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Abstract: In this paper, we propose a new approach to constructing similarity measures using the
entropy measure for Interval-Valued Intuitionistic Fuzzy Sets. In addition, we provide several
illustrative examples to demonstrate the practicality and effectiveness of the proposed formula.
Finally, we use the new proposed similarity measure to develop a new approach for solving problems
of pattern recognition and multi-criteria fuzzy decision-making.
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1. Introduction

Atanassov [1] introduced intuitionistic fuzzy sets (IFSs) which are characterized by both a
membership function and a non-membership function. In 1989, Atanassov and Gargov [2] generalised
the notion of intuitionistic fuzzy sets to interval-valued intuitionistic fuzzy sets (IVIFSs), in which the
membership values are intervals, rather than exact numbers. IVIFSs operations, relations, and operators
concerning IVIFSs were defined by Atanassov. Recently, Yager proposed the notation of a Pythagorean
fuzzy set (PFS) [3], after which Peng developed it to a generalized form called the interval-valued
Pythagorean fuzzy set (IVPFS). Han and Deng [4] proposed an interval-valued Pythagorean prioritized
game framework in a group decision-making process.Two important topics in the theory of fuzzy
sets—entropy measures and similarity measures of IFSs—have been widely proposed.

In 1965, Zadeh [5] introduced fuzzy entropy and defined it as the fuzziness degree of a fuzzy set.
De Luca and Termini [6] proposed the axiomatic construction of the entropy of fuzzy sets. In 1996,
the entropy measure of IFS and IVIFS was investigated by Burillo and Bustince [7] to measure the
degree of intuitionism. A non-probabilistic entropy measure of IFS and IVIFS was proposed in terms
of the ratio of intuitionistic fuzzy cardinalities by Szimidt and Kacprzyk [8]. Hung and Yang [9]
proposed an axiomatic definition of the entropy of IFSs and IVFSs using probability, and they proposed
the axiomatic definition and its properties. In addition, they introduced two families of entropy
measures and showed how their proposed measure was more reliable for measuring the degree of
fuzziness. Recently, Pan and Deng [10] proposed a new entropy measure that can measure uncertainty
of probability distribution. This measure is the generalization of the Shannon entropy.

The similarity measure of IFSs is used to measure the degree of similarity between two IFSs.
In 2004, Szimidt and Kacprzyk [11] investigated a similarity measure between IFSs using a distance
measure. They applied the new measure to assess the extent of agreement between a group of experts
giving their opinions expressed by intuitionistic fuzzy preference relations [11]. Moreover, a family
of similarity measures was proposed by Szimidt and Kacprzyk [12], and they compared them with
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some existing similarity measures. Hong and Kim [13], Hung and Yang [14], and Xu [15] defined some
other similarity measures using different distance measures for IFSs. In addition to the new measure,
Hung and Yang proved some properties of the proposed measure, and compared their measure with
existing measures, and the comparison showed that their proposed similarity measure is much simpler
than existing measures. More recently, Garg and Kumar [16] discussed the weaknesses of some of the
existing measures, and proposed some novel similarity measures between IFSs.

Zeng and Guo [17] proved that some similarity measures and entropies of IVFSs could be
deduced by normalized distances of IVFSs using the axiomatic definitions. Also, they investigated
some formulae to calculate the entropy and similarity measure of the IVIFSs. Zeng and Li [18] and
Zhang et al. [19] showed that similarity measures and entropies of the IVFSs could be transformed
by each other. Zhang and Yu et al. [20] put forward some entropy formulae of IFSs according to the
relationship between entropies and similarity measures of IFSs. In 2011, Wei and Wang [21] proposed
an approach to construct similarity measures using entropy measures for interval-valued intuitionistic
fuzzy sets.

In this paper, we follow the procedure outlined by Wei and Wang [21] and propose a new similarity
measure. We demonstrate the usefulness of our new measure for pattern recognition and multi-criteria
decision-making through two case studies.

The structure of this paper is as follows. Section 2 reviews some concepts and definitions of IFSs
and IVIFSs. Section 3 gives an axiomatic definition, and provides some proposed entropy formulas of
IVIFSs. Section 4 investigates the relationship between the entropy and similarity measure of IVIFSs,
and proves that similarity measures of IVIFSs can be constructed by entropy measures of IVIFSs based
on the axiomatic definition. In particular, we define a new similarity measure of IVIFSs according to
the entropy formula of IVIFSs defined in Section 3. This is followed by applications of the proposed
similarity measure to pattern recognition and multi-criteria fuzzy decision-making in Section 5. This
paper is concluded in Section 6.

2. Preliminaries

Definition 1. Let X be a universe of discourse. An IFS in X is a triple, having the following form:

A = {(x, µA(x), vA(x))|x ∈ X} (1)

where
µA : X → [0, 1], vA : X → [0, 1] (2)

with the condition

0 ≤ µA(x) + vA(x) ≤ 1, ∀x ∈ X

where µA(x), vA(x) denote the degrees of membership and non-membership of x in A, respectively. IFS(X)
denotes the set of IFSs on X.

