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Abstract 

Inkjet printing is a form of additive manufacturing where liquid droplets are selectively deposited 

onto a substrate followed by solidification. The process provides significant potential advantages for 

producing solid oral dosage forms or tablets, including a reduction in the number of manufacturing steps 

as well as the ability to tailor a unique dosage regime to an individual patient. This study utilises solvent 

inkjet printing to print tablets through the use of a Fujifilm Dimatix printer. Using polyvinylpyrrolidone 

and thiamine hydrochloride (a model excipient and drug, respectively), a water-based ink formulation was 

developed to exhibit reliable and effective jetting properties. Tablets were printed on polyethylene 

terephthalate films where solvent evaporation in the ambient environment was the solidification 

mechanism. The tablets were shown to contain a drug loading commensurate with the composition of the 
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ink, in its preferred polymorphic phase of a non-stoichiometric hydrate distributed homogenously. The 

printed tablets displayed rapid drug release. This paper illustrates solvent inkjet printing’s ability to print 

entire free-standing tablets without an edible substrate being part of the tablet and the use of additional 

printing methods. Common problems with solvent-based inkjet printing, such as the use toxic solvents, 

are avoided. The strategy developed here for tablet manufacturing from a suitable ink is general and 

provides a framework for the formulation for any drug that is soluble in water. 

Keywords: Solvent inkjet printing, tablet, drug delivery, water-based, additive manufacturing 

1 INTRODUCTION 

Additive manufacturing (AM), commonly referred to as 3D printing,  is a process where materials 

are built up layer-by-layer (ASTM International, 2013). Material or inkjet printing is one amongst many 

AM processes and is defined as a process where liquid material is selectively jetted onto a substrate 

(Gibson et al., 2010). The jetting process consists of three phases: 1) droplet generation, 2) positioning 

and interaction of ink droplets with a substrate and 3) a solidification mechanism (Derby, 2010). Inkjet 

printing can involve the continuous jetting of droplets (a catcher is used to collect unwanted jetted 

droplets) or with a drop-on-demand (DOD) mechanism (Martin et al., 2008). DOD inkjet printing can 

further be categorised based on the mechanism of droplet generation. In some cases, a thermal resistor is 

rapidly heated which causes the vapourisation of the surrounding ink. In turn, a vapour bubble is formed 

and grows until a droplet is forced out of the nozzle. When the heater is turned off, a transient pressure 

wave is generated allowing stable ink ejection (Cummins and Desmulliez, 2012). Alternatively, a 

piezoelectric material can be used, where a voltage is applied to the material resulting in a mechanical 

deformation that ejects the ink droplets. In many cases, the use of a piezoelectric material may be more 

advantageous than the use of a thermal resistor as some inks may be heat sensitive or degrade in response 
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to heat. The solidification mechanism can occur in different ways including solvent evaporation (He et al., 

2016), UV curing (He et al., 2017) or a chemical reaction (reactive jetting) (Sturgess et al., 2017).  

The main challenge for inkjet printing is the development of a reliable printable ink that can also 

maintain its end product functionality. A ‘printability’ factor, Z, has been derived that takes into account 

the properties of both the ink and the printer to determine how well an ink will print (Equation 1). The 

equation relates the surface tension (γ), viscosity (η), density (ρ) and its droplet size ( ), which is 

determined by the nozzle diameter of the printer cartridge. Ideally, the Z-value will be between 1 and 10 

for reliable and effective jetting (Derby, 2010). Its inverse value, known as the Ohnesorge (Oh) number is 

frequently used as a substitute. It generally accepted that surface tension should be within the range of 20 

and 50 mN·m-1 (Hoath, 2016) and viscosity within 8 and 15 mPa·s (Magdassi, 2009), although this can 

vary significantly depending on the specific printer used. 

    
 

  
  

     
 
 

 
         

The current production route for tablets is typically by powder compression methods (Gibson, 2009). 

These are well suited for mass manufacture, but have limitations in terms of personalisation of dose due 

to the large number of steps involved in manufacturing tablets (Zhang et al., 2004). These challenges 

could be addressed through AM of tablets, which has fewer steps and is able to produce personalised 

tablets. Through inkjet printing specifically, there are potentially only three main stages of the 

manufacturing of the tablet form: ink preparation, the jetting of material and the solidification mechanism. 

