
To cite this version Mojtabi, Abdelkader and Rees, D. Andrew The 

effect of conducting bounding plates on the onset of Horton–

Rogers–Lapwood convection. (2011) International Journal of Heat 

and Mass Transfer, vol. 54 (n° 1-3). pp. 293-301. ISSN 0017-9310

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/

Eprints ID : 11221

To link to this article : DOI:10.1016/j.ijheatmasstransfer.2010.08.025 

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.08.025 

Any correspondance concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/19966721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The effect of conducting bounding plates on the onset
of Horton–Rogers–Lapwood convection

Abdelkader Mojtabi a,b,⇑, D. Andrew S. Rees c

aUniversité de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse, France
bCNRS, IMFT, F-31400 Toulouse, France
cDepartment of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK

Keywords:

Convection

Stability

Porous medium

a b s t r a c t

We present an analytical and numerical stability analysis of the onset of natural convection in a horizon-

tal fluid-saturated porous cavity. The cavity is bounded by thin horizontal plates with uniform thickness

whose outer surfaces are subject to a constant heat flux. The main aim is to determine the effect of the

presence of the bounding plates on the onset of convection. The onset criterion is found to be sensitively

dependent on the relative thickness of the plates and the porous layer, d, and their relative conductivities,

d. For the long wavelength mode it is precisely Rac = 12(1 + dd).

1. Introduction

The knowledge of natural convection in saturated porous media

is of considerable interest because of its importance in the model-

ling of the heat transfer characteristics of geothermal reservoirs

and of its numerous fundamental and industrial applications.

Reviews of recent developments and publications in this field are

given in the books by Nield and Bejan [1], Ingham and Pop [2],

Vafaï [3] and most recently by Vadász [4]. The onset of natural con-

vection in horizontal porous media was first studied in the two his-

toric references by Horton and Rogers [5] and Lapwood [6]. This

problem was first described as the Horton–Rogers–Lapwood prob-

lem by Nield and Bejan [1].

In a porous medium, the use of Darcy’s law simplifies consider-

ably the hydrodynamic equations and, in most cases, makes possi-

ble an analytical determination of the variation of the critical

thermal Rayleigh number Rac and wave number kc, even for the

realistic case of impermeable boundaries. Consequently, it has

been well known for more than half a century [6] that natural con-

vection in a horizontal porous layer heated from below by a uni-

form temperature is initiated when the Rayleigh number, based

on the permeability of the porous medium, exceeds the value

4p2. The associated wavenumber in this case is equal to p.

Experimental studies have been undertaken to determine the

onset of natural convection in a porous layer bounded by imper-

meable isothermal planes [7]. The majority of experimental work

in this area has been limited to verifying the theoretical predic-

tions. It has also been shown that the presence of lateral bound-

aries affects the onset of natural convection by restricting the

allowable modes [8]. The temperature gradient necessary for con-

vection to start has also been measured [9].

Ribando and Torrance [10] considered a case where a uniform

heat flux is applied to the horizontal lower surface and the upper

surface is held at a constant temperature, while the vertical walls

are adiabatic. This important situation occurs when the layer is

heated from below by, say, electric heating elements while the

upper surface is maintained at a uniform temperature. They found

the critical Rayleigh number and critical wavenumber to be 27.1

and 2.29, respectively. Wang [11] also considered this case and ob-

tained the more accurate value, Rac = 27.096. Tewari and Torrance

[12] followed this with a study of a box with a permeable upper

surface and constant temperature lower surface. The number of

numerical investigations into two-dimensional large-amplitude

convection is also substantial but we refer, in particular, to the

work of Riley and Winters [13]; their main aim was to perform a

detailed study of bifurcations and modal interactions. They dealt

initially with linear stability and, for a cavity of any fixed aspect ra-

tio, showed that an infinitely large set of eigenmodes exists. The

preferred mode of convection is the one with the lowest critical

Rayleigh number which always has one cell in the vertical direc-

tion. The number of cells in the horizontal direction then depends

upon the aspect ratio.
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A linear stability analysis determining the onset of convection

in a bounded rectangular cavity containing a fluid-saturated por-

ous medium was performed by Kubitschek and Weidman [14]

for insulated sidewalls, an isothermal upper surface, and a lower

surface which is heated by forced convection and which therefore

introduces the need for a Biot number, Bi. Numerical calculations

of the critical Rayleigh number, Rac, were made over the range of

Biot numbers, 10ÿ4
6 Bi 6 104, and for cavity aspect ratios satisfy-

ing 0 6 A6 5. These computations cover all the effective lower sur-

face heating conditions from the constant heat flux global limit,

Rac= 27.096, which is found as Bi? 0, to the isothermal global lim-

it, Rac = 4p2 found as Bi?1. Marginal stability boundaries pre-

ferred cellular modes and disturbance temperature contours

were displayed graphically.

A compilation of most of the pertinent information on the crit-

ical Rayleigh number and wavenumber for an infinite layer with

different boundary conditions, (viz. open or impermeable; pre-

scribed temperature or prescribed heat flux) may be found in Nield

and Bejan [1] and is reproduced in Table 1. However, other aspects

of this problem continue to attract substantial interest, as evi-

denced by the most recent papers by Rees and Tyvand [15] and

Nield and Kuznetsov [16] concerning the effects of different types

of heterogeneity on the onset of convection in a porous medium.

