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Introduction 
To maintain vision and compensate for the inter-

saccadic drift between large eye movements, humans con-
tinuously make small (miniature) eye movements includ-
ing tremor, drift, and microsaccades (Cornsweet, 1956; 
Ditchburn et al., 1959; Nachmias, 1961). These move-
ments occur even when we try to fixate on a point in the 
world. Low-frequency oscillations of the eyes, unsteadi-
ness of the oculomotor system or attempts to maintain vis-
ual perception might result in the production of these 
movements (Ditchburn & Ginsborg, 1953; Riggs et al., 
1953). Among these small eye movements, microsaccades 
have been an area of interest in the community because of 

their vital importance in restoring perception and main-
taining vision (Carpenter, 1988; Costela et al., 2013; Mar-
tinez-Conde et al., 2006; McCamy et al., 2012; Troncoso 
et al., 2008), medical diagnosis (Chen et al., 2010; Otero-
Millan et al., 2011; Serra et al., 2008) and their ability to 
indicate attentional shifts (Engbert & Kliegl, 2003; Hafed 
& Clark, 2002 ; Laubrock et al., 2005). 

Microsaccades are the small, jerk-like motions (Mar-
tinez-Conde et al., 2004) which are generally found to co-
occur in two eyes (Ditchburn & Ginsborg, 1953; Lord, 
1951; Møller et al., 2002; Yarbus, 1967, p. 109). While the 
term ‘microsaccade’ is sometimes used only for involun-
tary eye movements that occur during fixation (e.g., Mar-
tinez-Conde et al., 2004), we adopt the less restrictive def-
inition of a microsaccade as any rapid eye movement with 
an amplitude below 0.5 degrees of visual angle. Microsac-
cades and saccades follow the same main sequence (Bahill 
et al., 1975) and have a common generator (Zuber et al., 
1965). Following previous work (e.g., Engbert & Kliegl, 
2003; Ko, et al., 2010; Otero-Millan et al., 2008; Troncoso 
et al., 2008), we regard both voluntary and involuntary sac-
cades below 0.5° as microsaccades.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
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The inability of current video-based eye trackers to reliably detect very small eye move-
ments has led to confusion about the prevalence or even the existence of monocular mi-
crosaccades (small, rapid eye movements that occur in only one eye at a time). As current 
methods often rely on precisely localizing the pupil and/or corneal reflection on successive 
frames, current microsaccade-detection algorithms often suffer from signal artifacts and a 
low signal-to-noise ratio. We describe a new video-based eye tracking methodology which 
can reliably detect small eye movements over 0.2 degrees (12 arcmins) with very high con-
fidence. Our method tracks the motion of iris features to estimate velocity rather than posi-
tion, yielding a better record of microsaccades. We provide a more robust, detailed record 
of miniature eye movements by relying on more stable, higher-order features (such as local 
features of iris texture) instead of lower-order features (such as pupil center and corneal 
reflection), which are sensitive to noise and drift. 
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Currently, there is disagreement in the literature about 
the presence of monocular microsaccades during everyday 
vision. Gautier et al. (2016) has argued that the practical 
role of monocular microsaccades may be to aid vergence 
and make accurate corrections of eye position. However, 
recent publications (Fang et al., 2018; Nyström et al., 
2017) have questioned the existence of such eye move-
ments and raised concerns about previously published re-
sults, suggesting that the majority of monocular microsac-
cades may be measurement artifacts. 

One of the limitations of the current generation of 
video-based eye trackers is their inability to precisely de-
tect microsaccades because the size of those eye move-
ments is similar to the noise level of the trackers which rely 
on precisely localizing the pupil and/or corneal reflection 
(CR) on successive frames. Moreover, some of these meth-
ods use only pupil information to acquire a higher sam-
pling rate, but in these methods, relative motion between 
the head and camera are not taken into account (Hermens, 
2015), which can increase the false detection of microsac-
cades. Fang et al. (2018) and Nyström et al.  (2017) ana-
lyzed many small eye movements that were classified as 
monocular microsaccades by such algorithms and sug-
gested that most of those events were binocular events or 
noise. Fang et al. (2018) adjusted the threshold parameter 
to classify them correctly as binocular microsaccades 
whereas Nyström et al. (2017) used manual inspection for 
verification.  

New algorithms that take advantage of modern high-
resolution cameras and recent advances in computer vision 
can overcome some of these issues. High-resolution cam-
eras make it possible to extract fine local features such as 
iris textures. Using populations of such features in place of 

large, single features such as the pupil allows for a higher 
degree of confidence in microsaccade detection. Addition-
ally, tracking the motion of those features across consecu-
tive frames allows for the study of motion distributions, 
simplifying the analysis of small eye movements. We 
demonstrate that microsaccades less than 0.20 degrees of 
visual angle can be reliably detected with these techniques 
and a new velocity tracking algorithm. The method is val-
idated with two types of experimental tasks; reading char-
acters on a test target and watching videos. 