It has been showed in the past that it is a highly programmable technology that is easily customised, 

making it ideal for personalisation (Fox et al., 2017). The productionisation of inkjet printing is at topic 

that has been investigated for medical devices by Baumers et al., 2018. The authors investigate factors 

that impact manufacturing of heavily regulated products including the risk of build failure and develop a 
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cost model. The authors notes that the results from this research are critical to inform future work on the 

viability of AM for it to be adapted by any industry (Baumers et al., 2018). 

 

Numerous AM processes have been used to manufacture drug delivery systems, including binder 

jetting (Wu et al., 1996), material extrusion (Khaled et al., 2015), vat photo-polymerisation (Wang et al., 

2016), powder bed fusion (Fina et al., 2018) and inkjet printing (Clark et al., 2017). The different printing 

mechanisms and parameters can be manipulated to gain greater customisation of the device.  

For inkjet printing specifically, one of the greatest advantages is the ability to control the drug 

release through a  number of printing parameters including the size or surface area of a printed geometry 

(Desai et al., 2010), loading of jetted droplets (Scoutaris et al., 2011), printing on substrates that affect 

crystallisation (Sandler et al., 2011), varying the droplet spacing on a substrate and the freedom of spatial 

location of a drug in a delivery system (Genina et al., 2013). High dosing levels have been achieved to a 

high degree of uniformity (Scoutaris et al., 2011), reproducibility (Hirshfield et al., 2014) and accuracy 

for high resolution applications (Genina et al., 2013). Inkjet printing has also illustrated its potential to 

develop formulations for poorly soluble active pharmaceutical ingredients (APIs) through the use of 

nanosuspension (with a modified water-based formulation) (Pardeike et al., 2011), nanoplexes (Cheow et 

al., 2015) and even simple solvent systems (Wickström et al., 2015), although inkjet printing here was 

used as a dosing technique instead of a stand-alone manufacturing process. A photo curable ink with a 

hydrophilic drug has also been used to jet into preformed blank tablets (Acosta-Vélez et al., 2017). Inkjet 

printing has also been used to dose drugs (topotecan) and biologics (insulin) into planar micro-devices for 

oral delivery (Fox et al., 2017). As the inkjet system used was easily programmable (highlighting ease of 

potential of personalisation), experimental parameters such printing and drying cycles allowed large drug 

loading capacities in contrast to other techniques where the drug loading is limited due to solubility. The 

process did not require any UV light or heat which would not damage or degrade sensitive biologics and 
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drugs. The authors highlight the use of inkjet printing for creating low-waste but high-capacity loading 

devices for different drug-containing micro-devices (Fox et al., 2017). 

The examples given previously always include the use of a substrate, containers or another printing 

process (e.g. electrospinning (Palo et al., 2017) and flexographic printing (Genina et al., 2012)) to create 

the dosage form. There have been detailed investigations using different imaging methods as a quality 

control process, with inkjet printing (e.g. hyperspectral imaging (Vakili et al., 2014), colorimetry 

(Wickström et al., 2016) and Raman spectroscopy (Edinger et al., 2017)). Drug containing solutions have 

also been printed in the pattern of quick response codes onto hypromellose material, illustrating inkjet 

printing’s ability to create functional labelling and quality control measures (Edinger et al., 2018). The 

ability to wholly manufacture a tablet solely through inkjet printing has only recently been achieved 

(Kyobula et al., 2017). 

Kyobula et al., 2017 used fenofibrate and beeswax as the drug‘s carrier to print tablets through hot 

melt jetting. The drug was mixed with the beeswax and heated in the printer and jetted in its molten form, 

which then solidified on the print bed. The authors showed that it was possible to make use of the high 

printing accuracy to create a complex honeycomb internal structure. Through varying the cell size of the 

printed honeycomb, the drug release profile could be controlled  (Kyobula et al., 2017). Clark et al., 2017 

utilised UV-curable inks for the production of tablets with a hydrophilic drug. The materials used were 

known from previous publications to exhibit good biocompatibility, but the authors note that any uncured 

monomer, macromer and photo-initiator degradation products would need to be identified. It was 

illustrated, however, that the process resulted in a high degree of UV curing, highlighting UV inkjet 

printing as a potentially acceptable process for tablet production (Clark et al., 2017). Acosta-Vélez et al., 

2018 created a photo-curable bioink for hydrophobic drugs. The authors jetted poly(ethylene glycol) 

diacrylate (250 Da), with Eosin Y as a biocompatible photo initiator and methoxide-poly(ethylene 

glycol)-amine as a co-initiator allowing for free radical polymerisation. Naproxen was used as the API 
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and poly(ethylene glycol) (200 Da) as a plasticiser.  Controlled release was achieved by varying the 

amount of poly(ethylene glycol) and the exposure time of light to cure the ink. Freestanding tablets were 

produced, but only after the formulations had been dispensed into a preformed tablet and then removed 

(Acosta-Vélez et al., 2018). 