Moreover, the onset and development of binary convection in a

horizontal porous enclosure have been investigated by Mamou

and Vasseur [17] and Charrier-Mojtabi et al. [18] using both linear

and nonlinear perturbation theories.

The main interest of the present work lies in the fact that very

few papers exist which consider the effect of the presence of hor-

izontal bounding plates on the onset of convection. In an early

paper Donaldson [19] considered a two-layer system where layer

is impermeable, while Jang and Tsai [20] analyzed a three-layer

system in which the middle layer is impermeable. Riahi [21], on

the other hand, considered a weakly nonlinear analysis of what

is, in effect, a pair of plates of infinite height. In the present paper

the thermodynamic system includes both the porous cavity and its

bounding surfaces which are heated by means of a uniform heat

flux. We show that the stability threshold of the bulk (the satu-

rated porous medium) cannot be dissociated from the boundary

conditions due to conduction within the external plates bounding

the saturated porous medium. Kubitschek and Weidman [14] con-

sider that neither uniform temperature nor uniform heat flux

boundary conditions are met easily in engineering practice,

although close approximations to them may be realized in con-

trolled laboratory experiments. Use is often made of a variable heat

flux boundary condition involving the Biot number, Bi, to bridge

the gap from uniform temperature to uniform heat flux. This

imperfect boundary condition is sometimes referred to as forced

convection heat transfer or Newtonian heating. We are led to be-

lieve that it is possible to obtain a uniform heat flux boundary con-

dition more easily in a laboratory than a uniform temperature. But

the use of intense forced convection may also ensure uniform tem-

perature on the outer surfaces of the external plates bounding the

porous medium only. If we take into account the heat transfer in-

side these plates, which is the aim of the present paper, then it is

no longer necessary to introduce the Biot number.

The chief objective of our work, then, is to determine the effect

on the stability properties of a horizontal porous layer of the pres-

ence of conducting surfaces bounding the porous layer both above

and below. As such this provides a better approximation to how

experiments are set up in the laboratory than does the usual fixed

temperature or heat flux boundary conditions. In this paper partic-

ular attention is focussed upon the influence of the conductivity ra-

tio and the thickness ratio.

2. Mathematical formulation

The configuration considered in this study is that of a horizontal

porous layer of uniform thickness, H, width, L, permeability, K and

porosity, u, and which is filled with a pure fluid (see Fig. 1). The

origin of the coordinate system is located at the bottom of the por-

ous cavity with x0 and y0 being the horizontal and vertical coordi-

nates, respectively. This cavity is placed between two metal

Nomenclature

A aspect ratio of the cavity A = L/H
a modified thermal diffusivity of the porous cell a* = k*/

(qc)f
d thermal conductivity ratio d = ks/kp
H height of the porous layer (m)
h height of the horizontal plates (m)
K permeability of the porous medium (m2)
k wave number
L length of the cavity (m)
T1, T3 temperature inside the lower and upper plates (K)
T2 temperature inside the porous bulk (K)
Ra thermal Rayleigh number Ra = [KHgbTDT]/(apm)
Rac critical Rayleigh
V velocity of the flow (m sÿ1)
u, v velocity components (m sÿ1)
t nondimensional time
q0 uniform heat per unit area (Wmÿ2)

Greek symbols
a thermal diffusivity ratio (as/a)
bT thermal expansion coefficient (Kÿ1)
e* porosity of porous medium
e normalized porosity
h1,3 temperature inside lower and upper plates
kp effective thermal conductivity of the porous medium

(Wmÿ1 Kÿ1)
ks thermal conductivityof the horizontal plates (Wmÿ1 Kÿ1)
(qc)f volumetric heat capacity of the fluid (J mÿ3 Kÿ1)
(qc)p volumetric heat capacity of porous saturated medium

(J mÿ3 Kÿ1)
(qc)s effective volumetric heat capacity of the horizontal

plates (J mÿ3 Kÿ1)
/ heat capacity ratio / ¼ ðqcÞp

ðqcÞf
w stream function
m kinematic viscosity of fluid (m2 sÿ1)

Table 1

Critical Rayleigh number Rac and the critical wavenumber kc, under various boundary

conditions, mentioned by Nield and Bejan [1].

Lower surface Upper surface Rac kc

FST, IMP FST, IMP 4p2 p
FST, IMP CHF, IMP 27.10 2.33

CHF, IMP CHF, IMP 12 0

FST, IMP FST, FREE 27.10 2.33

CHF, IMP FST, FREE 17.65 1.75

FST, IMP CHF, FREE p2 p/2
CHF, IMP CHF, FREE 3 0

FST: fixed surface temperature, IMP: impermeable and CHF: constant heat flux.



plates of uniform thickness, h. Neumann boundary conditions for

temperature (i.e. fixed heat flux) are applied on the outer horizon-

tal surfaces of the layer at y0 = ÿh and at y0 = H + h. All the bound-

aries are impermeable and we consider a rectangular cavity with

high aspect ratio A = L/H.

The stability analysis is undertaken for the general case for

which the aspect ratio is infinite. This is not a restrictive condition,

as is well-known for a Darcy medium, because the sidewall bound-

ary conditions are also satisfied at the vertical boundaries of the

cell pattern. The cavity is filled with a porous medium and is satu-

rated by a pure fluid. The impermeable horizontal walls (y = ÿh,

y = H + h) are subjected to a uniform heat flux per unit area, q0.

