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A low-passage insect-cell isolate of bluetongue virus uses a
macropinocytosis-like entry pathway to infect natural target
cells derived from the bovine host
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Abstract

Bluetongue virus (BTV) causes an economically important disease in domestic and wildlife ruminants and is transmitted by

Culicoides biting midges. In ruminants, BTV has a wide cell tropism that includes endothelial cells of vascular and lymphatic

vessels as important cell targets for virus replication, and several cell types of the immune system including monocytes,

macrophages and dendritic cells. Thus, cell-entry represents a particular challenge for BTV as it infects many different cell types

in widely diverse vertebrate and invertebrate hosts. Improved understanding of BTV cell-entry could lead to novel antiviral

approaches that can block virus transmission from cell to cell between its invertebrate and vertebrate hosts. Here, we have

investigated BTV cell-entry using endothelial cells derived from the natural bovine host (BFA cells) and purified whole virus

particles of a low-passage, insect-cell isolate of a virulent strain of BTV-1. Our results show that the main entry pathway for

infection of BFA cells is dependent on actin and dynamin, and shares certain characteristics with macropinocytosis. The ability to

use a macropinocytosis-like entry route could explain the diverse cell tropism of BTV and contribute to the efficiency of

transmission between vertebrate and invertebrate hosts.

INTRODUCTION

Arthropod-borne viruses (Arboviruses) are a diverse group

of viruses that collectively cause a wide range of important

diseases in man, domesticated animals and wildlife [1].

Arboviruses are transmitted between susceptible vertebrate

hosts by arthropods, such as mosquitoes, ticks, fleas, sand

flies and Culicoides spp. [2]. Bluetongue virus is the type

species of the arbovirus genus Orbivirus (within the family

Reoviridae). Bluetongue viruses (BTV) are transmitted by

their biological vector, Culicoides biting midges, and can

cause a severe hemorrhagic disease [bluetongue (BT)], par-

ticularly in naïve individuals belonging to certain species

of domesticated and wild ruminants. Currently, at least 27

serotypes of BTV have been recognized with further

additional serotypes proposed [3–7]. Historically, BTV was

confined to tropical and temperate areas of Africa, Amer-

ica, Australia and Asia. However, in the last two decades

BTV has greatly expanded its geographical distribution

northwards culminating in 2006 in a BTV-8 strain spread-

ing for the first time across Northern Europe, reaching as

far as Scandinavia [8, 9], which has increased concerns

over the potential for further significant BT outbreaks in

the region.

The BTV virion comprises ten linear double-stranded

RNA (dsRNA) segments encased within a three-layered

capsid structure [10, 11]. The outer capsid is formed by

VP2 and VP5, with the surface of the inner capsid (or

‘core’) formed by VP7. The innermost sub-core layer is
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composed of VP3 and surrounds the genomic dsRNA
and the three protein components (VP1, VP4 and VP6)
of the transcriptase complexes [11]. The outermost pro-
tein VP2, which represents the main target for neutraliz-
ing antibodies, determines BTV serotype specificity [12]
and is the major cell-attachment protein [13–15], while
VP5 is believed to play an active role in the penetration
of cellular membranes during entry [13, 16, 17]. BTV
whole virus particles are known to exploit receptor-medi-
ated endocytosis to enter cells [17, 18]. On internalization,
the low pH within acidic endosomes triggers VP2 dissoci-
ation and the fusion activity of VP5, ultimately delivering
the complete core particle into the cytosol [17]. A number
of endocytosis pathways have been recognized that deliver

cargoes to acidic endosomes and of these, clathrin-medi-

ated endocytosis (CME), caveolar/lipid raft-dependent

endocytosis and macropinocytosis (MPC) have emerged

as major cell-entry routes exploited by viruses [19]. These

pathways may share some of the same molecular machin-

ery; for example, dynamin is an important GTPase

involved in endocytosis and serves as a scission factor

during vesicle formation and plays a role in CME but

also clathrin-independent endocytosis pathways including

some types of MPC [20, 21].

The ability to enter cells determines viral cell- and tissue-tro-
pism, and ultimately both host-range and disease manifesta-
tion. Cell-entry also represents a particular challenge for BTV

Fig. 1. BTV infection of BFA cells is partially inhibited by inhibitors of dynamin. Uptake of AlexaFluor-647-labelled transferrin (a) or

BTV infection (b) of BFA cells treated with dyngo4a. Cells were mock-treated or treated with the drug at the indicated concentrations

either as a pre-treatment or at the indicated times post-infection with BTV-1/KC3. In (b), the infection level for the control cells across

the different mock-treatment time points was ~45%. Transferrin uptake and infection were quantified by flow cytometry and the data

normalized to the mock-treated cells. Data are shown as means+/-SEM for six technical replicates across two biologically independent

experiments. BFA cells were transfected with the indicated DN Dyn2 splice variant (aa, ba or bb) or the matched WT protein as a GFP

fusion protein prior to (c) AlexaFluor-647-labelled transferrin uptake or (d) infection with BTV-1/KC3. Transfection efficiencies (c and d)

were between 83–89% (WT/Dyn2 bb), 47–55% (WT/Dyn2 ba) and 42–46% (WT/Dyn2 aa). Infection levels for the GFP-positive cell pop-

ulations expressing WT proteins was ~19%. Transferrin uptake and infection were quantified by flow cytometry and the data normal-

ized to the cells transfected with the matched WT Dyn2 construct. Data are shown as means+/-SEM for nine technical replicates across