Thin films for oral mucosal delivery have also been printed, using similar jet dispensing technologies. 

Ethanol based solutions with three bitter-tasting APIs (cetirizine HCl, diphenylhydramine HCl and 

ibuprofen) were formulated with eudragit (Scoutaris et al., 2015). Films were measured with the use of a 

calliper and were seen to be accurate, reproducible and uniform. The drugs existed in an amorphous state 

in the polymer matrix. This resulted in a fairly rapid drug release from the printed formulations. In vivo 

taste masking tests were done with human volunteers. The films did not rapidly disintegrate in the mouth 

(due to the polymer) and no bitterness was reported by the volunteers (Scoutaris et al., 2015).  

In this paper, a model water-soluble drug, thiamine HCl, was selected. Thiamine HCl was selected 

due to its ease of availably, high water solubility, and low cost. As with the conventional tablet 

manufacturing process, the phase transformation of the drug is a possibility. Changes in drug phases can 

result in negative properties such as toxicity and bioavailability (Zhang et al., 2004). Commonly referred 

to as vitamin B1, the drug can exist as several polymorphic phases, including a non-stoichiometric 

hydrate (NSH), a hemihydrate (HH) and an anhydrate (AH). When exposed to methanol, thiamine HCl 

can also form a monomethanolate (MM) and a desolvated MM (Chakravarty and Suryanarayanan, 2010). 

In this investigation the two possible hydration states of thiamine HCl are the NSH and HH phase. The 

NSH is the starting material for manufacturing and the preferred state for tablets (Chakravarty et al., 

2009). NSH can readily transform to the HH state when in contact with water, often in high humidity 

environments. The phase change begins with moisture adsorption on the NSH crystal surface. This causes 

some of the NSH crystals to dissolve or deliquesce. Recrystallisation of the HH crystals then occur as 

they have a lower water solubility (Masuda et al., 2011). Even though the HH is exceptionally stable, it 



  

    

  

7 

 

has lower aqueous solubility (Chakravarty et al., 2010) and has poorer powder flow characteristics 

(Masuda et al., 2011).  

The aim of this investigation was to illustrate the ability to wholly inkjet print a free-standing tablet 

in a water-based formulation with solvent evaporation as the lone solidification mechanism. There is a 

common reluctance to use solvent inkjet printing as often toxic solvents may be required to formulate a 

printable ink, necessitating an additional processing step to ensure all residual solvent is removed during 

the manufacturing process. We show that it is possible to a use a non-toxic, water-based method of 

formulating a printable ink. The concern for uncured materials and high temperatures were therefore 

avoided with this method.  

2 MATERIALS AND METHODS 

2.1 MATERIALS 

Polyvinylpyrrolidone (Mw ~ 10,000) (PVP), thiamine HCl (reagent grade, > 99%), polysorbate 20 

(TWEEN20) and glycerol were used with deionised water to form the required ink formulation. All 

chemicals were purchased from Sigma Aldrich. 

2.2 INK PREPARATION 

The ink solutions were prepared by weighing components (PVP, thiamine HCl, polysorbate 20, 

glycerol and water) while being placed in glass vials. Solutions were heated (60 °C) and stirred (with a 

magnetic stirrer) until all components had been dissolved. 
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2.3 SURFACE TENSION AND CONTACT ANGLE MEASUREMENT 

A Krüss Drop Shape Analyser (DSA100) was used for surface tension and contact angle 

measurements. For surface tension measurements, 1 mL of the ink was syringed and loaded onto the DSA. 

Small volumes of the ink were dosed through the syringe and an attached needle until a stable droplet had 

formed. Just before the droplet was dispensed, a profile of the droplet was taken from which surface 

tension is computationally calculated. To measure the ink’s contact angle (θ), the substrate was raised to 

collect a drop from the syringe, minimising the effect of impact. The contact angle measurement was 

taken as soon the drop separated from the needle. Work of adhesion (WA) values were calculated using 

the Young-Dupre  Equation (Equation 2) with the contact angle and ink’s surface tension values 

(Schrader, 1995). Measurements were taken at the ambient room temperature, which at the time was 

23 °C. 