The vertical walls (x = 0, x = L) are impermeable and adiabatic. All

the boundaries are assumed to be rigid. We also assume that the

porous medium is isotropic and homogeneous, that Darcy’s law

is valid, and that the Oberbeck–Boussinesq approximation is appli-

cable: the thermophysical properties of the pure fluid are therefore

considered to be constant except for the density in the buoyancy

term, which is taken to vary linearly with the local temperature:

q ¼ q0ð1ÿ bðT 0 ÿ T iÞÞ: ð1Þ

Here b is the coefficient of thermal expansion of the fluid, T0 is the

dimensional temperature and Ti corresponds to the reference state.

We also use the other standard assumptions such as local thermal

equilibrium between the phases and negligible viscous dissipation.

Thus the governing conservation equations for mass, momen-

tum and energy for the bulk are:

r2
w0 ¼ ÿ gKb

m
@
@x0 T

0
2;

ðqcÞp
@T 02
@t0 þ ðqcÞfV

0:rT 0
2 ¼ kpr2T 0

2;

(

ð2Þ

where V0 is the Darcy velocity, T 0
2 the temperature inside the porous

bulk, g the gravitational acceleration, m the kinematic viscosity,

(qc)p and (qc)f are the respective heat capacities of the saturated

porous medium and the fluid, kp is the effective thermal conductiv-

ity of the saturated porous medium, and w0 is the stream function.

As usual the equation of continuity is satisfied by introducing the

streamfunction according to: u0 = @w0/oy0 and v0 = ÿow0/ox0.

For the two plates bounding the porous medium, we have:

ðqcÞs
@T 0

1

@t0
¼ ksr2T 0

1 and ðqcÞs
@T 0

3

@t0
¼ ksr2T 0

3; ð3Þ

where T 0
1 and T 0

3 are the temperatures inside the lower and upper

plates, respectively, and (qc)s and ks are the heat capacity and the

thermal conductivity of the solid material. We have assumed that

bounding plates are made from the same material and are of iden-

tical thicknesses.

The boundary conditions applied on the horizontal boundaries

of the system are uniform fluxes of heat per unit area, q0. It is as-

sumed that the vertical walls of the cavity are thermally well insu-

lated and impermeable. Thus we have:

– for the bottom plate,

for y0 ¼ ÿh; ÿks
@T 0

1

@y0
¼ q0;

for y0 ¼ 0; ks
@T 0

1

@y0
¼ kp

@T 0
2

@y0
;

– for the porous bulk,

for y0 ¼ 0; T 0
1 ¼ T 0

2;

for y0 ¼ H; T 0
2 ¼ T 0

3;

– for the top plate,

for y0 ¼ H; kp
@T 0

2

@y0
¼ ks

@T 0
3

@y0
;

for y0 ¼ H þ h; ÿks
@T 0

3

@y0
¼ q0:

The reference scales are H for length, H2/(kp/(qc)p) for time, a/H

for the velocity, where a = kp/(qc)f is the effective thermal diffusiv-

ity, a for the stream function, and DT0 = q0H/kp for the temperature.

In terms of the above definitions, the dimensionless governing

equations are given by

r2
w ¼ ÿRa @

@x
T2

/ @T2
@t

þ V �rT2 ¼ r2T2

@T1
@t

¼ ar2T1

@T3
@t

¼ ar2T3

8

>

>

>

>

>

<

>

>

>

>

>

:

ð4Þ

where u and a represent the heat capacity ratio, / ¼ ðqcÞp
ðqcÞf

, and the

thermal diffusivity ratio, a ¼ as
a
, respectively, and as is the thermal

diffusivity of the solid plates. The corresponding dimensionless

boundary conditions are:

for y ¼ ÿd;
@T1

@y
¼ ÿ kp

ks
¼ ÿ1=d;

for y ¼ 0;
@T1

@y
¼ @T2

@y
=d; T1 ¼ T2; w ¼ 0;

for y ¼ 1;
@T3

@y
¼ @T2

@y
=d; T2 ¼ T3; w ¼ 0;

for y ¼ 1þ d;
@T3

@y
¼ ÿ1=d;

ð5Þ

The problem under consideration may now be seen to depend on

six non-dimensional parameters: the thermal Rayleigh number,

Ra = KgbHDT0/(apm), where the temperature scale is DT 0 ¼ q0H
kP
, the

heat capacity ratio, / ¼ ðqcÞp
ðqcÞf

, the thermal diffusivity ratio, a ¼ as
a
,

the thermal conductivity ratio, d ¼ kS
kP
, the aspect ratio d ¼ h

H
and

the aspect ratio of the porous bulk, A = L/H. In the present study

the intensity of the thermal buoyancy forces is expressed solely in

terms of the parameter, Ra.

