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Permanent disappearance and seasonal fluctuation of urban lake area in 

Wuhan, China monitored with long time series remotely sensed images 

from 1987 to 2016 

Abstract: Lakes are important to the healthy functioning of the urban ecosystem. The 

urban lakes in Wuhan, China, which is known as “city of hundreds of lakes”, are facing 

substantial threats mainly due to rapid urbanization. This paper focused on detecting 

the spatial and temporal change of urban lakes in Wuhan, using a long time series of 

Landsat and HJ-1A remotely sensed data from 1987 to 2016. The permanent 

disappearance and seasonal fluctuation of 28 main urban lakes were analysed, and their 

relationships with climatic change and human activities were discussed. The results 

show that most lakes in Wuhan had shrunk over the past 30 years resulting in a 

permanent change from water to land. The shrinkage was also most apparent in the 

central region of the city. Seasonal fluctuations of lake area were evident for most lakes 

but the relative important driving variable of lake area change varied between sub-

periods of time for different lakes. The explanatory power of impervious surface to 

five-year permanent water change is 91.75%, suggesting that urbanization—as 

increasing impervious surface—had led to the shrinkage of urban lakes in Wuhan. In 

all, 128.28 km2 five-year permanent water disappeared from 1987 to 2016. 

Keywords: urban lake; climatic changes; human activities 

1. Introduction 

Lakes are a precious natural resource and play an important role in the healthy functioning 

of ecosystems. Due to the effects of climatic change and human activities, lakes across the 

world are under threat, evident notably in relation degradation of quality and areal shrinkage 

(Du, Ottens, and Sliuzas 2010). Lake shrinkage seriously affects the ecosystems, in 



  

potentially devastating ways, with impacts propagating to, for example, other ecosystems, 

local climate and water-holding capacity which would lead to the flood in the rainy season 

and drought in the dry season. Presently, urbanization is taking place all over the world and 

has greatly changed the Earth’s land surface (Ii 2010; Vitousek et al. 1997). As a result, lakes 

located within or near cities are more likely to be affected by both climatic changes and 

human activities. Wuhan, China, is known as “city of hundreds of lakes” (Wang et al. 2017), 

however, many lakes in the city have shrunk or disappeared in the past decades (Kai et al. 

2010; Yang and Ke 2015). These latter changes impact the sustainable development of 

Wuhan city and concerns such as public health. Therefore, exploring the spatial and temporal 

dynamics of urban lakes is important to urban ecology and environment, which is becoming 

a great challenge for future development in the city. 

Remote sensing is an important source of data for monitoring surface water resources. 

With the development of remote sensing technology, various remotely sensed data sets such 

as those acquired from the Landsat  Multispectral Scanning System (MSS) (Brown, Gregory, 

and Milton 1987) , Thematic Mapper (TM) (Hui et al. 2008; Tulbure and Broich 2013; Han, 

Chen, and Feng 2015; Mueller et al. 2016; Tulbure et al. 2016; Deng et al. 2017), Enhanced 

Thematic Mapper Plus (ETM+) (Mcfeeters 1996; Li et al. 2013), and Operational Land 

Imager (OLI) (Byoung Chul, Hyeong Hun, and Jae Yeal 2015; Dao and Liou 2015; Lobo, 

Costa, and Novo 2015; Wang et al. 2018), as well as data acquired by Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) (Pantaleoni et al. 2009), Moderate 



  

Resolution Imaging Spectroradiometer (MODIS) (Li et al. 2016), and Sentinel-2 (Du et al. 

2016) have made it possible to monitor lakes at different scales.  

A variety of methods have been proposed to map surface water dynamics. Common 

water mapping methods for optical imagery could be categorized into four types (Ji, Zhang, 

and Wylie 2009): (1) thematic classification method, (2) linear unmixing model, (3) single-

band thresholding method, and (4) spectral water index method. The two most commonly 

used methods are spectral water index method and thematic classification method. In terms 

of spectral water index method, many indices were proposed such as the Modified 

Normalized Difference Water Index (MNDWI) (Xu 2006), the Normalized Difference Water 

Index (NDWI) (Mcfeeters 1996) , and the Automated Water Extraction Index (AWEI) 

(Feyisa et al. 2014). Due to its simplicity and efficiency, spectral water index method is 

widely used in water extraction. Although some comparative analyses between these water 

indices have been conducted (Li et al. 2013; Rokni et al. 2014; Yang et al. 2015), it is still 

hard to determine which index performs best in water extraction. In terms of thematic 

classification method, various classifiers are used to extract surface water including Random 

Forest (RF) (Liaw and Wiener 2002), Support Vector Machines (SVM) (Gunn 1998), 

Maximum Likelihood (ML) (Strahler 1980) and Decision Tree (DT) (Friedl and Brodley 

1997). Due to its good performance in previous studies (Deng et al. 2017; Tulbure et al. 

2016), RF classifier is selected to generate a comprehensive historical record of surface water 

dynamics with three decades of seasonally continuous time series of Landsat data from 1987 

to 2016.  



