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Abstract

In this work we study a new class of similarity measures between interval-valued fuzzy sets. The novelty
of our approach lays, firstly, on the fact that we develop all the notions with respect to total orders of
intervals; and secondly, on that we consider the width of intervals so that the uncertainty of the output is
strongly related to the uncertainty of the input. For constructing the new interval-valued similarity, interval
valued aggregation functions and interval-valued restricted equivalence functions which take into account
the width of the intervals are needed, so we firstly study these functions, both in line with the two above
stated features. Finally, we provide an illustrative example which makes use of an interval-valued similarity
measure in stereo image matching and we show that the results obtained with the proposed interval-valued
similarity measures improve numerically (according to the most widely used measures in the literature) the
results obtained with interval valued similarity measures which do not consider the width of the intervals.

Keywords: Interval-valued fuzzy sets; Admissible order; Total order; Interval-valued similarity measure;
Equivalence and restricted equivalence functions; Interval-valued aggregation function.

1. Introduction

In recent times, interval-valued fuzzy sets [12] are increasingly used in the same problems as fuzzy sets.
This is due to the fact, among other factors, that they provide a way to represent the uncertainty inherent to
the construction of an appropriate fuzzy set to represent a given setting. In this way, they may improve the
numerical results of applications, as can be seen in [1, 2, 3, 5, 6, 7, 17, 18, 28, 36]. Since many applications
of fuzzy sets make use of similarity measures [8, 10, 11, 30] (see also the recent works [15, 16]) in order to
determine the degree of resemblance between fuzzy sets, interval-valued similarities have become also an
object of interest for the researchers [19, 25, 31, 42].

However, two observations can be stated regarding the recent literature about interval-valued similarities,
and, more generally, about interval-valued fuzzy sets:

1. In most of the cases, only the partial order between intervals is considered;
2. the widths of the intervals are not considered.
In our opinion these two features are obstacles to the further development of the theory and the appli-

cations of interval-valued fuzzy sets.
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Taking into account previous assertions, the objective of this paper is to construct similarity measures
between interval-valued fuzzy sets in such a way that:

a) a total order for intervals (not only partial) is used;

b) the widths of intervals are considered.

With respect to objective a), even if it is true that in some cases it is desirable that intervals are not
comparable, in some specific applications (e.g. decision making or classification) in order to get a solution
it is important that any two intervals can be compared. Furthermore, it is desirable that some well-known
notion which provides good results in the fuzzy setting and which involve the ordering of elements (such as
OWA operators, Choquet integrals and so on) can be generalized in a natural way.

Regarding objective b), we assume that the width of the membership interval of an element in a given
set reflects the lack of knowledge of the precise membership degree of the element to the fuzzy set. So, if we
assume there is a real-valued membership degree of an element inside the membership interval, consequently
two elements with the same interval membership degrees need not have the same real-valued membership
degrees. That is, we consider an epistemic interpretation of uncertainty (complementary to ontic one,
which deals with considering whether the two considered interval-valued fuzzy sets are the same), according
to Dubois, see [21].Otherwise, the output of an interval function possesses less uncertainty than its inputs.
For instance, one of the axioms of equivalence functions forces the output [1,1] for any pair of equal inter-
vals, regardless their width. In this case, the uncertainty in the inputs somewhat disappears during the
computation since the considered output is precise.

To achieve the objectives a) and b), we first introduce new definitions of interval-valued aggregation
functions and interval-valued restricted equivalence functions, both in line with the observations stated
above. It is worth pointing out that this is the first time in the literature that interval functions are studied
according to these observations, and we assume that the approach can be utilized in a wide range of problems
in interval setting in the future.

Ideally, the definition of width-preserving interval-valued restricted equivalence function would have to
take into account the width of the inputs in every case. In other words, the width of the output interval
should always be related by some axiom to the width of the input intervals, and not only when the input
intervals have the same length. In this way, the epistemic interpretation would be fully preserved. However,
it is not clear which this relation exactly should be and furthermore, how such IVREF could be constructed
taking into account the complexity of the analysis and the construction when general admissible orders are
involved. For this reason, the proposed set of axioms provides a first step in the desired direction.

To show the validity of our approach, we present an application using an expression of the proposed
interval-valued similarity measure taking into account the width of the intervals which provides better
results than other methods that can be found in the literature. In particular, we describe the application of
our similarity in stereo image matching and show that it outperforms the classical methods that make use
of interval-valued fuzzy sets but do not take into account the width of the membership intervals.

The paper is organized as follows. We start with some preliminaries, then we study the concepts of
interval-valued restricted equivalence functions and interval-valued aggregation functions preserving the
widths of intervals. In Section 4, we introduce the definition of width-based interval-valued similarity
measures and study different construction methods. In Section 5, we present an illustrative example of
application of width-based interval-valued similarity measures in stereo image matching. We finish with
some conclusions and references.

2. Preliminaries

In this section, we introduce several well known notions and results which are necessary for our subsequent
developments.

We start recalling the idea of aggregation function. For more details, see [32].

Definition 2.1. An aggregation function is a non-decreasing function M : [0, 1]n → [0, 1] with M(0, . . . , 0) =
0 and M(1, . . . , 1) = 1.
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An aggregation function M : [0, 1]n → [0, 1] is called idempotent if M(x, . . . , x) = x for every x ∈ [0, 1],
and it is called symmetric if M(x1, . . . , xn) = M(xσ(1), . . . , xσ(n)) for every x1, . . . , xn ∈ [0, 1] and every
permutation σ : {1, . . . , n} → {1, . . . , n}.

Among the most relevant classes of aggregation functions we can mention the following.

Definition 2.2. A t-norm is a symmetric aggregation function T : [0, 1]2 → [0, 1] such that T (x, 1) = x and
T (T (x, y), z) = T (x, T (y, z)) for every x, y, z ∈ [0, 1].

Definition 2.3. A t-conorm is a symmetric aggregation function S : [0, 1]2 → [0, 1] such that S(x, 0) = x
and S(S(x, y), z) = S(x, S(y, z)) for every x, y, z ∈ [0, 1].

Among the most significant t-norms we can mention the minimum or the product, whereas among the
most relevant t-conorms we can cite the maximum or the probabilistic sum SP (x, y) = x+ y − xy [32].

In this work we are going to deal with closed subintervals of the unit interval. We denote by L([0, 1])
the set of closed subintervals of the unit interval, that is:

L([0, 1]) = {[X,X] | 0 ≤ X ≤ X ≤ 1}.

We use capital letters to denote elements in L([0, 1]). The width of the interval X ∈ L([0, 1]) is denoted
by w(X), where w(X) = X −X. An interval function f : (L([0, 1]))n → L([0, 1]) is called width-preserving
(or w-preserving, for simplicity) if, for any X1, . . . , Xn ∈ L([0, 1]) such that w(X1) = . . . = w(Xn), it holds
that w(f(X1, . . . , Xn)) = w(X1).

We work on a finite universe U = {u1, . . . , un}. An interval-valued fuzzy set (IVFS) on the universe U
is a mapping A : U → L([0, 1]). The class of all fuzzy sets in U is denoted by FS(U) and the class of all
interval-valued fuzzy sets in U by IV FS(U). Given A ∈ IV FS(U), its entropy is defined as

ϵ(A) =

n∑
i=1

(A(ui)−A(ui)) .

Note that this entropy measures how far from fuzzy sets a given IVFS is, see [9] for more details. In this
sense, although we have kept the original name of entropy which appears in [9], it is a non-specificity index
for interval membership grades which differs from the usual fuzzy entropy related to crispness of fuzzy sets.

Another key notion in this work is that of order relation. Recall that an order relation on L([0, 1]) is a
binary relation ≤ on L([0, 1]) which is reflexive, symmetric and transitive. An order relation on L([0, 1]) is
called total or linear if any two elements of L([0, 1]) are comparable, i.e., if for every X,Y ∈ L([0, 1]), X ≤ Y
or Y ≤ X. An order relation on L([0, 1]) is partial if it is not total.

Although many different orders can be provided in L([0, 1]), we are interested in the lattice extension of
the ordering in [0, 1], that we will denote by -L and which is the partial order given by:

[X,X] -L [Y , Y ] if X ≤ Y and X ≤ Y . (1)

It is worth mentioning that with this order, any two degenerate intervals (i.e., intervals of width 0) are
comparable. In particular, this implies that if the interval-valued fuzzy sets we are going to deal with are
in fact fuzzy sets (that is, if all the membership intervals have width 0), the order between the interval-
valued fuzzy sets is the same as the order between the fuzzy sets. In other words, if we use this order
(or any extension of it), we can extend algorithms in the fuzzy setting which make use of the order in a
straightforward way. For this reason, this is the order relation most widely used in the literature [14].