3. Linear stability of the equilibrium solution

3.1. The general analysis for O(1) wavenumbers

It is straightforward to show that there exists an equilibrium

solution characterized by:

V ¼ 0; T1;0 ¼ ÿy=dþ T0; T2;0 ¼ T0 ÿ y;

T3;0 ¼ ð1ÿ yÞ=dþ T0 ÿ 1; ð6Þ

where T0 is an arbitrary constant temperature. In order to analyze

the stability of this equilibrium solution, we first introduce the

H

y

x

h

h

L

Fig. 1. Saturated porous medium of height H and length L bounded by two

horizontal plates of height h. The upper and lower surfaces of the system are subject

to a uniform heat flux. The vertical sidewalls are assumed to be perfectly insulated.



perturbation of the stream function, w, and perturbations of the

temperatures, namely, h1, h2 and h3. We assume that the perturba-

tions (w, h1, h2, h3) are of asymptotically small amplitude, and we

obtain the following linearized equations:

r2
wþ Ra @

@x
h2 ¼ 0;

/ @h2
@t

ÿr2
h2 ÿ v ¼ 0;

@h1
@t

ÿ ar2
h1 ¼ 0;

@h3
@t

ÿ ar2
h3 ¼ 0

8

>

>

>

>

>

<

>

>

>

>

>

:

ð7Þ

with the associated boundary conditions:

for y ¼ ÿd;
@h1
@y

¼ 0;

for y ¼ 0;
@h1
@y

¼ @h2
@y

=d; h1 ¼ h2; w ¼ 0;

for y ¼ 1;
@h3
@y

¼ @h2
@y

=d; h2 ¼ h3; w ¼ 0;

for y ¼ 1þ d;
@h3
@y

¼ 0:

ð8Þ

The perturbation quantities are chosen as follows:

ðw; h1; h2; h3Þ ¼ ð~w; ~h1; ~h2; ~h3ÞðyÞ expðikxþ rtÞ þ c:c:; ð9Þ

where k is the wavenumber in the horizontal (x) direction, i2 = ÿ1,

and r is the temporal exponential growth rate of the perturbation.

Appendix A shows that the principle of exchange of stabilities

applies for this system, and therefore r is always real. Therefore

we may study the instability via a stationary bifurcation for which

r = 0. Substitution of (9) into Eqs. (7) leads to the homogeneous

differential system:

ðD2 ÿ k
2Þ~wðyÞ þ ikRa~h2ðyÞ ¼ 0;

ðD2 ÿ k
2Þ~h2ðyÞ ÿ ik~wðyÞ ¼ 0;

ðD2 ÿ k
2Þ~h1ðyÞ ¼ 0;

ðD2 ÿ k
2Þ~h3ðyÞ ¼ 0;

8

>

>

>

>

<

>

>

>

>

:

ð10Þ

where D = o/oy. On elimination of ~w from the system (10), the fol-

lowing linear system is obtained:

ðD2 ÿ k
2Þ2~h2ðyÞ ÿ k

2
Ra~h2ðyÞ ¼ 0; ð11aÞ

ðD2 ÿ k
2Þ~h1ðyÞ ¼ 0; ð11bÞ

ðD2 ÿ k
2Þ~h3ðyÞ ¼ 0; ð11cÞ

8

>

>

<

>

>

:

with the associated boundary conditions:

for y ¼ ÿd;
@~h1
@y

¼ 0;

for y ¼ 0;
@~h1
@y

¼ @~h2
@y

=d; ~h1 ¼ ~h2; ðD2 ÿ k
2Þ~h2 ¼ 0;

for y ¼ 1;
@~h3
@y

¼ @~h2
@y

=d; ~h2 ¼ ~h3; ðD2 ÿ k
2Þ~h2 ¼ 0;

for y ¼ 1þ d;
@~h3
@y

¼ 0:

ð12Þ

The general solution of the fourth order ordinary differential equa-

tion in Eq. (11) may be written as a combination of four indepen-

dent functions whose expression depends on the sign of the

quantity, k
2 ÿ k

ffiffiffiffiffiffi

Ra
p

. When Ra < k2, the equations have no nonzero

solution in this case. When Ra > k2, the solution of Eq. (11) is:

~h2ðyÞ ¼ A coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2 þ k

ffiffiffiffiffiffi

Ra
pq

yÞ þ B sinhð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2 þ k

ffiffiffiffiffiffi

Ra
pq

yÞ

þ C cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
ffiffiffiffiffiffi

Ra
p

ÿ k
2

q

yÞ þ D sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
ffiffiffiffiffiffi

Ra
p

ÿ k
2

q

yÞ:

The solution obtained depends on the four arbitrary constants A, B,

C and D. The general solutions of the second order ordinary differ-

ential equations in Eq. (11) may now be written in the form:

~h1ðyÞ ¼ E coshðkyÞ þ F sinhðkyÞ;
~h3ðyÞ ¼ G coshðkyÞ þM sinhðkyÞ;

where E, F, G and M are also arbitrary. When we assume that this

general solution satisfies the eight boundary conditions given in

Eq. (12), we obtain eight homogeneous linear algebraic equations

and eight unknowns corresponding to the eight constants. This sys-

tem has a non-trivial solution if the associated matrix determinant,

det(Ra(k), k, d, d) is equal to zero. The full expression of this deter-

minant was obtained using the package, Maple. Once we have cal-

culated the determinant, we may obtain the relation between the

Rayleigh number, the wavenumber, the aspect ratio d and the ther-

mal conductivity ratio d. The analytical dispersion relation is given

by:

k
2
sinhðR1Þ sinðR2Þð2d2

tanhðkdÞ2 þ 1Þ þ 2kd tanhðkdÞ
� ðR2 sinhðR1Þ cosðR2Þ þ R1 coshðR1Þ sinðR2ÞÞ
þ R1R2ðcoshðR1Þ cosðR2Þ ÿ 1Þ ¼ 0 ð13Þ

where:

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkþ
ffiffiffiffiffiffi

Ra
p

Þk
q

and R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
ffiffiffiffiffiffi

Ra
p

ÿ kÞk
q

We note that a slightly different method of analysis leading to the

same dispersion relation may be obtained by ‘replacing’ the detailed

solution in the solid bounding plates by equivalent boundary condi-

tions for the porous layer; see Appendix B for more precise details.