  

In general, when remotely sensed images are used to map the changes of lake extent, 

the water surface area is often used to represent the lake area. A popular method to analyse 

lake change is by comparing maps of water produced by the classification of remotely sensed 

images acquired at two time periods (Hui et al. 2008; Feng et al. 2012; Rokni et al. 2014; 

Yun et al. 2011). This method is intuitive but may not be a reasonable way to describe the 

real changes in lake area which has obvious seasonal fluctuation. Hence, it is a problem that 

how to describe the lake change in a more reasonable way. Selecting suitable image pairs, 

such as those acquired on anniversary dates or days with similar water levels in different 

years, can help mitigate this problem to some degree. More detailed information in lake 

temporal change is needed.  Meanwhile, the nature and reason for lake change are not made 

apparent. Specifically, the seasonal fluctuation and permanent disappearance of lakes caused 

by climatic changes and human activities are hard to differentiate. 

To overcome the problem of separating seasonal fluctuation from longer-term trends, 

that are regarded here as being permanent changes, requires the monitoring of lake change 

with, for example, long time series of remotely sensed images. Rather than using a small 

number of images acquired on specific dates, all available remotely sensed images covering 

the region of interest may be used. Then, the availability of several to tens of image scenes 

within one year enables the analysis of inter-annual and intra-annual lake change. The fine 

temporal but coarse spatial resolution images such as MODIS enable the monitoring of lakes 

over short time intervals, but the coarse spatial resolution of these images cannot meet the 

requirements for monitoring of urban lakes which are usually very small relative to the pixel 



  

size. A possible solution to this situation is through the use of Landsat sensor data, which are 

available since the 1970s with a relatively fine spatial resolution (Ozesmi and Bauer 2002).  

For example, Rokni et al. (2014) took advantage of the multi-temporal Landsat images to 

model the spatial-temporal changes of Lake Urmia in the period 2000-2013. Tulbure et al. 

(2016) made use of the seasonally continuous Landsat data to synoptically map the extent 

and dynamics of surface water and flooding (1986-2011) over the Murray-Darling Basin. 

Halabisky et al. (2016)(Halabisky et al. 2016) exploited a time series of Landsat satellite 

images to reconstruct semi-arid wetland surface water dynamics. Deng et al. (2017) utilized 

seasonally continuous Landsat TM/ETM+/OLI scenes to evaluate the lake-water extent 

changes in Wuhan urban agglomeration from 1987 to 2015. However, there still exists a 

limited understanding of the driving variables of the long-term urban lake area change.   

This paper aims to analyse the spatio-temporal change of urban lakes in Wuhan using a 

long time series remotely sensed images from 1987 to 2016. Although there are some 

similarities with Deng et al. (2017), the biggest difference is that we not only analyse the 

spatial-temporal change of urban lake but also analyse the driving variables that causing 

urban lake change with impervious surface data and climatic data. Based on the generated 

long time series seasonal urban lake changes, both long-term permanent loss of lake area and 

the seasonal change of lake area caused by climatic changes and human activity factors are 

explored. The relative important driving variable in different periods of urban lake change 

are also analysed, which is useful in understanding the lake area change in Wuhan. 



  

2. Materials and Methods  

The research comprised three main steps (Figure 1). The first step involved image 

classification and accuracy assessment. The second step focused on calculating water 

inundation frequency maps and five-year permanent water maps. It is noted that five-year 

permanent water is defined as the permanent water in a five-year period (e.g. the permanent 

water from 1987 to 1991).The last step addressed the analysis of the spatial-temporal 

pattern and driving variables of lake changes in Wuhan.  

 

Figure 1. The flowchart of lake change mapping. 



  

2.1. Study area 

Wuhan is one of the world’s richest cities in terms of surface water resources. It is located 

between 29°58’-31°22’N and 113°41’-115°05’E near the intersection of middle reaches of 

Yangtze and Han rivers and covers approximately 8494.41 km2. From the "three lines and 

one road" protection plan published by the Wuhan government in 2015, the total area of lakes 

accounts for about 10% of the Wuhan city area. The topography of Wuhan is monadnock 

plain impacted by rivers and lakes. The central region is low and flat and the surrounding 

area is surrounded by hills and fields. Wuhan has a humid subtropical monsoon climate with 

abundant rainfall and four distinctive seasons.  

With the “Reform and Opening Up” policy in the 1980s, the Chinese society and 

economy grew rapidly in the past decades, leading to rapid urban expansion (Schneider and 

Mertes 2014). Under the circumstances, urban lakes in Wuhan have also experienced 

considerable shrinkage over the past three decades. Based on the lake integrity and size, the 

main 28 lakes of Wuhan were selected (Figure 2).  All of these lakes are closed-basin lakes 

that normally exist throughout the year (i.e. they are not seasonal phenomena).  



  

 

Figure 2. The studied 28 urban lakes in the Wuhan city. The areas shown as black and blue 

in the Landsat TM image with the combination of bands 5, 4 and 3 on September 29, 1994, 

are mostly water areas. 

