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Abstract
Machine learning and optimisation are two growing fields of artificial intelligence with an enormous number of computer
science applications. The techniques in the former area aim to learn knowledge from data or experience, while the techniques
from the latter search for the best option or solution to a given problem. To employ these techniques automatically and
effectively aligning with the real aim of artificial intelligence, both sets of techniques are frequently hybridised, interacting
with each other and themselves. This study focuses on such interactions aiming at (1) presenting a broad overview of the
studies on self and dual interactions between machine learning and optimisation; (2) providing a useful tutorial for researchers
and practitioners in both fields in support of collaborative work through investigation of the recent advances and analyses of
the advantages and disadvantages of different techniques to tackle the same or similar problems; (3) clarifying the overlapping
terminologies having different meanings used in both fields; (4) identifying research gaps and potential research directions.

Keywords Machine learning · Optimisation · Artificial intelligence · Meta-learning · Algorithm design · Metaheuristic ·
Hyper-heuristic

1 Introduction

Machine Learning (ML) and optimisation are two differ-
ent fundamental research fields in computer science [21,22].
Due to the rapid progress in the performance of comput-
ing and communication techniques, those two research areas
have drawn widespread attention in a wide variety of appli-
cations and grown rapidly [66,145]. Although both fields
belong to different communities, they are fundamentally
based on artificial intelligence and the techniques from ML
and optimisation interact frequently with each other as well
as themselves in order to improve their learning and/or search
capabilities.
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ML and datamining are disciplines that focus on the ques-
tion of how to build computer programs that automatically
improve from experience [113]. A typical ML task aims to
extract the hidden patternswithin data based on an algorithm,
which is usually designed by an expert and comprises a set of
adjustable hyper-parameters. Thanks to the rapid advance of
technology and communication, these algorithms have been
successfully applied to many real-world problems ranging
from robotics [169], natural language processing [187], com-
puter vision [67] to recommendation systems [37].

Optimisation targets themodelling, design and implemen-
tation of solution techniques for finding the best (optimal)
entity from a set of candidate alternatives for a given com-
putational search problem [22]. An optimisation process
typically starts from a single or a set (population) of initial
solutions and moves towards the best solution step by step
guided by an objective function. Many computationally hard
real-world problems have been tackled by various optimisa-
tion techniques, such as travelling salesman problems [108],
scheduling problems [150], vehicle routing problems [139],
timetabling problems [160], etc.

ML and optimisation have been extensively studied and
achieved extraordinary progress in their respective fields;
however, they both still suffer from several limitations, such
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Fig. 1 The interactions between ML and optimisation

as, choosing the best set of parameter values and algo-
rithm components based on human experience for improved
performance, solving the problems requiring expensive com-
putation (e.g., evaluation of each case/solution taking a long
time), developed solution becoming tailored only to the spe-
cific cases handled and not generalising well to the unseen
cases, and more. Figure1 represents different interactions
between ML and optimisation that have been proposed to
address those issues. As presented in Fig. 1, ML and opti-
misation have been interacted with themselves to improve
their respective performance (interactions 3 and 4). Thus,
we define self-interaction as the use of the techniques in a
domain to assist the techniques in the same domain. In addi-
tion, ML and optimisation have been enhanced by each other
(interactions 1 and 2).We define dual interaction as the appli-
cation of the techniques from two domains to improve each
other.

As represented in interaction 1, optimisation techniques
have been naturally incorporated into ML as a powerful tool
for decades [79,146,189]. Many ML and data mining tasks
can be formulated as optimisation problems, such as the
training of an ML model by building a loss function and
minimising it with respect to model parameters [146], or to
optimise the preprocessing of a dataset [189], and also for
clustering purposes [79]. Besides, optimisation techniques
have also been introduced intoML to tackle the design issues
of ML algorithms. At present, many ML algorithms are still
designed by experts that manually choose suitable algorithm
components and hyper-parameters in order to achieve good
performance. This is not coincident with the real aim of
artificial intelligence,which is to learn knowledge fromexpe-
rience automatically without human intervention. This has
motivated the use of optimisation techniques to tune hyper-
parameters of anML algorithm at a different level [58]. From
another point of view, researchers in ML community are
addressing the issue by introducing another ML algorithm
to extract meta-knowledge that can be further used to guide
ML tasks in the base level, which is shown in interaction 3.
These approaches are typically called meta-learning [142] or
learning-to-learn [170]. Furthermore, interaction 3 can also
be found in areas such as algorithm selection [25,141], trans-
fer learning [130] or model training [7,102].

Similarly toML, many optimisation algorithms also often
rely on experts to fix the parameter settings that provide
good performance, although there are limited theoretical
studies on the parameter setting of some particular algo-
rithms. To choose more reliable parameter values and make
the optimisation process more automated, as shown in inter-
action 4, optimisation techniques have been introduced to
improve a base optimisation algorithm, such as using a meta-
optimisation algorithmat the high level to tune the parameters
of a base algorithm [49] or embedding these parameters into a
solution representation and adaptively altering them together
with the solution [128]. From another perspective, ML tech-
niques have also been introduced to tackle the same issues
[11,195], which belongs to interaction 2. A typical optimi-
sation process generates plenty of data including solution
states, associated objective values, etc. The richness of the
information within the data has motivated the use of ML
techniques to extract hidden knowledge and further use it to
configure the parameter settings or algorithmic components
[11,195] for improving the optimisation process and the per-
formance of the overall algorithm. In addition, the learned
knowledge has also been used to assist in solving unseen
optimisation problems in order to accelerate the optimisa-
tion process [80,100] and improve the quality of solutions
[9,164].

In the past few years, a number of review papers have
been published about the dual interactions [18,33,39], indi-
vidual interactions [5,24,84,97,177] and the interactions that
focused on a specific ML or optimisation algorithm [16,
56,58,79,117,118,125,189,193,197] between ML and opti-
misation. Differently, our study provides a global overview
of the interaction between ML and optimisation as well as
those within themselves as shown in Fig. 1. Since the whole
research field is very extensive, in this study, we mainly
focus on the first three interactions where ML sits at the
core. However, we also provide a brief overview of the
interaction 4 to distinguish between different research areas.
We clarify the same terminologies having different mean-
ings used in both fields. We also investigate representative
approaches and recent advances, presenting a taxonomy for
each interaction. Besides, we analyse the advantages and dis-
advantages of various approaches from different interactions
tackling a common task, such as the use ofML and optimisa-
tion techniques to tune hyper-parameters for ML algorithms.
Furthermore, identified research gaps and potential research
directions are presented for future work.

The remainder of this paper is organised as follows.
Section2 provides some background knowledge of ML
and optimisation. Section3 reviews the approaches that
use optimisation to improve ML. Section4 investigates the
approaches that use ML to enhance optimisation. A survey
of recent progress in meta-learning is presented in Sect. 5.
Section6 presents a brief overview of the approaches that use
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optimisation to improve optimisation. Finally, some research
gaps andpotential research directions are discussed inSect. 7.

2 Background

Since researchers and practitioners in ML and optimisa-
tion mainly focus on their own separate areas, this section
makes a brief introduction to those fields as a background.
First, Sects. 2.1 and2.2 provide basic knowledge on ML and
optimisation, respectively. Then, Sect. 2.3 distinguishes the
terminologies used in both fields.

2.1 Machine learning

ML, which aims to extract knowledge from data, is one of
today’s hottest research topics in computer science. Accord-
ing to [21], ML tasks can be generally classified into three
categories:

– Supervised learning The values of input variables and
their corresponding values of output variables are known.
The learning process is to automatically find some
regularities between input variables and output vari-
ables. Depending on different learning tasks, supervised
learning can be further categorised into classification
and regression. Classical supervised learning algorithms
include logistic regression, neural networks (NNs), sup-
port vector machines (SVMs), decision trees (DTs),
k-nearest neighbours (k-NN), etc.

– Unsupervised learning The values of input variables are
known while the values of output variables are unknown.
The learning task is to find some hidden patterns within
the data based on input variables. An example of unsuper-
vised learning is clustering, which learns the distribution
of data to gather the samples into different groups. Repre-
sentative unsupervised learning algorithms are k-means,
autoencoders, generative adversarial networks, etc.

– Reinforcement learning (RL) aims at choosing themost
suitable action at a specific state in an environment to
maximise the cumulative reward [167]. Classic RL algo-
rithms include Q-Learning, Monte Carlo RL, SARSA,
etc.

Although ML has been dramatically developed, it is still
a young field with a number of unexplored research oppor-
tunities and challenging problems. A few ML tasks target
at learning knowledge in extreme scenarios, such as imbal-
anced data classification [75], big data mining [186], data
stream mining [60,161] and few-shot learning [98]. Imbal-
anced data exhibits an unequal distribution between its
classes [75], on which standard ML classifiers cannot per-
formwell because they would pay more attention to majority

classes to achieve better overall performance. Big data min-
ing concerns large-volume, complex, growing data sets with
multiple, autonomous sources [186]. Data stream mining
focuses on learning from streaming data containing concept
drifts, which need an efficient learner with continuous learn-
ing ability [60]. Few-shot learning works towards learning
knowledge quickly from very few examples, while conven-
tional ML algorithms need a lot of data for training and they
may suffer from overfitting based on such little data [155].
In addition, most existing ML algorithms are still designed
by experts that select suitable hyper-parameters or algorithm
components for a specific ML task. However, the real arti-
ficial intelligence aims to learn knowledge without human
interventions. Therefore how to automate the design of ML
algorithms is another challenging problem inMLfield. These
challenging problems require more sophisticated techniques
like meta-optimisation or meta-learning to quickly adapt an
ML algorithm without human intervention.