Figs. 2 and 3 show some typical neutral curves which have been

obtained using Eq. (13). In Fig. 2 are displayed curves for the case,

d = 1, which corresponds to bounding plates which are much thick-

er than would typically be used in experimental work. The lowest

curve has a minimum at k = 0 and the corresponding value of the

Rayleigh number is approximately 12, which is the well-known re-

sult for the classical porous layer with constant heat flux bound-

aries. In this case the conductivity ratio, d, is small which means

that the bounding plates are highly sensitive to the cellular pattern

in the porous layer.

The opposite extreme would be for very large values of d when

the bounding plates are highly conducting. Thus the plates will

Fig. 2. Neutral curves for the case d = 1, where d takes the following values: 0.003

(lowest curve), 0.03, 0.09, 0.1520775, 0.3, 0.6, 1.5 and 3 (uppermost curve). The

dashed line corresponds to d = 0.1520775 for which the neutral curve has a quartic

minimum at k = 0.



equilibrate quickly to a uniform temperature, and therefore the full

system will mimic the classical constant temperature surface. The

approach to this state may be seen in Fig. 2 as d increases. The min-

imum value of Ra rises and the associated critical wavenumber

ceases to take zero values and is tending towards p.
There exists a transitional case between the two extremes

where local maximum at k = 0 and the local minimum when

k > 0 approach one another as d decreases. For d = 1 the two critical

points merge at k = 0 to form a quartic minimum when

d = 0.1520775; this case is marked by a dashed curve in Fig. 2. Thus

the critical Rayleigh number has a nonzero critical wavenumber

when d takes values larger than this, a zero one when it takes smal-

ler values. Further aspects of this transition are given later.

Fig. 3 shows the equivalent situation for bounding plates of

thickness d = 0.01. The general trend is as given in Fig. 2, but the

corresponding values of d are much larger. Here, the transitional

curve with the quartic minimum corresponds to d = 57.573028.

This pair of parameter values would be quite typical of an experi-

ment where the bounding plates are highly conducting but quite

thin. Given that small relative changes to d quite clearly make

quite large quantitative and qualitative differences to the critical

Rayleigh number and the identity of the onset wavenumber, it is

clear that one would need to take great care in choosing one’s

materials for an experimental study.

It turns out not to be necessary to present further curves, espe-

cially if one is interested in modelling experimental work, i.e. for

cases where the bounding plates are thin. The mathematical prop-

erties of the dispersion relation given in (13) are such that Fig. 3

will be reproduced almost exactly for other small values of d as

long as the product dd is conserved. For example, the analogous

set of curves for d = 0.001 will be almost exactly those given in

Fig. 2 if the chosen values of d are 10 times those displayed in

Fig. 2. To show this, if we assume that d� 1, but that k = O(1), then

Eq. (13) reduces to

k
2
sinhðR1Þ sinðR2Þð2k2d2

d2 þ 1Þ þ 2k
2
ddðR2 sinhðR1Þ cosðR2Þ

þ R1 coshðR1Þ sinðR2ÞÞ þ R1R2ðcoshðR1Þ cosðR2Þ ÿ 1Þ ¼ 0;

which is a function of Ra, k, and dd (rather than d and d separately).

We note that this general result, which holds formally when d � 1,

may be shown numerically to be quite accurate even when d is as

large as 0.1.

It is now possible to determine the critical Rayleigh number by

minimizing each curve over values of k. This was done using a

straightforward two-dimensional Newton–Raphson routine which

simultaneously finds Ra and minimizes with respect to the wave-

number. The results of our computations are summarized in Figs.

4 and 5, which show Rac and kc, respectively.

In Fig. 4 we have chosen to display the critical Rayleigh number

as a function of d for a chosen set of values of d. Each curve is split

into two distinct regions, the first of which corresponds to rela-

tively small values of d, and is the regime within which the critical

wavenumber is zero. In this regime the ‘curve’ is a straight line, and

this is shown mathematically in the next subsection. The second

region corresponds to nonzero values of the critical wavenumber.

As d increases, each curve tends towards a horizontal asymptote.

Physically this means that any x-dependent pattern which is

caused by the cells within the porous layer will have decayed with-

in the bounding plates and the temperature at the bounding sur-

faces is uniform. Therefore the stability criterion is independent

of any further increase in the thickness of the bounding plates.

Once more we see that high conductivity ratios lead the system

to mimic the classical constant temperature boundary condition

scenario more closely.

The corresponding critical wavenumbers are shown in Fig. 5.

The transition between the zero and nonzero critical wavenumber

regimes is very clear. When d is sufficiently large, then kc is close to

p, except for those situations where the bounding plates are suffi-

ciently thin.

3.2. The limiting case of long-wave disturbances k � 0

The case of long-wave disturbances (for which the wavenum-

ber, k, is at or close to zero) may be studied analytically using

the dispersion relation, (13), by developing a regular perturbation

expansion using k as a small parameter. In our case, we expand

the determinant in the vicinity of k = 0 using Maple to obtain:

Fig. 3. Neutral curves for the case d = 0.01, where d takes the following values: 1

(lowest curve), 10, 30, 57.573028, 100, 200, 500 and 1000 (uppermost curve). The

dashed line corresponds to d = 57.573028 for which the neutral curve has a quartic

minimum at k = 0.