2.2. Datasets 

The main remotely sensed images used in this study were acquired by Landsat sensors 

including the TM, ETM+ and OLI. All Landsat surface reflectance data available online were 

downloaded from the US Geological Survey (USGS) Earth Resources Observation and 

Science (EROS) Center Science Processing Architecture (ESPA) on demand interface 

(https://espa.cr.usgs.gov/). All Landsat time-series datasets were registered geographically to 

the WGS84/UTM Zone 49N coordinate system. Notably that the remotely sensed images are 

selected by visual check to avoid the cloud contamination over lake regions. In the case of 

https://espa.cr.usgs.gov/


  

data shortage, however, the imagery with some cloud contamination still has to be used in 

this study. Besides Landsat, the HJ-1A satellites launched since 2008, also have a spatial 

resolution of 30 m, and were used as a supplementary data source. HJ-1A images were 

downloaded from the China Center for Resource Satellite Data and Application 

(http://cresda.com/CN/index.shtml). The HJ-1A images were geo-referenced with the 

Landsat image data, and atmospheric correction processes were performed in ENVI software 

using the FLAASH module.  

Table 1. The used bands of remotely sensed data. 

Landsat TM Landsat ETM+ Landsat OLI HJ-1A 

Band 

number 

Wavelength 

(μm) 

Band 

number 

Wavelength 

(μm) 

Band 

number 

Wavelength 

(μm) 

Band 

number 

Wavelength 

(μm) 

1 0.45-0.52 1 0.450-0.515 2 0.450–0.515 1 0.43-0.52 

2 0.52-0.60 2 0.525-0.605 3 0.525–0.600 2 0.52-0.60 

3 0.63-0.69 3 0.630–0.690 4 0.630–0.680 3 0.63-0.69 

4 0.76-0.90 4 0.775–0.900 5 0.845–0.885 4 0.76-0.90 

5 1.55-1.75 5 1.550–1.750 6 1.560–1.660   

7 2.08-2.35 7 2.090–2.350 7 2.100–2.300   

Table 2. The temporal distribution of Landsat and HJ-1A remotely sensed data. The green, 

red, orange and blue areas represent spring, summer, autumn, and winter, respectively. The 

black and red numbers represent the Landsat data and HJ-1A data, respectively. TotalYear 

represents the total numbers of images in each year, and TotalMonth represents the total 

numbers of images each month. 

Month 

Year 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec TotalYear 

1987 
   

19 
  

24 
 

26 
  

31 12 

1988 
   

30 
 

08 
 

11 
  

15 
 

12 

1989 
 

11 07 
    

14 
  

18 04 15 

1990 
   

27 
  

16 
 

02 
 

21 07 15 

1991 
    

16 
 

19 
  

07;23 08 
 

15 

1992 11;27 12 
 

16 
     

25 10;26 
 

21 

1993 29 
 

02 
    

09 
 

12 13 31 18 

1994 
  

05 
 

08 
 

27 
 

29 31 
  

15 

1995 
 

04 
 

09 27 
 

14 31 
 

02 
 

05 21 



  

1996 
  

10 
  

14 
  

02 04 
 

07;23 18 

1997 24 
  

30 
  

03 
 

21 23 08 10 21 

1998 
 

12 
 

17 
   

23 
 

26 11 
 

15 

1999 
    

06 
 

25 
 

27 
  

25 12 

2000 
      

27 
 

13 31 
  

9 

2001 
 

04 08 
   

30 
 

16 18 19 21 21 

2002 22 07 
 

12 
  

01 02 03;19 21 
  

24 

2003 09 13 
 

15 01 
  

05 22 24 
 

27 24 

2004 28 
  

01 
  

22 
   

20 13 15 

2005 04 
 

03 04;20 06 23 
  

11 
   

21 

2006 
  

03 07 
   

29 
 

16 01 19 18 

2007 
 

05 09 19 
  

31 
 

17 
   

15 

2008 
 

17 11 28 
  

17 
 

12 
  

08;24 21 

2009 10 
 

14 15 
  

20 
 

06 
 

25 21 19 

2010 14 18 26 
  

21 
    

12 30 16 

2011 15;31 
 

04 
  

08 
   

18 23 09 20 

2012 26 11 14 27 17 
  

06 
 

17 
 

31 20 

2013 
   

26 12 13 
 

16 17 03 04;20 06 27 

2014 23 
  

29 
   

19 06;22 
  

17;29 19 

2015 
  

31 
    

22 25 
 

26 17 13 

2016 
  

01 
  

05 23 
   

12 
 

12 

2017 
 

16 
          

3 

TotalMonth 40 35 45 55 24 21 45 35 57 49 57 64 527 

All of the remotely sensed images used have a spatial resolution of 30 m, and the spectral 

wavebands used are shown in Table 1. The observation times of these images were 

categorized into four seasons: spring (March to May), summer (June to August), autumn 

(September to November) and winter (December to the next February, e.g. the winter in 1991 

started from the December in 1991 to the February in 1992). The temporal distribution and 

seasonal division of remotely sensed data are shown in Table 2. Three Landsat images or two 

HJ-1A images are needed to cover the whole study area. In all, 527 images including 24 HJ-

1A images and 513 Landsat images were used in this study. Remotely sensed images were 

available for each of the four seasons in almost all years during the study period, except 

summer in 1992, spring in 2000 and winter in 1998 and 2005. 