 

Methods 
Eye movements are monitored by extracting the mo-

tion vectors of multiple iris features. A high frame-rate, 
high-resolution camera is used to capture a video of an ob-
server’s face containing the eyes and surrounding regions. 
A trained convolutional network (CNN) (LeCun et al., 
1998) is used to segment the iris from each frame to extract 
features only from the region of interest. To ensure high-
quality motion signals, Speeded Up Robust Features 
(SURF) feature descriptors (Bay et al., 2006) are used to 
extract feature vectors which are then matched in consec-
utive frames using brute force matching followed by ran-
dom sample consensus (RANSAC) (Fischler & Bolles, 
1981) and homography (Hartley & Zisserman, 2004).  
Tracking the geometric median of these matched key-
points excludes outliers, and the velocity is approximated 
by scaling by the sampling rate (Pelz & Witzner Hansen, 
2017). Microsaccades are then identified by thresholding 
the velocity estimate. For head motion compensation 
across each frame, a hybrid cascaded similarity transfor-
mation model is introduced using tracking and matching 

Figure 1: Block diagram of the overall system. 
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of features of rectangular patches in regions of the ob-
server’s cheek. The overall system block diagram is shown 
in Figure 1. 

Iris Segmentation 
The region of each frame containing the iris must be 

isolated from the rest of the frame before velocity estima-
tion can begin. A number of approaches have been used 
for iris segmentation including ellipse fitting, geodesic ac-
tive contours (Shah & Ross, 2009), Hough circle fitting, 
edge detection, integrodifferential operators (Daugman, 
1993), graph cuts (Pundlik et al., 2008), and Zernike mo-
ments (Tan & Kumar, 2011). All of these methods require 
tuning for good results and fail to generalize across observ-
ers with different iris and skin pigmentation. A trained 
CNN makes it is possible to generate a more robust solu-
tion across observers. 

Network Architecture. A U-Net based architecture 
(Ronneberger et al., 2015) allows for segmentation of the 
eye region with a moderate training set. The model com-
bines the localization and context information using con-
tracting and expanding paths. The contracting path con-
sists of sequences of two blocks of a 3x3 convolution layer 
followed by a rectified linear unit (ReLU) as non-linear 
transformation with batch normalization, then a 2x2 max-
pooling operation. The expanding path follows sequences 
of upsampling with a scale factor of two and then concat-
enating with its subsequent feature map from a skip-con-
nected layer. This upsampling block is followed by two 

blocks of 3x3 convolution layers and later by activation of 
ReLU with batch normalization. The model achieves good 
performance and is best suited for biomedical applications 
with limited data (Ronneberger et al., 2015). Figure 2 
shows the segmentation model. 

Data labelling. Instead of training on the full-resolu-
tion (1920x1080) video, each frame was partitioned into 
three regions: left and right eye (960x540 each) and the 
lower part of the face (960x1080). Binary labels of iris and 
non-iris regions were generated for training the model by 
manually clicking six – ten points on the border of the iris 
on each image as shown in Figure 3, and an ellipse was fit 
to those points with a least square ellipse fitting method 
(Bookstein, 1979). Since the generated ellipse often over-
lapped portions of the eyelids, points were also selected 
along the border with the upper and lower eyelids and used 
to fit second-degree polynomials to produce the final 
ground-truth iris regions. The training set contained a total 
of 406 images from video frames of four observers. The 
training set was augmented by flipping each image hori-
zontally, producing a total of 812 images. The testing set 
consisted of 260 images of correlated data (training and 
test set from the same observers) and 126 images of uncor-
related data.  

Training procedure. Training images were re-sized to 
224x224. The R, G, and B channels were used as input to 
the model for the desired two (iris and non-iris) output 
classes. The Adam Optimizer (Kingma & Ba, 2014) was 
applied for regularization with a learning rate of 0.0001 

Figure 2: Segmentation model based on U-Net architecture after (Ronneberger et al., 2015). 
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with an exponential decay rate for the first moment esti-
mate of 0.55, and an exponential decay rate for the second 
moment estimate of 0.99. The models were run in Pytorch 
(Paszke et al., 2017) on an Ubuntu 16.04 LTS platform on 
a Nvidia Titan 1080 Ti. The training was done with a batch 
size of eight samples (limited by GPU memory), and the 
model was run for 40 epochs.  

Performance Metrics. Pixel-wise cross entropy of 
class probabilities was used during training as a loss func-
tion. The accuracy of iris detection was measured with the 
Intersection over Union (IoU) metric. The IoU metric var-
ies from 0 – 1 and is defined as the ratio of the intersection 
of the ground-truth and predicted regions to the union of 
those regions (Everingham et al., 2005). Perfect agreement 
between ground-truth and prediction yields 1; no overlap 
yields 0.  

If P is the predicted label and G is the ground truth, IoU 
is computed as shown in Figure 4. 

Head-motion compensation 
Even when an observer’s head is stabilized by a chin 

rest, head movements on the scale of small eye movements 
still occur, so it is crucial to compensate for this motion 
when detecting microsaccades. Complex solutions using 
3D head models or external hardware trackers could be 
used, but in this work, we propose an image-based method 

that compensates with a simple planar image transfor-
mation based on regions detected on the face.  

The human face is non-planar and deformable. The 
eyes are not necessarily in the same plane as the nose, 
cheek or forehead, making planar transformation models 
like homography (8 degrees of freedom (DOF)), affine (6 
DOF) or similarity (4 DOF) transforms imperfect approx-
imations. Here, we make the simplifying assumption that 
the regions selected in Figure 5 fall approximately in the 
same plane as that of the two irises being tracked. Rela-
tively planar regions that do not move with normal eye 
movements were manually selected for each subject. 

