtained according to the following equations:

$$\Delta E(HF/CBS) = \frac{\Delta E(HF/aDZ) \cdot exp(-1.63 \cdot 3) - \Delta E(HF/aTZ) \cdot exp(-1.63 \cdot 2)}{exp(-1.63 \cdot 3) - exp(-1.63 \cdot 2)}$$
$$\Delta E(CORR/CBS) = \frac{3^3 \cdot \Delta E(CORR/aTZ) - 2^3 \cdot \Delta E(CORR/aDZ)}{3^3 - 2^3}$$

The MP2 energy at complete basis set was then derived as the sum of HF and CORR energies at complete basis set:

$\Delta E(MP2/CBS) = \Delta E(HF/CBS) + \Delta E(CORR/CBS)$

The CCSD(T)/CBS energies were determined by calculating interaction energies at HF and MP2 levels with aug-cc-pVDZ basis set²⁻⁴ and taking into account that the basis set dependence of MP2 and CCSD(T) energies is very similar:⁵

$$\Delta E(CCSD(T)/CBS) = \Delta E(MP2/CBS) + \Delta E(CCSD(T)/aug-cc-pVDZ) - \Delta E(MP2/aug-cc-pVDZ).$$

Optimized nickel *bis*(dithiolene) (**0**, Figure 1) and benzene molecules have D_{2h} and D_{6h} symmetry, respectively. By displacing the molecules in the directions associated with longer (y) and shorter (x) C_2 axis of molecular plane of nickel *bis*(dithiolene) (Figure 1), a total of three orientations were constructed for the calculation of CCSD(T)/CBS energies for chelate-aryl (A-C) and four orientations for chelate-chelate stacking (D-G) of nickel *bis*(dithiolenes) (Figure 1). For all of these CCSD(T)/CBS geometries the optimal normal distances were determined at B2PLYP-D3BJ/def2-TZVP level.

In orientation **A**, benzene center is above nickel atom, in orientation **B** benzene center is above chelate center, while in orientation **C** benzene center is above C-C bond center. For the construction of chelate-chelate model systems, the geometries found in the Cambridge Structural Database search of stacking interactions between two nickel *bis*(dithiolene) fragments⁶ were used. In orientation **D**, one nickel atom is above the other nickel atom and chelate rings entirely overlap; in orientation **E** the molecules are displaced along the y axis, with nickel of one molecule above the center of the chelate of the second molecule. In orientation **F**, they are displaced along the x axis, with nickel of one molecule above the center of interligand S-S distance. In model system **G**, the molecules are displaced between the x and y axes, with nickel of one molecule above the sulfur of the other molecule.

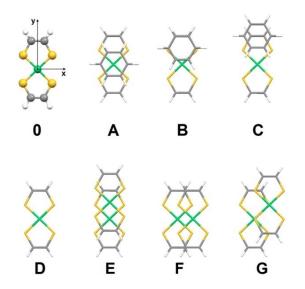
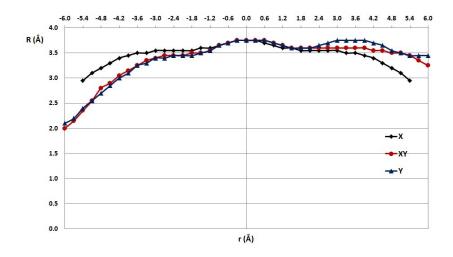


Figure S1. Nickel *bis*(dithiolene) molecule (**0**) with its C_2 molecular plane axes and orientations used for the CCSD(T)/CBS calculations of chelate-aryl (**A-C**) and chelate-chelate stacking (**D-G**) of nickel *bis*(dithiolene).