2.2 Optimisation

Optimisation focuses on finding the best (optimal) solution
from a group of alternative candidate solutions, which has
the general form [22]:

minimise f0(x)

subject to fi (x) ≤ bi , i = 1, . . . ,m
(1)

Here, x represents the decision variables of the optimisation
problem and optimisation algorithms search for the x values
that optimise (minimise) f0, which is the objective function,
subject to a set of constraints denoted as fi .

There are many orthogonal categories of optimisation,
such as exact versus inexact methods, single-objective ver-
sus multi-objective optimisation, unconstrained versus con-
strained optimisation, deterministic versus stochastic opti-
misation, and convex versus non-convex optimisation. More
generally, it can be classified into continuous versus discrete
optimisation according to the type of decision variables. The
commonmethods for continuous optimisation consist of sim-
plex algorithm, gradient-based methods, such as gradient
descent method and its variants, Newton’s method and its
variants, conjugate gradient method, interior-point methods
[6], gradient-free methods such as Bayesian optimisation,
heuristics and metaheuristics. These gradient-free methods
are also commonly used to solve discrete optimisation prob-
lems. Besides, common methods for discrete optimisation
also include approximation algorithms, mathematical pro-
gramming, dynamic programming and hyper-heuristics. To
make the content in the following sections more understand-
able,we briefly introduce someoptimisation algorithms here.

Gradient-based methods search among the solution space
according to the gradient of a differentiable objective func-
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tion [146]. Bayesian optimisation is a sequential design
strategy for global optimisation of black-box functions that
does not require derivatives [114]. A heuristic is an intuitive
approach that may quickly lead to a near-optimal solu-
tion, derived based on the problem domain knowledge. A
metaheuristic represents “a high-level problem independent
algorithmic framework that provides a set of guidelines
or strategies to develop heuristic optimisation algorithms”
[158]. Typical methods include single point based search
methods, such as tabu search [68] and iterated local search
[106] and multi-point (population)-based search methods,
including evolutionary algorithms (EAs) [13], ant colony
optimisation algorithm [50], particle swarm optimisation
(PSO) [88]. Hyper-heuristics focus on automating the design
of heuristic methods to solve hard computational search
problems [28]. Hyper-heuristics consist of two separate lay-
ers. At the high level, the algorithm automatically selects
or generates a number of low-level heuristics performing
search over the space of heuristics, while at the low-level
where the domain specific components sit, the selected or
generated heuristics are invoked performing search over the
spaceof solutions. Selectionhyper-heuristics contain twokey
components: heuristic selection and move acceptance. The
improvement is achieved based on often a single point based
search which makes iterative moves from a single solution
to another via low level operators/heuristics. On the other
hand, generation hyper-heuristics build new heuristics based
on the predefined components for a given problem operating
in a train and test fashion.

Although optimisation has been widely researched, it
still suffers from a few weaknesses, such as high compu-
tational cost, getting trapped at local optima and choosing
suitable parameters for different problems or even instances.
These issues have been investigated for years and still not
completely solved. In addition, nowadays, real-world opti-
misation problems are becoming more and more complex
with increasing number of decision variables as well as
constraints. Efficient and effective advanced intelligent opti-
misation algorithms are needed more than ever.

2.3 Terminology

Some common terminologies are both used in ML and opti-
misation fields, while they may represent different concepts.
To avoid confusion, we clarify those common key termi-
nologies in Table1, providing some examples. Note that the
number of distinctive terminologies in ML and optimisation
is so high that we limit this section to the most common
terminologies that are used in both ML and optimisation.

3 Optimisation for machine learning

A typical ML approach usually starts with collecting raw
data. Then, data preparation and preprocessing are conducted
to shape and clean the data and extract relevant features
[53]. After that, a suitable ML algorithm is chosen and a
set of hyper-parameters are set by an expert. Then, a model1

that captures the hidden patterns within the data is built by
adjusting the model parameters according to a loss function.
Finally, the learned model can be used to do prediction tasks.
Optimisation plays a crucial role in many stages of the ML
cycle. For example, at the stage of data preprocessing, opti-
misation algorithms can help to search for relevant features
and examples for the subsequent learning process [171,189].
Besides, in the phase of hyper-parameter tuning, instead of
setting these hyper-parameters by ML experts, optimisation
algorithms can be used to find suitable hyper-parameters
in order to make the learning process more automatic. In
addition, in the training phase, model parameters learning
can be formulated as an optimisation problem by build-
ing up a loss function and minimising it. To automate a
whole ML cycle, a more general research field has been
formed these years known as AutoML, which covered a few
abovementioned research problems, such as data preprocess-
ing, algorithm selection and hyper-parameter tuning, etc. A
recent survey presented an overview of automated ML, in
which a number of approaches that used optimisation algo-
rithms to automate ML tasks, such as feature selection or
generation, ML algorithm selection and optimisation algo-
rithm selection formodel training, were investigated [192]. A
recent book provided a tutorial-level overviewof themethods
underlying automatic ML [81]. These works also presented
some advanced ML techniques for automated ML, such as
meta-learning, which we discuss in Sect. 5. Besides, a few
competitions on AutoML have also been organised in recent
years [70,71]. Other than the stages within a common ML
cycle, optimisation has also been used to improve some spe-
cific ML areas, such as clustering, ensemble learning.

This section delves into the use of optimisation for ML in
five different subsections depending on where optimisation
is introduced in a typical ML approach as shown in Fig. 2.

3.1 Data preprocessing

Data preprocessing techniques aim to transform raw data
into a reasonable shape for the subsequent learning, which
includes data cleaning, dimensionality reduction, instance
reduction, discretisation, data balancing, etc. Some of those
strategies can be formulated as an optimisation problem.
Dimensionality reduction focuses on finding a subset of fea-
tures from original feature space or extract new features,

1 Not all ML algorithms build a model, such as k-NN.
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Table 1 Clarification of the most common terminologies used in both ML and optimisation

Machine learning Optimisation

Instance A sample from the data, containing one or more
features

A specific expression that can be used as an input for a
given problem to be solved

E.g. A single image from a handwriting recognition
dataset

E.g. A travelling salesman problem consisting of 10
cities and specific distances between each pair of them

Parameter/hyper-parameter A parameter refers to an internal variable of an ML
model and its value can be estimated from data

E.g. The weights of NNs
A hyper-parameter is an adjustable parameter that is
related to the property of an ML algorithm

A parameter refers to the property of an optimisation
algorithm which can be set before or during the
optimisation process. This is similar to the term,
‘hyper-parameter’, used in the ML field

E.g. The population size and mutation rate in EAs
E.g. The number of clusters in the k-means
clustering algorithm

Variable The changeable factors within which we aim to
extract hidden patterns

The changeable factors whose values affect the objective
function in an optimisation problem

E.g. The petal length is a variable of the iris plant,
which can be used to distinguish different classes
of the iris plant

E.g. For a nurse scheduling problem, the number of
nurses to employ during the morning shift can be a
variable

Iteration The number of times that an algorithm’s parameters
are updated while training a model on a dataset

The number of times that the solutions to a problem are
updated in optimisation

E.g. The number of epochs for training NNs E.g. The number of generations

Solution A solution in ML can be varied depending on a
specific ML task. For a classification task, a
solution can be a learned model that distinguishes
the samples from different classes. For clustering, a
solution can be a few identified clusters. For
reinforcement learning tasks, a solution can be a
learned policy

A set of variables with certain values, which determines
a specific value of the objective in an optimisation
problem

E.g. A specific route that covers all the cities and finishes
at the starting city in a travelling salesman problem

E.g. A trained SVM model

Evaluation The evaluation of an ML algorithm or model can be
based on various performance metrics, such as
accuracy, precision, F1 score and computational
time

The evaluation of an optimisation algorithm is usually
based on the quality of solutions and computational
time

Model A mathematical representation of patterns or
inferences, which is formed by learning its
parameters from the training data

An optimisation model is a mathematical representation
of an optimisation problem, which consists of three
main components, an objective function, a set of
decision variables and constraints

E.g. A NN model comprised by a number of units
and learnable connection weights

Objective/loss/cost/ fitness
function

A loss/cost function is usually used in the ML field,
which defined on data, predictions and labels, and
measures the penalty

E.g. Cross entropy loss function, which is widely
used in classification problems

An objective/cost/fitness function is often used in the
optimisation field, which represents the main goal of
an optimisation problem to be maximised or
minimised

E.g. The function that maps a route into the total
distance for the travelling salesman problem

Representation A transformation of raw data that captures useful
information

A transformation of a solution

E.g. The vector in the fully connected layer of a
convolutional NN is a deep representation of the
raw image

E.g. The binary representation for EAs, which
represents a solution by a bit string

which are informative, non-redundant and can facilitate the
following learning process [72]. Similarly, instance reduc-
tion selects a subset of instances from original instance space
or generate new instances [26]. Discretisation looks for the
best set of cut points to transform numerical or continuous
attributes into discrete ones, which can facilitate the subse-

quent learning and help researchers understand data easily
[64]. Data balancing usually oversamples and/or downsam-
ples a new set of examples when the data suffers from the
class imbalanced problem [63]. These problems can be trans-
formed into optimisation problems, inwhich anoptimal set of
features, instances or intervals are searched in a finite feature,

123



Progress in Artificial Intelligence

Fig. 2 Interaction 1: optimisation for machine learning

instance or interval space. These optimisation problems have
been tackled by means of heuristics [133], metaheuristics
[63,137,163,171,189] and hyper-heuristics [115]. Compared
to heuristic-based data preprocessing, metaheuristic-based
methods have better global search ability by balancing explo-
ration and exploitation. Hyper-heuristic-based approaches
provide a more general framework, which automatically
chooses suitable heuristics to select features or instances dur-
ing the search. From the attribute perspective, we can find
heuristic optimisation methods [133], metaheuristic meth-
ods [189] and also hyper-heuristic optimisation methods
[115]. A survey on state-of-the-art evolutionary computa-
tion approaches for feature selection was presented in [189],
which highlighted the use of genetic algorithm (GA) [77],
Genetic Programming, PSO and ant colony optimisation and
different ways of representing a solution, search mechanism
and performance measure. Then, from the instance perspec-
tive, most optimisation techniques are based on EAs [171],
while hyper-heuristics have not been introduced yet, which
might be of use similarly to feature selection [115] and
improve the generalisation ability of instance selection algo-
rithms. As for discretisation, EAs have been frequently used
to search the best set of cut points for each attribute, in which
binary encoding was usually utilised to determine whether
the predefined cut points were adopted [137,163]. Data bal-
ancing can be seen as an instance selection problem, so that,
it has been tackled by EAs similarly, in which EAs were used
to search for a new set of examples from the imbalanced data
by downsampling or oversampling with the purpose of bal-
ancing data and achieving good learning performance [63].

