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Thermosolutal convection in a horizontal porous layer heated from below
in the presence of a horizontal through flow

D. V. Lyubimov,1,a� T. P. Lyubimova,2 A. Mojtabi,3 and E. S. Sadilov2

1Theoretical Physics Department, Perm State University, Perm 614990, Russia
2Institute of Continuous Media Mechanics UB RAS, Perm 614013, Russia
3Institut de Mecanique des Fluides, Toulouse 31062, France

In this paper, we study the effect of a homogeneous longitudinal through flow on the onset of
convection in a horizontal porous layer saturated by a binary fluid and heated from below or above.
The layer boundaries are subjected to a constant heat flux. The investigation is made by taking the
Soret effect into account. It is found that in the case of positive separation ratio when the denser
component moves toward the cooler wall, through flow has no effect on the stability threshold but
exerts an orientating effect on the convective patterns. For negative separation ratio, a strong
destabilization occurs of the spatially homogeneous state with respect to long-wave disturbances.
The stability range for long-wavelength convective rolls is defined.

I. INTRODUCTION

Thermosolutal convection in a porous medium is a clas-
sical example of the problems that reveal the interaction of
different instability mechanisms. A great number of works in
this field of research are devoted to investigations into the
equilibrium stability of a binary mixture in a vertical tem-
perature gradient. In this case, the instability may occur for
heating both from below and from above.1 For the case of
double diffusive convection, in which inhomogeneity of the
concentration field is caused by the generation of a concen-
tration difference at the boundaries, the problem of mechani-
cal equilibrium stability is investigated in Refs. 1–6. These
works show that, as in the case of a homogeneous binary
mixture, the monotonic and the oscillatory instability may
arise for heating both from below and from above. For the
case in which the concentration inhomogeneity occurs due to
a thermodiffusion effect, stability of the mechanical equilib-
rium of a binary mixture in a horizontal porous layer is stud-
ied in Refs. 7 and 8 for high thermal conductivity boundaries
and in Refs. 9 and 10 for low thermal conductivity bound-
aries �in the conditions of fixed thermal flux�. A distinguish-
ing feature of the problem with fixed thermal flux at the
boundaries is that under such conditions, the long-wave in-
stability may exist in a wide range of parameters. Through
flow in the horizontal direction leads to a shift of distur-
bances and to a transformation of the monotonic instability
into oscillatory instability. The influence of horizontal
through flow on the stability of the horizontally homoge-
neous state at fixed temperatures at the boundaries is consid-
ered in Refs. 11 and 12 for the case of homogeneous binary
fluid, in Ref. 13 for a porous medium saturated by a single-
component fluid, and in Ref. 14 for a porous medium satu-
rated with a binary fluid. Thus far, there have been no works

considering the influence of horizontal through flow on the
long-wave modes of instability under conditions of fixed
thermal flux at the boundaries and the present study seems to
be the first work on this subject.

The problem under consideration can find many indus-
trial applications related to such processes as ingress of
moisture into thermal insulation materials, spread of wastes
in the soil, or food processing. The solution of this problem
will help scientists to take up the challenge of radioactive
and chemical waste disposal and purification of contami-
nated soils.

II. MATHEMATICAL FORMULATION

We consider an isotropic and homogeneous plane hori-
zontal porous layer heated from below and saturated with a
binary mixture. There is a through flow of the binary mixture
in a horizontal direction. The problem is examined by taking
into account the Soret effect. Let us introduce a Cartesian
rectangular coordinate system such that the z-axis is directed
vertically upward and the x- and y-axes along the horizontal
plane. The origin of the coordinates is located at equal dis-
tance from the horizontal boundaries of the layer. We assume
that the Darcy law is valid and that Oberbeck–Boussinesq
approximation1 is applicable: The thermophysical properties
of the binary fluid are considered constant except for the
density in the buoyancy term, which linearly varies with the
local temperature and mass fraction.

Thus, the governing conservation equations for mass,
momentum, energy, and chemical species with the Soret ef-
fect taken into account are
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�t
+ u� · �C = D�2C + �D�2T , �3�

� · u� = 0. �4�

Here, u� is the filtration rate, C is the mass fraction of the
denser component, K is the coefficient of permeability,
�T ,�C are volume coefficients of thermal and solutal expan-
sions, � is the ratio of the heat capacity of a unit volume of
porous medium saturated with a fluid to that of homogeneous
fluid, �eff is the effective thermal diffusivity, � is the porosity,
D is the mass-diffusion coefficient of the denser component
diffusion, � is the Soret coefficient, e�z is the unit vector of
the z-axis, and the rest of the notation is standard.

