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This paper reports a theoretical and numerical study of species separation in a binary liquid mixture sat-

urating a shallow porous layer heated from below or from above and inclined with respect to the vertical

axis. It is shown that the separation can be increased using this configuration and the stability of the uni-

cellular flow obtained in this case is investigated. The critical Rayleigh number obtained is much higher

than the one leading to the maximum separation. Experiments performed with a solution of CuSO4 give

results which are almost in good agreement with the analytical and the numerical results.

1. Introduction

Thermogravitational diffusion is the combination of two phe-

nomena: convection and thermodiffusion. The coupling of these

two phenomena leads to species separation. In 1938, Clusius and

Dickel [1] successfully carried out the separation of gas mixtures

in a vertical cavity heated from the side (thermogravitational col-

umn, TGC). During the following years, two fundamental theoreti-

cal and experimental works on species separation in binary

mixtures by thermogravitation were published. Furry et al. [2]

(FJO theory) developed the theory of thermodiffusion to interpret

the experimental processes of isotope separation. Subsequently,

many works appeared, aimed at justifying the assumptions or

extending the results of the theory of FJO to the case of binary liq-

uids [3]. Other works were related to the improvement of the

experimental devices to increase separation. Lorenz and Emery

[4] proposed the introduction of a porous medium into the cavity.

Platten et al. [5] used an inclined cavity, heated from the top, to in-

crease separation. Elhajjar et al. [6] used a horizontal cavity heated

from above with temperature gradients imposed on the horizontal

walls to improve the separation process with the use of two control

parameters. Bennacer et al. [7] suggested splitting the column into

three sub-domains in order to increase the separation. The theory

developed by Furry et al. [2] for the separation of isotopes in ver-

tical columns differentially heated on the two vertical walls,

showed that there is a maximum of separation for an optimal value

of the cell thickness. However, in practice, this thickness is of the

order of a fraction of mm which significantly reduces the amount

of separated species. If we use cells of larger thickness, the separa-

tion decreases since the velocity of flow becomes very high in com-

parison with the velocity leading to the maximum separation. One

way to decrease the velocity and to increase the separation is to tilt

the cell by a given angle from the vertical. In this case, the horizon-

tal component of the temperature gradient decreases, which de-

creases the buoyancy force and the velocity of the flow. The

tilted cell has already been used by De Groot [3] in the case of bulk

fluid but for different forms of the cells.

In this work, an analytical and numerical study of the separa-

tion in a porous cell filled with a binary mixture is performed for

different inclinations from the vertical axis. Two configurations

are considered: cell heated from the top or from the bottom. A lin-

ear stability analysis of the unicellular flow leading to separation is

presented. Some experiments are also performed in order to cor-

roborate the theoretical and the numerical results.

2. Mathematical formulation

In binary fluid mixtures subjected to temperature gradients, the

thermodiffusion effect induces a mass fraction gradient. In the

expression of the mass flux, J
!

, of one of the components, in addi-

tion to the usual isothermal contribution given by the Fick law,
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there is an additional contribution proportional to the temperature

gradient

J
!

¼ ÿqD~rC ÿ qCð1ÿ CÞDT
~rT

where D is the mass diffusion coefficient, DT the thermodiffusion

coefficient, q the density, and C the mass fraction of the denser

component.

We consider a rectangular cell of aspect ratio A = L/e where L is

the length of the cell along the axis~ez and e is its width along the

axis ~ex. The cavity is filled with a porous medium saturated with

viscous binary liquid with density q and dynamic viscosity l.
The Soret effect is taken into account.

The cavity is inclined at an angle a from the vertical. The gravity

vector is ~g ¼ ÿg~k where ~k ¼ ÿ sinðaÞ~ex þ cosðaÞ~ez (Fig. 1). The

impermeable walls (x = 0, x = e) are kept at different and constant

temperatures T1 for x = 0 and T2 for x = e, with T1 < T2. The walls

(z = 0, z = L) are impermeable and insulated. All the boundaries

are assumed rigid.