Fig. 4. Globally minimized neutral curves for Rac as functions of d for the following

values of d: 57.573028, 19.16802, 5.67240, 2.71048, 1.67401, 0.78432 and 0.15208.

These values have been chosen so that there exists a quartic minimum when

d = 0.01, 0.03, 0.1, 0.2, 0.3, 0.5 and 1, respectively; the locations of the quartic

minima are shown by the bullet symbols. The neutral curves to the left of the

symbols form straight lines in accordance with Eq. (15).



detðRaðkÞ; k; d;dÞ ¼ F1ðRa0; d; dÞk3 þ F2ðRa0;Ra2; d; dÞk5 þ Oðk7Þ;

where

Ra ¼ Ra0 þ Ra2k
2 þ � � �

has also been used. Thus we obtain the following expression for the

first term,

F1ðRa0; d; dÞ ¼ Ra0 ÿ 12ÿ 24dd: ð14Þ

However, the full expression for F2(Ra0, Ra2, d, d) is very consider-

ably more complicated, and it will be given later after some simpli-

fication. When we set the O(k3) term in the determinant to zero, it

leads to:

Ra0 ¼ 12ð1þ 2ddÞ: ð15Þ

This equation confirms our previous statement that the critical Ray-

leigh number is a linear function of d for suitable ranges of values of

d, as shown in Fig. 4. When Eq. (15) is substituted into the expres-

sion for F2(Ra0, Ra2, d, d), then we obtain:

Ra2ðd; dÞ ¼ ÿ8dd3 ÿ 204

35
d
2
d2 þ 48

35
ddþ 8

7
: ð16Þ

Given the form of Eq. (15), we note that the critical Rayleigh num-

ber, Ra0 corresponding to the long wave, k = 0, also depends only on

the product dd. In domains that would be used in experimental

work, these two parameters would exhibit the following typical

ranges of values: d 2 [0.01, 2] and d 2 [10ÿ4, 1].

As mentioned earlier, the variation of Ra given by (13) exhibits a

single minimum which is either at kc = 0, or else at nonzero values.

When the latter occurs, Ra has a local maximum value at k = 0. The

regions in which the two behaviours arise are delimited by the case

where Ra2 = 0, which corresponds to when the neutral curve has a

quartic minimum. From Eq. (16) we deduce that this transitional

case occurs when,

dd ¼ f ðdÞ ¼ ÿ35

51
d2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1225d4 ÿ 420d2 þ 546
p

51
þ 2

17
: ð17Þ

The dependence of d and d upon one another at the quartic point is

shown in Fig. 6. Points above the curve are those for which the crit-

ical wavenumber is nonzero, while those below the curve have a

zero critical wavenumber. It is also possible to use (17) to show that

d �
ffiffiffiffiffiffiffiffiffi

546
p

51
þ 2

17

 !

dÿ1 when d � 1

and

d � 1

7d3
when d � 1:

Then we can deduce that the critical Rayleigh number correspond-

ing to kc = 0 is:

Rac0 ¼ 12ð1þ 2ddÞ ¼ 12ð1þ 2f ðdÞÞ: ð18Þ

In the small-d limit this expression for Rac yields Rac0max ffi 25:82,

which may be seen in Fig. 4. The corresponding minimum arises

when d?1) f(d)? 0 and hence Rac0 ! 12; this may also be seen

in Fig. 4 as the trend exhibited by the bullet symbols when d be-

comes large.

4. Analytical solution of the unicellular flow

For the limiting case of a shallow cavity, for which A� 1, we

may use the parallel flow approximation [22,23] to determine

the flow and temperature fields. The basic state is denoted by

the subscript, ‘‘b”, and it may be written as follows:

w ¼ wbðyÞ; T1b ¼ Cxþ h1ðyÞ T2b ¼ Cxþ h2ðyÞ
T3b ¼ Cxþ h3ðyÞ: ð19Þ

On using the assumptions already mentioned and the correspond-

ing boundary conditions, the stationary stream function and the

temperature fields corresponding to the three regions are given by,

wb ¼ 1
2
RaCðyÿ y2Þ;

T1b ¼ Cxÿ y=dþ b;

T2b ¼ Cxþ 1
2
RaC2 1

2
y2 ÿ 1

3
y3

ÿ �

ÿ yþ b;

T3b ¼ Cxÿ y=dþ 1
12
RaC2 þ bþ 1=dÿ 1:

8

>

>

>

>

<

>

>

>

>

:

ð20Þ

The value, b, is arbitrary, due to the use of Neumann boundary

conditions, but the constant, C is currently unknown. However, its

Fig. 5. Wavenumbers corresponding to the curves shown in Fig. 4. The bullet

symbols again display the parameter set for which the neutral curve has a quartic

minimum.

Fig. 6. Showing the locus of quartic points in (d, d)-space, as given in Eq. (17).