3.2 Algorithm selection in ML

Algorithm selection is an important task for solving ML
problems, because different ML algorithms may have differ-
ent performance on a specific problem. For example, SVMs

may broadly perform better than NNs when the number of
training examples is small. Since there are a number of ML
algorithms, choosing a suitable one for a specific ML task
has been a difficulty for ML researchers, especially for ML
beginners. To address the issue, some approaches introduce
optimisation techniques to search for a suitableMLalgorithm
from a pool of those for a specific ML problem. Several rep-
resentative methods have been further developed into pieces
of software for automating the design of ML algorithms,
such as Auto-WEKA [168], Auto-WEKA 2.0 [93], auto-
sklearn [54] and TPOT [126]. Some of these approaches
used Bayesian optimisation techniques [156] to search for
suitableML algorithms and corresponding hyper-parameters
as well [54,93,168]. The method in [126] transformed an
ML approach into tree-based pipelines including features,
algorithms and hyper-parameters, and utilised Genetic Pro-
gramming [94] to optimise these pipelines.

3.3 Hyper-parameter tuning

Hyper-parameters are adjustable parameters that are related
to the property of an ML algorithm, such as the number of
clusters in a k-means clustering, the number of hidden layers
in NNs and the kernel function for SVMs. These hyper-
parameters have a great influence on the performance of
the subsequent model training. The hyper-parameter tun-
ing for ML algorithms mainly relies on the knowledge
of ML experts. To make the learning process more auto-
matic, optimisation algorithms can be introduced to search
for promising hyper-parameters without human intervention.
Hyper-parameter tuning is a kind of black-box optimisa-
tion, in which the objective function is unknown and usually
approximated by the performance on the validation sets. This
problem has been tackled by grid search, random search,
metaheuristics, Bayesian optimisation and hyper-heuristics,
and more. Depending on their generalisation ability, those
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approaches can be categorised into hyper-parameter tuning
for a specific dataset and a type of datasets.

3.3.1 Hyper-parameter tuning for a specific dataset

A typical ML task learns knowledge from a specific dataset,
which is usually divided into training set, validation set and
testing set. The training set is used for extracting knowledge,
the validation set serves to tune hyper-parameters and pre-
vent overfitting, and the testing set provides an evaluation of
the learned knowledge. To achieve good generalisation per-
formance on a dataset, hyper-parameters are often tuned by
experts according to the performance of the model learned
from training set on the validation set. However, to remove
human intervention, a few optimisation or search techniques
have been introduced to do that task. Grid search and ran-
dom search are two strategies that are commonly used [19].
In addition,metaheuristics andBayesian optimisation,which
are two effective global optimisation methods for black-box
functions, are also used for hyper-parameter tuning in the
ML field [59,156].

– Grid search and random search Grid search and ran-
dom search are the two most popular hyper-parameter
tuning algorithms because they are easy to implement and
parallelisation is trivial. Grid search performs exhaus-
tive search in the hyper-parameter space in order to find
the optimal set of hyper-parameters, while this process
can be time consuming and even virtually impossible in
a very high dimensional space. To address the issue, a
more efficient search method that explores the hyper-
parameter space randomly was proposed, which is called
random search. This approach is able to achieve promis-
ing hyper-parameters with less computation time when
compared to grid search [19].

– Metaheuristic-based search Rather than simply search
exhaustively or randomly, metaheuristic-based
approaches perform search according to the generali-
sation performance, which may be beneficial for quick
convergence. Such search usually starts from a single
or a set of random hyper-parameters. They are altered
using some operators, such as mutation or crossover,
and improved by selection mechanism according to their
generalisation performance on the validation datasets.
For example, the approach in [59] encoded the ker-
nel parameter and regularisation parameter of a SVM
into a candidate solution (chromosome) of an EA, and
a generalisation performance measure was chosen as
the fitness function. Other than SVM, several previous
studies provided an overview of the approaches that
used metaheuristics to tune the hyper-parameters of NNs
[56,125,193].

– Bayesian optimisation From the point of view of
probability, Bayesian optimisation based method for
hyper-parameter tuning models a learning algorithm’s
generalisation performance as a sample from a Gaussian
process and evaluates promising hyper-parameters based
on the model [156]. In most cases, these approaches are
better than previous methods because they use cheaper
models to exploit uncertainty to balance exploration
against exploitation, which can obtain better results in
fewer evaluations. However, they suffer from selecting
hyper-parameters of Gaussian processes. In [156], the
authors identified good practices for Bayesian optimisa-
tion of ML algorithms.

3.3.2 Hyper-parameter tuning for a type of datasets

Some ML tasks learn knowledge from different but related
datasets that include similar structural and statistical charac-
teristics and belong to the same domain, such as microarray
gene expression data [17]. Even though tuning hyper-
parameters of an ML algorithm for each particular dataset
could achieve good performance, this procedure can be time
consuming. To tackle the issue, some approaches introduce
optimisation algorithms to tune hyper-parameters for a type
of datasets from the same domain so that we do not have
to tune them for every specific task. Hyper-heuristics have
been mainly utilised because of their higher generalisation
ability compared to other optimisation techniques. Different
from metaheuristics based methods, hyper-heuristic-based
approaches usually search for a set of promising rules, strate-
gies or methods, which can be further used to design an ML
algorithm for different but related datasets.

Most of the existing methods used EA-based hyper-
heuristics to select a set of generic hyper-parameters of an
ML algorithm for a type of datasets, in which the selection
mechanism was based on natural selection and the low-level
heuristics were encoded into a gene sequence [17,46]. After
the whole run of an EA, the hyper-parameters for design-
ing an ML algorithm tailored to a type of datasets can be
obtained. Although these methods can be time consuming,
they have been demonstrated to achieve better generalisation
performance for a type of datasets so that there is no need
to spend additional time tuning hyper-parameters on unseen
datasets in the same type. In [17], a hyper-heuristic EA for
designing DTs was proposed. In this study, each individual
in the EA was encoded as an integer vector and the genes
of each individual were related to different rules and param-
eters of designing a DT, such as the split rules, stopping
criteria. The fitness was decided by validation performance.
After the whole run of EA, a specific DT induction algo-
rithm for a type of datasets can be obtained. The approach
in [46] proposed a similar approach to automatically design
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Bayesian network classifier based on hyper-heuristic EA. In
this approach, each individual of EA contained 11 genes,
the first of which represented one of 12 search algorithms
for generating the structure of a network, the other of which
represented the strategies and parameters related to the cor-
responding search algorithm.

3.4 Model training

Model training is the core of an ML approach. Usually, this
task can be transformed into an optimisation problem by
building a loss function based on an ML model and min-
imising it with respect to the model parameters. For most
ML models, the parameters are continuous variables so that
a differentiable loss function can be built in order to allow
gradient-based optimisation algorithms to solve the prob-
lem [134,146]. However, gradient-based algorithms may be
prone to fall into local optima. To address the issue, meta-
heuristics are sometimes introduced to search for the optimal
model parameters utilising their global search ability. In addi-
tion, if model parameters are discrete variables or the loss
function is non-differentiable, metaheuristics have also been
used to train an ML model.

3.4.1 Gradient-based optimisation

The optimisation problems for training an ML model can
be broadly divided into convex and non-convex optimisa-
tion [82,162]. For example, training a SVM model can be
formulated into a convex quadratic programming problem,
which can be solved by a sequential minimal optimisation
algorithm [134]. In terms of non-convex optimisation, learn-
ing the weights of deep NNs can be transformed into a
non-convex optimisation problem, which can be tackled by
various gradient-based algorithms. These algorithms can be
classified into batch gradient descent, stochastic gradient
descent (SGD) andmini-batch gradient descent based on how
much data was used to compute the gradient in each iteration.
These vanilla algorithms suffer from a few problems, such
as fluctuation in SGD and choosing suitable learning rate. To
overcome these shortcomings, a number of improvements
have been proposed, such as Momentum [135], Adaptive
Moment Estimation (Adam) [91], etc. An overview of dif-
ferent variants of gradient descent algorithms for training
NNs was provided in [146].

3.4.2 Metaheuristic

To prevent model parameters from falling into local optima,
metaheuristics have been introduced to train an ML model
due to their global search ability. Even though these meth-
ods are usually more time consuming, they may achieve
better performance. For example, in [56,125,193], several

overviews of approaches that optimise the weights of NNs
based on various metaheuristics were provided. For some
ML algorithms, some of the model parameters are discrete,
and therefore gradient-based optimisation algorithms do not
work on training these models, instead metaheuristics can be
used. For example, the splitting attributes of aDT are discrete
model parameters. They can be encoded into a chromosome
of an EA and optimised through the evolution process [16].