Head movements were compensated by automatically 
aligning each frame of a video to the initial frame of that 
video. Computing the homography transformation be-
tween frames based on good feature matches across adja-
cent frames allows a sequence of frames to be aligned. A 
list of good matches between pairs of adjacent frames was 
determined with Lowe's ratio test (Lowe, 2001) followed 
by outlier removal with RANSAC for matched features be-
tween consecutive frames. The matched features were 
found by extracting the local features in the selected re-
gions using SURF and then by using the brute-force 
matcher where the descriptor of each feature in the nth 
frame was matched with descriptors of all features in the 
(n+1)th frame using the L2 distance norm. 

Figure 3:  Procedure used for labelling the train and test sets. 

Figure 5: Indication of regions (light patches) on face tracked 
along with iris regions for head-motion compensation. 

Figure 4: IoU is computed as the ratio of intersection over union. The over-
lapping regions and non-overlapping regions are indicated by red and gray 
colors respectively. 
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     Motion compensation can be accomplished for an en-
tire video by aligning each frame in this way to the initial 
reference frame by cascading the homography transfor-
mations as proposed by Dutta et al. (2014). We found, 
however, that this approach aggregated skew and perspec-
tive errors across frames because the points on which com-
putation of the homography matrix was based were not 
consistent within each region. Because there tended to be 
more texture in the regions of the lower cheek than near 
the eyes even though they were in approximately the same 
plane, more of the features used for tracking were from the 
cheek regions. Constraining the feature path to a rectangle 
as in Grundmann et al. (2011) decreased errors but did not 
provide an acceptable solution. 

Instead, we selected features in rectangular regions as 
seen in Figure 6, then computed good matches between 
consecutive frames for each of the regions. Computation 
of the geometric median of those matches provided an es-
timate of the best value of the distribution of the rectangu-
lar patch in the source and destination images. Using one 
point from each of the four regions we computed the trans-
formation between image pairs. The homography transfor-
mation is the least-constrained plane-to-plane mapping, 
with eight degrees of freedom (DOF) which can be de-
scribed as allowing translation (2 DOF), scaling (2 DOF), 
rotation (2 DOF), and keystoning (magnification varying 
by position; 2 DOF). Other transformations are more con-
strained. The affine transform, for example, allows only 
six degrees of freedom which can be described as transla-
tion (2 DOF), scaling (2 DOF), rotation (1 DOF), and 
shearing (translation varying by position; 1 DOF). The 
similarity transformation has only four degrees of free-
dom, allowing only translation (2 DOF), uniform scaling 
(1 DOF), and rotation (1 DOF). As shown by Grundmann 
et al. (2011), the extra degrees of freedom of the homog-
raphy and affine transformations can result in larger errors 

than the more constrained similarity transformation, but 
we found that skew errors still grew over time even with 
the similarity transform.  

Dutta et al. (2014) identified breaks in a video se-
quence when the video starts panning or scale changes be-
come substantial. Information from prior frames is not 
considered after a break and a new reference frame is in-
troduced. Grundmann et al. (2011) proposed a different ap-
proach in which all the keyframes are matched, and trans-
formation between the keyframes is initially computed. 
Then, a similarity transformation is found from the starting 
keyframe to each subsequent frame until the next 
keyframe. A small jitter is observed when moving from the 
final intermediate frame to the next aligned keyframe, so 
there is a tradeoff in the frequency of re-aligning with a 
new keyframe; more frequent realignment minimizes the 
size of the jitter but increases its frequency.  

We elected to realign to a new keyframe once every 
480 frames (5 s). Less frequent realignment increased the 
aggregated skew and perspective errors, and more frequent 
realignment increased the frequency of the jitter. The over-
all model is shown in Figure 7. 

Velocity approximation 
After the segmentation of irises in the stabilized video, 

the next crucial step is to extract the iris features. These 
features were extracted in a Contrast Limited Adaptive 
Histogram equalized grayscale representation of the image 
(Pizer et al., 1987) as this resulted in a larger number of 
good matches across different observers than did any sin-
gle-color channel. From the extracted features across con-
secutive frames, good matches were found using brute-
force matching followed by Lowe's ratio distance test and 

Figure 6: Regions (light patches) on four observers faces used for head-
motion compensation. 

Figure 7: Model used for head motion compensation. 
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outlier removal by RANSAC. The motion of the iris be-
tween adjacent video frames was represented as a motion 
vector.  

These motion vectors can be used to compute horizon-
tal, vertical and torsional eye movements. A number of re-
searchers have used iris features to measure torsional eye 
movements (Groen et al., 1996; Lee et al., 2007; Ong & 
Haslwanter, 2010). Ong & Haslwanter (2010) transformed 
the image of the iris into polar coordinates about the pupil 
center so that torsion could be tracked as translation along 
the angular axis. 

Because we are concerned with microsaccades in this 
work, we ignored torsional movements and computed the 
geometric median of the shift of all matched keypoint pairs 
between frames. The relative velocity of each eye was cal-
culated independently as the product of the scaled motion 
vector and the sampling rate, and integrating those values 
gave a relative position signal for each eye. Calibration 
was performed by simple linear regression of the relative 
position signal and the known gaze position during cali-
bration. Position cannot be estimated during blinks, so the 
data reported here include only trials completed without 
blinks during the calibration routine. 