  

In order to analyse the factors driving changes in the urban lake area, data on climatic 

changes and on human activities were also acquired. In terms of the climate data, monthly 

precipitation, evaporation, and temperature during 1987 - 2016 were obtained from the China 

Meteorological Data Network (http://data.cma.cn). In terms of human activities, a 30m, 

annual impervious surface dataset for Wuhan produced from 1987 to 2016 by using all 

available Landsat images (Shi et al. 2017) was used. 

2.3. Urban lake mapping 

2.3.1. Random forest classification 

The random forest algorithm (Belgiu and Drăguţ 2016) was applied to map waterbodies for 

each remotely sensed image. The random forest is an ensemble classifier that constructs many 

classification trees by a random subset of training data and predictors. The classification trees 

in RF are grown to maximum size without pruning and the outputted classes were aggregated 

via majority voting across all individual trees in the forest. Additionally, RF classifier has a 

built-in “Out-of-Bag” (OOB) accuracy assessment. OOB accuracy, which is unbiased and 

can be used to substitute the cross-validation or independent test datasets, was used to assess 

the performance of classification. 

Given that there are four different kinds of remotely sensed images (Landsat TM, 

ETM+, OLI as well as HJ-1A), different RF classifiers were developed for each sensor. For 

each RF classifier, different explanatory variables were used. For use with Landsat images, 

the variables used were the surface reflectance acquired in the selected spectral wavebands 

http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_MON.html


  

(Chander, Markham, and Helder 2009) and four spectral indices: the Normalized Difference 

Water Index (NDWI), the Modified Normalized Difference Water Index (MNDWI), the 

Normalized Difference Vegetation Index (NDVI) , and the Normalized Difference Built-up 

Index (NDBI) . With the HJ-1A images, as only data in four spectral bands were available, 

surface reflectance in every spectral band, NDVI and NDWI were used.  

For each RF classifier, the training samples were selected from high spatial resolution 

images provided by Google Earth. Moreover, because Landsat or HJ images were not 

temporally coincident with these high-resolution images, visual interpretation of the time 

series of Landsat or HJ images were also used to obtain the training data. Table 3 lists the 

number of training samples for the four RF classifiers. A total of 343,412 training samples 

including 160,563 water training samples and 182,849 non-water training samples were 

selected from the corresponding remotely sensed images.  

Table 3. The number of training samples 

                  Class  

RF classifier 
Water Non-water 

Landsat 5 TM 96550 101327 

Landsat 7 ETM+ 25740 35606 

Landsat 8 OLI 28898 34836 

HJ-1A 9375 11080 

Four RF classifiers’ OOB scores were computed depending on different numbers of 

classification trees. The high OOB score indicates the good performance of random forest 

classifier. Different numbers (i.e. 10, 20,30,40,50,60,70,80,100,150,200) of classification 

trees were tested and their performances in OOB score are shown in Figure 3. Given that 

random forest classifier’s accuracy and efficiency are equally important, the numbers of 

classification trees are all set to 80 for those four kinds of remotely sensed data.   



  

 

Figure 3. The OOB score for each classifier. 

It was evident that the water maps contained misclassified pixels which caused mainly 

by imagery quality problems (i.e. missing scan line imagery and cloud contaminated 

imagery) and the presence of aquatic plants in lakes. To increase the accuracy of the water 

maps, post-processing steps were applied. The data gap caused by cloud, haze, cloud shadow 

and SLC-off was filled by a temporal filter method (Tulbure and Broich 2013). For example, 

the cloud-obscured pixel of an image acquired in the winter of 1992 was assigned as water, 

if most pixels in the same location and season during 1991 - 1993 were labelled as water. In 

addition, misclassified water areas covered by aquatic plants were manually corrected. For 

each season in a year, there may be several class label images from RF classifiers. In order 

to generate the most representative classification result for this season, several class label 

images were merged into one based on the majority rule. With the majority rule, the class 

label which held a majority was recognized as the representative class label for the pixel. 

With the post-processing analysis, seasonal water classification maps from 1987 to 2016 

were produced. 



  

2.3.2. Accuracy assessment 

In general, a binary classification system (e.g. water and non-water classes) produces relative 

high classification accuracy (Moknatian, Piasecki, and Gonzalez 2017). From previous 

studies, the water and non-water classification accuracy produced by RF classifier is very 

high. Given that most errors in image classification are spatially concentrated at the 

boundaries between land cover classes rather than in the homogeneous class interior (Smith 

et al. 2003; Foody 2002), an edge sampling method was employed to assess the accuracy of 

water classification in this study (Tulbure and Broich 2013). While assessing the 

classification accuracy with high-resolution data such as that available in Google Earth would 

have been ideal, high-resolution images are always not temporally coincident with Landsat 

data acquisition. Testing samples were then collected based on the Landsat images.  

It was impractical to assess the accuracy of all classifications, especially as suitable 

reference data were not always available. Here, accuracy assessment focused on the labelling 

for 20 periods, specifically the class labels observed the four seasons of the years 1990, 1996, 

2001, 2006 and 2013. The dates of the 20 class labels results are shown in Table 5. In this 

study, 250 water testing samples and 250 non-water testing samples were collected by 

visually interpreting the Landsat image for each time series. In all, 10,000 testing samples 

were collected. Classification accuracy was computed as Overall Accuracy (OA) of water 

and non-water using a confusion matrix (Foody 2002). As the aim was to indicate the 

accuracy of the classification rather than of the maps in general, the core focus was on the 



  

overall accuracy of the allocations in the sample; map accuracy assessment would require 

adjustment for the sample design used. 