The CCSD(T)/CBS calculations show strong chelate-aryl stacking between nickel *bis*(dithiolene) and benzene, and significantly stronger chelate-chelate stacking between two nickel *bis*(dithiolenes) (Table 1). This is in agreement with previously calculated stacking of *acac* type of nickel chelate, which showed stronger chelate-chelate stacking⁶ than chelate-aryl stacking.⁷ Chelate-aryl stacking between nickel *bis*(dithiolene) and benzene (-5.60 kcal/mol, Table 1) is similar in strength to chelate-aryl stacking between *acac* type nickel chelate and benzene (-5.75 kcal/mol).⁷ However, chelate-chelate stacking of two *acac* type nickel chelates (-9.50 kcal/mol).⁶ Chelate-aryl stacking of nickel *bis*(dithiolene) is the strongest when benzene center is above nickel; however, chelate-chelate stacking of two nickel *bis*(dithiolenes) is the weakest when one nickel is above the other (Table 1).

chelate-aryl	r [Å]	R [Å]	ΔE(CCSD(T)/CBS) [kcal/mol]	ΔE(ωB97X-D)		
				6-31++G(d,p) [kcal/mol]	6-31++G(d) [kcal/mol]	6-31+G(d) [kcal/mol]
Α	1.763	3.60	-5.60	-5.45	-5.44	-5.43
В	0.000	3.75	-4.03	-3.93	-3.91	-3.91
С	2.186	3.55	-4.60	-4.68	-4.68	-4.66
chelate-chelate		R ΔE(CCSD(T)/CBS)		ΔE(PBE0-D3BJ)		
	[Å]	[Å]	[kcal/mol]	aug-cc-pVDZ [kcal/mol]	6-31G(d,p) [kcal/mol]	6-31G(d) [kcal/mol]
D	0.000	3.80	-6.86	-7.05	-6.89	-6.87
E	1.763	3.55	-10.31	-10.82	-10.09	-10.09
F	1.505	3.55	-8.26	-8.32	-8.02	-8.02
G	2.096	3.50	-9.31	-9.79	-9.09	-9.09

Table S1. Horizontal displacements (r), normal distances (R), CCSD(T)/CBS interaction energies for orientations A-F (Figure S1), and interaction energies calculated at ω B97X-D/6-31+G(d) (A-C) and PBE0-D3BJ/6-31G(d) (D-G) levels with different basis sets

It was found that ω B97X-D density functional gives very good agreement with CCSD(T)/CBS chelate-aryl stacking energies when used with 6-31++G(d,p) basis set (Table S1). However, the same accuracy was found by using less polarization functions (6-31++G(d)). Additionally, the same agreement was obtained by reducing the number of diffuse functions (6-31+G(d), Table S1). Therefore, due to computational costs, the ω B97X-D/6-31+G(d) method/basis set combination was used for the calculation of potential energy surfaces for chelate-aryl dithiolene stacking.

PBEO density functional with Grimme D3 dispersion correction and Becke-Johnson damping was found to give good agreement with CCSD(T)/CBS chelate-chelate stacking energies when used with aug-cc-pVDZ basis set (Table S1), which was used in our previous benchmark paper on chelate stacking.⁸ However, the accuracy was improved and computational costs lowered by taking the smaller 6-31G(d,p) basis set. Moreover, when basis set with less polarization functions (6-31G(d), Table S1) was used, the accuracy was the same. Therefore, the PBEO-D3BJ/6-31G(d) method/basis set combination was used for the calculation of potential energy surfaces for chelate-chelate stacking of nickel *bis*(dithiolenes).

Optimal normal distances for chelate-aryl and chelate-chelate stacking

Figure S2. Optimal normal distances for chelate-aryl stacking of nickel *bis*(dithiolene) and benzene. For the geometries of model systems, see Figure 2 in the main text

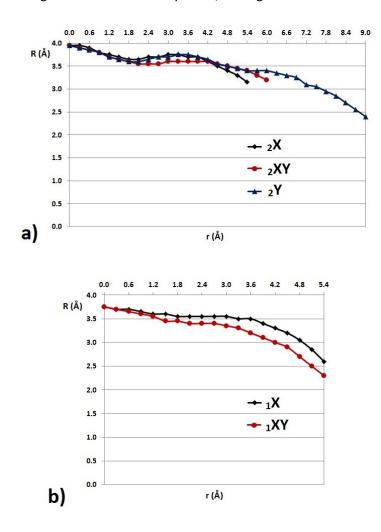


Figure S3. Optimal normal distances for *double face-to-face* (a) and *single face-to-face* (b) chelatechelate stacking of nickel *bis*(dithiolenes). For the geometries of model systems, see Figure 3 in the main text.