We denote by ≤L any order on L([0, 1]) (which can be partial or total) with 0L = [0, 0] as its minimal
element (that is, 0L ≤L X for all X ∈ L([0, 1])) and 1L = [1, 1] as its maximal element (that is, X ≤L 1L
for all X ∈ L([0, 1])). To denote a total order on L([0, 1]) with the same minimal and maximal elements, we
use the notation ≤TL.
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Example 2.4. (i) A total order on L([0, 1]) is, for example, the Xu and Yager’s order ≤XY (see [41]):

[X,X] ≤XY [Y , Y ] if

{
X +X < Y + Y or
X +X = Y + Y and X −X ≤ Y − Y .

(2)

This definition of Xu and Yager’s order was originally provided for Atanassov intuitionistic fuzzy
pairs [41].

(ii) Another example of total order is provided by the lexicographical order with respect to the first
variable, ≤lex1, and with respect to the second variable, ≤lex2, which are defined, respectively, by:

[X,X] ≤lex1 [Y , Y ] if

{
X < Y or
X = Y and X ≤ Y .

[X,X] ≤lex2 [Y , Y ] if

{
X < Y or
X = Y and X ≤ Y .

Regarding total orders on L([0, 1]), we are going to consider the so-called admissible orders, whose
definition we recall now.

Definition 2.5. [13] An admissible order on L([0, 1]) is a total order ≤TL on L([0, 1]) such that it refines
the partial order -L, that is, for every X,Y ∈ L([0, 1]), if X -L Y then X ≤TL Y .

An interesting feature of admissible orders is that they can be built using aggregation functions, as stated
in the following result.

Proposition 2.6. ([13]) Let M1,M2 : [0, 1]2 → [0, 1] be two aggregation functions such that for all X,Y ∈
L([0, 1]), the equalities M1(X,X) = M1(Y , Y ) and M2(X,X) = M2(Y , Y ) can only hold simultaneously if
X = Y . The order ≤M1,M2

on L([0, 1]) given by

X ≤M1,M2
Y if

{
M1(X,X) < M1(Y , Y ) or
M1(X,X) = M1(Y , Y ) and M2(X,X) ≤ M2(Y , Y )

is an admissible order on L([0, 1]).

Example 2.7. (i) Xu and Yager’s order is an example of admissible order with M1(x, y) = x+y
2 and

M2(x, y) = y.
(ii) The lexicographical orders ≤lex1 (≤lex2) are also examples of admissible orders with M1(x, y) = x

(M1(x, y) = y) and M2(x, y) = y (M2(x, y) = x).
(iii) More generally, if, for α ∈ [0, 1] we define the aggregation function

Kα(x, y) = (1− α)x+ αy

then, for α, β ∈ [0, 1] with α ̸= β, we can obtain an admissible order ≤α,β just taking M1(x, y) =
Kα(x, y) and M2(x, y) = Kβ(x, y). Observe that this operator Kα corresponds to Hurwicz’s crite-
rion [27] for balancing pessimism and optimism under uncertainty. See [13] for more details.

2.1. Interval-valued aggregation functions with respect to a partial order
The definition of aggregation function has been extended to the interval-valued setting with respect to

the order -L in a straightforward way [29].

Definition 2.8. Let n ≥ 2. An (n-dimensional) interval-valued (IV) aggregation function in L([0, 1]) with
respect to -L is a mapping MIV : (L([0, 1]))n → L([0, 1]) which verifies:
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(i) MIV (0L, · · · , 0L) = 0L.
(ii) MIV (1L, · · · , 1L) = 1L.
(iii) MIV is a non-decreasing function with respect to -L.

Remark 2.9. Note that this definition does not fully recover the usefulness of the usual definition of
aggregation functions in the real setting (defined with respect to a total order) since there may exist intervals
which are not comparable by means of the order -L, so the full meaning of monotonicity is lost.

It is quite easy to get IV aggregation functions in the sense of Def. 2.8, as the following examples show.

Example 2.10. ([34]) If A : [0, 1]2 → [0, 1] is an aggregation function, then the function MA : L([0, 1])2 →
L([0, 1]) given by

MA([X,X], [Y , Y ]) = [A(X,Y ), A(X,Y )],

is an IV aggregation function in L([0, 1]) with respect to the order -L.
Moreover, if A,B : [0, 1]2 → [0, 1] are two aggregation functions such that A(x, y) ≤ B(x, y) for each

x, y ∈ [0, 1], then

MA,B([X,X], [Y , Y ]) = [A(X,Y ), B(X,Y )],

is an IV aggregation function in L([0, 1]) with respect to the order -L.

Example 2.11. The following functions are IV aggregation functions in L([0, 1]) with respect to the order
-L.

• MIV ([X,X], [Y , Y ]) = [(XY )2, (XY )2],

• MIV ([X,X], [Y , Y ]) = [XY 1/2, (X + Y )/2].

2.2. Restricted equivalence functions
Comparison measures between fuzzy sets can be built using the notion of restricted equivalence function.

We recall now this notion. For more details, see [11].

Definition 2.12. A function R : [0, 1]2 → [0, 1] is called a restricted equivalence function (REF) if it
satisfies:

1. R(x, y) = 0 if and only if {x, y} = {0, 1} (i.e., if and only if |x− y| = 1);
2. R(x, y) = 1 if and only if x = y;
3. R(x, y) = R(y, x) for all x, y ∈ [0, 1];
4. If x ≤ y ≤ z, then R(x, z) ≤ R(x, y) and R(x, z) ≤ R(y, z) for all x, y, z ∈ [0, 1].

Example 2.13. For any p ∈]0,∞[, the function Rp(x, y) = 1− |x− y|p is a REF.

Remark 2.14. It is worth to mention that, for some of our developments, we can consider the weaker
condition

2’. R(x, x) = 1 for every x ∈ [0, 1]

instead of the stronger condition 2. in Definition 2.12. With this condition, we are recovering equivalence
functions, see [23].
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3. Width-preserving interval valued restricted equivalence functions

In this section, we propose a new definition of restricted equivalence function (REF) in the interval-valued
setting which takes into account the width of the inputs.

Definition 3.1. Let ≤L be an order on L([0, 1]). An interval-valued restricted equivalence function w.r.t.
the order ≤L is a function RIV : L([0, 1])2 → L([0, 1]) such that:

1. RIV (X,Y ) = 0L if and only if {X,Y } = {0L, 1L};
2. RIV (X,X) = [1− w(X), 1] for all X ∈ L([0, 1]);
3. RIV (X,Y ) = RIV (Y,X) for all X,Y ∈ L([0, 1]);
4. If X,Y, Z ∈ L([0, 1]) are such that X ≤L Y ≤L Z and w(X) = w(Y ) = w(Z), then RIV (X,Z) ≤L

RIV (X,Y ) and RIV (X,Z) ≤L RIV (Y, Z).

Justification of the axioms

1. Axiom 1. recovers the property required in the definition of REF in the real-valued setting [11].
2. The main difference with respect to the definition of REFs in the fuzzy setting arises in axiom 2. Note

that we consider that the width of the membership interval of an element in a given set is a measure of
the lack of knowledge of the precise (real-valued) membership degree of that element, and it is assumed
that the exact membership value is a value inside the membership interval. So if two elements have
the same interval memberships, this does not mean that their corresponding real-valued membership
are the same. Hence it is natural to expect that we can not get less uncertainty when comparing them.

3. Symmetry is a natural requirement also demanded in the real-valued setting.
4. Regarding axiom 4., observe that in the real-valued case a total order (i.e., the usual order between

real numbers) is used, and hence any two valued obtained by means of a REF can be compared. If
we consider that ≤L is a total order, we are also able to compare any two intervals that are obtained
as the result of an interval-valued restricted equivalence function w.r.t. the order ≤L. Nevertheless,
this axiom is more flexible, since also partial orders can be considered. Nevertheless, by imposing the
restriction that w(X) = w(Y ) = w(Z), we are recovering the condition demanded in the real case,
since if X, Y , Z are intervals which consist of a single point, it follows that w(X) = w(Y ) = w(Z) = 0.

Remark 3.2. As we have already said in the introduction, this definition does not take into account the
width of the input intervals in every case, but we consider it to be a first step in this direction.

Example 3.3. (i) A natural example of width preserving interval-valued restricted equivalence function
is the following:

Repis(X,Y ) = {1− |x− y| | x ∈ X, y ∈ Y } ,

which exactly reflects the epistemic nature of X and Y , and is the interval extension of 1 − |x − y|.
Note that, even if this functions fulfills the four axioms in Def. 2.12, it does not take into account the
width of the inputs. Note that Repis can also be expressed in terms of the endpoints of the intervals:

Repis(X,Y ) =
[
1−max

(
X − Y , Y −X

)
, 1−max

(
0,max (X,Y )−min

(
X,Y

))]
.

Furthermore, observe that in this case, if we take two intervals of the same width, as, for instance,
X = [0.5, 0.7] and Y = [0.6, 0.8], the result Repis(X,Y ) = [0.7, 1] does not have the same width as the
inputs.
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(ii) However, it is possible to provide other examples of width preserving interval-valued restricted equiv-
alence functions such that, if the inputs have the same width, the output also has that same width.
For instance, the function RIV : L([0, 1])2 → L([0, 1]) defined as:

RIV (X,Y ) =
[
max

(
0, 1−|Kα(X)−Kα(Y )|−1

2
(w(X)+w(Y ))

)
,max

(
1−|Kα(X)−Kα(Y )|, 1

2
(w(X)+w(Y ))

)]
is, for every α ∈]0, 1], an example of IV REF w.r.t. any admissible order.