                        

2.4 VISCOSITY 

Shear viscosity was measured using a Malvern Instruments Kinexus Pro Research Rheometer. A cup 

and bob set up was used to prevent solvent evaporation during the process.  3.09 mL of ink was syringed 

into the lower geometry (the cup) and the bob was automatically lowered into the cup. Shear viscosity 

was measured at shear rates between 1 s-1 and 1000 s-1. The measurements at 100 s-1 were taken as a guide 

to the ink’s viscosity during deposition. This is a widely accepted practice for determining the viscosity of 

Newtonian inks for jetting. In reality, shear rates during the jetting process can reach 105 – 106 s-1 (Hoath, 

2016). The temperature was fixed to 28 °C. 

2.5 DENSITY 

0.5 mL of the ink was syringed into a vial on a mass balance. The ratio between mass and volume 

was used to calculate the density of the ink. 
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2.6 DESIGN OF TABLET 

Two dimensional (2D) bitmap files were created using Fujifilm Dimatix pattern editor software. A 

total of five rectangle-based patterns were printed to illustrate dose control with a single formulation (see 

Table S.1 in the ESI file for additional details). 

2.7 PRINTING 

Printing was conducted using a Fujifilm Dimatix Materials Printer DMP-2850 Series. 3 mL of ink 

was loaded into a cartridge through a 0.45 µm filter (preventing any large particles from blocking the 21 

µm nozzles (Fujifilm, 2013)). A print head (10 pL) with 16 nozzles was then attached to the printer 

cartridge. The parameters for jetting that can be controlled were the jetting voltage, waveform, frequency 

and cartridge heating. Jetting behaviour can be observed by using the system’s drop watcher feature. For 

print formation, parameters such as drop spacing, substrate heating and distance between the print head 

and substrate could be varied. As the ink formulation was water-based, the evaporation of water in the 

printing environment was the drying and solidification mechanism. 

2.8 PRINT FORMATION CHARACTERISATION 

A Nikon Eclipse LV100ND Optical Microscope was used to analyse the printed materials. 

2.9 DETERMINING DRUG THEORETICAL DOSE 

Using the Dimatix pattern editor software, the number of drops per layer for each pattern was 

calculated. With a known number of printed layers, the total number of droplets for each tablet was 

calculated.  

Using the printer’s drop watcher feature and ImageJ software, it was possible to measure the 

diameter of the individual droplets. The diameter of the nozzle of the cartridge was known and used for 

converting the pixel units to a unit of length. 
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The droplet diameter allowed the calculation of the volume. After density measurement of the ink, it 

was possible to calculate the mass of each droplet and with the composition of the ink known, the dose of 

thiamine HCl was calculated. 

2.10 VALIDATION OF DRUG CONTENT 

Elemental analysis by combustion was conducted with a LECO 628 Series 

Carbon/Hydrogen/Nitrogen determinator with a sulphur add-on module. The furnace was set at 1350 °C 

with oxygen at 40 PSI. 

2.11 POLYMORPH IDENTIFICATION 

A ThermoElectron FT-Raman NXR 9650 spectrometer was used to investigate the phase of thiamine 

HCl. Spectra were acquired using a 1064 nm laser (at a power of 0.6 mW) over the range 100-3701 cm-1. 

The spectral resolution in this configuration was 4 cm-1. 128 accumulations were used for each 

measurement. The laser spot size was 50 µm. 

2.12 DRUG DISTRIBUTION INVESTIGATION 

A Horiba Jobin Yvon LabRAM HR confocal Raman microscope with an automated xyz stage 

(Märzhäuser) was used to probe the distribution of the respective components within the tablet. Spectra 

were acquired using a 785 nm laser (at a power of 24 mW), a 100 x objective lens and a 300 µm confocal 

pinhole. To simultaneously scan a range of Raman shifts, a 600 lines mm-1 rotatable diffraction grating 

along a path length of 800 mm was employed. Spectra were acquired using a Synapse CCD detector 

(1024 pixels) thermoelectrically cooled to −60 °C. Before spectra collection, the instrument was 

calibrated using the zero-order line and a standard Si(100) reference band at 520.7 cm-1. The spectral 

resolution in this configuration was <0.8 cm-1. 
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 Single point measurements of the individual components were acquired over the range 50-4000 

cm-1, with an acquisition time of 15 seconds and 4 accumulations to automatically remove the noise 

spikes due to cosmic rays and improve the signal to noise ratio. 