Optimized geometries of the minima at potential energy curves

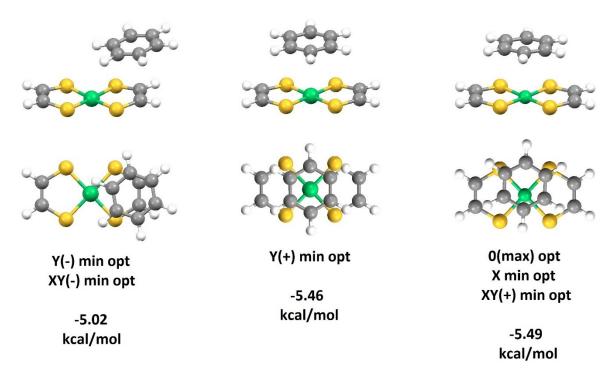


Figure S4. Two views of the optimized geometries for chelate-aryl stacking of nickel *bis*(dithiolene) and benzene. The starting geometries for each optimization are indicated. The optimizations were performed at ω B97X-D/6-31+G(d) level. This method is in best agreement with CCSD(T)/CBS data for the chelate-aryl stacking of nickel *bis*(dithiolene) and benzene (see Table S1), and the presented interaction energies of the optimized minima were calculated with that method.

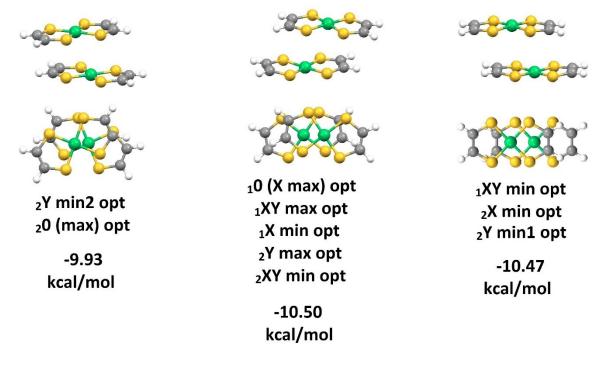


Figure S5. Two views of the optimized geometries for chelate-chelate stacking of nickel *bis*(dithiolenes). The starting geometries for each optimization are indicated. The optimizations were performed at PBE0-D3BJ/6-31G(d) level. This method is in best agreement with CCSD(T)/CBS data for the chelate-chelate stacking of nickel *bis*(dithiolenes) (see Table S1), and the presented interaction energies of the optimized minima were calculated with that method.

REFERENCES

- 1 T. Helgaker, W. Klopper, H. Koch and J. Noga, Basis-set convergence of correlated calculations on water, *J. Chem. Phys.*, 1997, **106**, 9639.
- 2 T. H. Dunning Jr, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, *J. Chem. Phys.*, 1989, **90**, 1007.
- 3 R. a Kendall, T. H. Dunning Jr. and R. J. Harrison, Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, *J. Chem. Phys.*, 1992, **96**, 6796.
- J. Dunning T.H., K. A. Peterson and A. K. Wilson, Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited, *J. Chem. Phys.*, 2001, **114**, 9244–9253.
- 5 M. O. Sinnokrot and C. D. Sherrill, Highly accurate coupled cluster potential energy curves for the benzene dimer: Sandwich, T-shaped, and parallel-displaced configurations, *J. Phys. Chem. A*, 2004, **108**, 10200–10207.
- 6 D. P. Malenov, S. D. Zarić, Chelated metal ions modulate the strength and geometry of stacking interactions: energies and potential energy surfaces for chelate-chelate stacking, Phys. Chem. Chem. Phys., 2018, **20**, 14053-14060.
- 7 D. P. Malenov, M. B. Hall and S. D. Zarić, Influence of metal ion on chelate-aryl stacking interactions, *Int. J. Quantum Chem.*, 2018, DOI: 10.1002/qua.25629
- D. P. Malenov, D. B. Ninković and S. D. Zarić, Stacking of Metal Chelates with Benzene:
 Can Dispersion-Corrected DFT Be Used to Calculate Organic-Inorganic Stacking?,
 ChemPhysChem, 2015, 16, 761–768.