3.5 Other ML areas improved by optimisation

Apart from the previous stages in which optimisation have
been incorporated in the conventionalMLcycle, optimisation
has also been used for some specific ML tasks, such as clus-
tering [79,116], ensemble learning [34,140] or association
rules mining [4,44]. Section3.5.1 provides a brief overview
of optimisation based clustering. Section3.5.2 investigates
the approaches that use optimisation techniques to improve
ensemble learning.

3.5.1 Clustering based on optimisation

Different from previously discussed typical ML methods,
clustering is an unsupervised learning ML task, whose goal
is to determine a finite set of clusters to describe a dataset
according to similarities among its objects [86]. It can be con-
sidered as an optimisation problem thatmaximises the homo-
geneity within each cluster and the heterogeneity among
different clusters [8]. Optimisation techniques have been
used to directly perform clustering [69,79,152] or to assist
the existing clustering algorithms [151]. Most approaches
used metaheuristics to directly perform clustering by trans-
forming it into an optimisation problem [69,79,152]. The
study in [79] provided a survey of using EAs to perform
clustering. A taxonomy that highlighted some very impor-
tant aspects in the context of evolutionary data clustering was
presented in this review. A recent survey provided an investi-
gation on multi-objective evolutionary clustering techniques
[116]. Conversely, some other approaches introduced meta-
heuristics to assist the existing clustering methods, such as
using GAs to initialise the k-means algorithm [151].

Some other approaches utilise hyper-heuristics to do clus-
tering, in which suitable heuristics are automatically chosen
during iterations.Compared tometaheuristic-basedmethods,
these approaches are more generic for different clustering
problems and have a lower probability of falling into local
optima. For example, in [38], the authors proposed a hyper-
heuristic-based approach for web document clustering. The
approach used random selection and roulette wheel selection
to choose the low-level heuristic based on their performance
calculated by Bayesian information criteria. Furthermore,
two acceptance strategies were used, replacing the worst and
restricted competition replacement. The approach in [172]
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Fig. 3 Interaction 2: machine learning for optimisation . (this taxonomy is adapted from [84])

proposed a hyper-heuristic clustering algorithm,which chose
three metaheuristics, simulated annealing, tabu search, GAs,
and one classic clustering method, k-means, as low-level
heuristics. One of the methods was selected iteratively based
on their previous performance, which may prevent a fixed
algorithm from being trapped in local optima.

3.5.2 Ensemble learning based on optimisation

Ensemble learning combines the predictions of individual
MLmodels to obtain better performance [140]. Conventional
ensemble methods include bagging, boosting and random
forest, decompositionmethods, negative correlation learning
methods, fuzzy ensemble methods, multiple kernel learning
ensemble methods, etc [140]. As [74] pointed out, the key to
successful ensemble learning is to construct individual pre-
dictors which are accurate and disagree with one another.
This means a good ensemble learning approach should con-
sist of a set of accurate and diverse predictors. Therefore,
it is natural to incorporate multi-objective optimisation tech-
niques into ensemble learning to search for a set of individual
predictors that are both accurate and diverse. Since multi-
objective EAs can produce a set of trade-off predictors in
the form of a non-dominated set [118], they have been used
frequently to assist ensemble learning [34,35,61]. An exam-
ple can be found in [34], this approach used multi-objective
EAs to find the optimal trade-off between diversity and accu-
racy of an ensemble of NN classifiers. Each particular NN
was treated as an individual in the population and the final
ensemble was the non-dominated set of NNs in the final gen-
eration.

4 Machine learning for optimisation

There are many approaches that use ML techniques to
improve optimisation algorithms, mainly metaheuristics and

hyper-heuristics. The aims of introducing ML to optimisa-
tion are to speed up the search process and to improve the
quality of solutions. The general approach of this field is
to use ML techniques to extract knowledge from the data
gathered from optimisation processes. Then, the extracted
knowledge, which is usually represented by a model or rules,
is used to tune or substitute for a component of an optimisa-
tion algorithm.Multiple overviews have recently covered the
interactions betweenML and metaheuristics [33,39,84,197],
however, to the best of our knowledge, there is no sur-
vey presenting a categorisation on the way that ML is used
for enhancing hyper-heuristics. In addition, ML techniques
can also be used to choose the best performing algorithm
for a particular optimisation problem. Section4.1 provides
a brief overview of using ML to enhance metaheuristics
based on previous review papers. Section4.2 investigates the
approaches that used ML to improve hyper-heuristics. Sec-
tion4.3 presents the latest advances on algorithm selection
in optimisation based on ML techniques. Overall, the ways
of applying ML to improve optimisation are shown in Fig. 3.

4.1 Machine learning for metaheuristic optimisation

A metaheuristic is a high-level problem independent algo-
rithmic framework that provides a set of strategies to develop
heuristic optimisation algorithms [158]. This framework is
general, and it can be applied to different optimisation prob-
lems in the same domain or even in different domains.
However, this problem solving process can be time consum-
ing and the method may be prone to fall into local optimum.
To tackle these problems, ML techniques have been used
to accelerate the search process and improve the quality of
solutions. There are several previous review works about
improving metaheuristics by ML [33,39,84,197]. They pro-
vided similar taxonomies and one of them proposed in [84]
depended on three different criteria, namely localisation, aim
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and kind of knowledge. Based on this taxonomy, we sum-
marise the recent advances in the literature.

Depending on the localisation where ML techniques are
embedded in an optimisation algorithm, the approaches
that used ML to improve metaheuristics can be categorised
into eight classes, specifically evaluation, decision variables,
parameters, initialisation, population, operators, local search
and problem instances.

– Evaluation For some cases in optimisation, the objec-
tive function is hard to be expressed by a mathematical
model or computationally expensive, for example, many
engineering problems require simulations to evaluate a
solution. To solve the problem, ML techniques are usu-
ally used to approximate the objective function of a
optimisation problem, which is also a branch of surro-
gate models [15], or reduce the number of solutions to be
evaluated. A recent approach in [131] used generalised
regression NNs to approximate the fitness function in
PSO to speed up evaluation. Several overviews of using
surrogatemodels to assist evolutionary computationwere
provided in [41,48,83]. To reduce the number of solutions
to be evaluated, some other methods used a clustering
algorithm to group the population of a metaheuristic and
then only chose representative individual from each clus-
ter to be evaluated [90]. Some other approaches focused
on multi-objective optimisation problems. These meth-
ods used ML techniques, such as principal component
analysis [148] or feature selection techniques [104], to
reduce the number of objectives in a multi-objective
optimisation problem for the sake of less computational
burden and complexity.

– Decision variables An optimisation problem usually
includes a set of decision variables, whose values need to
be determined to solve the problem. Conventional meta-
heuristics seldom take into account the scalability of the
number of decision variables. However, this factor some-
times may influence the performance of an optimisation
process, especially for problems with large-scale deci-
sion variables. To fill the gap, some approaches utilise
ML techniques to dealwith decision variables so that they
can be optimised efficiently. A recent EA-based approach
introduced a clustering algorithm to separate the decision
variables into convergence-related and diversity-related
ones, and two different EA strategies were applied to
dealingwith the two classes of decision variables, respec-
tively [198].

– Parameters A metaheuristic typically consists of many
adjustable parameters, which have great impact on the
performance of an optimisation process. To choose
promisingparameters automatically,ML techniques have
been introduced to choose suitable ones before an opti-
misation process (parameter tuning) or even adjust them

adaptively during the run of an optimisation algorithm
(parameter control). For example, in EAs, we have
population size, crossover probability andmutation prob-
ability, amongothers. These parameters canbe adaptively
set using ML algorithms. One instance was given in
[196], in which a clustering algorithm was used to
find different subgroups within the population of a GA,
then crossover probability and mutation probability were
adaptively adjusted based on the relative size of the
cluster containing the best chromosome and the one con-
taining the worst chromosome.

– Initialisation Normally, a metaheuristic starts searching
from a single or a number of randomly generated ini-
tial solutions, which may include some bad solutions.
ML algorithms can be used to help generate a number of
relatively promising initial solutions, which can acceler-
ate convergence. For example, a clustering based initial
population strategy is proposed for travelling salesman
problem [45], in which the cities were clustered into sev-
eral groups based on k-means and then an initial solution
can be obtained by using a GA to find the local optimal
path for each group and a global optimal path connecting
different groups.

– Population Some metaheuristics are population-based
methods, such as EAs and PSO, in which a population
comprised with a number of solutions evolves iteratively.
The diversity and quality of the population highly influ-
ence the results. To improve the quality of solutions,
ML techniques can be introduced to maintain popula-
tion diversity or predict promising regions. Clustering
has been the most frequently used ML method to main-
tain population diversity. The approach in [164] used a
clustering algorithm to group the population of a GA into
several sub-populations and operate selectionwithin each
sub-population. To predict promising region in the search
space, several ML algorithms were used, such as cluster-
ing algorithms [87] and SVMs [191], etc. The approach
in [191] learned the mapping between best individuals
and their corresponding fitness function values based on
SVMs in each generation of an EA, and then searched
for the promising individuals according to the learned
model.