Note that in a sense this second example can be considered an approach similar to the Repis, in the sense
that we are taking into account specific points in the interval by means of Kα operators (which needs not
need the bounds, as it is the case in Repis). In particular, note that Repis can be written as:

Repis(X,Y ) = [ min
α,β∈[0,1]

(1− |Kα(X)−Kβ(Y )|) , max
α,β∈[0,1]

(1− |Kα(X)−Kβ(Y )|)] ,

but we can replace it by the following equivalent expression which depends only on α:

Repis(X,Y ) = [ min
α∈[0,1]

(1− |Kα(X)−K1−α(Y )|) , max
α∈[0,1]

(1− |Kα(X)−K1−α(Y )|)] .

Observe that RIV , which depends on the parameter α, is based on the similar idea as Repis (in the sense that
they both generalize 1 − |x − y| to intervals) with the distinction that it is constructed directly in the line
with the intuition behind the notion of Kα,β order, i.e., the choice of α naturally depends on the considered
order. Moreover, RIV also takes into account the width of the inputs intervals whereas Repis does not.

At the same time, if we take α = 0.5 and the intervals X = [0.3, 0.7] and Y = [0.5, 0.7]. Then, we obtain
IVREF equal to [0.6, 0.9], - even though it is possible that the ”real-value” of both sets is exactly the same
(0.7). On the other hand, if we use Repis, we see that the IVREF equals [0.4, 1], so we would recover the
value 1.

Next we give a result regarding a monotonicity with respect to the widths of the inputs.

Proposition 3.4. Let X,Y ∈ L([0, 1]). If w(X) < w(Y ), then, for any admissible order ≤TL, it follows
that

RIV (Y, Y ) ≤TL RIV (X,X) .

Proof. It follows straightforwardly from Definition 3.1.

Let us consider now the construction of examples of width-preserving IV REF with respect to an admis-
sible order. First of all, observe that if we consider and expression of the type RIV (X,Y ) = {REF (x, y) |
x ∈ X and y ∈ Y }, as the natural interval-valued extension of a real-valued REF function, RIV is a width-
preserving IV REF with respect to an admissible order only if the second axiom in Def. 3.1 holds, and this
happens if and only if REF (x, y) = 1−|x−y|. This means that in order to get general construction methods
of examples that can be useful for applications, we need to find new construction methods. Furthermore,
and in order to build width-preserving similarity functions, we are interesting in interval-valued restricted
equivalence functions which preserve the width of the input intervals if they are the same.

Our first step is the following lemma, which recovers a feature of admissible orders.

Lemma 3.5. Let X,Y ∈ L([0, 1]) be intervals such that w(X) = w(Y ). Then

X -L Y if and only if X ≤TL Y

for any admissible order ≤TL.

Proof. The proof follows from the observation that intervals with the same width are always comparable by
the partial order -L and admissible orders refine the partial order -L.
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Now we discuss a procedure to build IV REFs which preserve the width of input intervals, and which is
based on the use of Kα operators. Note that these operators can be considered as choosing one representative
point inside the intervals. So, in order to ensure that the axioms in the definition are fulfilled, we also must
take into account the widths of the input intervals.

Theorem 3.6. Let α ∈]0, 1[, let M : [0, 1]2 → [0, 1] be an idempotent symmetric aggregation function and
let R : [0, 1]2 → [0, 1] be a restricted equivalence function. Then, the function RIV : L([0, 1])2 → L([0, 1])
given by

RIV (X,Y ) =
[
max

(
0, R (Kα(X),Kα(Y ))−M(w(X), w(Y ))

)
,max

(
R (Kα(X),Kα(Y )) ,M(w(X), w(Y ))

)]
(3)

is an IV restricted equivalence function w.r.t. any admissible order ≤TL. Moreover, RIV is w-preserving.

Proof. For simplicity we write R instead of R (Kα(X),Kα(Y )), and M instead of M(w(X), w(Y )). Then (3)
can be simplified:

RIV (X,Y ) =
[
max

(
0,R−M

)
,max

(
R,M

)]
=

{
[R−M,R], if R ≥ M,

[0,M], otherwise.
(4)

By (4) it is clear that RIV is well-defined.
Observe that RIV (X,Y ) = 0L if and only if R = 0 and M = 0. The former holds if and only

if {Kα(X),Kα(Y )} = {0, 1}, which may happen if and only if {X,Y } = {0L, 1L}. So it follows that
w(X) = w(Y ) = 0 and we get the first condition in Definition 3.1.

The second condition in Definition 3.1 follows from the observations: R (Kα(X),Kα(X)) = 1 and
M(w(X), w(X)) = w(X).

Symmetry of RIV directly follows from the symmetry of R and M .
The fulfillment of the fourth condition in Definition 3.1 w.r.t. any admissible order follows from the

monotonicity of R, Lemma 3.5, after observing that, if X ≤TL Y ≤TL Z and w(X) = w(Y ) = w(Z), then
Kα(X) ≤ Kα(Y ) ≤ Kα(Z).

Finally, the fact that RIV is w-preserving directly follows from Equation (4) and idempotency of M .

We can use any REF R and any idempotent symmetric aggregation function M in Equation (3) to build
an IV REF. Equation (3) can be simplified if some additional assumptions on R and M are imposed.

Corollary 3.7. Let α ∈]0, 1[, let M : [0, 1]2 → [0, 1] be an idempotent symmetric aggregation function
such that M(x, y) ≤ min

(
(1 − α)x + αy, αx + (1 − α)y

)
for all x, y ∈ [0, 1], and let R : [0, 1]2 → [0, 1] be

a restricted equivalence function such that R(x, y) ≥ 1 − |x − y| for all x, y ∈ [0, 1]. Then, the function
RIV : L([0, 1])2 → L([0, 1]) given by

RIV (X,Y ) =
[
R (Kα(X),Kα(Y ))−M(w(X), w(Y )), R (Kα(X),Kα(Y ))

]
(5)

is an IV restricted equivalence function w.r.t. any admissible order ≤TL. Moreover, RIV is w-preserving.

Proof. We only need to prove that R (Kα(X),Kα(Y )) ≥ M(w(X), w(Y )) for all X,Y ∈ L([0, 1]), since in
that case Equation (5) is a special case of Equation (3). Due to the assumptions on M and R, it is enough
to show that

1− |Kα(X)−Kα(Y )| ≥ min
(
(1− α)w(X) + αw(Y ), αw(X) + (1− α)w(Y )

)
. (6)

Assume that Kα(X) ≥ Kα(Y ). Then

1− |Kα(X)−Kα(Y )| = 1− (1− α)X − αX + (1− α)Y + αY
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and since

1 ≥ X − Y = (1− α)(X − Y ) + α(X − Y ) = (1− α)(X −X +X − Y ) + α(X − Y + Y − Y ),

we have

1− (1− α)X − αX + (1− α)Y + αY ≥ (1− α)(X −X) + α(Y − Y ),

hence (6) is satisfied.
Now assume that Kα(X) < Kα(Y ). Then

1− |Kα(X)−Kα(Y )| = 1 + (1− α)X + αX − (1− α)Y − αY

and since

1 ≥ Y −X = (1− α)(Y −X) + α(Y −X) = (1− α)(Y − Y + Y −X) + α(Y −X +X −X),

we have

1 + (1− α)X + αX − (1− α)Y − αY ≥ (1− α)(Y − Y ) + α(X −X),

hence (6) is satisfied.

Remark 3.8. Note that in the previous Corollary we are considering REF functions R which are greater
than or equal to 1− |x− y|, so in general, their interval extensions

RIV (X,Y ) = {R(x, y) | x ∈ X and y ∈ Y }

need not satisfy the axioms about width in Def. 3.1. However, we can make use of them to build new
examples of width-preserving IV REFs, see also Ex. 3.11 below.

As a consequence, we show in the next Corollary that a width-preserving IVREF built as in Corollary 3.7
does not in fact decrease the width of the input intervals, even if the later are different to each other, and
this width of the resulting interval depends parametrically on α. Furthermore, if M = max, then the width
of the output interval equals the maximum of the widths of the input intervals. Note that in the case of
Repis this is not the case as, for instance, Repis([0.1, 0.9], [0.3, 0.5]) = [0.4, 1].

Corollary 3.9. Consider the interval-valued restricted equivalence function RIV constructed in Corol-
lary 3.7. Then, for all X,Y ∈ L([0, 1]) it holds that

min(w(X), w(Y )) ≤ w(RIV (X,Y )) = M(w(X), w(Y )) ≤ min
(
(1−α)w(X)+αw(Y ), αw(X)+(1−α)w(Y )

)
.