We assume that Darcy’s law and the Boussinesq approximation

are valid, and that the fluid and the solid phases are in local ther-

mal equilibrium. Dufour effect is neglected as has been done by

many authors (see for example [8]) because of its minor influence

in liquid mixtures. We set all the properties of the binary fluid con-

stant except the density q in the buoyancy term, which depends

linearly on the local temperature and the mass fraction:

q ¼ q0½1ÿ bTðT ÿ T0Þ ÿ bCðC ÿ C0Þ� ð1Þ

Where bT and bC are the coefficients of thermal and solutal expan-

sion, q0 the fluid mixture reference density at temperature T0 and

mass fraction C0.

Subject to these constraints, the governing conservation equa-

tions for mass, momentum, energy and chemical species are:

~r:V
!

¼ 0

~rP ¼ q~g ÿ l
K
V
!

ðqcÞ� @T
@t
þ ðqcÞf V

!

:~rT ¼ ~r:ðk�~rTÞ

e� @C
@t
þ V

!

:~rC ¼ ~r: D�~rC þ Cð1ÿ CÞD�
T
~rT

h i
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:

ð2Þ

We assume that there is little variation in the term C(1 ÿ C) of the

equation of conservation of species, so we can replace it by

C0(1 ÿ C0), where C0 is the initial mass fraction. The variables are

non-dimensionalized with: e for the length, a*/e for the velocity,

(re2)/a* for the time, (la*)/K for the pressure (with r = (qc)*/(qc)f,
where (qc)* is the effective volumetric heat capacity of the porous

medium, and a* the effective thermal diffusivity of the porous med-

ium), DT = T2 ÿ T1 for temperature (Tnd = (T ÿ T1)/DT) and DC ¼

DTC0ð1ÿ C0ÞD
�
T=D

� for the mass fraction (Cnd = (C ÿ C0)/DC), where

D�
T , D* are the thermodiffusion and the mass diffusion coefficients

of the denser component of mass fraction C.

Thus the dimensionless governing conservation equations for

mass, momentum, energy and chemical species are:

Nomenclature

A aspect ratio of the cavity
a* thermal diffusivity of the mixture a* = k*/(qc)f
C mass fraction of the denser component of the mixture
Ci initial mass fraction of the denser component of the

mixture
D* mass diffusion coefficient (m2 sÿ1)
D�
T thermodiffusion coefficient (m2 sÿ1 Kÿ1)

e length of the cavity along the axis ~ex (m)
k wave number
K permeability of the porous medium (m2)
L length of the cavity along the axis ~ez (m)
Le Lewis number Le = a*/D*
m gradient of mass fraction along the z-axis
P pressure of fluid (Pa)
Ra thermal filtration Rayleigh number Ra = [KegbTDT(qc)f]/

(k*m)
Rac critical Rayleigh number associated with transition from

equilibrium solution to unicellular flow
S separation
T temperature (K)
t non-dimensional time
V
!

velocity of the flow (m sÿ1)

u, v velocity components (m sÿ1)

Greek symbols
bT thermal expansion coefficient (Kÿ1)
bC solutal expansion coefficient
e* porosity of porous medium
e normalized porosity
w separation ratio w ¼ ÿðbC=bTÞðD

�
T=D

�ÞC0ð1ÿ C0Þ

r temporal amplification of perturbation
k* effective thermal conductivity of the porous medium-

mixture system (Wmÿ1 Kÿ1)
(qc)f volumetric heat capacity of the mixture (J mÿ3 Kÿ1)
(qc)* effective volumetric heat capacity of porous medium-

mixture system (J mÿ3 Kÿ1)
m kinematics viscosity of mixture (m2 sÿ1)

Superscripts and subscripts
nd non-dimensional
0 initial value
* equivalent thermophysical properties of the porous

medium

x 

z 

k
→

T1

T2>T1

α

L

e

g
→

Fig. 1. Geometrical configuration of the inclined cell.



~r:V
!