2.4. Temporal change analysis of lake area 

Using the long time series of lakes area developed, the temporal change trend line and, if 

appropriate, the abrupt time point of change were analysed for lakes individually with the 

Breaks For Additive Season and Trend (BFAST) method (Verbesselt et al. 2010). BFAST is 

an iterative algorithm that decomposes time series into trend, seasonal, and remainder 

components. The general model is described with the following equation:  

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑒𝑡  (𝑡 = 1, … , … , 𝑛)                                              (1) 

where 𝑌𝑡  is the observed data at time 𝑡 , 𝑇𝑡  is the trend component, 𝑆𝑡  is the seasonal 

component, 𝑒𝑡 is the remainder component characterizing the residual noise in the input time 

series 𝑌𝑡, and n is the number of observed values. It is assumed that the trend component 𝑇𝑡 

is piecewise linear and the seasonal component 𝑆𝑡  can be fitted as a dummy model with 

segments.  

The whole study period was divided into several sub-periods by the abrupt time point 

analysis. The relative importance analysis was then employed to find out which variable has 

the most important contribution to lake change during a certain sub-period.  

2.5. Spatial change analysis of lake area 

In order to analyse the spatial pattern of lake changes, a frequency analysis approach (Pekel 



  

et al. 2016) was applied to all seasonal water classification maps to produce water inundation 

frequency maps. Water inundation frequency is the quotient of the water detection times 

divided by all observation times during a period. In this study, water inundation frequency 

maps were calculated for each 5-year period. Hence, the 30-year study period (i.e. 1987 - 

2016) was divided into six 5-year periods: period1 (1987 - 1991), period2 (1992 - 1996), 

period3 (1997 - 2001), period4 (2002 - 2006), period5 (2007 - 2011) and period6 (2012 - 

2016). The resultant water inundation frequency maps were divided into six grades: 0 - 5, 5 

- 25, 25 - 50, 50 - 75, 75 - 95 and 95 - 100.  Among them, 0 - 5 indicated that frequency value 

was equal or greater than 0% and equal or less than 5%; 5 - 25 indicated that frequency value 

was greater than 5% and equal or less than 25%; 25 - 50 indicated that frequency value was 

greater than 25% and equal or less than 50%; 50 - 75 indicated that frequency value was 

greater than 50% and equal or less than 75%; 75 - 95 indicated that frequency value was 

greater than 75% and less than 95%; 95 - 100 indicated that frequency value was equal or 

greater than 95% and equal or less than 100%. By considering the uncertainty of remotely 

sensed image classification (i.e. some degree of misclassification is inevitable) in this study, 

pixels with the grade 0 - 5  are recognized as non-water area and pixels with the grade 95 - 

100 are recognized as five-year permanent water area. The other grades 5 - 25, 25 - 50, 50 - 

75, 75 - 95 are recognized as low water inundation frequency area, low-medium water 

inundation frequency area, high-medium water inundation frequency area and high water 

inundation frequency area, respectively. 



  

3. Results 

3.1. Accuracy assessment 

Based on the edge sampling method, the OA of 20 images are shown in Table 4. In terms of 

seasonal average OA, the summer (99.2%) is the highest and the winter (94.5%) is the lowest. 

In all, the OA is high enough to study the surface water changes. 

Table 4. Overall accuracy for each season in the year 1990, 1996, 2001, 2006 and 2013 

OA 
Season 1990 1996 2001 2006 2013 Average  

Spring 99.5% (Apr.27) 99.5% (Mar.10) 97.5% (Mar.08) 100.0% (Apr.07) 90.0% (Apr.26) 97.3% 

Summer 97.5% (Jul.16) 99.5% (Jun.14) 100.0% (Jul.30) 99.0% (Aug.29) 100.0% (Aug.16) 99.2% 

Autumn 100.0% (Sept.02) 99.0% (Oct.04) 99.0% (Oct.18) 86.0% (Oct.16) 98.0% (Oct.03) 96.4% 

Winter 92.5% (Dec.07) 98.5% (Dec.23) 91.5% (Dec.21) 93.5% (Dec.19) 96.5% (Dec.06) 94.5% 

Average  97.4% 99.1% 97.0% 94.6% 96.1% 96.8% 

 

3.2. Temporal changes of lake surface area and their driving variables 

Figure 4 shows the seasonal and long-term lake surface area changes for 28 lakes in Wuhan 

city. The trend line and abrupt time point for each lake are also shown. The trend lines of 

seasonal change in lake areas were various. For example, lakes such as Sha Lake, Nan Lake, 

and Nantaizi Lake, had large fluctuations at the start of the study period, a large drop in the 

middle of the study period and a small fluctuation by the end of the study period. Chaibo 

Lake, Taojiaoda Lake, and Wu Lake have relative steady trend lines. Dong Lake, Yanxi Lake, 

and Zhujia Lake had decreasing trend lines. 