Regions below the curve correspond to situations for which kc = 0, and regions

above to where kc – 0. Note that d � 0.57582/d when d� 1 and d � 1/(7d3) when

d� 1.



value may be determined by imposing zero heat flux across any

transversal section of the cell, and this yields:

Z 0

ÿd

ÿd
@T1b

@x
dyþ

Z 1

0

ÿ @T2b

@x
dyþ

Z 1þd

1

ÿd
@T3b

@x
dyþ

Z 1

0

T2b

@w

@y
dy ¼ 0: ð21Þ

On applying Eq. (21) we deduce the following values of the param-

eter, C:

C1 ¼ 0; C2 ¼
ffiffiffiffiffiffi

10
p

Ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Raÿ 12ÿ 24dd
p

;

C3 ¼ ÿ
ffiffiffiffiffiffi

10
p

Ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Raÿ 12ÿ 24dd
p

: ð22Þ

A few remarksmay bemade concerning these three expressions for C

in the temperature field. The expression under the root sign must be

positive, which means that Ra > 12(1 + 2dd). This value of Ra corre-

sponds to the critical Rayleigh number for the onset of long-wave-

length convection obtained above. It is also clear that C2 is positive

and C3 is negative; this reflects the fact the flowmay be either clock-

wise or anticlockwise, and the basic unicellular state which is real-

ized in practice depends on the initial conditions. A similar result,

giving the analytical value of the critical Rayleigh number, was ob-

tainedby Elhajjar et al. [22] in the case of double diffusive convection.

The value C1 = 0 corresponds to the zero-flow diffusive state.

From Eqs. (20) and (22) we may also deduce that the intensity

of the flow increases as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Raÿ Rac

p
. On the other hand, the horizon-

tal temperature gradient rises initially as Ra increases from the

critical value, Rac = 12(1 + 2 dd), until it achieves its maximum

value at Ra = 2Rac. Finally, we note that this solution may be

regarded as being a fully nonlinear solution, even though the

equations which have been solved are linear. This solution is valid

whenever Ra > Rac although it is outside of the scope of this paper

to determine whether the solution is realized in practice for all

values of Ra.

5. Linear stability within a finite cavity

Because experimental work must take place with a finite cavity,

even if its aspect ratio, A, is large, there will be finite aspect ratio

Fig. 7. Neutral curves for discrete modes within a cavity of aspect ratio (length), A. In each frame, the left hand curve corresponds to the neutral curve for a 1-cell mode, the

next to a 2-cell mode and so on, as indicated in the left hand frames. We have taken d = 0.01 and the values of d are given in the frames themselves.



effects which will modify slightly some of the above analysis. In

particular, the zero wavenumber cell will not appear, but it will

be replaced by a unicellular motion within the cavity. When the

critical wavenumber for the infinitely long cavity is nonzero, it

too may not appear because the length of the cavity is such that

a whole number of cells will not fit within it. Therefore it is impor-

tant to gain some understanding of what might be observed in

practice when the layer has a finite aspect ratio.

As mentioned earlier, when flow is governed by Darcy’s law and

when the sidewalls are insulated, the conditions which arise at a

cell boundary are identical to those which arise at a sidewall,

and therefore all solutions which exist in an infinitely long cavity

may also exist in a finite cavity, but only if they fit into the avail-

able space.

Figs. 7 and 8 illustrate some typical cases, and correspond to thin

plates forwhich d = 0.01. Fig. 7 shows the neutral curves for four dif-

ferent values of d as a function of the aspect ratio of the cavity, rather

than thewavenumber. There are nowmultiple curves, each ofwhich

correspond to a different number of cells within the cavity. When

d = 500, which is a relatively large value, the critical wavenumber

is close to p. Therefore the number of cells which fit into the cavity

is very roughly the closest integer to the aspect ratio of the cavity.

However, as d decreases, the critical wavenumber becomes smaller,

and therefore the range of values of the aspect ratio over which the

preferred number of cells does not change increases. This is clearly

illustrated by comparing the d = 500, d = 100 and d = 60 subframes

of Fig. 7. Eventually, as d decreases sufficiently, the quartic point is

reached, and when d takes this value or smaller values, then there

is only one preferred pattern, namely a single cell flow. A summary

of theprogressive transition fromrapid changes in the identityof the

preferred mode to the small-d situation when the single cell is al-

ways preferred at onset, are shown in Fig. 8, for d = 0.01 and in

Fig. 9 for d = 1, for the sake of comparison.

6. Conclusion

We have conducted a theoretical study of the onset of natural

convection in an isotropic, saturated porous layer sandwiched be-

tween two rigid, horizontal impermeable but conducting surfaces.

This has led to the following main result.

For all plate thicknesses the stability properties of the composite

layer vary from that of the classical constant temperature Horton–

Rogers–Lapwood problem, for which critical Rayleigh number and

wavenumber are equal to 4p2 and p, respectively, and which corre-

sponds to very highly conducting plates, through to the analogous

constant heat flux scenario where the critical wavenumber is zero,

which corresponds to a poorly conducting pair of bounding plates.

The critical Rayleigh number in the latter case is given by Eq. (15).

The transition from one extreme to the other takes place via a

neutral curve with a quartic minimum at zero wavenumber.

From a practical point of view we have shown that it is essential

to determine the combined effect of the relative thickness of the

bounding plates and the ratio of the conductivities of the plates

and the saturated porous medium. In some regions of parameter

space a small change in one of these values will cause large qualita-

tive and quantitative changes in the stability characteristics. Physi-

cally this arises because the varying heat flux which arises from the

presence of convective motions in the porous layer may or may not

get redistributed by horizontal conduction within the bounding

plates.