Proof. The first inequality follows from the fact that an idempotent aggregation function is always greater
than or equal to the minimum and the second inequality follows from the property of M assumed in
Corollary 3.7.

We can also prove the following result.

Lemma 3.10. If M1,M2 : [0, 1]2 → [0, 1] are idempotent symmetric aggregation functions, then the function
M : [0, 1]2 → [0, 1] given by

M(x, y) = min(M1(x, y),M2(x, y)),

for all x, y ∈ [0, 1], is an idempotent symmetric aggregation function.

Proof. The proof is straightforward.
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Example 3.11. Let us consider the construction of IV REF given by Corollary 3.7. Observe that the
REF Rp defined in Example 2.13 satisfies assumption of the corollary: Rp(x, y) ≥ R1 = 1 − |x − y| for all
x, y ∈ [0, 1] if and only if p ∈ [1,∞[.

(i) If we take α = 1/2 and M(x, y) = x+y
2 we get a class of IV REFs w.r.t. any admissible order:

Rp
IV (X,Y ) =

[
Rp

(
X +X

2
,
Y + Y

2

)
− w(X) + w(Y )

2
, Rp

(
X +X

2
,
Y + Y

2

)]
for p ∈ [1,∞[.

(ii) If we take M(x, y) = min(x, y), a class of IV REFs w.r.t. any admissible order arises:

Rp,α
IV (X,Y ) = [Rp (Kα(X),Kα(Y ))−min(w(X), w(Y )), Rp (Kα(X),Kα(Y ))]

for p ∈ [1,∞[ and α ∈]0, 1[.
(iii) Let α ∈ [0, 1], it is easy to see that

min
(
(1− β)x+ βy, βx+ (1− β)y

)
≤ min

(
(1− α)x+ αy, αx+ (1− α)y

)
for all β ∈ [0, 1] such that max(β, 1 − β) ≥ max(α, 1 − α). Hence, we get a more general class of IV REFs
w.r.t. any admissible order than that in item (ii), if we take α ∈]0, 1[ and

M(x, y) = min
(
(1− β)x+ βy, βx+ (1− β)y

)
for β ∈ [max(α, 1− α), 1] (or equivalently for β ∈ [0,min(α, 1− α)]):

Rp,α,β
IV (X,Y ) =

=
[
Rp (Kα(X),Kα(Y ))−min

(
(1− β)w(X) + βw(Y ), βw(X) + (1− β)w(Y )

)
, Rp (Kα(X),Kα(Y ))

]
.

Note that for β = 1 (or equivalently for β = 0) we get the class described in item (ii).

Finally, Theorem 3.6 also allows us to provide conditions to have RIV (X,Y ) = 1L.

Lemma 3.12. Let RIV : L([0, 1])2 → L([0, 1]) be defined as in Theorem 3.6. If M(x, y) = 0 if and only if
x = y = 0, then RIV (X,Y ) = 1L if and only if X = Y and w(X) = 0.

Proof. The proof is straightforward.

3.1. Width-preserving IV aggregation functions
In order to build width-preserving similarity measures, one possibility is to aggregate in a suitable way

width-preserving IVREFs. In particular, it is desirable that the considered aggregation function takes into
account the width of the input intervals. For this reason, in this subsection we start this study.

As a first step, we recall the definition of aggregation function in the interval-valued setting.

Definition 3.13. Let n ≥ 2. An (n-dimensional) interval-valued (IV) aggregation function in L([0, 1]) with
respect to ≤L is a mapping MIV : (L([0, 1]))n → L([0, 1]) which verifies:

(i) MIV (0L, · · · , 0L) = 0L.
(ii) MIV (1L, · · · , 1L) = 1L.
(iii) MIV is a non-decreasing function with respect to ≤L.

We say that MIV : (L([0, 1]))n → L([0, 1]) is a decomposable n-dimensional IV aggregation function
associated with ML and MU , if there exist n-dimensional aggregation functions ML,MU : [0, 1]n → [0, 1]
such that ML ≤ MU pointwise and

MIV (X1, . . . , Xn) =
[
ML

(
X1, . . . , Xn

)
,MU

(
X1, . . . , Xn

)]
(7)

for all X1, . . . , Xn ∈ L([0, 1]).
The construction of IV aggregation functions with respect to admissible orders is not a trivial task,

see [1]. We devote the next results to such construction.
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Definition 3.14 ([1]). Let c ∈ [0, 1] and α ∈ [0, 1]. We denote by dα(c) the maximal possible width of an
interval Z ∈ L([0, 1]) such that Kα(Z) = c. Moreover, for any X ∈ L([0, 1]), let

λα(X) =
w(X)

dα(Kα(X))

where we set 0
0 = 1.

Proposition 3.15 ([1]). For all α ∈ [0, 1] and X ∈ L([0, 1]) it holds that

dα(Kα(X)) = ∧
(
Kα(X)

α
,
1−Kα(X)

1− α

)
.

where we set r
0 = 1 for all r ∈ [0, 1].

A construction method of IV aggregation functions w.r.t. ≤α,β is proposed in the following theorem,
which makes use of aggregation functions.

Theorem 3.16. Let α, β ∈ [0, 1], β ̸= α. Let M1,M2 : [0, 1]n → [0, 1] be aggregation functions where M1 is
strictly increasing. Then MIV : (L([0, 1]))n → L([0, 1]) defined by:

MIV (X1, . . . , Xn) = Y, where

{
Kα(Y ) = M1 (Kα(X1), . . . ,Kα(Xn)) ,

λα(Y ) = M2 (λα(X1), . . . , λα(X2)) ,

for all X1, . . . , Xn ∈ L([0, 1]), is an IV aggregation function with respect to ≤α,β.

Proof. First observe that w(Y ) = λα(Y )dα(Kα(Y )) and Y = Kα(Y )− αw(Y ), Y = Kα(Y ) + (1− α)w(Y ).
Clearly, MIV is well defined. It suffices to show that MIV is an IV aggregation function.

(i) MIV (0L, · · · , 0L) = Y where Kα(Y ) = M1(0, . . . , 0) = 0. Moreover, if α ̸= 0, then λα(Y ) =
M2(1, . . . , 1) = 1 and w(Y ) = λα(Y )dα(Kα(Y )) = 1 · 0 = 0. If α = 0, then λα(Y ) = M2(0, . . . , 0) = 0 and
w(Y ) = λα(Y )dα(Kα(Y )) = 0 · 1 = 0. Hence, Y = [0, 0].

(ii) MIV (1L, · · · , 1L) = Y where Kα(Y ) = M1(1, . . . , 1) = 1. Moreover, if α ̸= 1, then λα(Y ) =
M2(1, . . . , 1) = 1 and w(Y ) = λα(Y )dα(Kα(Y )) = 1 · 0 = 0. If α = 1, then λα(Y ) = M2(0, . . . , 0) = 0 and
w(Y ) = λα(Y )dα(Kα(Y )) = 0 · 1 = 0. Hence, Y = [1, 1].

(iii) Let Xi ≤α,β Yi for all i = 1, . . . , n. Then Kα(Xi) ≤ Kα(Yi) for all i = 1, . . . , n and there are two
cases:

1. There exists j ∈ {1, . . . , n} such that Kα(Xj) < Kα(Yj). Since M1 is strictly increasing, it follows
that

M1(Kα(X1), . . . ,Kα(Xn)) < M1(Kα(Y1), . . . ,Kα(Yn)),

thus MIV (X1, . . . , Xn) <α,β MIV (Y1, . . . , Yn).
2. Kα(Xi) = Kα(Yi) for all i = 1, . . . , n. If β > α, then w(Xi) ≤ w(Yi) for all i = 1, . . . , n, hence λα(Xi) ≤

λα(Yi) for all i = 1, . . . , n, thus M2(λα(X1), . . . , λα(Xn)) ≤ M2(λα(Y1), . . . , λα(Yn)), consequently
MIV (X1, . . . , Xn) ≤α,β MIV (Y1, . . . , Yn). If β < α, then w(Xi) ≥ w(Yi) for all i = 1, . . . , n, hence
λα(Xi) ≥ λα(Yi) for all i = 1, . . . , n, thus M2(λα(X1), . . . , λα(Xn)) ≥ M2(λα(Y1), . . . , λα(Yn)). As a
consequence, MIV (X1, . . . , Xn) ≤α,β MIV (Y1, . . . , Yn).

The following construction methods provide IV aggregation functions w.r.t. ≤α,β which preserve the
width of the input intervals. First of all, given an aggregation function M : [0, 1]n → [0, 1], the following
two properties are considered:

(P1) M(cx1, . . . , cxn) ≥ cM(x1, . . . , xn) for all c ∈ [0, 1], x1, . . . , xn ∈ [0, 1].
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(P2) M(x1, . . . , xn) ≤ 1−M(1− x1, . . . , 1− xn) for all x1, . . . , xn ∈ [0, 1].