The raw signal was filtered using 1D total variation de-
noising (TVD) (Condat, 2013) which minimizes the vari-
ation as a least squares problem. Instead of computing an 
estimate on a local neighborhood, TVD uses the entire rec-
ord to estimate a global optimum (Pekkanen & Lappi, 
2017) to minimize undesired spurious noise while preserv-
ing the saccadic ‘edges.’ TVD is preferable to smoothing 
algorithms because our goal was to model the sensor noise 
rather than eye position noise using the overall signal. The 
key parameter in the TVD filter is a regularization param-
eter which was set to 0.1 for all observers. After denoising, 

cyclopean gaze velocity was computed from the right and 
left eye velocities. 

 

Microsaccade detection 
A number of methods have been proposed for mi-

crosaccade detection (Bellet et al., 2018; Engbert & Kliegl, 
2003; Herrington et al., 2009; Otero-Millan et al., 2014). 
Almost all of the algorithms have a tunable parameter that 
affects algorithm performance. We implemented an adap-
tive version of the Velocity-Threshold Identification algo-
rithm (I-VT) (Salvucci & Goldberg, 2000). Here, mi-
crosaccades were detected by thresholding the generated 
absolute cyclopean velocity signal. Determining the veloc-
ity thresholding parameter is an essential step in categoriz-
ing events, as a high threshold would increase the miss 
rate, and a low threshold would increase false alarms. A 
fixed threshold did not work well for all observers because 
of individual variations, noise in the system due to prevail-
ing signal artifacts and small, uncompensated head move-
ments.  

To automatically adapt to individual observers, we im-
plemented an adaptive-threshold method based on a 
Gaussian mixture model (GMM) with two velocity distri-
butions representing noise and microsaccades. To elimi-
nate larger saccades, only absolute velocities below 20 
deg/sec were passed to the model. A thresholding parame-
ter based on estimated mean and standard deviation using 
99.7% of each distribution was used. Based on observa-
tions of the noise floor, a lower bound of 3.84 deg/sec was 
selected to minimize false alarms. Figure 8 shows the 
block diagram from the iris feature extraction to microsac-
cade detection.  

 

Figure 8: Block diagram of iris feature extraction to microsaccades detection. 



Journal of Eye Movement Research Chaudhary, A.K. & Pelz, J. B. (2019) 
12(6):4 Motion tracking of iris features to detect small eye movements 

  7 

Experimental Setup 

Binocular eye movements were recorded using a Pana-
sonic Lumix DMC-GH4 mirrorless digital camera modi-
fied by removing the IR-rejection filter. Video recordings 
of the eyes and the region surrounding the eyes were rec-
orded at a frame rate of 96 frames per second (fps). Head 
movements were restricted with a UHCOTech HeadSpot 
chin and forehead rest.  Filtered tungsten and LED infrared 
light sources were used to illuminate the eyes and the re-
gion surrounding the eyes as shown in Figure 9. Subjects 
were asked to sit comfortably to minimize head move-
ments. Trials were repeated until calibration was com-
pleted without blinks. 

Apparatus. The Lumix DMC-GH4 was set to ISO 
400, and F/8. The camera was placed at a distance of 50 
cm from the observer, and the center of the lens was posi-
tioned 4.5 cm below the eyes at an angle of approximately 
4 degrees with the horizontal axis (the frame was not cen-
tered on the eyes). A focal length of approximately 70 mm 
was used to capture an appropriate region including the 
eyes and surrounding areas.  

Light Source. The experiments were conducted in a 
lab with indirect fluorescent illumination. A tungsten-hal-
ogen source with a bifurcated fiber-optic light guide was 
filtered with a near-infrared high-pass (750nm) filter. As 
seen in Figure 9, the light guides were placed at an angle 
~25-30 degrees above the horizontal, separated by 88mm. 
The sources provided an irradiance of 0.020 – 0.037 
W/cm2 at the iris. Each side of the observers’ cheek regions 
was illuminated with twelve 940 nm infrared emitting di-
odes (IREDs) (Vishay VSLY5940) adjusted to match the 
exposure of the iris. The IREDs were arranged in parallel 

lines, separated by 7 mm, and placed to the side of the ob-
server so that the topmost IREDs were approximately 5 cm 
below the eyes. 

Subjects 
Eye movements of seven participants (5 males, 2 fe-

males) with normal or corrected-to-normal vision were 
recorded. Participants with light and dark irises and with 
and without prescription glasses were selected. Subjects 
were undergraduate and graduate students with a mean age 
of 25 years (s=3).  The experiment was conducted with the 
approval of the Institutional Review Board and with the 
informed consent of all participants. 

Tasks 
Each observer performed three tasks, each preceded by 

a task-specific 9-point calibration routine.  