three biologically independent experiments *=P-value<0.05, **P-value <0.005 and ***=P-value <0.0005.
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as it infects cells in widely diverse vertebrate and invertebrate
hosts. Thus, enhancing our knowledge of cell-entry may help
to develop antiviral reagents with the potential to block the
initiation of BTV infections and their subsequent transmis-
sion. In its ruminant hosts, BTV infects a wide range of cell
types, including several cells of the immune system such as
monocytes, lymphocytes and conventional, follicular and
plasmacytoid dendritic cells [22–25]. Endothelial cells of
blood [25, 26] and lymphatic vessels [27] are also targeted by
BTV and represent major sites of virus replication. Conse-
quently, the most severe BT disease typically results in endo-
thelial lesions, excessive bleeding and coagulopathy [25, 26,
28]. Despite its known cell tropism, it is not known if in vivo
BTV utilizes conserved cell surface receptors and similar cell-
entry mechanisms across different target cell types, or
employs multiple entry strategies. In standard laboratory
cell-lines, BTV has been reported to use more than one endo-
cytosis pathway for cell-entry. Forzan et al. [17] reported that
BTV-10 enters HeLa and Vero cells via CME [17], while we
have shown that BTV-1 exploits aMPC-like entry pathway to
infect BHK-21 cells [18]. The use of different entry pathways
in these studies could be explained by the use of different
BTV serotypes (which have significant variation in their cell
attachment protein VP2), the use of alternative virus prepara-
tions (e.g. infectious tissue-culture supernatants or purified
viral particles), or the use of different cell-lines that derive
from species not normally targeted by BTV. However,
although the above studies suggest BTV can use more than
one entry pathway both used virus strains that had been pas-
saged multiple times in tissue culture, thereby potentially
adapting the virus to cultured cells. This could be significant
as some viruses, such as foot-and-mouth disease virus and
Japanese encephalitis virus, can acquire the ability to use
alternative cell-attachment receptors (e.g. heparan sulphate)
after cell culture adaptation, which could alter the entry route
[29, 30]. With this in mind, recent studies [31] have demon-
strated that a highly passaged strain of BTV-8 has an
increased affinity for glycosaminoglycans; hence, serial cell
passage could potentiallymodify the cell-entry characteristics
of BTV field strains. Here, to provide further insight to BTV
cell-entry, we have investigated the cell-entry pathway used
by BTV-1 whole virus particles to infect natural target cells
(endothelial cells) derived from the bovine host. For this
study we a used a low-passage, purified virus that was isolated
from a clinically ill sheep using an insect cell line [32]. Our
results show that this strain preferentially uses a clathrin-
independent, actin and dynamin dependent MPC-like path-
way as the entry route to infect bovine endothelial cells.

RESULTS

BTV-1 infection of BFA cells is partially inhibited by
inhibitors of dynamin but does not require clathrin-
mediated endocytosis

To investigate cell-entry, we used a field-isolate of BTV-1
(BTV-1GIB2007) and a bovine foetal aorta endothelial cell
line (BFA cells), representing one of the major cell-types
targeted by BTV in the mammalian host. BTV-1 GIB2007/

01 was originally isolated from infected sheep blood during
a BT outbreak in Gibraltar in 2007 by a single passage in
KC cells. This virus (from here on known as BTV-1/KC3)
was subjected to two subsequent passages and virus parti-
cle purification using KC cells. The quality of the purified
virus preparation was confirmed by silver stained SDS-
PAGE (Fig. S1, available in the online version of this arti-
cle) and virus infectivity was determined by titrating virus
on BFA cells. Sequence analysis of genome segments 2, 3,
6 and 7 of BTV- 1/KC3, which encode the major structural
proteins of the virus capsid VP2, VP3, VP5 and VP7
respectively, showed an identical consensus amino acid
sequence to that of BTV-1GIB2007 at KC cell passage level
2 (KC2; isolate BTV-1GIB2007/06) (accession no.:
KP821004, KP821126, KP821366, KP821608), suggesting
that an additional passage in KC cells is unlikely to have
induced cell culture adaptations that could affect the cell-
entry pathway. In support of this conclusion, low-passage
KC cell, BTV isolates have previously been shown to retain
infectivity in experimental animal infection studies, which
suggest they have not acquired mutations that alter cell-
entry or virulence [33].

Previously, we reported that entry into BHK-21 cells by a
highly passaged tissue-culture BTV-1 reference strain is
most likely dynamin-dependent as entry was inhibited by
dynasore, a commonly used inhibitor of dynamin [18].
However, we could not determine the effect of dynasore on
infection due to a delayed cell toxicity [18]. Paradoxically,
the same study showed that expression of a dominant-nega-
tive (DN) mutant of dynamin-2 (Dyn-2) had no effect on
cell-entry or infection [18], suggesting that BTV entry may
be dynamin-independent. Using BFA cells, our initial
experiments showed that, similarly to our previous observa-
tions for BHK-21 cells [18], extended use of dynasore (at
100 µM) was toxic (data not shown). In contrast, dyngo4a
(a less toxic derivative of dynasore that also inhibits dyna-
min) [34] was non-toxic up to 240 µM (Fig. S2). Dynamin is
essential for clathrin-mediated endocytosis (CME), and
consistent with this, Fig. 1(a) shows that dyngo4a (15-
60µM) inhibited transferrin uptake (a commonly used
ligand for CME) by BFA cells. Dyngo4a also inhibited BTV
infection in a dose-dependent manner (Fig. 1b), but only
when added as a pre-treatment and not when added at later
times [1 and 2 h post-infection (h p.i.)] suggesting that BTV
entry was dynamin-dependent. However, at the concentra-
tions used, dyngo4a only had a partial inhibitory effect on
BTV infection.

Mammalian dynamin is expressed as three isoforms
(Dyn1, Dyn2 and Dyn3), and of these, Dyn2 is ubiqui-
tously expressed [35]. Furthermore, Dyn2 exists as four
splice variants (‘aa’, ‘ab’, ‘ba’ and ‘bb’) [36]. Our previous
observation that BTV-1 infection of BHK-21 cells was not
inhibited by a DN mutant of dynamin was made using the
‘aa’ splice variant [18]. To further investigate the role of
dynamin in BTV infection, we transfected BFA cells to
express DN mutants of three Dyn2 splice variants (DN-
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Dyn2-aa, DN-Dyn2-bb and DN-Dyn2-ba) and quantified
the effect on transferrin uptake (Fig. 1c) and BTV infection
(Fig. 1d). Cells were transfected with the above DN
mutants or with the corresponding matched WT Dyn2
splice variants as green fluorescent protein (GFP) fusion
proteins. At 16 h post-transfection, the cells were incubated
with transferrin or infected with BTV-1/KC3. Consistent
with the role of dynamin in CME, over expression of DN-
Dyn2-aa or DN-Dyn2-bb inhibited transferrin uptake
(Fig. 1c); however, these mutants had no effect on BTV
infection (Fig. 1d). In contrast, expression of DN-Dyn2-ba
appeared to increase transferrin uptake, although this was
not statistically significant (Fig. 1c) and partially inhibited
BTV infection (Fig. 1d). These results are consistent with
our previous observations using BHK-21 cells and a DN
mutant of the Dyn-2 ‘aa’ splice variant [18], and further,
show that BTV infection is selectively inhibited by expres-
sion of a Dyn2 DN mutant of the ‘ba’ splice variant. Taken
together, the above observations show that inhibition of
dynamin results in a partial inhibition of infection and
suggest that BTV may be able to infect BFA cells using
more than one uptake pathway that differ in their depen-
dency of dynamin (see Discussion).