¼ 0

V
!

¼ ÿ~rP þ RaðT ÿ wCÞ½ÿ sinðaÞ~ex þ cosðaÞ~ez�

@T
@t
þ V

!

:~rT ¼ r2T

e @C
@t
þ V

!

:~rC ¼ 1
Le
ðr2C þr2TÞ
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The dimensionless boundary conditions are:

T ¼ 0 for x ¼ 0

T ¼ 1 for x ¼ 1
@T
@z
¼ ÿ @C

@z
¼ 0 for z ¼ 0;A

@T
@x
¼ ÿ @C

@x
for x ¼ 0;1

V
!

�~n ¼ 0 8M 2 @X

ð4Þ

The problem under consideration depends on five non-dimensional

parameters: the thermal filtration Rayleigh number Ra ¼ ½KgbTeDT

ðqcÞf �=ðk
�tÞ, the separation ratio w ¼ ÿðbC=bTÞðD

�
T=D

�Þ C0ð1ÿ C0Þ,

the Lewis number Le = a*/D*, the normalized porosity e = e*((qc)f/
(qc)*) and the aspect ratio A = L/e.

3. Analytical and numerical results

3.1. Analytical results

In the case of a shallow cavity A� 1, we considered the parallel

flow approximation used by Cormack et al. [9]. The basic flow is gi-

ven as follows:

V
!

¼ WðxÞ~ez; T ¼ bzþ f ðxÞ; C ¼ mzþ gðxÞ ð5Þ

We should have b = 0, since constant temperatures are imposed on

the walls (x = 0, 1).

By replacing V
*

, T and C by their expressions (Eq. (5)), and by

eliminating the pressure in the system (3) we get the following

system:

dWðxÞ
dx

¼ Ra df ðxÞ
dx

ÿ w
dgðxÞ
dx

� �

cosðaÞ ÿ Rawm sinðaÞ

d2f ðxÞ

dx2
¼ 0

WðxÞm ¼ 1
Le

d2gðxÞ

dx2
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By using the boundary conditions for temperature, we obtain:

T ¼ x ð7Þ

By eliminating g(x) between the first and the third equation of sys-

tem (6), we obtain the following equation for the velocity:

d
2
WðxÞ

dx
2

¼ ÿRaLewm cosðaÞWðxÞ ð8Þ

We restrict our study to the case of positive separation ratio (w > 0).

In this case the denser species moves towards the cold wall, i.e. the

wall (x = 0), then the unicellular flow advects this species to the bot-

tom wall, i.e. the wall (z = 0), so we get a higher mass fraction of the

denser species at the bottom of the cavity and therefore m < 0.

The angle varies from ÿ90° which corresponds to a horizontal

cell heated from above, to +90° corresponding to a horizontal cell

heated from below, so cos (a) is always positive.

Therefore ÿRaLewm cos (a) is positive, we assume that

x2 = ÿ RaLewm cos (a), so we get:

d
2
WðxÞ

dx
2

¼ x2WðxÞ ð9Þ

The solution of Eq. (9) is given by:

WðxÞ ¼ k1chðxxÞ þ k2shðxxÞ ð10Þ

where k1 and k2 are constants to be evaluated.

To find these constants, we use the following two conditions:

At the stationary state, there is no flow rate through any section

perpendicular to the z-axis, so:
R 1

0
WðxÞdx ¼ 0

The first equation of system (6) is valid on the boundaries, so:

dWðxÞ

dx

�

�

�

�

x¼0

¼ Ra
df ðxÞ

dx
ÿ w

dgðxÞ

dx

� �

cosðaÞ ÿ Rawm sinðaÞ

� �

x¼0

but for x = 0 we have @C
@x

¼ dgðxÞ
dx

¼ ÿ @T
@x

¼ ÿ df ðxÞ
dx

¼ ÿ1 so we obtain the

following condition for the velocity: dWðxÞ
dx

�

�

�

x¼0
¼ Ra½ð1þ wÞ

cosðaÞ ÿ wm sinðaÞ�.
Using these two conditions, we find the following expression for

the velocity:

WðxÞ ¼
Ra½ð1þ wÞ cosðaÞ ÿ wm sinðaÞ�½chðxxÞ ÿ chðxxÿxÞ�

shðxÞx

ð11Þ

This solution is not valid for the limiting cases a = ±90°. The case

a = 90° has been studied in [10,11]. For the case a = ÿ90°, the equi-

librium solution is infinitely stable.