Snellen microsaccade task 
Microsaccades can be evoked when observers read 

small, isolated characters, as in the Snellen eye chart 
(Shelchkova et al., 2018). Calibration points and a ‘pocket’ 
Snellen chart (7², x 4², designed for use at 14²) were 
placed at a distance of 150 cm from the observer 3 cm 
above the center of the subject's eyes. The field of view of 
the calibration target was 8.7° x 6.9°. The subjects were 
asked to fixate each point in the calibration target, then 
look at each character on a line of the Snellen chart at a 
distance of 150 cm. Each character subtended a vertical 
angle of approximately 5 arcminutes (equivalent to a 
‘20/20’ character at that distance). The subtended horizon-
tal angle between eight characters in the chart was approx-
imately 0.15 degrees; two others were 0.28 and 0.32 de-
grees. The small eye movements evoked as observers 
looked at the characters on the Snellen eye chart which 
were used to verify the detection of microsaccades using 
our algorithm. 

Video Stimuli 
To examine the detection of microsaccades while 

viewing a moving stimulus, observers viewed two short 
videos from (Kurzhals et al., 2014) on a 12-inch Apple 
MacBook (MF855LL/A). In the first video, the observers 
were instructed to track the motion of a car turning in a 
tight figure-8 pattern. In the second video, they were in-
structed to track the cup containing a marble in a ‘shell 

Figure 9: Experimental setup with calibration targets and the scene be-
hind the camera.  
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game.’ Both videos induced smooth pursuit eye move-
ments. The laptop was placed on a table so that the display 
center was 100 cm from the observer and 10 cm above the 
subject’s eyes.  The display field of view was 13.5° X 7.4°. 

Results 
Segmentation Results 
Figure 10 shows the loss function for the training and 

the testing datasets. The model starts to reach its asymptote 
at 35 epochs for both sets. For our model, the average IoU 
values were 0.898 for the training set, 0.891 for the corre-
lated test data, and 0.866 for the uncorrelated test data.       

Figure 11 shows images with iris regions predicted by 
the model and ground truth indicated in yellow and green 
colors respectively. For proper visualization, only the bor-
der predicted by the model is shown. The large white re-
gions in the upper-right image are specular reflections in 
the observer’s eyeglasses. A spike in the loss function at 
epochs 16-17 evident in Figure 10 is because of incon-
sistency in some of the labeled data such as when the eye-
lids cover the iris as seen in the lower left image in Figure 
11. 

Video Stabilization   
We evaluated the video stabilization for two cases; a 

rigid Styrofoam model head and for real human faces. For 
the rigid head model, we tracked the four points labeled A, 
B, C and D in Figure 12 (left). The rigid head was rotated 
slightly about the base, resulting in horizontal, vertical and 
diagonal movements of approximately 2 mm at a fre-

quency of approximately 1 Hz, and the video was stabi-
lized using our compensation model. The original motion 
for point B is shown in solid red in Figure 13 and the mo-
tion-compensated output is shown in dashed blue. 

  

Table 1 shows the mean squared change (MSE) from 
the initial starting reference frame and standard deviation 
(STD) of points before and after stabilization in pixels. The 
overall mean per class (MPC) across all points shows a 
dramatic improvement in performance. The test points 
were tracked by locating the brightest spot (a specular re-
flection) on the black marker as indicated in Figure 12 
(right). A variation of one pixel is expected because the 
maximum location algorithm in OpenCV (Bradski & 
Kaehler, 2000) returns the horizontal and vertical pixel lo-
cation as integer values. 

Figure 10: Loss curve for segmentation model. 

 

Figure 11: Images of test set with labels predicted by the model in yel-
low color (edges) and the labelled ground truth in green color (filled).  

Figure 12: Face model used for head stabilization verification with mark-
ers A, B, C and D indicated in the figure (Left). (Right) The circle indi-
cates the bright spot used for our method verification. 
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We also examined the performance of the video stabi-
lization algorithm for a seated observer in a chinrest look-
ing at nine calibration points for about a second each. Head 
motion was tracked by attaching two small stickers to the 
observer’s face and tracking each sticker in the video by 
computing the mean of the central votes of matched fea-
tures by using consensus-based matching and tracking 
(Nebehay & Pflugfelder, 2014). Before and after compen-
sation results are shown in Table 2. Unlike the rigid head 
model, where intentional movements were introduced, we 
expected only minimal head movements in the human face 
condition. The result shows an improvement in most of the 

cases, but in one case (S2), the standard deviation in-
creased along the x-axis by approximately 20% while de-
creasing along the y-axis by 32%.  

Snellen microsaccade task 
In the first task, observers were instructed to read a line 

on the pocket Snellen eye chart whose characters sub-
tended an angle of approximately 5 arcminutes (equivalent 

Table 1: Motion before (without compensation) and after (with compen-
sation) results for each point and overall mean per class (MPC). 

Table 2: Standard deviation (in x and y pixel position) of movements of 
two points in either side of face in the original video and after compensa-
tion. 

 Original

STDx STDy STDx STDy

Left 2.2 1.22 1.05 1.11

Right 1.45 1.37 1.12 1.03

Left 0.8 3.15 0.88 2.23

Right 1.02 2.49 1.24 1.71

Left 0.98 1.67 1.26 1.51

Right 1.46 2.29 0.57 1.08

Left 2.78 5.08 2.9 2.21

Right 3.11 4.53 1.39 2.24
4

Subject
Sticker 

placed on
After

1

2

3

MSE STD MSE STD

A x 5.28 7.19 0.48 0.65

A y 2.62 3.58 0.44 0.51

B x 5.38 7.37 0.61 0.79

B y 1.31 1.8 0.21 0.44

C x 5.53 7.57 0.52 0.76

C y 0.77 1.16 0.51 0.56

D x 5.56 7.64 0.42 0.66

D y 2.26 2.92 0.21 0.44

MPC 3.59 4.9 0.42 0.6

Points
Before After

Figure 13: The motion of the original face model (red) and after com-
pensation (blue) for point B is shown in the x-direction (top) and y-di-
rection (bottom).  