We call πA(x) = 1− µA(x)− vA(x) the Intuitionistic index of x in A, which denotes the hesitancy
degree of x in A [1].

The complementary set AC of A is defined as

AC = {(x, vA(x), µA(x))|x ∈ X} (3)

Definition 2. Let X be a universe of discourse, and int(0, 1) denotes all closed subintervals of the interval
[0, 1]. An IVIFS A in X is an object having the form:

A = {(x, µA(x), vA(x))|x ∈ X}. (4)
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where
µA : X → int(0, 1), vA : X → int(0, 1), (5)

with the condition

0 ≤ sup(µA(x)) + sup(vA(x)) ≤ 1.

where µA, vA denote the degrees of membership and non-membership of x in A, let µA(x) =

[µ−A(x), µ+
A(x)] (where µ−A(x) = µA(x)− ε and µ+

A(x) = µA(x) + ε, where ε is an infinitesimal number
which is a number that is larger than each negative real number and is smaller than each positive real number),
vA(x) = [v−A(x), v+A(x)] (where v−A(x) = vA(x)− ε and v+A(x) = vA(x) + ε, where ε is an infinitesimal
number which is a number that is larger than each negative real number and is smaller than each positive real
number). Then,

A = {(x, [µ−A(x), µ+
A(x)]), [v−A(x), v+A(x)])|x ∈ X}.

with the condition 0 ≤ µ+
A(x) + v+A(x) ≤ 1. IVIFS(X) denotes the set of IVIFSs in X [2].

we call πA(x) = [π−A (x), π+
A (x)] = [1 − µ+

A(x) − v+A(x), 1 − µ−A(x) − v−A(x)] the Interval-Valued
Intuitionistic index of x in A, which denotes the hesitancy degree of x in A.

Definition 3. For two IVIFSs A(x) = {(x, [µ−A(x), µ+
A(x)]), [v−A(x), v+A(x)])|x ∈ X} and B(x) =

{(x, [µ−B (x), µ+
B (x)]),[v−B (x), v+B (x)]|x ∈ X}, the following relations and operations can be defined:

1. A ⊆ B if and only if µ−A(x) ≤ µ−B (x), µ+
A(x) ≤ µ+

B (x), v−A(x) ≥ v−B (x), v+A(x) ≥ v+B (x), for each
x ∈ X

2. A = B if and only if A ⊆ B and B ⊆ A
3. AC(x) = {(x, [v−A(x), v+A(x)], [µ−A(x), µ+

A(x)]))|x ∈ X}

3. Entropy of IVIFSs

Definition 4. A real-valued function E : IVIFS(X)→ [0, 1] is called an entropy for IVIFSs if it satisfies the
following axiomatic requirements [22]:

1. E(A) = 0 if, and only if A is a fuzzy set.
2. E(A) = 1 if, and only if [µ−A(x), µ+

A(x)] = [v−A(x), v+A(x)] = [0, 0] for all x ∈ X.
3. E(A) = E(Ac) for all A ∈ IVIFSs(X)

4. For two IVIFSs A and B on X, if A ≤ B when µ−A(x) ≤ µ−B (x) and µ+
A(x) ≤ µ+

B (x) and v−A(x) ≥ v−B (x)
and v+A(x) ≥ v+B (x) for each x ∈ X , then E(B) ≤ E(A).

Definition 5. For an IVIFS A, In [10,21,23], some examples of the entropy formula were provided and defined
by, for each A ∈ IVIFS,

E1(A) =
1
n

n

∑
i=1

min{µ−A(xi), v−A(xi)}+ min{µ+
A(xi), v+A(xi)}+ π−A (xi) + π+

A (xi)

max{µ−A(xi), v−A(xi)}+ max{µ+
A(xi), v+A(xi)}+ π−A (xi) + π+

A (xi)
(6)

E2(A) =
1
n

n

∑
i=1

2− |µ−A(xi)− v−A(xi)|+ |µ+
A(xi)− v+A(xi)|+ π−A (xi) + π+

A (xi)

2 + |µ−A(xi)− v−A(xi)|+ |µ+
A(xi)− v+A(xi)|+ π−A (xi) + π+

A (xi)
(7)

4. New Similarity Measure between IVIFSs

In this section, we propose a new similarity measure between IVIFS M(A, B) by using an entropy
measure of IVIFSs. Firstly, we give an extension of the axiomatic definition for similarity measures
in ([16,24–27]) of IVIFSs.
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Definition 6. A real-valued function S : IVIFS(X)× IVIFS(X)→ [0, 1] is called a similarity measure on
IVIFS(X) if it satisfies the following axiomatic requirements [28,29]:

(S1) 0 ≤ S(A, B) ≤ 1;
(S2) S(A, B) = 1 if, and only if A = B;
(S3) S(A, B) = S(B, A);
(S4) A ⊆ B ⊆ C if S(A, C) ⊆ S(A, B) and S(A, C) ⊆ S(B, C).