Lateral spectroscopic maps of the top and bottom surfaces were obtained by collecting individual 

Raman spectra over the range 460 – 1760 cm-1 in 10 µm steps from within a square 230 x 230 µm (a total 

of 576 spectra). Each spectrum was collected for 20 seconds, repeated once, thus each map required 

approximately 16 hours of acquisition time. The DuoScan functionality was employed to confer a spatial 

resolution of ~10 µm in all dimensions. An analogous spectroscopic line map of the cross section was 

obtained in 1 µm steps (a total of 968 spectra) using the AutoFocus function to correct for the uneven 

surface topography. The spatial location of the individual components of the formulation were evaluated 

within the respective data sets using Classic Least Squares (CLS) regression analysis within Labspec 

6.4.3 software. 

2.13 DRUG RELEASE STUDIES 

A Copley dissolution tester (DIS 8000) was used for dissolution studies. For thiamine HCl, 500 mL 

volume of deionised water was used (specified in U.S Pharmacopeia (USP) (U.S. Pharmacopeia, 2018)). 

Media were heated to 37 °C using a water bath and paddles used for stirring (50 rpm). Samples were 

placed in media and at pre-determined time intervals a 1.5 mL aliquot was extracted and replaced by fresh 

solution. The extracted aliquots were filtered (0.45 µm) and then analysed with UV-Vis 

spectrophotometry (Varian Cary 50 UV-Vis Spectrophotometer). Solutions were syringed into a quartz 

cuvette and scanned. The absorbance at 266 nm was used to quantify the drug amount.  

Calibration standards were also prepared by dissolving thiamine HCl in deionised water and 

preparing serial dilutions. Standard solutions were analysed using UV-Vis spectrophotometry and a 

calibration line was plotted based on the absorbance detected at 266 nm. The intensity of the diagnostic 
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peak for thiamine HCl at 266 nm was used to calculate the amount of drug released through the 

application of the Beer-Lambert law. 

3 RESULTS AND DISCUSSION 

3.1 INK DEVELOPMENT 

With the two main components of the formulation (PVP and thiamine HCl) being water soluble, 

water could be readily used as the solvent.  As water has a high surface tension, the surfactant polysorbate 

20 was added to the formulation to reduce the surface tension of the ink to 37.05 mNm-1 (originally 

measured at 65.55 mNm-1) and hence improve printability. Furthermore, glycerol was added as a 

plasticiser to avoid cracking during drying and to allow easy handling of the tablet. Without the addition 

of the plasticiser, the printed tablets were brittle and susceptible to fracture during both the printing 

process and subsequent substrate removal. The final ink composition consisted of PVP (14 wt%), 

thiamine HCl (10 wt%), polysorbate 20 (1 wt%), glycerol (1 wt%) and deionised water (74 wt%). Table 1 

displays the ink’s surface tension, viscosity, density, the printer’s nozzles diameter. The Z value of the ink 

was calculated to be 5.0, which is well within the printable range. Additional rheological data can be 

found in Figure S.1 in the ESI file. 

3.2 SELECTION OF PRINTING PARAMETERS 

3.2.1 Jetting of ink 

Standard jetting parameters were used for printing the ink. This included a jetting voltage and 

frequency of 16 V and 5 kHz respectively. A waveform for model fluids (see Figure S.2 in ESI file) for 

the printer was also used. The cartridge and substrate temperature were kept at 28 °C, to illustrate the 
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ability to print drug containing formulations at lower temperatures. The resultant jetting had stable and 

reliable droplet formation (see Figure S.3 in ESI file).  

3.2.2 Substrate selection 

The choice of substrate was an important manufacturing decision. An ink must adhere well to the 

substrate during the printing process as well as being easily removable once printing is completed. A 5x5 

mm square was printed (100 layers) on both glass slides and polyethylene terephthalate (PET) films. The 

tablets on glass were extremely difficult to remove and often resulted in the fracture of the tablet form. 

Conversely, the removal of tablets from the PET film were possible with no observable damage. This was 

achieved by bending the PET film causing the tablets to ‘pop off’. This difference in behaviour was 

attributed to the contact angle and in turn its work of adhesion of the ink on the substrates. On the glass 

slide, the contact angle and work of adhesion was 29.1 ± 2.6 ° and 69.4 ± 0.8 mN·m-1 (n = 5) respectively. 

On PET film contact angle increased to 53.4 ± 1.8 ° and work of adhesion decreased to 59.1 ± 0.9 mN·m-1 

(n = 5). A smaller contact angle (caused by more ink spreading and in turn a larger work of adhesion) 

meant more force was required to remove the ink from the substrate. 

3.2.3 Printing parameters 

Substrate temperature was maintained at 28 °C. Initially, individual droplets were jetted on the PET 

substrate. As Figure 1 shows, the printed drops were well-defined with a mean diameter of 30 ± 2 µm (n 

= 9). Common problems associated with solvent inkjet printing such as the coffee-ring effect and build-up 

of solid material on edges on of the drop were not observed. 