Theorem 3.17. Let α, β ∈ [0, 1], β ̸= α. Let M1,M2 : [0, 1]n → [0, 1] be aggregation functions such that
M1 is strictly increasing, M1(x1, . . . , xn) ≥ M2(x1, . . . , xn) for all x1, . . . , xn ∈ [0, 1], M1 or M2 satisfies
property (P1) and M1 or M2 satisfies property (P2). Then MIV : (L([0, 1]))n → L([0, 1]) defined by:

MIV (X1, . . . , Xn) = Y, where

{
Kα(Y ) = M1 (Kα(X1), . . . ,Kα(Xn)) ,

w(Y ) = M2 (w(X1), . . . , w(Xn)) ,

for all X1, . . . , Xn ∈ L([0, 1]), is an IV aggregation function with respect to ≤α,β.
Moreover, if M2 is idempotent, then MIV is w-preserving.

Proof. We first show that MIV is well defined. Observe that

Y =
[
Y , Y

]
= [Kα(Y )− αw(Y ),Kα(Y ) + (1− α)w(Y )] .

Clearly, Y ≤ Y , hence we only need to prove that

1. Y ≥ 0: For α = 0 we have Y = M1(X1, . . . , Xn) ≥ 0 and for α ∈]0, 1] we have

Kα(Y ) = M1 (Kα(X1), . . . ,Kα(Xn)) ≥ αM2

(
Kα(X1)

α
, . . . ,

Kα(Xn)

α

)
≥ αM2 (w(X1), . . . , w(Xn)) = αw(Y )

where the first inequality follows from the fact that M2 satisfies property (P1) and the second from
the observation Kα(X) = (1− α)X + αX ≥ α(X −X) = αw(X) for all X ∈ L([0, 1]).

2. Y ≤ 1: For α = 1 we have Y = M1(X1, . . . , Xn) ≤ 1 and for α ∈ [0, 1[ we have

Kα(Y ) + (1− α)w(Y ) = M1 (Kα(X1), . . . ,Kα(Xn)) + (1− α)M2 (w(X1), . . . , w(Xn)) ≤

≤ M1 (Kα(X1), . . . ,Kα(Xn)) + (1− α)M2

(
1−Kα(X1)

1− α
, . . . ,

1−Kα(Xn)

1− α

)
≤

≤ M1 (Kα(X1), . . . ,Kα(Xn)) +M2 (1−Kα(X1), . . . , 1−Kα(Xn)) ≤

≤ M1 (Kα(X1), . . . ,Kα(Xn)) + 1−M2 (Kα(X1), . . . ,Kα(Xn)) = 1

where the first inequality follows from the observation 1−Kα(X) = 1− (1−α)X−αX ≥ (1−α)(X−
X) = (1 − α)w(X) for all X ∈ L([0, 1]), and the second and third ones from the assumptions of the
theorem.

Now we prove that MIV is an IV aggregation function. (i) MIV (0L, · · · , 0L) = Y where Kα(Y ) =
M1(0, . . . , 0) = 0 and w(Y ) = M2(0, . . . , 0) = 0, hence Y = 0L. (ii) MIV (1L, · · · , 1L) = Y where Kα(Y ) =
M1(1, . . . , 1) = 1 and w(Y ) = M2(0, . . . , 0) = 0, hence Y = 1L. (iii) Let Xi ≤α,β Yi for all i = 1, . . . , n.
Then Kα(Xi) ≤ Kα(Yi) for all i = 1, . . . , n and there are two cases:

1. There exists j ∈ {1, . . . , n} such that Kα(Xj) < Kα(Yj). Then

M1(Kα(X1), . . . ,Kα(Xn)) < M1(Kα(Y1), . . . ,Kα(Yn)),

since M1 is strictly increasing, thus MIV (X1, . . . , Xn) <α,β MIV (Y1, . . . , Yn).
2. Kα(Xi) = Kα(Yi) for all i = 1, . . . , n. If β > α, then w(Xi) ≤ w(Yi) for all i = 1, . . . , n, hence

M2(w(X1), . . . , w(Xn)) ≤ M2(w(Y1), . . . , w(Yn)), consequently MIV (X1, . . . , Xn) ≤α,β MIV (Y1, . . . , Yn).
If β < α, then w(Xi) ≥ w(Yi) for all i = 1, . . . , n, thus M2(w(X1), . . . , w(Xn)) ≥ M2(w(Y1), . . . , w(Yn)),
consequently MIV (X1, . . . , Xn) ≤α,β MIV (Y1, . . . , Yn).
Finally, it is easy to check that MIV is w-preserving from the idempotency of M2.
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To clarify our results, we consider now the case where the aggregation functions that we use to build
the width-preserving IV aggregation function are given by a weighted arithmetic mean. This result will be
relevant in the next section and for the application.

Proposition 3.18. Let (v1, . . . , vn) ∈]0, 1]n be a weighting vector with v1 + . . . + vn = 1. Under the
assumptions of Theorem 3.17, if M1(x1, . . . , xn) = M2(x1, . . . , xn) = v1x1 + . . .+ vnxn for all x1, . . . , xn ∈
[0, 1], then MIV is the decomposable IV aggregation function associated with ML and MU where ML =
MU = M1.

Proof. Let X1, . . . , Xn ∈ L([0, 1]) and MIV (X1, . . . , Xn) = Y . According to Theorem 3.17 we have

w(Y ) =

n∑
i=1

viw(Xi) and Kα(Y ) =

n∑
i=1

viKα(Xi).

Taking ML = MU = M1 we obtain

MU

(
X1, . . . , Xn

)
−ML

(
X1, . . . , Xn

)
=

n∑
i=1

viXi −
n∑

i=1

viXi =

n∑
i=1

viw(Xi) = w(Y )

and

(1− α)ML

(
X1, . . . , Xn

)
+ αMU

(
X1, . . . , Xn

)
= (1− α)

n∑
i=1

viXi + α

n∑
i=1

viXi =

n∑
i=1

viKα(Xi) = Kα(Y ).

Hence, according to Equation (7), MIV is decomposable and associated with ML and MU .

Finally, we present some properties that hold for the functions MIV : (L([0, 1]))n → L([0, 1]) defined as
in Theorem 3.17.

Lemma 3.19. Let MIV : (L([0, 1]))n → L([0, 1]) be defined as in Theorem 3.17.

(i) If
• M1(x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0 and
• M2(x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0,

then MIV (X1, . . . , Xn) = 0L if and only if X1 = . . . = Xn = 0L. Moreover, if α ̸= 0, then the
restriction on M2 can be skipped.

(ii) If
• M1(x1, . . . , xn) = 1 if and only if x1 = . . . = xn = 1 and
• M2(x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0,

then MIV (X1, . . . , Xn) = 1L if and only if X1 = . . . = Xn = 1L. Moreover, if α ̸= 1, then the
restriction on M2 can be skipped.

(iii) MIV is idempotent if and only if M1 and M2 are idempotent.

Proof. The proof is straightforward.

Example 3.20. A function MIV : (L([0, 1]))n → L([0, 1]) defined as in Theorem 3.17, is a w-preserving IV
aggregation function with respect to ≤α,β , if, for instance:

1. (i) M1(x1, . . . , xn) = M2(x1, . . . , xn) =
x1+...+xn

n for all x1, . . . , xn ∈ [0, 1], or

2. (ii) M1(x1, . . . , xn) =
x1+...+xn

n , M2(x1, . . . , xn) = min{x1, . . . , xn} for all x1, . . . , xn ∈ [0, 1].
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4. Width-based interval valued similarity measures

The same arguments that we have used to justify the introduction of IV restricted equivalence functions
which take into account the width of the intervals are valid for the case of IV similarity measures. For this
reason we propose the following definition.

Definition 4.1. Let ≤L be an order on L([0, 1]) and M : [0, 1]n → [0, 1] be an aggregation function. A
width-based interval-valued similarity measure on IV FS(U) w.r.t. ≤L associated with M is a mapping
SM : IV FS(U)× IV FS(U) → L([0, 1]) such that, for all A,B,A′, B′ ∈ IV FS(U),

(SM1) SM (A,B) = SM (B,A);

(SM2) SM (A,A) =
[
1−M

(
w(A(u1)), . . . , w(A(un))

)
, 1
]
;

(SM3) SM (A,B) = 0L if and only if {A(ui), B(ui)} = {0L, 1L} for all i ∈ {1, . . . , n};

(SM4) If A ⊆ A′ ⊆ B′ ⊆ B w.r.t. ≤L and w(A(ui)) = w(A′(ui)) = w(B′(ui)) = w(B(ui)) for all i ∈
{1, . . . , n}, then SM (A,B) ≤L SM (A′, B′), where, for A,B ∈ IV FS(U), A ⊆ B w.r.t. ≤L if A(ui) ≤L

B(ui) for every ui ∈ U .

The definition is motivated by that given in [11]. However, the second axiom is changed in line with
Definition 3.1 and the fourth axiom is relaxed in a similar way as the fourth axiom in Definition 3.1.

Now, a construction method of IV similarity measure by aggregation of IV REFs is given.
Recall that an aggregation function M : [0, 1]n → [0, 1] is called self-dual with respect to the standard

negation if
M(x1, . . . , xn) = 1−M(1− x1, . . . , 1− xn)

for all x1, . . . , xn ∈ [0, 1].