Let X = {x1, x2, ..., xn} be a finite universe of discourse. For A, B ∈ IVIFSs(X), we define IVIFS
M(A, B) by the following:

M(A, B) = {(x, [µ−M(A,B)(x), µ+
M(A,B)(x)], [υ−M(A,B)(x), υ+M(A,B)(x)])|x ∈ X} (8)

where

µ−M(A,B)(x) = min{MAB1(x), MAB2(x)} (9)

µ+
M(A,B)(x) = max{MAB1(x), MAB2(x)} (10)

υ−M(A,B)(x) = min{MAB3(x), MAB2(x)} (11)

υ+M(A,B)(x) = max{MAB3(xj), MAB2(x)} (12)

and

MAB1(x) = 1
4
[
2 + |µ−A(x) − µ−B (x)| + |υ−A(x) − υ−B (x)| − (υ−A(x) − µ−B (x)) − (υ−B (x) − µ−A(x)) −

(π+
A (x)− π+

B (x)− υ+B (x))
]

MAB2(x) = 1
4
[
2 + |µ+

A(x) − µ+
B (x)| + |υ+A(x) − υ+B (x)| − (υ+A(x) − µ+

B (x)) − (υ+B (x) − µ+
A(x)) −

(π−A (x)− π−B (x)− υ−B (x))
]

MAB3(x) = 1
4
[
2 − |µ−A(x) − µ−B (x)| + |υ−A(x) − υ−B (x)| + (υ−A(x) − µ−B (x)) + (υ−B (x) − µ−A(x)) +

(π+
A (x)− π+

B (x)− υ+B (x))
]

MAB4(x) = 1
4
[
2 − |µ+

A(x) − µ+
B (x)| + |υ+A(x) − υ+B (x)| + (υ+A(x) − µ+

B (x)) + (υ+B (x) − µ+
A(x)) +

(π−A (x)− π−B (x)− υ−B (x))
]

Theorem 1. Suppose that E is an entropy measure for IVIFS. The function S(A, B) on IVIFS(X) defined above
by E(M(A, B)) is a similarity measure.

Proof. It is straightforward to prove that E(M(A, B)) satisfies the four conditions (E1)–(E4) in
Definition 4

(S1) We can easily show 0 ≤ E(M(A, B)) ≤ 1 since 0 ≤ E(A) ≤ 1 for all A ∈ IVIFS(X) and
M(A, B) ∈ IVIFS(X).
(S2) With the definition of the entropy and similarity measure,
we can obtain
E(M(A, B)) = 1
⇐⇒ µ−M(A,B)(xj) = υ−M(A,B)(xj) and µ+

M(A,B)(xj) = υ+M(A,B)(xj)∀xj ∈ X

⇐⇒ µ−A(xj) = µ−B (xj), υ−A(xj) = υ−B (xj), µ+
A(xj) = µ+

B (xj) and υ+A(xj) = υ+B (xj)∀xj ∈ X
⇐⇒ A = B

(S3) From the definition of M(A,B), it is straightforward to show that M(A, B) = M(B, A).
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Thus, it is obvious that E(M(A, B)) = E(M(B, A)).

(S4) Since A ⊆ B ⊆ C, we have µ−A(x) ≤ µ−B (x) ≤ µ−C (x), µ+
A(x) ≤ µ+

B (x) ≤ µ+
C (x),

v−A(x) ≥ v−B (x) ≥ v−C (x), v+A(x) ≥ v+B (x) ≥ v+C (x). Thus:

|µ−A(x)− µ−C (x)| ≥ |µ−A(x)− µ−B (x)|,
|µ+

A(x)− µ+
C (x)| ≥ |µ+

A(x)− µ+
B (x)|,

|v−A(x)− v−C (x)| ≥ |v−A(x)− v−B (x)|,
|v+A(x)− v+C (x)| ≥ |v+A(x)− v+B (x)|.

Then

(υ−A(x)− µ−C (x)) ≤ (υ−A(x)− µ−B (x))

(υ+A(x)− µ+
C (x)) ≤ (υ+A(x)− µ+

B (x))

And

(υ−C (x)− µ−A(x)) ≤ (υ−B (x)− µ−A(x))

(υ+C (x)− µ+
A(x)) ≤ (υ+B (x)− µ+

A(x))

Also

π+
A (x)− π+

C (x)− υ+C (x)) ≤ π+
A (x)− π+

B (x)− υ+B (x))

π−A (x)− π−C (x)− υ−C (x) ≤ π−A (x)− π−B (x)− υ−B (x)

Hence we have

MAC1(x) ≥ MAB1(x), MAC2(x) ≥ MAB2(x),

MAC3(x) ≥ MAB3(x), MAC4(x) ≥ MAB4(x).