The problem is assumed to satisfy the following bound-
ary conditions: at the solid boundaries of the layer, the nor-
mal component of the filtration velocity vanishes, the heat
flux is fixed, the flux of the substance is absent, and the mass
flow rate along the x-axis is fixed,

z = − h, h:w = 0,
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�z
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�C

�z
= − �

�T

�z
, �5�

�
−h

h

�ux�ydz = 2Uh, �
−h

h

�uy�xdz = 0,

where h is the half-thickness of the layer, w is the vertical
component of the filtration velocity, A is the magnitude of
the prescribed temperature gradient, U is the through flow
velocity, and notation �¯� f � liml→��1 / l	−l/2

l/2
¯df�, where

f =x ,y is introduced for the procedure of averaging over the
horizontal coordinates.

Note that according to Eqs. �2� and �3�, the concentration
disturbances are transported by the fluid flow with the veloc-
ity u /�, i.e., with an average velocity of the fluid flow in
pores, whereas the temperature disturbances are transported
with the velocity u /�. This difference is related to the fact
that during transport of the mixture, the fluid motion occurs
only in pores, and during heat transfer, the heat is transported
not only through the fluid but also through the porous matrix.
In a homogeneous fluid, such a difference in velocities is
absent.

The through flow velocity is conveniently derived from
the filtration velocity, u� =u��+Ue�x, where e�x is the unit vector
of the x-axis �in the following, the prime mark will be omit-
ted�. After such substitution, the integral condition in Eq. �5�
becomes uniform, though in Eqs. �1�–�3�, additional terms
appear. Nonuniformity in Eq. �1� can be readily eliminated
through redefining the pressure, and additional terms in Eqs.
�2� and �3� can be removed by choosing an appropriate frame
of reference �without further transformation of velocity�.
However, this cannot be simultaneously accomplished in
both Eqs. �2� and �3�. In the following, the reference frame
moving along the x-axis with velocity U /� will be called
reference frame A �in this reference frame an additional term
vanishes from Eq. �2��, and the reference frame moving with

velocity U /� is called reference frame B �in this reference
frame, an additional term vanishes from Eq. �3��.

Let the units of length, time, velocity, temperature, con-
centration, and pressure be defined as follows:
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D
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The equations and boundary conditions in dimensionless
form are written as
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Problem �6�–�10� is characterized by the following dimen-
sionless parameters:

R =
g�TAKh2

�D
,

Pe =
Uh

D
,

Le =
�

D
, �11�

S = − �
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�T
,
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�

�
,

where Pe is the Peclet number, having the meaning of dimen-
sionless through flow velocity, Le is the Lewis number, and S
is the separation ratio; the parameter R is related to the Ray-
leigh number commonly used for a porous medium Rap

=4g�TAKh2 / ���� by the equation R=RapLe /4.
Problem �6�–�10� allows for a simple stationary solution,

u� = 0, T = − z, C = − Sz �12�

�the values of temperature and concentration at z=0 in the
convectionless state are used as the reference values of tem-
perature and concentration�.

The solution �12� describes the state of homogeneous
through flow at uniform vertical gradients of temperature and



concentration. Since, in this case, the fluid motion occurs
along the isotherms and isolines of concentration, the tem-
perature and concentration fields are not disturbed. In the
following sections, we will investigate the stability of this
state against small disturbances and weakly nonlinear re-
gimes.

III. LINEAR STABILITY OF THE BASIC STATE

A. Disturbances with finite wavelength

Let us make a linear stability analysis of the base state
stability to plane disturbances with finite wavelength. By lin-
earizing Eqs. �6�–�9� in the vicinity of the base state �12� and
neglecting pressure and the horizontal velocity components,
we obtain the system of equations

	w = R	��
 + c� , �13�

b
�


�t
+ Pe

�


�x
= Le�2
 + w , �14�

�c

�t
+ Pe

�c

�x
= �2c − S�2
 + Sw , �15�

with the boundary conditions

z = − 1,1:w = 0,
�


�z
= 0,

�c

�z
= 0. �16�

Here, 
 and c are the disturbances of temperature and con-
centration, respectively, and 	� is the Laplace operator with
respect to the horizontal coordinates.

For normal disturbances depending on x and t as e�teikx

�where � is the complex increment and k is the wave num-
ber�, we obtain a system of linear differential equations with
constant coefficients. The characteristic equation of this sys-
tem is a bicubic one. By solving this equation, constructing
the fundamental system, and satisfying boundary conditions,
we obtain the cumbersome transcendental equation for �.
The condition that the real part of the increment should be
equal to zero defines the boundary of linear stability of the
base state. The equation for � has been numerically solved.