Following this, line and film formation were investigated with different drop spacings. As noted in 

Figure 2, using a 40 µm drop spacing it was not possible to form both uniform lines and films - as the 

distance between droplets was significantly larger than their diameter. With 20 and 30 µm drop spacings, 

complete lines were formed, but some bulging was observed, more so with 20 µm drop spacing. The film 
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formation for 20 µm drop spacing showed a complete film with no gaps, in contrast to the 30 µm drop 

spacing film, which exhibited patchier coverage. It was decided to use the 20 µm drop spacing for the 

printing of tablets based on this ability to produce a uniform two-dimensional film.  

Two occurrences of phase separation in the printed films were observed during the printing and 

drying process. The first process could be seen as time progresses after the printed films have dried. This 

process was seen as crystal growth, which we attribute to thiamine HCl, being the only crystalline 

component in the formulation. Figure 3 shows a single layer of the formulation printed on a glass slide. 

The optical images in reflection clearly show that crystals nucleate with time, ultimately forming a 

suspension of thiamine HCl crystals in PVP, confirmed in the cross-polarised images in transmission. 

The second occurrence of phase separation was observed as additional layers were printed. Initially, 

films were uniformly clear, but as more material was added white grains were seen to form, shown in 

Figure 4. As more layers were printed, the white grains grew, eventually leading to a uniformly white 

tablet, as seen in Figure 5. The most likely explanation for this is a solvent mediated recrystallisation 

process (Cardew and Davey, 1985). The addition of a solvent (in this case, water from the ink), dissolves 

the previously printed drug, increasing the total concentration of drug available in the liquid phase, 

resulting in the nucleation and growth of larger crystals. 

The time to manufacture printed tablets was heavily controlled by the evaporation time of water and 

the number of tablets being printed. When a single row of ten tablets (5 x 5 mm square design) was 

printed (one minute was required for one layer to be printed), it was determined at least one minute was 

required for complete evaporation of water (based on visual observations). Any less time resulted in 

spreading of ink and loss of shape of the tablets. An inter-layer delay of one minute was hence required 

when printing tablets. When producing ten tablets with a 5 mg dose (250 layers) (see Table S.1 in ESI 

file) it would take 500 minutes including the delay.  In contrast to more conventional manufacturing 

methods of tablets, where an output of 500,000 tablets per hour can be achieved (Gerhardt, 2010), the 
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inkjet process used here is very slow. Inkjet printing would therefore seem to be more suited to produce 

personalised, patient-specific tablets where such large outputs are not required. It should be noted that 

printers do exist where a greater number of nozzles are available for use, illustrating potential for scaling 

up and speeding up the inkjet process.. For example, Kyobula et al., 2017 used a PIXDRO LP-50 printer 

where 128 nozzles were available (Kyobula et al., 2017). A proof-of-concept continuous printing system 

has also been developed for the inkjet printing of orodispersible films using PIXDRO JS 20 jetting station 

(128 nozzles) (Thabet et al., 2018). 

The optimisation of inkjet printing for tablet manufacturing would be very advantageous to 

investigate. This would include ways of optimising the large print times as well as making efficient use of 

the space available on the print bed. For example, printing a row of tablets with an inter-layer delay would 

be less efficient than printing two rows of tablets, which would allow for a greater number of samples 

produced with the same time. The speed of tablet manufacturing with inkjet printing can be controlled by 

a range of printing settings including jetting frequency, number of nozzles used, drop spacing, size of the 

pattern, orientation of pattern, spacing between patterns and number of pattern repeats (x and y direction 

on the print bed). Substrate heating could also influence printing time by changing the rate at which 

solvent would evaporate. In addition to this, a wide array of different designs can be printed at the same 

time highlighting inkjet printing as a method of producing tablets with different doses in a single printing 

process. Increasing the number of printers used in the manufacturing process could potentially increase 

output and speed of printing tablets.  

3.3 DRUG CONTENT INVESTIGATION 

As thiamine HCl is the only sulphur containing component of the formulation, this element was used 

to quantify the content of thiamine HCl in the tablets (based on mass %). The mean sulphur content from 

thiamine HCl powder and a printed tablet was, 10.11 ± 0.10 % and 4.03 ± 0.06 % (n = 3) respectively. 
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Using the values measured, it was determined that the thiamine HCl content in the tablet was 39.8% (i.e. 