Similarly, we can obtain:
µ−M(A,C)(x) ≥ µ−M(A,B)(x)

µ+
M(A,C)(x) ≥ µ+

M(A,B)(x)

υ−M(A,C)(x) ≥ υ−M(A,B)(x)

υ+M(A,C)(x) ≥ υ+M(A,B)(x)

Therefore M(A, B) ⊆ M(A, C)
Besides we have µ−M(A,C)(x) ≥ υ−M(A,C)(x), µ+

M(A,C)(x) ≥ υ+M(A,C)(x)

by the definition of M(A, B). We can get:

E(M(A, B)) ≥ E(M(A, C)), S(A, B) ≥ S(A, C)

In the same way, we can also have E(M(B, C)) ≥ E(M(A, C)).
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Let E be the entropy measure defined by Equation (6), that is, for A ∈ IVIFSs(X), E(A) =

1
n ∑n

i=1
min{µ−A(xi), v−A(xi)}+ min{µ+

A(xi), v+A(xi)}+ π−A (xi) + π+
A (xi)

max{µ−A(xi), v−A(xi)}+ max{µ+
A(xi), v+A(xi)}+ π−A (xi) + π+

A (xi)
Then, the proposed similarity measure S for A, B ∈ IVIFS(X) looks like:

S(A, B) = E(M(A, B))

=
1
n

n

∑
i=1

min{µ−M(A,B)(xi), v−M(A,B)(xi)}+ min{µ+
M(A,B)(xi), v+M(A,B)(xi)}+ π−M(A,B)(xi) + π+

M(A,B)(xi)

max{µ−M(A,B)(xi), v−M(A,B)(xi)}+ max{µ+
M(A,B)(xi), v+M(A,B)(xi)}+ π−M(A,B)(xi) + π+

M(A,B)(xi)

where µ−M(A,B)(xi),v−M(A,B)(xi),µ+
M(A,B)(xi) and v+M(A,B)(xi), i = 1...n are defined by

Equations (9)–(12)

Definition 7. Let ω = (ω1, ω2, ..., ωn)T be a weight vector of the elements xi, i = 1, 2, ..., n. Then, we can
define the weighted similarity measure by

S(A, B) =
n

∑
i=1

ωi

min{µ−M(A,B)(xi), v−M(A,B)(xi)}+ min{µ+
M(A,B)(xi), v+M(A,B)(xi)}+ π−M(A,B)(xi) + π+

M(A,B)(xi)

max{µ−M(A,B)(xi), v−M(A,B)(xi)}+ max{µ+
M(A,B)(xi), v+M(A,B)(xi)}+ π−M(A,B)(xi) + π+

M(A,B)(xi)
(13)

where ωi ≥ 0 and ∑n
i=1 ω− i = 1. If ω = ( 1

n , 1
n , ..., 1

n )
T .

5. Applications

The IFS and IVIFS theory have been applied to areas such as artificial intelligence, networking,
soft decision-making, programming logic, and operational research. IVIFSs and IFSs are useful for
dealing with vagueness and imprecision [30]. Moreover, they are suitable for modeling and processing
imperfect information. In this section, we present two applications.

5.1. Pattern Recognition

We apply the proposed weighted similarity measure, defined by Equation (13), to solve pattern
recognition problems with IVIFS information. We adopt the same steps as in [15]:
Step 1: Suppose that there exist m patterns represented by IVIFSs

Ai = {(xj, [µ−Ai
(xj), µ+

Ai
(xj)], [v−Ai

(xj), v+Ai
(xj)])|xj ∈ X}

for i = 1, 2, ..., m, in the feature space X = {x1, x2, ..., xn}, and suppose that there is a sample to be
recognized, which is represented by an IVIFS

B = {(xj, [µ−B (xj), µ+
B (xj)], [v−B (xj), v+B (xj)])|xj ∈ X}

Step 2: Calculate the weighted similarity degree S(Ai, B) between Ai and B by formula in Equation (13).
Step 3: Select the largest one, denoted by S(Ak, B), from S(Ai, B), i = 1, 2, ..., m. Then, B belongs to the
pattern Ak.

Now, we consider an example of a pattern recognition problem on the classification of building
materials given in [15]. We use the same data as in [15].

Example 1. Assume that there are four classes of building materials Ai , i = 1, 2, 3, 4, and an unknown
building material B, which are represented by the IVIFSs in the feature space X = {x1, x2, ..., x12} with a weight
vector ω:

ω = (0.1, 0.05, 0.08, 0.06, 0.03, 0.07, 0.09, 0.12, 0.15, 0.07, 0.13, 0.05)T :
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Suppose we have the following data indicated by [µ−Ai
(xj), µ+

Ai
(xj)] and [v−Ai

(xj), v+Ai
(xj)] for each Ai for every

variable i = 1, 2, 3, 4, and for each xj for every variable j = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 given in Tables 1
and 2 [15].