At zero value of the Soret parameter, the equation for
concentration disturbances splits off and, as can be easily
shown, has only decaying solutions. After substitution of �
− ikPe /b for � �i.e., after passing to reference frame A� and
scale transformation, the obtained problem for w ,
 reduces
to the classical problem on equilibrium stability of the po-
rous layer heated from below. This means that at S=0, the
critical value of the Rayleigh number is independent of the
Peclet number, although the instability in the laboratory ref-
erence frame is of an oscillatory nature and the phase veloc-
ity of disturbances coincides with the transport velocity of
thermal disturbances.

1. Case of positive separation ratio

Now, let us discuss the results of the calculation for posi-
tive values of the separation ratio. Figures 1 and 2 show the
neutral curve R�k� and the dependence of phase velocity of
neutral disturbances on the wave number for different values

of the parameter Pe. When through flow is absent �Pe=0�,
the instability is monotonic, and it is the long-wave distur-
bances that are most dangerous �curve 1 in Fig. 1�. At non-
zero values of the Peclet number, the character of the insta-
bility changes to an oscillatory one so that, in this case, at all
Pe�0, the disturbances with finite wavelength are most dan-
gerous. It should be noted that for a critical value of the
parameter R, there is a finite limit at k→0, which does not
depend on Pe but differs from the stability threshold at Pe
=0. Thus, we are dealing here with the crossover effect: The
result of a sequence of limiting transitions, Pe→0, k→0,
depends on the order of their realization. A detailed consid-
eration of this phenomenon will be given in the section con-
cerning long-wave disturbances.

Actually, the phase velocity �Fig. 2� does not vary with k
and is very close to the value of Pe, suggesting that the
oscillatory character of the instability should be attributed to
the transport of solute by the base flow.
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FIG. 1. Neutral curves in the case of positive separation ratio at b=10, Le
=100, S=0.1, and different values of Peclet number: �1� Pe=0, �2� Pe
=0.111, �3� Pe=0.333, and �4� Pe=1.11.
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FIG. 2. Phase velocity of neutral disturbances vs wave number in the case of
positive separation ratio at b=10, Le=100, S=0.1 and different values of
Peclet number: �1� Pe=0.111, �2� Pe=0.333, and �3� Pe=1.11.



The dependence of the wave number of the most dan-
gerous disturbances km on the Peclet number is nonmono-
tonic �Fig. 3�. With an increase of the through flow velocity,
km first increases, then starts to decrease, and, at some value
Pe=Pe*, goes to zero. This value of Pe will be defined later
in the section dealing with long-wave asymptotics. At Pe
�Pe*, the long-wave disturbances are most dangerous.

The critical value Rm of the parameter R, corresponding
to the minimum on the neutral curve, as a function of the
Peclet number is plotted in Fig. 4. As can be seen, at Pe
Pe*, the value of Rm increases with the growth of Pe; at
Pe�Pe*, the instability threshold is independent of the Pe-
clet number.

2. Case of negative separation ratio

Let us discuss the results for negative values of the sepa-
ration ratio. As we know, in the absence of through flow7–10

at negative values of the Soret coefficient, the instability can
occur on heating both from below and from above. We first

consider the case of heating from below �R�0�. The neutral
curves of stability for this case are given in Fig. 5. In the
absence of through flow at preset values of the parameters S,
Le, and b, the instability is of an oscillatory character with its
lower level showing double degeneracy: the waves propagat-
ing in the negative and positive direction of the x-axis are
equal. At the values of Pe other than zero, this equality is lost
and the oscillatory level splits into two levels �see curves 1a
and 1b�. Note that in the laboratory reference frame, the di-
rection of waves corresponding to the most dangerous distur-
bances coincides with the direction of through flow. As in the
case of positive S, the crossover phenomenon can be ob-
served: All neutral curves corresponding to nonzero values
of the Peclet number have a limit at k→0, which does not
depend on the Peclet number and differs from the long-wave
limit at Pe=0. However, at S0 for low levels of instability,
the long-wave limit is lower than in the case of zero through
flow and, as a result, at Pe�0, the instability maintains the
long-wave character.

In the absence of through flow, for the most dangerous
disturbances, the disturbance frequency at k→0 tends to zero
according to the square law, so that the phase velocity goes
to zero. At Pe�0, the phase velocity in reference frame A
also goes to zero, as will be shown later. Thus, in the labo-
ratory reference frame, the phase velocity of the most dan-
gerous disturbances will coincide with the transport velocity
of the thermal disturbances, which is equal to Pe /b. The
dependence of the phase velocity of disturbances on the
wave number is shown in Fig. 6.

Thus, with heating from below and for a positive sepa-
ration ratio, the effect of the instability is of a solutal nature
and through flow has a stabilizing effect, whereas for nega-
tive separation ratio, the most dangerous disturbances are
thermal disturbances, on which through flow exerts a desta-
bilizing action.

Now, consider the case of heating from above. For a
negative separation ratio and in the absence of through flow,
heating from above may give rise to monotonic instability.