4.03 / 10.11). This value is close to the expected value of 38.4% thiamine HCl content calculated from the 

composition of the solid components of the formulation of the ink and thus the jetted material 

corresponded reliably to the formulated ink composition. 

3.4 POLYMORPH INVESTIGATION 

Raman spectroscopy was definitive in identifying the phase of thiamine HCl. For NSH, a single peak 

associated with a C=C stretching vibration from the aromatic group of the drug is seen at 1607 cm-1 

(Mazurek and Szostak, 2012), whereas for HH, two closely spaced peaks at 1594 and 1614 cm-1 are 

observed. An additional peak at 1332 cm-1 is also noted in the Raman spectrum of the HH form (Mazurek 

and Szostak, 2012). As can be clearly seen from Figure 6, the tablet – like the parent powder – was found 

to exist in the NSH polymorphic phase based on the spectra collected from random points on both its the 

top and bottom faces. Similarly, the Raman spectra of a single tablet placed overnight in a vacuum oven 

to remove all moisture, broken and subsequently ground to a powder, was also consistent with the NSH 

phase, suggesting that the NSH phase of thiamine HCl is ubiquitous within the bulk tablet. Thiamine HCl 

tablets produced by conventional means are known to undergo a phase change over time (Chakravarty et 

al., 2012). Therefore, to confirm the time-dependent stability of thiamine HCl in both the tablet and parent 

ink, analysis of (i) tablets printed and kept in an ambient environment for two months and (ii) tablets 

printed with an ink kept in an ambient environment for one month was conducted, respectively. Critically, 

no differences in the Raman spectra were observed relative to those obtained from fresh formulations, 

suggesting that thiamine HCl remains in the NSH phase in a stable manner at least over these time frames. 

Thiamine HCl powder that was exposed to the ambient environment for a prolonged time did undergo a 

phase change to the HH phase (as expected) with the peak at 1332 cm-1 clearly forming, as well as peaks 

at 1594 and 1614 cm-1, shown in Figure 6. 
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3.5 DRUG SPATIAL DISTRIBUTION 

To probe the distribution of thiamine HCl, PVP, polysorbate 20 and glycerol within the printed 

formulation, the top and bottom surfaces were analysed by confocal Raman microscopy (Figure 7; S.6 

and S.7 in the ESI file). For each surface, the homogeneity of thiamine HCl incorporation was the 

corresponding false colour images constructed using classic least squares (CLS) regression analysis. In 

this intuitive approach, each spectrum of the dataset is expressed as the linear combination of the pure 

component spectra, with the resultant scores calculated via least square regression in such a way that the 

residuals are minimised, normalised and then plotted to generate the map. Importantly, both top and 

bottom surface maps show a relatively uniform distribution of thiamine HCl within the appraised areas, 

with subtle variation in the top surface map associated with a greater extent of surface roughness. 

However, the high homogeneity of thiamine HCl loading observed for both surfaces were exemplified by 

near-identical mean values and low standard deviation of thiamine HCl CLS scores obtained from the 

maps: 55.5 ± 6.1 % (11 %, N= 576) and 55.3 ± 4.3 % (8 %, N = 576) from the top and bottom surfaces, 

respectively. To further explore the distribution of thiamine HCl within the tablet, the tablet was cut with 

a scalpel and the cross-section analysed by Raman spectroscopic mapping (Figure S.8 in the ESI file). A 

mean thiamine HCl CLS score of 54.5 ± 10.8 % (20 %, N = 968) was obtained, providing further 

evidence for the homogeneous distribution of the drug within the total formulation. No peaks indicative of 

the HH phase were observed in any of the map spectra (Figure 8), supporting the data obtained from 

single point measurements from the bulk samples (Figure 6).  

3.6 DRUG RELEASE BEHAVIOUR 

The theoretical dose of tablets was calculated using the number of drops jetted per layer and per 

tablet (see Table S.1 in ESI). Using this data and ImageJ data where the in-flight droplet diameter was 

calculated to be 22 ± 1 µm (n = 4), the theoretical dose for each tablet was determined.  
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From Figures 9 and 10, all batches of tablets showed a rapid drug release with all reaching 90% 

within 7 minutes. On varying the number of printed layers, no clear trend can be seen with respect to the 

time required for complete dissolution highlighting the rapid dissolution of the formulation. With samples 

that have varied pattern dimensions, a subtle trend can be seen possibly due to differences in the amount 

of material required to print these samples being greater. However, the error bars (standard deviation 

associated with repeat measurements) are large and thus definitive conclusions cannot be drawn, except 

that the amount of drug released varied rapidly compared to the time-frame of the measurements taken.  