Figure 14: Target line from pocket Snellen chart. Characters in three 
groups subtended a vertical angle of 5 arc minutes. 
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to a ‘20/20’ character at that distance). Because of the size 
and distance of the target, the eye movements necessary to 
foveate each target constitute microsaccades (Shelchkova 
et al., 2018). Figure 14 shows the target and the angular 
subtense of the microsaccades required to move between 
the characters in each of the three groups (0.15°) and be-
tween the two groups (0.28° and 0.32°). Figure 15 shows 
the events detected for one of the subjects. The blue line 
indicates the cyclopean eye absolute velocity; the green 
dashed lines indicates the microsaccades or drifts detected 
which is a superset of the fixation targets. These microsac-
cades were detected with an absolute velocity threshold of 
3.84 deg/sec. Note the clear separation between the signal 
and noise. Red lines indicate saccades with an absolute ve-
locity greater than 50 deg/sec. The saccadic movement that 
appears every 5000ms is an artifact of the jitter caused 
when a new keyframe is taken as a reference during head 
stabilization.  

Figure 16 plots the absolute velocity of the cyclopean 
gaze (with its amplitude), X-t, Y-t and YX graphs for both 
eyes when microsaccades were detected. The amplitude of 
each microsaccade was calculated based on the gaze posi-
tion between the local minima of the cyclopean velocity 
before and after the microsaccades. The two local minima 
are indicated in the absolute velocity plot by the vertical 
light blue lines. There is a close relationship between the 
two eyes for most of the cases.  The center column shows 
a case where the eyes were moving in opposite directions. 

Results for all seven subjects are shown in Table 3. The 
table shows the number of microsaccades per observer: 
(A) found when the eye video was inspected visually; (B) 
detected by the algorithm; (C) detected by the algorithm 

when separated by an interval equal to at least half of the 
average duration available for each character; and (D) de-
tected by the algorithm but not present (‘false alarms’). 

The events for 0.15 degree microsaccades in Table 3 
(C) should be (4, 2, 2) as the instructed targets are set in 
that order as seen in Figure 14. Initially, two events of 
0.28-degree and 0.32-degree microsaccades are deter-
mined. Then, the number of events before 0.28-degree mi-
crosaccades, between 0.28 degree and 0.32 degree and af-
ter 0.32 degree are detected with a consideration that only 
one unique microsaccade must be a voluntary movement 
made for the target in the interval. All the other movements 
in the interval are neglected as our interest lies in detecting 
movements for the instructed target rather than observing 
the number of overall detected microsaccades. Note that 
the method identified all small movements ≥ 0.2 degrees.  

Table 3: Number of microsaccades detected manually by inspecting 
video and using the algorithm for all subjects. The total number of in-
structed targets is 8 targets of 0.15 degree and 2 targets over 0.2 degrees. 
The table also shows number of false alarms observed. 

1 2 3 4 5 6 7

8 8 3 14 19 15 10

(B) Detected 6 8 3 16 18 12 10

0 0 0 2 1 2 0

Subjects

(A) Microsaccades 
observed by 

inspecting video

(3
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Figure 15: Absolute velocity (deg/sec) of the cyclopean gaze. Light green shows the small eye movements detected between 3.84 
deg/sec to 50 deg/sec. There should be at least eight 0.15-degrees, one 0.28-degrees, and one 0.32-degrees, a total of 10 movements 
after 8500ms (in the non-highlighted region) as targets in one line of the Snellen chart. The initial 8500ms are the calibration phase. 
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Identifying small movements with a magnitude of 0.15 
degree is possible for some events when a lower threshold 
is selected, but this increased the false alarm rate. Subjects 
5 and 6 were two cases of noisy data. For Subject 6, using 
an initial regularization parameter of 0.1 for filtering re-
sulted in eight false alarms and a miss rate of 11.1% (with 
respect to the total number of microsaccades observed by 
inspecting video). It was seen that signal was noisy even 
after head motion compensation thus changing filtering 
regularization parameter to 0.20 and 0.15 for the right and 
left eye respectively there was an improvement in the re-
sult with only two false alarms. However, higher values of 
filtering regularization parameter increased the miss rate 
to 33.3%. 

The importance of compensating for small head move-
ments can be seen in Figure 17. Without compensation 
(top panel), a threshold of 12.0 deg/sec was necessary to 
exclude noise. After compensation (bottom panel), a 

Figure 16: Cyclopean velocity plot, relative X-t, Y-t and XY plot for right eye (blue) and left eye (dashed red) is shown for three 
events in different columns. 