0 2 4 6Pe

0

0.02

0.04

0.06

0.08
km2

FIG. 3. Wave number of critical disturbances as a function of Peclet number
in the case of positive separation ratio at b=10, Le=100, and S=0.1.
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FIG. 4. Critical Rayleigh number Rm as a function of Peclet number in the
case of positive separation ratio at b=10, Le=100, and S=0.1.
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FIG. 5. Neutral curves in the case of negative separation ratio and heating
from below at b=10, Le=100, S=−0.02, and different values of Peclet
number: �0� Pe=0, �1a and 1b� Pe=0.333, and �2� Pe=1.11.



Its low level, corresponding to the Rayleigh number with the
lowest absolute value, is not degenerate. Therefore, at non-
zero values of the Peclet number and for a positive separa-
tion ratio, splitting of the levels is not observed but distur-
bances acquire an oscillatory character. The calculations
show that in this case, through flow has a destabilizing effect
and, at all values of the Peclet number, the long-wave distur-
bances are the most dangerous �see Fig. 7�.

The results described refer to plane disturbances. How-
ever, it is easy to demonstrate that we can apply the analog of
the Squire theorem to the problem under consideration. In-
deed, in Eqs. �13�–�15�, expressed in terms of disturbances
of temperature, concentration, and vertical velocity compo-
nent, the derivatives with respect to the horizontal coordi-
nates enter either the Laplace operator or the combination
Pe�� /�x�. This means that the equation for the amplitudes of
normal space disturbances differs from the equation for plane

normal disturbances in that the Peclet number is replaced by
the combination Pe cos �, where � is the angle between the
wave vector and the direction of through flow. Thus, the
results for space disturbances coincide with the results for
plane disturbances corresponding to the lower value of the
Peclet number. This implies that for S�0 when through flow
exerts a stabilizing effect on the plane disturbances, the space
disturbances are more dangerous than the plane ones. From
the results obtained, it might be concluded that the most
dangerous perturbations are the longitudinal rolls, i.e., the
convective rolls whose axes are parallel to the through flow
direction. Such disturbances are not affected by through flow.
Thus, in the case of positive thermal diffusion, through flow
does not change the stability threshold but exerts an orien-
tating effect on the convective patterns: the loss of problem
isotropy in a horizontal plane leads to the inequality of con-
vective rolls with different orientations. In the case of nega-
tive thermal diffusion when through flow has a destabilizing
effect on the plane disturbances, these disturbances become
most dangerous. Hence, it appears that through flow in this
case, apart from the orientation effect �the roll axes have
orthogonal orientation with respect to the direction of
through flow�, has a destabilizing effect.

B. Long-wave linear theory

As follows from the above numerical results, long-wave
disturbances are, in some cases, the most dangerous and,
therefore, we pay particular attention to the problem of sta-
bility of the base state with respect to long-wave distur-
bances. The analysis is conveniently performed on the basis
of the differential equations considered for the amplitudes of
normal disturbances rather than on the basis of the charac-
teristic equation. Let us consider neutral disturbances, i.e.,
assume that �=−i�. All the unknown quantities are ex-
pressed as a wave-number power series,

� = k�1 + k2�2 + ¯ , �17�

R = R0 + kR1 + k2R2 + ¯ , �18�

w = w0 + kw1 + k2w2 + ¯ , �19�


 = 
0 + k
1 + k2
2 + ¯ , �20�

p = p0 + kp1 + k2p2 + ¯ , �21�

c = c0 + kc1 + k2c2 + ¯ . �22�

In these expansions, we take into account the fact that at
k=0, the oscillatory disturbances are absent, i.e., �0=0.

From the zero- and first-order expansions of Eqs.
�13�–�15� with boundary conditions �16�, we obtain

w0 = 0, 
0�− b�1 + Pe� = 0, c0�− �1 + Pe� = 0. �23�

From Eq. �23�, it can be seen that either c0=0, 
0�0,
�1=Pe /b �such disturbances will be called thermal� or 
0

=0, c0�0, �1=Pe �these disturbances will be called solutal�.
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FIG. 6. Phase velocity of neutral disturbances vs wave number in the case of
negative separation ratio and heating from below at b=10, Le=100, S
=−0.02, and different values of Peclet number: �0� Pe=0, �1a and 1b� Pe
=0.333, and �2a� Pe=1.11.
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FIG. 7. Neutral curves in the case of negative separation ratio and heating
from above at b=10, Le=100, S=−0.02, and different values of Peclet num-
ber: �0� Pe=0 and �1� Pe=0.333.