Once the velocity field has been obtained, we determine the

function g(x) using the first equation of system (6). In order to find

the constants of integration, we use the equation of conservation of

the mass of the denser species:
R A

0

R 1

0
C dx

� �

dz ¼ 0 (The integral is equal to zero because the ini-

tial dimensionless mass fraction is equal to zero).

By applying these assumptions, we obtain the following expres-

sion for the mass fraction:

C ¼ ÿ
WðxÞ

Ra cosðaÞw
þ
cosðaÞ ÿ wm sinðaÞ

cosðaÞw
xÿ

1

2

� �

ÿ
mA

2
þmz

¼ ÿ
½ð1þ wÞ cosðaÞ ÿ wm sinðaÞ�½chðxxÞ ÿ chðxxÿxÞ�

shðxÞx cosðaÞw

þ
cosðaÞ ÿ wm sinðaÞ

cosðaÞw
xÿ

1

2

� �

ÿ
mA

2
þmz ð12Þ

We still have to determine m, so we use the fact that the mass flow

of the component having the mass fraction C is zero through any

cross section at the stationary state:

Z 1

0

ðV
!

C ÿ
1

Le
ð~rC þ ~rTÞÞ �~ezdx ¼ 0

)

Z 1

0

WðxÞC ÿ
1

Le

@C

@z

� �

dx ¼ 0 ð13Þ

Since
R 1

0
WðxÞmzdx ¼ 0 we get:

Z 1

0

WðxÞgðxÞ ÿ
m

Le

� �

dx ¼ 0 ð14Þ

This leads to a transcendental equation permitting the determina-

tion of m.

The separation S is defined as the difference of the mass frac-

tions of the denser species between the two ends of the cell

(z = 0) and (z = A): S = |m|A.

In the case of a vertical cell (a = 0°), and for Le = 100 and w = 0.1,

the maximum separation is obtained for Ra � 0.1 (Fig. 2). For a gi-

ven binary mixture it is interesting to choose, for the same value of

separation, the cell corresponding to the highest value of the Ray-

leigh number. If we examine Fig. 2, we note that the separation ob-

tained for a � ÿ84° and Ra = 5 is equal to the maximum separation

obtained for a � 0° and Ra = 0.1. If the temperature difference im-

posed on the cell is the same for the two previous cases, then the

thickness of the cell for Ra = 5 would be 50 times greater than that

associated with Ra = 0.1. Thus for the same degree of separation,

the amount of separated species would be higher in the larger cell.



Fig. 2 shows the variation of separation with the tilt angle for

different values of the Rayleigh number and for Le = 100 and

w = 0.1.

The cell is heated from above if a e [ÿ90°, 0°] and from below if

a e [0°, 90°]. This figure shows the separation for Ra = 0.1 and for

Rayleigh numbers that are relatively high in comparison with the

optimal Rayleigh number corresponding to the vertical cell

(Ra = 0.5, 1, 5).

For Ra = 0.1, we note that the separation decreases when a var-

ies from 0° to 90° or from 0° to ÿ90°. For Ra = 0.1 and in the case of

a vertical cell, the coupling between thermodiffusion and convec-

tion is optimal. If the cell is inclined from the vertical, the temper-

ature gradient in the x direction remains constant so the influence

of thermodiffusion does not change. On the other hand, the hori-

zontal temperature gradient decreases so the intensity of convec-

tion decreases and we lose the optimal coupling between

thermodiffusion and convection. Also for Ra = 0.1, the maximum

separation is obtained for a = 0°. When a increases, the separation

decreases and is zero for a = 90°. In the latter case we are dealing

with a horizontal cell heated from below, and the critical Rayleigh

number of the onset of convection is Rac = 12/(Lew) (see [10]),

which gives for (w = 0.1, and Le = 100) Rac = 12/(100 * 0.1) = 1.2.