– OperatorsAmetaheuristic normally has some operators
to alter solutions, such as selection, crossover and muta-
tion operator in EAs. To accelerate the convergence of an
optimisation process, ML techniques have been applied
to adaptively choosing suitable operators for each prob-
lem state during searching. RL is a frequently used ML
algorithm. For instance, the approach in [195] proposed
an adaptive evolutionary programming algorithm based
on RL, in which the optimal mutation operator was cho-
sen for each individual based on immediate and delayed
performance of mutation operators.
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– Local search metaheuristics are often hybridised with
local search to exploit local region of candidate solu-
tions in metaheuristics. ML techniques can be applied to
helping local search. For example, in [109], clustering
algorithm was used to cluster the population into sev-
eral groups and the best individual in each group was
refined by local search. However, the local search can
be computational expensive. To address the issue, the
approach in [183] proposed a pruning strategy for bee
colony optimisation algorithm [184,185], which employs
the bi-directional extension based frequent closed pattern
mining algorithm to only allow relatively better bees to
undergo local optimisation.

– Problem instances An instance indicates a specific
description that can be used as an input for a given prob-
lem in optimisation. For some optimisation problems, the
number of existing real-world or even synthetic instances
are limited.More importantly, there might bemany prob-
lem instances but they might not differ much from each
other when their characteristics (instance features) are
considered. It is not trivial and reliable to evaluate an opti-
misation algorithm based on such insufficient instances,
since they cannot possibly cover all the representative
regions in the instance space. To address that issue, ML
techniques have been used to generate synthetic instances
with varying characteristics from different regions of the
instance space. It should be noted that this method does
not assume anyparticular optimisationmethod anduseful
purely for a better and informed performance compari-
son of optimisation methods, including metaheuristics
and hyper-heuristics. The approach in [103] is an illus-
tration of this research topic, which used DTs to classify
the real and generated instances into their corresponding
classes and the instance generator was iteratively modi-
fied according to the feedback from the classifier in order
to generate more real instances.

Based on the type of knowledge that ML techniques
extract from the optimisation processes, the approaches can
be categorised into the ones that use a priori knowledge
and the ones that use dynamic knowledge [84]. From the
perspective of ML, these could also be classified as meta-
heuristics that use online (dynamic) and offline (a priori) ML
techniques. For the methods that use dynamic knowledge or
online ML techniques, knowledge is extracted in each iter-
ation to guide the following search process. For example,
as discussed previously, the approach in [195] used RL to
learn optimal policy of choosing mutation operators. The
policy was updated dynamically based on the performance
of mutation operators every iteration. For the approaches that
use a priori knowledge or offline ML techniques, knowledge
is extracted by an offline ML algorithm from solving differ-
ent instances in a specific optimisation problem domain and

use the knowledge to help solving unseen instances in the
same problem domain [190,191].

Focusing on the main goal for which ML is introduced in
metaheuristics,we can classify these approaches into two cat-
egories, to speed up search process and to improve the quality
of solutions. Some of previously discussed approaches aimed
to speed up search process, such as using ML algorithms to
approximate costly objective function [80] and to generate
promising initial solutions [190]. Some of them aimed to
improve the quality of solutions, such as using ML tech-
niques to maintain population diversity [164] and to choose
suitable operators for individuals [195].

4.2 Machine learning for hyper-heuristic
optimisation

The main difference between metaheuristics and hyper-
heuristics is that metaheuristics use a pre-designed algo-
rithmic framework comprised by specific parameters and
operators to solve a problem, while hyper-heuristics utilise
selection or generation mechanisms to automatically design
an optimisation algorithm by selecting or generating suitable
heuristics during the search process. Hyper-heuristics typi-
cally have a stronger generalisation ability than metaheuris-
tics and can be applied to different optimisation problems
without significant modifications. In the literature, there is a
certain degree of confusion between hyper-heuristics and the
approaches discussed in Sect. 4.1 that usedML algorithms to
adaptively select suitable parameters and operators for meta-
heuristics. Even though researchers in different fields use
different terms to describe them, actually they share the same
goal of automatically designing an algorithm for an opti-
misation problem. Concentrating on the difference between
metaheuristics and hyper-heuristics, we divide this section
into two subsections. The first presents an overview of the
approaches that use ML techniques to improve selection or
generation mechanism in hyper-heuristics, which is missing
in metaheuristics. The second reviews the methods that aim
to accelerate the evaluation of hyper-heuristics, which can
also be found in a hybridised metaheuristic.

4.2.1 Learning to select heuristics

There are many approaches that apply ML techniques
to learning how to select heuristics in hyper-heuristics.
Depending on the ML techniques they used, these methods
can be generally classified into three categories, RL-based
approaches, tensor analysis based approaches and appren-
ticeship learning approaches.
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4.2.1.1 RL-based approaches

In this branch, thesemethods useRL to learn a heuristic selec-
tion mechanism in an online manner, in which the selection
mechanism keeps changing according to the performance
of low-level heuristics. They can be further split into two
classes, using onlyRL, hybridisingRLwith other algorithms.

– Using onlyRLAsimple and intuitiveway of learning the
best low-level heuristic during the optimisation process
may be based on classical RL, so that good performing
heuristics are positively rewarded while bad performing
heuristics are negatively punished. Two approaches in
[95,121] used such simple RL scheme to reward and
punish the weights of low-level heuristics based on their
previous performance and selected low-level heuristic
using roulette wheelmethod according to their weights in
each iteration. Rather than using such simple RL scheme,
a more complex RL method, Q-learning, was introduced
to learn to select heuristics in [36], which strictly follows
the criteria ofRL. In [47], the author proposed aRL-based
hyper-heuristic method that fulfilled the criteria of RL. In
their approach, several variants of RL were investigated
to test their performance on selecting heuristics.

– Hybridising RL with other methods Only using RL as
heuristic selection mechanism may result in sticking to
a specific heuristic if the heuristic is heavily rewarded
previously. To address the issue, Tabu search was intro-
duced to prevent a specific heuristic from being chosen
for certain times [31]. Previous approaches that used
RL to select heuristics only focused on which heuristic
was most suitable in each iteration. However, choosing
a suitable sequence of heuristics may benefit more for a
consecutive optimisation process. Therefore, a Markov
chain and RL-based hyper-heuristic method was pro-
posed in [110], in which each state of Markov chain
was represented by a low-level heuristic and the tran-
sition weights of Markov chain was updated adaptively
by RL based on the probability of generating dominating
solutions. This method did not only learn which low-
level heuristic was effective, but also focused on which
sequence of low-level heuristics was promising. Besides,
RL can be utilised to improve the heuristic-based selec-
tion mechanism of a hyper-heuristic. The approach in
[51] used RL to improve Choice Function heuristic selec-
tion mechanism [40] by adaptively adjusting the weights
of measures in the choice function. If no improvement
was made, the intensification weight would be richly
rewarded; otherwise, the diversification weight would be
heavily punished.

From a critical viewpoint, the author of [3] presented a
theoretical analysis of the limitation of using RL as selec-
tion mechanism in hyper-heuristics. Their theoretical results
showed that if the probability of improving the candidate
solution in each point of the search process is less than 50%
which is a mild assumption, then additive RL mechanisms
perform asymptotically similar to the simple random mech-
anism.

4.2.1.2 Tensor analysis based approaches

Tensor analysis, also known as tensor calculus, is a collec-
tive term for the techniques that investigate high dimensional
data and extract latent patterns and correlations between
various modes of data [11]. It is used for elegant and com-
pact formulation and presentation of equations and identities
in mathematics, science and engineering. It is also used
for algebraic manipulation of mathematical expressions and
proving identities in a neat and succinct way [157]. Some
hyper-heuristic approaches use such technique to extract
knowledge for heuristic selection.Rather thandirectly choos-
ing a promising heuristic in each iteration, these approaches
select a suitable group of heuristics for a move acceptance
method based on tensor analysis in order to group heuristics
that work well with each move acceptance method [10,11].
The approach in [10] is an offline learning process, in which
low-level heuristics were grouped based on tensor analysis
once at the beginning of the search. In [11], the authors fur-
ther extended the method to an online learning manner and
made it more flexible. In this method, the low-level heuristics
were partitioned dynamically during the search process and
the selected heuristics can be overlapped between different
groups.

4.2.1.3 Apprenticeship learning approaches

Promising hyper-heuristics, such as AdapHH [112] which
was the winner of a cross domain heuristic search challenge
among twenty competitors, consist of effective manually
designed heuristic selection mechanism. Instead of directly
improving these methods, some approaches use ML algo-
rithms to learn selection mechanism from them and may
achieve better performance on some problem instances.
These approaches can be seen as apprenticeship learning,
which is a process of learning by observing an expert [1].
These apprenticeship learning methods use different ML
algorithms, such as NNs and DTs, to learn heuristic selec-
tion mechanism from experts, such as AdapHH and choice
function [40]. Most of them learn in an offline manner. The
approach in [173] trained a time delay NN to extract heuris-
tic selection mechanisms from the training examples that
were generated by a promising heuristic selection method,
choice function. Then, the time delay NN was used as a
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classifier to select suitable low-level heuristic for solving
unseen problems. In [9], several DTs were trained to imitate
heuristic selection of a promising hyper-heuristic method,
AdapHH. Before training, several datasets were constructed
by applying AdapHH to an optimisation problem and col-
lecting search states. Then, predictors were trained based on
these datasets by means of supervised learning. The previ-
ous approaches used promising hyper-heuristics as experts,
while some other methods chose some evaluation functions
as experts. In [127], the author used NNs to learn the hidden
patterns between problem states and the promising low-level
heuristics, in which the problem states were represented
by constraint density and tightness. The approach in [194]
learned recurrent neural networks (RNNs) [78] to predict
next suitable heuristic based on a set of promising heuris-
tic sequences according to the final log return. The trained
RNNs can be used later to generate a sequence of heuristics
on an unseen problem.

4.2.2 Learn to accelerate evaluation

In addition to learning heuristic selection mechanism, there
are also a few approaches aiming at speeding up the whole
hyper-heuristic processwith the help ofML techniques. Gen-
erally, they learn to evaluate the solutions by classification or
regression methods.