There is a small apparent discrepancy between the theoretical and measured dose for tested samples 

(± 5 – 10 %). However, the USP for thiamine HCl tablets allows drug release to be between 90 – 110 % 

of the theoretical dose, hence all results reported here are acceptable (U.S. Pharmacopeia, 2018). The 

differences between the theoretical and measured dose could be caused by a number of reasons. These 

include errors made in the printing process (e.g. blocked nozzles), incorrect assumptions associated with 

the printing process (e.g. all droplets are spherical) or due to the lack of accuracy of the drop watcher 

camera. There is however good correlation between the measured doses and the sample details (e.g. 

halving the pattern size or number of layers leads to halving of the dose, see Table S.1 in ESI file), 

suggesting good consistency of the printing process. 

4 CONCLUSIONS  

Solvent inkjet printing has been used to 3D print free-standing tablets from a water based 

formulation. Using water-soluble PVP based-ink and thiamine HCl as a model API, a printable ink was 

developed using polysorbate 20 and glycerol as additives. Appropriate surface tension and viscosity 

values were measured and optimum print parameters were investigated. Through the initial printing of up 

to 10 layers, it was observed that two phase separation processes occur: one as a function of time and the 

other related to the number of layers printed. Optical microscopy imaging show the thiamine HCl crystals 
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exist as a suspension in PVP. Combustion analysis confirmed the successful translation of the 

composition of the ink into the printed tablet, which contained thiamine HCl in the ideal NSH 

polymorphic form distributed uniformly throughout the formulation. Given the high solubility of the API 

and polymer excipient, drug release was rapid to such an extent that it was not possible to control it by 

varying the 2D pattern and number of layers. However, this process used no toxic materials, did not need 

extreme conditions (e.g. high temperatures), nor used secondary printing methods to produce a wholly 

inkjet printed tablet, without incorporating an edible substrate that would require cutting and 

encapsulation. The ink formulated in this investigation can potentially be used as a ‘universal’ 

pharmaceutical formulation for any water soluble API. Investigation of the tablet’s mechanical properties 

(such as hardness and friability) should be conducted to better characterise the handling and physical 

integrity of the tablets. 
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Table 1 - Ink and printer properties for the rapid release formulation. 

Figure 1 – 100 x optical microscope image of ink droplet printed on PET film (scale bar: 10 µm). Inset: 

20 x magnification of drops on PET (scale bar: 100 µm). 

Figure. 2 – Single line (top) and films (bottom) printed with one nozzle with varying drop spacing. 

Numbers indicate drop spacing. Scale bar = 500 µm. 

Figure 3 – Optical reflection images of printed films on glass slide. a) 30 minutes after printing, b) 1 day, 

c) 4 days, d) 8 days, e) 12 days, f) 12 days after orienting confirm the formation of a crystalline phase 

(cross polarised transmission OM). Scale bar = 500 µm. 

Figure 4 – Printed films with layers 8, 9 and 10 (top to bottom). Scale bar = 10 mm. 

Figure 5 – Completed printed tablets. Scale bar = 1 cm 

Figure 6 – Raman spectra of the thiamine HCl powder and different printed samples all showing peak 

positions indicative of the NSH phase. Also shown in the drug powder exposed to the ambient 

environment with features of the HH phase. 

Figure 7 – Optical image (a) and CLS score map for thiamine HCl (b) from the top surface. Optical image 

(c) and CLS score map for thiamine HCl (d) from the bottom surface. It is important to note that as 

Raman spectra are known to be sensitive to nonlinearity, temperature effects and wavelength shifts, the 

determined scores from CLS fitting do not represent absolute component concentrations, i.e. are not 

expected to match those based on the composition of the ink. Thus the analysis is semi-quantitative, used 

to describe the relative contribution from the respective components as a function of spatial location. 

Figure 8 – Mean spectra generated from the top and bottom surface lateral maps and the cross-section line 

measurement. 

Figure 9 – Release profiles of tablets with varying printed layers. The printed pattern's dimensions were 

set at 5 x 5 mm (n=3 except for 375L where n=2). 

Figure 10 – Release profiles of tablets with varying pattern dimensions. The number of layers for each 

print were kept at 250 layers (n=3). 
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Surface tension (mN·m
-1

) 37.05 ± 0.67  

Viscosity (mPa·s) 6.100 ± 0.074 

Density (gmL
-1

) 1.2 ± 0.001 

Nozzle diameter (µm) 21 

Z factor 5.0 

 

 