This value is greater than 0.1, which means that in this case the

equilibrium solution is stable and therefore there is no separation

between the ends of the cell. If the angle of inclination decreases

from 0°, the intensity of thermodiffusion does not change while

the intensity of convection decreases, so the separation decreases

and is zero for a = ÿ90°. For this position, the cell is horizontal

and heated from above with a separation factor w > 0. For this con-

figuration the equilibrium solution is stable, so there is no flow and

then no separation between the two ends of the cell.

For Le = 100, w = 0.1, the value Ra = 5 of the Rayleigh number is

higher than the value of Ra which gives the maximum separation

0.1 (this value of Ra will be called the ‘‘optimal Rayleigh number”)

for the vertical cell. This value of the Rayleigh number is associated

with a thickness of the cell larger than that used for Ra = 0.1 for a

fixed value of DT. We note on Fig. 2 that the separation is much

lower for this value of the Rayleigh number in the case of a vertical

cell. In order to increase the separation, the cell is inclined from the

vertical. If the angle of inclination increases, we see that the sepa-

ration increases to its maximum value for a = 90°. This maximum

value is slightly lower than that obtained for Ra = 0.1 as, when

the cell is tilted, the velocity decreases but does not reach the

velocity giving the optimal coupling between convection and

thermodiffusion.

If the angle decreases, the separation increases to a maximum

value equal to that obtained in the case Ra = 0.1, then the separa-

tion decreases to zero for a = ÿ90°.

For Ra = 0.5, 1, the curves of separation have the same shape. If

the angle increases the separation increases to reach a maximum

and then decreases to 0. For a = 90° the cell is horizontal. The Ray-

leigh numbers 0.5 and 1 are smaller than the critical Rayleigh num-

ber of the onset of convection (1.2); in these conditions there is no

separation since there is no flow.

For Ra = 0.5, 1, when the angle of inclination varies from 0° to

ÿ90°, the separation increases to reach a maximum and then de-

creases to 0. We note that the optimal angles of inclination are clo-

ser to ÿ90° and 90° for Ra = 1. In fact, this value of Ra is higher than

the value of Ra which gives the maximum separation for the verti-

Fig. 2. Variation of the separation with the tilt angle for Le = 100, w = 0.1, A = 20 and

Ra = 0.1, 0.5, 1, 5. Solid curves represent the analytical results and the black dots the

numerical results.

Fig. 3. Variation of the separation with the tilt angle for Le = 130, Ra = 2, A = 20, and

for w = 0.05, 0.5.

Fig. 4. Variation of the separation with the tilt angle for Ra = 2, w = 0.2, A = 20, and

for Le = 50, 150.



cal cell and is higher than 0.5, so the velocity is much higher than

that required to obtain maximum separation, so the velocity

should be further reduced by tilting the cell to reach the maximum

value of the separation.

Fig. 3 shows the variation of separation with the tilt angle for

Le = 130, Ra = 2 and w = 0.05, 0.5. Fig. 4 shows the variation of sep-

aration with the tilt angle for Ra = 2, w = 0.2 and Le = 50, 150. Here

again we note that the value of the maximum separation is the

same in both cases.

3.2. Numerical results

In the case of a finite value of A, this problem was studied

numerically by solving system (3) using a finite element method

(using the industrial code COMSOL) and a collocation spectral

method [12]. The spatial resolution is 200 � 30 for the industrial

code and 150 � 20 for the collocation method. The numerical re-

sults were in good agreement with the analytical ones.

Fig. 5 shows the variation of the mass fraction field with the tilt

angle a for a cell of aspect ratio A = 20 and for Le = 130, w = 0.2,

Ra = 2. The black lines show the isoconcentrations and the mass

fraction of the denser species is represented using a colored scale.