Table 1. The four classes of building materials Ai , i = 1, 2, 3, 4 [15].

x1 x2 x3 x4 x5 x6

A1
µ
v

[0.1, 0.2]
[0.5, 0.6]

[0.1, 0.2]
[0.7, 0.8]

[0.5, 0.6]
[0.3, 0.4]

[0.8, 0.9]
[0.0, 0.1]

[0.4, 0.5]
[0.3, 0.4]

[0.0, 0, 1]
[0.8, 0.9]

A2
µ
v

[0.5, 0.6]
[0.3, 0.4]

[0.6, 0.7]
[0.1, 0.2]

[1.0, 1.0]
[0.0, 0.0]

[0.1, 0.2]
[0.6, 0.7]

[0.0, 0.1]
[0.8, 0.9]

[0.7, 0.8]
[0.1, 0.2]

A3
µ
v

[0.4, 0.5]
[0.3, 0.4]

[0.6, 0.7]
[0.2, 0.3]

[0.9, 1.0]
[0.0, 0.0]

[0.0, 0.1]
[0.8, 0.9]

[0.0, 0.1]
[0.8, 0.9]

[0.6, 0.7]
[0.2, 0.3]

A4
µ
v

[1.0, 1.0]
[0.0, 0.0]

[1.0, 1.0]
[0.0, 0.0]

[0.8, 0.9]
[0.0, 0.1]

[0.7, 0.8]
[0.1, 0.2]

[0.0, 0.1]
[0.7, 0.9]

[0.0, 0.1]
[0.8, 0.9]

B µ
v

[0.9, 1.0]
[0.0, 0.0]

[0.9, 1.0]
[0.0, 0.0]

[0.7, 0.8]
[0.1, 0.2]

[0.6, 0.7]
[0.1, 0.2]

[0.0, 0.1]
[0.8, 0.9]

[0.1, 0.2]
[0.7, 0.8]

Table 2. The four classes of building materials Ai , i = 1, 2, 3, 4 [15].

x7 x8 x9 x10 x11 x12

A1
µ
v

[0.3, 0.4]
[0.5, 0.6]

[1.0, 1.0]
[0.6, 0.7]

[0.2, 0.3]
[0.0, 0.0]

[0.4, 0.5]
[0.4, 0.5]

[0.7, 0.8]
[0.1, 0.2]

[0.4, 0.5]
[0.4, 0.5]

A2
µ
v

[0.5, 0.6]
[0.3, 0.4]

[0.6, 0.7]
[0.2, 0.3]

[1.0, 1.0]
[0.0, 0.0]

[0.1, 0.2]
[0.7, 0.8]

[0.0, 0.1]
[0.8, 0.9]

[0.7, 0.8]
[0.1, 0.2]

A3
µ
v

[0.1, 0.2]
[0.7, 0.8]

[0.2, 0.3]
[0.6, 0.7]

[0.5, 0.6]
[0.2, 0.4]

[1.0, 1.0]
[0.0, 0.0]

[0.3, 0.4]
[0.4, 0.5]

[0.0, 0.1]
[0.8, 0.9]

A4
µ
v

[0.1, 0.2]
[0.7, 0.8]

[0.1, 0.2]
[0.7, 0.8]

[0.4, 0.5]
[0.3, 0.4]

[1.0, 1.0]
[0.0, 0.0]

[0.3, 0.4]
[0.4, 0.5]

[0.0, 0.1]
[0.8, 0.9]

B µ
v

[0.1, 0.2]
[0.7, 0.8]

[0.1, 0.2]
[0.7, 0.8]

[0.4, 0.5]
[0.3, 0.4]

[1.0, 1.0]
[0.0, 0.0]

[0.3, 0.4]
[0.4, 0.5]

[0.0, 0.1]
[0.7, 0.9]

Our purpose is to distinguish which class the unknown pattern B belongs to by using the above steps and
calculating the similarity degrees S(Ai, B) between each Ai and B by (13), where we have:

We obtained the results in Table 3. Clearly, the similarity degree S(A4, B) between A4 and B, is the largest
one. Hence, B belongs to pattern A4, which is the same result as in [15]. Moreover, it is very clear that the pairs
of B are closer to A4 than the others.

Table 3. The proposed similarity measure S results.

(A1, B) (A2, B) (A3, B) (A4, B)

S 0.63022 0.54985 0.76412 0.83245

5.2. Multiple-Criteria Decision-Making Problems

In this subsection, we introduce a method to solve a multi-criteria fuzzy decision making problem
with weights using the proposed similarity measure [21,23].

Let M = {M1, M2, ..., Mm} be a set of options, and C = {C1, C2, ..., Cn} be a set of criteria. Assume
that ωj is the weight of the criterion Cj, j = 1, 2, ..., n, where ωj ∈ [0, 1] and ∑n

i=1 ωj = 1. The
characteristics of the option Mi in terms of criteria C are represented by the following IVIFSs:

Mi =
{〈

Cj, [µ−ij , µ+
ij ], [v

−
ij , v+ij ]

〉}
, i = 1, 2, ..., m,
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where [µ−ij , µ+
ij ] indicates the degree that option Mi satisfies criterion Cj, and [v−ij , v+ij ] indicates the

degree that option Mi does not satisfy criterion Cj.
Using the weighted similarity measure defined by Equation (13), we introduce the following

approach to solving the above multi-criteria fuzzy decision-making problem:
Step 1: Find out the positive-ideal solution M+ and negative-ideal solution M−:

M+ = {< [µ−1+, µ+
1+], [v

−
1+, v+1+], ..., [µ−n+, µ+

n+], [v
−
n+, v+n+] >},

M− = {< [µ−1−, µ+
1−], [v

−
1−, v+1−], ..., [µ−n−, µ+

n−], [v
−
n−, v+n−] >},

where, for each j = 1, 2, ..., n,〈
[µ−1+, µ+

1+], [v
−
1+, v+1+]

〉
=

〈
[maxiµ

−
ij , maxiµ

+
ij ], [miniv−ij , miniv+ij ]

〉〈
[µ−1−, µ+

1−], [v
−
1−, v+1−]

〉
=

〈
[miniµ

−
ij , miniµ

+
ij ], [maxiv−ij , maxiv+ij ]

〉
Step 2: Calculate the similarity measure S(Mi, M+) between the option Mi(i = 1, 2, ..., m) and
the positive-ideal solution M+, and the similarity measure S(Mi, M−) between the option Mi(i =
1, 2, ..., m) and the negative-ideal solution M− by using the formula in Equation (13).
Step 3: Calculate the relative similarity measure S(Mi) of Mi with respect to M+ and M−, where

S(Mi) =
S(Mi, M+)

S(Mi, M−) + S(Mi, M+)
, i = 1, 2, ..., n. (14)

Step 4: Select the largest one, denoted by S(Mk), among the values S(Mi), i = 1, 2, ..., m. Then, Mk is
the best choice.

Example 2 ([21]). Consider a supplier selection problem for a product. Suppose that a company sets up
six evaluating indices for this problem: price (G1), deadline (G2), quality (G3), the level of technology
(G4), service (G5), and the future cooperation (G6), and suppose that the correspondent weight vector is
ω = 0.2, 0.1, 0.25, 0.1, 0.15, 0.2. Assume that there are five suppliers Mj(j = 1, 2, 3, 4, 5). Experts evaluate
these suppliers by the above indices and obtain the evaluating information in Table 4, which indicated
[µ−Mi

(Gj), µ+
Mi
(Gj)] and [v−Mi

(Gj), v+Mi
(Gj)] for each Mi for every variable i = 1, 2, 3, 4, 5 and for each Gj

for every variable j = 1, 2, 3, 4, 5, 6:

Table 4. The five suppliers Mi , i = 1, 2, 3, 4, 5 [21].

G1 G2 G3 G4 G5 G6

M1
µ
v

[0.4, 0.5]
[0.2, 0.3]

[0.6, 0.8]
[0.1, 0.2]

[0.4, 0.5]
[0.2, 0.4]

[0.8, 0.9]
[0.1, 0.1]

[0.2, 0.6]
[0.2, 0.3]

[0.5, 0.7]
[0.1, 0.2]

M2
µ
v

[0.5, 0.7]
[0.1, 0.2]

[0.6, 0.8]
[0.1, 0.2]

[0.3, 0.4]
[0.4, 0.6]

[0.8, 0.9]
[0.0, 0.1]

[0.2, 0.5]
[0.3, 0.4]

[0.1, 0.2]
[0.4, 0.5]

M3
µ
v

[0.2, 0.3]
[0.6, 0.7]

[0.4, 0.5]
[0.3, 0.4]

[0.7, 0.8]
[0.1, 0.2]

[0.2, 0.5]
[0.1, 0.2]

[0.7, 0.8]
[0.0, 0.1]

[0.5, 0.6]
[0.2, 0.4]

M4
µ
v

[0.5, 0.6]
[0.1, 0.2]

[0.3, 0.4]
[0.2, 0.4]

[0.5, 0.8]
[0.1, 0.2]

[0.6, 0.7]
[0.1, 0.2]

[0.3, 0.4]
[0.3, 0.4]

[0.1, 0.2]
[0.7, 0.8]

M5
µ
v

[0.4, 0.5]
[0.3, 0.4]

[0.8, 0.9]
[0.0, 0.1]

[0.6, 0.8]
[0.1, 0.2]

[0.8, 0.9]
[0.0, 0.1]

[0.7, 0.8]
[0.1, 0.2]

[0.5, 0.6]
[0.1, 0.2]

By Step 1, we obtain the positive-ideal solution M+ and the negative-ideal solution M− in Table 5.



Axioms 2019, 8, 73 9 of 11

Table 5. The positive-ideal solution M+ and the negative-ideal solution M− [21].