The above results suggest that BTV entry into BFA cells is
partially dynamin-dependent. In addition, the observations
that DN Dyn2 mutants of the ‘aa’ and ‘bb’ splice variants
inhibited transferrin uptake, but not BTV infection, are con-
sistent with virus entry not occurring by CME. To further
investigate BTV entry, BFA cells were incubated with Alexa-
Fluor 568-labelled transferrin (which is taken up by CME
[37]) or with BTV-1/KC3 for 15min at 37

�

C and the cells
processed for confocal microscopy labelling for BTV-1 capsid
proteins. In these experiments, the actin cortex was also
labelled using Cytopainter 405-labelled phalloidin or Alexa-
Fluor-647 phalloidin, respectively, to judge if transferrin or
virus was at the cell surface or internalized (i.e. located out-
side or underneath the actin cortex). Fig. 2 shows extensive
transferrin uptake by BFA cells after 15min (Fig. 2a), while
BTV particles were not present within the cytosol and
remained at the cell surfaces (Fig. 2b, c). This experiment
shows that BTV is internalized at a slower rate than transfer-
rin and adds support to the conclusion that despite its partial
dynamin requirement, BTV entry does not occur via CME
but instead relies on a clathrin-independent pathway.

To confirm if dyngo4a blocked BTV entry, mock and
dyngo4a-treated cells were infected with BTV-1/KC3 for 2 h
and processed for confocal microscopy labelling for BTV-1
capsid proteins and actin. Using fields of view through the
central Z-stacks, 22 BTV-positive mock-treated cells were
randomly selected and all showed viral capsid labelling
within the cytosol (average 13 BTV puncta/cell) in addition
to virus at the cell surface (average eight BTV puncta/cell).
Fig. 2(d) shows a typical mock-treated cell and labelling for
BTV capsid proteins inside and outside the cytosol (note,
for some images in Fig. 2 actin labeling is not shown for
clarity). In contrast, central Z-stacks of dyngo4a-treated

cells showed that, in addition to BTV present on the cell
surfaces, only 22 of 40 BTV-positive cells had some BTV
puncta in the cytosol (average 1.5 BTV puncta/cell) while
BTV capsid labelling for the other 18 cells was completely
confined to the cell surfaces. Fig. 2 (e, f) show dyngo4a
treated cells, and for some, BTV labelling was confined to
the cell surface (Fig. 2e) while for others a small amount of
virus labelling was also present within the cytosol (arrowed
in Fig. 2f). Although not providing an exact quantification
of BTV uptake (as we used central Z-stacks), the above
observations suggest that the majority of BTV uptake is
inhibited by dyngo4a and therefore dynamin-dependent.
These results are consistent with the incomplete inhibitory
effect of dyngo4a on BTV infection (Fig. 1b) and suggest
that dynamin is most likely required for the preferred cell-
entry pathway used by BTV. However, the incomplete block
to virus entry caused by dyngo4a suggests that virus uptake
could also be occurring via an alternative, dynamin-inde-
pendent endocytosis pathway (see Discussion).

To further confirm that CME was not required for BTV
infection, BFA cells were treated with pitstop-2 or chlor-
promazine (CPZ), drugs that inhibit CME by preventing
assembly of clathrin-coated pits [38, 39]. Initial experiments
confirmed that pitstop-2 (up to 200 µM) and CPZ (up to
10 µgml�1) were non-toxic for BFA cells (Fig. S2). Fig. 3(a)
shows that pitstop-2 (25 µM), but not CPZ (10 µgml�1)
inhibited transferrin uptake, indicating that in BFA cells,
CME was blocked only by pitstop-2. Higher concentrations
of CPZ showed toxicity for BFA cells (Fig. S2), restricting its
further use to investigate its effect on BTV infection. Despite
inhibiting transferrin uptake, pitstop-2 did not significantly
inhibit BTV infection by BTV-1/KC3 (Fig. 3b) thereby sup-
porting the conclusion that the main entry pathway for BTV
into BFA cells is independent of CME. We also evaluated the
role of CME in BTV-1/KC3 infection of BFA cells using DN
mutants (DIII and EH29) of eps15 (a clathrin cage recruit-
ment factor), which are known to inhibit CME [40, 41]. Both
mutants inhibited transferrin uptake when compared to cells
transfected to express a control eps15 construct (D3D2) that
does not interfere with CME (Fig. 3c). In contrast, expression
of the mutant constructs did not significantly inhibit BTV
infection (Fig. 3d). Together, the above results show that
although dynamin inhibitors reduced BTV-1/KC3 cell-entry
and infection, infection does not require CME and suggest
that a clathrin-independent endocytosis pathway serves as
themajor route used for BTV entry into BFA cells.

BTV-1 delivery to acidic compartments

Infection by whole BTV particles is dependent on virus
acidification [17, 18]. To gain further insight into BTV cell-
entry kinetics, we determined the time taken for virus to be
delivered to acidic compartments using ammonium chlo-
ride, which increases the pH within the endosomal-lyso-
somal system and thereby prevents BTV acidification and
infection. BFA cells were mock-treated or incubated with
ammonium chloride, either as a pre-treatment or at differ-
ent times after infection, and the drug then remained
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present throughout the rest of the assay. After 16 h, infec-
tion was stopped by the addition of PFA and the level of
infection quantified by flow cytometry and normalized to
the mock-treated cells. As expected, a strong inhibitory
effect was seen when ammonium chloride was added as a
pre-treatment (Fig. 4). Infection was also significantly inhib-
ited when the drug was added at 1 h p.i. When added at
later times, infection was also inhibited, albeit to non-signif-
icant levels (Fig. 4). These results suggest that BTV-1/KC3
is delivered to acid compartments at a slower rate than
expected for CME (see also Fig. 2) and add support to the
conclusion that CME is not the major entry pathway [42,
43] used to infect BFA cells.