It should be noted that in the absence of through flow,
i.e., at Pe=0, we have �1=0; moreover, both 
0 and c0 differ
from zero. In the next order of the expansion, we obtain the
following expression for R0:

R0 =
3Le

LeS + 1 + S
. �24�

At Pe�0 in the second-order expansion, we obtain R0

=3Le for thermal disturbances and R0=3 /S for solutal dis-
turbances. The quantities R1 and �2 are found to be equal to
zero. Thus, in the case of S�0 at LeS�1, the more danger-
ous disturbances are the solutal ones, and at LeS1 the ther-
mal ones are the more dangerous. In the case of S0, the
long-wave instability is caused by thermal disturbances on
heating from below and by solutal disturbances on heating
from above.

In the third-order expansion, we define the correction for
frequency �3,

�3 =
SLe�Le + 1�
Pe�b − 1�

�25�

for the thermal level and

�3 = −
�S + 1�

SPe�b − 1�
�26�

for the solutal level.
In the fourth-order expansion, we define the correction

for R2,

R2 =
8

7
Le −

2

35
SLe�Le + 1� − 3

SLe�Le + 1��1 − SLe�b2

Pe2�b − 1�2

�27�

for thermal disturbances and

R2 =
8

7S
−

2

35

S + 1

S2Le
+ 3

�1 + S��1 − SLe�
S3Pe2�b − 1�2 �28�

for solutal disturbances.
Let us analyze Eqs. �27� and �28� for the case of S�0.

At small values of the Peclet number, the sign of R2 is de-
fined by the last terms in Eqs. �27� and �28�. It can be seen
that, at LeS�1, R2 is negative for solutal disturbances and is
positive for thermal disturbances. At LeS1, the signs of the
correction R2 are opposite to those at LeS�1. Thus, for any
relation of LeS to 1 for a lower branch of the long-wave
instability of S�0, the quantity R2 is negative and conse-
quently more dangerous are the disturbances with a finite
wavelength. With an increase of the Peclet number, the sign
of R2 can change. Thus, for solutal disturbances, as is clear
from Eq. �28�, this occurs at

Pe2 =
105Le�S + 1��LeS − 1�

2�b − 1�2S�20LeS − S − 1�
. �29�

For preset values of the parameters �Le=100, S=0.1, b
=10�, formula �29� gives the value of about 5.68 for Pe. At
large values of Pe, long-wave disturbances are the most dan-
gerous, which agrees with the numerical results presented in
Fig. 3.

In the case of anomalous Soret effect and −1S0,
expressions �27� and �28� have determinate signs at any Pe-
clet number, namely, R2�0 for thermal disturbances and
R20 for solutal disturbances. Therefore, the most danger-
ous disturbances are the long-wave ones, with heating both
from below and from above.

The case in which the disturbances with nonzero but
small wave number are most dangerous can be described by
the long-wave theory after making a number of assumptions
concerning the problem parameters. These assumptions will
be different for different situations according to which dis-
turbances, thermal or solutal, are the most dangerous. For
solutal disturbances, we assume that the Lewis Le and Peclet
Pe numbers are large,

Le =
Le−2

k2 , Pe =
Pe−1

k
, �30�

and for thermal disturbances, we use the assumption of small
separation ratio S and Peclet Pe numbers

S = S2k
2, Pe = Pe1k . �31�

Let us consider the first case, in which we will use the
same expansions in the small parameter k as we used before,
except for the series expansion with respect to frequency
�17�, which is now changed to the following expression:

� = k−1�−1 + k�1 + k2�2 + ¯ . �32�

From the first two orders of series expansions of Eqs.
�13�–�15� with the boundary conditions �16�, we obtain

w0 = 0, 
0�− b�−1 + Pe−1� = 0, c0Pe−1 = 0. �33�

From Eq. �33�, it can be seen that c0=0, 
0�0, and �−1

=Pe−1 /b. From the second-order expansion, we get R0

=3Le. The quantities �2, �3, and R1 are found to be equal to
zero. From the fourth-order expansion, we derive corrections
R2 and �4,

R2 =
1

7S2

8SLe−2
2 + 8S�b − 1�2Pe−1

2 − 21Le−2�S + 1�
Le−2

2 + �b − 1�2Pe−1
2 , �34�

�4 = −
�b − 1�Pe−1�S + 1�

S�Le−2
2 + �b − 1�2Pe−1

2 �
. �35�

By combining the expressions obtained for the expan-
sion terms R and �, we arrive at the approximate formulas
for the neutral curve and oscillation frequency,



R 

1

7S2

21Le�S�Le − 1� − 1�k2 + 21S�b − 1�2Pe2 + 8S�b − 1�2Pe2k2 + 8SLe2k4

Le2k2 + �b − 1�2Pe2 , �36�

� 
 Pek −
�b − 1�Pe�S + 1�

S�Le2k2 + �b − 1�2Pe2�
k3. �37�

The neutral curve R�k�, defined by formula �36�, is shown in Fig. 8. The location of the minimum for this curve is specified
by the following expression:

km
2 =

�b − 1��Pe�
Le

�21

8

S + 1

SLe
−

�b − 1��Pe�
Le

� , �38�

which agrees well with the numerical results obtained in the previous section in the framework of linear theory for finite-length
waves �see Fig. 8�.