G1 G2 G3 G4 G5 G6

M+ µ
v

[0.5, 0.7]
[0.1, 0.2]

[0.8, 0.9]
[0.0, 0.1]

[0.7, 0.8]
[0.1, 0.2]

[0.8, 0.9]
[0.0, 0.1]

[0.7, 0.8]
[0.0, 0.1]

[0.5, 0.7]
[0.1, 0.2]

M− µ
v

[0.2, 0.3]
[0.6, 0.7]

[0.3, 0.4]
[0.3, 0.4]

[0.3, 0.4]
[0.4, 0.6]

[0.2, 0.5]
[0.1, 0.2]

[0.2, 0.4]
[0.3, 0.4]

[0.1, 0.2]
[0.7, 0.8]

By Step 2, we use formula in Equation (13) to calculate the similarity measure S(Mi, M+) and S(Mi, M−),
respectively:

Then, we obtain the relative similarity measure S(Mi) of Mi with respect to M+ and M− by the formula
in Equation (14):

S(M1) = 0.45793, S(M2) = 0.41931, S(M3) = 0.45233, S(M4) = 0.42791, S(M5) = 0.49541.

The results in Table 6 shows that M5 > M1 > M3 > M4 > M2, so M5 is the proper supplier, which is
the same result as in [15]. We replicated the same procedure that was used in [21]. We obtained the result that
M5 is the proper supplier.

Table 6. The proposed similarity measure S results.

S(M1, M+) 0.55286 S(M1, M−) 0.65444
S(M2, M+) 0.57748 S(M2, M−) 0.79973
S(M3, M+) 0.54882 S(M3, M−) 0.66450
S(M4, M+) 0.57397 S(M4, M−) 0.76737
S(M5, M+) 0.52264 S(M5, M−) 0.53232

6. Conclusions

Many similarity measures that were defined based on entropy measures have been applied to
the problems based on intuitionistic fuzzy information, but they could not be used to deal with the
problems based on interval-valued intuitionistic fuzzy information. In this paper, we introduced a new
similarity measure between IVIFSs. This measure has been constructed using the entropy measure for
IVIFSs. Moreover, we have verified the efficiency of the proposed similarity measure by applying it to
two case studies. Two applications were introduced—one was to solve a pattern recognition problem,
and the other was for a multiple-criteria fuzzy decision-making problem. A potential issue is that one
measure will not be optimal for all data. Although our measure was effective in our two case studies,
in future work we could explore its performance on other applications, such as multiple-attribute
decision-making and edge detection, image segmentation, and fault-tree analysis. In addition, we will
compare the performance of our measures and IFSs measures on IVIFS data in future.

Author Contributions: S.S.M. conceived of the presented idea. S.S.M. developed the theory and performed the
computations. A.A. and R.I.J. encouraged S.S.M. to investigate the idea and supervised the findings of this work.
All authors discussed the results and contributed to the final manuscript. S.S.M. wrote the manuscript with
support from A.A. and R.I.J.; A.A. and R.I.J. helped supervise the project.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
2. Atanassov, K.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349.

[CrossRef]

http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1016/0165-0114(89)90205-4


Axioms 2019, 8, 73 10 of 11

3. Cabrerizo, F.J.; Morente-Molinera, J.A.; Pedrycz, W.; Taghavi, A.; Herrera-Viedma, E. Granulating linguistic
information in decision making under consensus and consistency. Expert Syst. Appl. 2018, 99, 83–92.
[CrossRef]

4. Han, Y.; Deng, Y.; Cao, Z.; Lin, C.T. An interval-valued Pythagorean prioritized operator-based game
theoretical framework with its applications in multicriteria group decision making. Neural Comput. Appl.
2016, 1–19. [CrossRef]

5. Zedah, L. Fuzzy Sets. Inf. Control. 1965, 8, 338–353.
6. De Luca, A.; Termini, S. A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory.

In Readings in Fuzzy Sets for Intelligent Systems; Elsevier: New York, NY, USA, 1993; pp. 197–202.
7. Burillo, P.; Bustince, H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst.

1996, 78, 305–316. [CrossRef]
8. Szmidt, E.; Kacprzyk, J. Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 2001, 118, 467–477. [CrossRef]
9. Hung, W.L.; Yang, M.S. Fuzzy entropy on intuitionistic fuzzy sets. Int. J. Intell. Syst. 2006, 21, 443–451.

[CrossRef]
10. Pan, L.; Deng, Y. A new belief entropy to measure uncertainty of basic probability assignments based on

belief function and plausibility function. Entropy 2018, 20, 842. [CrossRef]
11. Szmidt, E.; Kacprzyk, J. A concept of similarity for intuitionistic fuzzy sets and its use in group

decision making. In Proceedings of the 2004 IEEE International Conference on Fuzzy Systems
(IEEE Cat. No.04CH37542), Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 1129–1134.

12. Szmidt, E.; Kacprzyk, J. Analysis of Similarity Measures for Atanassov’s Intuitionistic Fuzzy Sets.
In Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European
Society of Fuzzy Logic and Technology Conference, Lisbon, Portugal, 20–24 July 2009.

13. Hong, D.H.; Kim, C. A note on similarity measures between vague sets and between elements. Inf. Sci. 1999,
115, 83–96. [CrossRef]

14. Hung, W.L.; Yang, M.S. Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance.
Pattern Recognit. Lett. 2004, 25, 1603–1611. [CrossRef]

15. Zeshui, X. On similarity measures of interval-valued intuitionistic fuzzy sets and their application to pattern
recognitions. J. Southeast Univ. 2007, 1, 027.