BTV-1 infection of BFA cells is dependent on actin
dynamics and macropinocytosis

The actin cortex reinforces the plasma membrane and is
dynamically regulated during the formation of endocytic
vesicles [44] and some viruses disrupt actin to facilitate
uptake [45]. Therefore, we investigated the effect of BTV on
actin during the early phase of infection (Fig. 5). BTV-1/

KC3 was pre-bound to BFA cells at 4
�

C for 1 h before
warming to 37

�

C to initiate entry. At the indicated times
post-warming, the cells were fixed and processed for confo-
cal microscopy labelling for BTV-1 capsid proteins and
actin using AlexaFluor-488-labelled phalloidin. At 0 h
(i.e. before warming), virtually all virus labelling appeared
to be outside of the actin cortex while some virus appeared
to be in close association with actin filaments that projected
away from the cells (Figs 5a, b and S3). At 0.5 h post-warm-
ing, virus labelling was still not evident within the cytosol
and virtually all remained at the cell periphery, i.e. outside
of the actin cortex (Figs 5c, d and S3). At these time points,
all cells (BTV-positive and BTV-negative) appeared to have
an intact actin cortex (Figs 5a and 5c). Similarly, the actin
cortex appeared intact for virtually all (>95%) of the BTV-
negative cells at 1 and 1.5 h post-warming. By 1.5 h post-
warming, virus capsid labelling was clearly evident within
the cytosol (Figs 5g, h and S3). However, in contrast to the
BTV negative cells, at 1 and 1.5 h post-warming the major-
ity of BTV-positive cells showed a markedly different pat-
tern for actin (Fig. 5e, g and S3) and the actin cortex

Fig. 2. BTV cell-entry follows different kinetics to transferrin uptake. (a) Uptake of AlexaFluor-647-labelled transferrin (red) by BFA

cells after 15min at 37
�

C. The actin cortex was labelled with CytoPainter-405 labelled phalloidin (blue) and the cell nuclei labelled

with TO-PRO-3 (white). (b) Uptake of BTV-1/KC3 (MOI=10) (red) by BFA cells after 15min at 37
�

C. The actin cortex was labelled with

AlexaFluor-488-labelled phalloidin (green) and the cell nuclei labelled with DAPI (blue). (c) The same cell as in (b) without actin label-

ling. (d) Uptake of BTV-1/KC3 (m.o.i.=10) (red) by mock-treated BFA cells after 2 h at 37
�

C. (e and f) BTV uptake by BFA cells for 2 h in

the presence of dyngo4a (30 µM). Surface and internalized virus were judged by the position relative to the actin cortex. For clarity

actin labelling is not shown. Arrows on (d and f) indicate internalized virus. BTV capsid proteins were labelled using ORAB276. Scale

bar, 10 µm.
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appeared to be disrupted. Fig. 5(g) shows a side-by-side
comparison of typical actin labelling for BTV-positive and
BTV-negative cells. Quantification of the effect of BTV on

the actin cortex is shown in Fig. 5(i, j). The actin cortex was
observed using central Z-stacks through the cells across ran-
domly selected fields of view. At 1 h post-warming only

Fig. 3. BTV infection of BFA cells is clathrin-independent. (a) Uptake of AlexaFluor-647-labelled transferrin by BFA cells pre-treated

with clathrin inhibitors [10 µgml�1 chlorpromazine (CPZ) or 25 µM pitstop-2]. (b) The effect of pitstop-2 on infection of BFA cells. Cells

were mock-treated or treated with pitstop-2 (25 µM) either as a pre-treatment or at the indicated times post-infection with BTV-1/KC3.

The infection level for the control cells across the different mock-treatment time points was ~50%. Transferrin uptake and infection

were quantified by flow cytometry and the data normalized to the mock-treated cells. BFA cells were transfected with the indicated

DN eps15 construct (DIII or EH29) or the D3D2 control as a GFP fusion protein prior to (c) AlexaFluor-647-labelled transferrin uptake

or (d) infection with BTV-1/KC3. Transferrin uptake and infection were quantified by flow cytometry and the data normalized to the

cells transfected with the D3D2 control. Transfection efficiencies (c and d) were between 30 and 45%. Infection levels for the GFP-pos-

itive cell populations expressing D3D2 was ~25%. For each experiment, data are shown as means+/-SEM for six technical replicates

across two biologically independent experiments. *=P-value<0.05, **=P-value<0.005 and ***=P-value<0.0005.
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~16% (n=34 cells) of the BTV-positive cells had an intact
cortex while for ~84% (n=184 cells) the cortex appeared dis-
rupted. Similar results were observed at 1.5 h post-warming
as ~76% (n=222 cells) of the BTV-positive cells showed a
disrupted actin cortex. However, the disruption appeared to
be transient as at 2 h post-warming the actin cortex
appeared to be reforming for some of the BTV-positive cells
(Fig. S3). These observations show that that cell-entry coin-
cides with disruption of the actin cortex and suggest that
actin rearrangements may be important for BTV
internalization.

To test if actin is important for infection we used cytochala-
sin D (cytoD), which inhibits actin polymerization. Our ini-
tial experiments showed that cytoD was non-toxic for BFA
cells up to 160 µgml�1 (Fig. S2) and at 10 µgml�1, caused a
major rearrangement of actin (Fig. 6a-d). In addition, when
added as a pre-treatment, or at 1 or 2 h p.i., cytoD inhibited
BTV-1/KC3 infection of BFA cells. In contrast, an inhibi-
tory effect was not seen when the drug was added at 3 h p.i.
(Fig. 6e). Thus, inhibition of BTV infection by cytoD
occurred with similar kinetics to virus internalization
(Fig. 5) and delivery to acidic endosomes (Fig. 4), suggesting
that actin dynamics plays an important role in the infection
process.

Macropinocytosis (MPC) is an actin-dependent process
[46] and results in increased fluid-phase uptake. In some
cell types (e.g. professional phagocytes) MPC is constitu-
tively active, while in others it requires activation [44, 47].
Some viruses activate MPC for cell-entry [44]; thus, infec-
tion by such viruses can be accompanied by elevated fluid-
phase uptake [48, 49]. Phorbol esters, such as phorbol-12-
myristate-13-acetate (PMA) also induce MPC and increase
fluid-phase uptake. To determine if BTV induces fluid-
phase uptake, BFA cells were incubated with BTV-1/KC3
(m.o.i.=5) or PMA (1 µgml�1) for 15min before adding
AlexaFluor-647-labelled dextran (0.5mgml�1), a marker of
fluid-phase uptake [50]. After a further 15min, the cells

were fixed and dextran uptake quantified by flow cytome-
try. Both PMA and BTV stimulated dextran uptake com-
pared to mock-treated cells, and to a comparable extent,
suggesting that BTV may also stimulate fluid-phase uptake,
possibly by MPC (Fig. 7a).