  



  

 

Figure 4. Seasonal and long-term lake surface area changes for 28 lakes in Wuhan city 



  

3.3. Spatial changes in water inundation frequency  

Figure 5 shows the six 5-year water inundation frequency maps from 1987 to 2016. In 

general, the whole water area substantially declined from the period of 1987 - 1991 to the 

period of 2013 - 2016. The relatively low water inundation frequency distribution was 

concentrated and was located in the west-central area and the south-west corner of the study 

area, because the former area has a rapid urban expansion and the latter area is mostly covered 

by the paddy field. It was evident that the central parts of the lakes tended to be stable and 

stay as water with the relatively high frequency and the surrounding lake edge area tend to 

switch between water and land with the relatively low frequency. Hence, the frequency 

gradually decreased from the centre to the edge of the lakes.  

Figure 6 shows the whole lake area changes quantitatively in Wuhan by considering 

three representative frequency grades. Among them, 5 - 50 represented the low water 

inundation frequency; 50 - 95 represented the high water inundation frequency, while 95 - 

100 represented the five-year permanent water. It was found that the water area with the 

frequency 5 -50 and 50 - 95 increased first and then decreased. Both of the maximums of 

water area with the frequency 5 - 50 and 50 - 95 appeared in the period of 1997 - 2001 when 

a great flood happened. The water area within the frequency range of 95 - 100 had a 

significant downward trend as a whole, but had a rebounded somewhat in the period of 1997 

- 2001. The downward trend had a correlation with urbanization, while the small rebound 

might be triggered by the great flood in 1998. In all, the five-year permanent water area 



  

decreased by 20.12% and the disappeared five-year permanent water area is 128.2797 km2 

from 1987 to 2016. 

 

Figure 5. Five-year water inundation frequency maps of Wuhan from 1987 to 2016     

 

Figure 6. Water area change with the representative water inundation frequency 



  

3.4. Changes in five-year permanent waterbodies and their driving variables 

Based on the above analysis, for each lake, the area with a low water inundation frequency 

appears to arise because of climatic changes, reflected in changes in precipitation, while the 

area with a high water inundation frequency is mainly caused by human activities, such as 

urbanization. More importantly, the change of five-year permanent water area is one of the 

most valuable variables to characterize the change of urban lakes in a long period.  

Figure 7 shows the changes in five-year permanent waterbodies in Wuhan during the 

six periods. Taken as a whole, some five-year permanent water disappeared in the early 

periods (i.e. the red, orange or yellow area in Figure 7) is located in the centre of Wuhan. 

That in part reflected the spatial pattern of urban expansion from the centre to edge in the 

Wuhan city. 

Three sub-graphs were shown to enlarge the five-year permanent water change of the 

representative lakes, including Sha Lake, Nan Lake, and Dong Lake (Figure 7). In general, 

the five-year permanent water change of lakes extent was least at the lake centre and 

increased near the lake shore. In terms of Sha Lake and Nan Lake, five-year permanent water 

disappeared in the early periods is located in the north-east and north-west, respectively. 

From the sub-graph of Sha Lake, a tiny thread in the middle of Sha Lake disappeared during 

the period 2007 - 2011. Using Google Earth data as a reference, the tiny thread is proved to 

be Sha Lake Bridge which built in 2009 and completed in 2011. Similarly, as shown in sub-

graph of Dong Lake, the thread is proved to be Dong Lake Tunnel which disappeared during 

the period 2012-2016, and Dong Lake Tunnel was built in 2012 and completed in 2015.  



  

 

Figure 7. Changes of five-year permanent waterbodies in Wuhan 



                  

 

Table 5. The change areas and rates of five-year permanent waterbodies for all 28 lakes and the red numbers represent the maximum change rate 

Lake ID Lake Name 

Area（km2） Change Rate (%) 

Period1 Period2 Period3 Period4 Period5 Period6 Period(1-2) Period(2-3) Period(3-4) Period(4-5) Period(5-6) Period(1-6) 
1987-1991 1992-1996 1997-2001 2002-2006 2007-2011 2012-2016 