– Classification As discussed in Sect. 4.1, evaluating solu-
tions sometimes can be time consuming. Different from
the approaches that use ML to speed up metaheuristics,
accelerating hyper-heuristics can be treated as a clas-
sification problem, because hyper-heuristics include an
acceptance mechanism that decides whether a solution
is accepted or rejected. Therefore, a classifier can be
trained to classify a solution into an acceptable one or
an unacceptable one without explicitly computing the
objective function. In [99], the authors focused on find-
ing global hidden patterns in large data sets of heuristic
sequence. The approach used NNs and logistic regres-
sion to classify the intermediate solutions generated by
the hyper-heuristic into “good” solutions and “bad” solu-
tions. Another method in [100] transformed a schedule
as a pattern and trained a NN to learn if the pattern is
good or not. Inspired by [100], another approach utilised
a NN to learn if the relative changes in a schedule would
improve the performance [174], which was faster than
[100].

– Regression Another way to accelerate the evaluation
for hyper-heuristics is to train a regression model to
approximate computationally expensive objective func-
tion, which follows the same way that uses ML tech-
niques to accelerate evaluation for metaheuristics and is
also related to surrogate model. The approach in [159]

proposed an evolvability metric estimationmethod based
on a parallel perceptron, which accelerated the online
heuristic selection process. In this study, the fitness value
of an incoming solution was estimated by a single layer
of perceptrons.

4.3 Machine learning for algorithm selection in
optimisation

The algorithm selection in optimisation was first proposed
by [142] aiming at answering the question: which algorithm
is likely to perform best for my (optimisation) problem?
This problem can be transformed into a learning task by
mapping the features of problem instances to the best per-
forming algorithm or algorithm performance. The algorithm
selection in this section is related to the algorithm selection
mechanism of hyper-heuristics. The former aims to perform
algorithm selection before solving a problem while the latter
executes algorithm selection during the iterative search pro-
cess. However, the former can also be transformed into an
online selection approach, which selects a suitable algorithm
during the search, and solved by hyper-heuristics. However,
it is noteworthy that the representation of the solutions gen-
erated by different algorithms during the search should be
in the same form. For example, we cannot directly pass the
solutions represented by a binary string of an EA to a PSO
algorithm which represents the solutions by real numbers.
This insight prevents most ML algorithm selection problems
(Sect. 3.2) from being solved by hyper-heuristics, because
most ML algorithms use different models to solve a prob-
lem. However, algorithm selection for clustering can be an
exception, since the solutions generated by different clus-
tering algorithms can be kept in the same form as clusters,
which is discussed in Sect. 3.5.1. There has been a growing
number of studies on algorithm selection in optimisation,
recently. The approach in [154] extended the framework of
algorithm selection in [142] and introduced a case study on
graph colouring problem. Rather than only choosing the best
performing algorithm, this method aimed to use the meta-
data to identify the strengths andweaknesses of algorithms, in
which a fewML techniques, such as Naive Bayes classifiers,
SVMs or NNs, were used based on the type of performance
metrics. A recent work in [120] focused on algorithm selec-
tion on continuous black-box optimisation problem. This
method first used exploratory landscape analysis to produce
a set of instance features, then applied correlation analysis
to select relevant features, finally used SVMs to learn the
mapping between instance features and the best performing
algorithm or some other algorithm performance measures. A
case study on algorithm selection for the generalised assign-
ment problemwas provided by [42], inwhichRandomForest
was used to learn the mapping between instance features and
suitable algorithms. This work also discussed a few practical
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Fig. 4 Interaction 3: machine learning for machine learning

issues when applying algorithm selection, such as deciding
whether to conduct algorithm selection or not. A latest survey
provided an overview of algorithm selection on continuous
and discrete optimisation problemswith the help ofML tech-
niques and also discussed several related problems, such as
automated algorithm configuration and algorithm schedules
[89].

5 Machine learning for machine learning

In Sect. 3, we have discussed how to make an ML approach
more automatic from the point of view of introducing
optimisation techniques. However, searching for a suit-
able ML algorithm and its corresponding hyper-parameters
through optimisation techniques sometimes can be time
consuming. Due to the powerful learning ability of ML tech-
niques, researchers filled the gap by applying another ML
algorithm at the meta-level to learn meta-knowledge from
fulfilling base-level ML tasks and then using the learned
meta-knowledge to guide unseen ones. Such approach is
called meta-learning, also known as learning to learn. Sev-
eral previous works provide overviews of meta-learning
[5,24,97,175,177]. The most recent one in [175] categorised
meta-learning techniques depending on the type of meta-
data they leveraged, in which the meta-data were broadly
classified into model evaluations, task properties and prior
models. From another point of view, we provide a categorisa-
tion based on the type of meta-knowledge as shown in Fig. 4.
This section presents an investigation on the recent progress
in meta-learning. Most of these approaches focus on NNs,
which are further discussed in the following subsections.

5.1 Learn to select algorithms

Rather than determination of an ML algorithm by experts,
the meta-learning methods in this field work towards using
ML techniques to learn how to automatically select appro-
priate algorithms for an ML task. This question can also be
tackled by optimisation techniques as discussed in Sect. 3.2;

however, using optimisation algorithms to search for a suit-
able algorithm can be time consuming, because we need to
perform an ML algorithm during each optimisation itera-
tion. To address the issue, some meta-learning approaches
utilise ML algorithms to learn to select algorithms, in which
the meta-model can efficiently choose suitable algorithms
after training. Generally, these methods learned a classifier
that determined a specific ML algorithm or a ranking of ML
algorithms based on the characteristics of a task [25,141], or
a regression model that captured the mapping between the
characteristics of ML tasks and algorithm performance [62].
A recent approach took into account runtime and incorpo-
rated multi-objective measures that comprised of accuracy
and runtime into two algorithm selection methods, average
ranking and active testing, to accelerate the selection process
[2].

5.2 Learn to tune hyper-parameters

The meta-learning approaches in this class concentrate on
learning how to tune hyper-parameters for an ML algorithm.
Different from the methods that use optimisation algorithms
to search for promising hyper-parameters in Sect. 3.3, most
of these approaches aim to learn themapping between hyper-
parameters and generalisation performance, which is usually
represented by algorithm’s performance on the validation
datasets or the model parameters leading to good general-
isation performance. Then hyper-parameter tuning can be
conducted efficiently based on the learned mapping. Com-
pared to the optimisation based methods that search among
the hyper-parameter space, these meta-learning approaches
are much more time-saving because they do not need to train
a model for each set of hyper-parameters during searching,
instead they evaluate a model by predicting the generalisa-
tion performance based on the learned mapping model. Even
though training the mapping would take some time, hyper-
parameter tuning can be fast after training. A recent approach
in [105] introducedNNs to learn themapping between hyper-
parameters and the approximate optimal parameters of a
base model. In their study, the optimal base model can be
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directly given without time consuming training for each
set of hyper-parameters, which can accelerate the hyper-
parameter tuning. Furthermore, using NNs to approximate
the black-box function between hyper-parameters and the
optimal model parameters allowed gradient descent algo-
rithms to be introduced to find promising hyper-parameters.
Another two approaches trained regression models, such as
support vector regression and NNs, to predict the perfor-
mance or weights of NNs with respect to their architecture
in order to speed up the search for the promising architecture
of NNs [14,27].

5.3 Learning to train amodel

These approaches focus on learning an efficient meta-learner
that can be used to optimise the parameters of an ML
model. Conventional ML algorithms typically use a manu-
ally designed optimisation algorithm, such as gradient-based
methods, to train a model by building a loss function and
minimising it with respect to the model parameters as dis-
cussed in Sect. 3.4. However, such process sometimes can
be time consuming and stuck in local optima. To overcome
these weaknesses, meta-learning methods in this class work
towards learning an efficient optimisation algorithm for the
sake of faster convergence and better performance. These
approaches can be categorised into learning an optimiser and
fast adaptive parameters based on whether the model param-
eters are iteratively updated.

– Learning an optimiser These approaches target at learn-
ing an optimiser that can be used to update the model
parameters iteratively based on a sequence of gradients
and objective values for a class ofML tasks. The twomost
representative approaches changed the design of an opti-
misation algorithm within an ML method into a learning
problem [7,102]. The method in [7] trained a RNN as an
optimiser to update theweights of a baseMLmodel based
on the gradient information. In [102], the authors trans-
formed a parameter optimisation problem into a RL one,
in which a policy was trained as an optimiser to update
the model parameters iteratively. These approaches both
outperformed the existing hand-designed optimisation
algorithms on some ML problems, while they were not
as stable as hand-designed algorithms due to the lim-
ited learning ability of the meta-learner. Also, they were
restricted to solve a class of problems. To address the
issue, the approach in [181] proposed learned optimisers
that scale and generalise by introducing a hierarchical
RNN architecture, which had high generalisation ability
to new tasks.

– Adaptive parameters Rather than learning an opti-
miser that updates themodel parameters iteratively, some

approaches aim at learning to generate quick adaptive
model parameters. Since these methods predict model
parameters in a feedforward manner without the back-
ward propagation of errors, they are much faster than
those in the first branch while the quality of the gener-
ated parametersmay be not guaranteed. Somemethods in
this branch focused on generating adaptive weights for
different time steps in RNNs [73,149]. Different from
conventional RNNs that share weights across all the time
steps, these approaches meta-learned another RNN that
predicted specific weights for each time step of the base
RNN.The adaptiveweights allowed the baseRNN topro-
cess each element in the input sequence differently,which
can improve the performance. Some other approaches
focused on producing adaptive model parameters for dif-
ferent tasks. In [119], the model parameters were divided
into slow weights and fast weights. Slow weights were
generic weights across tasks, while fast weights were
task-specific weights, which were outputted by a trained
meta-learner.