MPC is dependent on sodium/proton exchangers (NHE)
[51, 52] and inhibited by EIPA (5-(N-ethyl- N-isopropyl)
amiloride), which targets NHE1 (55). PAK-1 is also
required for MPC [50–52] and inhibition of PAK-1 by IPA3
(56) also inhibits MPC [44]. Thus, EIPA and IPA3 are often
used as inhibitors of MPC [44, 53, 54] (see Discussion). In
some cell types, MPC is also dependent on cellular kinases,
including phosphatidylinositol-3-kinase (PI3K) [55]; thus,
inhibition of PI3K by wortmannin may also inhibit MPC
[56]. Our initial experiments established that EIPA (up to
200 µM), IPA3 (up to 200 µM) and wortmannin (up to
800 nM) were non-toxic for BFA cells (Fig. S2). Fig. 7(b)
shows that IPA3, but not EIPA inhibited dextran uptake
suggesting that, for BFA cells, IPA3 may be a more potent
inhibitor of MPC/fluid-phase uptake. However, when added
either as a pre-treatment or up to 3 h p.i. both EIPA
(Fig. 7c) and IPA3 (Fig. 7d) had strong inhibitory effect on
BTV infection. In contrast, neither drug had a significant
effect on BTV infection when added at 6 h p.i. (data not
shown). The same experiments were carried out using wort-
mannin but we did not see an inhibitory effect on either
dextran uptake (Fig. 7b) or BTV infection (data not shown).
These results suggest that BTV-1/KC3 may utilize MPC or a
MPC-like pathway for infection of BFA cells. However,
since neither dextran uptake nor BTV infection was inhib-
ited by wortmannin, BTV entry into BFA cells may not
require PI3K (see Discussion).

DISCUSSION

Here we have shown that a low-passage insect-cell isolate
of a virulent BTV-1 field strain (BTV-1/KC3) preferentially
utilizes an actin- and dynamin-dependent MPC-like

Fig. 4. BTV delivery kinetics to acidic compartments. BFA cells were mock-treated or treated with ammonium chloride (25mM) as a

pre-treatment or at the indicated times post infection with BTV-1/KC3. Infection level of the mock-treated cells was ~60%. The number

of infected cells was quantified by flow cytometry and normalized to the level of infection of the mock-treated cells. Data are shown as

means+/-SEM for six technical replicates across two biologically independent experiments ***=P-value<0.0005.
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endocytosis pathway to infect endothelial cells derived
from the natural bovine host. This conclusion is based on
the observations that; (i) BTV-1/KC3 triggered a major
disruption of the actin cortex during entry and elevated
fluid-phase uptake during the early phase of infection, (ii)
infection was inhibited by actin disruption, and (iii) by
known MPC inhibitors (EIPA and IPA3). Furthermore, we
found no evidence for the involvement of CME in BTV
infection as entry followed different kinetics to transferrin
uptake and established pharmacological and DN inhibitors
of CME did not appear to inhibit infection. Thus, our
study shows that BTV joins a growing number of diverse
viruses that can enter mammalian cells via MPC or MPC-
like endocytosis pathways [44, 57–61]. However, it should
be noted that in addition to whole virus particles, BTV can
exist as at least three other infectious particle types includ-
ing temporarily membrane enveloped virus particles
(MEVP), infectious sub-viral particles (ISVP) and core
particles. These different particle types have different spe-
cific infectivity for mammalian and insect cells [62] and
different outermost surface-components that are likely
involved in cell attachment and could potentially influence
the cell-entry route. Therefore, it is important to state that
our results may only be relevant for whole virus particles
and further work will be required to determine the cell-
entry route used by other BTV particle types.

EIPA and IPA3 are commonly used to investigate if viruses
enter cells by MPC or MPC-like routes. Viruses reported
to use MPC as their major cell-entry route include measles
[61], influenza [58], respiratory syncytial virus (RSV) [60],
and human cytomegalovirus (HCMV) [59] and in these
studies treatment with EIPA or IPA3 reduced respective
viral infection by about 65–70%. Here we have shown that

BTV infection is inhibited to a similar extent following
treatment with either EIPA or IPA3. Our results with
EIPA and IPA3 are consistent with inhibition of cell-entry,
as the effects on infection were maximal when they were
added during the early phase of infection (Fig. 7) and they
did not significantly affect BTV infection when added at
later times. Furthermore, the inhibitory effects of EIPA
and IPA3 of BTV infection followed similar kinetics to
inhibition by cytoD (which would inhibit actin remodel-
ling during MPC), and with the rate of BTV delivery to
acidic compartments, supporting the notion that the
reduction of BTV infection by these reagents is achieved
via inhibition of MPC. Nonetheless, while some studies
report that EIPA selectively inhibits MPC with little or no
effect on other endocytosis pathways [51], some investiga-
tions have reported that EIPA might also inhibit cellular
processes such as actin remodelling, internalization of lipid
rafts and CME [63–66]. EIPA has also been shown to have
an indirect effect on adenovirus infection by preventing
virus-induced MPC and thereby reducing virus escape
from endosomes following virus uptake by CME [67].
Additionally, actin depolymerization drugs (such as
CytoD) do not solely inhibit MPC, as actin is required for
different types of endocytosis [68]. Thus, although we can-
not completely exclude that the effects of the inhibitors
used in our study on BTV infection may not result solely
from effects specific to MPC, we found no evidence that
BTV infects BFA cells via CME, as infection was not sig-
nificantly inhibited by pitsop-2, or expression of DN inhib-
itors of CME that were shown to inhibit CME of
transferrin (Fig. 3).