1 Zhujia Lake 3.95 2.79 2.40 1.56 1.31 1.13 -29.35 -14.15 -34.91 -16.38 -13.79 -71.54 

11 Tuandun Lake 8.04 7.01 6.95 6.61 5.40 2.44 -12.80 -0.83 -4.92 -18.27 -54.84 -69.65 

16 Qingling Lake 7.46 6.00 5.67 4.25 3.43 2.29 -19.58 -5.47 -25.04 -19.30 -33.25 -69.30 

17 Nantaizi Lake 5.35 5.30 4.26 2.16 1.98 1.77 -0.87 -19.59 -49.36 -8.42 -10.70 -66.99 

22 Sha Lake 6.14 5.42 3.74 2.88 2.38 2.16 -11.81 -30.90 -23.10 -17.38 -9.00 -64.77 

13 Pinglang Lake 4.48 4.25 4.13 3.10 1.88 1.80 -5.11 -2.75 -24.89 -39.54 -4.08 -59.80 

7 Longyang Lake 1.45 1.32 1.25 1.04 0.97 0.71 -9.16 -5.38 -16.56 -7.42 -26.93 -51.49 

6 Dongxi Lake 7.39 6.47 5.66 4.98 4.81 3.97 -12.48 -12.48 -12.12 -3.45 -17.46 -46.35 

3 Nan Lake 12.07 11.28 9.18 7.30 7.15 6.68 -6.59 -18.54 -20.56 -2.02 -6.61 -44.69 

19 Yandong Lake 6.99 6.65 5.91 5.35 4.84 4.05 -4.84 -11.20 -9.39 -9.55 -16.42 -42.12 

27 Guanlian Lake 3.76 3.73 3.71 3.47 3.02 2.29 -0.60 -0.55 -6.45 -13.09 -24.09 -38.99 

28 Lanni Lake 3.46 3.44 3.41 3.02 2.74 2.22 -0.65 -0.84 -11.27 -9.58 -18.89 -35.89 

5 Moshui Lake 3.48 3.21 3.00 2.66 2.50 2.24 -7.86 -6.65 -11.09 -6.15 -10.41 -35.69 

18 Ye Lake 2.13 2.03 1.93 1.63 1.45 1.40 -4.40 -5.00 -15.92 -10.80 -3.54 -34.29 

24 Houguan Lake 36.09 35.15 33.91 31.46 29.60 25.24 -2.60 -3.54 -7.20 -5.92 -14.74 -30.06 

23 Hou Lake 16.19 15.56 15.19 14.11 13.16 11.97 -3.88 -2.40 -7.11 -6.72 -9.06 -26.08 

12 Lu Lake 44.94 41.90 40.40 39.39 37.21 33.74 -6.76 -3.58 -2.50 -5.54 -9.33 -24.93 

26 Wu Lake 25.60 23.58 23.34 22.46 21.01 19.54 -7.88 -1.03 -3.78 -6.46 -6.97 -23.66 

20 Yanxi Lake 13.10 12.82 12.25 11.50 10.97 10.02 -2.15 -4.42 -6.10 -4.60 -8.70 -23.51 

21 Dong Lake 34.57 33.68 32.68 31.28 30.09 27.17 -2.59 -2.97 -4.29 -3.80 -9.72 -21.43 

15 Huangjia Lake 7.34 7.11 6.93 6.60 6.55 5.78 -3.14 -2.61 -4.70 -0.78 -11.72 -21.25 

10 Mulan Lake 15.84 15.37 14.98 14.92 14.28 12.52 -2.95 -2.56 -0.39 -4.26 -12.31 -20.93 

8 Sanjiao Lake 2.26 2.21 2.19 2.06 1.99 1.80 -2.19 -1.06 -6.01 -3.41 -9.24 -20.26 

14 Xiaozha Lake 8.52 8.42 8.33 7.98 7.78 6.86 -1.29 -1.04 -4.19 -2.53 -11.82 -19.55 

25 Taojiada Lake 4.52 4.36 4.24 4.00 3.92 3.65 -3.62 -2.56 -5.75 -2.12 -6.80 -19.26 

2 Zhangdu Lake 40.89 40.78 39.01 37.71 36.17 34.25 -0.27 -4.34 -3.35 -4.06 -5.31 -16.22 

4 Tangxun Lake 43.01 42.27 41.26 39.83 38.77 36.42 -1.72 -2.40 -3.46 

 
-2.67 -6.05 -15.31 

9 Chaibo Lake 2.59 2.58 2.52 2.47 2.37 2.29 -0.52 -2.27 -2.25 -3.76 -3.64% -11.86 



  

Table 5 shows the change areas and rates of five-year permanent waterbodies for all 

28 lakes. The order of entries in this table is ranked in terms of the rate of change between 

Period1 and Period6. Basically, the five-year permanent water areas all decreased in this 

period. The largest change rate reaches 71.54%, while the lowest change rate is 11.86%. 

Seven lakes have the decreased rate larger than 50%, and the lakes with the top five 

decreased rates are Zhujia Lake, Tuandun Lake, Qingling Lake, Nantaizi Lake, and Sha 

Lake. All the top five lakes’ five-year permanent water change rate is higher than 60% 

from Period1 to Period6, indicating that a large number of five-year permanent 

waterbodies had disappeared in these lakes. The red number shown in Table 5 represents 

the maximum change rate in the five periods for each lake. In all, only one maximum 

change rate appeared at Period (1 - 2) and Period (2 - 3) respectively; Five maximum 

change rate appeared at Period (3 - 4); Two maximum change rate appeared at Period (4 

- 5) and the remaining 19 maximum change rate appeared at Period (5 - 6).  

4. Discussion 

Substantial variations in urban lake extent were observed.  The change of climatic factors 

(i.e. precipitation, temperature, evaporation and the difference between precipitation and 

evaporation) and human activity (i.e. impervious surface) from 1987 to 2016, as shown 

in Figure 8, were used to analyse the factors that may be driving the changes in the urban 

lakes of Wuhan city. The seasonal temperature data were calculated by averaging all 

monthly data in each season. The seasonal precipitation data and evaporation data were 

calculated by summing all monthly data in each season. The seasonal difference between 

precipitation and evaporation data was calculated by seasonal precipitation minus 

seasonal evaporation. It is noticed that the trend lines of seasonal change of climatic 

factors remain steady from 1987 to 2016 and the trend line of the annual impervious 

surface area kept increasing substantially. Given temperature always has a very small 



  

impact on the hydrologic cycle for closed-basin lakes, we only use the difference between 

precipitation and evaporation as climatic factors, and impervious surface as the human 

activities factor in the following analysis. 