Theorem 4.2. Let MIV : (L([0, 1]))n → L([0, 1]) be a decomposable IV aggregation function w.r.t. ≤L

associated with ML and MU where ML is self-dual, and let MIV (X1, . . . , Xn) = 0L if and only if X1 =
. . . = Xn = 0L. Let RIV : L([0, 1])2 → L([0, 1]) be an IV restricted equivalence function w.r.t. ≤L. Then
the function SML

: IV FS(U)× IV FS(U) → L([0, 1]) defined by:

SML
(A,B) = MIV

(
RIV (A(u1), B(u1)) , . . . , RIV (A(un), B(un))

)
for all A,B ∈ IV FS(U) is a width-based IV similarity measure on IV FS(U) w.r.t. ≤L associated with ML.

Proof. (SM1) Directly follows from Axiom 3 of Definition 3.1.
(SM2) Observe that

SML
(A,A) = MIV

(
RIV (A(u1), A(u1)) , . . . , RIV (A(un), A(un))

)
=

= MIV

(
[1− w(A(u1)), 1] , . . . , [1− w(A(un)), 1]

)
=

[
ML

(
1− w(A(u1)), . . . , 1− w(A(un))

)
, 1
]
=

=
[
1−ML

(
w(A(u1)), . . . , w(A(un))

)
, 1
]

where the second equality follows from Axiom 2 of Definition 3.1, the third from the fact that MIV is
decomposable associated with ML, MU and the last from the self-duality of ML.

(SM3) Since SML
(A,B) = 0L if and only if RIV (A(u1), B(u1)) = 0L for all i ∈ {1, . . . , n}, which only

holds if {A(ui), B(ui)} = {0L, 1L} for all i ∈ {1, . . . , n}, (SM3) is satisfied.
(SM4) Follows from Axiom 4 of Definition 3.1 and the monotonicity of MIV .
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Example 4.3. Let us consider the IVREF Repis given in Example ?? (i), ML(x1, . . . , xn) =
1
n

n∑
i=1

xi and

MU (x1, . . . , xn) = max(x1, . . . , xn). Then the assumptions of Theorem 4.2 are satisfied and we obtain the
following width-based IV similarity measure on IV FS(U):

S(A,B) =

[
1

n

n∑
i=1

(
1−max

(
A(ui)−B(ui), B(ui)−A(ui)

))
,

,max
(
1−max

(
0,max

(
A(ui), B(ui)

)
−min

(
A(ui), B(ui)

)))]
.

We now study the conditions under which the IV REF RIV given in Theorem 3.6 and the IV aggregation
function MIV given by Theorem 3.17 can be applied in the previous theorem to obtain an IV similarity
measure that preserves the width of intervals.

Corollary 4.4. Let α, β ∈]0, 1[ where β ̸= α. Let (v1, . . . , vn) ∈]0, 1]n be a weighting vector such that
v1 + . . . + vn = 1 and let MIV : (L([0, 1]))n → L([0, 1]) be the IV aggregation function w.r.t. ≤α,β defined
as in Theorem 3.17 where M1(x1, . . . , xn) = M2(x1, . . . , xn) = v1x1 + . . . + vnxn for all x1, . . . , xn ∈ [0, 1].
Let RIV : (L([0, 1]))2 → L([0, 1]) be an IV REF defined as in Theorem 3.6. Then the function SM :
IV FS(U)× IV FS(U) → L([0, 1]) defined by:

SM (A,B) = MIV

(
RIV (A(u1), B(u1)) , . . . , RIV (A(un), B(un))

)
,

for all A,B ∈ IV FS(U), is a width-based IV similarity measure on IV FS(U) w.r.t. ≤L associated with
M1. Moreover, SM satisfies the following for all A,B ∈ IV FS(U):

w(SM (A,B)) = w(A(u1)) whenever w(A(u1)) = w(B(u1)) = . . . = w(A(un)) = w(B(un)). (8)

Proof. Observe that, by Prop. 3.18, MIV is the decomposable IV aggregation function associated with ML,
MU where ML = MU = M1. Moreover, by Lemma 3.19 we have that MIV (X1, . . . , Xn) = 0L if and only
if X1 = . . . = Xn = 0L. Since a weighted arithmetic mean is self-dual and idempotent, from Theorem 4.2
it follows that SM is a width-based IV similarity measure associated with M1. Finally, since MIV and RIV

are w-preserving, we have (8).

Example 4.5. Let (v1, . . . , vn) ∈]0, 1]n be a weighting vector with v1 + . . . + vn = 1. Consider the IV
REF given by Example 3.11 (iii) for p = 1, α = 0.5, β = 1; and the IV aggregation function defined as in
Theorem 3.17 for α = 0.5 (and β = 1, for instance) and M1(x1, . . . , xn) = M2(x1, . . . , xn) = v1x1+. . .+vnxn.
Then, applying Corollary 4.4, we obtain a width-based IV similarity measure SM1

on IV FS(U) w.r.t. ≤L

associated with M1; moreover, SM1 satisfies (8).
As a special case, which is later used in the stereo matching application in the following section, we

give an expression of SM1
for weighting vector

(
1
n , . . . ,

1
n

)
. Note that, since the considered IV aggregation

function is decomposable, the expression can be simplified significantly (see Lemma ??):

SM1
(A,B) =

1−
n∑

i=1

∣∣∣A(ui) +A(ui)−B(ui)−B(ui)
∣∣∣

2n
−

n∑
i=1

min(w(A(ui)), w(B(ui)))

n
,

, 1−

n∑
i=1

∣∣∣A(ui) +A(ui)−B(ui)−B(ui)
∣∣∣

2n

 . (9)

Theorem 4.6. Let MIV : (L([0, 1]))n → L([0, 1]) be an IV aggregation function w.r.t. ≤L satisfying
MIV (X1, . . . , Xn) = 1L if and only if X1 = . . . = Xn = 1L and MIV (X1, . . . , Xn) = 0L if and only if
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Figure 1: Schema of epipolar geometry for stereo vision.

X1 = . . . = Xn = 0L. Let RIV : (L([0, 1]))2 → L([0, 1]) be a function satisfying axioms 1, 3, 4 from
Definition 3.1 and RIV (X,Y ) = 1L if and only if X = Y and w(X) = 0 for all X,Y ∈ L([0, 1]). Then the
function SM : IV FS(U)× IV FS(U) → L([0, 1]) defined by:

SM (A,B) = MIV

(
RIV (A(u1), B(u1)) , . . . , RIV (A(un), B(un))

)
for all A,B ∈ IV FS(U) satisfies axioms (SM1), (SM3), (SM4) and

(SM2′) S(A,B) = 1L if and only if A = B and A,B ∈ FS(U).

Proof. The proof is obtained just by a straight calculation.

Remark 4.7. Note that replacing axiom (SM2) in Definition 4.1 by Axiom (SM2′), we get another approach
to IV similarity measures that takes into account the widths of intervals and is in the line with the ideas
stated after Definition 3.1.

In the next Section we apply our developments to a stereo matching problem.

5. Stereo matching with w-preserving interval-valued restricted equivalence functions

Stereo vision arises as a model to capture the information around us in the same way as human vision
does. Human visual perception is based on the formation of 3D images of the environment. Each eye
captures one different scene, and from them, our brain builds a 3D image of the world surrounding us. In
stereo vision, an approximation to human vision is done by means of two cameras pointing at the same
scene, so each camera acts as an eye. In order to obtain a perception of depth from these two images,
the so-called correspondence between stereo images is used. Correspondence between stereo images is one
of the main problems in computer vision [37, 45] and it is very relevant in applications such as 3D scene
reconstruction, autonomous movement or robotics.

The camera system used to catch stereo images is arranged according to an epipolar geometry, so each
point of the cameras lays on a plane, as shown in Fig. 1. Points captured from the scene by each of
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the cameras corresponding to the same point in the space are called corresponding points. Finding these
corresponding points in the captured images is not a trivial task. Corresponding points may be affected
by noise, occlusions or distortion during the capturing procedure. This task becomes easier if it is required
that points in the captured images are subject to the epipolar restriction, i.e., each point should be in its
corresponding epipolar line. This requirement implies that the search for the best correspondence should
only be done along one of the dimensions of the image (horizontal axis).

Once the corresponding points have been located, a disparity map can be calculated. This map represents
the depth of the objects in the image. Each disparity value is obtained calculating the difference between the
positions of the corresponding points along the horizontal axis. In the next subsection, we discuss a specific
way for calculating the disparity map for which we are going to apply later our IV similarity measures taking
into incount the width of the intervals.

5.1. Methods for calculating the disparity map
For us, an image is function f : X × Y = {1, ..., r} × {1, ..., c} 7→ L, where r represents the number of

rows in the image, that is, its height; c is the number of columns in the image, that is, its width; and L is a
finite lattice whose elements are used to valuate the intensities of the pixels in the image. Different choices
of L allow to represent different types of images. In particular, if we take L = {0, 1}, we represent black and
white images, whereas for greyscale images we take L = {0, ..., 255}, and for color images in the RGB color
space we take L = {0, ..., 255}3.