Several studies have shown that dynamin is not usually

required for MPC [69]. However, dynamin has been

Fig. 5. BTV entry coincides with disruption of the actin cortex. BFA cells were incubated with BTV-1/KC3 (m.o.i=10) at 4
�

C before

infection at 37
�

C. Infection was stopped at 0 (a and b), 0.5 h p.i. (c and d), 1 h p.i. (e and f) or at 1.5 h p.i. (g and h). BTV capsid proteins

are shown in red, the cell nuclei in blue and the actin cortex in green (scale bar, 10 µm). (b, d, f and h) show the same cells as in (a, c,

e and g) but with the actin labelling removed. Quantification of actin cortex disruption for BTV-positive and BTV-negative cells at 1 h

p.i. (i) and 1.5 h p.i. (j) Data are shown as representative for 12 technical replicates across 4 biologically independent experiments.
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Fig. 6. BTV infection of BFA cells is inhibited by actin disruption. BFA cells were mock-treated (a) and (b) or pre-treated with cytocha-

lasin D (10 µgml�1) (c) and (d) prior to actin labelling using AlexaFluor-488-labelled phalloidin (green). The cell nuclei are shown in

blue. Scale bar, 10 or 20 µm. BFA cells were mock-treated, or treated with cytochalasin D at the indicated concentrations either as a

pre-treatment or at the indicated times post-infection (h p.i.) with BTV-1/KC3. Infection level for the control cells across the different

mock-treatment time points was ~31%. Infection was quantified by flow cytometry and the data normalized to the mock-treated cells.

Data are shown as means+/-SEM for six technical replicates across two biologically independent experiments. *=P-value<0.05, ***=P-

value<0.0005.
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implicated in the regulation of actin dynamics [70] and

some types of non-canonical MPC have been shown to be

dynamin-dependent [58, 71, 72]. Thus, despite sharing

some characteristics of MPC, our results show the main

entry route used by BTV to infect BFA cells appears to

deviate from canonical MPC, as entry was dynamin-depen-

dent. Consistent with the existence of dynamin-independent

and dynamin-dependent MPC pathways [69], infection by

other viruses that use MPC for entry have been reported to

have different requirements for dynamin [57–61, 71, 73].

Fig. 7. BTV infection of BFA cells shows characteristics of MPC. BFA cells were mock-treated, or treated with PMA (1 µgml�1) or BTV

(m.o.i.=5) for 15min prior to the addition of AlexaFluor-647-labelled dextran (0.5mgml�1) for 15min (a). Dextran uptake was quantified

by flow cytometry and the data normalized to the mock-treated cells. (b) BFA cells were mock-treated, or treated with EIPA (100µM),

IPA3 (100 µM) or wortmannin (WM) (200 nm) for 0.5 h prior to the addition of AlexaFluor-647-labelled dextran (0.5mgml�1) for 15min.

Dextran uptake was quantified by flow cytometry and the data normalized to the mock-treated cells. BFA cells were mock-treated, or

treated with (c) EIPA (100µM) or (d) IPA3 (100 µM) either as a pre-treatment or at the indicated times post-infection with BTV-1/KC3.

Infection level for the control cells across the different mock-treatment time points were ~33% (c) and ~32% (d). Infection was quanti-

fied by flow cytometry and the data normalized to the mock-treated cells. For each experiment, data are shown as means+/-SEM for

six technical replicates across two biologically independent experiments. *=P-value<0.05, **=P-value<0.005 and ***=P-value<0.0005.
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For example, cell-entry by measles, influenza, RSV and vac-
cinia virus does not require dynamin, whereas entry of
HCMV is dynamin-dependent [59]. Thus, similar to
HMCV our results show that infection by BTV is mediated
by a MPC-like pathway that is dynamin-dependent; how-
ever, for HCMV dyngo4a (25 µM) inhibited infection by a
greater extent (>90%) than we observed for BTV with BFA
cells (~35% inhibition with dyngo4a 30 µM). Thus, due to
the incomplete inhibition of entry and infection caused by
dyngo4a our results could be interpreted to show that BTV
may be able to enter BFA cells by more than one pathway
that differ in their dependency on dynamin. Further investi-
gations will be needed to determine if this is the case and if
this involves a pathway distinct to MPC or two alternative
MPC-like pathways that differ in their dependency on dyna-
min. Nevertheless, the inability to inhibit BTV infection of
BFA cells using reagents that reduce CME suggest that if a
second dynamin-dependent endocytosis process mediates
BTV internalization then this pathway would most likely be
independent of clathrin.

Consistent with the partial inhibitory effect on infection
seen for dyngo4a, infection of BFA cells was also inhibited
by expression of a DN mutant of dynamin-2. Interestingly,
our results also show that a DN mutant of Dyn2 ‘ba’ splice
variant (DN-Dyn2-ba) preferentially inhibited BTV infec-
tion. In support of this conclusion, expression of DN-Dyn2
mutants of the ‘aa’ and ‘bb’ splice variants inhibited trans-
ferrin uptake but did not appear to inhibit infection,
whereas DN-Dyn2-ba did not inhibit transferrin uptake but
did inhibit BTV infection. These results suggested that, in
BFA cells, the different Dyn2 splice variants may have dis-
tinct roles in endocytosis. This conclusion is supported by
studies that show that the dynamin-2 splice variants have
different functions, including distinct roles in endocytosis
[36, 74], and are consistent with a study that showed that
the ‘ba’ splice variant of Dyn2 is required for PDGD-
induced MPC [75].

Canonical MPC is dependent on PI3K, which has been
shown to be required for macropinosome formation, traf-
ficking and fusion [54, 76] and thus is sensitive to PI3K
inhibition. However, it is now clear that distinct types of
MPC exist, and different PI3K-dependent and PI3K-inde-
pendent pathways have been described [77]. For example,
different strains of vaccinia virus have been shown to use
distinctive PI3K-dependent and independent MPC-like
entry routes to infect HeLa cells [57]. Although further
studies will be required to confirm our findings, our obser-
vation that BTV infection was not inhibited by wortmannin
suggest that the entry route used by BTV to infect BFA cells
does not require PI3K.

Infection by BTV whole virus particles requires virus expo-
sure to low pH during cell-entry [17, 18] and our experi-
ments confirm that BTV infection of BFA is also dependent
on low pH. While macropinosomes remain to be fully char-
acterized, there is good evidence that they undergo a matu-
ration process similar to early-endosomes that involves

acidification [78]. In addition, macropinosomes can become
acidified by fusion with acidic late-endosomes or endolyso-
somes [79], which could allow exposure of incoming virus
to a low pH environment [80]. Thus, it is highly likely that
viruses taken up by MPC or MPC-like pathways will be
exposed to a low pH environment during entry.