5.4 Learning an algorithm component

An algorithm component can be seen as a discrete hyper-
parameter of anML algorithm, such as an activation function
in NNs and a splitting criterion in DTs. Sections3.3 and 5.2
focused on selecting such hyper-parameters from a pool of
manually designed algorithm components. However, some
meta-learning approaches aim to learn an algorithm com-
ponent by embedding another ML model into a base one to
represent the algorithm component and training them jointly.
These approaches can achieve better performance because
the algorithm components are automatically learned for a
specific ML task while hand-designed ones are generic. A
recent approach in [176] explored task-specific activation
functions based on NNs rather than choosing a suitable
hand-designed one. The experimental results showed that
the explored new activation functions were different from
the common ones and achieved better performance. Some
other approaches worked towards exploring a promising
policy or strategy in an ML algorithm, which is usually
designedbyexperts. In [12], ameta-learningmethodwaspro-
posed to learn the strategy of selecting examples to label for
active learning based on Matching Networks [178]. Another
approach in [188] learned a splitting criterion for designing a
DTbasedonaRNN, inwhich the learnedRNNcontrollerwas
used to predict the splitting feature at each non-leaf node. In
[43], a strategy to control the magnitude of gradient updates
was proposed forweakly labelled data.A confidence network
was meta-trained to weight every update for the parameters
of a base model in order to alleviate the influence of noisy
data.
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5.5 Learning to transfer knowledge

InML,manydifferentML tasks are related to eachother, such
as handwriting recognition in different languages. Similarly,
in the optimisation field, a lot of different optimisation prob-
lems are closely connected, for example different instances
of the travelling salesman problem. These relevant tasks or
problems contain some useful generic knowledge that can
be utilised to assist other similar tasks or problems. In order
to achieve faster convergence and better performance, some
methods discussed in Sect. 4 focus on extracting common
knowledge from solving a number of instances in a specific
optimisation problem domain and apply the knowledge to
solving unseen instances in the same domain. For the same
purpose, in the ML field, some meta-learning approaches
extract the meta-knowledge from one ML task and transfer
it to a different but related task, or extract the common meta-
knowledge across a particular class of tasks and apply it to
unseen tasks in the same class. Even though the approaches in
different fields solve different problems, they share the same
goal of improving algorithms by transferring knowledge.

– Transfer knowledge across tasks Some approaches
extract the meta-knowledge from oneML task and trans-
fer it to another different but related task. In [180],
the authors proposed a meta-learning method to model
the minority class of imbalanced datasets. They trans-
ferred the knowledge extracted from data-rich classes to
data-poor classes by learning the mapping between the
parameters of many-shot model and those of few-shot
model on data-rich classes and transferring it to data-poor
classes. This approach presented a new idea of learn-
ing from imbalanced data. A comprehensive overview of
this field was provided in [130]. This study focused on
categorising and reviewing transfer learning for classifi-
cation, regression and clustering problems.

– Learn common meta-knowledge for a class of tasks
Some other approaches aim to extract the commonmeta-
knowledge, which can be shared within a class of tasks.
For example, the approach in [144] learned a set of
basic function blocks that were shared across different
tasks. These function blocks were iteratively selected
by a trained router to construct a model for a specific
task. A similar method in [57] learned a group of shared
basic policies for a distribution of RL tasks, which can be
quickly switched between by a trained master policy for
unseen tasks. Another approach for RL learned a shared
baseline reward function for a class of tasks [101]. The
task-specific reward functions were estimated as a prob-
abilistic distribution conditioned on the baseline reward
function.
Many other approaches in this research area concentrate

on a specific challenging problem, few-shot learning,
in which a concept need to be learned from only
one or few examples. This problem cannot be tack-
led by conventional ML algorithms due to the limited
number of examples. To address the issue, many meta-
learning methods were proposed in this field. They aim
to extract the common meta-knowledge across different
few-shot learning tasks within a particular distribution
and apply it to unseen tasks in the same distribution.
These approaches can be roughly categorised into two
classes. The first learns a common feature extractor
for a distribution of few-shot learning tasks and do
classification by measuring the similarity between the
extracted features of examples [65,92,111,147,155,166,
178]. These approaches usually chose convolutional neu-
ral networks (CNNs) [96] or long short-term memory
(LSTM) [76] as a common feature extractor and used
Euclidean distance, cosine distance or learned distance
metric to measure similarity. The second class focuses
on fast parameterisation of a base model by learning
a common promising initialisation, parameter updating
rules or adaptive parameters for a distribution of tasks
[20,55,119,124,136,138]. The learned common initial-
isation or parameter updating rules allowed the model
parameters to be quickly tuned to task-specific ones based
on few examples.

6 Optimisation for optimisation

Similarly to meta-learning in ML, optimisation can also be
improved by self-interaction. There are various ways how
an optimisation algorithm can be used to improve itself or
an other optimisation algorithm as shown in Fig. 5. Gener-
ally, these approaches perform search at a high-level and
operate in an offline or online manner. Since there are
extensive studies providing comprehensive reviews of the
relevant well-established research fields ranging from auto-
mated algorithm generation to memetic computing [23,28,
29,52,85,122,123,153,165], we briefly cover a few selected
studies in this section to point out those different research
areas.

Hyper-heuristics are search methods to select or gen-
erate (meta)heuristics; hence, they can be considered as
optimisation methods improving individual performance of
constituent heuristics for improved performance [28,30].
Automated generation of heuristics is of interest in many
fields and Genetic Programming is one of the most com-
monly used tools as an optimisation technique to generate
components of optimisation approaches [29]. The studies
in [23,123] covered many approaches using Genetic Pro-
gramming (hyper-heuristics) for solving various scheduling
problems. As an example of a selection hyper-heuristic, the
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Fig. 5 Interaction 4: optimisation for optimisation

approach in [32] employed tabu search for detecting the best
permutation of graph colouring heuristics to cooperatively
construct near-optimal exam and course timetables. The
results showed that mixing different heuristics rather than
using one individually yield improved solutions. As a sepa-
rate well-established field of research, there are many studies
on cooperative search methods, that is, parallel/distributed
implementation of multiple optimisation techniques improv-
ing upon the performance of each individual technique run
on its own [52].

The majority of optimisation methods come with a set of
algorithmic parameters influencing their performances and
various algorithms might performwell on different instances
andproblems.Therefore, obtaining the best parameter setting
of an optimisation algorithm can be formulated as another
optimisation problem. Optimising the parameter settings as
well as choosing the best algorithm for a problem can be
performed by an optimisation algorithm instead of a ML
technique as discussed in Sect. 4. Some approaches (e.g.,
meta-optimisation, automated algorithm configuration) aim
to use an optimisation method to tune the parameters of
another optimisation algorithm before the search or even
configure the optimisation algorithm and its components
[49,165]. For example, an EA can be used to search the
best parameter settings for or configure another EA [49].
On the other hand, some other approaches, such as, co-
evolutionary algorithms and hyper-heuristics often control
and modify the algorithmic parameter settings adaptively
during the search process for improved performance. An
illustration of parameter control can be found in [128], which
embedded the operator choices as well as their parameter set-
tings of a memetic algorithm into the solution representation
and co-evolved them adaptively along with the solutions to
the problem instance in hand. As another example [112] pre-
sented an effective selection hyper-heuristic which not only
chose the best operator to invoke but also set its parame-
ter(s) adaptively at each decision point while solving a given
problem instance. Both examples also show that the optimi-
sation algorithms used in the optimisation-for-optimisation
category can carry out multiple improvement tasks simulta-
neously.

7 Remarks and discussion

This paper has provided a global overview of the interactions
betweenML and optimisation as well as their self-interplays.
Different from the existing review works that presented
comprehensive investigations on an individual or dual inter-
actions, we have aimed to draw a whole picture of the
interplays between these two fields and link different inter-
plays by comparing the similar approaches. Background and
latest advances of both research area have been provided.
In addition to investigating the representative methods, we
have presented and discussed individual taxonomies for each
interaction. We have also analysed the advantages and dis-
advantages of the approaches in different interactions that
use different techniques to tackle the common tasks. There-
fore, this paper serves as a useful tutorial for researchers in
ML and optimisation fields to collaborate with each other for
the sake of improvement. It has also provided the guidance
for non-experts in these two fields on how to automatically
design an algorithm without much experience.

Even though a lot of works have been done in the whole
research area, there still remains some issues to be explored.
Several guidelines on future research directions can be sug-
gested.

– When a high-levelML or optimisation algorithm is intro-
duced into a base-level ML or optimisation one, that is
likely to introduce additional parameters to be tuned.
Especially, when we use a high-level algorithm to design
a base-level one, this would add the extra work of design-
ing the high-level algorithm. Since our focus is on the
base-level ML tasks, we usually do not pay much atten-
tion to the design of the high-level method and choose
a regular configuration for the high-level algorithm to
make it effective. A potential research direction would be
simultaneous automated design of high-level and base-
level algorithms.

– The existing approaches usually focus on a single inter-
action between ML and optimisation, while very few of
them consider multiple interactions, which means using
an improved ML or optimisation algorithm to further
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enhance other ML or optimisation algorithms. It could
be a promising research direction because multiple inter-
actions mean multiple improvements. For example, the
research work in [7] introduced ML techniques to learn
a promising optimisation algorithm and the learned opti-
misation method is further used to quickly train an ML
model. Auto-sklearn [54] introduced meta-learning tech-
niques to be complementary to Bayesian optimisation for
optimising an ML framework. Another research work in
this direction can be found in [143].