In order to do the correspondence procedure and to build the disparity map, we use the block-correspondence
method. This technique consists in selecting a window of size n×m in the right image and calculating the
similarity of this window with each of the windows of the same size centered at pixels in the same epipolar
line in the left image. To calculate this similarity, classical measures have been usually considered. In stereo
vision, the most common ones are SSD [40], SAD [44], NCC [22] o ZNCC [38]. Furthermore, some authors
have used fuzzy measures [39]. Among the latter, we find some studies which consider extensions of fuzzy
sets, in particular interval-valued fuzzy sets [24] or Atanassov intuitionistic fuzzy sets [33].

In Algorithm 1 we present a method for constructing a disparity map in an RGB image a using IV-
similarity measures.

Algorithm 1 Algorithm for constructing a disparity map using IV-similarity measures.
Input: Left anf right colour images fl, fr, an IV-similarity measure SM .
Output: Disparity map fd.

1: IV-fuzzify the images fl, fr, getting three IVFSs for each image, one for each color channel.
2: for each pixel (x, y) of fr do
3: Select a window of size n×m around the pixel;
4: for each possible y′ until the maximal disparity (provided by the dataset) do
5: Select a window of size n×m around the pixel (x, y′);
6: Calculate the IV-similarity between the two windows, in each of the three color channels using the

similarity SM ;
7: Aggregate the values of the IV-similarities for each colour according to Equation (10).
8: end for
9: Calculate the disparity between windows taking the pair of windows of greatest similarity according

to the order relation ≼α,β with α = 1;
10: end for
11: Create the disparity map with each of the disparities obtained for each position (x, y);

For steps 3 and 5 we proceed as indicated in Fig. 2, comparing the window in the right image to the
different windows in the left image. To calculate the similarity between intervals, in step 6 we use the
expression of width-based IV similarity proposed in Eq (9). Besides, as we take into account the color
information in the images, in step 7 we aggregate the information as suggested in [20], by means of the
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Figure 2: Choice of windows for calculating the IV similarity and the disparity .

expression:

SMT (A,B) = 0.299 · SMR
(A,B) + 0.587 · SMG

(A,B) + 0.114 · SMB
(A,B) (10)

where SMR
(A,B), SMG

(A,B), SMB
(A,B) represent the similarity values for each of the color channels

calculated using a width-based IV similarity measure SM . Apart from the weighted mean (wMean) con-
sidered in Eq. (10), in the experimentation different aggregation functions to merge the similarity values,
as the arithmetic mean (mean), the product (prod), the geometric mean (gmean), the harmonic mean
(hmean), the median (median), the maximum (max) or the minimum (min) are used. Finally, as the
authors in [24], for all the images we consider windows of size 7× 11.

5.2. IV-fuzzification
A digital image is the result of a discretization of a real world scene. In order to represent such digital

images, fuzzy sets have been used in the literature. However, due to the uncertainty which is inherent
to the process of discretization, it is very hard to provide an accurate (real-valued) membership value for
each pixel. In this sense, the use of interval-valued fuzzy sets allow us to consider such uncertainty by
means of the width of the membership intervals associated to each pixel, as the precise (real-valued) fuzzy
membership value is an unknown value considered to be inside the provided membership interval. For these
reasons, and as it was done in [24], we represent the images by means of interval-valued fuzzy sets, assigning
an interval-valued membership to each pixel. In particular, we are going to build the IVFSs representing
a given image from different membership functions, as was done in [24]. It is worth mentioning that this
IV-fuzzification method has been successfully used in image segmentation problems, obtaining results better
than those methods which only take into account one single membership function.

Given k restricted equivalence functions Ri, the procedure to get an IV-fuzzified image is the following:

• Consider an image f with L intensity values.

– For each level of intensity t, (t = 0, t = 1, . . . , L− 1):
∗ Build k fuzzy sets Q1

t . . . Q
k
t where for each i = 1 . . . k

Qi
t =

{
(q, µQi

t
(q)|q ∈ {0, 1, . . . L− 1})

}
, with

µQi
t
(q) =

Ri

(
q

L−1 ,
mb(t)
L−1

)
, si q ≤ t.

Ri

(
q

L−1 ,
mo(t)
L−1

)
, si q > t.

(11)
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where mo(t) and mb(t) are the mean intensities of the object and the background, given by

mo(t) =
∑t

q=0 q·h(q)∑t
q=0 h(q)

mb(t) =
∑L−1

q=t+1 q·h(q)∑L−1
q=t+1 h(q)

where h(q) denotes the number of pixels with intensity q.
∗ For each level of intensity t, build an IVFS Q̃t from the fuzzy sets Q1

t . . . Q
k
t , taking, for each

q ∈ {0, . . . , L− 1},
µQ̃t

(q) =
[
T
(
µQ1

t
(q), . . . , µQk

t
(q)

)
, S

(
µQ1

t
(q), . . . , µQk

t
(q)

)]
with T a t-norm and S a t-

conorm.
∗ Calculate the entropy ϵF of each of the L interval valued fuzzy sets Q̃t using the expression:
ϵF (Ã) = 1

N

∑N
i=1

(
µÃ(xi)− µ

Ã
(xi)

)
, proposed in [35]

For representing the image f , select the IVFS Q̃t of smallest entropy.

Note that we take as best interval valued fuzzy set for representing the image the one of smallest entropy
ϵF . This is so because this interval-valued fuzzy set displays the smallest amount of uncertainty in order to
build the precise value of membership for the pixels.

In the experimentation, we use the configuration proposed in the first experiment in [24], i.e., we take
k = 2 and the restricted equivalence functions:{

R1 (x, y) = 1− |x− y|
R2 (x, y) = 1− | 10

√
x− 10

√
y|

(12)

5.3. w-preserving IVREF Stereo Matching
To test the behaviour of the proposed width-depending IV similarity measure, in this work we use the

Middlebury dataset [37], composed of the images in Fig. 3. One of the advantages of this dataset is that
each pair of images is associated with a model of the disparity map (groundtruth) provided by an expert.

The evaluation of the error in a stereo matching procedure is done by calculating the absolute error
percentage between the obtained disparity maps and the groundtruth provided by the dataset. To measure
the error percentage, three types of regions, defined by the dataset, are considered:

• nonocc: considers only those pixels that are non occluded (pixels which only appear in one of the
images)

• all: all the pixels of the image are considered.

• disc: pixels near the discontinuities regions are considered.
In Fig. 4, an example of the evaluation regions is shown. For each one of the regions only pixels labelled in
white are considered for the error computation.

5.4. Comparison of the proposed interval methods
We compare Algorithm 1 using our width-based IV similarity measure with the one proposed in [24],

which also makes use of interval-valued fuzzy sets but without taking into account its width.
Table 1 shows the results obtained in the experiments, highlighting the best result in bold face. In this

table, IVREF denotes the method using Eq. (9) and the proposed definitions of w-preserving IV restricted
equivalence function and similarity, and IVFS denotes the method in [24]. Furthermore, the aggregation
function applied to merge the colour channels is specified after the terms IVREF or IVFS, respectively. In
addition, we also consider grayscale images.

We can observe that the new similarity method outperforms in total error the one based on fuzzy sets
presented in [24], even with different aggregation functions for colour merging. The only exceptions that are
below IVFS are when using the median or the min. It is worth to mention that although the best performer
is when using the weighted mean in the overall result, in the case of the Venus image the performance
obtained with grayscale images is considerably better in non occluded and all regions.
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Left image Right image Groundtruth

Figure 3: Left and right images and groundtruth image proposed in the dataset Middlebury.