For a = 0° (vertical cell), the separation is relatively small in

comparison with the separations obtained in the case of inclined

cells. In the case of a vertical cell, the Rayleigh number Ra = 2 is

higher than the Rayleigh number leading to maximum separation

(Ra � 0.08), so the velocity is high and the separation is small.

When the cell is tilted, the separation increases because, when

the cell is inclined, the horizontal component of the thermal gradi-

ent decreases and then the velocity of the flow decreases to reach

the velocity giving the maximum separation.

We note on this figure that the separation is not similar for the

same positive or negative inclination. If a e [ÿ90°, 0°], the temper-

ature gradient in the x direction has a vertical component and a

horizontal one. The horizontal component imposes the magnitude

of velocity while the vertical component (cell heated from above)

has a stabilizing effect. If a e [0°, 90°] the temperature gradient in

the x direction has a vertical component and a horizontal one, both

components imposing the magnitude of the velocity because the

cell is heated from below. So in the case of positive inclinations,

we should further increase the angle of inclination to obtain lower

velocities leading to maximum separation.

4. Linear stability analysis of the unicellular flow in an infinite

cell heated from below

In the case of a cell heated from below, the unicellular flow

(Fig. 5) loses its stability for a relatively low value of Rayleigh num-

ber and, in this case, the inclined cell cannot be used for separation.

So we will study the stability of the unicellular flow to see if the

unicellular flow remains stable for a Rayleigh number higher than

the optimal Rayleigh number leading to maximum separation.

Table 1 gives the values of the optimal Rayleigh number for dif-

ferent values of the tilt angle with w = 0.1 and Le = 100. As we can

see from this table, the optimal Rayleigh number increases with

the angle of inclination. In fact, when a increases at fixed Ra, the

buoyancy forces decrease and the velocity decreases. Thus in order

to maintain the optimal coupling between thermodiffusion and

convection, we must increase Ra, by increasing DT or e.

There are some studies concerning the stability of the unicellu-

lar flow in vertical [13–16], or horizontal cells [10,11]. To our

knowledge, the linear stability analysis of the unicellular flow ob-

tained in an inclined cell is developed here for the first time. In or-

der to simplify the stability analysis we have adopted the usual

assumption used in the case of the vertical cell. We neglect the

term wC in the momentum transport equation. As has been shown

in [17], we observe here that this assumption is valid for the values

of the non-dimensional parameter w e [0.005, 0.5] used in our

study.

By applying this assumption and solving system (3) with the

corresponding boundary conditions and the above mentioned

assumptions, we obtain the following expressions for velocity,

temperature, and mass fraction fields of the unicellular flow:

Fig. 5. Variation of the mass fraction field with the tilt angle for Le = 130, w = 0.2,

Ra = 2 and A = 20.

Table 1

Effect of the tilt angle on the

optimal Rayleigh number for

Le = 100 and w = 0.1.

a Raopt

60 0.19

65 0.24

70 0.27

75 0.35

80 0.48

85 0.80



T0 ¼ x

W0 ¼ Ra cosðaÞðxÿ 1=2Þ

C0 ¼ mzþmRa cosðaÞLeðx3=6ÿ x2=4Þ ÿ x

þ½mRa cosðaÞLe�=24þ 1=2ÿ ðmAÞ=2

m ¼ ÿð10LecosðaÞRaÞ=ðLe2Ra2 cos2ðaÞ þ 120Þ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð15Þ

In order to investigate the stability of this unicellular flow, it is con-

venient to rewrite the governing equations using the perturbations

of velocity ~v, temperature h, pressure p, and mass fraction c:

~v ¼ V
!

ÿV
!

0; h ¼ T ÿ T0; c ¼ C ÿ C0; p ¼ P ÿ P0 ð16Þ

It is assumed that the perturbation quantities are small and thus the

second-order terms can be neglected. We obtain the linear equa-

tions where the unknowns are the disturbances.