Figure 17: Absolute velocity (deg/sec) of the cyclopean gaze plotted for 
subject 5 for both without head compensation (top) and after head com-
pensation (bottom). Light green shows the small eye movements de-
tected for their respective threshold parameter. 
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threshold of 5.1 deg/sec allowed microsaccades to be de-
tected more accurately. The one false alarm detected for 
the compensated data was also detected in the uncompen-
sated data indicating a false alarm resulting from large 
head motion. Without compensating for head motion, a to-
tal of nine microsaccades were missed. Figure 18 shows 
the ‘main sequence’ (peak velocity vs. amplitude) for mi-
crosaccades and saccades detected by our method. Both 
saccades and microsaccades fall on the main sequence 
with a slope of 47 s-1. Microsaccades are defined in this 
context as all movements with a peak velocity <50 deg/sec. 

 

Video Stimuli 
In the first video stimulus task, the observers were in-

structed to fixate on a moving car, leading to smooth pur-
suit, fixations, saccades, and microsaccades. The box plot 
with the number of microsaccades detected per second and 
the variation of the rate of microsaccades among different 
subjects is plotted for all subjects in Figure 19 (top row). 
The median number of microsaccades in the video is ap-
proximately one per second for most of the trial.  

In the second video task, the observers viewed a ‘shell 
game’ with three cups and one marble and were instructed 
to follow the cup that contained the marble. The visual task 
induced smooth pursuit, saccades, fixations, and microsac-

cades. The box plot with the number of microsaccades de-
tected per second and the variation of the rate of microsac-
cades among different subjects is plotted for all subjects in 
Figure 19 (bottom row). Figure 20 compares the average 
amplitude of the microsaccades over the entire video for 
the two video tasks. 

Discussion 

Current video-based eye-tracking methods can lead to 
ambiguities and potential errors when tracking very small 
eye movements. Our work represents an advance in ana-
lyzing microsaccades by tracking iris textures using a high 
frame rate, high-resolution camera. We segmented the iris 
from the video frame with a trained CNN and measured 
the model accuracy using an IoU metric that rewards cor-
rect matches and penalizes false matches. The IoU metric 
was appropriate because we calculated frame-to-frame ve-
locity based on the geometric median of the population of 
iris feature matches rather than relying on extracting the 
precise iris boundary. Our CNN model was able to gener-
alize for a varying set of data, though some labeling errors 
(e.g., eyelids covering the iris) resulted in inconsistencies. 
The CNN was trained with labels from a single human la-
beler and might be improved further if labels with multi-
ple-labeler agreement were used for training. 

Figure 18: Main sequence plot of peak velocity (degree/sec) vs amplitude (arcmin) in linear and log scales for microsaccades (red circles) and 
saccades (blue stars). The horizontal dotted line at 50 deg/sec is a fixed threshold used to differentiate saccades and microsaccades. 
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Head motion impacts the number of detectable mi-
crosaccades, so we introduced a head compensation model 
based on simple planar transformations. The model 
achieved excellent performance with a rigid head model, 
reducing the overall MSE from 3.59 pixels from the initial 
reference frame to just 0.42 pixels with standard deviation 
decreasing to 1/8th of the original value.  The model also 
improved the detection of microsaccades for human sub-
jects as the number of false alarms decreased significantly 
after compensating for head motion. However, some false 
alarms remained in cases where a large jitter was observed 
because of transformation issues (warping). For some sub-
jects, head movements were comparatively large causing 
more noise in the signal resulting in higher thresholding 
value obtained from GMMs for microsaccade detection. 
The current implementation can miss some microsaccades 
if they occur while updating to a new reference keyframe. 
When a new reference keyframe was updated there was 
usually a significant apparent movement, and the motion 
was misinterpreted as a saccade. Since our major concern 
lies in detection of microsaccades when a person fixates 
the instructed targets at a regular interval (approx. 1 sec) 
and we did not wish to include post-saccadic oscillations Figure 20: Plot for the average amplitude of microsaccades (degrees) 

made by various observers for two video stimuli task. (Top) is for watch-
ing a video of a moving car and (Bottom) is for watching a shell game. 

Figure 19: Plot for the rate of microsaccades during trial (left) and the average microsaccades rate for each subject in their overall video (right) 
when subjects were watching a video of a moving car (top) and watching a video of a shell game (bottom). 
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or movements compensating for overshoots or under-
shoots as microsaccade events, we required a minimum 
period of 52ms (5 frames) between detected velocity 
peaks. In our tests, one microsaccade was missed during 
that time interval as the microsaccade timing was aligned 
to the timestamp of keyframe update.    

We have demonstrated the robust detection of mi-
crosaccades by tracking the velocity signal generated from 
iris textures, extracting microsaccades with GMM-based 
adaptive velocity threshold parameter with a mean of 5.48 
deg/sec (s=1.16). In four of 21 trials in three tasks, the 
threshold value used was the lower bound of 3.84 deg/sec. 
Note that for head-fixed data (Fang et al., 2018) referred 
to a threshold of 10 deg/sec as a relatively strict criterion 
and used the threshold value of 5 deg/sec to validate some 
monocular events. Our algorithm makes it possible to use 
this range of parameters (>3.84 deg/sec) consistently with-
out significantly impacting the false alarm rate. 100% of 
the voluntarily generated small movements over 0.2 de-
gree were detected using our algorithm, and even mi-
crosaccades with an amplitude of 0.15 degrees were de-
tected over 73% of the time (41 out of 56 events). Further, 
microsaccades as small as 0.09 degree were recognized in 
low-noise backgrounds. 