Nonocc All Disc

Figure 4: Regions considered for the evaluation of a disparity map
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Algorithm
Tsukuba Venus Teddy Cones

%Et
%noocc %all %disc %noocc %all %disc %noocc %all %disc %noocc %all %disc

IVREF wMean 5.70 7.56 19.20 9.00 10.51 35.61 14.90 23.61 35.02 7.46 17.44 20.69 17.23

IVFS wMean 8.02 9.94 17.12 14.98 16.38 32.12 16.60 25.16 33.44 7.79 17.97 19.34 18.24

IVREF grayscale 6.29 8.22 20.46 7.48 9.01 34.87 15.85 24.43 33.67 8.16 18.02 22.16 17.38

IVFS grayscale 8.87 10.81 18.84 11.71 13.19 32.13 18.91 27.21 33.24 9.54 19.54 22.76 18.90

IVREF mean 6.06 7.86 19.37 11.16 12.62 35.53 15.75 24.37 35.62 7.80 17.75 21.34 17.94

IVFS mean 8.44 10.30 17.29 17.92 19.28 32.73 18.61 26.96 34.66 8.34 18.48 20.02 19.42

IVREF prod 6.07 7.86 19.37 11.18 12.64 35.54 15.79 24.41 35.67 7.80 17.75 21.33 17.95

IVFS prod 8.44 10.31 17.31 17.94 19.30 32.74 18.69 27.03 34.76 8.34 18.49 20.02 19.45

IVREF gmean 6.07 7.86 19.37 11.18 12.64 35.54 15.79 24.41 35.67 7.80 17.75 21.33 17.95

IVFS gmean 8.44 10.31 17.31 17.94 19.30 32.74 18.69 27.03 34.76 8.34 18.49 20.02 19.45

IVREF hmean 6.07 7.86 19.39 11.20 12.66 35.51 15.84 24.46 35.73 7.81 17.75 21.35 17.97

IVFS hmean 8.45 10.31 17.32 17.96 19.32 32.74 18.76 27.09 34.82 8.35 18.50 20.04 19.47

IVREF max 6.25 7.98 20.42 10.61 12.10 35.28 16.42 24.92 35.79 9.72 19.53 24.03 18.59

IVFS max 9.13 10.90 19.06 18.68 20.05 34.57 21.29 29.35 35.63 11.83 21.63 25.50 21.47

IVREF median 7.07 8.89 21.03 14.09 15.50 35.99 17.49 25.98 35.98 9.24 19.07 23.89 19.52

IVFS median 9.72 11.60 18.93 20.87 22.20 33.81 20.98 29.11 34.53 11.04 20.91 23.71 21.45

IVREF min 7.63 9.45 20.30 22.49 23.76 37.06 29.21 36.37 43.77 12.51 21.96 26.79 24.27

IVFS min 11.05 12.91 18.63 30.60 31.74 36.52 35.41 41.97 45.50 17.01 26.19 26.83 27.86

Table 1: Comparison of the two methods, IVFS and IVREF, with different aggregation functions to merge colour information.
The first column represent the technique used along with the aggregation used. The remaining columns represent for each
image the percentage of incorrect disparities obtained for each evaluated region. Finally, the last column represent the mean
error.
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Algorithm
Tsukuba Venus Teddy Cones

%Et
%noocc %all %disc %noocc %all %disc %noocc %all %disc %noocc %all %disc

IVREF wMean 5.70 7.56 19.20 9.00 10.51 35.61 14.90 23.61 35.02 7.46 17.44 20.69 17.23

IVREF graysacle 6.29 8.22 20.46 7.48 9.01 34.87 15.85 24.43 33.67 8.16 18.02 22.16 17.38

FUZZY wMean 7.75 9.63 16.17 13.67 15.09 31.51 18.56 26.90 29.01 15.00 24.33 23.24 19.24

FUZZY grayscale 8.35 10.24 16.84 8.41 9.93 31.04 20.26 28.39 29.38 16.83 25.89 25.55 19.26

ZNCC wMean 10.53 12.42 29.44 13.01 14.48 42.08 17.00 25.57 39.09 10.68 20.60 29.91 22.07

ZNCC grayscale 10.80 12.67 29.75 6.05 7.64 42.36 14.41 23.26 39.04 10.65 20.59 30.92 20.68

SAD wMean 8.74 10.75 22.48 13.57 15.01 38.88 20.00 28.23 35.20 14.84 24.39 28.40 21.71

SAD grayscale 9.26 11.21 22.86 8.52 10.07 38.60 21.55 29.61 34.94 16.43 25.70 29.42 21.51

NCC wMean 10.37 12.30 30.38 17.16 18.54 43.67 21.47 29.58 42.07 13.26 23.03 35.89 24.81

NCC grayscale 10.60 12.52 30.04 6.10 7.68 43.73 14.55 23.38 40.22 12.10 21.96 35.38 21.52

SSD wMean 9.74 11.79 28.75 13.09 14.55 43.02 19.62 27.91 39.62 13.88 23.61 33.47 23.25

SSD grayscale 10.14 12.12 29.11 7.92 9.48 43.58 21.23 29.34 39.73 14.29 23.89 33.72 22.88

Table 2: Comparison of our similarity measure using the weighted mean for colour aggregation with the classical approaches
SSD, SAD, ZNCC and Fuzzy similarity. The first column represent the technique used along with the aggregation used. The
remaining columns represent for each image the percentage of incorrect disparities obtained for each evaluated region. Finally,
the last column represent the mean error.

5.5. Comparison of the proposed method with other methods which do not use intervals
When we compare the best results (using the weighted mean) with the classical methods in the literature,

as SSD, SAD, NCC, ZNCC and fuzzy measures (FUZZY), we clearly see in Table 2 that the new proposal
gets globally better results.

The proposed method obtains the best results in the images Tsukuba and Cones, whereas for the other
two ones, (Venus and Teddy) it remains below the ZNCC method using grayscale images. As we can see, our
method outperforms the other ones in non occluded region, in images where there is a wide variety of colour
tones (Tsukuba and Cones). In regions near discontinuities, the best approach is the FUZZY similarity
approach, with grayscale images. In Fig. 5, we show the approaches that obtain the best results in each of
the images and regions. Note also that our method leads to disparity maps with less incorrect disparities,
mainly in the case of Tsukuba and Cones. Nevertheless, the disparity values obtained tend to fail at getting
the right value near discontinuity pixels. In these discontinuity regions, better disparity values are obtained
with the FUZZY approach, except in the case of Cones, where these regions get worse values.

Note that the inclusion of colour information in the process is useful in some cases where the correct
value in not clear and offsets some ambiguities. Despite being the best performer, our method still has
incorrect disparity values. This is because we have applied a basic methodology without refinement. The
results shown are those from the raw disparity maps.

5.6. Illustrative example with refinement steps
As an illustrative example and to show the possibility of improvement of the proposed method, we discuss

here an example using some refinement steps.
For the sake of this experiment we have chosen for steps 3 and 5 of Algorithm 1 a window of size 3×3,

coupled with an Exponential step aggregation function [43] and a Cost Guided filter [26]. Finally we use an
LRC [37] to check over the raw disparity map to detect possible outliers.

We can observe that most of the outliers are removed, obtaining a more homogeneous disparity map,
although, some objects in the images lose their form. For example, in the case of the image Tsukuba in
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Figure 5: Disparity maps with the best obtained results. That is, IVREF aggregating colour with the weighted mean, FUZZY
with color aggregation and grayscale and ZNCC with grayscale images.
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Figure 6: Comparison of the raw disparity maps obtained with raw IVREF and after applying refinement and outlier detection
techniques

Algorithm
Tsukuba Venus Teddy Cones

%Et
%noocc %all %disc %noocc %all %disc %noocc %all %disc %noocc %all %disc

IVREF wMean 5.70 7.56 19.20 9.00 10.51 35.61 14.90 23.61 35.02 7.46 17.44 20.69 17.23

IVREF modified 3.10 3.76 13.42 2.43 2.99 19.79 11.49 17.14 26.09 4.72 10.74 12.34 10.67

Table 3: Comparison of our similarity measure without post-processing and our same method combined with exponential cost
aggregation and cost guided filtering in addition to LRC check.

Fig. 6 the electrical wire in the lamp disapears. Also, the use of a filter in the smoothing process, makes the
shapes of the objects to be better defined just prior to the obtention of the disparity value. In the case of
the Tsukuba and Cones images, the lamp and the cones have almost recover their shape.

The quantitative results exposed in Table 3 confirm the benefits of using refinement processes during the
similarity computation and in the raw disparity map processing. We see that the global error goes down to
10.67 % and that in all the analysed images and in all the regions used for error measuring, the refinement
improves the results. The most significant decrease occurs in the Venus image, where the disparity values
homogeneize the image and outliers almost disapear.

6. Conclusions and future research lines

We have proposed a new definition of interval-valued restricted equivalence function with respect to total
order considering the width of the intervals and described a construction method of restricted equivalence
functions preserving the widths of intervals. In a similar way, we have presented a construction method
of w-preserving interval-valued aggregation functions with respect to total orders. Consequently, we have
introduced a new definition of width-based interval-valued similarity measure with respect to total order and
proposed a construction method by aggregating restricted equivalence functions. Finally, we have discussed
an illustrative example in stereo image matching where the width-based interval-valued similarity measures
were used.

The presented experimental study allows us to conclude that considering the width of the intervals in
order to measure similarity between intervals is highly beneficial. The proposed method obtains better
results, both compared to other interval-valued methods which do not take into account the width of the

24



intervals, and compared to classical methods such as SSD, SAD, NCC, ZNCC or FUZZY. As the time
complexity of our proposal is the same as the fuzzy method not using intervals (O(N2)) and slightly higher
than the classical ones due to the fuzzyfication process. In this sense, the analysis is worth being done.

It is worth mentioning that the use of colour in the extraction of the disparity values is a key point that
leads to an improvement in the results. Finally, the presented method can be improved combining filtering
steps during the similarity computation and searching for inconsistent disparities in the raw disparity map.

In our future work we are going to study the notions and constructions of interval-valued dissimilarity and
interval-valued entropy in line with the presented approach, i.e., with respect to total order and considering
the widths of intervals. We also intend to analyze the use of refinement steps to further improve our method.
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