To take into account more easily the boundary conditions for

the temperature and the mass fraction at x = 0, 1, we introduce

the new variable g = c + h. By developing the disturbances in the

form of normal modes (u, h, g) = (u(x), h(x), g(x))eikz+rt, we obtain

the following system of equations for the perturbations:

ðD2 ÿ k
2
Þu ¼ ÿikRa cosðaÞ ð1þ wÞ

dh

dx
ÿ w

dg
dx

� �

þ Rak
2
sinðaÞ½ð1þ wÞhÿ wg�

ðD2 ÿ k
2
Þh ¼ rhþ u

dT0

dx
þ ikW0h

ik

Le
ðD2 ÿ k

2
Þg ¼ erikðgÿ hÞ þ iku

@C0

@x
ÿ
du

dx

@C0

@z
ÿ k

2
W0ðgÿ hÞ

ð17Þ

where D = o/ox, k is the horizontal wave number, r = rr + iri is the

temporal amplification of the perturbation, and i2 = ÿ1.

The corresponding boundary conditions are:

u ¼ 0; h ¼ 0;
@g
@x

¼ 0 for x ¼ 0;1 ð18Þ

The resulting linear problem is solved by means of a sixth-order

Galerkin method, using the following expansions:

u ¼
X

N

i¼1

aiðxÿ 1Þxi; h ¼
X

N

i¼1

biðxÿ 1Þxi;

g ¼ c1 þ c2ðx
2 ÿ 2x3=3Þ þ

X

Nÿ2

i¼1

ciþ2ðxÿ 1Þ2xiþ1

We used various methods to determine the critical Rayleigh num-

ber: the Galerkin method (method 1), a finite element method to

solve the generalized eigenvalue problem (17) and (18) (method

2) and direct numerical simulations (method 3).

Some results of the stability analysis of the unicellular flow are

given in Fig. 6.

As we can see from this figure, the critical Rayleigh number has

a minimum for a given value of the angle of inclination. The term

wC was neglected only for the Galerkin method. For the other

methods whose results are presented in Fig. 6, we did not adopt

this simplification. However the results obtained by these different

methods are in good agreement.

We also note from this figure that the critical Rayleigh number

of the transition from unicellular to multicellular flow is much

higher than the one leading to the maximum separation. We con-

clude that we can use the inclined cell to separate the components

of a binary mixture without fearing remixing of the components of

the mixture due to instabilities.

Fig. 7 shows the streamlines and the isoconcentrations for

a = 85° and for the corresponding optimal Rayleigh number, i.e.

Ra = 0.8. In this case a unicellular flow is observed and we obtain

separation between the top and the bottom of the cell.

Fig. 8 shows the streamlines for Ra = 42 at the transition from

unicellular flow to multicellular flow. For this value of Ra a multi-

cellular flow is obtained and then the inclined cell cannot be used

for separation.

5. Experiments

We used two types of cells, both of them having two stainless-

steel plane boundaries (the plates) maintained at different temper-

atures in order to create a temperature gradient in a parallelepiped

working space. The stainless-steel is chosen to avoid the oxidation

observed with CuSO4 mixtures. The dimensions of the first cell

(Cell1) (Fig. 9) were 38 cm � 8 cm � 1.5 cm (A = 25.3) and of the

second one (Cell2) 5.8 cm � 4.4 cm � 0.4 cm (A = 14.5). Between

the plates, a regular gap ewas maintained by a brace made of Plex-

iglas (thickness e = 1.5 cm for Cell1 and e = 0.4 cm for Cell2). The

temperature at each boundary was kept constant by a regulated

water bath. The cells were filled with a porous medium consisting

of chemically inert zircon beads (315 lm ÿ 400 lm).

Fig. 6. Effect of the tilt angle on the critical Rayleigh number for Le = 100 and

w = 0.1.