In the case of thermal disturbances, similar expansions lead to the following expressions:

R 

1

7

21b2Le�1 − S�Le + 1��k2 + 21�b − 1�2LePe2 + 8�b − 1�2Pe2k2 + 8b2k4

b2k2 + �b − 1�2Pe2 , �39�

� =
Pe

b
k −

�b − 1�PeLeS�Le + 1�
b2�b2k2 + �b − 1�2Pe2�

k3. �40�

The neutral curve R�k�, defined by formula �39�, is given in
Fig. 9. The location of the minimum is defined by

km
2 =

�b − 1��Pe�
b

�21

8
SLe�Le + 1� −

�b − 1��Pe�
b

� . �41�

As mentioned in the previous section, the limit R�k� at
k→0 is different for Pe=0 and Pe�0; moreover, the differ-
ence is finite at any small values of the Peclet number. How-
ever, as follows from the numerical results presented above,
the instability threshold to most dangerous perturbations with
small but nonzero wave number obtained for small Pe is
close to the critical value obtained for Pe=0, i.e., there is no
jump for Rmin.

The dependences Rm�Pe� and km�Pe� at small values of
Peclet number can be analytically studied. For this, we as-
sume that the parameter Pe is the quantity of the second
order of smallness when the wave number is the quantity of
the first order. The calculations similar to those described
above lead to the following results. In the leading order of
expansion, we come to the formulas �24� for R0. From the
next orders, we find that R1=0, and for R2, we obtain

R2 =
Ak4 + BPe2

k2�S + SLe + 1��SLe2 + SLe + b + bS�2 , �42�

where

A = 16bSLe + 8S2Le2 + 8S2Le4 + 16S2Le3 + 16bS2Le2

+ 16bSLe2 + 16bS2Le + 8S2b2 + 16Sb2 + 8b2,

B = S�− 42bS + 21b2S − 42bSLe + 21S − 42b + 21b2

− 42bLe + 21SLe + 21b2SLe + 21Le + 21b2Le + 21� .

Minimization in Eq. �42� with respect to the wave num-
ber gives

R2m =
2PeAB

�S + SLe + 1��SLe2 + SLe + b + bS�2 , �43�

and for the wave number of most dangerous perturbations,
we obtain

km = �B

A
�1/4

Pe. �44�

As one can see from Eqs. �43� and �44�, R2m is proportional
to the Peclet number and km is proportional to Pe. For the
parameter values used in the calculations, formulas �43� and
�44� yield

Rm 
 27.03 + 0.980Pe, km 
 0.218Pe, �45�

which well corresponds to the numerical data presented in
Figs. 3 and 4.
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FIG. 8. Neutral curve in the case of positive separation ratio at b=10, Le
=100, S=0.1, and Pe=1.11: �1� analytical results obtained from long-wave
linear theory and �2� numerical results obtained from finite wavelength
calculations.



IV. WEAKLY NONLINEAR ANALYSIS

A. Long-wave disturbances

The results of the linear theory given above allow us to
define the boundary of the stability state, in which convec-
tion is absent. To specify the character of motion excitation
�soft or hard excitation� and to investigate the stability of
supercritical modes, it is necessary take into account the non-
linear terms in the equations of heat and admixture transfer.
This analysis will be restricted to the case of long-wave dis-
turbances. Recall that the long-wave disturbances are most
dangerous at negative values of the separation ratio, and we
are dealing here just with this case.

The amplitude equations describing convection in the
long-wave approximation are conveniently constructed by
the multiple scale method. We use an expansion in terms of
the formal small parameter �,

�� = ��1, �46�

�

�t
= �

�

�t1
+ �2 �

�t2
+ ¯ , �47�

R = R0 + �R1 + �2R2 + ¯ , �48�

u� = u�0 + �u�1 + �2u�2 + ¯ , �49�


 = 
0 + �
1 + �2
2 + ¯ , �50�

p = p0 + �p1 + �2p2 + ¯ , �51�

c = c0 + �c1 + �2c2 + ¯ . �52�

By integrating the equation of heat and admixture trans-
fer across the layer, we obtain the relations

�
−1

1 �b
�


�t
+ u� · �
 + Pe

�


�x
− Le��

2 
 − w�dz = 0, �53�

�
−1

1 � �c

�t
+ u� · �c − ��

2 c + S��
2 
 − Sw + Pe

�c

�x
�dz = 0,

�54�

which play the role of the resolution condition in all orders
of expansion except for the zero order.