Manually inspecting the video showed that the number 
of microsaccades was less than the number of instructed 
targets for the smallest (0.15 degree) microsaccades. It is 
possible that not all instructed eye movements were actu-
ally made; note that an entire grouping of characters fell 
within the fovea. For three out of seven subjects, all of the 
0.15° microsaccades that were identified via visual inspec-
tion of the video record were also detected by the algo-
rithm. For one subject, two microsaccades that were not 
detected by the algorithm were observed to be smaller than 
the remaining microsaccades for the same observer, per-
haps because the preceding microsaccades ‘overshot’ the 
previous character. It is likely that individual fixations fall 
on different positions within each character, and some of 
the characters subtended a horizontal angle of only 0.04 
degrees, so it is possible that the individual microsaccades 
were less than 0.15-degrees if the eye movements were not 
between character centers. Thus, the actual magnitude of 
the microsaccades were not exactly the expected value of 
0.15, 0.28 and 0.32 degrees calculated from the original 
target angles. Note too that our algorithm is best suited for 
event detection rather than providing an exact estimate of 
position. 

Figure 16 (second column) showed one of the sample 
events where the two eyes moved in opposite directions. 
This could be the result of true uncorrelated motion (such 
as vergence movements) or errors in the head compensa-
tion model. Vergence was detected by our method espe-
cially before and after the blinks as the eyes converged be-
fore a blink and diverged after.  

The results for our study for the number of microsac-
cades per second for the two video stimuli tasks are in 
agreement with Martinez-Conde et al. (2004) and the num-
ber and amplitude range are also consistent with the natu-
ral scene, picture puzzle and Where's Waldo head-fixed 
experiments conducted by Otero-Millan et al. (2008). 

 Analysis of the video figure-8 car stimulus suggest 
that the person is making more microsaccades in the later 
part of the video. This may be because the car was closer 
to the camera at that point and the number of catch-up sac-
cades less than 50 deg/sec is expected during smooth pur-
suit (Laurutis et al., 2010). We also observe that a high 
variance of movement is made at the 16th and 24th sec 
where the car makes a rapid movement and covers approx-
imately 1/6th of the visual field while during the rest of the 
video the car mostly covers approximately 1/15th of the 
visual field. During the 13th sec, a long pursuit is expected, 
and we observed a variation in the number of microsac-
cades detected since some of the subjects made a large am-
plitude microsaccade, and few made saccades (>50 
deg/sec) in that time interval. In the shell game, it was ob-
served that the number of microsaccades increased from 
the 11th to the 25th-sec interval even when the glass was 
at rest perhaps because the person was tracking other ob-
jects (hand) in the scene that were still moving. 

In the video tasks, the threshold was set for each trial 
by a GMM. As the smooth pursuit velocity induced by the 
moving targets was less than the microsaccade velocity 
threshold, the static GMM was sufficient. In the future, we 
will implement a continually variable adaptive-threshold 
in which the GMM will be based on a sliding window so 
that microsaccades superimposed over higher velocity 
smooth pursuit can be reliably detected without increasing 
false alarms during the pursuit.  

While the Snellen chart offers a convenient target to 
induce microsaccades, it presents several challenges. At 
this scale, several targets fall well within the fovea, so an 
observer doesn’t need to make saccades to read each char-
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acter. In addition, significant undershoots and/or over-
shoots could occur that would make it difficult to identify 
individual eye movements, without affecting an observer’s 
ability to read each character. We used the finite interval 
in an attempt to reduce errors for localizing individual eye 
movements, but it is still possible that we were not able to 
accurately parse each microsaccade perfectly. 

This experiment could be improved by using a high-
resolution digital display in place of the printed Snellen 
target, and display only one character at a time. This would 
simplify the identification of each microsaccade by syn-
chronizing presentation and detection times. A higher 
frame-rate camera could also improve performance. The 
temporal resolution of the camera impacts the estimate of 
the amplitude, as it is obtained by integration of velocity 
over time.  With more discrete velocity samples during 
brief microsaccades we can estimate the amplitude of mi-
crosaccades more accurately. Additionally, the signal-to-
noise ratio both in the head compensation model and the 
iris feature tracking method can be improved by using a 
higher frame rate camera with all-intraframe (ALL-I) en-
coding. We are also exploring hybrid algorithms that 
merge velocity and position signals to gain the precision 
benefit of the iris motion tracking while maintaining the 
traditional positional information. 

In summary, the main contributions of this paper are 
the use of trained CNNs to provide a more robust solution 
for iris segmentation across observers with different iris 
and skin pigmentation; an image-based model for head 
motion compensation using planar transformations which 
can be applied in various applications like video stabiliza-
tion; extracting high quality iris images rich in textures; 
and an algorithm to reliably detect small eye movements 
over 0.2 degrees with very high confidence by extracting 
motion signals with a high signal-to-noise ratio by compu-
ting motion distributions rather than relying on precise pu-
pil boundary localization as in pupil and Pupil-CR sys-
tems. This method can identify even smaller movements if 
the velocity of the movement is higher than the threshold 
parameter (>3.84 deg/sec).  
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