– There are many software tools for ML and optimisation
respectively, such as Weka 3 [182] and scikit-learn [132]
for ML, HeuristicLab [179] and Opt4J [107] for optimi-
sation. However, there is no API that enables them to
smoothly interact with each other. Since more and more
approaches about the interplays between ML and opti-
misation appear in the literature, the researchers would
benefit from such an API that connects ML and optimi-
sation software. In addition, there are several pieces of
software for automating the design of ML approaches
based on optimisation techniques, such as Auto-WEKA
2.0 [93], auto-sklearn [54] and TPOT [126]. They can
automatically select suitable ML algorithms and tune
corresponding hyper-parameters for a specific dataset,
while they still cannot handle challenging ML problems,
such as imbalanced classification or few-shot learning.
Therefore, a more powerful tool that can combine ML
and optimisation library and tackle challenging problems
need to be developed in the future.

– With the rapid development of technologies, the real-
world problems in both ML and optimisation field are
becoming more and more complex and the scale of them
are getting larger and larger. These problems include
or generate massive data, which cannot be mined effi-
ciently by conventional ML algorithms. However, very
few existing approaches of the interactions between ML
and optimisation have taken into account big data issues
[129]. Therefore, more advanced and efficient ML tech-
niques need to be introduced or developed to overcome
the big data challenges for better interactions.

– Although ML techniques have been widely applied to
optimisation in the literature, very few of them have
covered the theoretical analysis of proposed approaches.
They mainly focus on numerical experiments, which
cannot guarantee the convergence and stability of the
proposed algorithms. Therefore, the theoretical analy-
sis of algorithm’s convergence and stability need to be
addressed as a future research direction.

– Many approaches in meta-learning can be trained end-
to-end by embedding a high-level ML algorithm into
a low-level one. However, when ML algorithms are
introduced into optimisation methods to solve a combi-
natorial optimisation problem, most approaches separate

the learning and optimisation process, because the deci-
sion variables of combinatorial optimisation are discrete,
which is not consistent with the continuous parameters
of most ML algorithms. They usually perform ML algo-
rithms to extract knowledge first and then use it to do
optimisation tasks. Such an approach is less efficient
compared to end-to-end ones. It would be beneficial if we
can train an ML model and solve an optimisation prob-
lem jointly. One potential way to do that is treating the
parameters of an ML model as the decision variables of
an optimisation problem and optimise them jointly in an
end-to-end manner, so that an ML model can be trained
during the optimisation process.

– The interactions that use ML techniques to improve opti-
misation mostly rely on conventional ML algorithms,
such as NNs, SVMs and k-means etc. As more and more
advanced ML methods have emerged recently, such as
deep learning and the techniques that learn from very few
examples, we could introduce these advanced techniques
to further improve optimisation algorithms. In addition,
algorithm selection is another issue when we introduce
ML algorithms into optimisation since there are plenty
of ML algorithms can be used. How to choose a suitable
ML method for a specific optimisation problem need to
be tackled.

– There are various ML algorithms which are embedded
with human-designed algorithm components. Due to the
higher learning ability of ML algorithms, they have been
widely applied to automatically learning ML algorithm
components that are designed by experts. The learned
algorithm components achieved better performance than
human-designed ones, such as the activation function of
NNs, the splitting criterion of DTs, initialisation of an
algorithm, optimisation algorithm for training a model,
selection strategy for active learning, etc. A future area
of research would be using meta-learning techniques
to automatically learn those components, which is still
underdeveloped.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
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174. Václavík, R., Šůcha, P., Hanzálek, Z.: Roster evaluation based on
classifiers for the nurse rostering problem. J. Heuristics. 22(5),
667–697 (2016)

175. Vanschoren, J.:Meta-learning: a survey. CoRR arXiv:1810.03548
(2018)

176. Vercellino, C.J., Wang, W.Y.: Hyperactivations for activation
function exploration. In: 31st Conference on Neural Information
Processing Systems (NIPS 2017), Workshop on Meta-learning.
Long Beach, USA (2017)

177. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-
learning. Artif. Intell. Rev. 18(2), 77–95 (2002)

178. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Match-
ing networks for one shot learning. In: 30th Conference on Neural
Information Processing Systems (NIPS 2016), pp. 3630–3638.
Barcelona, Spain (2016)

179. Wagner, S., Affenzeller,M.: Heuristiclab: a generic and extensible
optimization environment. In: Adaptive and Natural Computing
Algorithms, pp. 538–541 (2005)

180. Wang, Y.X., Ramanan, D., Hebert, M.: Learning to model the tail.
In: 31th Conference on Neural Information Processing Systems
(NIPS 2017), pp. 7032–7042. Long Beach, USA (2017)

181. Wichrowska, O., Maheswaranathan, N., Hoffman, M.W., Col-
menarejo, S.G., Denil, M., de Freitas, N., Sohl-Dickstein, J.:
Learned optimizers that scale and generalize. In: Proceedings of
the 34th International Conference on Machine Learning (ICML
2017). Sydney, Australia (2017)

182. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: DataMining: Practi-
cal Machine Learning Tools and Techniques. Morgan Kaufmann,
Burlington (2016)

183. Wong, L.P., Choong, S.S.: A bee colony optimization algorithm
with frequent-closed-pattern-based pruning strategy for travel-
ing salesman problem. In: 2015 Conference on Technologies
and Applications of Artificial Intelligence (TAAI), pp. 308–314.
Tainan, Taiwan (2015)

184. Wong, L.P., Low, M.Y.H., Chong, C.S.: Bee colony optimization
with local search for traveling salesman problem. Int. J. Artif.
Intell. Tools. 19(03), 305–334 (2010)

185. Wong, L.P., Low,M.Y.H., Chong, C.S.: A generic bee colony opti-
mization framework for combinatorial optimization problems.
In: 2010 Fourth Asia International Conference on Mathemati-
cal/Analytical Modelling and Computer Simulation, pp. 144–151
(2010)

186. Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data.
IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)

187. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey,
W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s
neural machine translation system: bridging the gap between
human and machine translation. CoRR arXiv:1609.08144 (2016)

188. Xiong, Z., Zhang, W., Zhu, W.: Learning decision trees with rein-
forcement learning. In: 31st Conference on Neural Information
Processing Systems (NIPS 2017), Workshop on Meta-learning.
Long Beach, USA (2017)

189. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolu-
tionary computation approaches to feature selection. IEEE Trans.
Evol. Comput. 20(4), 606–626 (2016)

190. Yalcinoz, T., Altun, H.: Power economic dispatch using a hybrid
genetic algorithm. IEEE Power Eng. Rev. 21(3), 59–60 (2001)

191. Yan, X., Wu, M., Sun, B.: An adaptive ls-svm based differen-
tial evolution algorithm. In: International Conference on Signal
Processing Systems, pp. 406–409. Singapore (2009)

192. Yao, Q., Wang, M., Jair, E.H., Guyon, I., Hu, Y., Li, Y., Tu, W.,
Yang, Q., Yu, Y.: Taking human out of learning applications: a
survey on automated machine learning. CoRR arXiv:1810.13306
(2018)

193. Yao, X.: Evolving artificial neural networks. Proceedings of the
IEEE. 87(9), 1423–1447 (1999)

194. Yates, W.B., Keedwell, E.C.: Offline learning for selection hyper-
heuristics with elman networks. In: International Conference on
Artificial Evolution (Evolution Artificielle), pp. 217–230. Paris,
France (2017)

195. Zhang, H., Lu, J.: Adaptive evolutionary programming based on
reinforcement learning. Inf. Sci. 178(4), 971–984 (2008)

196. Zhang, J., Chung, H.S.H., Lo, W.L.: Clustering-based adaptive
crossover andmutation probabilities for genetic algorithms. IEEE
Trans. Evol. Comput. 11(3), 326–335 (2007)

197. Zhang, J., Zhan, Z.H., Lin, Y., Chen, N., Gong, Y.J., Zhong, J.H.,
Chung, H.S., Li, Y., Shi, Y.H.: Evolutionary computation meets
machine learning: a survey. IEEE Comput. Intell. Mag. 6(4), 68–
75 (2011)

198. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: A decision variable
clustering-based evolutionary algorithm for large-scale many-
objective optimization. IEEETrans. Evol. Comput. 22(1), 97–112
(2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1810.03548
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1810.13306

	A review on the self and dual interactions between machine learning and optimisation
	Abstract
	1 Introduction
	2 Background
	2.1 Machine learning
	2.2 Optimisation
	2.3 Terminology

	3 Optimisation for machine learning
	3.1 Data preprocessing
	3.2 Algorithm selection in ML
	3.3 Hyper-parameter tuning
	3.3.1 Hyper-parameter tuning for a specific dataset
	3.3.2 Hyper-parameter tuning for a type of datasets

	3.4 Model training
	3.4.1 Gradient-based optimisation
	3.4.2 Metaheuristic

	3.5 Other ML areas improved by optimisation
	3.5.1 Clustering based on optimisation
	3.5.2 Ensemble learning based on optimisation


	4 Machine learning for optimisation
	4.1 Machine learning for metaheuristic optimisation
	4.2 Machine learning for hyper-heuristic optimisation
	4.2.1 Learning to select heuristics
	4.2.1.1 RL-based approaches
	4.2.1.2 Tensor analysis based approaches
	4.2.1.3 Apprenticeship learning approaches
	4.2.2 Learn to accelerate evaluation

	4.3 Machine learning for algorithm selection in optimisation

	5 Machine learning for machine learning
	5.1 Learn to select algorithms
	5.2 Learn to tune hyper-parameters
	5.3 Learning to train a model
	5.4 Learning an algorithm component
	5.5 Learning to transfer knowledge

	6 Optimisation for optimisation
	7 Remarks and discussion
	References