 

Figure 8. The change of climate and human activity from 1987 to 2016. “Precipitation 

minus Evaporation” represents the difference between precipitation and evaporation. 



  

Three lakes with the representative trend line were selected to analyse the driving 

variables in lake area change. Chaibo Lake has a slow downward trend, Dong Lake has a 

rapid downward trend, and Nan Lake has both trends together. Figure 9 shows the relative 

importance between the seasonal lake area and the seasonal difference of precipitation 

and evaporation, and the relative importance between the annual lake area, derived by 

averaging the seasonal lake areas for the year, and the annual impervious surface 

calculated with a 5 km buffer zone of the lake boundary. The linear regression was used 

to describe the relationship between the lake area and its driving variables. The coefficient 

of determination (R2) is often higher for “Impervious Surface” than “Precipitation minus 

Evaporation” except that in the period 1987 - 1998 for Nan Lake. This means “Impervious 

Surface” has a stronger explanatory power than “Precipitation minus Evaporation” in lake 

area change.  

In general, given that precipitation and evaporation are the immediate factors of 

surface area changes for these urban lakes, the intra-annual seasonal lake change was 

largely caused by precipitation and evaporation. However, the impact of precipitation and 

evaporation on the seasonal fluctuation of lakes is often complex, as there are human 

activities impacts on the urban lakes. For example, the small fluctuation of lakes is mainly 

caused by the construction of lake embankment. For these lakes, although the 

precipitation had a big fluctuation, the water area would not be changed greatly unless 

the severe flood or drought. In all, most lakes showed a downward trend of area in the 

study period. Because of the steady trend lines of seasonal change of climatic factors and 

the upward trend line of annual impervious surface area, human activity is the more 

important driving variable influencing the long-term lake area change. 

In order to analyse the relative importance of the driving variables that relate to the 

five-year permanent water disappearance, the correlation between the five-year 



  

permanent water area and the five-year precipitation accumulated anomalies as well as 

the five-year impervious surface area accumulated anomalies is shown in Figure 10. The 

R2 between the impervious surface and the permanent lake area is 0.9175 which is greater 

than the R2 between the “Precipitation minus Evaporation” and the permanent lake area. 

Given that the explanatory power of impervious surface to five-year permanent water 

change is 91.75% this suggests, although there are limitations to the analysis, that human 

activities are the main driving variables that relate to the permanent disappearance of 

water in Wuhan.  

 

Figure 9. The relative importance of two driving variables of the lake area change.   



  

 

Figure 10. The relative importance of the two driving variables of five-year permanent 

water change 

5. Conclusions 

The spatio-temporal change of urban lakes in Wuhan was analysed using a long time 

series of remotely sensed images from 1897 to 2016. In terms of temporal change, the 

BFAST method was used to produce the trend line and abrupt time point of the long-term 

lake area change. In terms of spatial change, the frequency analysis was used to reflect 

the water area change in the whole Wuhan. In all, the seasonal change of lake area for 28 

lakes was studied to explore the temporal change of urban lake areas. A series of water 

maps focused on five-year period were produced to reflect the spatial change of urban 

lakes. The results showed that most lakes in Wuhan had shrunk over the past 30 years 

resulting in a permanent change from water to land. The shrinkage was also most apparent 

in the central region of the city which reflected that the urban expansion model in Wuhan 

was from centre to the edge. Seasonal fluctuations of lake area were evident for most 

lakes but the relative important driving variables of lake area change varied between sub-

periods of time for different lakes because of the unbalance of urban expansion. 20.12% 

five-year permanent water in Wuhan disappeared from 1987 to 2016. The results suggest 

that increasing the impervious cover was the main variable impacting on lake change, 

suggesting that urbanization was the most important driving variable causing the 



  

shrinkage of urban lakes in Wuhan.  

Although this study shows a long time series remote sensing imagery can provide 

valuable information on urban lake change, there is still uncertainty in the result. The 

latter is associated especially with three issues. First, the 16-day repeat cycle of Landsat 

data is not sufficient to provide data if we want to focus on a shorter time interval (e.g. 

every year) for water inundation frequency mapping. With the launch of more and more 

high spatial resolution and short revisit period satellites, a further enhancement to this 

study is improving the spatial resolution of lake mapping and temporal resolution of the 

water inundation frequency. Second, the accuracy of the water body mapping is affected 

by the quality of remotely sensed imagery used, such as the cloud and aquatic plants in 

lakes. A more powerful classification algorithm is also needed to extract the waterbodies 

accurately. Third, remote sensing still has some limits in representing the reality of lakes 

and their change in time and space. For example, means to address issues such as changes 

apparent caused by the construction of bridges over lakes are required to avoid mis-

estimation of the lake area.  
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