Fig. 7. Streamlines and isoconcentrations for Le = 100, w = 0.1, a = 85°, A = 20 and for the corresponding optimal Rayleigh number Ra = 0.8.



We carried out two experiments with the two cells.

The first experiment was with (Cell1) using an aqueous solution

of CuSO4 whose concentration expressed as mass fraction was

0.0733. This solution has been studied previously [18,19]. For the

presented experiment, we chose an inclination of 75° from the ver-

tical with the cold wall at 10 °C and the hot wall at 30 °C

(Le = 130 ± 8, Ra = 1.500 ± 0.075 and w = 0.40 ± 0.05).

The experiment lasted 20 days to make sure we reach steady

state. The samples were taken at both ends of the cell. The samples

were analyzed with a high-resolution refractometer (0.00001). The

calibration curve was plotted with the help of solutions prepared

at different concentrations. We found a difference of mass fraction

DC1 (separation) = 0.0089 ± 0.0006 between the two ends of the

cell, which corresponds to a relative separation of 12%. For the

experiment with the (Cell2), we chose an inclination of ÿ45° from

the vertical. The cold wall was kept at 15 °C while the hot wall was

at 25 °C (Le = 130 ± 8, Ra = 0.20 ± 0.01 and w = 0.40 ± 0.05). The

separation DC2 was 0.045 ± 0.003 giving a relative separation of

52.8%. This increase in separation is due to the optimal choice of

the inclination and the associated value of the Rayleigh number.

These experimental results were compared to the results of 2D

numerical simulations under the conditions of the experiment. To

conduct the numerical simulation we must know the permeability

of the porous medium. To determine the permeability of the por-

ous medium used, several measurements were performed. After

repeating the measurements several times using constant head

test method, we found a permeability value of 9.2 � 10ÿ11 m2 with

an accuracy of 2%. The conditions and the results for the two exper-

iments are given in Table 2. As we can see from this table, there is a

discrepancy between the experimental and numerical results over

15%. This difference is explained by the difficulty to operate in a

porous media (e.g. inaccuracies in measuring the porosity and

other thermophysical parameters). The authors who have con-

ducted experimental studies of species separation in vertical ther-

mogravitational columns [19,20] reported errors of the same order

of magnitude.

Fig. 9. External view of the thermogravitational cell.

Table 2

Comparison between the numerical and the experimental results obtained in the two experimental cells.

Experiment Cell DT C0 a (°) Time of experiment (days) DCexp DCnum

1 Cell1 20 0.0733 75 20 0.0089 ± 0.0006 0.0105

2 Cell2 10 0.0857 ÿ45 8 0.045 ± 0.003 0.0652

Fig. 8. Streamlines and isoconcentrations at the transition between the unicellular and the multicellular flows for Le = 100, w = 0.1, Ra = 42, a = 85° and A = 20.



6. Conclusion

In this paper, analytical and numerical studies have been per-

formed to investigate the separation in a porous cell saturated by

a binary liquid mixture and tilted at a given angle with respect

to the vertical axis. Most studies dealing with the separation have

been concerned with vertical cells. Authors who have examined

the case of a tilted cell have restricted their investigations to the

cell heated from above.

In this work, we investigated two possibilities: a tilted cell

heated from above or from below. This work has shown that the

separation can be significantly increased for an optimal value of

the tilt angle of inclination. In the first part, an analytical solution

was performed in the case of a shallow cavity A� 1 for different

values of the Rayleigh number. The analytical results obtained

were corroborated by 2D direct numerical simulations.

In the second part, theoretical and numerical techniques were

used to study the stability of the unicellular flow obtained in the

case of an inclined cell heated from below. It was observed that

there was a minimum value of the critical Rayleigh number for a

particular value of the angle of inclination. The direct non-linear

numerical simulations performed using a finite element method

and a spectral collocation method corroborated the results of the

linear stability analysis and allowed the study of the flow struc-

tures which appeared after the bifurcation. Experiments performed

with a solution of CuSO4 give results which are almost in good

agreement with the analytical and the numerical results.
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