As outlined in the Introduction, cell-entry is challenging for
arboviruses as they need to infect cells from widely diverse
vertebrate and invertebrate hosts. Therefore, to achieve cell-
entry it is possible that BTV could utilize ubiquitous recep-
tors and entry mechanisms, or enter different cells using
diverse receptors and pathways. Indeed early evidence sug-
gested that BTV might be able to exploit more than one
entry mechanism, possibly depending on virus serotype
and/or the cell type [17, 18]. However, these studies used
high-passage tissue-culture virus isolates and cells that were
not derived from the natural mammalian hosts and it is pos-
sible that cell-entry could have been influenced by virus
adaptations that occur during repeated passages in cultured
cells (see Introduction). Thus our studies are the first to use
a low-passage virulent virus isolate and cells derived from a
natural bovine host and suggest that a MPC-like pathway
may be a prominent cell-entry route used by BTV to infect
endothelial cells. This could have significance in vivo as
MPC results in the non-specific uptake of membrane recep-
tors and other membrane-associated particles, which could
be an advantage for viruses, as they may not need to bind
specific receptors for internalization [54]. In many cell types
MPC requires activation [76, 81] while in others, such as
macrophages and dendritic cells (DC), MPC is constitu-
tively active [82, 83]. With this in mind, a number of studies
have concluded that several leucocyte subsets, including
macrophages and conventional dendritic cells are likely to
be sites of initial virus replication and play a role in BTV
dissemination in infected ruminant hosts [22–25, 84]. Thus,
the ability to use MPC may be an important determinant of
BTV transmission between hosts and the tissue tropism
within ruminants.

In conclusion, although we cannot rule out the possibility
that other endocytosis pathways are used, our results show
that a low-passage insect-cell BTV-1 isolate, that was
derived from a virulent BTV strain, most likely utilizes a
MPC-like endocytosis pathway as the preferred entry route
to infect natural target endothelial cells derived from the
bovine hosts. It is interesting to speculate that the ability to
use MPC may be an advantage during transmission between
invertebrate and vertebrate hosts and thereby facilitate the
global success of BTV.

METHODS

Cell lines

KC cells were originally derived from embryonic tissues of
Culicoides sonorensis [32] and propagated at 28

�

C in
Schneiders insect media (Sigma) with L-glutamine (Sigma)
supplemented with 10% FBS (Sigma), 1% penicillin/strep-
tomycin (Life Technologies) and 1% amphotericin B
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(Sigma). Bovine Foetal Aorta Endothelial Foetal (BFA) cells
were from the European Collection of Cell Cultures
(ECACC 87022601) and propagated at 37

�

C in F12-Hams
media (Sigma), supplemented as above but without ampho-
tericin B.

Virus purification and characterization

BTV-1/KC3 was derived from a virulent ‘western’ isolate,
BTV-1 GIB2007 [The Pirbright Institute (TPI), BTV refer-
ence collection BTV-1 GIB2007/01]. This virus was isolated
by inoculation of KC cells with infected sheep blood
obtained during the BTV-1 outbreak in Gibralter, 2007. The
recovered virus (BTV-1 GIB2007/01) was passaged twice
more in KC cells before virus purification essentially as
described [85], with the exception that infected cells were
harvested by manual scraping from culture flasks. Viral titre
was determined by fluorescent TCID50 using BFA cells in
96-well tissue culture plates. At 3 days post-infection the
cells were fixed using 4% paraformaldehyde (PFA) (Sigma)
for 0.5 h, permeabilized with 0.2% Triton X-100 (Sigma) in
PBS (Gibco) and incubated with anti-BTV-1 polyclonal
guinea pig (GP) sera (Orbivirus reference antibody ORAB
279 1 : 2000) in 0.5% bovine serum albumin (BSA; from
Sigma)/PBS for 1 h at room temperature (RT). Following
three washes with PBS, a goat anti-GP IgG AlexaFluor-488
secondary antibody (Life Technologies) (1 : 500 in 0.5%/
PBS) was added for 1 h at RT and the cells then washed
with PBS. Plates were read to detect fluorescent cells using
the ELISpot Reader (AID Elispot). Viral titre (106.5TCID50/
ml) was calculated according to previous methodology [86].

Full-length sequencing of individual BTV genome segments

was carried out by Sanger sequencing using the BigDye ter-

minator v3.1 kit (Applied Biosystems, Life Technologies,
USA) on a 3730 DNA Genetic Analyzer (Applied Biosys-

tems) as previously described [87]. Consensus sequences
from each segment were analysed using DNASTAR Laser-

gene 11 (DNAStar).

Reagents, ligands and pharmacological inhibitors

AlexaFluor-647 labelled transferrin and dextran and Alexa-
Fluor-488-labelled phalloidin were from Life Technologies
and CytoPainter Phalloidin-405 from Abcam. Nuclear
stains, 4¢6-Diamidino-2-Phenylindole (DAPI) and ToPro3
were from Thermo Scientific. PMA (phorbol 12-myristate
13-acetate), Cytochalasin D, Wortmannin, EIPA and cell
culture grade DMSO (Dimethylsulphoxide) were supplied
by Sigma. Dynasore, dyngo4a, chlorpromazine hydrochlo-
ride and pitstop-2 were from Abcam, and IPA3 and ammo-
nium chloride were from Cabiochem and Fluka,
respectively. All inhibitors were dissolved in DMSO except
for ammonium chloride, which was dissolved in GMEM
(Glasgow’s minimum essential media) from Sigma, and
chlorpromazine hydrochloride, which was dissolved in
deionized water. Stock solutions were further diluted in
serum-free cell culture media for final concentration given
for respective experiments.