In zero order of �, we obtain

w0 = 0, 
0 = ��t,x,y�, c0 = ��t,x,y�, p0 = R0�� + ��z .

�55�

As in the linear theory, the disturbances are divided into two
classes: Thermal and solutal. For thermal disturbances, �=0,
and the main part of temperature disturbances satisfies the
equation

b
��

�t1
= − Pe

��

�x1
. �56�

For solutal disturbances, �=0, and the main part of solutal
disturbances satisfies the equation

��

�t1
= − Pe

��

�x1
. �57�

Thus, in reference frame A, the thermal disturbances are qua-
sistationary and their slow evolution is described by the
times t2 , t3 , . . ., whereas the solutal disturbances are quasista-
tionary in reference frame B.

The nontrivial amplitude equations for � ,c are obtained
in the fourth-order expansion in terms of �. By dropping the
details of simple and cumbersome calculations, we give here
only the final form of the amplitude equations for solutions
homogeneous in y,

��

�t3
=

SLe�Le + 1�
Pe�b − 1�

�3�

�x1
3 , �58�

b
��

�t4
+

R2

3

�2�

�x1
2 + �

�4�

�x1
4 −

6

5
Le

�

�x1
� ��

�x1
�3

= b� ��1

�t3
−

SLe�Le + 1�
Pe�b − 1�

�3�1

�x1
3 � �59�

for thermal disturbances in reference frame A, and

��

�t3
= −

�S + 1�
SPe�b − 1�

�3�

�x1
3 , �60�

��

�t4
+

SR2

3

�2�

�x1
2 + �*

�4�

�x1
4 +

6

5

1

S2

�

�x1
� ��

�x1
�3

= − � �c1

�t3
+

S + 1

SPe�b − 1�
�3c1

�x1
3 � �61�

for solutal disturbances in reference frame B. Here, the fol-
lowing notation is used:

� = Le� 1

140
�160

3
+

11

2
S�Le + 1��

− S�Le + 1�� b2

Pe2�b − 1�2 �1 − SLe� +
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FIG. 9. Neutral curve obtained from long-wave linear theory in the case of
positive separation ratio at b=10, Pe=1, S=0.01, and Pe=0.222.
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1

5
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+

11

56

S + 1

SLe
� −

�S + 1�
S

� 1

SPe2�b − 1�2

��SLe − 1� −
7

120

1

Le
� .

We shall restrict our considerations to finding solutions
for thermal disturbances. The solution of Eq. �59� can be
written as �=	a�k , t4�exp i�kx1−�t3�dk, where the Fourier
amplitude is a function of slow time t4 and � and k obey the
dispersion relation, �=�3k

3. Substitution of this solution
into Eq. �59� leads to the appearance of secular terms. The
condition at which they are absent is derived from the equa-
tion for the Fourier amplitudes, which in the general case is
rather cumbersome, and is essentially simplified in the
monochromatic approximation, �=a cos�kx1−�t3�. Substitu-
tion of this expression into Eq. �59� leads to the equation for
the amplitude a,

b
�a

�t4
−

R2

3
k2a + �k4a +

3

10
Lek4a3 = 0. �62�

At R23�k2, all solutions to the amplitude equation
�62� tend to zero, whereas in the case of fulfillment of the
inverse inequality, i.e., above the neutral curve, all solutions
tend to a stationary one,

a = �
1

k
10

9
Le�R2 − 3�k2� . �63�

Hence, it appears that thermal disturbances are excited
softly and obey an ordinary root law. The stability of these
solutions against disturbances with another wave number can
be analyzed in the framework of the same system of Eqs.
�58� and �59�. For disturbances represented as e�t4ei��t3−qx1�,
where q is the wave number of disturbances and � is their
frequency related to q by the dispersion equation, �=�3q

3,
we obtain the following expression for the increment �:

� =
q2

b
�2�k2 −

1

3
R2 − �q2� . �64�

From Eq. �64�, it follows that �0 for any q if R2

�6�k2. Thus, at sufficiently large supercriticality, the sta-
tionary thermal wave is stable. The stability region in the
plane R2−k is bounded from below by the line corresponding
to a twofold supercriticality.

Similar results are obtained for the solutal wave. In the
case considered above, the separation ratio is negative, and
the plane disturbances are most dangerous. For a positive
separation ratio, as we know, the most dangerous distur-
bances are spatial ones. However, such disturbances can be
suppressed by setting vertical, closely spaced, impermeable,
and thermally nonconducting boundaries to the flow region.
It should be noted that in the case of homogeneous fluids,
such practice is incorrect because, under the no-slip condi-
tion at the solid boundaries, the flow will change its pattern
to a three-dimensional one. In porous media, realization of
two-dimensional flow modes by means of setting spatial con-
straints is possible because the boundary conditions do not

impose restrictions on the tangential velocity. Such a way of
obtaining two-dimensional convective flows in a porous me-
dium is used in Ref. 15.