16. Garg, H.; Kumar, K. An advanced study on the similarity measures of intuitionistic fuzzy sets based on
the set pair analysis theory and their application in decision making. Soft Comput. 2018, 22, 4959–4970.
[CrossRef]

17. Zeng, W.; Guo, P. Normalized distance, similarity measure, inclusion measure and entropy of interval-valued
fuzzy sets and their relationship. Inf. Sci. 2008, 178, 1334–1342. [CrossRef]

18. Zeng, W.; Li, H. Relationship between similarity measure and entropy of interval valued fuzzy sets.
Fuzzy Sets Syst. 2006, 157, 1477–1484. [CrossRef]

19. Zhang, H.; Zhang, W.; Mei, C. Entropy of interval-valued fuzzy sets based on distance and its relationship
with similarity measure. Knowl.-Based Syst. 2009, 22, 449–454. [CrossRef]

20. Zeng, W.; Yu, X.; Yu, F.; Cui, B. Entropy of intuitionistic fuzzy set based on similarity measure. In Proceedings
of the 3rd International Conference on Innovative Computing Information and Control, ICICIC’08, Dalian,
China, 18–20 June 2008; p. 398.

21. Wei, C.P.; Wang, P.; Zhang, Y.Z. Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and
their applications. Inf. Sci. 2011, 181, 4273–4286. [CrossRef]

22. Zhang, Y.; Ma, P.; Su, X.; Zhang, C. Entropy on interval-valued intuitionistic fuzzy sets and its application in
multi-attribute decision making. In Proceedings of the 14th International Conference on Information Fusion,
Chicago, IL, USA, 5–8 July 2011; pp. 1–7.

23. Meng, F.; Chen, X. Entropy and similarity measure for Atannasov’s interval-valued intuitionistic fuzzy sets
and their application. Fuzzy Optim. Decis. Mak. 2016, 15, 75–101. [CrossRef]

24. Mohamed, S.S.; AbdAla, A.S. Applying a new similarity measure between general type-2 fuzzy sets to
clustering. In Proceedings of the 2011 IEEE 12th International Symposium on Computational Intelligence
and Informatics (CINTI), Budapest, Hungary, 21–22 November 2011; pp. 283–286.

25. Pekala, B.; Balicki, K. Interval-valued intuitionistic fuzzy sets and similarity measure. Iran. J. Fuzzy Syst.
2017, 14, 87–98.

http://dx.doi.org/10.1016/j.eswa.2018.01.030
http://dx.doi.org/10.1007/s00521-019-04014-1
http://dx.doi.org/10.1016/0165-0114(96)84611-2
http://dx.doi.org/10.1016/S0165-0114(98)00402-3
http://dx.doi.org/10.1002/int.20131
http://dx.doi.org/10.3390/e20110842
http://dx.doi.org/10.1016/S0020-0255(98)10083-X
http://dx.doi.org/10.1016/j.patrec.2004.06.006
http://dx.doi.org/10.1007/s00500-018-3202-1
http://dx.doi.org/10.1016/j.ins.2007.10.007
http://dx.doi.org/10.1016/j.fss.2005.11.020
http://dx.doi.org/10.1016/j.knosys.2009.06.007
http://dx.doi.org/10.1016/j.ins.2011.06.001
http://dx.doi.org/10.1007/s10700-015-9215-7


Axioms 2019, 8, 73 11 of 11

26. Fei, L.; Wang, H.; Chen, L.; Deng, Y. (1604-2881) A new vector valued similarity measure for intuitionistic
fuzzy sets based on owa operators. Iran. J. Fuzzy Syst. 2018. [CrossRef]

27. Mishra, A.R. Intuitionistic fuzzy information measures with application in rating of township development.
Iran. J. Fuzzy Syst. 2016, 13, 49–70.

28. Arefi, M.; Taheri, S. Weighted similarity measure on interval-valued fuzzy sets and its application to pattern
recognition. Iran. J. Fuzzy Syst. 2014, 11, 67–79.

29. Xu, Z.; Chen, J. An overview of distance and similarity measures of intuitionistic fuzzy sets. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst. 2008, 16, 529–555. [CrossRef]

30. Ahmad, Y.; Husain, S.; Asthanvi, I.S. Study on the Development of Decision Making Using Intuitionistic
Fuzzy Set (IFS) and Interval Valued Intuitionistic Fuzzy Set (IVIFS). IOSR J. Eng. 2013, 3, 34–42. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.22111/ijfs.2018.4302
http://dx.doi.org/10.1142/S0218488508005406
http://dx.doi.org/10.9790/3021-03443442
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries 
	Entropy of IVIFSs 
	New Similarity Measure between IVIFSs 
	Applications 
	Pattern Recognition
	Multiple-Criteria Decision-Making Problems

	Conclusions 
	References