A further practical implication is that it is possible to determine

the effective conductivity of the porous medium by engineering a

situation wherein the critical wavenumber is zero. In such a situa-

tion the critical Rayleigh number is given by Eq. (15), i.e.

Ra0 = 12(1 + 2dd). Given that the thickness and conductivity of

the bounding plates will be known to a good accuracy, then, once

the critical Rayleigh number has been determined experimentally,

it will be straightforward to calculate d and, in turn, the conductiv-

ity of the porous medium. In practice, an experimental rig will be

finite in length, and so a unicellular pattern with a small wave-

number will be generated. The terms (14) and (16) in the small-k

perturbation expansion of the dispersion relation, or even the

dispersion relation itself, may be used together with a Newton–

Raphson method for determining d.
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Fig. 8. Displaying the critical mode in terms of the number of cells as a function of

the cavity width, A, and the conductivity ratio, d, when d = 0.01. The region between

each pair of lines corresponds to an onset mode with the number of cells indicated.

Fig. 9. Displaying the critical mode in terms of the number of cells as a function of

the cavity width, A, and the conductivity ratio, d, when d = 1. The region between

each pair of lines corresponds to an onset mode with the number of cells indicated.



Appendix A. Showing the absence of oscillatory instability

If the principle of exchange of stabilities is to be valid, then it is

necessary to show that r must be real. On multiplying the first

equation of the system (7) by w*, the complex conjugate of w
and integrating from y = 0 to y = 1, and, similarly, multiplying the

second equation of the system (7) by h�2 and integrating from

y = 0 to y = 1, we obtain,

Z 1

0

ðjw0j2þk
2jwj2Þdy¼Raik

Z 1

0

h2w
�dy; ðA:1aÞ

Z 1

0

ðjh02j
2þk

2jh2j2Þdyþr
Z 1

0

jh2j2dyÿ h�2h
0
2

� �1

0
¼ÿRaik

Z 1

0

h�2wdy: ðA:1bÞ

On taking the complex conjugate of the second equation of (A.1b),

Z 1

0

ðjh02j
2 þ k

2jh2j2Þdyþ r�
Z 1

0

jh2j2dyÿ h2h
0�
2

� �1

0
¼ þRaik

Z 1

0

h2w
�dy;

ðA:2Þ

(A.2) and (A.1a) may be combined by eliminating the cross product

terms to give,

Z 1

0

ðjh02j
2 þ k

2jh2j2Þdyþ r�
Z 1

0

jh2j2dyÿ h2h
0�
2

� �1

0

¼
Z 1

0

ðjw0j2 þ k
2jwj2Þdy: ðA:3Þ

After solving equation (11b) using the boundary condition (12) we

deduce the following relation coupling the value of h2 and its

derivative:

h02 ¼ kd tanhðkdÞh2 for y ¼ 0 and

h02 ¼ ÿkd tanhðkdÞh2 � � � for y ¼ 1: ðA:4Þ

Therefore: h2h
0�
2

� �1

0
¼ ÿ2kd tanhðkdÞ½h2h�2�

1
0 ¼ ÿ2kd tanhðkdÞ½jh2j2�10.

Since all the integrals in (A.3) and the term, ½h2h0�2 �
1
0 are real, then

r* must also be real. We conclude that imaginary part of r is equal

0, so there is no oscillatory instability for this problem.

Appendix B. Replacing the perturbation solutions in the

bounding plates by an equivalent set of boundary conditions

for the porous layer

The perturbation equation for the lower bounding plate is given

in (11) and is,

ðD2 ÿ k
2Þ~h1 ¼ 0; ðB:1Þ

which is to be solved subject to the boundary and interface

conditions,

D~h1ðÿdÞ ¼ 0; ~h1ð0Þ ¼ ~h2ð0Þ; and dD~h1ð0Þ ¼ D~h2ð0Þ: ðB:2Þ

Eq. (B.1) has the general solution, ~h1 ¼ Acoshkyþ Bsinhky, and

when the above boundary condition at y = ÿd is applied, then the

following relation between A and B is obtained:

Bcoshkdÿ Asinhkd ¼ 0: ðB:3Þ

On applying the interface conditions at y = 0, we get the following

expressions for ~h2ð0Þ and D~h2ð0Þ,

~h2ð0Þ ¼ A and D~h2ð0Þ ¼ dkB: ðB:4Þ

When these are substituted in Eq. (B.3), the following boundary

condition may be derived,

D~h2ð0Þ ¼ kdðtanhkdÞ~h2ð0Þ: ðB:5Þ

The equivalent condition for the upper boundary of the porous layer

is,

D~h2ð1Þ ¼ ÿkdðtanhkdÞ~h2ð1Þ: ðB:6Þ

While these boundary conditions may be interpreted quite correctly

as being of mixed type, they nevertheless depend on the wavenum-

ber, k. Therefore the presence of bounding plates cannot be mod-

elled by a fixed Biot number, such as is used in [14]. The presence

of k in Eqs. (B.5) and (B.6) implies that the results of the present

cannot be inferred at least quantitatively from the analysis con-

tained in [14].

Finally, it is important to note that (B.5) and (B.6) apply only

when the onset of convection is stationary. Although the present

problem does have stationary onset, the analogous layer with

two diffusing components might be subject to overstability, and

a more complicated pair of boundary conditions would then need

to be derived.
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