B. Disturbance with small wave number

Let us perform a weakly nonlinear analysis for this case,
making the same assumptions for the problem parameters as
we did in the linear long-wave theory for consideration of
disturbances with a nonzero but small wave number.

Thus, for solutal disturbances, we assume that

Le =
Le−2

�2 , Pe =
Pe−1

�
. �65�

In expansions �49�–�52�, the initial terms in the series expan-
sion with respect to the small parameter are changed in the
following way:

u� = �u�1 + �2u�2 + ¯ , �66�


 = �
1 + �2
2 + ¯ , �67�

p = �p1 + �2p2 + ¯ , �68�

c = �c1 + �2c2 + ¯ . �69�

The low-order solution for temperature and concentration is
written as �here, we present only such quantities that are
important for further discussion�


1 = 0, c1 = ��t,x,y�, 
1 = 0, 
1 = ��t,x,y� . �70�

In the fifth order, we obtain the following system of the
amplitude equations in reference frame B:

Le−2
�2�

�x1
2 + �b − 1�Pe−1

��

�x1
−

1

S

�2�

�x1
2 = 0, �71�

��

�t4
+

R2S

3

�2�

�x1
2 +

8

21

�4�

�x1
4 + �S + 1�

�2�

�x1
2 = 0. �72�

We seek a solution to this system in the following form:

� = Fei�kX0−��0� + c.c., � = �ei�kX0−��0� + c.c., �73�

and finally obtain the dependence R2�k�, which is similar to
that obtained within the framework of the linear theory. The
defined R2 is minimized with respect to the wave number k
and, in the following, all calculations are carried out for this
wave number. After completing all these manipulations, we
get the seventh-order amplitude equation, which after tran-
scription takes the following form:

��

��*
− � − ei� �2�

�X*
2

+ ���2� = 0, �74�

where



ei� =
qm�5qm

4 + p2�3p2 + 9qm
2 − 2��� + i�p2 + qm

2 ��5qm
4 + 4p2qm

2 + 3p2��
qm

2 �5qm
4 + p2�3p2 + 9qm

2 − 2���2 + �p2 + qm
2 �2�5qm

4 + 4p2qm
2 + 3p2��2

, �75�

qm
2 = p�� − p�, � =

5

6

S�S + 1�
Le−2

, p =
25
63

�b − 1�Pe−1

Le−2
.

�76�

This equation is a particular case of the complex Ginsburg–
Landau equation and has the following quasistationary solu-
tion:

� = �ei�qX
*
−��

*
�, �77�

� = 1 − q2 cos � , �78�

� = q2 sin � . �79�

The analysis of stability of this solution with respect to the
disturbances represented as

� = �� + �̃�ei�qX
*
−��

*
�,

Re �̃ = Aei�KX
*
−�̃�

*
�+��

* + c.c., �80�

Im �̃ = Bei�KX
*
−�̃�

*
�+��

* + c.c.

shows �see Ref. 16� that for small q, the solutions are stable
only for q2�1 /3 cos �, which can be expressed in other
terms as

r2 � 3r0. �81�

This is consistent with the general Eckhaus criterion.
For thermal disturbances, the results are similar except

for the assumption concerning the problem parameters,
which is now written as

S = S2�2, Pe = Pe1� . �82�

For the stability boundary, we also obtain the Eckhaus law.

V. CONCLUSION

The investigations made in this paper show that for a
positive separation ratio, through flow has no effect on the
stability threshold but exerts an orientating effect on the con-
vective patterns: The loss of problem isotropy in a horizontal
plane leads to the inequality of convective rolls with differ-
ent orientations. From the results obtained, it might be con-
cluded that instability is mainly caused by longitudinal rolls.
In the case of negative separation ratio, even weak through
flow of a binary mixture through the porous layer has a dra-
matic impact on the stability of the convectionless state. In
the linear problem of stability, this manifests itself as the

onset of crossover: Arbitrarily small through flow causes
drastic destabilization of long-wave disturbances such that
the critical Rayleigh number is shifted by a finite value.
However, this instability is limited by very long waves. The
existence of strong instability with respect to long-wave dis-
turbances leads to unusual properties of the nonlinear sta-
tionary regimes. It is known17 that in the case of long-wave
instability of a horizontal layer heated from below in condi-
tions of fixed heat flux at the boundaries, all long-wave sta-
tionary regimes are unstable. Our investigation provides con-
clusive evidence for the existence of stable stationary
regimes in the presence of through flow.
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