Infection conditions, inhibitor studies and cell
transfections

BFA cells were infected with purified virus (m.o.i.=<1) in
serum-free F12-Hams media (Sigma) for 1 h at 37

�

C. The
cells were then washed three times with PBS and infection
continued in cell culture media but supplemented with 1%
FBS. Cells were pre-treated with pharmacological inhibitors
for 0.5 h before infection or the inhibitors were added after
infection was initiated as indicated on the figures. After
addition, the inhibitor remained present throughout the
assay. The control (mock-treated) cells were treated with an
equivalent concentration of the appropriate drug diluent.
Mammalian expression plasmids for GFP-tagged, WT and
dominant-negative (DN) dynamin-2 (Dyn2) splice variant
(‘aa’, ‘bb’ and ‘ba’) were supplied by Mark McNiven (Mayo
Clinic, Rochester, USA) [53]. Mammalian expression plas-
mids for GFP-tagged DN eps15 (DIII and EH29) and the
control plasmid (D3D2) were supplied by Alexandra Ben-
merah (Universte Paris Descarte, Paris, France). Cell trans-
fections used 1 µg plasmid DNA and XtremeGene 9 (Roche)
in a 6 : 1 (reagent/plasmid) ratio as per manufacturers’
instructions 16 h prior to infection. Infections were stopped
by incubating the cells in 4% PFA for 1 h on ice. For entry
studies infections were stopped as indicated on the figures
whereas all other infections were stopped at 12 h p.i.

Flow cytometry experiments

Intracellular labelling of infected cells: Infected (and mock-
infected) cells in 4% PFA were permeabilized with 0.2%
Saponin (Sigma) in 1% BSA in PBS for 20min. Viral capsid
proteins were labelled using a primary anti-BTV-1, rabbit
polyclonal sera (Orbivirus reference antibody ORAB 276) at
1 : 4000 in 1% BSA/0.2 % Saponin/PBS (FACS Buffer) for
1 h and a goat, anti-rabbit IgG AlexaFluor-647 secondary
antibody (Life Technologies) (1/500 in FACS Buffer) for
45min. Following each incubation with antibodies cells
were washed three times by 5min agitation in FACS buffer
and subsequent centrifugation at 333 g for 3min). Following
the last wash, pelleted cells were resuspended in 350 µl PBS
and transferred to FACS tubes (BD Biosciences) for subse-
quent analysis. Control ligand uptake: BFA cells were serum
starved by incubation in serum-free cell culture media for
45min changing the media every 15min and then allowed
to take up AlexaFluor-647 transferrin (10 µgml�1)/dextran
(0.5mgml�1) for 15min. At the end of uptake, cells were
placed on ice and fixed with 4% paraformaldehyde for 1 h.
Cells were then washed in PBS, resuspended in 350 µl PBS
and transferred to FACS tubes (BD Biosciences) for subse-
quent analysis.

Data was collected on the LSR Fortessa (BD Biosciences)
using BD FACSDivaTM software and exported as flow
cytometry standard (FCS) files and analysed with DeNovo,
FCS Express v5 software. Cells were stained with Near IR
Live/Dead stain (Life Technologies) using manufacturers’
instructions, allowing live and dead cells to be distinguish-
able by fluorescence staining and gating of viable cells. Cell
debris was removed from the analysis by gating cell
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populations using forward and side scatter (SSC) and sin-
gle cell populations in SSC area versus SSC height. For
experiments using pharmacological inhibitors the thresh-
old for the detection of infected cells (i.e. virus positive
cells) was set using uninfected cells incubated with the pri-
mary and secondary antibodies. Infection levels of drug-
treated cells were normalised to infection of mock-treated
control cells. For transfection experiments using GFP-
tagged proteins, the level of infection of the GFP positive
population for DN expressing cells was normalized to
infection of the GFP positive populations expressing the
matched WT or control construct. Mean fluorescent inten-
sity (M.F.I.) was used to quantify uptake of control ligands.
The background threshold was set by using cells that were
exposed to ligand at 4

�

C.

Immunofluorescence confocal microscopy

Experiments were carried out using cells on glass coverslips

(VWR). For entry experiments, cells were incubated with

purified virus (m.o.i.=10) in serum-free media on ice for 1 h

to allow virus adsorption and entry synchronization. After

adsorption, the cells were washed three times with serum-

free cell-culture media and warmed to 37
�

C for 0.5, 1 or 1.5

or 2 h p.i. (as indicated on the figures) and then fixed and

processed for microscopy labelling for BTV capsid proteins

as follows. The cells were placed on ice and fixed with 4%

PFA for 1 h and then immersed in PBS. Cells were permea-

bilized using 0.2% saponin in PBS for 20min and then

blocked using 10% Normal Goat Serum (Harlan Lab Sera)

and 1% Teleostean Gelatin (Sigma) in TBS (block buffer)

for 0.5 h. Viral capsid proteins were detected using ORAB

276 (1 : 1000) and a goat anti-rabbit IgG AlexaFluor-568

secondary antibody (Life Technologies) (1/200) in block

buffer. The cells were incubated sequentially for 1 h each

with the primary antibody and secondary antibodies, with

3�5min PBS washes between antibody incubations. For

transferrin uptake, BFA cells were incubated in serum-free

cell-culture media for 45min changing the media every

15min and then allowed to take up AlexaFluor-568 trans-

ferrin (10 µgml�1) for 15min at 37C. At the end of uptake,

cells were placed on ice and fixed with 4% paraformalde-

hyde for 1 h. Cell nuclei were stained with 4¢,6-Diamidino-

2-Phenylindole (DAPI) or TO-PRO-3 and coverslips

mounted in Vectashield mounting medium for fluorescence

(VectorLabs). The actin cortex was labelled using (1/20)

AlexaFluor-488-labelled phalloidin (Life technologies) in

PBS for 20min or CytoPainter-405 Phalloidin as per manu-

facturers’ instructions. Cells were viewed using the Leica

TCS SP8 Confocal laser-scanning microscope and optical

sections recorded using either the 63 or 40x oil-immersion

objective with a numerical aperture of 1.4 and 1.25, respec-

tively. The data are shown as single optical sections through

the middle of the cell. All data were collected sequentially to

minimize bleed-through fluorescent signals. Images were

processed using Adobe Photoshop software.

Cytotoxicity assays

BFA cells were seeded onto optically clear bottom, white-
sided plates (Perkin Elmer) the day before the assay. When
cells were 80% confluent, cells were treated with a range of
concentrations of the pharmacological inhibitors for 12.5 h.
Cell viability was determined using the CellTiter-Glo lumi-
nescence assay (Promega) as per manufacturers’ instruc-
tions using Hidex chameleon luminometer.

Statistical analysis

All experiments were carried out using triplicate samples for
at least two independent experiments. Data from repeated
experiments were combined prior to statistical analysis. The
statistical significance of results of comparisons between
experimental groups were determined by one-way ANOVA
with Tukey’s correction, which was carried out using
Minitabv17.
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